1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functionality that mimics the boot operations 29 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 30 * The x86 kernel now does everything on its own. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/bootconf.h> 35 #include <sys/bootsvcs.h> 36 #include <sys/bootinfo.h> 37 #include <sys/multiboot.h> 38 #include <sys/bootvfs.h> 39 #include <sys/bootprops.h> 40 #include <sys/varargs.h> 41 #include <sys/param.h> 42 #include <sys/machparam.h> 43 #include <sys/archsystm.h> 44 #include <sys/boot_console.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/promif.h> 48 #include <sys/archsystm.h> 49 #include <sys/x86_archext.h> 50 #include <sys/kobj.h> 51 #include <sys/privregs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/ctype.h> 54 #include <sys/fastboot.h> 55 #ifdef __xpv 56 #include <sys/hypervisor.h> 57 #include <net/if.h> 58 #endif 59 #include <vm/kboot_mmu.h> 60 #include <vm/hat_pte.h> 61 #include <sys/kobj.h> 62 #include <sys/kobj_lex.h> 63 #include <sys/pci_cfgspace_impl.h> 64 #include "acpi_fw.h" 65 66 static int have_console = 0; /* set once primitive console is initialized */ 67 static char *boot_args = ""; 68 69 /* 70 * Debugging macros 71 */ 72 static uint_t kbm_debug = 0; 73 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 74 #define DBG(x) { if (kbm_debug) \ 75 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 76 } 77 78 #define PUT_STRING(s) { \ 79 char *cp; \ 80 for (cp = (s); *cp; ++cp) \ 81 bcons_putchar(*cp); \ 82 } 83 84 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 85 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 86 struct bsys_mem bm; 87 88 static uintptr_t next_virt; /* next available virtual address */ 89 static paddr_t next_phys; /* next available physical address from dboot */ 90 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 91 92 /* 93 * buffer for vsnprintf for console I/O 94 */ 95 #define BUFFERSIZE 256 96 static char buffer[BUFFERSIZE]; 97 /* 98 * stuff to store/report/manipulate boot property settings. 99 */ 100 typedef struct bootprop { 101 struct bootprop *bp_next; 102 char *bp_name; 103 uint_t bp_vlen; 104 char *bp_value; 105 } bootprop_t; 106 107 static bootprop_t *bprops = NULL; 108 static char *curr_page = NULL; /* ptr to avail bprop memory */ 109 static int curr_space = 0; /* amount of memory at curr_page */ 110 111 #ifdef __xpv 112 start_info_t *xen_info; 113 shared_info_t *HYPERVISOR_shared_info; 114 #endif 115 116 /* 117 * some allocator statistics 118 */ 119 static ulong_t total_bop_alloc_scratch = 0; 120 static ulong_t total_bop_alloc_kernel = 0; 121 122 static void build_firmware_properties(void); 123 124 static int early_allocation = 1; 125 126 int force_fastreboot = 0; 127 volatile int fastreboot_onpanic = 0; 128 int post_fastreboot = 0; 129 #ifdef __xpv 130 int fastreboot_capable = 0; 131 #else 132 int fastreboot_capable = 1; 133 #endif 134 135 /* 136 * Information saved from current boot for fast reboot. 137 * If the information size exceeds what we have allocated, fast reboot 138 * will not be supported. 139 */ 140 multiboot_info_t saved_mbi; 141 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 142 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 143 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 144 int saved_cmdline_len = 0; 145 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 146 147 /* 148 * Turn off fastreboot_onpanic to avoid panic loop. 149 */ 150 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 151 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 152 153 /* 154 * Pointers to where System Resource Affinity Table (SRAT) and 155 * System Locality Information Table (SLIT) are mapped into virtual memory 156 */ 157 struct srat *srat_ptr = NULL; 158 struct slit *slit_ptr = NULL; 159 160 161 /* 162 * Allocate aligned physical memory at boot time. This allocator allocates 163 * from the highest possible addresses. This avoids exhausting memory that 164 * would be useful for DMA buffers. 165 */ 166 paddr_t 167 do_bop_phys_alloc(uint64_t size, uint64_t align) 168 { 169 paddr_t pa = 0; 170 paddr_t start; 171 paddr_t end; 172 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 173 174 /* 175 * Be careful if high memory usage is limited in startup.c 176 * Since there are holes in the low part of the physical address 177 * space we can treat physmem as a pfn (not just a pgcnt) and 178 * get a conservative upper limit. 179 */ 180 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 181 high_phys = pfn_to_pa(physmem); 182 183 /* 184 * find the lowest or highest available memory in physinstalled 185 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 186 */ 187 #if defined(__i386) 188 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 189 high_phys = FOUR_GIG; 190 #endif 191 192 /* 193 * find the highest available memory in physinstalled 194 */ 195 size = P2ROUNDUP(size, align); 196 for (; ml; ml = ml->ml_next) { 197 start = P2ROUNDUP(ml->ml_address, align); 198 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 199 if (start < next_phys) 200 start = P2ROUNDUP(next_phys, align); 201 if (end > high_phys) 202 end = P2ALIGN(high_phys, align); 203 204 if (end <= start) 205 continue; 206 if (end - start < size) 207 continue; 208 209 /* 210 * Early allocations need to use low memory, since 211 * physmem might be further limited by bootenv.rc 212 */ 213 if (early_allocation) { 214 if (pa == 0 || start < pa) 215 pa = start; 216 } else { 217 if (end - size > pa) 218 pa = end - size; 219 } 220 } 221 if (pa != 0) { 222 if (early_allocation) 223 next_phys = pa + size; 224 else 225 high_phys = pa; 226 return (pa); 227 } 228 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 229 ") Out of memory\n", size, align); 230 /*NOTREACHED*/ 231 } 232 233 uintptr_t 234 alloc_vaddr(size_t size, paddr_t align) 235 { 236 uintptr_t rv; 237 238 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 239 rv = (uintptr_t)next_virt; 240 next_virt += size; 241 return (rv); 242 } 243 244 /* 245 * Allocate virtual memory. The size is always rounded up to a multiple 246 * of base pagesize. 247 */ 248 249 /*ARGSUSED*/ 250 static caddr_t 251 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 252 { 253 paddr_t a = align; /* same type as pa for masking */ 254 uint_t pgsize; 255 paddr_t pa; 256 uintptr_t va; 257 ssize_t s; /* the aligned size */ 258 uint_t level; 259 uint_t is_kernel = (virthint != 0); 260 261 if (a < MMU_PAGESIZE) 262 a = MMU_PAGESIZE; 263 else if (!ISP2(a)) 264 prom_panic("do_bsys_alloc() incorrect alignment"); 265 size = P2ROUNDUP(size, MMU_PAGESIZE); 266 267 /* 268 * Use the next aligned virtual address if we weren't given one. 269 */ 270 if (virthint == NULL) { 271 virthint = (caddr_t)alloc_vaddr(size, a); 272 total_bop_alloc_scratch += size; 273 } else { 274 total_bop_alloc_kernel += size; 275 } 276 277 /* 278 * allocate the physical memory 279 */ 280 pa = do_bop_phys_alloc(size, a); 281 282 /* 283 * Add the mappings to the page tables, try large pages first. 