17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5100b72f4Sandrei * Common Development and Distribution License (the "License"). 6100b72f4Sandrei * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 21843e1988Sjohnlev 227c478bd9Sstevel@tonic-gate /* 235cd376e8SJimmy Vetayases * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24*636dfb4bSJerry Jelinek * Copyright (c) 2012, Joyent, Inc. All rights reserverd. 25*636dfb4bSJerry Jelinek */ 26*636dfb4bSJerry Jelinek 27*636dfb4bSJerry Jelinek /* 28*636dfb4bSJerry Jelinek * To understand the present state of interrupt handling on i86pc, we must 29*636dfb4bSJerry Jelinek * first consider the history of interrupt controllers and our way of handling 30*636dfb4bSJerry Jelinek * interrupts. 31*636dfb4bSJerry Jelinek * 32*636dfb4bSJerry Jelinek * History of Interrupt Controllers on i86pc 33*636dfb4bSJerry Jelinek * ----------------------------------------- 34*636dfb4bSJerry Jelinek * 35*636dfb4bSJerry Jelinek * Intel 8259 and 8259A 36*636dfb4bSJerry Jelinek * 37*636dfb4bSJerry Jelinek * The first interrupt controller that attained widespread use on i86pc was 38*636dfb4bSJerry Jelinek * the Intel 8259(A) Programmable Interrupt Controller that first saw use with 39*636dfb4bSJerry Jelinek * the 8086. It took up to 8 interrupt sources and combined them into one 40*636dfb4bSJerry Jelinek * output wire. Up to 8 8259s could be slaved together providing up to 64 IRQs. 41*636dfb4bSJerry Jelinek * With the switch to the 8259A, level mode interrupts became possible. For a 42*636dfb4bSJerry Jelinek * long time on i86pc the 8259A was the only way to handle interrupts and it 43*636dfb4bSJerry Jelinek * had its own set of quirks. The 8259A and its corresponding interval timer 44*636dfb4bSJerry Jelinek * the 8254 are programmed using outb and inb instructions. 45*636dfb4bSJerry Jelinek * 46*636dfb4bSJerry Jelinek * Intel Advanced Programmable Interrupt Controller (APIC) 47*636dfb4bSJerry Jelinek * 48*636dfb4bSJerry Jelinek * Starting around the time of the introduction of the P6 family 49*636dfb4bSJerry Jelinek * microarchitecture (i686) Intel introduced a new interrupt controller. 50*636dfb4bSJerry Jelinek * Instead of having the series of slaved 8259A devices, Intel opted to outfit 51*636dfb4bSJerry Jelinek * each processor with a Local APIC (lapic) and to outfit the system with at 52*636dfb4bSJerry Jelinek * least one, but potentially more, I/O APICs (ioapic). The lapics and ioapics 53*636dfb4bSJerry Jelinek * initially communicated over a dedicated bus, but this has since been 54*636dfb4bSJerry Jelinek * replaced. Each physical core and even hyperthread currently contains its 55*636dfb4bSJerry Jelinek * own local apic, which is not shared. There are a few exceptions for 56*636dfb4bSJerry Jelinek * hyperthreads, but that does not usually concern us. 57*636dfb4bSJerry Jelinek * 58*636dfb4bSJerry Jelinek * Instead of talking directly to 8259 for status, sending End Of Interrupt 59*636dfb4bSJerry Jelinek * (EOI), etc. a microprocessor now communicates directly to the lapic. This 60*636dfb4bSJerry Jelinek * also allows for each microprocessor to be able to have independent controls. 61*636dfb4bSJerry Jelinek * The programming method is different from the 8259. Consumers map the lapic 62*636dfb4bSJerry Jelinek * registers into uncacheable memory to read and manipulate the state. 63*636dfb4bSJerry Jelinek * 64*636dfb4bSJerry Jelinek * The number of addressable interrupt vectors was increased to 256. However 65*636dfb4bSJerry Jelinek * vectors 0-31 are reserved for the processor exception handling, leaving the 66*636dfb4bSJerry Jelinek * remaining vectors for general use. In addition to hardware generated 67*636dfb4bSJerry Jelinek * interrupts, the lapic provides a way for generating inter-processor 68*636dfb4bSJerry Jelinek * interrupts (IPI) which are the basis for CPU cross calls and CPU pokes. 69*636dfb4bSJerry Jelinek * 70*636dfb4bSJerry Jelinek * AMD ended up implementing the Intel APIC architecture in lieu of their work 71*636dfb4bSJerry Jelinek * with Cyrix. 72*636dfb4bSJerry Jelinek * 73*636dfb4bSJerry Jelinek * Intel x2apic 74*636dfb4bSJerry Jelinek * 75*636dfb4bSJerry Jelinek * The x2apic is an extension to the lapic which started showing up around the 76*636dfb4bSJerry Jelinek * same time as the Sandy Bridge chipsets. It provides a new programming mode 77*636dfb4bSJerry Jelinek * as well as new features. The goal of the x2apic is to solve a few problems 78*636dfb4bSJerry Jelinek * with the previous generation of lapic and the x2apic is backwards compatible 79*636dfb4bSJerry Jelinek * with the previous programming and model. The only downsides to using the 80*636dfb4bSJerry Jelinek * backwards compatibility is that you are not able to take advantage of the new 81*636dfb4bSJerry Jelinek * x2apic features. 82*636dfb4bSJerry Jelinek * 83*636dfb4bSJerry Jelinek * o The APIC ID is increased from an 8-bit value to a 32-bit value. This 84*636dfb4bSJerry Jelinek * increases the maximum number of addressable physical processors beyond 85*636dfb4bSJerry Jelinek * 256. This new ID is assembled in a similar manner as the information that 86*636dfb4bSJerry Jelinek * is obtainable by the extended cpuid topology leaves. 87*636dfb4bSJerry Jelinek * 88*636dfb4bSJerry Jelinek * o A new means of generating IPIs was introduced. 89*636dfb4bSJerry Jelinek * 90*636dfb4bSJerry Jelinek * o Instead of memory mapping the registers, the x2apic only allows for 91*636dfb4bSJerry Jelinek * programming it through a series of wrmsrs. This has important semantic 92*636dfb4bSJerry Jelinek * side effects. Recall that the registers were previously all mapped to 93*636dfb4bSJerry Jelinek * uncachable memory which meant that all operations to the local apic were 94*636dfb4bSJerry Jelinek * serializing instructions. With the switch to using wrmsrs this has been 95*636dfb4bSJerry Jelinek * relaxed and these operations can no longer be assumed to be serializing 96*636dfb4bSJerry Jelinek * instructions. 97*636dfb4bSJerry Jelinek * 98*636dfb4bSJerry Jelinek * Note for the rest of this we are only going to concern ourselves with the 99*636dfb4bSJerry Jelinek * apic and x2apic which practically all of i86pc has been using now for 100*636dfb4bSJerry Jelinek * quite some time. 101*636dfb4bSJerry Jelinek * 102*636dfb4bSJerry Jelinek * Interrupt Priority Levels 103*636dfb4bSJerry Jelinek * ------------------------- 104*636dfb4bSJerry Jelinek * 105*636dfb4bSJerry Jelinek * On i86pc systems there are a total of fifteen interrupt priority levels 106*636dfb4bSJerry Jelinek * (ipls) which range from 1-15. Level 0 is for normal processing and 107*636dfb4bSJerry Jelinek * non-interrupt processing. To manipulate these values the family of spl 108*636dfb4bSJerry Jelinek * functions (which date back to UNIX on the PDP-11) are used. Specifically, 109*636dfb4bSJerry Jelinek * splr() to raise the priority level and splx() to lower it. One should not 110*636dfb4bSJerry Jelinek * generally call setspl() directly. 111*636dfb4bSJerry Jelinek * 112*636dfb4bSJerry Jelinek * Both i86pc and the supported SPARC platforms honor the same conventions for 113*636dfb4bSJerry Jelinek * the meaning behind these IPLs. The most important IPL is the platform's 114*636dfb4bSJerry Jelinek * LOCK_LEVEL (0xa on i86pc). If a thread is above LOCK_LEVEL it _must_ not 115*636dfb4bSJerry Jelinek * sleep on any synchronization object. The only allowed synchronization 116*636dfb4bSJerry Jelinek * primitive is a mutex that has been specifically initialized to be a spin 117*636dfb4bSJerry Jelinek * lock (see mutex_init(9F)). Another important level is DISP_LEVEL (0xb on 118*636dfb4bSJerry Jelinek * i86pc). You must be at DISP_LEVEL if you want to control the dispatcher. 119*636dfb4bSJerry Jelinek * The XC_HI_PIL is the highest level (0xf) and is used during cross-calls. 120*636dfb4bSJerry Jelinek * 121*636dfb4bSJerry Jelinek * Each interrupt that is registered in the system fires at a specific IPL. 122*636dfb4bSJerry Jelinek * Generally most interrupts fire below LOCK_LEVEL. 123*636dfb4bSJerry Jelinek * 124*636dfb4bSJerry Jelinek * PSM Drivers 125*636dfb4bSJerry Jelinek * ----------- 126*636dfb4bSJerry Jelinek * 127*636dfb4bSJerry Jelinek * We currently have three sets of PSM (platform specific module) drivers 128*636dfb4bSJerry Jelinek * available. uppc, pcplusmp, and apix. uppc (uni-processor PC) is the original 129*636dfb4bSJerry Jelinek * driver that interacts with the 8259A and 8254. In general, it is not used 130*636dfb4bSJerry Jelinek * anymore given the prevalence of the apic. 131*636dfb4bSJerry Jelinek * 132*636dfb4bSJerry Jelinek * The system prefers to use the apix driver over the pcplusmp driver. The apix 133*636dfb4bSJerry Jelinek * driver requires HW support for an x2apic. If there is no x2apic HW, apix 134*636dfb4bSJerry Jelinek * will not be used. In general we prefer using the apix driver over the 135*636dfb4bSJerry Jelinek * pcplusmp driver because it gives us much more flexibility with respect to 136*636dfb4bSJerry Jelinek * interrupts. In the apix driver each local apic has its own independent set 137*636dfb4bSJerry Jelinek * of interrupts, whereas the pcplusmp driver only has a single global set of 138*636dfb4bSJerry Jelinek * interrupts. This is why pcplusmp only supports a finite number of interrupts 139*636dfb4bSJerry Jelinek * per IPL -- generally 16, often less. The apix driver supports using either 140*636dfb4bSJerry Jelinek * the x2apic or the local apic programing modes. The programming mode does not 141*636dfb4bSJerry Jelinek * change the number of interrupts available, just the number of processors 142*636dfb4bSJerry Jelinek * that we can address. For the apix driver, the x2apic mode is enabled if the 143*636dfb4bSJerry Jelinek * system supports interrupt re-mapping, otherwise the module manages the 144*636dfb4bSJerry Jelinek * x2apic in local mode. 145*636dfb4bSJerry Jelinek * 146*636dfb4bSJerry Jelinek * When there is no x2apic present, we default back to the pcplusmp PSM driver. 147*636dfb4bSJerry Jelinek * In general, this is not problematic unless you have more than 256 148*636dfb4bSJerry Jelinek * processors in the machine or you do not have enough interrupts available. 149*636dfb4bSJerry Jelinek * 150*636dfb4bSJerry Jelinek * Controlling Interrupt Generation on i86pc 151*636dfb4bSJerry Jelinek * ----------------------------------------- 152*636dfb4bSJerry Jelinek * 153*636dfb4bSJerry Jelinek * There are two different ways to manipulate which interrupts will be 154*636dfb4bSJerry Jelinek * generated on i86pc. Each offers different degrees of control. 155*636dfb4bSJerry Jelinek * 156*636dfb4bSJerry Jelinek * The first is through the flags register (eflags and rflags on i386 and amd64 157*636dfb4bSJerry Jelinek * respectively). The IF bit determines whether or not interrupts are enabled 158*636dfb4bSJerry Jelinek * or disabled. This is manipulated in one of several ways. The most common way 159*636dfb4bSJerry Jelinek * is through the cli and sti instructions. These clear the IF flag and set it, 160*636dfb4bSJerry Jelinek * respectively, for the current processor. The other common way is through the 161*636dfb4bSJerry Jelinek * use of the intr_clear and intr_restore functions. 