xref: /titanic_44/usr/src/uts/i86pc/os/ddi_impl.c (revision c28749e97052f09388969427adf7df641cdcdc22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PC specific DDI implementation
31  */
32 #include <sys/types.h>
33 #include <sys/autoconf.h>
34 #include <sys/avintr.h>
35 #include <sys/bootconf.h>
36 #include <sys/conf.h>
37 #include <sys/cpuvar.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/ddi_subrdefs.h>
40 #include <sys/ethernet.h>
41 #include <sys/fp.h>
42 #include <sys/instance.h>
43 #include <sys/kmem.h>
44 #include <sys/machsystm.h>
45 #include <sys/modctl.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systeminfo.h>
53 #include <sys/utsname.h>
54 #include <sys/atomic.h>
55 #include <sys/spl.h>
56 #include <sys/archsystm.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/ontrap.h>
59 #include <sys/ramdisk.h>
60 #include <sys/sunndi.h>
61 #include <sys/vmem.h>
62 #include <sys/pci_impl.h>
63 
64 /*
65  * DDI Boot Configuration
66  */
67 
68 /*
69  * No platform drivers on this platform
70  */
71 char *platform_module_list[] = {
72 	(char *)0
73 };
74 
75 /* pci bus resource maps */
76 struct pci_bus_resource *pci_bus_res;
77 
78 extern int root_is_svm;
79 uint64_t ramdisk_start, ramdisk_end;
80 
81 /*
82  * Forward declarations
83  */
84 static int getlongprop_buf();
85 static void get_boot_properties(void);
86 static void impl_bus_initialprobe(void);
87 static void impl_bus_reprobe(void);
88 
89 static int poke_mem(peekpoke_ctlops_t *in_args);
90 static int peek_mem(peekpoke_ctlops_t *in_args);
91 
92 #define	CTGENTRIES	15
93 
94 static struct ctgas {
95 	struct ctgas	*ctg_next;
96 	int		ctg_index;
97 	void		*ctg_addr[CTGENTRIES];
98 	size_t		ctg_size[CTGENTRIES];
99 } ctglist;
100 
101 static kmutex_t		ctgmutex;
102 #define	CTGLOCK()	mutex_enter(&ctgmutex)
103 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
104 
105 /*
106  * Minimum pfn value of page_t's put on the free list.  This is to simplify
107  * support of ddi dma memory requests which specify small, non-zero addr_lo
108  * values.
109  *
110  * The default value of 2, which corresponds to the only known non-zero addr_lo
111  * value used, means a single page will be sacrificed (pfn typically starts
112  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
113  * otherwise mp startup panics.
114  */
115 pfn_t	ddiphysmin = 2;
116 
117 static void
118 check_driver_disable(void)
119 {
120 	int proplen = 128;
121 	char *prop_name;
122 	char *drv_name, *propval;
123 	major_t major;
124 
125 	prop_name = kmem_alloc(proplen, KM_SLEEP);
126 	for (major = 0; major < devcnt; major++) {
127 		drv_name = ddi_major_to_name(major);
128 		if (drv_name == NULL)
129 			continue;
130 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
131 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
132 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
133 			if (strcmp(propval, "true") == 0) {
134 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
135 				cmn_err(CE_NOTE, "driver %s disabled",
136 				    drv_name);
137 			}
138 			ddi_prop_free(propval);
139 		}
140 	}
141 	kmem_free(prop_name, proplen);
142 }
143 
144 
145 /*
146  * Configure the hardware on the system.
147  * Called before the rootfs is mounted
148  */
149 void
150 configure(void)
151 {
152 	extern void i_ddi_init_root();
153 
154 #if defined(__i386)
155 	extern int fpu_pentium_fdivbug;
156 #endif	/* __i386 */
157 	extern int fpu_ignored;
158 
159 	/*
160 	 * Determine if an FPU is attached
161 	 */
162 
163 	fpu_probe();
164 
165 #if defined(__i386)
166 	if (fpu_pentium_fdivbug) {
167 		printf("\
168 FP hardware exhibits Pentium floating point divide problem\n");
169 	}
170 #endif	/* __i386 */
171 
172 	if (fpu_ignored) {
173 		printf("FP hardware will not be used\n");
174 	} else if (!fpu_exists) {
175 		printf("No FPU in configuration\n");
176 	}
177 
178 	/*
179 	 * Initialize devices on the machine.
180 	 * Uses configuration tree built by the PROMs to determine what
181 	 * is present, and builds a tree of prototype dev_info nodes
182 	 * corresponding to the hardware which identified itself.
183 	 */
184 #if !defined(SAS) && !defined(MPSAS)
185 	/*
186 	 * Check for disabled drivers and initialize root node.
187 	 */
188 	check_driver_disable();
189 	i_ddi_init_root();
190 
191 	/*
192 	 * attach the isa nexus to get ACPI resource usage
193 	 * isa is "kind of" a pseudo node
194 	 */
195 	(void) i_ddi_attach_pseudo_node("isa");
196 
197 	/* reprogram devices not set up by firmware (BIOS) */
198 	impl_bus_reprobe();
199 #endif	/* !SAS && !MPSAS */
200 }
201 
202 /*
203  * The "status" property indicates the operational status of a device.
204  * If this property is present, the value is a string indicating the
205  * status of the device as follows:
206  *
207  *	"okay"		operational.
208  *	"disabled"	not operational, but might become operational.
209  *	"fail"		not operational because a fault has been detected,
210  *			and it is unlikely that the device will become
211  *			operational without repair. no additional details
212  *			are available.
213  *	"fail-xxx"	not operational because a fault has been detected,
214  *			and it is unlikely that the device will become
215  *			operational without repair. "xxx" is additional
216  *			human-readable information about the particular
217  *			fault condition that was detected.
218  *
219  * The absence of this property means that the operational status is
220  * unknown or okay.
221  *
222  * This routine checks the status property of the specified device node
223  * and returns 0 if the operational status indicates failure, and 1 otherwise.
224  *
225  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
226  * And, in that case, the property may not even be a string. So we carefully
227  * check for the value "fail", in the beginning of the string, noting
228  * the property length.
229  */
230 int
231 status_okay(int id, char *buf, int buflen)
232 {
233 	char status_buf[OBP_MAXPROPNAME];
234 	char *bufp = buf;
235 	int len = buflen;
236 	int proplen;
237 	static const char *status = "status";
238 	static const char *fail = "fail";
239 	int fail_len = (int)strlen(fail);
240 
241 	/*
242 	 * Get the proplen ... if it's smaller than "fail",
243 	 * or doesn't exist ... then we don't care, since
244 	 * the value can't begin with the char string "fail".
245 	 *
246 	 * NB: proplen, if it's a string, includes the NULL in the
247 	 * the size of the property, and fail_len does not.
248 	 */
249 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
250 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
251 		return (1);
252 
253 	/*
254 	 * if a buffer was provided, use it
255 	 */
256 	if ((buf == (char *)NULL) || (buflen <= 0)) {
257 		bufp = status_buf;
258 		len = sizeof (status_buf);
259 	}
260 	*bufp = (char)0;
261 
262 	/*
263 	 * Get the property into the buffer, to the extent of the buffer,
264 	 * and in case the buffer is smaller than the property size,
265 	 * NULL terminate the buffer. (This handles the case where
266 	 * a buffer was passed in and the caller wants to print the
267 	 * value, but the buffer was too small).
268 	 */
269 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
270 	    (caddr_t)bufp, len);
271 	*(bufp + len - 1) = (char)0;
272 
273 	/*
274 	 * If the value begins with the char string "fail",
275 	 * then it means the node is failed. We don't care
276 	 * about any other values. We assume the node is ok
277 	 * although it might be 'disabled'.