284 */ 285 va = (uintptr_t)virthint; 286 s = size; 287 level = 1; 288 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 289 if (xbootp->bi_use_largepage && a == pgsize) { 290 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 291 s >= pgsize) { 292 kbm_map(va, pa, level, is_kernel); 293 va += pgsize; 294 pa += pgsize; 295 s -= pgsize; 296 } 297 } 298 299 /* 300 * Map remaining pages use small mappings 301 */ 302 level = 0; 303 pgsize = MMU_PAGESIZE; 304 while (s > 0) { 305 kbm_map(va, pa, level, is_kernel); 306 va += pgsize; 307 pa += pgsize; 308 s -= pgsize; 309 } 310 return (virthint); 311 } 312 313 /* 314 * Free virtual memory - we'll just ignore these. 315 */ 316 /*ARGSUSED*/ 317 static void 318 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 319 { 320 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 321 (void *)virt, size); 322 } 323 324 /* 325 * Old interface 326 */ 327 /*ARGSUSED*/ 328 static caddr_t 329 do_bsys_ealloc( 330 bootops_t *bop, 331 caddr_t virthint, 332 size_t size, 333 int align, 334 int flags) 335 { 336 prom_panic("unsupported call to BOP_EALLOC()\n"); 337 return (0); 338 } 339 340 341 static void 342 bsetprop(char *name, int nlen, void *value, int vlen) 343 { 344 uint_t size; 345 uint_t need_size; 346 bootprop_t *b; 347 348 /* 349 * align the size to 16 byte boundary 350 */ 351 size = sizeof (bootprop_t) + nlen + 1 + vlen; 352 size = (size + 0xf) & ~0xf; 353 if (size > curr_space) { 354 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 355 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 356 curr_space = need_size; 357 } 358 359 /* 360 * use a bootprop_t at curr_page and link into list 361 */ 362 b = (bootprop_t *)curr_page; 363 curr_page += sizeof (bootprop_t); 364 curr_space -= sizeof (bootprop_t); 365 b->bp_next = bprops; 366 bprops = b; 367 368 /* 369 * follow by name and ending zero byte 370 */ 371 b->bp_name = curr_page; 372 bcopy(name, curr_page, nlen); 373 curr_page += nlen; 374 *curr_page++ = 0; 375 curr_space -= nlen + 1; 376 377 /* 378 * copy in value, but no ending zero byte 379 */ 380 b->bp_value = curr_page; 381 b->bp_vlen = vlen; 382 if (vlen > 0) { 383 bcopy(value, curr_page, vlen); 384 curr_page += vlen; 385 curr_space -= vlen; 386 } 387 388 /* 389 * align new values of curr_page, curr_space 390 */ 391 while (curr_space & 0xf) { 392 ++curr_page; 393 --curr_space; 394 } 395 } 396 397 static void 398 bsetprops(char *name, char *value) 399 { 400 bsetprop(name, strlen(name), value, strlen(value) + 1); 401 } 402 403 static void 404 bsetprop64(char *name, uint64_t value) 405 { 406 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 407 } 408 409 static void 410 bsetpropsi(char *name, int value) 411 { 412 char prop_val[32]; 413 414 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 415 bsetprops(name, prop_val); 416 } 417 418 /* 419 * to find the size of the buffer to allocate 420 */ 421 /*ARGSUSED*/ 422 int 423 do_bsys_getproplen(bootops_t *bop, const char *name) 424 { 425 bootprop_t *b; 426 427 for (b = bprops; b; b = b->bp_next) { 428 if (strcmp(name, b->bp_name) != 0) 429 continue; 430 return (b->bp_vlen); 431 } 432 return (-1); 433 } 434 435 /* 436 * get the value associated with this name 437 */ 438 /*ARGSUSED*/ 439 int 440 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 441 { 442 bootprop_t *b; 443 444 for (b = bprops; b; b = b->bp_next) { 445 if (strcmp(name, b->bp_name) != 0) 446 continue; 447 bcopy(b->bp_value, value, b->bp_vlen); 448 return (0); 449 } 450 return (-1); 451 } 452 453 /* 454 * get the name of the next property in succession from the standalone 455 */ 456 /*ARGSUSED*/ 457 static char * 458 do_bsys_nextprop(bootops_t *bop, char *name) 459 { 460 bootprop_t *b; 461 462 /* 463 * A null name is a special signal for the 1st boot property 464 */ 465 if (name == NULL || strlen(name) == 0) { 466 if (bprops == NULL) 467 return (NULL); 468 return (bprops->bp_name); 469 } 470 471 for (b = bprops; b; b = b->bp_next) { 472 if (name != b->bp_name) 473 continue; 474 b = b->bp_next; 475 if (b == NULL) 476 return (NULL); 477 return (b->bp_name); 478 } 479 return (NULL); 480 } 481 482 /* 483 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 484 */ 485 static int 486 parse_value(char *p, uint64_t *retval) 487 { 488 int adjust = 0; 489 uint64_t tmp = 0; 490 int digit; 491 int radix = 10; 492 493 *retval = 0; 494 if (*p == '-' || *p == '~') 495 adjust = *p++; 496 497 if (*p == '0') { 498 ++p; 499 if (*p == 0) 500 return (0); 501 if (*p == 'x' || *p == 'X') { 502 radix = 16; 503 ++p; 504 } else { 505 radix = 8; 506 ++p; 507 } 508 } 509 while (*p) { 510 if ('0' <= *p && *p <= '9') 511 digit = *p - '0'; 512 else if ('a' <= *p && *p <= 'f') 513 digit = 10 + *p - 'a'; 514 else if ('A' <= *p && *p <= 'F') 515 digit = 10 + *p - 'A'; 516 else 517 return (-1); 518 if (digit >= radix) 519 return (-1); 520 tmp = tmp * radix + digit; 521 ++p; 522 } 523 if (adjust == '-') 524 tmp = -tmp; 525 else if (adjust == '~') 526 tmp = ~tmp; 527 *retval = tmp; 528 return (0); 529 } 530 531 /* 532 * 2nd part of building the table of boot properties. This includes: 533 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 534 * 535 * lines look like one of: 536 * ^$ 537 * ^# comment till end of line 538 * setprop name 'value' 539 * setprop name value 540 * setprop name "value" 541 * 542 * we do single character I/O since this is really just looking at memory 543 */ 544 void 545 boot_prop_finish(void) 546 { 547 int fd; 548 char *line; 549 int c; 550 int bytes_read; 551 char *name; 552 int n_len; 553 char *value; 554 int v_len; 555 char *inputdev; /* these override the command line if serial ports */ 556 char *outputdev; 557 char *consoledev; 558 uint64_t lvalue; 559 int use_xencons = 0; 560 561 #ifdef __xpv 562 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 563 use_xencons = 1; 564 #endif /* __xpv */ 565 566 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 567 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 568 DBG(fd); 569 570 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 571 while (fd >= 0) { 572 573 /* 574 * get a line 575 */ 576 for (c = 0; ; ++c) { 577 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 578 if (bytes_read == 0) { 579 if (c == 0) 580 goto done; 581 break; 582 } 583 if (line[c] == '\n') 584 break; 585 } 586 line[c] = 0; 587 588 /* 589 * ignore comment lines 590 */ 591 c = 0; 592 while (ISSPACE(line[c])) 593 ++c; 594 if (line[c] == '#' || line[c] == 0) 595 continue; 596 597 /* 598 * must have "setprop " or "setprop\t" 599 */ 600 if (strncmp(line + c, "setprop ", 8) != 0 && 601 strncmp(line + c, "setprop\t", 8) != 0) 602 continue; 603 c += 8; 604 while (ISSPACE(line[c])) 605 ++c; 606 if (line[c] == 0) 607 continue; 608 609 /* 610 * gather up the property name 611 */ 612 name = line + c; 613 n_len = 0; 614 while (line[c] && !ISSPACE(line[c])) 615 ++n_len, ++c; 616 617 /* 618 * gather up the value, if any 619 */ 620 value = ""; 621 v_len = 0; 622 while (ISSPACE(line[c])) 623 ++c; 624 if (line[c] != 0) { 625 value = line + c; 626 while (line[c] && !ISSPACE(line[c])) 627 ++v_len, ++c; 628 } 629 630 if (v_len >= 2 && value[0] == value[v_len - 1] && 631 (value[0] == '\'' || value[0] == '"')) { 632 ++value; 633 v_len -= 2; 634 } 635 name[n_len] = 0; 636 if (v_len > 0) 637 value[v_len] = 0; 638 else 639 continue; 640 641 /* 642 * ignore "boot-file" property, it's now meaningless 643 */ 644 if (strcmp(name, "boot-file") == 0) 645 continue; 646 if (strcmp(name, "boot-args") == 0 && 647 strlen(boot_args) > 0) 648 continue; 649 650 /* 651 * If a property was explicitly set on the command line 652 * it will override a setting