1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the functionality that mimics the boot operations 31 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 32 * The x86 kernel now does everything on its own. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/bootconf.h> 37 #include <sys/bootsvcs.h> 38 #include <sys/bootinfo.h> 39 #include <sys/multiboot.h> 40 #include <sys/bootvfs.h> 41 #include <sys/bootprops.h> 42 #include <sys/varargs.h> 43 #include <sys/param.h> 44 #include <sys/machparam.h> 45 #include <sys/archsystm.h> 46 #include <sys/boot_console.h> 47 #include <sys/cmn_err.h> 48 #include <sys/systm.h> 49 #include <sys/promif.h> 50 #include <sys/archsystm.h> 51 #include <sys/x86_archext.h> 52 #include <sys/kobj.h> 53 #include <sys/privregs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/ctype.h> 56 #include <vm/kboot_mmu.h> 57 #include <vm/hat_pte.h> 58 #include "acpi_fw.h" 59 60 static int have_console = 0; /* set once primitive console is initialized */ 61 static char *boot_args = ""; 62 63 /* 64 * Debugging macros 65 */ 66 static uint_t kbm_debug = 0; 67 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 68 #define DBG(x) { if (kbm_debug) \ 69 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 70 } 71 72 #define PUT_STRING(s) { \ 73 char *cp; \ 74 for (cp = (s); *cp; ++cp) \ 75 bcons_putchar(*cp); \ 76 } 77 78 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 79 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 80 struct bsys_mem bm; 81 82 static uintptr_t next_virt; /* next available virtual address */ 83 static paddr_t next_phys; /* next available physical address from dboot */ 84 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 85 86 /* 87 * buffer for vsnprintf for console I/O 88 */ 89 #define BUFFERSIZE 256 90 static char buffer[BUFFERSIZE]; 91 /* 92 * stuff to store/report/manipulate boot property settings. 93 */ 94 typedef struct bootprop { 95 struct bootprop *bp_next; 96 char *bp_name; 97 uint_t bp_vlen; 98 char *bp_value; 99 } bootprop_t; 100 101 static bootprop_t *bprops = NULL; 102 static char *curr_page = NULL; /* ptr to avail bprop memory */ 103 static int curr_space = 0; /* amount of memory at curr_page */ 104 105 /* 106 * some allocator statistics 107 */ 108 static ulong_t total_bop_alloc_scratch = 0; 109 static ulong_t total_bop_alloc_kernel = 0; 110 111 static void build_firmware_properties(void); 112 113 static int early_allocation = 1; 114 115 /* 116 * Allocate aligned physical memory at boot time. This allocator allocates 117 * from the highest possible addresses. This avoids exhausting memory that 118 * would be useful for DMA buffers. 119 */ 120 paddr_t 121 do_bop_phys_alloc(uint64_t size, uint64_t align) 122 { 123 paddr_t pa = 0; 124 paddr_t start; 125 paddr_t end; 126 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 127 128 /* 129 * Be careful if high memory usage is limited in startup.c 130 * Since there are holes in the low part of the physical address 131 * space we can treat physmem as a pfn (not just a pgcnt) and 132 * get a conservative upper limit. 133 */ 134 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 135 high_phys = pfn_to_pa(physmem); 136 137 /* 138 * find the lowest or highest available memory in physinstalled 139 */ 140 size = P2ROUNDUP(size, align); 141 for (; ml; ml = ml->next) { 142 start = P2ROUNDUP(ml->address, align); 143 end = P2ALIGN(ml->address + ml->size, align); 144 if (start < next_phys) 145 start = P2ROUNDUP(next_phys, align); 146 if (end > high_phys) 147 end = P2ALIGN(high_phys, align); 148 149 if (end <= start) 150 continue; 151 if (end - start < size) 152 continue; 153 154 /* 155 * Early allocations need to use low memory, since 156 * physmem might be further limited by bootenv.rc 157 */ 158 if (early_allocation) { 159 if (pa == 0 || start < pa) 160 pa = start; 161 } else { 162 if (end - size > pa) 163 pa = end - size; 164 } 165 } 166 if (pa != 0) { 167 if (early_allocation) 168 next_phys = pa + size; 169 else 170 high_phys = pa; 171 return (pa); 172 } 173 panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 ") Out of memory\n", 174 size, align); 175 /*NOTREACHED*/ 176 } 177 178 static uintptr_t 179 alloc_vaddr(size_t size, paddr_t align) 180 { 181 uintptr_t rv; 182 183 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 184 rv = (uintptr_t)next_virt; 185 next_virt += size; 186 return (rv); 187 } 188 189 /* 190 * Allocate virtual memory. The size is always rounded up to a multiple 191 * of base pagesize. 