278 	 */
279 	if (strncmp(bufp, fail, fail_len) == 0)
280 		return (0);
281 
282 	return (1);
283 }
284 
285 /*
286  * Check the status of the device node passed as an argument.
287  *
288  *	if ((status is OKAY) || (status is DISABLED))
289  *		return DDI_SUCCESS
290  *	else
291  *		print a warning and return DDI_FAILURE
292  */
293 /*ARGSUSED1*/
294 int
295 check_status(int id, char *name, dev_info_t *parent)
296 {
297 	char status_buf[64];
298 	char devtype_buf[OBP_MAXPROPNAME];
299 	int retval = DDI_FAILURE;
300 
301 	/*
302 	 * is the status okay?
303 	 */
304 	if (status_okay(id, status_buf, sizeof (status_buf)))
305 		return (DDI_SUCCESS);
306 
307 	/*
308 	 * a status property indicating bad memory will be associated
309 	 * with a node which has a "device_type" property with a value of
310 	 * "memory-controller". in this situation, return DDI_SUCCESS
311 	 */
312 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
313 	    sizeof (devtype_buf)) > 0) {
314 		if (strcmp(devtype_buf, "memory-controller") == 0)
315 			retval = DDI_SUCCESS;
316 	}
317 
318 	/*
319 	 * print the status property information
320 	 */
321 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
322 	return (retval);
323 }
324 
325 /*ARGSUSED*/
326 uint_t
327 softlevel1(caddr_t arg1, caddr_t arg2)
328 {
329 	softint();
330 	return (1);
331 }
332 
333 /*
334  * Allow for implementation specific correction of PROM property values.
335  */
336 
337 /*ARGSUSED*/
338 void
339 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
340     caddr_t buffer)
341 {
342 	/*
343 	 * There are no adjustments needed in this implementation.
344 	 */
345 }
346 
347 static int
348 getlongprop_buf(int id, char *name, char *buf, int maxlen)
349 {
350 	int size;
351 
352 	size = prom_getproplen((pnode_t)id, name);
353 	if (size <= 0 || (size > maxlen - 1))
354 		return (-1);
355 
356 	if (-1 == prom_getprop((pnode_t)id, name, buf))
357 		return (-1);
358 
359 	if (strcmp("name", name) == 0) {
360 		if (buf[size - 1] != '\0') {
361 			buf[size] = '\0';
362 			size += 1;
363 		}
364 	}
365 
366 	return (size);
367 }
368 
369 static int
370 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
371 {
372 	int ret;
373 
374 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
375 	    DDI_PROP_DONTPASS, pname, pval, plen))
376 	    == DDI_PROP_SUCCESS) {
377 		*plen = (*plen) * (sizeof (int));
378 	}
379 	return (ret);
380 }
381 
382 
383 /*
384  * Node Configuration
385  */
386 
387 struct prop_ispec {
388 	uint_t	pri, vec;
389 };
390 
391 /*
392  * For the x86, we're prepared to claim that the interrupt string
393  * is in the form of a list of <ipl,vec> specifications.
394  */
395 
396 #define	VEC_MIN	1
397 #define	VEC_MAX	255
398 
399 static int
400 impl_xlate_intrs(dev_info_t *child, int *in,
401     struct ddi_parent_private_data *pdptr)
402 {
403 	size_t size;
404 	int n;
405 	struct intrspec *new;
406 	caddr_t got_prop;
407 	int *inpri;
408 	int got_len;
409 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
410 
411 	static char bad_intr_fmt[] =
412 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
413 
414 	/*
415 	 * determine if the driver is expecting the new style "interrupts"
416 	 * property which just contains the IRQ, or the old style which
417 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
418 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
419 	 * in that case, the "interrupt-priorities" property contains the
420 	 * IPL values that match, one for one, the IRQ values in the
421 	 * "interrupts" property.
422 	 */
423 	inpri = NULL;
424 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
425 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
426 		/* the old style "interrupts" property... */
427 
428 		/*
429 		 * The list consists of <ipl,vec> elements
430 		 */
431 		if ((n = (*in++ >> 1)) < 1)
432 			return (DDI_FAILURE);
433 
434 		pdptr->par_nintr = n;
435 		size = n * sizeof (struct intrspec);
436 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
437 
438 		while (n--) {
439 			int level = *in++;
440 			int vec = *in++;
441 
442 			if (level < 1 || level > MAXIPL ||
443 			    vec < VEC_MIN || vec > VEC_MAX) {
444 				cmn_err(CE_CONT, bad_intr_fmt,
445 				    DEVI(child)->devi_name,
446 				    DEVI(child)->devi_instance, level, vec);
447 				goto broken;
448 			}
449 			new->intrspec_pri = level;
450 			if (vec != 2)
451 				new->intrspec_vec = vec;
452 			else
453 				/*
454 				 * irq 2 on the PC bus is tied to irq 9
455 				 * on ISA, EISA and MicroChannel
456 				 */
457 				new->intrspec_vec = 9;
458 			new++;
459 		}
460 
461 		return (DDI_SUCCESS);
462 	} else {
463 		/* the new style "interrupts" property... */
464 
465 		/*
466 		 * The list consists of <vec> elements
467 		 */
468 		if ((n = (*in++)) < 1)
469 			return (DDI_FAILURE);
470 
471 		pdptr->par_nintr = n;
472 		size = n * sizeof (struct intrspec);
473 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
474 
475 		/* XXX check for "interrupt-priorities" property... */
476 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
477 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
478 		    == DDI_PROP_SUCCESS) {
479 			if (n != (got_len / sizeof (int))) {
480 				cmn_err(CE_CONT,
481 				    "bad interrupt-priorities length"
482 				    " from %s%d: expected %d, got %d\n",
483 				    DEVI(child)->devi_name,
484 				    DEVI(child)->devi_instance, n,
485 				    (int)(got_len / sizeof (int)));
486 				goto broken;
487 			}
488 			inpri = (int *)got_prop;
489 		}
490 
491 		while (n--) {
492 			int level;
493 			int vec = *in++;
494 
495 			if (inpri == NULL)
496 				level = 5;
497 			else
498 				level = *inpri++;
499 
500 			if (level < 1 || level > MAXIPL ||
501 			    vec < VEC_MIN || vec > VEC_MAX) {
502 				cmn_err(CE_CONT, bad_intr_fmt,
503 				    DEVI(child)->devi_name,
504 				    DEVI(child)->devi_instance, level, vec);
505 				goto broken;
506 			}
507 			new->intrspec_pri = level;
508 			if (vec != 2)
509 				new->intrspec_vec = vec;
510 			else
511 				/*
512 				 * irq 2 on the PC bus is tied to irq 9
513 				 * on ISA, EISA and MicroChannel
514 				 */
515 				new->intrspec_vec = 9;
516 			new++;
517 		}
518 
519 		if (inpri != NULL)
520 			kmem_free(got_prop, got_len);
521 		return (DDI_SUCCESS);
522 	}
523 
524 broken:
525 	kmem_free(pdptr->par_intr, size);
526 	pdptr->par_intr = NULL;
527 	pdptr->par_nintr = 0;
528 	if (inpri != NULL)
529 		kmem_free(got_prop, got_len);
530 
531 	return (DDI_FAILURE);
532 }
533 
534 /*
535  * Create a ddi_parent_private_data structure from the ddi properties of
536  * the dev_info node.
537  *
538  * The "reg" and either an "intr" or "interrupts" properties are required
539  * if the driver wishes to create mappings or field interrupts on behalf
540  * of the device.