in bootenv.rc 653 */ 654 if (do_bsys_getproplen(NULL, name) > 0) 655 continue; 656 657 bsetprop(name, n_len, value, v_len + 1); 658 } 659 done: 660 if (fd >= 0) 661 BRD_CLOSE(bfs_ops, fd); 662 663 /* 664 * Check if we have to limit the boot time allocator 665 */ 666 if (do_bsys_getproplen(NULL, "physmem") != -1 && 667 do_bsys_getprop(NULL, "physmem", line) >= 0 && 668 parse_value(line, &lvalue) != -1) { 669 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 670 physmem = (pgcnt_t)lvalue; 671 DBG(physmem); 672 } 673 } 674 early_allocation = 0; 675 676 /* 677 * check to see if we have to override the default value of the console 678 */ 679 if (!use_xencons) { 680 inputdev = line; 681 v_len = do_bsys_getproplen(NULL, "input-device"); 682 if (v_len > 0) 683 (void) do_bsys_getprop(NULL, "input-device", inputdev); 684 else 685 v_len = 0; 686 inputdev[v_len] = 0; 687 688 outputdev = inputdev + v_len + 1; 689 v_len = do_bsys_getproplen(NULL, "output-device"); 690 if (v_len > 0) 691 (void) do_bsys_getprop(NULL, "output-device", 692 outputdev); 693 else 694 v_len = 0; 695 outputdev[v_len] = 0; 696 697 consoledev = outputdev + v_len + 1; 698 v_len = do_bsys_getproplen(NULL, "console"); 699 if (v_len > 0) { 700 (void) do_bsys_getprop(NULL, "console", consoledev); 701 if (post_fastreboot && 702 strcmp(consoledev, "graphics") == 0) { 703 bsetprops("console", "text"); 704 v_len = strlen("text"); 705 bcopy("text", consoledev, v_len); 706 } 707 } else { 708 v_len = 0; 709 } 710 consoledev[v_len] = 0; 711 bcons_init2(inputdev, outputdev, consoledev); 712 } else { 713 /* 714 * Ensure console property exists 715 * If not create it as "hypervisor" 716 */ 717 v_len = do_bsys_getproplen(NULL, "console"); 718 if (v_len < 0) 719 bsetprops("console", "hypervisor"); 720 inputdev = outputdev = consoledev = "hypervisor"; 721 bcons_init2(inputdev, outputdev, consoledev); 722 } 723 724 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 725 value = line; 726 bop_printf(NULL, "\nBoot properties:\n"); 727 name = ""; 728 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 729 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 730 (void) do_bsys_getprop(NULL, name, value); 731 v_len = do_bsys_getproplen(NULL, name); 732 bop_printf(NULL, "len=%d ", v_len); 733 value[v_len] = 0; 734 bop_printf(NULL, "%s\n", value); 735 } 736 } 737 } 738 739 /* 740 * print formatted output 741 */ 742 /*PRINTFLIKE2*/ 743 /*ARGSUSED*/ 744 void 745 bop_printf(bootops_t *bop, const char *fmt, ...) 746 { 747 va_list ap; 748 749 if (have_console == 0) 750 return; 751 752 va_start(ap, fmt); 753 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 754 va_end(ap); 755 PUT_STRING(buffer); 756 } 757 758 /* 759 * Another panic() variant; this one can be used even earlier during boot than 760 * prom_panic(). 761 */ 762 /*PRINTFLIKE1*/ 763 void 764 bop_panic(const char *fmt, ...) 765 { 766 va_list ap; 767 768 va_start(ap, fmt); 769 bop_printf(NULL, fmt, ap); 770 va_end(ap); 771 772 bop_printf(NULL, "\nPress any key to reboot.\n"); 773 (void) bcons_getchar(); 774 bop_printf(NULL, "Resetting...\n"); 775 pc_reset(); 776 } 777 778 /* 779 * Do a real mode interrupt BIOS call 780 */ 781 typedef struct bios_regs { 782 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 783 } bios_regs_t; 784 typedef int (*bios_func_t)(int, bios_regs_t *); 785 786 /*ARGSUSED*/ 787 static void 788 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 789 { 790 #if defined(__xpv) 791 prom_panic("unsupported call to BOP_DOINT()\n"); 792 #else /* __xpv */ 793 static int firsttime = 1; 794 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 795 bios_regs_t br; 796 797 /* 798 * The first time we do this, we have to copy the pre-packaged 799 * low memory bios call code image into place. 800 */ 801 if (firsttime) { 802 extern char bios_image[]; 803 extern uint32_t bios_size; 804 805 bcopy(bios_image, (void *)bios_func, bios_size); 806 firsttime = 0; 807 } 808 809 br.ax = rp->eax.word.ax; 810 br.bx = rp->ebx.word.bx; 811 br.cx = rp->ecx.word.cx; 812 br.dx = rp->edx.word.dx; 813 br.bp = rp->ebp.word.bp; 814 br.si = rp->esi.word.si; 815 br.di = rp->edi.word.di; 816 br.ds = rp->ds; 817 br.es = rp->es; 818 819 DBG_MSG("Doing BIOS call..."); 820 DBG(br.ax); 821 DBG(br.bx); 822 DBG(br.dx); 823 rp->eflags = bios_func(intnum, &br); 824 DBG_MSG("done\n"); 825 826 rp->eax.word.ax = br.ax; 827 rp->ebx.word.bx = br.bx; 828 rp->ecx.word.cx = br.cx; 829 rp->edx.word.dx = br.dx; 830 rp->ebp.word.bp = br.bp; 831 rp->esi.word.si = br.si; 832 rp->edi.word.di = br.di; 833 rp->ds = br.ds; 834 rp->es = br.es; 835 #endif /* __xpv */ 836 } 837 838 static struct boot_syscalls bop_sysp = { 839 bcons_getchar, 840 bcons_putchar, 841 bcons_ischar, 842 }; 843 844 static char *whoami; 845 846 #define BUFLEN 64 847 848 #if defined(__xpv) 849 850 static char namebuf[32]; 851 852 static void 853 xen_parse_props(char *s, char *prop_map[], int n_prop) 854 { 855 char **prop_name = prop_map; 856 char *cp = s, *scp; 857 858 do { 859 scp = cp; 860 while ((*cp != NULL) && (*cp != ':')) 861 cp++; 862 863 if ((scp != cp) && (*prop_name != NULL)) { 864 *cp = NULL; 865 bsetprops(*prop_name, scp); 866 } 867 868 cp++; 869 prop_name++; 870 n_prop--; 871 } while (n_prop > 0); 872 } 873 874 #define VBDPATHLEN 64 875 876 /* 877 * parse the 'xpv-root' property to create properties used by 878 * ufs_mountroot. 879 */ 880 static void 881 xen_vbdroot_props(char *s) 882 { 883 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 884 const char lnamefix[] = "/dev/dsk/c0d"; 885 char *pnp; 886 char *prop_p; 887 char mi; 888 short minor; 889 long addr = 0; 890 891 pnp = vbdpath + strlen(vbdpath); 892 prop_p = s + strlen(lnamefix); 893 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 894 addr = addr * 10 + *prop_p++ - '0'; 895 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 896 pnp = vbdpath + strlen(vbdpath); 897 if (*prop_p == 's') 898 mi = 'a'; 899 else if (*prop_p == 'p') 900 mi = 'q'; 901 else 902 ASSERT(0); /* shouldn't be here */ 903 prop_p++; 904 ASSERT(*prop_p != '\0'); 905 if (ISDIGIT(*prop_p)) { 906 minor = *prop_p - '0'; 907 prop_p++; 908 if (ISDIGIT(*prop_p)) { 909 minor = minor * 10 + *prop_p - '0'; 910 } 911 } else { 912 /* malformed root path, use 0 as default */ 913 minor = 0; 914 } 915 ASSERT(minor < 16); /* at most 16 partitions */ 916 mi += minor; 917 *pnp++ = ':'; 918 *pnp++ = mi; 919 *pnp++ = '\0'; 920 bsetprops("fstype", "ufs"); 921 bsetprops("bootpath", vbdpath); 922 923 DBG_MSG("VBD bootpath set to "); 924 DBG_MSG(vbdpath); 925 DBG_MSG("\n"); 926 } 927 928 /* 929 * parse the xpv-nfsroot property to create properties used by 930 * nfs_mountroot. 931 */ 932 static void 933 xen_nfsroot_props(char *s) 934 { 935 char *prop_map[] = { 936 BP_SERVER_IP, /* server IP address */ 937 BP_SERVER_NAME, /* server hostname */ 938 BP_SERVER_PATH, /* root path */ 939 }; 940 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 941 942 bsetprop("fstype", 6, "nfs", 4); 943 944 xen_parse_props(s, prop_map, n_prop); 945 946 /* 947 * If a server name wasn't specified, use a default. 948 */ 949 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 950 bsetprops(BP_SERVER_NAME, "unknown"); 951 } 952 953 /* 954 * Extract our IP address, etc. from the "xpv-ip" property. 