162*636dfb4bSJerry Jelinek * 163*636dfb4bSJerry Jelinek * Assuming interrupts are not blocked by the IF flag, then the second form is 164*636dfb4bSJerry Jelinek * through the Processor-Priority Register (PPR). The PPR is used to determine 165*636dfb4bSJerry Jelinek * whether or not a pending interrupt should be delivered. If the ipl of the 166*636dfb4bSJerry Jelinek * new interrupt is higher than the current value in the PPR, then the lapic 167*636dfb4bSJerry Jelinek * will either deliver it immediately (if interrupts are not in progress) or it 168*636dfb4bSJerry Jelinek * will deliver it once the current interrupt processing has issued an EOI. The 169*636dfb4bSJerry Jelinek * highest unmasked interrupt will be the one delivered. 170*636dfb4bSJerry Jelinek * 171*636dfb4bSJerry Jelinek * The PPR register is based upon the max of the following two registers in the 172*636dfb4bSJerry Jelinek * lapic, the TPR register (also known as CR8 on amd64) that can be used to 173*636dfb4bSJerry Jelinek * mask interrupt levels, and the current vector. Because the pcplusmp module 174*636dfb4bSJerry Jelinek * always sets TPR appropriately early in the do_interrupt path, we can usually 175*636dfb4bSJerry Jelinek * just think that the PPR is the TPR. The pcplusmp module also issues an EOI 176*636dfb4bSJerry Jelinek * once it has set the TPR, so higher priority interrupts can come in while 177*636dfb4bSJerry Jelinek * we're servicing a lower priority interrupt. 178*636dfb4bSJerry Jelinek * 179*636dfb4bSJerry Jelinek * Handling Interrupts 180*636dfb4bSJerry Jelinek * ------------------- 181*636dfb4bSJerry Jelinek * 182*636dfb4bSJerry Jelinek * Interrupts can be broken down into three categories based on priority and 183*636dfb4bSJerry Jelinek * source: 184*636dfb4bSJerry Jelinek * 185*636dfb4bSJerry Jelinek * o High level interrupts 186*636dfb4bSJerry Jelinek * o Low level hardware interrupts 187*636dfb4bSJerry Jelinek * o Low level software interrupts 188*636dfb4bSJerry Jelinek * 189*636dfb4bSJerry Jelinek * High Level Interrupts 190*636dfb4bSJerry Jelinek * 191*636dfb4bSJerry Jelinek * High level interrupts encompasses both hardware-sourced and software-sourced 192*636dfb4bSJerry Jelinek * interrupts. Examples of high level hardware interrupts include the serial 193*636dfb4bSJerry Jelinek * console. High level software-sourced interrupts are still delivered through 194*636dfb4bSJerry Jelinek * the local apic through IPIs. This is primarily cross calls. 195*636dfb4bSJerry Jelinek * 196*636dfb4bSJerry Jelinek * When a high level interrupt comes in, we will raise the SPL and then pin the 197*636dfb4bSJerry Jelinek * current lwp to the processor. We will use its lwp, but our own interrupt 198*636dfb4bSJerry Jelinek * stack and process the high level interrupt in-situ. These handlers are 199*636dfb4bSJerry Jelinek * designed to be very short in nature and cannot go to sleep, only block on a 200*636dfb4bSJerry Jelinek * spin lock. If the interrupt has a lot of work to do, it must generate a 201*636dfb4bSJerry Jelinek * low-priority software interrupt that will be processed later. 202*636dfb4bSJerry Jelinek * 203*636dfb4bSJerry Jelinek * Low level hardware interrupts 204*636dfb4bSJerry Jelinek * 205*636dfb4bSJerry Jelinek * Low level hardware interrupts start off like their high-level cousins. The 206*636dfb4bSJerry Jelinek * current CPU contains a number of kernel threads (kthread_t) that can be used 207*636dfb4bSJerry Jelinek * to process low level interrupts. These are shared between both low level 208*636dfb4bSJerry Jelinek * hardware and software interrupts. Note that while we run with our 209*636dfb4bSJerry Jelinek * kthread_t, we borrow the pinned threads lwp_t until such a time as we hit a 210*636dfb4bSJerry Jelinek * synchronization object. If we hit one and need to sleep, then the scheduler 211*636dfb4bSJerry Jelinek * will instead create the rest of what we need. 212*636dfb4bSJerry Jelinek * 213*636dfb4bSJerry Jelinek * Low level software interrupts 214*636dfb4bSJerry Jelinek * 215*636dfb4bSJerry Jelinek * Low level software interrupts are handled in a similar way as hardware 216*636dfb4bSJerry Jelinek * interrupts, but the notification vector is different. Each CPU has a bitmask 217*636dfb4bSJerry Jelinek * of pending software interrupts. We can notify a CPU to process software 218*636dfb4bSJerry Jelinek * interrupts through a specific trap vector as well as through several 219*636dfb4bSJerry Jelinek * checks that are performed throughout the code. These checks will look at 220*636dfb4bSJerry Jelinek * processing software interrupts as we lower our spl. 221*636dfb4bSJerry Jelinek * 222*636dfb4bSJerry Jelinek * We attempt to process the highest pending software interrupt that we can 223*636dfb4bSJerry Jelinek * which is greater than our current IPL. If none currently exist, then we move 224*636dfb4bSJerry Jelinek * on. We process a software interrupt in a similar fashion to a hardware 225*636dfb4bSJerry Jelinek * interrupt. 226*636dfb4bSJerry Jelinek * 227*636dfb4bSJerry Jelinek * Traditional Interrupt Flow 228*636dfb4bSJerry Jelinek * -------------------------- 229*636dfb4bSJerry Jelinek * 230*636dfb4bSJerry Jelinek * The following diagram tracks the flow of the traditional uppc and pcplusmp 231*636dfb4bSJerry Jelinek * interrupt handlers. The apix driver has its own version of do_interrupt(). 232*636dfb4bSJerry Jelinek * We come into the interrupt handler with all interrupts masked by the IF 233*636dfb4bSJerry Jelinek * flag. This is because we set up the handler using an interrupt-gate, which 234*636dfb4bSJerry Jelinek * is defined architecturally to have cleared the IF flag for us. 235*636dfb4bSJerry Jelinek * 236*636dfb4bSJerry Jelinek * +--------------+ +----------------+ +-----------+ 237*636dfb4bSJerry Jelinek * | _interrupt() |--->| do_interrupt() |--->| *setlvl() | 238*636dfb4bSJerry Jelinek * +--------------+ +----------------+ +-----------+ 239*636dfb4bSJerry Jelinek * | | | 240*636dfb4bSJerry Jelinek * | | | 241*636dfb4bSJerry Jelinek * low-level| | | softint 242*636dfb4bSJerry Jelinek * HW int | | +---------------------------------------+ 243*636dfb4bSJerry Jelinek * +--------------+ | | | 244*636dfb4bSJerry Jelinek * | intr_thread_ |<-----+ | hi-level int | 245*636dfb4bSJerry Jelinek * | prolog() | | +----------+ | 246*636dfb4bSJerry Jelinek * +--------------+ +--->| hilevel_ | Not on intr stack | 247*636dfb4bSJerry Jelinek * | | intr_ |-----------------+ | 248*636dfb4bSJerry Jelinek * | | prolog() | | | 249*636dfb4bSJerry Jelinek * +------------+ +----------+ | | 250*636dfb4bSJerry Jelinek * | switch_sp_ | | On intr v | 251*636dfb4bSJerry Jelinek * | and_call() | | Stack +------------+ | 252*636dfb4bSJerry Jelinek * +------------+ | | switch_sp_ | | 253*636dfb4bSJerry Jelinek * | v | and_call() | | 254*636dfb4bSJerry Jelinek * v +-----------+ +------------+ | 255*636dfb4bSJerry Jelinek * +-----------+ | dispatch_ | | | 256*636dfb4bSJerry Jelinek * | dispatch_ | +-------------------| hilevel() |<------------+ | 257*636dfb4bSJerry Jelinek * | hardint() | | +-----------+ | 258*636dfb4bSJerry Jelinek * +-----------+ | | 259*636dfb4bSJerry Jelinek * | v | 260*636dfb4bSJerry Jelinek * | +-----+ +----------------------+ +-----+ hi-level | 261*636dfb4bSJerry Jelinek * +---->| sti |->| av_dispatch_autovect |->| cli |---------+ | 262*636dfb4bSJerry Jelinek * +-----+ +----------------------+ +-----+ | | 263*636dfb4bSJerry Jelinek * | | | | 264*636dfb4bSJerry Jelinek * v | | | 265*636dfb4bSJerry Jelinek * +----------+ | | | 266*636dfb4bSJerry Jelinek * | for each | | | | 267*636dfb4bSJerry Jelinek * | handler | | | | 268*636dfb4bSJerry Jelinek * | *intr() | | v | 269*636dfb4bSJerry Jelinek * +--------------+ +----------+ | +----------------+ | 270*636dfb4bSJerry Jelinek * | intr_thread_ | low-level | | hilevel_intr_ | | 271*636dfb4bSJerry Jelinek * | epilog() |<-------------------------------+ | epilog() | | 272*636dfb4bSJerry Jelinek * +--------------+ +----------------+ | 273*636dfb4bSJerry Jelinek * | | | | 274*636dfb4bSJerry Jelinek * | +----------------------v v---------------------+ | 275*636dfb4bSJerry Jelinek * | +------------+ | 276*636dfb4bSJerry Jelinek * | +---------------------->| *setlvlx() | | 277*636dfb4bSJerry Jelinek * | | +------------+ | 278*636dfb4bSJerry Jelinek * | | | | 279*636dfb4bSJerry Jelinek * | | v | 280*636dfb4bSJerry Jelinek * | | +--------+ +------------------+ +-------------+ | 281*636dfb4bSJerry Jelinek * | | | return |<----| softint pending? |----->| dosoftint() |<-----+ 282*636dfb4bSJerry Jelinek * | | +--------+ no +------------------+ yes +-------------+ 283*636dfb4bSJerry Jelinek * | | ^ | | 284*636dfb4bSJerry Jelinek * | | | softint pil too low | | 285*636dfb4bSJerry Jelinek * | | +--------------------------------------+ | 286*636dfb4bSJerry Jelinek * | | v 287*636dfb4bSJerry Jelinek * | | +-----------+ +------------+ +-----------+ 288*636dfb4bSJerry Jelinek * | | | dispatch_ |<-----| switch_sp_ |<---------| *setspl() | 289*636dfb4bSJerry Jelinek * | | | softint() | | and_call() | +-----------+ 290*636dfb4bSJerry Jelinek * | | +-----------+ +------------+ 291*636dfb4bSJerry Jelinek * | | | 292*636dfb4bSJerry Jelinek * | | v 293*636dfb4bSJerry Jelinek * | | +-----+ +----------------------+ +-----+ +------------+ 294*636dfb4bSJerry Jelinek * | | | sti |->| av_dispatch_autovect |->| cli |->| dosoftint_ | 295*636dfb4bSJerry Jelinek * | | +-----+ +----------------------+ +-----+ | epilog() | 296*636dfb4bSJerry Jelinek * | | +------------+ 297*636dfb4bSJerry Jelinek * | | | | 298*636dfb4bSJerry Jelinek * | +----------------------------------------------------+ | 299*636dfb4bSJerry Jelinek * v | 300*636dfb4bSJerry Jelinek * +-----------+ | 301*636dfb4bSJerry Jelinek * | interrupt | | 302*636dfb4bSJerry Jelinek * | thread |<---------------------------------------------------+ 303*636dfb4bSJerry Jelinek * | blocked | 304*636dfb4bSJerry Jelinek * +-----------+ 305*636dfb4bSJerry Jelinek * | 306*636dfb4bSJerry Jelinek * v 307*636dfb4bSJerry Jelinek * +----------------+ +------------+ +-----------+ +-------+ +---------+ 308*636dfb4bSJerry Jelinek * | set_base_spl() |->| *setlvlx() |->| splhigh() |->| sti() |->| swtch() | 309*636dfb4bSJerry Jelinek * +----------------+ +------------+ +-----------+ +-------+ +---------+ 310*636dfb4bSJerry Jelinek * 311*636dfb4bSJerry Jelinek * Calls made on Interrupt Stacks and Epilogue routines 312*636dfb4bSJerry Jelinek * 313*636dfb4bSJerry Jelinek * We use the switch_sp_and_call() assembly routine to switch our sp to the 314*636dfb4bSJerry Jelinek * interrupt stacks and then call the appropriate dispatch function. In the 315*636dfb4bSJerry Jelinek * case of interrupts which may block, softints and hardints, we always ensure 316*636dfb4bSJerry Jelinek * that we are still on the interrupt thread when we call the epilog routine. 