192 */ 193 194 /*ARGSUSED*/ 195 static caddr_t 196 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 197 { 198 paddr_t a = align; /* same type as pa for masking */ 199 uint_t pgsize; 200 paddr_t pa; 201 uintptr_t va; 202 ssize_t s; /* the aligned size */ 203 uint_t level; 204 uint_t is_kernel = (virthint != 0); 205 206 if (a < MMU_PAGESIZE) 207 a = MMU_PAGESIZE; 208 else if (!ISP2(a)) 209 prom_panic("do_bsys_alloc() incorrect alignment"); 210 size = P2ROUNDUP(size, MMU_PAGESIZE); 211 212 /* 213 * Use the next aligned virtual address if we weren't given one. 214 */ 215 if (virthint == NULL) { 216 virthint = (caddr_t)alloc_vaddr(size, a); 217 total_bop_alloc_scratch += size; 218 } else { 219 total_bop_alloc_kernel += size; 220 } 221 222 /* 223 * allocate the physical memory 224 */ 225 pa = do_bop_phys_alloc(size, a); 226 227 /* 228 * Add the mappings to the page tables, try large pages first. 229 */ 230 va = (uintptr_t)virthint; 231 s = size; 232 level = 1; 233 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 234 if (xbootp->bi_use_largepage && a == pgsize) { 235 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 236 s >= pgsize) { 237 kbm_map(va, pa, level, is_kernel); 238 va += pgsize; 239 pa += pgsize; 240 s -= pgsize; 241 } 242 } 243 244 /* 245 * Map remaining pages use small mappings 246 */ 247 level = 0; 248 pgsize = MMU_PAGESIZE; 249 while (s > 0) { 250 kbm_map(va, pa, level, is_kernel); 251 va += pgsize; 252 pa += pgsize; 253 s -= pgsize; 254 } 255 return (virthint); 256 } 257 258 /* 259 * Free virtual memory - we'll just ignore these. 260 */ 261 /*ARGSUSED*/ 262 static void 263 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 264 { 265 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 266 (void *)virt, size); 267 } 268 269 /* 270 * Old interface 271 */ 272 /*ARGSUSED*/ 273 static caddr_t 274 do_bsys_ealloc( 275 bootops_t *bop, 276 caddr_t virthint, 277 size_t size, 278 int align, 279 int flags) 280 { 281 prom_panic("unsupported call to BOP_EALLOC()\n"); 282 return (0); 283 } 284 285 286 static void 287 bsetprop(char *name, int nlen, void *value, int vlen) 288 { 289 uint_t size; 290 uint_t need_size; 291 bootprop_t *b; 292 293 /* 294 * align the size to 16 byte boundary 295 */ 296 size = sizeof (bootprop_t) + nlen + 1 + vlen; 297 size = (size + 0xf) & ~0xf; 298 if (size > curr_space) { 299 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 300 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 301 curr_space = need_size; 302 } 303 304 /* 305 * use a bootprop_t at curr_page and link into list 306 */ 307 b = (bootprop_t *)curr_page; 308 curr_page += sizeof (bootprop_t); 309 curr_space -= sizeof (bootprop_t); 310 b->bp_next = bprops; 311 bprops = b; 312 313 /* 314 * follow by name and ending zero byte 315 */ 316 b->bp_name = curr_page; 317 bcopy(name, curr_page, nlen); 318 curr_page += nlen; 319 *curr_page++ = 0; 320 curr_space -= nlen + 1; 321 322 /* 323 * copy in value, but no ending zero byte 324 */ 325 b->bp_value = curr_page; 326 b->bp_vlen = vlen; 327 if (vlen > 0) { 328 bcopy(value, curr_page, vlen); 329 curr_page += vlen; 330 curr_space -= vlen; 331 } 332 333 /* 334 * align new values of curr_page, curr_space 335 */ 336 while (curr_space & 0xf) { 337 ++curr_page; 338 --curr_space; 339 } 340 } 341 342 static void 343 bsetprops(char *name, char *value) 344 { 345 bsetprop(name, strlen(name), value, strlen(value) + 1); 346 } 347 348 static void 349 bsetprop64(char *name, uint64_t value) 350 { 351 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 352 } 353 354 static void 355 bsetpropsi(char *name, int value) 356 { 357 char prop_val[32]; 358 359 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 360 bsetprops(name, prop_val); 361 } 362 363 /* 364 * to find the size of the buffer to allocate 365 */ 366 /*ARGSUSED*/ 367 static int 368 do_bsys_getproplen(bootops_t *bop, char *name) 369 { 370 bootprop_t *b; 371 372 for (b = bprops; b; b = b->bp_next) { 373 if (strcmp(name, b->bp_name) != 0) 374 continue; 375 return (b->bp_vlen); 376 } 377 return (-1); 378 } 379 380 /* 381 * get the value associated with this name 382 */ 383 /*ARGSUSED*/ 384 static int 385 do_bsys_getprop(bootops_t *bop, char *name, void *value) 386 { 387 bootprop_t *b; 388 389 for (b = bprops; b; b = b->bp_next) { 390 if (strcmp(name, b->bp_name) != 0) 391 continue; 392 bcopy(b->bp_value, value, b->bp_vlen); 393 return (0); 394 } 395 return (-1); 396 } 397 398 /* 399 * get the name of the next property in succession from the standalone 400 */ 401 /*ARGSUSED*/ 402 static char * 403 do_bsys_nextprop(bootops_t *bop, char *name) 404 { 405 bootprop_t *b; 406 407 /* 408 * A null name is a special signal for the 1st boot property 409 */ 410 if (name == NULL || strlen(name) == 0) { 411 if (bprops == NULL) 412 return (NULL); 413 return (bprops->bp_name); 414 } 415 416 for (b = bprops; b; b = b->bp_next) { 417 if (name != b->bp_name) 418 continue; 419 b = b->bp_next; 420 if (b == NULL) 421 return (NULL); 422 return (b->bp_name); 423 } 424 return (NULL); 425 } 426 427 /* 428 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 429 */ 430 static int 431 parse_value(char *p, uint64_t *retval) 432 { 433 int adjust = 0; 434 