955 */ 956 static void 957 xen_ip_props(char *s) 958 { 959 char *prop_map[] = { 960 BP_HOST_IP, /* IP address */ 961 NULL, /* NFS server IP address (ignored in */ 962 /* favour of xpv-nfsroot) */ 963 BP_ROUTER_IP, /* IP gateway */ 964 BP_SUBNET_MASK, /* IP subnet mask */ 965 "xpv-hostname", /* hostname (ignored) */ 966 BP_NETWORK_INTERFACE, /* interface name */ 967 "xpv-hcp", /* host configuration protocol */ 968 }; 969 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 970 char ifname[IFNAMSIZ]; 971 972 xen_parse_props(s, prop_map, n_prop); 973 974 /* 975 * A Linux dom0 administrator expects all interfaces to be 976 * called "ethX", which is not the case here. 977 * 978 * If the interface name specified is "eth0", presume that 979 * this is really intended to be "xnf0" (the first domU -> 980 * dom0 interface for this domain). 981 */ 982 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 983 (strcmp("eth0", ifname) == 0)) { 984 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 985 bop_printf(NULL, 986 "network interface name 'eth0' replaced with 'xnf0'\n"); 987 } 988 } 989 990 #else /* __xpv */ 991 992 static void 993 setup_rarp_props(struct sol_netinfo *sip) 994 { 995 char buf[BUFLEN]; /* to hold ip/mac addrs */ 996 uint8_t *val; 997 998 val = (uint8_t *)&sip->sn_ciaddr; 999 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1000 val[0], val[1], val[2], val[3]); 1001 bsetprops(BP_HOST_IP, buf); 1002 1003 val = (uint8_t *)&sip->sn_siaddr; 1004 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1005 val[0], val[1], val[2], val[3]); 1006 bsetprops(BP_SERVER_IP, buf); 1007 1008 if (sip->sn_giaddr != 0) { 1009 val = (uint8_t *)&sip->sn_giaddr; 1010 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1011 val[0], val[1], val[2], val[3]); 1012 bsetprops(BP_ROUTER_IP, buf); 1013 } 1014 1015 if (sip->sn_netmask != 0) { 1016 val = (uint8_t *)&sip->sn_netmask; 1017 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1018 val[0], val[1], val[2], val[3]); 1019 bsetprops(BP_SUBNET_MASK, buf); 1020 } 1021 1022 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1023 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1024 sip->sn_mactype, sip->sn_maclen); 1025 } else { 1026 val = sip->sn_macaddr; 1027 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1028 val[0], val[1], val[2], val[3], val[4], val[5]); 1029 bsetprops(BP_BOOT_MAC, buf); 1030 } 1031 } 1032 1033 #endif /* __xpv */ 1034 1035 static void 1036 build_panic_cmdline(const char *cmd, int cmdlen) 1037 { 1038 int proplen; 1039 size_t arglen; 1040 1041 arglen = sizeof (fastreboot_onpanic_args); 1042 /* 1043 * If we allready have fastreboot-onpanic set to zero, 1044 * don't add them again. 1045 */ 1046 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1047 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1048 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1049 fastreboot_onpanic_cmdline); 1050 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1051 arglen = 1; 1052 } 1053 1054 /* 1055 * construct fastreboot_onpanic_cmdline 1056 */ 1057 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1058 DBG_MSG("Command line too long: clearing " 1059 FASTREBOOT_ONPANIC "\n"); 1060 fastreboot_onpanic = 0; 1061 } else { 1062 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1063 if (arglen != 1) 1064 bcopy(fastreboot_onpanic_args, 1065 fastreboot_onpanic_cmdline + cmdlen, arglen); 1066 else 1067 fastreboot_onpanic_cmdline[cmdlen] = 0; 1068 } 1069 } 1070 1071 1072 #ifndef __xpv 1073 /* 1074 * Construct boot command line for Fast Reboot 1075 */ 1076 static void 1077 build_fastboot_cmdline(void) 1078 { 1079 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1; 1080 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1081 DBG(saved_cmdline_len); 1082 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1083 fastreboot_capable = 0; 1084 } else { 1085 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline, 1086 saved_cmdline_len); 1087 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1088 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1089 } 1090 } 1091 1092 /* 1093 * Save memory layout, disk drive information, unix and boot archive sizes for 1094 * Fast Reboot. 1095 */ 1096 static void 1097 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi) 1098 { 1099 struct boot_modules *modp; 1100 int i; 1101 1102 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1103 if (mbi->mmap_length > sizeof (saved_mmap)) { 1104 DBG_MSG("mbi->mmap_length too big: clearing " 1105 "fastreboot_capable\n"); 1106 fastreboot_capable = 0; 1107 } else { 1108 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1109 mbi->mmap_length); 1110 } 1111 1112 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1113 if (mbi->drives_length > sizeof (saved_drives)) { 1114 DBG(mbi->drives_length); 1115 DBG_MSG("mbi->drives_length too big: clearing " 1116 "fastreboot_capable\n"); 1117 fastreboot_capable = 0; 1118 } else { 1119 bcopy((void *)(uintptr_t)mbi->drives_addr, 1120 (void *)saved_drives, mbi->drives_length); 1121 } 1122 } else { 1123 saved_mbi.drives_length = 0; 1124 saved_mbi.drives_addr = NULL; 1125 } 1126 1127 /* 1128 * Current file sizes. Used by fastboot.c to figure out how much 1129 * memory to reserve for panic reboot. 1130 * Use the module list from the dboot-constructed xboot_info 1131 * instead of the list referenced by the multiboot structure 1132 * because that structure may not be addressable now. 1133 */ 1134 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1135 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1136 i < xbi->bi_module_cnt; i++, modp++) { 1137 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1138 } 1139 } 1140 #endif /* __xpv */ 1141 1142 1143 /* 1144 * 1st pass at building the table of boot properties. This includes: 1145 * - values set on the command line: -B a=x,b=y,c=z .... 1146 * - known values we just compute (ie. from xbootp) 1147 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1148 * 1149 * the grub command line looked like: 1150 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1151 * 1152 * whoami is the same as boot-file 1153 */ 1154 static void 1155 build_boot_properties(void) 1156 { 1157 char *name; 1158 int name_len; 1159 char *value; 1160 int value_len; 1161 struct boot_modules *bm; 1162 char *propbuf; 1163 int quoted = 0; 1164 int boot_arg_len; 1165 #ifndef __xpv 1166 static int stdout_val = 0; 1167 uchar_t boot_device; 1168 char str[3]; 1169 multiboot_info_t *mbi; 1170 int netboot; 1171 struct sol_netinfo *sip; 1172 #endif 1173 1174 /* 1175 * These have to be done first, so that kobj_mount_root() works 1176 */ 1177 DBG_MSG("Building boot properties\n"); 1178 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1179 DBG((uintptr_t)propbuf); 1180 if (xbootp->bi_module_cnt > 0) { 1181 bm = xbootp->bi_modules; 1182 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 1183 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 1184 bm->bm_size); 1185 } 1186 1187 DBG_MSG("Parsing command line for boot properties\n"); 1188 value = xbootp->bi_cmdline; 1189 1190 /* 1191 * allocate memory to collect boot_args into 1192 */ 1193 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 1194 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1195 boot_args[0] = 0; 1196 boot_arg_len = 0; 1197 1198 #ifdef __xpv 1199 /* 1200 * Xen puts a lot of device information in front of the kernel name 1201 * let's grab them and make them boot properties. The first 1202 * string w/o an "=" in it will be the boot-file property. 