317*636dfb4bSJerry Jelinek * This is not just important, it's necessary. If the interrupt thread blocked, 318*636dfb4bSJerry Jelinek * we won't return from our switch_sp_and_call() function and instead we'll go 319*636dfb4bSJerry Jelinek * through and set ourselves up to swtch() directly. 320*636dfb4bSJerry Jelinek * 321*636dfb4bSJerry Jelinek * New Interrupt Flow 322*636dfb4bSJerry Jelinek * ------------------ 323*636dfb4bSJerry Jelinek * 324*636dfb4bSJerry Jelinek * The apix module has its own interrupt path. This is done for various 325*636dfb4bSJerry Jelinek * reasons. The first is that rather than having global interrupt vectors, we 326*636dfb4bSJerry Jelinek * now have per-cpu vectors. 327*636dfb4bSJerry Jelinek * 328*636dfb4bSJerry Jelinek * The other substantial change is that the apix design does not use the TPR to 329*636dfb4bSJerry Jelinek * mask interrupts below the current level. In fact, except for one special 330*636dfb4bSJerry Jelinek * case, it does not use the TPR at all. Instead, it only uses the IF flag 331*636dfb4bSJerry Jelinek * (cli/sti) to either block all interrupts or allow any interrupts to come in. 332*636dfb4bSJerry Jelinek * The design is such that when interrupts are allowed to come in, if we are 333*636dfb4bSJerry Jelinek * currently servicing a higher priority interupt, the new interrupt is treated 334*636dfb4bSJerry Jelinek * as pending and serviced later. Specifically, in the pcplusmp module's 335*636dfb4bSJerry Jelinek * apic_intr_enter() the code masks interrupts at or below the current 336*636dfb4bSJerry Jelinek * IPL using the TPR before sending EOI, whereas the apix module's 337*636dfb4bSJerry Jelinek * apix_intr_enter() simply sends EOI. 338*636dfb4bSJerry Jelinek * 339*636dfb4bSJerry Jelinek * The one special case where the apix code uses the TPR is when it calls 340*636dfb4bSJerry Jelinek * through the apic_reg_ops function pointer apic_write_task_reg in 341*636dfb4bSJerry Jelinek * apix_init_intr() to initially mask all levels and then finally to enable all 342*636dfb4bSJerry Jelinek * levels. 343*636dfb4bSJerry Jelinek * 344*636dfb4bSJerry Jelinek * Recall that we come into the interrupt handler with all interrupts masked 345*636dfb4bSJerry Jelinek * by the IF flag. This is because we set up the handler using an 346*636dfb4bSJerry Jelinek * interrupt-gate which is defined architecturally to have cleared the IF flag 347*636dfb4bSJerry Jelinek * for us. 348*636dfb4bSJerry Jelinek * 349*636dfb4bSJerry Jelinek * +--------------+ +---------------------+ 350*636dfb4bSJerry Jelinek * | _interrupt() |--->| apix_do_interrupt() | 351*636dfb4bSJerry Jelinek * +--------------+ +---------------------+ 352*636dfb4bSJerry Jelinek * | 353*636dfb4bSJerry Jelinek * hard int? +----+--------+ softint? 354*636dfb4bSJerry Jelinek * | | (but no low-level looping) 355*636dfb4bSJerry Jelinek * +-----------+ | 356*636dfb4bSJerry Jelinek * | *setlvl() | | 357*636dfb4bSJerry Jelinek * +---------+ +-----------+ +----------------------------------+ 358*636dfb4bSJerry Jelinek * |apix_add_| check IPL | | 359*636dfb4bSJerry Jelinek * |pending_ |<-------------+------+----------------------+ | 360*636dfb4bSJerry Jelinek * |hardint()| low-level int| hi-level int| | 361*636dfb4bSJerry Jelinek * +---------+ v v | 362*636dfb4bSJerry Jelinek * | check IPL +-----------------+ +---------------+ | 363*636dfb4bSJerry Jelinek * +--+-----+ | apix_intr_ | | apix_hilevel_ | | 364*636dfb4bSJerry Jelinek * | | | thread_prolog() | | intr_prolog() | | 365*636dfb4bSJerry Jelinek * | return +-----------------+ +---------------+ | 366*636dfb4bSJerry Jelinek * | | | On intr | 367*636dfb4bSJerry Jelinek * | +------------+ | stack? +------------+ | 368*636dfb4bSJerry Jelinek * | | switch_sp_ | +---------| switch_sp_ | | 369*636dfb4bSJerry Jelinek * | | and_call() | | | and_call() | | 370*636dfb4bSJerry Jelinek * | +------------+ | +------------+ | 371*636dfb4bSJerry Jelinek * | | | | | 372*636dfb4bSJerry Jelinek * | +----------------+ +----------------+ | 373*636dfb4bSJerry Jelinek * | | apix_dispatch_ | | apix_dispatch_ | | 374*636dfb4bSJerry Jelinek * | | lowlevel() | | hilevel() | | 375*636dfb4bSJerry Jelinek * | +----------------+ +----------------+ | 376*636dfb4bSJerry Jelinek * | | | | 377*636dfb4bSJerry Jelinek * | v v | 378*636dfb4bSJerry Jelinek * | +-------------------------+ | 379*636dfb4bSJerry Jelinek * | |apix_dispatch_by_vector()|----+ | 380*636dfb4bSJerry Jelinek * | +-------------------------+ | | 381*636dfb4bSJerry Jelinek * | !XC_HI_PIL| | | | | 382*636dfb4bSJerry Jelinek * | +---+ +-------+ +---+ | | 383*636dfb4bSJerry Jelinek * | |sti| |*intr()| |cli| | | 384*636dfb4bSJerry Jelinek * | +---+ +-------+ +---+ | hi-level? | 385*636dfb4bSJerry Jelinek * | +---------------------------+----+ | 386*636dfb4bSJerry Jelinek * | v low-level? v | 387*636dfb4bSJerry Jelinek * | +----------------+ +----------------+ | 388*636dfb4bSJerry Jelinek * | | apix_intr_ | | apix_hilevel_ | | 389*636dfb4bSJerry Jelinek * | | thread_epilog()| | intr_epilog() | | 390*636dfb4bSJerry Jelinek * | +----------------+ +----------------+ | 391*636dfb4bSJerry Jelinek * | | | | 392*636dfb4bSJerry Jelinek * | v-----------------+--------------------------------+ | 393*636dfb4bSJerry Jelinek * | +------------+ | 394*636dfb4bSJerry Jelinek * | | *setlvlx() | +----------------------------------------------------+ 395*636dfb4bSJerry Jelinek * | +------------+ | 396*636dfb4bSJerry Jelinek * | | | +--------------------------------+ low 397*636dfb4bSJerry Jelinek * v v v------+ v | level 398*636dfb4bSJerry Jelinek * +------------------+ +------------------+ +-----------+ | pending? 399*636dfb4bSJerry Jelinek * | apix_do_pending_ |----->| apix_do_pending_ |----->| apix_do_ |--+ 400*636dfb4bSJerry Jelinek * | hilevel() | | hardint() | | softint() | | 401*636dfb4bSJerry Jelinek * +------------------+ +------------------+ +-----------+ return 402*636dfb4bSJerry Jelinek * | | | 403*636dfb4bSJerry Jelinek * | while pending | while pending | while pending 404*636dfb4bSJerry Jelinek * | hi-level | low-level | softint 405*636dfb4bSJerry Jelinek * | | | 406*636dfb4bSJerry Jelinek * +---------------+ +-----------------+ +-----------------+ 407*636dfb4bSJerry Jelinek * | apix_hilevel_ | | apix_intr_ | | apix_do_ | 408*636dfb4bSJerry Jelinek * | intr_prolog() | | thread_prolog() | | softint_prolog()| 409*636dfb4bSJerry Jelinek * +---------------+ +-----------------+ +-----------------+ 410*636dfb4bSJerry Jelinek * | On intr | | 411*636dfb4bSJerry Jelinek * | stack? +------------+ +------------+ +------------+ 412*636dfb4bSJerry Jelinek * +--------| switch_sp_ | | switch_sp_ | | switch_sp_ | 413*636dfb4bSJerry Jelinek * | | and_call() | | and_call() | | and_call() | 414*636dfb4bSJerry Jelinek * | +------------+ +------------+ +------------+ 415*636dfb4bSJerry Jelinek * | | | | 416*636dfb4bSJerry Jelinek * +------------------+ +------------------+ +------------------------+ 417*636dfb4bSJerry Jelinek * | apix_dispatch_ | | apix_dispatch_ | | apix_dispatch_softint()| 418*636dfb4bSJerry Jelinek * | pending_hilevel()| | pending_hardint()| +------------------------+ 419*636dfb4bSJerry Jelinek * +------------------+ +------------------+ | | | | 420*636dfb4bSJerry Jelinek * | | | | | | | | 421*636dfb4bSJerry Jelinek * | +----------------+ | +----------------+ | | | | 422*636dfb4bSJerry Jelinek * | | apix_hilevel_ | | | apix_intr_ | | | | | 423*636dfb4bSJerry Jelinek * | | intr_epilog() | | | thread_epilog()| | | | | 424*636dfb4bSJerry Jelinek * | +----------------+ | +----------------+ | | | | 425*636dfb4bSJerry Jelinek * | | | | | | | | 426*636dfb4bSJerry Jelinek * | +------------+ | +----------+ +------+ | | | 427*636dfb4bSJerry Jelinek * | | *setlvlx() | | |*setlvlx()| | | | | 428*636dfb4bSJerry Jelinek * | +------------+ | +----------+ | +----------+ | +---------+ 429*636dfb4bSJerry Jelinek * | | +---+ |av_ | +---+ |apix_do_ | 430*636dfb4bSJerry Jelinek * +---------------------------------+ |sti| |dispatch_ | |cli| |softint_ | 431*636dfb4bSJerry Jelinek * | apix_dispatch_pending_autovect()| +---+ |softvect()| +---+ |epilog() | 432*636dfb4bSJerry Jelinek * +---------------------------------+ +----------+ +---------+ 433*636dfb4bSJerry Jelinek * |!XC_HI_PIL | | | | 434*636dfb4bSJerry Jelinek * +---+ +-------+ +---+ +----------+ +-------+ 435*636dfb4bSJerry Jelinek * |sti| |*intr()| |cli| |apix_post_| |*intr()| 436*636dfb4bSJerry Jelinek * +---+ +-------+ +---+ |hardint() | +-------+ 437*636dfb4bSJerry Jelinek * +----------+ 4387c478bd9Sstevel@tonic-gate */ 4397c478bd9Sstevel@tonic-gate 4407c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h> 441fb2caebeSRandy Fishel #include <sys/cpu_event.h> 4427c478bd9Sstevel@tonic-gate #include <sys/regset.h> 4437c478bd9Sstevel@tonic-gate #include <sys/psw.h> 4447c478bd9Sstevel@tonic-gate #include <sys/types.h> 4457c478bd9Sstevel@tonic-gate #include <sys/thread.h> 4467c478bd9Sstevel@tonic-gate #include <sys/systm.h> 4477c478bd9Sstevel@tonic-gate #include <sys/segments.h> 4487c478bd9Sstevel@tonic-gate #include <sys/pcb.h> 4497c478bd9Sstevel@tonic-gate #include <sys/trap.h> 4507c478bd9Sstevel@tonic-gate #include <sys/ftrace.h> 4517c478bd9Sstevel@tonic-gate #include <sys/traptrace.h> 4527c478bd9Sstevel@tonic-gate #include <sys/clock.h> 4537c478bd9Sstevel@tonic-gate #include <sys/panic.h> 4547c478bd9Sstevel@tonic-gate #include <sys/disp.h> 4557c478bd9Sstevel@tonic-gate #include <vm/seg_kp.h> 4567c478bd9Sstevel@tonic-gate #include <sys/stack.h> 4577c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h> 4587c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h> 4597c478bd9Sstevel@tonic-gate #include <sys/kstat.h> 4607c478bd9Sstevel@tonic-gate #include <sys/smp_impldefs.h> 4617c478bd9Sstevel@tonic-gate #include <sys/pool_pset.h> 4627c478bd9Sstevel@tonic-gate #include <sys/zone.h> 4637c478bd9Sstevel@tonic-gate #include <sys/bitmap.h> 464ae115bc7Smrj #include <sys/archsystm.h> 465ae115bc7Smrj #include <sys/machsystm.h> 466ae115bc7Smrj #include <sys/ontrap.h> 467ae115bc7Smrj #include <sys/x86_archext.h> 468ae115bc7Smrj #include <sys/promif.h> 46995c0a3c8Sjosephb #include <vm/hat_i86.h> 470843e1988Sjohnlev #if defined(__xpv) 471843e1988Sjohnlev #include <sys/hypervisor.h> 472843e1988Sjohnlev #endif 4737c478bd9Sstevel@tonic-gate 4747c478bd9Sstevel@tonic-gate 475843e1988Sjohnlev #if defined(__xpv) && defined(DEBUG) 476843e1988Sjohnlev 477843e1988Sjohnlev /* 478843e1988Sjohnlev * This panic message is intended as an aid to interrupt debugging. 479843e1988Sjohnlev * 480843e1988Sjohnlev * The associated assertion tests the condition of enabling 481843e1988Sjohnlev * events when events are already enabled. The implication 482843e1988Sjohnlev * being that whatever code the programmer thought was 483843e1988Sjohnlev * protected by having events disabled until the second 484843e1988Sjohnlev * enable happened really wasn't protected at all .. 