uint64_t tmp = 0; 435 int digit; 436 int radix = 10; 437 438 *retval = 0; 439 if (*p == '-' || *p == '~') 440 adjust = *p++; 441 442 if (*p == '0') { 443 ++p; 444 if (*p == 0) 445 return (0); 446 if (*p == 'x' || *p == 'X') { 447 radix = 16; 448 ++p; 449 } else { 450 radix = 8; 451 ++p; 452 } 453 } 454 while (*p) { 455 if ('0' <= *p && *p <= '9') 456 digit = *p - '0'; 457 else if ('a' <= *p && *p <= 'f') 458 digit = 10 + *p - 'a'; 459 else if ('A' <= *p && *p <= 'F') 460 digit = 10 + *p - 'A'; 461 else 462 return (-1); 463 if (digit >= radix) 464 return (-1); 465 tmp = tmp * radix + digit; 466 ++p; 467 } 468 if (adjust == '-') 469 tmp = -tmp; 470 else if (adjust == '~') 471 tmp = ~tmp; 472 *retval = tmp; 473 return (0); 474 } 475 476 /* 477 * 2nd part of building the table of boot properties. This includes: 478 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 479 * 480 * lines look like one of: 481 * ^$ 482 * ^# comment till end of line 483 * setprop name 'value' 484 * setprop name value 485 * setprop name "value" 486 * 487 * we do single character I/O since this is really just looking at memory 488 */ 489 void 490 boot_prop_finish(void) 491 { 492 int fd; 493 char *line; 494 int c; 495 int bytes_read; 496 char *name; 497 int n_len; 498 char *value; 499 int v_len; 500 char *inputdev; /* these override the comand line if serial ports */ 501 char *outputdev; 502 char *consoledev; 503 uint64_t lvalue; 504 505 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 506 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 507 DBG(fd); 508 509 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 510 while (fd >= 0) { 511 512 /* 513 * get a line 514 */ 515 for (c = 0; ; ++c) { 516 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 517 if (bytes_read == 0) { 518 if (c == 0) 519 goto done; 520 break; 521 } 522 if (line[c] == '\n') 523 break; 524 } 525 line[c] = 0; 526 527 /* 528 * ignore comment lines 529 */ 530 c = 0; 531 while (ISSPACE(line[c])) 532 ++c; 533 if (line[c] == '#' || line[c] == 0) 534 continue; 535 536 /* 537 * must have "setprop " or "setprop\t" 538 */ 539 if (strncmp(line + c, "setprop ", 8) != 0 && 540 strncmp(line + c, "setprop\t", 8) != 0) 541 continue; 542 c += 8; 543 while (ISSPACE(line[c])) 544 ++c; 545 if (line[c] == 0) 546 continue; 547 548 /* 549 * gather up the property name 550 */ 551 name = line + c; 552 n_len = 0; 553 while (line[c] && !ISSPACE(line[c])) 554 ++n_len, ++c; 555 556 /* 557 * gather up the value, if any 558 */ 559 value = ""; 560 v_len = 0; 561 while (ISSPACE(line[c])) 562 ++c; 563 if (line[c] != 0) { 564 value = line + c; 565 while (line[c] && !ISSPACE(line[c])) 566 ++v_len, ++c; 567 } 568 569 if (v_len >= 2 && value[0] == value[v_len - 1] && 570 (value[0] == '\'' || value[0] == '"')) { 571 ++value; 572 v_len -= 2; 573 } 574 name[n_len] = 0; 575 if (v_len > 0) 576 value[v_len] = 0; 577 else 578 continue; 579 580 /* 581 * ignore "boot-file" property, it's now meaningless 582 */ 583 if (strcmp(name, "boot-file") == 0) 584 continue; 585 if (strcmp(name, "boot-args") == 0 && 586 strlen(boot_args) > 0) 587 continue; 588 589 /* 590 * If console was explicitly set on the command line it will 591 * override a setting in bootenv.rc 592 */ 593 if (strcmp(name, "console") == 0 && 594 do_bsys_getproplen(NULL, "console") > 0) 595 continue; 596 597 bsetprop(name, n_len, value, v_len + 1); 598 } 599 done: 600 if (fd >= 0) 601 BRD_CLOSE(bfs_ops, fd); 602 603 /* 604 * Check if we have to limit the boot time allocator 605 */ 606 if (do_bsys_getproplen(NULL, "physmem") != -1 && 607 do_bsys_getprop(NULL, "physmem", line) >= 0 && 608 parse_value(line, &lvalue) != -1) { 609 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 610 physmem = (pgcnt_t)lvalue; 611 DBG(physmem); 612 } 613 } 614 early_allocation = 0; 615 616 /* 617 * check to see if we have to override the default value of the console 618 */ 619 inputdev = line; 620 v_len = do_bsys_getproplen(NULL, "input-device"); 621 if (v_len > 0) 622 (void) do_bsys_getprop(NULL, "input-device", inputdev); 623 else 624 v_len = 0; 625 inputdev[v_len] = 0; 626 627 outputdev = inputdev + v_len + 1; 628 v_len = do_bsys_getproplen(NULL, "output-device"); 629 if (v_len > 0) 630 (void) do_bsys_getprop(NULL, "output-device", outputdev); 631 else 632 v_len = 0; 633 outputdev[v_len] = 0; 634 635 consoledev = outputdev + v_len + 1; 636 v_len = do_bsys_getproplen(NULL, "console"); 637 if (v_len > 0) 638 (void) do_bsys_getprop(NULL, "console", consoledev); 639 else 640 v_len = 0; 641 consoledev[v_len] = 0; 642 bcons_init2(inputdev, outputdev, consoledev); 643 644 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 645 value = line; 646 bop_printf(NULL, "\nBoot properties:\n"); 647 name = ""; 648 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 649 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 650 (void) do_bsys_getprop(NULL, name, value); 651 v_len = do_bsys_getproplen(NULL, name); 652 bop_printf(NULL, "len=%d ", v_len); 653 value[v_len] = 0; 654 bop_printf(NULL, "%s\n", value); 655 } 656 } 657 } 658 659 /* 660 * print formatted output 661 */ 662 /*PRINTFLIKE2*/ 663 /*ARGSUSED*/ 664 void 665 bop_printf(bootops_t *bop, char *fmt, ...) 