1203 */ 1204 (void) strcpy(namebuf, "xpv-"); 1205 for (;;) { 1206 /* 1207 * get to next property 1208 */ 1209 while (ISSPACE(*value)) 1210 ++value; 1211 name = value; 1212 /* 1213 * look for an "=" 1214 */ 1215 while (*value && !ISSPACE(*value) && *value != '=') { 1216 value++; 1217 } 1218 if (*value != '=') { /* no "=" in the property */ 1219 value = name; 1220 break; 1221 } 1222 name_len = value - name; 1223 value_len = 0; 1224 /* 1225 * skip over the "=" 1226 */ 1227 value++; 1228 while (value[value_len] && !ISSPACE(value[value_len])) { 1229 ++value_len; 1230 } 1231 /* 1232 * build property name with "xpv-" prefix 1233 */ 1234 if (name_len + 4 > 32) { /* skip if name too long */ 1235 value += value_len; 1236 continue; 1237 } 1238 bcopy(name, &namebuf[4], name_len); 1239 name_len += 4; 1240 namebuf[name_len] = 0; 1241 bcopy(value, propbuf, value_len); 1242 propbuf[value_len] = 0; 1243 bsetprops(namebuf, propbuf); 1244 1245 /* 1246 * xpv-root is set to the logical disk name of the xen 1247 * VBD when booting from a disk-based filesystem. 1248 */ 1249 if (strcmp(namebuf, "xpv-root") == 0) 1250 xen_vbdroot_props(propbuf); 1251 /* 1252 * While we're here, if we have a "xpv-nfsroot" property 1253 * then we need to set "fstype" to "nfs" so we mount 1254 * our root from the nfs server. Also parse the xpv-nfsroot 1255 * property to create the properties that nfs_mountroot will 1256 * need to find the root and mount it. 1257 */ 1258 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1259 xen_nfsroot_props(propbuf); 1260 1261 if (strcmp(namebuf, "xpv-ip") == 0) 1262 xen_ip_props(propbuf); 1263 value += value_len; 1264 } 1265 #endif 1266 1267 while (ISSPACE(*value)) 1268 ++value; 1269 /* 1270 * value now points at the boot-file 1271 */ 1272 value_len = 0; 1273 while (value[value_len] && !ISSPACE(value[value_len])) 1274 ++value_len; 1275 if (value_len > 0) { 1276 whoami = propbuf; 1277 bcopy(value, whoami, value_len); 1278 whoami[value_len] = 0; 1279 bsetprops("boot-file", whoami); 1280 /* 1281 * strip leading path stuff from whoami, so running from 1282 * PXE/miniroot makes sense. 1283 */ 1284 if (strstr(whoami, "/platform/") != NULL) 1285 whoami = strstr(whoami, "/platform/"); 1286 bsetprops("whoami", whoami); 1287 } 1288 1289 /* 1290 * Values forcibly set boot properties on the command line via -B. 1291 * Allow use of quotes in values. Other stuff goes on kernel 1292 * command line. 1293 */ 1294 name = value + value_len; 1295 while (*name != 0) { 1296 /* 1297 * anything not " -B" is copied to the command line 1298 */ 1299 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1300 boot_args[boot_arg_len++] = *name; 1301 boot_args[boot_arg_len] = 0; 1302 ++name; 1303 continue; 1304 } 1305 1306 /* 1307 * skip the " -B" and following white space 1308 */ 1309 name += 3; 1310 while (ISSPACE(*name)) 1311 ++name; 1312 while (*name && !ISSPACE(*name)) { 1313 value = strstr(name, "="); 1314 if (value == NULL) 1315 break; 1316 name_len = value - name; 1317 ++value; 1318 value_len = 0; 1319 quoted = 0; 1320 for (; ; ++value_len) { 1321 if (!value[value_len]) 1322 break; 1323 1324 /* 1325 * is this value quoted? 1326 */ 1327 if (value_len == 0 && 1328 (value[0] == '\'' || value[0] == '"')) { 1329 quoted = value[0]; 1330 ++value_len; 1331 } 1332 1333 /* 1334 * In the quote accept any character, 1335 * but look for ending quote. 1336 */ 1337 if (quoted) { 1338 if (value[value_len] == quoted) 1339 quoted = 0; 1340 continue; 1341 } 1342 1343 /* 1344 * a comma or white space ends the value 1345 */ 1346 if (value[value_len] == ',' || 1347 ISSPACE(value[value_len])) 1348 break; 1349 } 1350 1351 if (value_len == 0) { 1352 bsetprop(name, name_len, "true", 5); 1353 } else { 1354 char *v = value; 1355 int l = value_len; 1356 if (v[0] == v[l - 1] && 1357 (v[0] == '\'' || v[0] == '"')) { 1358 ++v; 1359 l -= 2; 1360 } 1361 bcopy(v, propbuf, l); 1362 propbuf[l] = '\0'; 1363 bsetprop(name, name_len, propbuf, 1364 l + 1); 1365 } 1366 name = value + value_len; 1367 while (*name == ',') 1368 ++name; 1369 } 1370 } 1371 1372 /* 1373 * set boot-args property 1374 * 1275 name is bootargs, so set 1375 * that too 1376 */ 1377 bsetprops("boot-args", boot_args); 1378 bsetprops("bootargs", boot_args); 1379 1380 #ifndef __xpv 1381 /* 1382 * set the BIOS boot device from GRUB 1383 */ 1384 netboot = 0; 1385 mbi = xbootp->bi_mb_info; 1386 1387 /* 1388 * Build boot command line for Fast Reboot 1389 */ 1390 build_fastboot_cmdline(); 1391 1392 /* 1393 * Save various boot information for Fast Reboot 1394 */ 1395 save_boot_info(mbi, xbootp); 1396 1397 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1398 boot_device = mbi->boot_device >> 24; 1399 if (boot_device == 0x20) 1400 netboot++; 1401 str[0] = (boot_device >> 4) + '0'; 1402 str[1] = (boot_device & 0xf) + '0'; 1403 str[2] = 0; 1404 bsetprops("bios-boot-device", str); 1405 } else { 1406 netboot = 1; 1407 } 1408 1409 /* 1410 * In the netboot case, drives_info is overloaded with the dhcp ack. 1411 * This is not multiboot compliant and requires special pxegrub! 1412 */ 1413 if (netboot && mbi->drives_length != 0) { 1414 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1415 if (sip->sn_infotype == SN_TYPE_BOOTP) 1416 bsetprop("bootp-response", sizeof ("bootp-response"), 1417 (void *)(uintptr_t)mbi->drives_addr, 1418 mbi->drives_length); 1419 else if (sip->sn_infotype == SN_TYPE_RARP) 1420 setup_rarp_props(sip); 1421 } 1422 bsetprop("stdout", strlen("stdout"), 1423 &stdout_val, sizeof (stdout_val)); 1424 #endif /* __xpv */ 1425 1426 /* 1427 * more conjured up values for made up things.... 1428 */ 1429 #if defined(__xpv) 1430 bsetprops("mfg-name", "i86xpv"); 1431 bsetprops("impl-arch-name", "i86xpv"); 1432 #else 1433 bsetprops("mfg-name", "i86pc"); 1434 bsetprops("impl-arch-name", "i86pc"); 1435 #endif 1436 1437 /* 1438 * Build firmware-provided system properties 1439 */ 1440 build_firmware_properties(); 1441 1442 /* 1443 * XXPV 1444 * 1445 * Find out what these are: 1446 * - cpuid_feature_ecx_include 1447 * - cpuid_feature_ecx_exclude 1448 * - cpuid_feature_edx_include 1449 * - cpuid_feature_edx_exclude 1450 * 1451 * Find out what these are in multiboot: 1452 * - netdev-path 1453 * - fstype 1454 */ 1455 } 1456 1457 #ifdef __xpv 1458 /* 1459 * Under the Hypervisor, memory usable for DMA may be scarce. One 1460 * very likely large pool of DMA friendly memory is occupied by 1461 * the boot_archive, as it was loaded by grub into low MFNs. 1462 * 1463 * Here we free up that memory by copying the boot archive to what are 1464 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1465 */ 1466 #define PFN_2GIG 0x80000 1467 static void 1468 relocate_boot_archive(void) 1469 { 1470 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1471 struct boot_modules *bm = xbootp->bi_modules; 1472 uintptr_t va; 1473 pfn_t va_pfn; 1474 mfn_t va_mfn; 1475 caddr_t copy; 1476 pfn_t copy_pfn; 1477 mfn_t copy_mfn; 1478 size_t len; 1479 int slop; 1480 int total = 0; 1481 int relocated = 0; 1482 int mmu_update_return; 1483 mmu_update_t t[2]; 1484 x86pte_t pte; 1485 1486 /* 1487 * If all MFN's are below 2Gig, don't bother doing this. 1488 */ 1489 if (max_mfn < PFN_2GIG) 1490 return; 1491 if (xbootp->bi_module_cnt < 1) { 1492 