541  *
542  * The "reg" property is assumed to be a list of at least one triple
543  *
544  *	<bustype, address, size>*1
545  *
546  * The "intr" property is assumed to be a list of at least one duple
547  *
548  *	<SPARC ipl, vector#>*1
549  *
550  * The "interrupts" property is assumed to be a list of at least one
551  * n-tuples that describes the interrupt capabilities of the bus the device
552  * is connected to.  For SBus, this looks like
553  *
554  *	<SBus-level>*1
555  *
556  * (This property obsoletes the 'intr' property).
557  *
558  * The "ranges" property is optional.
559  */
560 void
561 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
562 {
563 	struct ddi_parent_private_data *pdptr;
564 	int n;
565 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
566 	uint_t reg_len, rng_len, intr_len, irupts_len;
567 
568 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
569 
570 	/*
571 	 * Handle the 'reg' property.
572 	 */
573 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
574 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
575 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
576 		pdptr->par_reg = (struct regspec *)reg_prop;
577 	}
578 
579 	/*
580 	 * See if I have a range (adding one where needed - this
581 	 * means to add one for sbus node in sun4c, when romvec > 0,
582 	 * if no range is already defined in the PROM node.
583 	 * (Currently no sun4c PROMS define range properties,
584 	 * but they should and may in the future.)  For the SBus
585 	 * node, the range is defined by the SBus reg property.
586 	 */
587 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
588 	    == DDI_PROP_SUCCESS) {
589 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
590 		pdptr->par_rng = (struct rangespec *)rng_prop;
591 	}
592 
593 	/*
594 	 * Handle the 'intr' and 'interrupts' properties
595 	 */
596 
597 	/*
598 	 * For backwards compatibility
599 	 * we first look for the 'intr' property for the device.
600 	 */
601 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
602 	    != DDI_PROP_SUCCESS) {
603 		intr_len = 0;
604 	}
605 
606 	/*
607 	 * If we're to support bus adapters and future platforms cleanly,
608 	 * we need to support the generalized 'interrupts' property.
609 	 */
610 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
611 	    &irupts_len) != DDI_PROP_SUCCESS) {
612 		irupts_len = 0;
613 	} else if (intr_len != 0) {
614 		/*
615 		 * If both 'intr' and 'interrupts' are defined,
616 		 * then 'interrupts' wins and we toss the 'intr' away.
617 		 */
618 		ddi_prop_free((void *)intr_prop);
619 		intr_len = 0;
620 	}
621 
622 	if (intr_len != 0) {
623 
624 		/*
625 		 * Translate the 'intr' property into an array
626 		 * an array of struct intrspec's.  There's not really
627 		 * very much to do here except copy what's out there.
628 		 */
629 
630 		struct intrspec *new;
631 		struct prop_ispec *l;
632 
633 		n = pdptr->par_nintr =
634 			intr_len / sizeof (struct prop_ispec);
635 		l = (struct prop_ispec *)intr_prop;
636 		pdptr->par_intr =
637 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
638 		while (n--) {
639 			new->intrspec_pri = l->pri;
640 			new->intrspec_vec = l->vec;
641 			new++;
642 			l++;
643 		}
644 		ddi_prop_free((void *)intr_prop);
645 
646 	} else if ((n = irupts_len) != 0) {
647 		size_t size;
648 		int *out;
649 
650 		/*
651 		 * Translate the 'interrupts' property into an array
652 		 * of intrspecs for the rest of the DDI framework to
653 		 * toy with.  Only our ancestors really know how to
654 		 * do this, so ask 'em.  We massage the 'interrupts'
655 		 * property so that it is pre-pended by a count of
656 		 * the number of integers in the argument.
657 		 */
658 		size = sizeof (int) + n;
659 		out = kmem_alloc(size, KM_SLEEP);
660 		*out = n / sizeof (int);
661 		bcopy(irupts_prop, out + 1, (size_t)n);
662 		ddi_prop_free((void *)irupts_prop);
663 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
664 			cmn_err(CE_CONT,
665 			    "Unable to translate 'interrupts' for %s%d\n",
666 			    DEVI(child)->devi_binding_name,
667 			    DEVI(child)->devi_instance);
668 		}
669 		kmem_free(out, size);
670 	}
671 }
672 
673 /*
674  * Name a child
675  */
676 static int
677 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
678 {
679 	/*
680 	 * Fill in parent-private data and this function returns to us
681 	 * an indication if it used "registers" to fill in the data.
682 	 */
683 	if (ddi_get_parent_data(child) == NULL) {
684 		struct ddi_parent_private_data *pdptr;
685 		make_ddi_ppd(child, &pdptr);
686 		ddi_set_parent_data(child, pdptr);
687 	}
688 
689 	name[0] = '\0';
690 	if (sparc_pd_getnreg(child) > 0) {
691 		(void) snprintf(name, namelen, "%x,%x",
692 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
693 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
694 	}
695 
696 	return (DDI_SUCCESS);
697 }
698 
699 /*
700  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
701  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
702  * the children of sun busses based on the reg spec.
703  *
704  * Handles the following properties (in make_ddi_ppd):
705  *	Property		value
706  *	  Name			type
707  *	reg		register spec
708  *	intr		old-form interrupt spec
709  *	interrupts	new (bus-oriented) interrupt spec
710  *	ranges		range spec
711  */
712 int
713 impl_ddi_sunbus_initchild(dev_info_t *child)
714 {
715 	char name[MAXNAMELEN];
716 	void impl_ddi_sunbus_removechild(dev_info_t *);
717 
718 	/*
719 	 * Name the child, also makes parent private data
720 	 */
721 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
722 	ddi_set_name_addr(child, name);
723 
724 	/*
725 	 * Attempt to merge a .conf node; if successful, remove the
726 	 * .conf node.
727 	 */
728 	if ((ndi_dev_is_persistent_node(child) == 0) &&
729 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
730 		/*
731 		 * Return failure to remove node
732 		 */
733 		impl_ddi_sunbus_removechild(child);
734 		return (DDI_FAILURE);
735 	}
736 	return (DDI_SUCCESS);
737 }
738 
739 void
740 impl_free_ddi_ppd(dev_info_t *dip)
741 {
742 	struct ddi_parent_private_data *pdptr;
743 	size_t n;
744 
745 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
746 		return;
747 
748 	if ((n = (size_t)pdptr->par_nintr) != 0)
749 		/*
750 		 * Note that kmem_free is used here (instead of
751 		 * ddi_prop_free) because the contents of the
752 		 * property were placed into a separate buffer and
753 		 * mucked with a bit before being stored in par_intr.
754 		 * The actual return value from the prop lookup
755 		 * was freed with ddi_prop_free previously.
756 		 */
757 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
758 
759 	if ((n = (size_t)pdptr->par_nrng) != 0)
760 		ddi_prop_free((void *)pdptr->par_rng);
761 
762 	if ((n = pdptr->par_nreg) != 0)
763 		ddi_prop_free((void *)pdptr->par_reg);
764 
765 	kmem_free(pdptr, sizeof (*pdptr));
766 	ddi_set_parent_data(dip, NULL);
767 }
768 
769 void
770 impl_ddi_sunbus_removechild(dev_info_t *dip)
771 {
772 	impl_free_ddi_ppd(dip);
773 	ddi_set_name_addr(dip, NULL);
774 	/*
775 	 * Strip the node to properly convert it back to prototype form
776 	 */
777 	impl_rem_dev_props(dip);
778 }
779 
780 /*
781  * DDI Interrupt
782  */
783 
784 /*
785  * turn this on to force isa, eisa, and mca device to ignore the new
786  * hardware nodes in the device tree (normally turned on only for
787  * drivers that need it by setting the property "ignore-hardware-nodes"
788  * in their driver.conf file).