666 { 667 va_list ap; 668 669 if (have_console == 0) 670 return; 671 672 va_start(ap, fmt); 673 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 674 va_end(ap); 675 PUT_STRING(buffer); 676 } 677 678 /* 679 * Another panic() variant; this one can be used even earlier during boot than 680 * prom_panic(). 681 */ 682 /*PRINTFLIKE1*/ 683 void 684 bop_panic(char *fmt, ...) 685 { 686 va_list ap; 687 688 va_start(ap, fmt); 689 bop_printf(NULL, fmt, ap); 690 va_end(ap); 691 692 bop_printf(NULL, "\nPress any key to reboot.\n"); 693 (void) bcons_getchar(); 694 bop_printf(NULL, "Resetting...\n"); 695 reset(); 696 } 697 698 /* 699 * Do a real mode interrupt BIOS call 700 */ 701 typedef struct bios_regs { 702 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 703 } bios_regs_t; 704 typedef int (*bios_func_t)(int, bios_regs_t *); 705 706 /*ARGSUSED*/ 707 static void 708 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 709 { 710 static int firsttime = 1; 711 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 712 bios_regs_t br; 713 714 /* 715 * The first time we do this, we have to copy the pre-packaged 716 * low memory bios call code image into place. 717 */ 718 if (firsttime) { 719 extern char bios_image[]; 720 extern uint32_t bios_size; 721 722 bcopy(bios_image, (void *)bios_func, bios_size); 723 firsttime = 0; 724 } 725 726 br.ax = rp->eax.word.ax; 727 br.bx = rp->ebx.word.bx; 728 br.cx = rp->ecx.word.cx; 729 br.dx = rp->edx.word.dx; 730 br.bp = rp->ebp.word.bp; 731 br.si = rp->esi.word.si; 732 br.di = rp->edi.word.di; 733 br.ds = rp->ds; 734 br.es = rp->es; 735 736 DBG_MSG("Doing BIOS call..."); 737 rp->eflags = bios_func(intnum, &br); 738 DBG_MSG("done\n"); 739 740 rp->eax.word.ax = br.ax; 741 rp->ebx.word.bx = br.bx; 742 rp->ecx.word.cx = br.cx; 743 rp->edx.word.dx = br.dx; 744 rp->ebp.word.bp = br.bp; 745 rp->esi.word.si = br.si; 746 rp->edi.word.di = br.di; 747 rp->ds = br.ds; 748 rp->es = br.es; 749 } 750 751 static struct boot_syscalls bop_sysp = { 752 bcons_getchar, 753 bcons_putchar, 754 bcons_ischar, 755 }; 756 757 static char *whoami; 758 759 #define BUFLEN 64 760 761 static void 762 setup_rarp_props(struct sol_netinfo *sip) 763 { 764 char buf[BUFLEN]; /* to hold ip/mac addrs */ 765 uint8_t *val; 766 767 val = (uint8_t *)&sip->sn_ciaddr; 768 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 769 val[0], val[1], val[2], val[3]); 770 bsetprops(BP_HOST_IP, buf); 771 772 val = (uint8_t *)&sip->sn_siaddr; 773 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 774 val[0], val[1], val[2], val[3]); 775 bsetprops(BP_SERVER_IP, buf); 776 777 if (sip->sn_giaddr != 0) { 778 val = (uint8_t *)&sip->sn_giaddr; 779 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 780 val[0], val[1], val[2], val[3]); 781 bsetprops(BP_ROUTER_IP, buf); 782 } 783 784 if (sip->sn_netmask != 0) { 785 val = (uint8_t *)&sip->sn_netmask; 786 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 787 val[0], val[1], val[2], val[3]); 788 bsetprops(BP_SUBNET_MASK, buf); 789 } 790 791 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 792 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 793 sip->sn_mactype, sip->sn_maclen); 794 } else { 795 val = sip->sn_macaddr; 796 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 797 val[0], val[1], val[2], val[3], val[4], val[5]); 798 bsetprops(BP_BOOT_MAC, buf); 799 } 800 } 801 802 /* 803 * 1st pass at building the table of boot properties. This includes: 804 * - values set on the command line: -B a=x,b=y,c=z .... 805 * - known values we just compute (ie. from xbootp) 806 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 807 * 808 * the grub command line looked like: 809 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 810 * 811 * whoami is the same as boot-file 812 */ 813 static void 814 build_boot_properties(void) 815 { 816 char *name; 817 int name_len; 818 char *value; 819 int value_len; 820 static int stdout_val = 0; 821 struct boot_modules *bm; 822 char *propbuf; 823 int quoted = 0; 824 int boot_arg_len; 825 uchar_t boot_device; 826 char str[3]; 827 multiboot_info_t *mbi; 828 int netboot; 829 struct sol_netinfo *sip; 830 831 /* 832 * These have to be done first, so that kobj_mount_root() works 833 */ 834 DBG_MSG("Building boot properties\n"); 835 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 836 DBG((uintptr_t)propbuf); 837 if (xbootp->bi_module_cnt > 0) { 838 bm = xbootp->bi_modules; 839 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 840 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 