DBG_MSG("no boot_archive!"); 1493 return; 1494 } 1495 1496 DBG_MSG("moving boot_archive to high MFN memory\n"); 1497 va = (uintptr_t)bm->bm_addr; 1498 len = bm->bm_size; 1499 slop = va & MMU_PAGEOFFSET; 1500 if (slop) { 1501 va += MMU_PAGESIZE - slop; 1502 len -= MMU_PAGESIZE - slop; 1503 } 1504 len = P2ALIGN(len, MMU_PAGESIZE); 1505 1506 /* 1507 * Go through all boot_archive pages, swapping any low MFN pages 1508 * with memory at next_phys. 1509 */ 1510 while (len != 0) { 1511 ++total; 1512 va_pfn = mmu_btop(va - ONE_GIG); 1513 va_mfn = mfn_list[va_pfn]; 1514 if (mfn_list[va_pfn] < PFN_2GIG) { 1515 copy = kbm_remap_window(next_phys, 1); 1516 bcopy((void *)va, copy, MMU_PAGESIZE); 1517 copy_pfn = mmu_btop(next_phys); 1518 copy_mfn = mfn_list[copy_pfn]; 1519 1520 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1521 if (HYPERVISOR_update_va_mapping(va, pte, 1522 UVMF_INVLPG | UVMF_LOCAL)) 1523 bop_panic("relocate_boot_archive(): " 1524 "HYPERVISOR_update_va_mapping() failed"); 1525 1526 mfn_list[va_pfn] = copy_mfn; 1527 mfn_list[copy_pfn] = va_mfn; 1528 1529 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1530 t[0].val = va_pfn; 1531 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1532 t[1].val = copy_pfn; 1533 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1534 DOMID_SELF) != 0 || mmu_update_return != 2) 1535 bop_panic("relocate_boot_archive(): " 1536 "HYPERVISOR_mmu_update() failed"); 1537 1538 next_phys += MMU_PAGESIZE; 1539 ++relocated; 1540 } 1541 len -= MMU_PAGESIZE; 1542 va += MMU_PAGESIZE; 1543 } 1544 DBG_MSG("Relocated pages:\n"); 1545 DBG(relocated); 1546 DBG_MSG("Out of total pages:\n"); 1547 DBG(total); 1548 } 1549 #endif /* __xpv */ 1550 1551 #if !defined(__xpv) 1552 /* 1553 * Install a temporary IDT that lets us catch errors in the boot time code. 1554 * We shouldn't get any faults at all while this is installed, so we'll 1555 * just generate a traceback and exit. 1556 */ 1557 #ifdef __amd64 1558 static const int bcode_sel = B64CODE_SEL; 1559 #else 1560 static const int bcode_sel = B32CODE_SEL; 1561 #endif 1562 1563 /* 1564 * simple description of a stack frame (args are 32 bit only currently) 1565 */ 1566 typedef struct bop_frame { 1567 struct bop_frame *old_frame; 1568 pc_t retaddr; 1569 long arg[1]; 1570 } bop_frame_t; 1571 1572 void 1573 bop_traceback(bop_frame_t *frame) 1574 { 1575 pc_t pc; 1576 int cnt; 1577 char *ksym; 1578 ulong_t off; 1579 #if defined(__i386) 1580 int a; 1581 #endif 1582 1583 bop_printf(NULL, "Stack traceback:\n"); 1584 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1585 pc = frame->retaddr; 1586 if (pc == 0) 1587 break; 1588 ksym = kobj_getsymname(pc, &off); 1589 if (ksym) 1590 bop_printf(NULL, " %s+%lx", ksym, off); 1591 else 1592 bop_printf(NULL, " 0x%lx", pc); 1593 1594 frame = frame->old_frame; 1595 if (frame == 0) { 1596 bop_printf(NULL, "\n"); 1597 break; 1598 } 1599 #if defined(__i386) 1600 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1601 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1602 break; 1603 if (a == 0) 1604 bop_printf(NULL, "("); 1605 else 1606 bop_printf(NULL, ","); 1607 bop_printf(NULL, "0x%lx", frame->arg[a]); 1608 } 1609 bop_printf(NULL, ")"); 1610 #endif 1611 bop_printf(NULL, "\n"); 1612 } 1613 } 1614 1615 struct trapframe { 1616 ulong_t error_code; /* optional */ 1617 ulong_t inst_ptr; 1618 ulong_t code_seg; 1619 ulong_t flags_reg; 1620 #ifdef __amd64 1621 ulong_t stk_ptr; 1622 ulong_t stk_seg; 1623 #endif 1624 }; 1625 1626 void 1627 bop_trap(ulong_t *tfp) 1628 { 1629 struct trapframe *tf = (struct trapframe *)tfp; 1630 bop_frame_t fakeframe; 1631 static int depth = 0; 1632 1633 /* 1634 * Check for an infinite loop of traps. 1635 */ 1636 if (++depth > 2) 1637 bop_panic("Nested trap"); 1638 1639 bop_printf(NULL, "Unexpected trap\n"); 1640 1641 /* 1642 * adjust the tf for optional error_code by detecting the code selector 1643 */ 1644 if (tf->code_seg != bcode_sel) 1645 tf = (struct trapframe *)(tfp - 1); 1646 else 1647 bop_printf(NULL, "error code 0x%lx\n", 1648 tf->error_code & 0xffffffff); 1649 1650 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1651 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1652 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1653 #ifdef __amd64 1654 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1655 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1656 #endif 1657 1658 /* grab %[er]bp pushed by our code from the stack */ 1659 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1660 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1661 bop_printf(NULL, "Attempting stack backtrace:\n"); 1662 bop_traceback(&fakeframe); 1663 bop_panic("unexpected trap in early boot"); 1664 } 1665 1666 extern void bop_trap_handler(void); 1667 1668 static gate_desc_t *bop_idt; 1669 1670 static desctbr_t bop_idt_info; 1671 1672 static void 1673 bop_idt_init(void) 1674 { 1675 int t; 1676 1677 bop_idt = (gate_desc_t *) 1678 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1679 bzero(bop_idt, MMU_PAGESIZE); 1680 for (t = 0; t < NIDT; ++t) { 1681 /* 1682 * Note that since boot runs without a TSS, the 1683 * double fault handler cannot use an alternate stack 1684 * (64-bit) or a task gate (32-bit). 1685 */ 1686 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1687 SDT_SYSIGT, TRP_KPL, 0); 1688 } 1689 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1690 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1691 wr_idtr(&bop_idt_info); 1692 } 1693 #endif /* !defined(__xpv) */ 1694 1695 /* 1696 * This is where we enter the kernel. It dummies up the boot_ops and 1697 * boot_syscalls vectors and jumps off to _kobj_boot() 1698 */ 1699 void 1700 _start(struct xboot_info *xbp) 1701 { 1702 bootops_t *bops = &bootop; 1703 extern void _kobj_boot(); 1704 1705 /* 1706 * 1st off - initialize the console for any error messages 1707 */ 1708 xbootp = xbp; 1709 #ifdef __xpv 1710 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info; 1711 xen_info = xbootp->bi_xen_start_info; 1712 #endif 1713 1714 #ifndef __xpv 1715 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1716 FASTBOOT_MAGIC) { 1717 post_fastreboot = 1; 1718 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1719 } 1720 #endif 1721 1722 bcons_init((void *)xbootp->bi_cmdline); 1723 have_console = 1; 1724 1725 /* 1726 * enable debugging 1727 */ 1728 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1729 kbm_debug = 1; 1730 1731 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1732 DBG_MSG((char *)xbootp->bi_cmdline); 1733 DBG_MSG("\n\n\n"); 1734 1735 /* 1736 * physavail is no longer used by startup 1737 */ 1738 bm.physinstalled = xbp->bi_phys_install; 1739 bm.pcimem = xbp->bi_pcimem; 1740 bm.rsvdmem = xbp->bi_rsvdmem; 1741 bm.physavail = NULL; 1742 1743 /* 1744 * initialize the boot time allocator 1745 */ 1746 next_phys = xbootp->bi_next_paddr; 1747 DBG(next_phys); 1748 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1749 DBG(next_virt); 1750 DBG_MSG("Initializing boot time memory management..."); 1751 #ifdef __xpv 1752 { 1753 xen_platform_parameters_t p; 1754 1755 /* This call shouldn't fail, dboot already did it once. */ 1756 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1757 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1758 DBG(xen_virt_start); 1759 } 1760 #endif 1761 kbm_init(xbootp); 1762 DBG_MSG("done\n"); 1763 1764 /* 1765 * Fill in the bootops vector 1766 */ 1767 bops->bsys_version = BO_VERSION; 1768 bops->boot_mem = &bm; 1769 bops->bsys_alloc = do_bsys_alloc; 1770 bops->bsys_free = do_bsys_free; 1771 bops->bsys_getproplen = do_bsys_getproplen; 1772 bops->bsys_getprop = do_bsys_getprop; 1773 bops->bsys_nextprop = do_bsys_nextprop; 1774 bops->bsys_printf = bop_printf; 1775 bops->bsys_doint = do_bsys_doint; 1776 1777 /* 1778 * BOP_EALLOC() is no longer needed 1779 */ 1780 bops->bsys_ealloc = do_bsys_ealloc; 1781 1782 #ifdef __xpv 1783 /* 1784 * On domain 0 we need to free up some physical memory that is 1785 * usable for DMA. Since GRUB loaded the boot_archive, it is 1786 * sitting in low MFN memory. We'll relocated the boot archive 1787 * pages to high PFN memory. 