485843e1988Sjohnlev */ 486843e1988Sjohnlev 487843e1988Sjohnlev int stistipanic = 1; /* controls the debug panic check */ 488843e1988Sjohnlev const char *stistimsg = "stisti"; 489843e1988Sjohnlev ulong_t laststi[NCPU]; 490843e1988Sjohnlev 491843e1988Sjohnlev /* 492843e1988Sjohnlev * This variable tracks the last place events were disabled on each cpu 493fb2caebeSRandy Fishel * it assists in debugging when asserts that interrupts are enabled trip. 494843e1988Sjohnlev */ 495843e1988Sjohnlev ulong_t lastcli[NCPU]; 496843e1988Sjohnlev 497843e1988Sjohnlev #endif 498843e1988Sjohnlev 4997ff178cdSJimmy Vetayases void do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); 5007ff178cdSJimmy Vetayases 5017ff178cdSJimmy Vetayases void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *) = do_interrupt; 5027ff178cdSJimmy Vetayases uintptr_t (*get_intr_handler)(int, short) = NULL; 5037ff178cdSJimmy Vetayases 5047c478bd9Sstevel@tonic-gate /* 505ae115bc7Smrj * Set cpu's base SPL level to the highest active interrupt level 5067c478bd9Sstevel@tonic-gate */ 507ae115bc7Smrj void 508ae115bc7Smrj set_base_spl(void) 5097c478bd9Sstevel@tonic-gate { 510ae115bc7Smrj struct cpu *cpu = CPU; 511ae115bc7Smrj uint16_t active = (uint16_t)cpu->cpu_intr_actv; 5127c478bd9Sstevel@tonic-gate 513ae115bc7Smrj cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 5147c478bd9Sstevel@tonic-gate } 5157c478bd9Sstevel@tonic-gate 5167c478bd9Sstevel@tonic-gate /* 5177c478bd9Sstevel@tonic-gate * Do all the work necessary to set up the cpu and thread structures 5187c478bd9Sstevel@tonic-gate * to dispatch a high-level interrupt. 5197c478bd9Sstevel@tonic-gate * 5207c478bd9Sstevel@tonic-gate * Returns 0 if we're -not- already on the high-level interrupt stack, 5217c478bd9Sstevel@tonic-gate * (and *must* switch to it), non-zero if we are already on that stack. 5227c478bd9Sstevel@tonic-gate * 5237c478bd9Sstevel@tonic-gate * Called with interrupts masked. 5247c478bd9Sstevel@tonic-gate * The 'pil' is already set to the appropriate level for rp->r_trapno. 5257c478bd9Sstevel@tonic-gate */ 526ae115bc7Smrj static int 5277c478bd9Sstevel@tonic-gate hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 5287c478bd9Sstevel@tonic-gate { 5297c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 5307c478bd9Sstevel@tonic-gate uint_t mask; 531eda89462Sesolom hrtime_t intrtime; 532ae115bc7Smrj hrtime_t now = tsc_read(); 5337c478bd9Sstevel@tonic-gate 5347c478bd9Sstevel@tonic-gate ASSERT(pil > LOCK_LEVEL); 5357c478bd9Sstevel@tonic-gate 5367c478bd9Sstevel@tonic-gate if (pil == CBE_HIGH_PIL) { 5377c478bd9Sstevel@tonic-gate cpu->cpu_profile_pil = oldpil; 5387c478bd9Sstevel@tonic-gate if (USERMODE(rp->r_cs)) { 5397c478bd9Sstevel@tonic-gate cpu->cpu_profile_pc = 0; 5407c478bd9Sstevel@tonic-gate cpu->cpu_profile_upc = rp->r_pc; 541b9e93c10SJonathan Haslam cpu->cpu_cpcprofile_pc = 0; 542b9e93c10SJonathan Haslam cpu->cpu_cpcprofile_upc = rp->r_pc; 5437c478bd9Sstevel@tonic-gate } else { 5447c478bd9Sstevel@tonic-gate cpu->cpu_profile_pc = rp->r_pc; 5457c478bd9Sstevel@tonic-gate cpu->cpu_profile_upc = 0; 546b9e93c10SJonathan Haslam cpu->cpu_cpcprofile_pc = rp->r_pc; 547b9e93c10SJonathan Haslam cpu->cpu_cpcprofile_upc = 0; 5487c478bd9Sstevel@tonic-gate } 5497c478bd9Sstevel@tonic-gate } 5507c478bd9Sstevel@tonic-gate 5517c478bd9Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 5527c478bd9Sstevel@tonic-gate if (mask != 0) { 5537c478bd9Sstevel@tonic-gate int nestpil; 5547c478bd9Sstevel@tonic-gate 5557c478bd9Sstevel@tonic-gate /* 5567c478bd9Sstevel@tonic-gate * We have interrupted another high-level interrupt. 5577c478bd9Sstevel@tonic-gate * Load starting timestamp, compute interval, update 5587c478bd9Sstevel@tonic-gate * cumulative counter. 5597c478bd9Sstevel@tonic-gate */ 5607c478bd9Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 5617c478bd9Sstevel@tonic-gate ASSERT(nestpil < pil); 562ae115bc7Smrj intrtime = now - 5637c478bd9Sstevel@tonic-gate mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 5647a364d25Sschwartz mcpu->intrstat[nestpil][0] += intrtime; 565eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 5667c478bd9Sstevel@tonic-gate /* 5677c478bd9Sstevel@tonic-gate * Another high-level interrupt is active below this one, so 5687c478bd9Sstevel@tonic-gate * there is no need to check for an interrupt thread. That 5697c478bd9Sstevel@tonic-gate * will be done by the lowest priority high-level interrupt 5707c478bd9Sstevel@tonic-gate * active. 5717c478bd9Sstevel@tonic-gate */ 5727c478bd9Sstevel@tonic-gate } else { 5737c478bd9Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 5747c478bd9Sstevel@tonic-gate 5757c478bd9Sstevel@tonic-gate /* 5767c478bd9Sstevel@tonic-gate * See if we are interrupting a low-level interrupt thread. 5777c478bd9Sstevel@tonic-gate * If so, account for its time slice only if its time stamp 5787c478bd9Sstevel@tonic-gate * is non-zero. 5797c478bd9Sstevel@tonic-gate */ 5807c478bd9Sstevel@tonic-gate if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 581ae115bc7Smrj intrtime = now - t->t_intr_start; 5827a364d25Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 583eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 5847c478bd9Sstevel@tonic-gate t->t_intr_start = 0; 5857c478bd9Sstevel@tonic-gate } 5867c478bd9Sstevel@tonic-gate } 5877c478bd9Sstevel@tonic-gate 5887c478bd9Sstevel@tonic-gate /* 5897c478bd9Sstevel@tonic-gate * Store starting timestamp in CPU structure for this PIL. 5907c478bd9Sstevel@tonic-gate */ 591ae115bc7Smrj mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 5927c478bd9Sstevel@tonic-gate 5937c478bd9Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 5947c478bd9Sstevel@tonic-gate 5957c478bd9Sstevel@tonic-gate if (pil == 15) { 5967c478bd9Sstevel@tonic-gate /* 5977c478bd9Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 5987c478bd9Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 5997c478bd9Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 6007c478bd9Sstevel@tonic-gate * the lower half of cpu_intr_actv. 6017c478bd9Sstevel@tonic-gate */ 6027c478bd9Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 6037c478bd9Sstevel@tonic-gate (*refcntp)++; 6047c478bd9Sstevel@tonic-gate } 6057c478bd9Sstevel@tonic-gate 6067c478bd9Sstevel@tonic-gate mask = cpu->cpu_intr_actv; 6077c478bd9Sstevel@tonic-gate 6087c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 6097c478bd9Sstevel@tonic-gate 6107c478bd9Sstevel@tonic-gate return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 6117c478bd9Sstevel@tonic-gate } 6127c478bd9Sstevel@tonic-gate 6137c478bd9Sstevel@tonic-gate /* 6147c478bd9Sstevel@tonic-gate * Does most of the work of returning from a high level interrupt. 6157c478bd9Sstevel@tonic-gate * 6167c478bd9Sstevel@tonic-gate * Returns 0 if there are no more high level interrupts (in which 6177c478bd9Sstevel@tonic-gate * case we must switch back to the interrupted thread stack) or 6187c478bd9Sstevel@tonic-gate * non-zero if there are more (in which case we should stay on it). 6197c478bd9Sstevel@tonic-gate * 6207c478bd9Sstevel@tonic-gate * Called with interrupts masked 6217c478bd9Sstevel@tonic-gate */ 622ae115bc7Smrj static int 6237c478bd9Sstevel@tonic-gate hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 6247c478bd9Sstevel@tonic-gate { 6257c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 6267c478bd9Sstevel@tonic-gate uint_t mask; 627eda89462Sesolom hrtime_t intrtime; 628ae115bc7Smrj hrtime_t now = tsc_read(); 6297c478bd9Sstevel@tonic-gate 6307c478bd9Sstevel@tonic-gate ASSERT(mcpu->mcpu_pri == pil); 6317c478bd9Sstevel@tonic-gate 6327c478bd9Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 6337c478bd9Sstevel@tonic-gate 6347c478bd9Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 6357c478bd9Sstevel@tonic-gate 6367c478bd9Sstevel@tonic-gate if (pil == 15) { 6377c478bd9Sstevel@tonic-gate /* 6387c478bd9Sstevel@tonic-gate * To support reentrant level 15 interrupts, we maintain a 6397c478bd9Sstevel@tonic-gate * recursion count in the top half of cpu_intr_actv. Only 6407c478bd9Sstevel@tonic-gate * when this count hits zero do we clear the PIL 15 bit from 6417c478bd9Sstevel@tonic-gate * the lower half of cpu_intr_actv. 6427c478bd9Sstevel@tonic-gate */ 6437c478bd9Sstevel@tonic-gate uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 6447c478bd9Sstevel@tonic-gate 6457c478bd9Sstevel@tonic-gate ASSERT(*refcntp > 0); 6467c478bd9Sstevel@tonic-gate 6477c478bd9Sstevel@tonic-gate if (--(*refcntp) == 0) 6487c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 6497c478bd9Sstevel@tonic-gate } else { 6507c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 6517c478bd9Sstevel@tonic-gate } 6527c478bd9Sstevel@tonic-gate 6537c478bd9Sstevel@tonic-gate ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 6547c478bd9Sstevel@tonic-gate 655ae115bc7Smrj intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 6567a364d25Sschwartz mcpu->intrstat[pil][0] += intrtime; 657eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 6587c478bd9Sstevel@tonic-gate 6597c478bd9Sstevel@tonic-gate /* 6607c478bd9Sstevel@tonic-gate * Check for lower-pil nested high-level interrupt beneath 6617c478bd9Sstevel@tonic-gate * current one. If so, place a starting timestamp in its 6627c478bd9Sstevel@tonic-gate * pil_high_start entry. 6637c478bd9Sstevel@tonic-gate */ 6647c478bd9Sstevel@tonic-gate mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 6657c478bd9Sstevel@tonic-gate if (mask != 0) { 6667c478bd9Sstevel@tonic-gate int nestpil; 6677c478bd9Sstevel@tonic-gate 6687c478bd9Sstevel@tonic-gate /* 6697c478bd9Sstevel@tonic-gate * find PIL of nested interrupt 6707c478bd9Sstevel@tonic-gate */ 6717c478bd9Sstevel@tonic-gate nestpil = bsrw_insn((uint16_t)mask); 6727c478bd9Sstevel@tonic-gate ASSERT(nestpil < pil); 673ae115bc7Smrj mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 6747c478bd9Sstevel@tonic-gate /* 6757c478bd9Sstevel@tonic-gate * (Another high-level interrupt is active below this one, 6767c478bd9Sstevel@tonic-gate * so there is no need to check for an interrupt 6777c478bd9Sstevel@tonic-gate * thread. That will be done by the lowest priority 6787c478bd9Sstevel@tonic-gate * high-level interrupt active.) 6797c478bd9Sstevel@tonic-gate */ 6807c478bd9Sstevel@tonic-gate } else { 6817c478bd9Sstevel@tonic-gate /* 6827c478bd9Sstevel@tonic-gate * Check to see if there is a low-level interrupt active. 6837c478bd9Sstevel@tonic-gate * If so, place a starting timestamp in the thread 6847c478bd9Sstevel@tonic-gate * structure. 