789  *
790  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
791  *		as safety valve.
792  */
793 int ignore_hardware_nodes = 0;
794 
795 /*
796  * Local data
797  */
798 static struct impl_bus_promops *impl_busp;
799 
800 
801 /*
802  * New DDI interrupt framework
803  */
804 
805 /*
806  * i_ddi_intr_ops:
807  *
808  * This is the interrupt operator function wrapper for the bus function
809  * bus_intr_op.
810  */
811 int
812 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
813     ddi_intr_handle_impl_t *hdlp, void * result)
814 {
815 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
816 	int		ret = DDI_FAILURE;
817 
818 	/* request parent to process this interrupt op */
819 	if (NEXUS_HAS_INTR_OP(pdip))
820 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
821 		    pdip, rdip, op, hdlp, result);
822 	else
823 		cmn_err(CE_WARN, "Failed to process interrupt "
824 		    "for %s%d due to down-rev nexus driver %s%d",
825 		    ddi_get_name(rdip), ddi_get_instance(rdip),
826 		    ddi_get_name(pdip), ddi_get_instance(pdip));
827 	return (ret);
828 }
829 
830 /*
831  * i_ddi_add_softint - allocate and add a soft interrupt to the system
832  */
833 int
834 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
835 {
836 	int ret;
837 
838 	/* add soft interrupt handler */
839 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
840 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
841 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
842 }
843 
844 
845 void
846 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
847 {
848 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
849 }
850 
851 
852 extern void (*setsoftint)(int);
853 
854 int
855 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
856 {
857 	int	ret = DDI_SUCCESS;
858 
859 	if (hdlp->ih_pending) {
860 		ret = DDI_EPENDING;
861 	} else {
862 		update_avsoftintr_args((void *)hdlp,
863 		    hdlp->ih_pri, arg2);
864 		hdlp->ih_pending = 1;
865 	}
866 
867 	(*setsoftint)(hdlp->ih_pri);
868 	return (ret);
869 }
870 
871 /*
872  * i_ddi_set_softint_pri:
873  *
874  * The way this works is that it first tries to add a softint vector
875  * at the new priority in hdlp. If that succeeds; then it removes the
876  * existing softint vector at the old priority.
877  */
878 int
879 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
880 {
881 	/*
882 	 * If a softint is pending at the old priority then fail the request.
883 	 * 	OR
884 	 * If we failed to add a softint vector with the new priority; then
885 	 * fail the request with a DDI_FAILURE
886 	 */
887 	if (hdlp->ih_pending || i_ddi_add_softint(hdlp) != DDI_SUCCESS)
888 		return (DDI_FAILURE);
889 
890 	/* Now, remove the softint at the old priority */
891 	(void) rem_avsoftintr((void *)hdlp, old_pri, hdlp->ih_cb_func);
892 	return (DDI_SUCCESS);
893 }
894 
895 /*
896  * DDI Memory/DMA
897  */
898 
899 /*
900  * Support for allocating DMAable memory to implement
901  * ddi_dma_mem_alloc(9F) interface.
902  */
903 
904 #define	KA_ALIGN_SHIFT	7
905 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
906 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
907 
908 /*
909  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
910  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
911  */
912 
913 static ddi_dma_attr_t kmem_io_attr = {
914 	DMA_ATTR_V0,
915 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
916 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
917 	0x00ffffff,
918 	0x1000,				/* dma_attr_align */
919 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
920 };
921 
922 /* kmem io memory ranges and indices */
923 enum {
924 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
925 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
926 };
927 
928 static struct {
929 	vmem_t		*kmem_io_arena;
930 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
931 	ddi_dma_attr_t	kmem_io_attr;
932 } kmem_io[MAX_MEM_RANGES];
933 
934 static int kmem_io_idx;		/* index of first populated kmem_io[] */
935 
936 static page_t *
937 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
938 {
939 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
940 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
941 
942 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
943 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
944 }
945 
946 static void *
947 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
948 {
949 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
950 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
951 }
952 
953 static void *
954 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
955 {
956 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
957 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
958 }
959 
960 static void *
961 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
962 {
963 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
964 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
965 }
966 
967 static void *
968 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
969 {
970 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
971 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
972 }
973 
974 static void *
975 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
976 {
977 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
978 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
979 }
980 
981 static void *
982 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
983 {
984 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
985 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
986 }
987 
988 static void *
989 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
990 {
991 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
992 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
993 }
994 
995 static void *
996 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
997 {
998 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
999 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1000 }
1001 
1002 static void *
1003 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1004 {
1005 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1006 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1007 }
1008 
1009 static void *
1010 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1011 {
1012 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1013 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1014 }
1015 
1016 static void *
1017 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1018 {
1019 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1020 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1021 }
1022 
1023 struct {
1024 	uint64_t	io_limit;
1025 	char		*io_name;
1026 	void		*(*io_alloc)(vmem_t *, size_t, int);
1027 	int		io_initial;	/* kmem_io_init during startup */
1028 } io_arena_params[MAX_MEM_RANGES] = {
1029 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1030 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1031 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1032 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1033 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1034 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1035 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1036 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1037 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1038 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1039 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1040 };
1041 
1042 void
1043 kmem_io_init(int a)
1044 {
1045 	int	c;
1046 	char name[40];
1047 
1048 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1049 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1050 	    segkmem_free, heap_arena, 0, VM_SLEEP);
1051 	for (c = 0; c < KA_NCACHE; c++) {
1052 		size_t size = KA_ALIGN << c;
1053 		(void) sprintf(name, "%s_%lu",
1054 		    io_arena_params[a].io_name, size);
1055 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1056 		    size, size, NULL, NULL, NULL, NULL,
1057 		    kmem_io[a].kmem_io_arena, 0);
1058 	}
1059 }
1060 
1061 /*
1062  * Return the index of the highest memory range for addr.
1063  */
1064 static int
1065 kmem_io_index(uint64_t addr)
1066 {
1067 	int n;
1068 
1069 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1070 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1071 			if (kmem_io[n].kmem_io_arena == NULL)
1072 				kmem_io_init(n);
1073 			return (n);
1074 		}
1075 	}
1076 	panic("kmem_io_index: invalid addr - must be at least 16m");
1077 
1078 	/*NOTREACHED*/
1079 }
1080 
1081 /*
1082  * Return the index of the next kmem_io populated memory range
1083  * after curindex.
1084  */
1085 static int
1086 kmem_io_index_next(int curindex)
1087 {
1088 	int n;
1089 
1090 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1091 		if (kmem_io[n].kmem_io_arena)
1092 			return (n);
1093 	}
1094 	return (-1);
1095 }
1096 
1097 void
1098 ka_init(void)
1099 {
1100 	int a;
1101 	extern pfn_t physmax;
1102 	uint64_t maxphysaddr = mmu_ptob((uint64_t)physmax + 1) - 1;
1103 
1104 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1105 
1106 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1107 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1108 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1109 				io_arena_params[a].io_limit = maxphysaddr;
1110 			else
1111 				a++;
1112 			break;
1113 		}
1114 	}
1115 	kmem_io_idx = a;
1116 
1117 	for (; a < MAX_MEM_RANGES; a++) {
1118 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1119 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1120 		    io_arena_params[a].io_limit;
1121 		/*
1122 		 * initialize kmem_io[] arena/cache corresponding to
1123 		 * maxphysaddr and to the "common" io memory ranges that
1124 		 * have io_initial set to a non-zero value.