841 bm->bm_size); 842 } 843 844 DBG_MSG("Parsing command line for boot properties\n"); 845 value = xbootp->bi_cmdline; 846 847 /* 848 * allocate memory to collect boot_args into 849 */ 850 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 851 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 852 boot_args[0] = 0; 853 boot_arg_len = 0; 854 855 while (ISSPACE(*value)) 856 ++value; 857 /* 858 * value now points at the boot-file 859 */ 860 value_len = 0; 861 while (value[value_len] && !ISSPACE(value[value_len])) 862 ++value_len; 863 if (value_len > 0) { 864 whoami = propbuf; 865 bcopy(value, whoami, value_len); 866 whoami[value_len] = 0; 867 bsetprops("boot-file", whoami); 868 /* 869 * strip leading path stuff from whoami, so running from 870 * PXE/miniroot makes sense. 871 */ 872 if (strstr(whoami, "/platform/") != NULL) 873 whoami = strstr(whoami, "/platform/"); 874 bsetprops("whoami", whoami); 875 } 876 877 /* 878 * Values forcibly set boot properties on the command line via -B. 879 * Allow use of quotes in values. Other stuff goes on kernel 880 * command line. 881 */ 882 name = value + value_len; 883 while (*name != 0) { 884 /* 885 * anything not " -B" is copied to the command line 886 */ 887 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 888 boot_args[boot_arg_len++] = *name; 889 boot_args[boot_arg_len] = 0; 890 ++name; 891 continue; 892 } 893 894 /* 895 * skip the " -B" and following white space 896 */ 897 name += 3; 898 while (ISSPACE(*name)) 899 ++name; 900 while (*name && !ISSPACE(*name)) { 901 value = strstr(name, "="); 902 if (value == NULL) 903 break; 904 name_len = value - name; 905 ++value; 906 value_len = 0; 907 quoted = 0; 908 for (; ; ++value_len) { 909 if (!value[value_len]) 910 break; 911 912 /* 913 * is this value quoted? 914 */ 915 if (value_len == 0 && 916 (value[0] == '\'' || value[0] == '"')) { 917 quoted = value[0]; 918 ++value_len; 919 } 920 921 /* 922 * In the quote accept any character, 923 * but look for ending quote. 924 */ 925 if (quoted) { 926 if (value[value_len] == quoted) 927 quoted = 0; 928 continue; 929 } 930 931 /* 932 * a comma or white space ends the value 933 */ 934 if (value[value_len] == ',' || 935 ISSPACE(value[value_len])) 936 break; 937 } 938 939 if (value_len == 0) { 940 bsetprop(name, name_len, "true", 5); 941 } else { 942 char *v = value; 943 int l = value_len; 944 if (v[0] == v[l - 1] && 945 (v[0] == '\'' || v[0] == '"')) { 946 ++v; 947 l -= 2; 948 } 949 bcopy(v, propbuf, l); 950 propbuf[l] = '\0'; 951 bsetprop(name, name_len, propbuf, 952 l + 1); 953 } 954 name = value + value_len; 955 while (*name == ',') 956 ++name; 957 } 958 } 959 960 /* 961 * set boot-args property 962 */ 963 bsetprops("boot-args", boot_args); 964 965 /* 966 * set the BIOS boot device from GRUB 967 */ 968 netboot = 0; 969 mbi = xbootp->bi_mb_info; 970 if (mbi != NULL && mbi->flags & 0x2) { 971 boot_device = mbi->boot_device >> 24; 972 if (boot_device == 0x20) 973 netboot++; 974 str[0] = (boot_device >> 4) + '0'; 975 str[1] = (boot_device & 0xf) + '0'; 976 str[2] = 0; 977 bsetprops("bios-boot-device", str); 978 } else { 979 netboot = 1; 980 } 981 982 /* 983 * In the netboot case, drives_info is overloaded with the dhcp ack. 984 * This is not multiboot compliant and requires special pxegrub! 985 */ 986 if (netboot && mbi->drives_length != 0) { 987 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 988 if (sip->sn_infotype == SN_TYPE_BOOTP) 989 bsetprop("bootp-response", sizeof ("bootp-response"), 990 (void *)(uintptr_t)mbi->drives_addr, 991 mbi->drives_length); 992 else if (sip->sn_infotype == SN_TYPE_BOOTP) 993 setup_rarp_props(sip); 994 } 995 bsetprop("stdout", strlen("stdout"), 996 &stdout_val, sizeof (stdout_val)); 997 998 /* 999 * more conjured up values for made up things.... 1000 */ 1001 bsetprops("mfg-name", "i86pc"); 1002 bsetprops("impl-arch-name", "i86pc"); 1003 1004 /* 1005 * Build firmware-provided system properties 1006 */ 1007 build_firmware_properties(); 1008 1009 /* 1010 * Find out what these are: 1011 * - cpuid_feature_ecx_include 1012 * - cpuid_feature_ecx_exclude 1013 * - cpuid_feature_edx_include 1014 * - cpuid_feature_edx_exclude 1015 * 1016 * Find out what these are in multiboot: 1017 * - bootp-response 1018 * - netdev-path 1019 * - fstype 1020 */ 1021 } 1022 1023 /* 1024 * Install a temporary IDT that lets us catch errors in the boot time code. 1025 * We shouldn't get any faults at all while this is installed, so we'll 1026 * just generate a traceback and exit. 1027 */ 1028 #ifdef __amd64 1029 static const int bcode_sel = B64CODE_SEL; 1030 #else 1031 static const int bcode_sel = B32CODE_SEL; 1032 #endif 1033 1034 /* 1035 * simple description of a stack frame (args are 32 bit only currently) 1036 */ 1037 typedef struct bop_frame { 1038 struct bop_frame *old_frame; 1039 pc_t retaddr; 1040 long