6857c478bd9Sstevel@tonic-gate */ 6867c478bd9Sstevel@tonic-gate kthread_t *t = cpu->cpu_thread; 6877c478bd9Sstevel@tonic-gate 6887c478bd9Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 689ae115bc7Smrj t->t_intr_start = now; 6907c478bd9Sstevel@tonic-gate } 6917c478bd9Sstevel@tonic-gate 6927c478bd9Sstevel@tonic-gate mcpu->mcpu_pri = oldpil; 6937c478bd9Sstevel@tonic-gate (void) (*setlvlx)(oldpil, vecnum); 6947c478bd9Sstevel@tonic-gate 6957c478bd9Sstevel@tonic-gate return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 6967c478bd9Sstevel@tonic-gate } 6977c478bd9Sstevel@tonic-gate 6987c478bd9Sstevel@tonic-gate /* 6997c478bd9Sstevel@tonic-gate * Set up the cpu, thread and interrupt thread structures for 7007c478bd9Sstevel@tonic-gate * executing an interrupt thread. The new stack pointer of the 7017c478bd9Sstevel@tonic-gate * interrupt thread (which *must* be switched to) is returned. 7027c478bd9Sstevel@tonic-gate */ 703ae115bc7Smrj static caddr_t 7047c478bd9Sstevel@tonic-gate intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 7057c478bd9Sstevel@tonic-gate { 7067c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 7077c478bd9Sstevel@tonic-gate kthread_t *t, *volatile it; 708ae115bc7Smrj hrtime_t now = tsc_read(); 7097c478bd9Sstevel@tonic-gate 7107c478bd9Sstevel@tonic-gate ASSERT(pil > 0); 7117c478bd9Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 7127c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 7137c478bd9Sstevel@tonic-gate 7147c478bd9Sstevel@tonic-gate /* 7157c478bd9Sstevel@tonic-gate * Get set to run an interrupt thread. 7167c478bd9Sstevel@tonic-gate * There should always be an interrupt thread, since we 7177c478bd9Sstevel@tonic-gate * allocate one for each level on each CPU. 7187c478bd9Sstevel@tonic-gate * 719fd71cd2fSesolom * t_intr_start could be zero due to cpu_intr_swtch_enter. 7207c478bd9Sstevel@tonic-gate */ 7217c478bd9Sstevel@tonic-gate t = cpu->cpu_thread; 722fd71cd2fSesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 723ae115bc7Smrj hrtime_t intrtime = now - t->t_intr_start; 7247a364d25Sschwartz mcpu->intrstat[t->t_pil][0] += intrtime; 725eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 7267c478bd9Sstevel@tonic-gate t->t_intr_start = 0; 7277c478bd9Sstevel@tonic-gate } 7287c478bd9Sstevel@tonic-gate 7297c478bd9Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 7307c478bd9Sstevel@tonic-gate 7317c478bd9Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 7327c478bd9Sstevel@tonic-gate 7337c478bd9Sstevel@tonic-gate /* 7347c478bd9Sstevel@tonic-gate * unlink the interrupt thread off the cpu 735fd71cd2fSesolom * 736fd71cd2fSesolom * Note that the code in kcpc_overflow_intr -relies- on the 737fd71cd2fSesolom * ordering of events here - in particular that t->t_lwp of 738fd71cd2fSesolom * the interrupt thread is set to the pinned thread *before* 739fd71cd2fSesolom * curthread is changed. 7407c478bd9Sstevel@tonic-gate */ 7417c478bd9Sstevel@tonic-gate it = cpu->cpu_intr_thread; 7427c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 7437c478bd9Sstevel@tonic-gate it->t_intr = t; 7447c478bd9Sstevel@tonic-gate it->t_lwp = t->t_lwp; 7457c478bd9Sstevel@tonic-gate 7467c478bd9Sstevel@tonic-gate /* 7477c478bd9Sstevel@tonic-gate * (threads on the interrupt thread free list could have state 7487c478bd9Sstevel@tonic-gate * preset to TS_ONPROC, but it helps in debugging if 7497c478bd9Sstevel@tonic-gate * they're TS_FREE.) 7507c478bd9Sstevel@tonic-gate */ 7517c478bd9Sstevel@tonic-gate it->t_state = TS_ONPROC; 7527c478bd9Sstevel@tonic-gate 7537c478bd9Sstevel@tonic-gate cpu->cpu_thread = it; /* new curthread on this cpu */ 7547c478bd9Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 7557c478bd9Sstevel@tonic-gate it->t_pri = intr_pri + (pri_t)pil; 756ae115bc7Smrj it->t_intr_start = now; 7577c478bd9Sstevel@tonic-gate 7587c478bd9Sstevel@tonic-gate return (it->t_stk); 7597c478bd9Sstevel@tonic-gate } 7607c478bd9Sstevel@tonic-gate 7617c478bd9Sstevel@tonic-gate 7627c478bd9Sstevel@tonic-gate #ifdef DEBUG 7637c478bd9Sstevel@tonic-gate int intr_thread_cnt; 7647c478bd9Sstevel@tonic-gate #endif 7657c478bd9Sstevel@tonic-gate 7667c478bd9Sstevel@tonic-gate /* 7677c478bd9Sstevel@tonic-gate * Called with interrupts disabled 7687c478bd9Sstevel@tonic-gate */ 769ae115bc7Smrj static void 7707c478bd9Sstevel@tonic-gate intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 7717c478bd9Sstevel@tonic-gate { 7727c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 7737c478bd9Sstevel@tonic-gate kthread_t *t; 7747c478bd9Sstevel@tonic-gate kthread_t *it = cpu->cpu_thread; /* curthread */ 7757c478bd9Sstevel@tonic-gate uint_t pil, basespl; 776eda89462Sesolom hrtime_t intrtime; 777ae115bc7Smrj hrtime_t now = tsc_read(); 7787c478bd9Sstevel@tonic-gate 7797c478bd9Sstevel@tonic-gate pil = it->t_pil; 7807c478bd9Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 7817c478bd9Sstevel@tonic-gate 7827c478bd9Sstevel@tonic-gate ASSERT(it->t_intr_start != 0); 783ae115bc7Smrj intrtime = now - it->t_intr_start; 7847a364d25Sschwartz mcpu->intrstat[pil][0] += intrtime; 785eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 7867c478bd9Sstevel@tonic-gate 7877c478bd9Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 7887c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 7897c478bd9Sstevel@tonic-gate 7907c478bd9Sstevel@tonic-gate /* 7917c478bd9Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 7927c478bd9Sstevel@tonic-gate * then the interrupt was never blocked and the return is 7937c478bd9Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 7947c478bd9Sstevel@tonic-gate */ 7957c478bd9Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 7967c478bd9Sstevel@tonic-gate /* 7977c478bd9Sstevel@tonic-gate * The interrupted thread is no longer pinned underneath 7987c478bd9Sstevel@tonic-gate * the interrupt thread. This means the interrupt must 7997c478bd9Sstevel@tonic-gate * have blocked, and the interrupted thread has been 8007c478bd9Sstevel@tonic-gate * unpinned, and has probably been running around the 8017c478bd9Sstevel@tonic-gate * system for a while. 8027c478bd9Sstevel@tonic-gate * 8037c478bd9Sstevel@tonic-gate * Since there is no longer a thread under this one, put 8047c478bd9Sstevel@tonic-gate * this interrupt thread back on the CPU's free list and 8057c478bd9Sstevel@tonic-gate * resume the idle thread which will dispatch the next 8067c478bd9Sstevel@tonic-gate * thread to run. 8077c478bd9Sstevel@tonic-gate */ 8087c478bd9Sstevel@tonic-gate #ifdef DEBUG 8097c478bd9Sstevel@tonic-gate intr_thread_cnt++; 8107c478bd9Sstevel@tonic-gate #endif 8117c478bd9Sstevel@tonic-gate cpu->cpu_stats.sys.intrblk++; 8127c478bd9Sstevel@tonic-gate /* 8137c478bd9Sstevel@tonic-gate * Set CPU's base SPL based on active interrupts bitmask 8147c478bd9Sstevel@tonic-gate */ 8157c478bd9Sstevel@tonic-gate set_base_spl(); 8167c478bd9Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 8177c478bd9Sstevel@tonic-gate mcpu->mcpu_pri = basespl; 8187c478bd9Sstevel@tonic-gate (*setlvlx)(basespl, vec); 8197c478bd9Sstevel@tonic-gate (void) splhigh(); 820ae115bc7Smrj sti(); 8217c478bd9Sstevel@tonic-gate it->t_state = TS_FREE; 8227c478bd9Sstevel@tonic-gate /* 8237c478bd9Sstevel@tonic-gate * Return interrupt thread to pool 8247c478bd9Sstevel@tonic-gate */ 8257c478bd9Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 8267c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it; 8277c478bd9Sstevel@tonic-gate swtch(); 828ae115bc7Smrj panic("intr_thread_epilog: swtch returned"); 8297c478bd9Sstevel@tonic-gate /*NOTREACHED*/ 8307c478bd9Sstevel@tonic-gate } 8317c478bd9Sstevel@tonic-gate 8327c478bd9Sstevel@tonic-gate /* 8337c478bd9Sstevel@tonic-gate * Return interrupt thread to the pool 8347c478bd9Sstevel@tonic-gate */ 8357c478bd9Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 8367c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it; 8377c478bd9Sstevel@tonic-gate it->t_state = TS_FREE; 8387c478bd9Sstevel@tonic-gate 8397c478bd9Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 8407c478bd9Sstevel@tonic-gate pil = MAX(oldpil, basespl); 8417c478bd9Sstevel@tonic-gate mcpu->mcpu_pri = pil; 8427c478bd9Sstevel@tonic-gate (*setlvlx)(pil, vec); 843ae115bc7Smrj t->t_intr_start = now; 8447c478bd9Sstevel@tonic-gate cpu->cpu_thread = t; 8457c478bd9Sstevel@tonic-gate } 8467c478bd9Sstevel@tonic-gate 8477a364d25Sschwartz /* 848ae115bc7Smrj * intr_get_time() is a resource for interrupt handlers to determine how 849ae115bc7Smrj * much time has been spent handling the current interrupt. Such a function 850ae115bc7Smrj * is needed because higher level interrupts can arrive during the 851ae115bc7Smrj * processing of an interrupt. intr_get_time() only returns time spent in the 852ae115bc7Smrj * current interrupt handler. 853ae115bc7Smrj * 854ae115bc7Smrj * The caller must be calling from an interrupt handler running at a pil 855ae115bc7Smrj * below or at lock level. Timings are not provided for high-level 856ae115bc7Smrj * interrupts. 857ae115bc7Smrj * 858ae115bc7Smrj * The first time intr_get_time() is called while handling an interrupt, 859ae115bc7Smrj * it returns the time since the interrupt handler was invoked. Subsequent 860ae115bc7Smrj * calls will return the time since the prior call to intr_get_time(). Time 861843e1988Sjohnlev * is returned as ticks. Use scalehrtimef() to convert ticks to nsec. 862ae115bc7Smrj * 863ae115bc7Smrj * Theory Of Intrstat[][]: 864ae115bc7Smrj * 865ae115bc7Smrj * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 866ae115bc7Smrj * uint64_ts per pil. 867ae115bc7Smrj * 868ae115bc7Smrj * intrstat[pil][0] is a cumulative count of the number of ticks spent 869ae115bc7Smrj * handling all interrupts at the specified pil on this CPU. It is 870ae115bc7Smrj * exported via kstats to the user. 871ae115bc7Smrj * 872ae115bc7Smrj * intrstat[pil][1] is always a count of ticks less than or equal to the 873ae115bc7Smrj * value in [0]. The difference between [1] and [0] is the value returned 874ae115bc7Smrj * by a call to intr_get_time(). At the start of interrupt processing, 875ae115bc7Smrj * [0] and [1] will be equal (or nearly so). As the interrupt consumes 876ae115bc7Smrj * time, [0] will increase, but [1] will remain the same. A call to 877ae115bc7Smrj * intr_get_time() will return the difference, then update [1] to be the 878ae115bc7Smrj * same as [0]. Future calls will return the time since the last call. 879ae115bc7Smrj * Finally, when the interrupt completes, [1] is updated to the same as [0]. 880ae115bc7Smrj * 881ae115bc7Smrj * Implementation: 882ae115bc7Smrj * 883ae115bc7Smrj * intr_get_time() works much like a higher level interrupt arriving. It 884ae115bc7Smrj * "checkpoints" the timing information by incrementing intrstat[pil][0] 885ae115bc7Smrj * to include elapsed running time, and by setting t_intr_start to rdtsc. 886ae115bc7Smrj * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 887ae115bc7Smrj * and updates intrstat[pil][1] to be the same as the new value of 888ae115bc7Smrj * intrstat[pil][0]. 889ae115bc7Smrj * 890ae115bc7Smrj * In the normal handling of interrupts, after an interrupt handler returns 891ae115bc7Smrj * and the code in intr_thread() updates intrstat[pil][0], it then sets 892ae115bc7Smrj * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 893ae115bc7Smrj * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 894ae115bc7Smrj * is 0. 