1788 */ 1789 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1790 relocate_boot_archive(); 1791 #endif 1792 1793 #ifndef __xpv 1794 /* 1795 * Install an IDT to catch early pagefaults (shouldn't have any). 1796 * Also needed for kmdb. 1797 */ 1798 bop_idt_init(); 1799 #endif 1800 1801 /* 1802 * Start building the boot properties from the command line 1803 */ 1804 DBG_MSG("Initializing boot properties:\n"); 1805 build_boot_properties(); 1806 1807 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1808 char *name; 1809 char *value; 1810 char *cp; 1811 int len; 1812 1813 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1814 bop_printf(NULL, "\nBoot properties:\n"); 1815 name = ""; 1816 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1817 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1818 (void) do_bsys_getprop(NULL, name, value); 1819 len = do_bsys_getproplen(NULL, name); 1820 bop_printf(NULL, "len=%d ", len); 1821 value[len] = 0; 1822 for (cp = value; *cp; ++cp) { 1823 if (' ' <= *cp && *cp <= '~') 1824 bop_printf(NULL, "%c", *cp); 1825 else 1826 bop_printf(NULL, "-0x%x-", *cp); 1827 } 1828 bop_printf(NULL, "\n"); 1829 } 1830 } 1831 1832 /* 1833 * jump into krtld... 1834 */ 1835 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1836 } 1837 1838 1839 /*ARGSUSED*/ 1840 static caddr_t 1841 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1842 { 1843 panic("Attempt to bsys_alloc() too late\n"); 1844 return (NULL); 1845 } 1846 1847 /*ARGSUSED*/ 1848 static void 1849 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1850 { 1851 panic("Attempt to bsys_free() too late\n"); 1852 } 1853 1854 void 1855 bop_no_more_mem(void) 1856 { 1857 DBG(total_bop_alloc_scratch); 1858 DBG(total_bop_alloc_kernel); 1859 bootops->bsys_alloc = no_more_alloc; 1860 bootops->bsys_free = no_more_free; 1861 } 1862 1863 1864 /* 1865 * Set ACPI firmware properties 1866 */ 1867 1868 static caddr_t 1869 vmap_phys(size_t length, paddr_t pa) 1870 { 1871 paddr_t start, end; 1872 caddr_t va; 1873 size_t len, page; 1874 1875 #ifdef __xpv 1876 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 1877 #endif 1878 start = P2ALIGN(pa, MMU_PAGESIZE); 1879 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1880 len = end - start; 1881 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1882 for (page = 0; page < len; page += MMU_PAGESIZE) 1883 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1884 return (va + (pa & MMU_PAGEOFFSET)); 1885 } 1886 1887 static uint8_t 1888 checksum_table(uint8_t *tp, size_t len) 1889 { 1890 uint8_t sum = 0; 1891 1892 while (len-- > 0) 1893 sum += *tp++; 1894 1895 return (sum); 1896 } 1897 1898 static int 1899 valid_rsdp(struct rsdp *rp) 1900 { 1901 1902 /* validate the V1.x checksum */ 1903 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1904 return (0); 1905 1906 /* If pre-ACPI 2.0, this is a valid RSDP */ 1907 if (rp->v1.revision < 2) 1908 return (1); 1909 1910 /* validate the V2.x checksum */ 1911 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1912 return (0); 1913 1914 return (1); 1915 } 1916 1917 /* 1918 * Scan memory range for an RSDP; 1919 * see ACPI 3.0 Spec, 5.2.5.1 1920 */ 1921 static struct rsdp * 1922 scan_rsdp(paddr_t start, paddr_t end) 1923 { 1924 size_t len = end - start + 1; 1925 caddr_t ptr; 1926 1927 ptr = vmap_phys(len, start); 1928 while (len > 0) { 1929 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1930 if (valid_rsdp((struct rsdp *)ptr)) 1931 return ((struct rsdp *)ptr); 1932 ptr += 16; 1933 len -= 16; 1934 } 1935 1936 return (NULL); 1937 } 1938 1939 /* 1940 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1941 */ 1942 static struct rsdp * 1943 find_rsdp() { 1944 struct rsdp *rsdp; 1945 uint16_t *ebda_seg; 1946 paddr_t ebda_addr; 1947 1948 /* 1949 * Get the EBDA segment and scan the first 1K 1950 */ 1951 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1952 ebda_addr = *ebda_seg << 4; 1953 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1954 if (rsdp == NULL) 1955 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1956 rsdp = scan_rsdp(0xe0000, 0xfffff); 1957 return (rsdp); 1958 } 1959 1960 static struct table_header * 1961 map_fw_table(paddr_t table_addr) 1962 { 1963 struct table_header *tp; 1964 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1965 1966 /* 1967 * Map at least a page; if the table is larger than this, remap it 1968 */ 1969 tp = (struct table_header *)vmap_phys(len, table_addr); 1970 if (tp->len > len) 1971 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1972 return (tp); 1973 } 1974 1975 static struct table_header * 1976 find_fw_table(char *signature) 1977 { 1978 static int revision = 0; 1979 static struct xsdt *xsdt; 1980 static int len; 1981 paddr_t xsdt_addr; 1982 struct rsdp *rsdp; 1983 struct table_header *tp; 1984 paddr_t table_addr; 1985 int n; 1986 1987 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1988 return (NULL); 1989 1990 /* 1991 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1992 * understand this code. If we haven't already found the RSDT/XSDT, 1993 * revision will be 0. Find the RSDP and check the revision 1994 * to find out whether to use the RSDT or XSDT. If revision is 1995 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1996 * use the XSDT. If the XSDT address is 0, though, fall back to 1997 * revision 1 and use the RSDT. 1998 */ 1999 if (revision == 0) { 2000 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 2001 revision = rsdp->v1.revision; 2002 switch (revision) { 2003 case 2: 2004 /* 2005 * Use the XSDT unless BIOS is buggy and 2006 * claims to be rev 2 but has a null XSDT 2007 * address 2008 */ 2009 xsdt_addr = rsdp->xsdt; 2010 if (xsdt_addr != 0) 2011 break; 2012 /* FALLTHROUGH */ 2013 case 0: 2014 /* treat RSDP rev 0 as revision 1 internally */ 2015 revision = 1; 2016 /* FALLTHROUGH */ 2017 case 1: 2018 /* use the RSDT for rev 0/1 */ 2019 xsdt_addr = rsdp->v1.rsdt; 2020 break; 2021 default: 2022 /* unknown revision */ 2023 revision = 0; 2024 break; 2025 } 2026 } 2027 if (revision == 0) 2028 return (NULL); 2029 2030 /* cache the XSDT info */ 2031 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 2032 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 2033 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2034 } 2035 2036 /* 2037 * Scan the table headers looking for a signature match 2038 */ 2039 for (n = 0; n < len; n++) { 2040 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 2041 if (table_addr == 0) 2042 continue; 2043 tp = map_fw_table(table_addr); 2044 