arg[1]; 1041 } bop_frame_t; 1042 1043 void 1044 bop_traceback(bop_frame_t *frame) 1045 { 1046 pc_t pc; 1047 int cnt; 1048 int a; 1049 char *ksym; 1050 ulong_t off; 1051 1052 bop_printf(NULL, "Stack traceback:\n"); 1053 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1054 pc = frame->retaddr; 1055 if (pc == 0) 1056 break; 1057 ksym = kobj_getsymname(pc, &off); 1058 if (ksym) 1059 bop_printf(NULL, " %s+%lx", ksym, off); 1060 else 1061 bop_printf(NULL, " 0x%lx", pc); 1062 1063 frame = frame->old_frame; 1064 if (frame == 0) { 1065 bop_printf(NULL, "\n"); 1066 break; 1067 } 1068 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1069 #if defined(__i386) 1070 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1071 break; 1072 if (a == 0) 1073 bop_printf(NULL, "("); 1074 else 1075 bop_printf(NULL, ","); 1076 bop_printf(NULL, "0x%lx", frame->arg[a]); 1077 #endif 1078 } 1079 bop_printf(NULL, ")\n"); 1080 } 1081 } 1082 1083 struct trapframe { 1084 ulong_t frame_ptr; /* %[er]bp pushed by our code */ 1085 ulong_t error_code; /* optional */ 1086 ulong_t inst_ptr; 1087 ulong_t code_seg; 1088 ulong_t flags_reg; 1089 #ifdef __amd64 1090 ulong_t stk_ptr; 1091 ulong_t stk_seg; 1092 #endif 1093 }; 1094 1095 void 1096 bop_trap(struct trapframe *tf) 1097 { 1098 bop_frame_t fakeframe; 1099 static int depth = 0; 1100 1101 /* 1102 * Check for an infinite loop of traps. Avoid bop_printf() here to 1103 * reduce code path and further possibility of failure. 1104 */ 1105 if (++depth > 2) { 1106 PUT_STRING("Nested trap, calling reset()\n"); 1107 reset(); 1108 } 1109 1110 /* 1111 * adjust the tf for optional error_code by detecting the code selector 1112 */ 1113 if (tf->code_seg != bcode_sel) 1114 tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t)); 1115 1116 bop_printf(NULL, "Unexpected trap\n"); 1117 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1118 bop_printf(NULL, "error code, optional 0x%lx\n", 1119 tf->error_code & 0xffffffff); 1120 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1121 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1122 #ifdef __amd64 1123 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1124 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1125 #endif 1126 fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr; 1127 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1128 bop_printf(NULL, "Attempting stack backtrace:\n"); 1129 bop_traceback(&fakeframe); 1130 bop_panic("unexpected trap in early boot"); 1131 } 1132 1133 extern void bop_trap_handler(void); 1134 1135 static gate_desc_t bop_idt[NIDT]; 1136 1137 static desctbr_t bop_idt_info; 1138 1139 static void 1140 bop_idt_init(void) 1141 { 1142 int t; 1143 1144 bzero(&bop_idt, sizeof (bop_idt)); 1145 for (t = 0; t < NIDT; ++t) { 1146 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1147 SDT_SYSIGT, SEL_KPL); 1148 } 1149 bop_idt_info.dtr_limit = sizeof (bop_idt) - 1; 1150 bop_idt_info.dtr_base = (uintptr_t)&bop_idt; 1151 wr_idtr(&bop_idt_info); 1152 } 1153 1154 /* 1155 * This is where we enter the kernel. It dummies up the boot_ops and 1156 * boot_syscalls vectors and jumps off to _kobj_boot() 1157 */ 1158 void 1159 _start(struct xboot_info *xbp) 1160 { 1161 bootops_t *bops = &bootop; 1162 extern void _kobj_boot(); 1163 1164 /* 1165 * 1st off - initialize the console for any error messages 1166 */ 1167 xbootp = xbp; 1168 bcons_init((void *)xbootp->bi_cmdline); 1169 have_console = 1; 1170 1171 /* 1172 * enable debugging 1173 */ 1174 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1175 kbm_debug = 1; 1176 1177 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1178 DBG_MSG((char *)xbootp->bi_cmdline); 1179 DBG_MSG("\n\n\n"); 1180 1181 /* 1182 * Install an IDT to catch early pagefaults (shouldn't have any). 1183 * Also needed for kmdb. 1184 */ 1185 bop_idt_init(); 1186 1187 /* 1188 * physavail is no longer used by startup 1189 */ 1190 bm.physinstalled = xbp->bi_phys_install; 1191 bm.pcimem = xbp->bi_pcimem; 1192 bm.physavail = NULL; 1193 1194 /* 1195 * initialize the boot time allocator 1196 */ 1197 next_phys = xbootp->bi_next_paddr; 1198 DBG(next_phys); 1199 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1200 DBG(next_virt); 1201 DBG_MSG("Initializing boot time memory management..."); 1202 kbm_init(xbootp); 1203 DBG_MSG("done\n"); 1204 1205 /* 1206 * Fill in the bootops vector 1207 */ 1208 bops->bsys_version = BO_VERSION; 1209 bops->boot_mem = &bm; 1210 bops->bsys_alloc = do_bsys_alloc; 1211 bops->bsys_free = do_bsys_free; 1212 bops->bsys_getproplen = do_bsys_getproplen; 1213 bops->bsys_getprop = do_bsys_getprop; 1214 bops->bsys_nextprop = do_bsys_nextprop; 1215 bops->bsys_printf = bop_printf; 1216 bops->bsys_doint = do_bsys_doint; 1217 1218 /* 1219 * BOP_EALLOC() is no longer needed 1220 */ 1221 bops->bsys_ealloc = do_bsys_ealloc; 1222 1223 /* 1224 * 1225 */ 1226 DBG_MSG("Initializing boot properties:\n"); 1227 build_boot_properties(); 1228 1229 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1230 char *name; 1231 char *value; 1232 int len; 1233 1234 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1235 bop_printf(NULL, "\nBoot properties:\n"); 1236 name = ""; 1237 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1238 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1239 (void) do_bsys_getprop(NULL, name, value); 1240 len = do_bsys_getproplen(NULL, name); 1241 bop_printf(NULL, "len=%d ", len); 1242 value[len] = 0; 1243 bop_printf(NULL, "%s\n", value); 1244 } 1245 } 1246 1247 /* 1248 * jump into krtld... 