895ae115bc7Smrj * 896ae115bc7Smrj * Whenever interrupts arrive on a CPU which is handling a lower pil 897ae115bc7Smrj * interrupt, they update the lower pil's [0] to show time spent in the 898ae115bc7Smrj * handler that they've interrupted. This results in a growing discrepancy 899ae115bc7Smrj * between [0] and [1], which is returned the next time intr_get_time() is 900ae115bc7Smrj * called. Time spent in the higher-pil interrupt will not be returned in 901ae115bc7Smrj * the next intr_get_time() call from the original interrupt, because 902ae115bc7Smrj * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 9037a364d25Sschwartz */ 9047a364d25Sschwartz uint64_t 905ae115bc7Smrj intr_get_time(void) 9067a364d25Sschwartz { 907ae115bc7Smrj struct cpu *cpu; 908ae115bc7Smrj struct machcpu *mcpu; 909ae115bc7Smrj kthread_t *t; 9107a364d25Sschwartz uint64_t time, delta, ret; 911ae115bc7Smrj uint_t pil; 9127a364d25Sschwartz 913ae115bc7Smrj cli(); 914ae115bc7Smrj cpu = CPU; 915ae115bc7Smrj mcpu = &cpu->cpu_m; 916ae115bc7Smrj t = cpu->cpu_thread; 917ae115bc7Smrj pil = t->t_pil; 9187a364d25Sschwartz ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 9197a364d25Sschwartz ASSERT(t->t_flag & T_INTR_THREAD); 9207a364d25Sschwartz ASSERT(pil != 0); 9217a364d25Sschwartz ASSERT(t->t_intr_start != 0); 9227a364d25Sschwartz 9237a364d25Sschwartz time = tsc_read(); 9247a364d25Sschwartz delta = time - t->t_intr_start; 9257a364d25Sschwartz t->t_intr_start = time; 9267a364d25Sschwartz 9277a364d25Sschwartz time = mcpu->intrstat[pil][0] + delta; 9287a364d25Sschwartz ret = time - mcpu->intrstat[pil][1]; 9297a364d25Sschwartz mcpu->intrstat[pil][0] = time; 9307a364d25Sschwartz mcpu->intrstat[pil][1] = time; 931c81508f4Sjhaslam cpu->cpu_intracct[cpu->cpu_mstate] += delta; 9327a364d25Sschwartz 933ae115bc7Smrj sti(); 9347a364d25Sschwartz return (ret); 9357a364d25Sschwartz } 9367a364d25Sschwartz 937ae115bc7Smrj static caddr_t 9387c478bd9Sstevel@tonic-gate dosoftint_prolog( 9397c478bd9Sstevel@tonic-gate struct cpu *cpu, 9407c478bd9Sstevel@tonic-gate caddr_t stackptr, 9417c478bd9Sstevel@tonic-gate uint32_t st_pending, 9427c478bd9Sstevel@tonic-gate uint_t oldpil) 9437c478bd9Sstevel@tonic-gate { 9447c478bd9Sstevel@tonic-gate kthread_t *t, *volatile it; 9457c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 9467c478bd9Sstevel@tonic-gate uint_t pil; 947ae115bc7Smrj hrtime_t now; 9487c478bd9Sstevel@tonic-gate 9497c478bd9Sstevel@tonic-gate top: 9507c478bd9Sstevel@tonic-gate ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 9517c478bd9Sstevel@tonic-gate 9527c478bd9Sstevel@tonic-gate pil = bsrw_insn((uint16_t)st_pending); 9537c478bd9Sstevel@tonic-gate if (pil <= oldpil || pil <= cpu->cpu_base_spl) 9547c478bd9Sstevel@tonic-gate return (0); 9557c478bd9Sstevel@tonic-gate 9567c478bd9Sstevel@tonic-gate /* 9577c478bd9Sstevel@tonic-gate * XX64 Sigh. 9587c478bd9Sstevel@tonic-gate * 9597c478bd9Sstevel@tonic-gate * This is a transliteration of the i386 assembler code for 9607c478bd9Sstevel@tonic-gate * soft interrupts. One question is "why does this need 9617c478bd9Sstevel@tonic-gate * to be atomic?" One possible race is -other- processors 9627c478bd9Sstevel@tonic-gate * posting soft interrupts to us in set_pending() i.e. the 9637c478bd9Sstevel@tonic-gate * CPU might get preempted just after the address computation, 9647c478bd9Sstevel@tonic-gate * but just before the atomic transaction, so another CPU would 9657c478bd9Sstevel@tonic-gate * actually set the original CPU's st_pending bit. However, 9667c478bd9Sstevel@tonic-gate * it looks like it would be simpler to disable preemption there. 9677c478bd9Sstevel@tonic-gate * Are there other races for which preemption control doesn't work? 9687c478bd9Sstevel@tonic-gate * 9697c478bd9Sstevel@tonic-gate * The i386 assembler version -also- checks to see if the bit 9707c478bd9Sstevel@tonic-gate * being cleared was actually set; if it wasn't, it rechecks 9717c478bd9Sstevel@tonic-gate * for more. This seems a bit strange, as the only code that 9727c478bd9Sstevel@tonic-gate * ever clears the bit is -this- code running with interrupts 9737c478bd9Sstevel@tonic-gate * disabled on -this- CPU. This code would probably be cheaper: 9747c478bd9Sstevel@tonic-gate * 9757c478bd9Sstevel@tonic-gate * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 9767c478bd9Sstevel@tonic-gate * ~(1 << pil)); 9777c478bd9Sstevel@tonic-gate * 9787c478bd9Sstevel@tonic-gate * and t->t_preempt--/++ around set_pending() even cheaper, 9797c478bd9Sstevel@tonic-gate * but at this point, correctness is critical, so we slavishly 9807c478bd9Sstevel@tonic-gate * emulate the i386 port. 9817c478bd9Sstevel@tonic-gate */ 982ae115bc7Smrj if (atomic_btr32((uint32_t *) 983ae115bc7Smrj &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 9847c478bd9Sstevel@tonic-gate st_pending = mcpu->mcpu_softinfo.st_pending; 9857c478bd9Sstevel@tonic-gate goto top; 9867c478bd9Sstevel@tonic-gate } 9877c478bd9Sstevel@tonic-gate 9887c478bd9Sstevel@tonic-gate mcpu->mcpu_pri = pil; 9897c478bd9Sstevel@tonic-gate (*setspl)(pil); 9907c478bd9Sstevel@tonic-gate 991ae115bc7Smrj now = tsc_read(); 992ae115bc7Smrj 9937c478bd9Sstevel@tonic-gate /* 9947c478bd9Sstevel@tonic-gate * Get set to run interrupt thread. 9957c478bd9Sstevel@tonic-gate * There should always be an interrupt thread since we 9967c478bd9Sstevel@tonic-gate * allocate one for each level on the CPU. 9977c478bd9Sstevel@tonic-gate */ 9987c478bd9Sstevel@tonic-gate it = cpu->cpu_intr_thread; 9997c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it->t_link; 10007c478bd9Sstevel@tonic-gate 1001fd71cd2fSesolom /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 1002fd71cd2fSesolom t = cpu->cpu_thread; 1003fd71cd2fSesolom if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 1004ae115bc7Smrj hrtime_t intrtime = now - t->t_intr_start; 1005fd71cd2fSesolom mcpu->intrstat[pil][0] += intrtime; 1006fd71cd2fSesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 1007fd71cd2fSesolom t->t_intr_start = 0; 1008fd71cd2fSesolom } 1009fd71cd2fSesolom 10107c478bd9Sstevel@tonic-gate /* 10117c478bd9Sstevel@tonic-gate * Note that the code in kcpc_overflow_intr -relies- on the 10127c478bd9Sstevel@tonic-gate * ordering of events here - in particular that t->t_lwp of 10137c478bd9Sstevel@tonic-gate * the interrupt thread is set to the pinned thread *before* 1014fd71cd2fSesolom * curthread is changed. 10157c478bd9Sstevel@tonic-gate */ 10167c478bd9Sstevel@tonic-gate it->t_lwp = t->t_lwp; 10177c478bd9Sstevel@tonic-gate it->t_state = TS_ONPROC; 10187c478bd9Sstevel@tonic-gate 10197c478bd9Sstevel@tonic-gate /* 10207c478bd9Sstevel@tonic-gate * Push interrupted thread onto list from new thread. 10217c478bd9Sstevel@tonic-gate * Set the new thread as the current one. 10227c478bd9Sstevel@tonic-gate * Set interrupted thread's T_SP because if it is the idle thread, 10237c478bd9Sstevel@tonic-gate * resume() may use that stack between threads. 10247c478bd9Sstevel@tonic-gate */ 10257c478bd9Sstevel@tonic-gate 10267c478bd9Sstevel@tonic-gate ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 10277c478bd9Sstevel@tonic-gate t->t_sp = (uintptr_t)stackptr; 10287c478bd9Sstevel@tonic-gate 10297c478bd9Sstevel@tonic-gate it->t_intr = t; 10307c478bd9Sstevel@tonic-gate cpu->cpu_thread = it; 10317c478bd9Sstevel@tonic-gate 10327c478bd9Sstevel@tonic-gate /* 10337c478bd9Sstevel@tonic-gate * Set bit for this pil in CPU's interrupt active bitmask. 10347c478bd9Sstevel@tonic-gate */ 10357c478bd9Sstevel@tonic-gate ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 10367c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv |= (1 << pil); 10377c478bd9Sstevel@tonic-gate 10387c478bd9Sstevel@tonic-gate /* 10397c478bd9Sstevel@tonic-gate * Initialize thread priority level from intr_pri 10407c478bd9Sstevel@tonic-gate */ 10417c478bd9Sstevel@tonic-gate it->t_pil = (uchar_t)pil; 10427c478bd9Sstevel@tonic-gate it->t_pri = (pri_t)pil + intr_pri; 1043ae115bc7Smrj it->t_intr_start = now; 10447c478bd9Sstevel@tonic-gate 10457c478bd9Sstevel@tonic-gate return (it->t_stk); 10467c478bd9Sstevel@tonic-gate } 10477c478bd9Sstevel@tonic-gate 1048ae115bc7Smrj static void 10497c478bd9Sstevel@tonic-gate dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 10507c478bd9Sstevel@tonic-gate { 10517c478bd9Sstevel@tonic-gate struct machcpu *mcpu = &cpu->cpu_m; 10527c478bd9Sstevel@tonic-gate kthread_t *t, *it; 10537c478bd9Sstevel@tonic-gate uint_t pil, basespl; 1054eda89462Sesolom hrtime_t intrtime; 1055ae115bc7Smrj hrtime_t now = tsc_read(); 10567c478bd9Sstevel@tonic-gate 10577c478bd9Sstevel@tonic-gate it = cpu->cpu_thread; 10587c478bd9Sstevel@tonic-gate pil = it->t_pil; 10597c478bd9Sstevel@tonic-gate 10607c478bd9Sstevel@tonic-gate cpu->cpu_stats.sys.intr[pil - 1]++; 10617c478bd9Sstevel@tonic-gate 10627c478bd9Sstevel@tonic-gate ASSERT(cpu->cpu_intr_actv & (1 << pil)); 10637c478bd9Sstevel@tonic-gate cpu->cpu_intr_actv &= ~(1 << pil); 1064ae115bc7Smrj intrtime = now - it->t_intr_start; 10657a364d25Sschwartz mcpu->intrstat[pil][0] += intrtime; 1066eda89462Sesolom cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 10677c478bd9Sstevel@tonic-gate 10687c478bd9Sstevel@tonic-gate /* 10697c478bd9Sstevel@tonic-gate * If there is still an interrupted thread underneath this one 10707c478bd9Sstevel@tonic-gate * then the interrupt was never blocked and the return is 10717c478bd9Sstevel@tonic-gate * fairly simple. Otherwise it isn't. 10727c478bd9Sstevel@tonic-gate */ 10737c478bd9Sstevel@tonic-gate if ((t = it->t_intr) == NULL) { 10747c478bd9Sstevel@tonic-gate /* 10757c478bd9Sstevel@tonic-gate * Put thread back on the interrupt thread list. 10767c478bd9Sstevel@tonic-gate * This was an interrupt thread, so set CPU's base SPL. 10777c478bd9Sstevel@tonic-gate */ 10787c478bd9Sstevel@tonic-gate set_base_spl(); 10797c478bd9Sstevel@tonic-gate it->t_state = TS_FREE; 10807c478bd9Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 10817c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it; 10827c478bd9Sstevel@tonic-gate (void) splhigh(); 1083ae115bc7Smrj sti(); 10847c478bd9Sstevel@tonic-gate swtch(); 10857c478bd9Sstevel@tonic-gate /*NOTREACHED*/ 1086ae115bc7Smrj panic("dosoftint_epilog: swtch returned"); 10877c478bd9Sstevel@tonic-gate } 10887c478bd9Sstevel@tonic-gate it->t_link = cpu->cpu_intr_thread; 10897c478bd9Sstevel@tonic-gate cpu->cpu_intr_thread = it; 10907c478bd9Sstevel@tonic-gate it->t_state = TS_FREE; 10917c478bd9Sstevel@tonic-gate cpu->cpu_thread = t; 10927c478bd9Sstevel@tonic-gate if (t->t_flag & T_INTR_THREAD) 1093ae115bc7Smrj t->t_intr_start = now; 10947c478bd9Sstevel@tonic-gate basespl = cpu->cpu_base_spl; 10957c478bd9Sstevel@tonic-gate pil = MAX(oldpil, basespl); 10967c478bd9Sstevel@tonic-gate mcpu->mcpu_pri = pil; 10977c478bd9Sstevel@tonic-gate (*setspl)(pil); 10987c478bd9Sstevel@tonic-gate } 10997c478bd9Sstevel@tonic-gate 1100ae115bc7Smrj 11017c478bd9Sstevel@tonic-gate /* 11027c478bd9Sstevel@tonic-gate * Make the interrupted thread 'to' be runnable. 