1125 		 */
1126 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1127 			kmem_io_init(a);
1128 	}
1129 }
1130 
1131 /*
1132  * put contig address/size
1133  */
1134 static void *
1135 putctgas(void *addr, size_t size)
1136 {
1137 	struct ctgas	*ctgp = &ctglist;
1138 	int		i;
1139 
1140 	CTGLOCK();
1141 	do {
1142 		if ((i = ctgp->ctg_index) < CTGENTRIES) {
1143 			ctgp->ctg_addr[i] = addr;
1144 			ctgp->ctg_size[i] = size;
1145 			ctgp->ctg_index++;
1146 			break;
1147 		}
1148 		if (!ctgp->ctg_next)
1149 			ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas),
1150 			    KM_NOSLEEP);
1151 		ctgp = ctgp->ctg_next;
1152 	} while (ctgp);
1153 
1154 	CTGUNLOCK();
1155 	return (ctgp);
1156 }
1157 
1158 /*
1159  * get contig size by addr
1160  */
1161 static size_t
1162 getctgsz(void *addr)
1163 {
1164 	struct ctgas	*ctgp = &ctglist;
1165 	int		i, j;
1166 	size_t		sz;
1167 
1168 	ASSERT(addr);
1169 	CTGLOCK();
1170 
1171 	while (ctgp) {
1172 		for (i = 0; i < ctgp->ctg_index; i++) {
1173 			if (addr != ctgp->ctg_addr[i])
1174 				continue;
1175 
1176 			sz = ctgp->ctg_size[i];
1177 			j = --ctgp->ctg_index;
1178 			if (i != j) {
1179 				ctgp->ctg_size[i] = ctgp->ctg_size[j];
1180 				ctgp->ctg_addr[i] = ctgp->ctg_addr[j];
1181 			}
1182 			CTGUNLOCK();
1183 			return (sz);
1184 		}
1185 		ctgp = ctgp->ctg_next;
1186 	}
1187 
1188 	CTGUNLOCK();
1189 	return (0);
1190 }
1191 
1192 /*
1193  * contig_alloc:
1194  *
1195  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1196  *	specified in 'attr'.
1197  *
1198  *	Not all of memory need to be physically contiguous if the
1199  *	scatter-gather list length is greater than 1.
1200  */
1201 
1202 /*ARGSUSED*/
1203 void *
1204 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1205 {
1206 	pgcnt_t		pgcnt = btopr(size);
1207 	size_t		asize = pgcnt * PAGESIZE;
1208 	page_t		*ppl;
1209 	int		pflag;
1210 	void		*addr;
1211 
1212 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1213 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1214 
1215 	/* segkmem_xalloc */
1216 
1217 	if (align <= PAGESIZE)
1218 		addr = vmem_alloc(heap_arena, asize,
1219 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1220 	else
1221 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1222 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1223 	if (addr) {
1224 		ASSERT(!((uintptr_t)addr & (align - 1)));
1225 
1226 		if (page_resv(pgcnt,
1227 			(cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1228 
1229 			vmem_free(heap_arena, addr, asize);
1230 			return (NULL);
1231 		}
1232 		pflag = PG_EXCL;
1233 
1234 		if (cansleep)
1235 			pflag |= PG_WAIT;
1236 
1237 		/* 4k req gets from freelists rather than pfn search */
1238 		if (pgcnt > 1 || align > PAGESIZE)
1239 			pflag |= PG_PHYSCONTIG;
1240 
1241 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1242 			asize, pflag, &kas, (caddr_t)addr, attr);
1243 
1244 		if (!ppl) {
1245 			vmem_free(heap_arena, addr, asize);
1246 			page_unresv(pgcnt);
1247 			return (NULL);
1248 		}
1249 
1250 		while (ppl != NULL) {
1251 			page_t	*pp = ppl;
1252 			page_sub(&ppl, pp);
1253 			ASSERT(page_iolock_assert(pp));
1254 			page_io_unlock(pp);
1255 			page_downgrade(pp);
1256 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1257 				pp, (PROT_ALL & ~PROT_USER) |
1258 				HAT_NOSYNC, HAT_LOAD_LOCK);
1259 		}
1260 	}
1261 	return (addr);
1262 }
1263 
1264 static void
1265 contig_free(void *addr, size_t size)
1266 {
1267 	pgcnt_t	pgcnt = btopr(size);
1268 	size_t	asize = pgcnt * PAGESIZE;
1269 	caddr_t	a, ea;
1270 	page_t	*pp;
1271 
1272 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1273 
1274 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1275 		pp = page_find(&kvp,
1276 				(u_offset_t)(uintptr_t)a);
1277 		if (!pp)
1278 			panic("contig_free: contig pp not found");
1279 
1280 		if (!page_tryupgrade(pp)) {
1281 			page_unlock(pp);
1282 			pp = page_lookup(&kvp,
1283 				(u_offset_t)(uintptr_t)a, SE_EXCL);
1284 			if (pp == NULL)
1285 				panic("contig_free: page freed");
1286 		}
1287 		page_destroy(pp, 0);
1288 	}
1289 
1290 	page_unresv(pgcnt);
1291 	vmem_free(heap_arena, addr, asize);
1292 }
1293 
1294 /*
1295  * Allocate from the system, aligned on a specific boundary.
1296  * The alignment, if non-zero, must be a power of 2.
1297  */
1298 static void *
1299 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1300 	ddi_dma_attr_t *attr)
1301 {
1302 	size_t *addr, *raddr, rsize;
1303 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1304 	int a, i, c;
1305 	vmem_t *vmp;
1306 	kmem_cache_t *cp = NULL;
1307 
1308 	align = MAX(align, hdrsize);
1309 	ASSERT((align & (align - 1)) == 0);
1310 
1311 	/*
1312 	 * All of our allocators guarantee 16-byte alignment, so we don't
1313 	 * need to reserve additional space for the header.
1314 	 * To simplify picking the correct kmem_io_cache, we round up to
1315 	 * a multiple of KA_ALIGN.
1316 	 */
1317 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1318 
1319 	if (physcontig && rsize > PAGESIZE) {
1320 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1321 			if (!putctgas(addr, size))
1322 				contig_free(addr, size);
1323 			else
1324 				return (addr);
1325 		}
1326 		return (NULL);
1327 	}
1328 
1329 	ASSERT(attr->dma_attr_addr_lo <= mmu_ptob((uint64_t)ddiphysmin));
1330 
1331 	a = kmem_io_index(attr->dma_attr_addr_hi);
1332 
1333 	if (rsize > PAGESIZE) {
1334 		vmp = kmem_io[a].kmem_io_arena;
1335 		raddr = vmem_alloc(vmp, rsize,
1336 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1337 	} else {
1338 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1339 		cp = kmem_io[a].kmem_io_cache[c];
1340 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1341 		    KM_NOSLEEP);
1342 	}
1343 
1344 	if (raddr == NULL) {
1345 		int	na;
1346 
1347 		ASSERT(cansleep == 0);
1348 		if (rsize > PAGESIZE)
1349 			return (NULL);
1350 		/*
1351 		 * System does not have memory in the requested range.
1352 		 * Try smaller kmem io ranges and larger cache sizes
1353 		 * to see if there might be memory available in
1354 		 * these other caches.