1249 */ 1250 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1251 } 1252 1253 1254 /*ARGSUSED*/ 1255 static caddr_t 1256 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1257 { 1258 panic("Attempt to bsys_alloc() too late\n"); 1259 return (NULL); 1260 } 1261 1262 /*ARGSUSED*/ 1263 static void 1264 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1265 { 1266 panic("Attempt to bsys_free() too late\n"); 1267 } 1268 1269 void 1270 bop_no_more_mem(void) 1271 { 1272 DBG(total_bop_alloc_scratch); 1273 DBG(total_bop_alloc_kernel); 1274 bootops->bsys_alloc = no_more_alloc; 1275 bootops->bsys_free = no_more_free; 1276 } 1277 1278 1279 /* 1280 * Set ACPI firmware properties 1281 */ 1282 1283 static caddr_t 1284 vmap_phys(size_t length, paddr_t pa) 1285 { 1286 paddr_t start, end; 1287 caddr_t va; 1288 size_t len, page; 1289 1290 start = P2ALIGN(pa, MMU_PAGESIZE); 1291 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1292 len = end - start; 1293 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1294 for (page = 0; page < len; page += MMU_PAGESIZE) 1295 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1296 return (va + (pa & MMU_PAGEOFFSET)); 1297 } 1298 1299 static uint8_t 1300 checksum_table(uint8_t *tp, size_t len) 1301 { 1302 uint8_t sum = 0; 1303 1304 while (len-- > 0) 1305 sum += *tp++; 1306 1307 return (sum); 1308 } 1309 1310 static int 1311 valid_rsdp(struct rsdp *rp) 1312 { 1313 1314 /* validate the V1.x checksum */ 1315 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1316 return (0); 1317 1318 /* If pre-ACPI 2.0, this is a valid RSDP */ 1319 if (rp->v1.revision < 2) 1320 return (1); 1321 1322 /* validate the V2.x checksum */ 1323 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1324 return (0); 1325 1326 return (1); 1327 } 1328 1329 /* 1330 * Scan memory range for an RSDP; 1331 * see ACPI 3.0 Spec, 5.2.5.1 1332 */ 1333 static struct rsdp * 1334 scan_rsdp(paddr_t start, paddr_t end) 1335 { 1336 size_t len = end - start + 1; 1337 caddr_t ptr; 1338 1339 ptr = vmap_phys(len, start); 1340 while (len > 0) { 1341 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1342 if (valid_rsdp((struct rsdp *)ptr)) 1343 return ((struct rsdp *)ptr); 1344 ptr += 16; 1345 len -= 16; 1346 } 1347 1348 return (NULL); 1349 } 1350 1351 /* 1352 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1353 */ 1354 static struct rsdp * 1355 find_rsdp() { 1356 struct rsdp *rsdp; 1357 uint16_t *ebda_seg; 1358 paddr_t ebda_addr; 1359 1360 /* 1361 * Get the EBDA segment and scan the first 1K 1362 */ 1363 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1364 ebda_addr = *ebda_seg << 4; 1365 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1366 if (rsdp == NULL) 1367 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1368 rsdp = scan_rsdp(0xe0000, 0xfffff); 1369 return (rsdp); 1370 } 1371 1372 static struct table_header * 1373 map_fw_table(paddr_t table_addr) 1374 { 1375 struct table_header *tp; 1376 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1377 1378 /* 1379 * Map at least a page; if the table is larger than this, remap it 1380 */ 1381 tp = (struct table_header *)vmap_phys(len, table_addr); 1382 if (tp->len > len) 1383 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1384 return (tp); 1385 } 1386 1387 static struct table_header * 1388 find_fw_table(char *signature) 1389 { 1390 static int revision = 0; 1391 static struct xsdt *xsdt; 1392 static int len; 1393 paddr_t xsdt_addr; 1394 struct rsdp *rsdp; 1395 struct table_header *tp; 1396 paddr_t table_addr; 1397 int n; 1398 1399 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1400 return (NULL); 1401 1402 /* 1403 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1404 * understand this code. If we haven't already found the RSDT/XSDT, 1405 * revision will be 0. Find the RSDP and check the revision 1406 * to find out whether to use the RSDT or XSDT. If revision is 1407 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1408 * use the XSDT. If the XSDT address is 0, though, fall back to 1409 * revision 1 and use the RSDT. 1410 */ 1411 if (revision == 0) { 1412 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 1413 revision = rsdp->v1.revision; 