11037c478bd9Sstevel@tonic-gate * 11047c478bd9Sstevel@tonic-gate * Since t->t_sp has already been saved, t->t_pc is all 11057c478bd9Sstevel@tonic-gate * that needs to be set in this function. 11067c478bd9Sstevel@tonic-gate * 11077c478bd9Sstevel@tonic-gate * Returns the interrupt level of the interrupt thread. 11087c478bd9Sstevel@tonic-gate */ 11097c478bd9Sstevel@tonic-gate int 11107c478bd9Sstevel@tonic-gate intr_passivate( 11117c478bd9Sstevel@tonic-gate kthread_t *it, /* interrupt thread */ 11127c478bd9Sstevel@tonic-gate kthread_t *t) /* interrupted thread */ 11137c478bd9Sstevel@tonic-gate { 11147c478bd9Sstevel@tonic-gate extern void _sys_rtt(); 11157c478bd9Sstevel@tonic-gate 11167c478bd9Sstevel@tonic-gate ASSERT(it->t_flag & T_INTR_THREAD); 11177c478bd9Sstevel@tonic-gate ASSERT(SA(t->t_sp) == t->t_sp); 11187c478bd9Sstevel@tonic-gate 11197c478bd9Sstevel@tonic-gate t->t_pc = (uintptr_t)_sys_rtt; 11207c478bd9Sstevel@tonic-gate return (it->t_pil); 11217c478bd9Sstevel@tonic-gate } 11227c478bd9Sstevel@tonic-gate 11237c478bd9Sstevel@tonic-gate /* 11247c478bd9Sstevel@tonic-gate * Create interrupt kstats for this CPU. 11257c478bd9Sstevel@tonic-gate */ 11267c478bd9Sstevel@tonic-gate void 11277c478bd9Sstevel@tonic-gate cpu_create_intrstat(cpu_t *cp) 11287c478bd9Sstevel@tonic-gate { 11297c478bd9Sstevel@tonic-gate int i; 11307c478bd9Sstevel@tonic-gate kstat_t *intr_ksp; 11317c478bd9Sstevel@tonic-gate kstat_named_t *knp; 11327c478bd9Sstevel@tonic-gate char name[KSTAT_STRLEN]; 11337c478bd9Sstevel@tonic-gate zoneid_t zoneid; 11347c478bd9Sstevel@tonic-gate 11357c478bd9Sstevel@tonic-gate ASSERT(MUTEX_HELD(&cpu_lock)); 11367c478bd9Sstevel@tonic-gate 11377c478bd9Sstevel@tonic-gate if (pool_pset_enabled()) 11387c478bd9Sstevel@tonic-gate zoneid = GLOBAL_ZONEID; 11397c478bd9Sstevel@tonic-gate else 11407c478bd9Sstevel@tonic-gate zoneid = ALL_ZONES; 11417c478bd9Sstevel@tonic-gate 11427c478bd9Sstevel@tonic-gate intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 11437c478bd9Sstevel@tonic-gate KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 11447c478bd9Sstevel@tonic-gate 11457c478bd9Sstevel@tonic-gate /* 11467c478bd9Sstevel@tonic-gate * Initialize each PIL's named kstat 11477c478bd9Sstevel@tonic-gate */ 11487c478bd9Sstevel@tonic-gate if (intr_ksp != NULL) { 11497c478bd9Sstevel@tonic-gate intr_ksp->ks_update = cpu_kstat_intrstat_update; 11507c478bd9Sstevel@tonic-gate knp = (kstat_named_t *)intr_ksp->ks_data; 11517c478bd9Sstevel@tonic-gate intr_ksp->ks_private = cp; 11527c478bd9Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 11537c478bd9Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 11547c478bd9Sstevel@tonic-gate i + 1); 11557c478bd9Sstevel@tonic-gate kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 11567c478bd9Sstevel@tonic-gate (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 11577c478bd9Sstevel@tonic-gate i + 1); 11587c478bd9Sstevel@tonic-gate kstat_named_init(&knp[(i * 2) + 1], name, 11597c478bd9Sstevel@tonic-gate KSTAT_DATA_UINT64); 11607c478bd9Sstevel@tonic-gate } 11617c478bd9Sstevel@tonic-gate kstat_install(intr_ksp); 11627c478bd9Sstevel@tonic-gate } 11637c478bd9Sstevel@tonic-gate } 11647c478bd9Sstevel@tonic-gate 11657c478bd9Sstevel@tonic-gate /* 11667c478bd9Sstevel@tonic-gate * Delete interrupt kstats for this CPU. 11677c478bd9Sstevel@tonic-gate */ 11687c478bd9Sstevel@tonic-gate void 11697c478bd9Sstevel@tonic-gate cpu_delete_intrstat(cpu_t *cp) 11707c478bd9Sstevel@tonic-gate { 11717c478bd9Sstevel@tonic-gate kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 11727c478bd9Sstevel@tonic-gate } 11737c478bd9Sstevel@tonic-gate 11747c478bd9Sstevel@tonic-gate /* 11757c478bd9Sstevel@tonic-gate * Convert interrupt statistics from CPU ticks to nanoseconds and 11767c478bd9Sstevel@tonic-gate * update kstat. 11777c478bd9Sstevel@tonic-gate */ 11787c478bd9Sstevel@tonic-gate int 11797c478bd9Sstevel@tonic-gate cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 11807c478bd9Sstevel@tonic-gate { 11817c478bd9Sstevel@tonic-gate kstat_named_t *knp = ksp->ks_data; 11827c478bd9Sstevel@tonic-gate cpu_t *cpup = (cpu_t *)ksp->ks_private; 11837c478bd9Sstevel@tonic-gate int i; 11847c478bd9Sstevel@tonic-gate hrtime_t hrt; 11857c478bd9Sstevel@tonic-gate 11867c478bd9Sstevel@tonic-gate if (rw == KSTAT_WRITE) 11877c478bd9Sstevel@tonic-gate return (EACCES); 11887c478bd9Sstevel@tonic-gate 11897c478bd9Sstevel@tonic-gate for (i = 0; i < PIL_MAX; i++) { 11907a364d25Sschwartz hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 1191843e1988Sjohnlev scalehrtimef(&hrt); 11927c478bd9Sstevel@tonic-gate knp[i * 2].value.ui64 = (uint64_t)hrt; 11937c478bd9Sstevel@tonic-gate knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 11947c478bd9Sstevel@tonic-gate } 11957c478bd9Sstevel@tonic-gate 11967c478bd9Sstevel@tonic-gate return (0); 11977c478bd9Sstevel@tonic-gate } 11987c478bd9Sstevel@tonic-gate 11997c478bd9Sstevel@tonic-gate /* 12007c478bd9Sstevel@tonic-gate * An interrupt thread is ending a time slice, so compute the interval it 12017c478bd9Sstevel@tonic-gate * ran for and update the statistic for its PIL. 12027c478bd9Sstevel@tonic-gate */ 12037c478bd9Sstevel@tonic-gate void 12047c478bd9Sstevel@tonic-gate cpu_intr_swtch_enter(kthread_id_t t) 12057c478bd9Sstevel@tonic-gate { 12067c478bd9Sstevel@tonic-gate uint64_t interval; 12077c478bd9Sstevel@tonic-gate uint64_t start; 1208eda89462Sesolom cpu_t *cpu; 12097c478bd9Sstevel@tonic-gate 12107c478bd9Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 12117c478bd9Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 12127c478bd9Sstevel@tonic-gate 12137c478bd9Sstevel@tonic-gate /* 12147c478bd9Sstevel@tonic-gate * We could be here with a zero timestamp. This could happen if: 12157c478bd9Sstevel@tonic-gate * an interrupt thread which no longer has a pinned thread underneath 12167c478bd9Sstevel@tonic-gate * it (i.e. it blocked at some point in its past) has finished running 12177c478bd9Sstevel@tonic-gate * its handler. intr_thread() updated the interrupt statistic for its 12187c478bd9Sstevel@tonic-gate * PIL and zeroed its timestamp. Since there was no pinned thread to 12197c478bd9Sstevel@tonic-gate * return to, swtch() gets called and we end up here. 1220eda89462Sesolom * 1221eda89462Sesolom * Note that we use atomic ops below (cas64 and atomic_add_64), which 1222eda89462Sesolom * we don't use in the functions above, because we're not called 1223eda89462Sesolom * with interrupts blocked, but the epilog/prolog functions are. 12247c478bd9Sstevel@tonic-gate */ 12257c478bd9Sstevel@tonic-gate if (t->t_intr_start) { 12267c478bd9Sstevel@tonic-gate do { 12277c478bd9Sstevel@tonic-gate start = t->t_intr_start; 12287c478bd9Sstevel@tonic-gate interval = tsc_read() - start; 12297c478bd9Sstevel@tonic-gate } while (cas64(&t->t_intr_start, start, 0) != start); 1230eda89462Sesolom cpu = CPU; 12317a364d25Sschwartz cpu->cpu_m.intrstat[t->t_pil][0] += interval; 1232eda89462Sesolom 1233eda89462Sesolom atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 1234eda89462Sesolom interval); 12357c478bd9Sstevel@tonic-gate } else 12367c478bd9Sstevel@tonic-gate ASSERT(t->t_intr == NULL); 12377c478bd9Sstevel@tonic-gate } 12387c478bd9Sstevel@tonic-gate 12397c478bd9Sstevel@tonic-gate /* 12407c478bd9Sstevel@tonic-gate * An interrupt thread is returning from swtch(). Place a starting timestamp 12417c478bd9Sstevel@tonic-gate * in its thread structure. 12427c478bd9Sstevel@tonic-gate */ 12437c478bd9Sstevel@tonic-gate void 12447c478bd9Sstevel@tonic-gate cpu_intr_swtch_exit(kthread_id_t t) 12457c478bd9Sstevel@tonic-gate { 12467c478bd9Sstevel@tonic-gate uint64_t ts; 12477c478bd9Sstevel@tonic-gate 12487c478bd9Sstevel@tonic-gate ASSERT((t->t_flag & T_INTR_THREAD) != 0); 12497c478bd9Sstevel@tonic-gate ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 12507c478bd9Sstevel@tonic-gate 12517c478bd9Sstevel@tonic-gate do { 12527c478bd9Sstevel@tonic-gate ts = t->t_intr_start; 12537c478bd9Sstevel@tonic-gate } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 12547c478bd9Sstevel@tonic-gate } 1255ae115bc7Smrj 1256ae115bc7Smrj /* 1257ae115bc7Smrj * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 1258ae115bc7Smrj */ 1259ae115bc7Smrj /*ARGSUSED*/ 1260ae115bc7Smrj static void 1261ae115bc7Smrj dispatch_hilevel(uint_t vector, uint_t arg2) 1262ae115bc7Smrj { 1263ae115bc7Smrj sti(); 1264ae115bc7Smrj av_dispatch_autovect(vector); 1265ae115bc7Smrj cli(); 1266ae115bc7Smrj } 1267ae115bc7Smrj 1268ae115bc7Smrj /* 1269ae115bc7Smrj * Dispatch a soft interrupt 1270ae115bc7Smrj */ 1271ae115bc7Smrj /*ARGSUSED*/ 1272ae115bc7Smrj static void 1273ae115bc7Smrj dispatch_softint(uint_t oldpil, uint_t arg2) 1274ae115bc7Smrj { 1275ae115bc7Smrj struct cpu *cpu = CPU; 1276ae115bc7Smrj 1277ae115bc7Smrj sti(); 1278ae115bc7Smrj av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 1279ae115bc7Smrj cli(); 1280ae115bc7Smrj 1281ae115bc7Smrj /* 1282ae115bc7Smrj * Must run softint_epilog() on the interrupt thread stack, since 1283ae115bc7Smrj * there may not be a return from it if the interrupt thread blocked. 1284ae115bc7Smrj */ 1285ae115bc7Smrj dosoftint_epilog(cpu, oldpil); 1286ae115bc7Smrj } 1287ae115bc7Smrj 1288ae115bc7Smrj /* 1289ae115bc7Smrj * Dispatch a normal interrupt 1290ae115bc7Smrj */ 1291ae115bc7Smrj static void 1292ae115bc7Smrj dispatch_hardint(uint_t vector, uint_t oldipl) 1293ae115bc7Smrj { 1294ae115bc7Smrj struct cpu *cpu = CPU; 1295ae115bc7Smrj 1296ae115bc7Smrj sti(); 1297ae115bc7Smrj av_dispatch_autovect(vector); 1298ae115bc7Smrj cli(); 1299ae115bc7Smrj 1300ae115bc7Smrj /* 1301ae115bc7Smrj * Must run intr_thread_epilog() on the interrupt thread stack, since 1302ae115bc7Smrj * there may not be a return from it if the interrupt thread blocked. 1303ae115bc7Smrj */ 1304ae115bc7Smrj intr_thread_epilog(cpu, vector, oldipl); 1305ae115bc7Smrj } 1306ae115bc7Smrj 1307ae115bc7Smrj /* 1308ae115bc7Smrj * Deliver any softints the current interrupt priority allows. 1309ae115bc7Smrj * Called with interrupts disabled. 1310ae115bc7Smrj */ 1311ae115bc7Smrj void 1312ae115bc7Smrj dosoftint(struct regs *regs) 1313ae115bc7Smrj { 1314ae115bc7Smrj struct cpu *cpu = CPU; 1315ae115bc7Smrj int oldipl; 1316ae115bc7Smrj caddr_t newsp; 1317ae115bc7Smrj 1318ae115bc7Smrj while (cpu->cpu_softinfo.st_pending) { 1319ae115bc7Smrj oldipl = cpu->cpu_pri; 1320ae115bc7Smrj newsp = dosoftint_prolog(cpu, (caddr_t)regs, 1321ae115bc7Smrj cpu->cpu_softinfo.st_pending, oldipl); 1322ae115bc7Smrj /* 1323ae115bc7Smrj * If returned stack pointer is NULL, priority is too high 1324ae115bc7Smrj * to run any of the pending softints now. 1325ae115bc7Smrj * Break out and they will be run later. 1326ae115bc7Smrj */ 1327ae115bc7Smrj if (newsp == NULL) 1328ae115bc7Smrj break; 1329ae115bc7Smrj switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 1330ae115bc7Smrj } 1331ae115bc7Smrj } 1332ae115bc7Smrj 1333ae115bc7Smrj /* 1334ae115bc7Smrj * Interrupt service routine, called with interrupts disabled. 