1355 		 */
1356 
1357 		for (na = kmem_io_index_next(a); na >= 0;
1358 		    na = kmem_io_index_next(na)) {
1359 			ASSERT(kmem_io[na].kmem_io_arena);
1360 			cp = kmem_io[na].kmem_io_cache[c];
1361 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1362 			if (raddr)
1363 				goto kallocdone;
1364 		}
1365 		/* now try the larger kmem io cache sizes */
1366 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1367 			for (i = c + 1; i < KA_NCACHE; i++) {
1368 				cp = kmem_io[na].kmem_io_cache[i];
1369 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1370 				if (raddr)
1371 					goto kallocdone;
1372 			}
1373 		}
1374 		return (NULL);
1375 	}
1376 
1377 kallocdone:
1378 	ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1,
1379 	    PAGESIZE) || rsize > PAGESIZE);
1380 
1381 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1382 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1383 
1384 	addr[-4] = (size_t)cp;
1385 	addr[-3] = (size_t)vmp;
1386 	addr[-2] = (size_t)raddr;
1387 	addr[-1] = rsize;
1388 
1389 	return (addr);
1390 }
1391 
1392 static void
1393 kfreea(void *addr)
1394 {
1395 	size_t		size;
1396 
1397 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1398 		contig_free(addr, size);
1399 	} else {
1400 		size_t	*saddr = addr;
1401 		if (saddr[-4] == 0)
1402 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1403 				saddr[-1]);
1404 		else
1405 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1406 				(void *)saddr[-2]);
1407 	}
1408 }
1409 
1410 /*
1411  * This should actually be called i_ddi_dma_mem_alloc. There should
1412  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1413  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1414  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1415  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1416  * so far which is used for both, DMA and PIO, we have to use the DMA
1417  * ctl ops to make everybody happy.
1418  */
1419 /*ARGSUSED*/
1420 int
1421 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1422 	size_t length, int cansleep, int streaming,
1423 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1424 	size_t *real_length, ddi_acc_hdl_t *ap)
1425 {
1426 	caddr_t a;
1427 	int iomin;
1428 	ddi_acc_impl_t *iap;
1429 	int physcontig = 0;
1430 	pgcnt_t npages;
1431 	pgcnt_t minctg;
1432 
1433 	/*
1434 	 * Check legality of arguments
1435 	 */
1436 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1437 		return (DDI_FAILURE);
1438 	}
1439 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1440 		(attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1441 		(attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1442 			return (DDI_FAILURE);
1443 	}
1444 
1445 	/*
1446 	 * figure out most restrictive alignment requirement
1447 	 */
1448 	iomin = attr->dma_attr_minxfer;
1449 	iomin = maxbit(iomin, attr->dma_attr_align);
1450 	if (iomin == 0)
1451 		return (DDI_FAILURE);
1452 
1453 	ASSERT((iomin & (iomin - 1)) == 0);
1454 
1455 
1456 	/*
1457 	 * Determine if we need to satisfy the request for physically
1458 	 * contiguous memory or alignments larger than pagesize.
1459 	 */
1460 	npages = btopr(length + attr->dma_attr_align);
1461 	minctg = howmany(npages, attr->dma_attr_sgllen);
1462 
1463 	if (minctg > 1) {
1464 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1465 		/*
1466 		 * verify that the minimum contig requirement for the
1467 		 * actual length does not cross segment boundary.
1468 		 */
1469 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1470 		    size_t);
1471 		npages = btopr(length);
1472 		minctg = howmany(npages, attr->dma_attr_sgllen);
1473 		if (minctg > pfnseg + 1)
1474 			return (DDI_FAILURE);
1475 		physcontig = 1;
1476 	} else {
1477 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1478 	}
1479 
1480 	/*
1481 	 * Allocate the requested amount from the system.
1482 	 */
1483 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1484 
1485 	if ((*kaddrp = a) == NULL)
1486 		return (DDI_FAILURE);
1487 
1488 	if (real_length) {
1489 		*real_length = length;
1490 	}
1491 	if (ap) {
1492 		/*
1493 		 * initialize access handle
1494 		 */
1495 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1496 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1497 		impl_acc_hdl_init(ap);
1498 	}
1499 	return (DDI_SUCCESS);
1500 }
1501 
1502 /*
1503  * covert old DMA limits structure to DMA attribute structure
1504  * and continue
1505  */
1506 int
1507 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1508 	size_t length, int cansleep, int streaming,
1509 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1510 	uint_t *real_length, ddi_acc_hdl_t *ap)
1511 {
1512 	ddi_dma_attr_t dma_attr, *attrp;
1513 	size_t rlen;
1514 	int ret;
1515 
1516 	if (limits == NULL) {
1517 		return (DDI_FAILURE);
1518 	}
1519 
1520 	/*
1521 	 * set up DMA attribute structure to pass to i_ddi_mem_alloc()
1522 	 */
1523 	attrp = &dma_attr;
1524 	attrp->dma_attr_version = DMA_ATTR_V0;
1525 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1526 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1527 	attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max;
1528 	attrp->dma_attr_align = 1;
1529 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1530 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1531 	attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize;
1532 	attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max;
1533 	attrp->dma_attr_sgllen = limits->dlim_sgllen;
1534 	attrp->dma_attr_granular = (uint32_t)limits->dlim_granular;
1535 	attrp->dma_attr_flags = 0;
1536 
1537 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1538 			accattrp, kaddrp, &rlen, ap);
1539 	if (ret == DDI_SUCCESS) {
1540 		if (real_length)
1541 			*real_length = (uint_t)rlen;
1542 	}
1543 	return (ret);
1544 }
1545 
1546 /* ARGSUSED */
1547 void
1548 i_ddi_mem_free(caddr_t kaddr, int stream)
1549 {
1550 	kfreea(kaddr);
1551 }
1552 
1553 /*
1554  * Access Barriers
1555  *
1556  */
1557 /*ARGSUSED*/
1558 int
1559 i_ddi_ontrap(ddi_acc_handle_t hp)
1560 {
1561 	return (DDI_FAILURE);
1562 }
1563 
1564 /*ARGSUSED*/
1565 void
1566 i_ddi_notrap(ddi_acc_handle_t hp)
1567 {
1568 }
1569 
1570 
1571 /*
1572  * Misc Functions
1573  */
1574 
1575 /*
1576  * Implementation instance override functions
1577  *
1578  * No override on i86pc
1579  */
1580 /*ARGSUSED*/
1581 uint_t
1582 impl_assign_instance(dev_info_t *dip)
1583 {
1584 	return ((uint_t)-1);
1585 }
1586 
1587 /*ARGSUSED*/
1588 int
1589 impl_keep_instance(dev_info_t *dip)
1590 {
1591 	return (DDI_FAILURE);
1592 }
1593 
1594 /*ARGSUSED*/
1595 int
1596 impl_free_instance(dev_info_t *dip)
1597 {
1598 	return (DDI_FAILURE);
1599 }
1600 
1601 /*ARGSUSED*/
1602 int
1603 impl_check_cpu(dev_info_t *devi)
1604 {
1605 	return (DDI_SUCCESS);
1606 }
1607 
1608 /*
1609  * Referenced in common/cpr_driver.c: Power off machine.
1610  * Don't know how to power off i86pc.
1611  */
1612 void
1613 arch_power_down()
1614 {}
1615 
1616 /*
1617  * Copy name to property_name, since name
1618  * is in the low address range below kernelbase.
1619  */
1620 static void
1621 copy_boot_str(const char *boot_str, char *kern_str, int len)
1622 {
1623 	int i = 0;
1624 
1625 	while (i < len - 1 && boot_str[i] != '\0') {
1626 		kern_str[i] = boot_str[i];
1627 		i++;
1628 	}
1629 
1630 	kern_str[i] = 0;	/* null terminate */
1631 	if (boot_str[i] != '\0')
1632 		cmn_err(CE_WARN,
1633 		    "boot property string is truncated to %s", kern_str);
1634 }
1635 
1636 static void
1637 get_boot_properties(void)
1638 {
1639 	extern char hw_provider[];
1640 	dev_info_t *devi;
1641 	char *name;
1642 	int length;
1643 	char property_name[50], property_val[50];
1644 	void *bop_staging_area;
1645 
1646 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1647 
1648 	/*
1649 	 * Import "root" properties from the boot.