1414 switch (revision) { 1415 case 2: 1416 /* 1417 * Use the XSDT unless BIOS is buggy and 1418 * claims to be rev 2 but has a null XSDT 1419 * address 1420 */ 1421 xsdt_addr = rsdp->xsdt; 1422 if (xsdt_addr != 0) 1423 break; 1424 /* FALLTHROUGH */ 1425 case 0: 1426 /* treat RSDP rev 0 as revision 1 internally */ 1427 revision = 1; 1428 /* FALLTHROUGH */ 1429 case 1: 1430 /* use the RSDT for rev 0/1 */ 1431 xsdt_addr = rsdp->v1.rsdt; 1432 break; 1433 default: 1434 /* unknown revision */ 1435 revision = 0; 1436 break; 1437 } 1438 } 1439 if (revision == 0) 1440 return (NULL); 1441 1442 /* cache the XSDT info */ 1443 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 1444 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 1445 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 1446 } 1447 1448 /* 1449 * Scan the table headers looking for a signature match 1450 */ 1451 for (n = 0; n < len; n++) { 1452 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 1453 if (table_addr == 0) 1454 continue; 1455 tp = map_fw_table(table_addr); 1456 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 1457 return (tp); 1458 } 1459 } 1460 return (NULL); 1461 } 1462 1463 static void 1464 process_madt(struct madt *tp) 1465 { 1466 struct madt_processor *cpu, *end; 1467 uint32_t cpu_count = 0; 1468 1469 /* 1470 * User-set boot-ncpus overrides firmware count 1471 */ 1472 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 1473 return; 1474 1475 if (tp != NULL) { 1476 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 1477 cpu = tp->list; 1478 while (cpu < end) { 1479 if (cpu->type == MADT_PROCESSOR) 1480 if (cpu->flags & 1) 1481 cpu_count++; 1482 1483 cpu = (struct madt_processor *) 1484 (cpu->len + (uintptr_t)cpu); 1485 } 1486 bsetpropsi("boot-ncpus", cpu_count); 1487 } 1488 1489 } 1490 1491 static void 1492 process_srat(struct srat *tp) 1493 { 1494 struct srat_item *item, *end; 1495 int i; 1496 int proc_num, mem_num; 1497 #pragma pack(1) 1498 struct { 1499 uint32_t domain; 1500 uint32_t apic_id; 1501 uint32_t sapic_id; 1502 } processor; 1503 struct { 1504 uint32_t domain; 1505 uint64_t addr; 1506 uint64_t length; 1507 uint32_t flags; 1508 } memory; 1509 #pragma pack() 1510 char prop_name[30]; 1511 1512 if (tp == NULL) 1513 return; 1514 1515 proc_num = mem_num = 0; 1516 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 1517 item = tp->list; 1518 while (item < end) { 1519 switch (item->type) { 1520 case SRAT_PROCESSOR: 1521 if (!(item->i.p.flags & SRAT_ENABLED)) 1522 break; 1523 processor.domain = item->i.p.domain1; 1524 for (i = 0; i < 3; i++) 1525 processor.domain += 1526 item->i.p.domain2[i] << ((i + 1) * 8); 1527 processor.apic_id = item->i.p.apic_id; 1528 processor.sapic_id = item->i.p.local_sapic_eid; 1529 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 1530 proc_num); 1531 bsetprop(prop_name, strlen(prop_name), &processor, 1532 sizeof (processor)); 1533 proc_num++; 1534 break; 1535 case SRAT_MEMORY: 1536 if (!(item->i.m.flags & SRAT_ENABLED)) 1537 break; 1538 memory.domain = item->i.m.domain; 1539 memory.addr = item->i.m.base_addr; 1540 memory.length = item->i.m.len; 1541 memory.flags = item->i.m.flags; 1542 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 1543 mem_num); 1544 bsetprop(prop_name, strlen(prop_name), &memory, 1545 sizeof (memory)); 1546 mem_num++; 1547 break; 1548 } 1549 1550 item = (struct srat_item *) 1551 (item->len + (caddr_t)item); 1552 } 1553 } 1554 1555 static void 1556 process_slit(struct slit *tp) 1557 { 1558 1559 /* 1560 * Check the number of localities; if it's too huge, we just 1561 * return and locality enumeration code will handle this later, 1562 * if possible. 1563 * 1564 * Note that the size of the table is the square of the 1565 * number of localities; if the number of localities exceeds 1566 * UINT16_MAX, the table size may overflow an int when being 1567 * passed to bsetprop() below. 1568 */ 1569 if (tp->number >= SLIT_LOCALITIES_MAX) 1570 return; 1571 1572 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 1573 sizeof (tp->number)); 1574 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 1575 tp->number * tp->number); 1576 } 1577 1578 static void 1579 build_firmware_properties(void) 1580 { 1581 struct table_header *tp; 1582 1583 if (tp = find_fw_table("APIC")) 1584 process_madt((struct madt *)tp); 1585 1586 if (tp = find_fw_table("SRAT")) 1587 process_srat((struct srat *)tp); 1588 1589 if (tp = find_fw_table("SLIT")) 1590 process_slit((struct slit *)tp); 1591 } 1592 1593 /* 1594 * fake up a boot property for USB serial console early boot output 1595 */ 1596 void * 1597 usbser_init(size_t size) 1598 { 1599 static char *p = NULL; 1600 1601 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 1602 *p = 0; 1603 bsetprop("usb-serial-buf", strlen("usb-serial-buf") + 1, 1604 &p, sizeof (p)); 1605 return (p); 1606 } 1607