1335ae115bc7Smrj */ 1336ae115bc7Smrj /*ARGSUSED*/ 1337ae115bc7Smrj void 1338ae115bc7Smrj do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 1339ae115bc7Smrj { 1340ae115bc7Smrj struct cpu *cpu = CPU; 1341ae115bc7Smrj int newipl, oldipl = cpu->cpu_pri; 1342ae115bc7Smrj uint_t vector; 1343ae115bc7Smrj caddr_t newsp; 1344ae115bc7Smrj 1345ae115bc7Smrj #ifdef TRAPTRACE 1346ae115bc7Smrj ttp->ttr_marker = TT_INTERRUPT; 1347ae115bc7Smrj ttp->ttr_ipl = 0xff; 1348ae115bc7Smrj ttp->ttr_pri = oldipl; 1349ae115bc7Smrj ttp->ttr_spl = cpu->cpu_base_spl; 1350ae115bc7Smrj ttp->ttr_vector = 0xff; 1351ae115bc7Smrj #endif /* TRAPTRACE */ 1352ae115bc7Smrj 1353fb2caebeSRandy Fishel cpu_idle_exit(CPU_IDLE_CB_FLAG_INTR); 135495c0a3c8Sjosephb 13553006ae82SFrank Van Der Linden ++*(uint16_t *)&cpu->cpu_m.mcpu_istamp; 13563006ae82SFrank Van Der Linden 135795c0a3c8Sjosephb /* 1358ae115bc7Smrj * If it's a softint go do it now. 1359ae115bc7Smrj */ 1360ae115bc7Smrj if (rp->r_trapno == T_SOFTINT) { 1361ae115bc7Smrj dosoftint(rp); 1362ae115bc7Smrj ASSERT(!interrupts_enabled()); 1363ae115bc7Smrj return; 1364ae115bc7Smrj } 1365ae115bc7Smrj 1366ae115bc7Smrj /* 1367ae115bc7Smrj * Raise the interrupt priority. 1368ae115bc7Smrj */ 1369ae115bc7Smrj newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 1370ae115bc7Smrj #ifdef TRAPTRACE 1371ae115bc7Smrj ttp->ttr_ipl = newipl; 1372ae115bc7Smrj #endif /* TRAPTRACE */ 1373ae115bc7Smrj 1374ae115bc7Smrj /* 1375ae115bc7Smrj * Bail if it is a spurious interrupt 1376ae115bc7Smrj */ 1377ae115bc7Smrj if (newipl == -1) 1378ae115bc7Smrj return; 1379ae115bc7Smrj cpu->cpu_pri = newipl; 1380ae115bc7Smrj vector = rp->r_trapno; 1381ae115bc7Smrj #ifdef TRAPTRACE 1382ae115bc7Smrj ttp->ttr_vector = vector; 1383ae115bc7Smrj #endif /* TRAPTRACE */ 1384ae115bc7Smrj if (newipl > LOCK_LEVEL) { 1385ae115bc7Smrj /* 1386ae115bc7Smrj * High priority interrupts run on this cpu's interrupt stack. 1387ae115bc7Smrj */ 1388ae115bc7Smrj if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 1389ae115bc7Smrj newsp = cpu->cpu_intr_stack; 1390ae115bc7Smrj switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 1391ae115bc7Smrj } else { /* already on the interrupt stack */ 1392ae115bc7Smrj dispatch_hilevel(vector, 0); 1393ae115bc7Smrj } 1394ae115bc7Smrj (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 1395ae115bc7Smrj } else { 1396ae115bc7Smrj /* 1397ae115bc7Smrj * Run this interrupt in a separate thread. 1398ae115bc7Smrj */ 1399ae115bc7Smrj newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 1400ae115bc7Smrj switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 1401ae115bc7Smrj } 1402ae115bc7Smrj 1403349b53ddSStuart Maybee #if !defined(__xpv) 1404ae115bc7Smrj /* 1405ae115bc7Smrj * Deliver any pending soft interrupts. 1406ae115bc7Smrj */ 1407ae115bc7Smrj if (cpu->cpu_softinfo.st_pending) 1408ae115bc7Smrj dosoftint(rp); 1409349b53ddSStuart Maybee #endif /* !__xpv */ 1410ae115bc7Smrj } 1411ae115bc7Smrj 1412349b53ddSStuart Maybee 1413ae115bc7Smrj /* 1414ae115bc7Smrj * Common tasks always done by _sys_rtt, called with interrupts disabled. 1415ae115bc7Smrj * Returns 1 if returning to userland, 0 if returning to system mode. 1416ae115bc7Smrj */ 1417ae115bc7Smrj int 1418ae115bc7Smrj sys_rtt_common(struct regs *rp) 1419ae115bc7Smrj { 1420ae115bc7Smrj kthread_t *tp; 1421ae115bc7Smrj extern void mutex_exit_critical_start(); 1422ae115bc7Smrj extern long mutex_exit_critical_size; 1423575a7426Spt157919 extern void mutex_owner_running_critical_start(); 1424575a7426Spt157919 extern long mutex_owner_running_critical_size; 1425ae115bc7Smrj 1426ae115bc7Smrj loop: 1427ae115bc7Smrj 1428ae115bc7Smrj /* 1429ae115bc7Smrj * Check if returning to user 1430ae115bc7Smrj */ 1431ae115bc7Smrj tp = CPU->cpu_thread; 1432ae115bc7Smrj if (USERMODE(rp->r_cs)) { 1433ae115bc7Smrj /* 1434ae115bc7Smrj * Check if AST pending. 1435ae115bc7Smrj */ 1436ae115bc7Smrj if (tp->t_astflag) { 1437ae115bc7Smrj /* 1438ae115bc7Smrj * Let trap() handle the AST 1439ae115bc7Smrj */ 1440ae115bc7Smrj sti(); 1441ae115bc7Smrj rp->r_trapno = T_AST; 1442ae115bc7Smrj trap(rp, (caddr_t)0, CPU->cpu_id); 1443ae115bc7Smrj cli(); 1444ae115bc7Smrj goto loop; 1445ae115bc7Smrj } 1446ae115bc7Smrj 1447ae115bc7Smrj #if defined(__amd64) 1448ae115bc7Smrj /* 1449ae115bc7Smrj * We are done if segment registers do not need updating. 1450ae115bc7Smrj */ 14517712e92cSsudheer if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0) 1452ae115bc7Smrj return (1); 1453ae115bc7Smrj 1454ae115bc7Smrj if (update_sregs(rp, tp->t_lwp)) { 1455ae115bc7Smrj /* 1456ae115bc7Smrj * 1 or more of the selectors is bad. 1457ae115bc7Smrj * Deliver a SIGSEGV. 1458ae115bc7Smrj */ 1459ae115bc7Smrj proc_t *p = ttoproc(tp); 1460ae115bc7Smrj 1461ae115bc7Smrj sti(); 1462ae115bc7Smrj mutex_enter(&p->p_lock); 1463ae115bc7Smrj tp->t_lwp->lwp_cursig = SIGSEGV; 1464ae115bc7Smrj mutex_exit(&p->p_lock); 1465ae115bc7Smrj psig(); 1466ae115bc7Smrj tp->t_sig_check = 1; 1467ae115bc7Smrj cli(); 1468ae115bc7Smrj } 14697712e92cSsudheer tp->t_lwp->lwp_pcb.pcb_rupdate = 0; 1470ae115bc7Smrj 1471ae115bc7Smrj #endif /* __amd64 */ 1472ae115bc7Smrj return (1); 1473ae115bc7Smrj } 1474ae115bc7Smrj 1475ae115bc7Smrj /* 1476ae115bc7Smrj * Here if we are returning to supervisor mode. 1477ae115bc7Smrj * Check for a kernel preemption request. 1478ae115bc7Smrj */ 1479ae115bc7Smrj if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1480ae115bc7Smrj 1481ae115bc7Smrj /* 1482ae115bc7Smrj * Do nothing if already in kpreempt 1483ae115bc7Smrj */ 1484ae115bc7Smrj if (!tp->t_preempt_lk) { 1485ae115bc7Smrj tp->t_preempt_lk = 1; 1486ae115bc7Smrj sti(); 1487ae115bc7Smrj kpreempt(1); /* asynchronous kpreempt call */ 1488ae115bc7Smrj cli(); 1489ae115bc7Smrj tp->t_preempt_lk = 0; 1490ae115bc7Smrj } 1491ae115bc7Smrj } 1492ae115bc7Smrj 1493ae115bc7Smrj /* 1494ae115bc7Smrj * If we interrupted the mutex_exit() critical region we must 1495ae115bc7Smrj * reset the PC back to the beginning to prevent missed wakeups 1496ae115bc7Smrj * See the comments in mutex_exit() for details. 1497ae115bc7Smrj */ 1498ae115bc7Smrj if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1499ae115bc7Smrj mutex_exit_critical_size) { 1500ae115bc7Smrj rp->r_pc = (greg_t)mutex_exit_critical_start; 1501ae115bc7Smrj } 1502575a7426Spt157919 1503575a7426Spt157919 /* 1504575a7426Spt157919 * If we interrupted the mutex_owner_running() critical region we 1505575a7426Spt157919 * must reset the PC back to the beginning to prevent dereferencing 1506575a7426Spt157919 * of a freed thread pointer. See the comments in mutex_owner_running 1507575a7426Spt157919 * for details. 1508575a7426Spt157919 */ 1509575a7426Spt157919 if ((uintptr_t)rp->r_pc - 1510575a7426Spt157919 (uintptr_t)mutex_owner_running_critical_start < 1511575a7426Spt157919 mutex_owner_running_critical_size) { 1512575a7426Spt157919 rp->r_pc = (greg_t)mutex_owner_running_critical_start; 1513575a7426Spt157919 } 1514575a7426Spt157919 1515ae115bc7Smrj return (0); 1516ae115bc7Smrj } 1517ae115bc7Smrj 1518ae115bc7Smrj void 1519ae115bc7Smrj send_dirint(int cpuid, int int_level) 1520ae115bc7Smrj { 1521ae115bc7Smrj (*send_dirintf)(cpuid, int_level); 1522ae115bc7Smrj } 1523ae115bc7Smrj 15247ff178cdSJimmy Vetayases #define IS_FAKE_SOFTINT(flag, newpri) \ 15257ff178cdSJimmy Vetayases (((flag) & PS_IE) && \ 15267ff178cdSJimmy Vetayases (((*get_pending_spl)() > (newpri)) || \ 15277ff178cdSJimmy Vetayases bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > (newpri))) 15287ff178cdSJimmy Vetayases 1529ae115bc7Smrj /* 1530ae115bc7Smrj * do_splx routine, takes new ipl to set 1531ae115bc7Smrj * returns the old ipl. 1532ae115bc7Smrj * We are careful not to set priority lower than CPU->cpu_base_pri, 1533ae115bc7Smrj * even though it seems we're raising the priority, it could be set 1534ae115bc7Smrj * higher at any time by an interrupt routine, so we must block interrupts 1535ae115bc7Smrj * and look at CPU->cpu_base_pri 1536ae115bc7Smrj */ 1537ae115bc7Smrj int 1538ae115bc7Smrj do_splx(int newpri) 1539ae115bc7Smrj { 1540ae115bc7Smrj ulong_t flag; 1541ae115bc7Smrj cpu_t *cpu; 1542ae115bc7Smrj int curpri, basepri; 1543ae115bc7Smrj 1544ae115bc7Smrj flag = intr_clear(); 1545ae115bc7Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1546ae115bc7Smrj curpri = cpu->cpu_m.mcpu_pri; 1547ae115bc7Smrj basepri = cpu->cpu_base_spl; 1548ae115bc7Smrj if (newpri < basepri) 1549ae115bc7Smrj newpri = basepri; 1550ae115bc7Smrj cpu->cpu_m.mcpu_pri = newpri; 1551ae115bc7Smrj (*setspl)(newpri); 1552ae115bc7Smrj /* 1553ae115bc7Smrj * If we are going to reenable interrupts see if new priority level 1554ae115bc7Smrj * allows pending softint delivery. 1555ae115bc7Smrj */ 15567ff178cdSJimmy Vetayases if (IS_FAKE_SOFTINT(flag, newpri)) 1557ae115bc7Smrj fakesoftint(); 1558ae115bc7Smrj ASSERT(!interrupts_enabled()); 1559ae115bc7Smrj intr_restore(flag); 1560ae115bc7Smrj return (curpri); 1561ae115bc7Smrj } 1562ae115bc7Smrj 1563ae115bc7Smrj /* 1564ae115bc7Smrj * Common spl raise routine, takes new ipl to set 1565ae115bc7Smrj * returns the old ipl, will not lower ipl. 1566ae115bc7Smrj */ 1567ae115bc7Smrj int 1568ae115bc7Smrj splr(int newpri) 1569ae115bc7Smrj { 1570ae115bc7Smrj ulong_t flag; 1571ae115bc7Smrj cpu_t *cpu; 1572ae115bc7Smrj int curpri, basepri; 1573ae115bc7Smrj 1574ae115bc7Smrj flag = intr_clear(); 1575ae115bc7Smrj cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1576ae115bc7Smrj curpri = cpu->cpu_m.mcpu_pri; 1577ae115bc7Smrj /* 1578ae115bc7Smrj * Only do something if new priority is larger 1579ae115bc7Smrj */ 1580ae115bc7Smrj if (newpri > curpri) { 1581ae115bc7Smrj basepri = cpu->cpu_base_spl; 1582ae115bc7Smrj if (newpri < basepri) 1583ae115bc7Smrj newpri = basepri; 1584ae115bc7Smrj cpu->cpu_m.mcpu_pri = newpri; 1585ae115bc7Smrj (*setspl)(newpri); 1586ae115bc7Smrj /* 1587ae115bc7Smrj * See if new priority level allows pending softint delivery 1588ae115bc7Smrj */ 15897ff178cdSJimmy Vetayases if (IS_FAKE_SOFTINT(flag, newpri)) 1590ae115bc7Smrj fakesoftint(); 1591ae115bc7Smrj } 1592ae115bc7Smrj intr_restore(flag); 1593ae115bc7Smrj return (curpri); 1594ae115bc7Smrj } 1595ae115bc7Smrj 1596ae115bc7Smrj int 1597ae115bc7Smrj getpil(void) 1598ae115bc7Smrj { 1599ae115bc7Smrj return (CPU->cpu_m.mcpu_pri); 1600ae115bc7Smrj } 1601ae115bc7Smrj 1602ae115bc7Smrj int 1603b885580bSAlexander Kolbasov spl_xcall(void) 1604b885580bSAlexander Kolbasov { 1605b885580bSAlexander Kolbasov return (splr(ipltospl(XCALL_PIL))); 1606b885580bSAlexander Kolbasov } 1607b885580bSAlexander Kolbasov 1608b885580bSAlexander Kolbasov int 1609ae115bc7Smrj interrupts_enabled(void) 1610ae115bc7Smrj { 1611ae115bc7Smrj ulong_t flag; 1612ae115bc7Smrj 1613ae115bc7Smrj flag = getflags(); 1614ae115bc7Smrj return ((flag & PS_IE) == PS_IE); 1615ae115bc7Smrj } 1616ae115bc7Smrj 1617ae115bc7Smrj #ifdef DEBUG 1618ae115bc7Smrj void 1619ae115bc7Smrj assert_ints_enabled(void) 1620ae115bc7Smrj { 1621ae115bc7Smrj ASSERT(!interrupts_unleashed || interrupts_enabled()); 1622ae115bc7Smrj } 1623ae115bc7Smrj #endif /* DEBUG */ 1624