1650 	 *
1651 	 * We do this by invoking BOP_NEXTPROP until the list
1652 	 * is completely copied in.
1653 	 */
1654 
1655 	devi = ddi_root_node();
1656 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1657 	    name;					/* NULL => DONE */
1658 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1659 
1660 		/* copy string to memory above kernelbase */
1661 		copy_boot_str(name, property_name, 50);
1662 
1663 		/*
1664 		 * Skip vga properties. They will be picked up later
1665 		 * by get_vga_properties.
1666 		 */
1667 		if (strcmp(property_name, "display-edif-block") == 0 ||
1668 		    strcmp(property_name, "display-edif-id") == 0) {
1669 			continue;
1670 		}
1671 
1672 		length = BOP_GETPROPLEN(bootops, property_name);
1673 		if (length == 0)
1674 			continue;
1675 		if (length > MMU_PAGESIZE) {
1676 			cmn_err(CE_NOTE,
1677 			    "boot property %s longer than 0x%x, ignored\n",
1678 			    property_name, MMU_PAGESIZE);
1679 			continue;
1680 		}
1681 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1682 
1683 		/*
1684 		 * special properties:
1685 		 * si-machine, si-hw-provider
1686 		 *	goes to kernel data structures.
1687 		 * bios-boot-device and stdout
1688 		 *	goes to hardware property list so it may show up
1689 		 *	in the prtconf -vp output. This is needed by
1690 		 *	Install/Upgrade. Once we fix install upgrade,
1691 		 *	this can be taken out.
1692 		 */
1693 		if (strcmp(name, "si-machine") == 0) {
1694 			(void) strncpy(utsname.machine, bop_staging_area,
1695 			    SYS_NMLN);
1696 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1697 		} else if (strcmp(name, "si-hw-provider") == 0) {
1698 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1699 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1700 		} else if (strcmp(name, "bios-boot-device") == 0) {
1701 			copy_boot_str(bop_staging_area, property_val, 50);
1702 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1703 			    property_name, property_val);
1704 		} else if (strcmp(name, "stdout") == 0) {
1705 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1706 			    property_name, *((int *)bop_staging_area));
1707 		} else {
1708 			/* Property type unknown, use old prop interface */
1709 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1710 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1711 			    length);
1712 		}
1713 	}
1714 
1715 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1716 }
1717 
1718 static void
1719 get_vga_properties(void)
1720 {
1721 	dev_info_t *devi;
1722 	major_t major;
1723 	char *name;
1724 	int length;
1725 	char property_val[50];
1726 	void *bop_staging_area;
1727 
1728 	major = ddi_name_to_major("vgatext");
1729 	if (major == (major_t)-1)
1730 		return;
1731 	devi = devnamesp[major].dn_head;
1732 	if (devi == NULL)
1733 		return;
1734 
1735 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1736 
1737 	/*
1738 	 * Import "vga" properties from the boot.
1739 	 */
1740 	name = "display-edif-block";
1741 	length = BOP_GETPROPLEN(bootops, name);
1742 	if (length > 0 && length < MMU_PAGESIZE) {
1743 		BOP_GETPROP(bootops, name, bop_staging_area);
1744 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1745 		    devi, name, bop_staging_area, length);
1746 	}
1747 
1748 	/*
1749 	 * kdmconfig is also looking for display-type and
1750 	 * video-adapter-type. We default to color and svga.
1751 	 *
1752 	 * Could it be "monochrome", "vga"?
1753 	 * Nah, you've got to come to the 21st century...
1754 	 * And you can set monitor type manually in kdmconfig
1755 	 * if you are really an old junky.
1756 	 */
1757 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1758 	    devi, "display-type", "color");
1759 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1760 	    devi, "video-adapter-type", "svga");
1761 
1762 	name = "display-edif-id";
1763 	length = BOP_GETPROPLEN(bootops, name);
1764 	if (length > 0 && length < MMU_PAGESIZE) {
1765 		BOP_GETPROP(bootops, name, bop_staging_area);
1766 		copy_boot_str(bop_staging_area, property_val, length);
1767 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1768 		    devi, name, property_val);
1769 	}
1770 
1771 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1772 }
1773 
1774 
1775 /*
1776  * This is temporary, but absolutely necessary.  If we are being
1777  * booted with a device tree created by the DevConf project's bootconf
1778  * program, then we have device information nodes that reflect
1779  * reality.  At this point in time in the Solaris release schedule, the
1780  * kernel drivers aren't prepared for reality.  They still depend on their
1781  * own ad-hoc interpretations of the properties created when their .conf
1782  * files were interpreted. These drivers use an "ignore-hardware-nodes"
1783  * property to prevent them from using the nodes passed up from the bootconf
1784  * device tree.
1785  *
1786  * Trying to assemble root file system drivers as we are booting from
1787  * devconf will fail if the kernel driver is basing its name_addr's on the
1788  * psuedo-node device info while the bootpath passed up from bootconf is using
1789  * reality-based name_addrs.  We help the boot along in this case by
1790  * looking at the pre-bootconf bootpath and determining if we would have
1791  * successfully matched if that had been the bootpath we had chosen.
1792  *
1793  * Note that we only even perform this extra check if we've booted
1794  * using bootconf's 1275 compliant bootpath, this is the boot device, and
1795  * we're trying to match the name_addr specified in the 1275 bootpath.
1796  */
1797 
1798 #define	MAXCOMPONENTLEN	32
1799 
1800 int
1801 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
1802 {
1803 	/*
1804 	 *  There are multiple criteria to be met before we can even
1805 	 *  consider allowing a name_addr match here.
1806 	 *
1807 	 *  1) We must have been booted such that the bootconf program
1808 	 *	created device tree nodes and properties.  This can be
1809 	 *	determined by examining the 'bootpath' property.  This
1810 	 *	property will be a non-null string iff bootconf was
1811 	 *	involved in the boot.
1812 	 *
1813 	 *  2) The module that we want to match must be the boot device.
1814 	 *
1815 	 *  3) The instance of the module we are thinking of letting be
1816 	 *	our match must be ignoring hardware nodes.
1817 	 *
1818 	 *  4) The name_addr we want to match must be the name_addr
1819 	 *	specified in the 1275 bootpath.
1820 	 */
1821 	static char bootdev_module[MAXCOMPONENTLEN];
1822 	static char bootdev_oldmod[MAXCOMPONENTLEN];
1823 	static char bootdev_newaddr[MAXCOMPONENTLEN];
1824 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
1825 	static int  quickexit;
1826 
1827 	char *daddr;
1828 	int dlen;
1829 
1830 	char	*lkupname;
1831 	int	rv = DDI_FAILURE;
1832 
1833 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1834 		"devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
1835 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1836 		"ignore-hardware-nodes", -1) != -1)) {
1837 		if (strcmp(daddr, caddr) == 0) {
1838 			return (DDI_SUCCESS);
1839 		}
1840 	}
1841 
1842 	if (quickexit)
1843 		return (rv);
1844 
1845 	if (bootdev_module[0] == '\0') {
1846 		char *addrp, *eoaddrp;
1847 		char *busp, *modp, *atp;
1848 		char *bp1275, *bp;
1849 		int  bp1275len, bplen;
1850 
1851 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
1852 
1853 		if (ddi_getlongprop(DDI_DEV_T_ANY,
1854 		    ddi_root_node(), 0, "bootpath",
1855 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
1856 		    bp1275len <= 1) {
1857 			/*
1858 			 * We didn't boot from bootconf so we never need to
1859 			 * do any special matches.