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 2045 return (tp); 2046 } 2047 } 2048 return (NULL); 2049 } 2050 2051 static void 2052 process_mcfg(struct mcfg *tp) 2053 { 2054 struct cfg_base_addr_alloc *cfg_baap; 2055 char *cfg_baa_endp; 2056 int64_t ecfginfo[4]; 2057 2058 cfg_baap = tp->CfgBaseAddrAllocList; 2059 cfg_baa_endp = ((char *)tp) + tp->Length; 2060 while ((char *)cfg_baap < cfg_baa_endp) { 2061 if (cfg_baap->base_addr != 0 && cfg_baap->segment == 0) { 2062 ecfginfo[0] = cfg_baap->base_addr; 2063 ecfginfo[1] = cfg_baap->segment; 2064 ecfginfo[2] = cfg_baap->start_bno; 2065 ecfginfo[3] = cfg_baap->end_bno; 2066 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2067 ecfginfo, sizeof (ecfginfo)); 2068 break; 2069 } 2070 cfg_baap++; 2071 } 2072 } 2073 2074 #ifndef __xpv 2075 static void 2076 process_madt(struct madt *tp) 2077 { 2078 struct madt_processor *cpu, *end; 2079 uint32_t cpu_count = 0; 2080 uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2081 2082 if (tp != NULL) { 2083 /* 2084 * Determine number of CPUs and keep track of "final" APIC ID 2085 * for each CPU by walking through ACPI MADT processor list 2086 */ 2087 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 2088 cpu = tp->list; 2089 while (cpu < end) { 2090 if (cpu->type == MADT_PROCESSOR) { 2091 if (cpu->flags & 1) { 2092 if (cpu_count < UINT8_MAX) 2093 cpu_apicid_array[cpu_count] = 2094 cpu->apic_id; 2095 cpu_count++; 2096 } 2097 } 2098 2099 cpu = (struct madt_processor *) 2100 (cpu->len + (uintptr_t)cpu); 2101 } 2102 2103 /* 2104 * Make boot property for array of "final" APIC IDs for each 2105 * CPU 2106 */ 2107 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2108 cpu_apicid_array, cpu_count * sizeof (uint8_t)); 2109 } 2110 2111 /* 2112 * User-set boot-ncpus overrides firmware count 2113 */ 2114 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2115 return; 2116 2117 /* 2118 * Set boot property for boot-ncpus to number of CPUs given in MADT 2119 * if user hasn't set the property already 2120 */ 2121 if (tp != NULL) 2122 bsetpropsi("boot-ncpus", cpu_count); 2123 } 2124 2125 static void 2126 process_srat(struct srat *tp) 2127 { 2128 struct srat_item *item, *end; 2129 int i; 2130 int proc_num, mem_num; 2131 #pragma pack(1) 2132 struct { 2133 uint32_t domain; 2134 uint32_t apic_id; 2135 uint32_t sapic_id; 2136 } processor; 2137 struct { 2138 uint32_t domain; 2139 uint32_t x2apic_id; 2140 } x2apic; 2141 struct { 2142 uint32_t domain; 2143 uint64_t addr; 2144 uint64_t length; 2145 uint32_t flags; 2146 } memory; 2147 #pragma pack() 2148 char prop_name[30]; 2149 2150 if (tp == NULL) 2151 return; 2152 2153 proc_num = mem_num = 0; 2154 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2155 item = tp->list; 2156 while (item < end) { 2157 switch (item->type) { 2158 case SRAT_PROCESSOR: 2159 if (!(item->i.p.flags & SRAT_ENABLED)) 2160 break; 2161 processor.domain = item->i.p.domain1; 2162 for (i = 0; i < 3; i++) 2163 processor.domain += 2164 item->i.p.domain2[i] << ((i + 1) * 8); 2165 processor.apic_id = item->i.p.apic_id; 2166 processor.sapic_id = item->i.p.local_sapic_eid; 2167 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2168 proc_num); 2169 bsetprop(prop_name, strlen(prop_name), &processor, 2170 sizeof (processor)); 2171 proc_num++; 2172 break; 2173 case SRAT_MEMORY: 2174 if (!(item->i.m.flags & SRAT_ENABLED)) 2175 break; 2176 memory.domain = item->i.m.domain; 2177 memory.addr = item->i.m.base_addr; 2178 memory.length = item->i.m.len; 2179 memory.flags = item->i.m.flags; 2180 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2181 mem_num); 2182 bsetprop(prop_name, strlen(prop_name), &memory, 2183 sizeof (memory)); 2184 mem_num++; 2185 break; 2186 case SRAT_X2APIC: 2187 if (!(item->i.xp.flags & SRAT_ENABLED)) 2188 break; 2189 x2apic.domain = item->i.xp.domain; 2190 x2apic.x2apic_id = item->i.xp.x2apic_id; 2191 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2192 proc_num); 2193 bsetprop(prop_name, strlen(prop_name), &x2apic, 2194 sizeof (x2apic)); 2195 proc_num++; 2196 break; 2197 } 2198 2199 item = (struct srat_item *) 2200 (item->len + (caddr_t)item); 2201 } 2202 } 2203 2204 static void 2205 process_slit(struct slit *tp) 2206 { 2207 2208 /* 2209 * Check the number of localities; if it's too huge, we just 2210 * return and locality enumeration code will handle this later, 2211 * if possible. 2212 * 2213 * Note that the size of the table is the square of the 2214 * number of localities; if the number of localities exceeds 2215 * UINT16_MAX, the table size may overflow an int when being 2216 * passed to bsetprop() below. 2217 */ 2218 if (tp->number >= SLIT_LOCALITIES_MAX) 2219 return; 2220 2221 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 2222 sizeof (tp->number)); 2223 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 2224 tp->number * tp->number); 2225 } 2226 2227 #else /* __xpv */ 2228 static void 2229 enumerate_xen_cpus() 2230 { 2231 processorid_t id, max_id; 2232 2233 /* 2234 * User-set boot-ncpus overrides enumeration 2235 */ 2236 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 2237 return; 2238 2239 /* 2240 * Probe every possible virtual CPU id and remember the 2241 * highest id present; the count of CPUs is one greater 2242 * than this. This tacitly assumes at least cpu 0 is present. 2243 */ 2244 max_id = 0; 2245 for (id = 0; id < MAX_VIRT_CPUS; id++) 2246 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2247 max_id = id; 2248 2249 bsetpropsi("boot-ncpus", max_id+1); 2250 2251 } 2252 #endif /* __xpv */ 2253 2254 static void 2255 build_firmware_properties(void) 2256 { 2257 struct table_header *tp = NULL; 2258 2259 #ifndef __xpv 2260 if ((tp = find_fw_table("APIC")) != NULL) 2261 process_madt((struct madt *)tp); 2262 2263 if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL) 2264 process_srat(srat_ptr); 2265 2266 if (slit_ptr = (struct slit *)find_fw_table("SLIT")) 2267 process_slit(slit_ptr); 2268 2269 tp = find_fw_table("MCFG"); 2270 #else /* __xpv */ 2271 enumerate_xen_cpus(); 2272 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2273 tp = find_fw_table("MCFG"); 2274 #endif /* __xpv */ 2275 if (tp != NULL) 2276 process_mcfg((struct mcfg *)tp); 2277 } 2278 2279 /* 2280 * fake up a boot property for deferred early console output 2281 * this is used by both graphical boot and the (developer only) 2282 * USB serial console 2283 */ 2284 void * 2285 defcons_init(size_t size) 2286 { 2287 static char *p = NULL; 2288 2289 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2290 *p = 0; 2291 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2292 &p, sizeof (p)); 2293 return (p); 2294 } 2295 2296 /*ARGSUSED*/ 2297 int 2298 boot_compinfo(int fd, struct compinfo *cbp) 2299 { 2300 cbp->iscmp = 0; 2301 cbp->blksize = MAXBSIZE; 2302 return (0); 2303 } 2304 2305 #define BP_MAX_STRLEN 32 2306 2307 /* 2308 * Get value for given boot property 2309 */ 2310 int 2311 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2312 { 2313 int boot_prop_len; 2314 char str[BP_MAX_STRLEN]; 2315 u_longlong_t value; 2316 2317 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2318 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2319 BOP_GETPROP(bootops, prop_name, str) < 0 || 2320 kobj_getvalue(str, &value) == -1) 2321 return (-1); 2322 2323 if (prop_value) 2324 *prop_value = value; 2325 2326 return (0); 2327 } 2328