1860 			 */
1861 			quickexit = 1;
1862 			if (bp1275)
1863 				kmem_free(bp1275, bp1275len);
1864 			return (rv);
1865 		}
1866 
1867 		if (ddi_getlongprop(DDI_DEV_T_ANY,
1868 		    ddi_root_node(), 0, "boot-path",
1869 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
1870 			/*
1871 			 * No fallback position for matching. This is
1872 			 * certainly unexpected, but we'll handle it
1873 			 * just in case.
1874 			 */
1875 			quickexit = 1;
1876 			kmem_free(bp1275, bp1275len);
1877 			if (bp)
1878 				kmem_free(bp, bplen);
1879 			return (rv);
1880 		}
1881 
1882 		/*
1883 		 *  Determine boot device module and 1275 name_addr
1884 		 *
1885 		 *  bootpath assumed to be of the form /bus/module@name_addr
1886 		 */
1887 		if (busp = strchr(bp1275, '/')) {
1888 			if (modp = strchr(busp + 1, '/')) {
1889 				if (atp = strchr(modp + 1, '@')) {
1890 					*atp = '\0';
1891 					addrp = atp + 1;
1892 					if (eoaddrp = strchr(addrp, '/'))
1893 						*eoaddrp = '\0';
1894 				}
1895 			}
1896 		}
1897 
1898 		if (modp && addrp) {
1899 			(void) strncpy(bootdev_module, modp + 1,
1900 			    MAXCOMPONENTLEN);
1901 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
1902 
1903 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
1904 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
1905 		} else {
1906 			quickexit = 1;
1907 			kmem_free(bp1275, bp1275len);
1908 			kmem_free(bp, bplen);
1909 			return (rv);
1910 		}
1911 
1912 		/*
1913 		 *  Determine fallback name_addr
1914 		 *
1915 		 *  10/3/96 - Also save fallback module name because it
1916 		 *  might actually be different than the current module
1917 		 *  name.  E.G., ISA pnp drivers have new names.
1918 		 *
1919 		 *  bootpath assumed to be of the form /bus/module@name_addr
1920 		 */
1921 		addrp = NULL;
1922 		if (busp = strchr(bp, '/')) {
1923 			if (modp = strchr(busp + 1, '/')) {
1924 				if (atp = strchr(modp + 1, '@')) {
1925 					*atp = '\0';
1926 					addrp = atp + 1;
1927 					if (eoaddrp = strchr(addrp, '/'))
1928 						*eoaddrp = '\0';
1929 				}
1930 			}
1931 		}
1932 
1933 		if (modp && addrp) {
1934 			(void) strncpy(bootdev_oldmod, modp + 1,
1935 			    MAXCOMPONENTLEN);
1936 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
1937 
1938 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
1939 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
1940 		}
1941 
1942 		/* Free up the bootpath storage now that we're done with it. */
1943 		kmem_free(bp1275, bp1275len);
1944 		kmem_free(bp, bplen);
1945 
1946 		if (bootdev_oldaddr[0] == '\0') {
1947 			quickexit = 1;
1948 			return (rv);
1949 		}
1950 	}
1951 
1952 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
1953 	    (strcmp(bootdev_module, lkupname) == 0 ||
1954 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
1955 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1956 		"ignore-hardware-nodes", -1) != -1) ||
1957 		ignore_hardware_nodes) &&
1958 	    strcmp(bootdev_newaddr, caddr) == 0 &&
1959 	    strcmp(bootdev_oldaddr, naddr) == 0) {
1960 		rv = DDI_SUCCESS;
1961 	}
1962 
1963 	return (rv);
1964 }
1965 
1966 /*
1967  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1968  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1969  */
1970 /*ARGSUSED*/
1971 int
1972 e_ddi_copyfromdev(dev_info_t *devi,
1973     off_t off, const void *devaddr, void *kaddr, size_t len)
1974 {
1975 	bcopy(devaddr, kaddr, len);
1976 	return (0);
1977 }
1978 
1979 /*
1980  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1981  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1982  */
1983 /*ARGSUSED*/
1984 int
1985 e_ddi_copytodev(dev_info_t *devi,
1986     off_t off, const void *kaddr, void *devaddr, size_t len)
1987 {
1988 	bcopy(kaddr, devaddr, len);
1989 	return (0);
1990 }
1991 
1992 
1993 static int
1994 poke_mem(peekpoke_ctlops_t *in_args)
1995 {
1996 	int err = DDI_SUCCESS;
1997 	on_trap_data_t otd;
1998 
1999 	/* Set up protected environment. */
2000 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2001 		switch (in_args->size) {
2002 		case sizeof (uint8_t):
2003 			*(uint8_t *)(in_args->dev_addr) =
2004 			    *(uint8_t *)in_args->host_addr;
2005 			break;
2006 
2007 		case sizeof (uint16_t):
2008 			*(uint16_t *)(in_args->dev_addr) =
2009 			    *(uint16_t *)in_args->host_addr;
2010 			break;
2011 
2012 		case sizeof (uint32_t):
2013 			*(uint32_t *)(in_args->dev_addr) =
2014 			    *(uint32_t *)in_args->host_addr;
2015 			break;
2016 
2017 		case sizeof (uint64_t):
2018 			*(uint64_t *)(in_args->dev_addr) =
2019 			    *(uint64_t *)in_args->host_addr;
2020 			break;
2021 
2022 		default:
2023 			err = DDI_FAILURE;
2024 			break;
2025 		}
2026 	} else
2027 		err = DDI_FAILURE;
2028 
2029 	/* Take down protected environment. */
2030 	no_trap();
2031 
2032 	return (err);
2033 }
2034 
2035 
2036 static int
2037 peek_mem(peekpoke_ctlops_t *in_args)
2038 {
2039 	int err = DDI_SUCCESS;
2040 	on_trap_data_t otd;
2041 
2042 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2043 		switch (in_args->size) {
2044 		case sizeof (uint8_t):
2045 			*(uint8_t *)in_args->host_addr =
2046 			    *(uint8_t *)in_args->dev_addr;
2047 			break;
2048 
2049 		case sizeof (uint16_t):
2050 			*(uint16_t *)in_args->host_addr =
2051 			    *(uint16_t *)in_args->dev_addr;
2052 			break;
2053 
2054 		case sizeof (uint32_t):
2055 			*(uint32_t *)in_args->host_addr =
2056 			    *(uint32_t *)in_args->dev_addr;
2057 			break;
2058 
2059 		case sizeof (uint64_t):
2060 			*(uint64_t *)in_args->host_addr =
2061 			    *(uint64_t *)in_args->dev_addr;
2062 			break;
2063 
2064 		default:
2065 			err = DDI_FAILURE;
2066 			break;
2067 		}
2068 	} else
2069 		err = DDI_FAILURE;
2070 
2071 	no_trap();
2072 	return (err);
2073 }
2074 
2075 
2076 /*
2077  * This is called only to process peek/poke when the DIP is NULL.
2078  * Assume that this is for memory, as nexi take care of device safe accesses.
2079  */
2080 int
2081 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2082 {
2083 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2084 }
2085 
2086 void
2087 impl_setup_ddi(void)
2088 {
2089 	dev_info_t *xdip, *isa_dip;
2090 	rd_existing_t rd_mem_prop;
2091 	int err;
2092 
2093 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2094 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2095 
2096 	(void) BOP_GETPROP(bootops,
2097 	    "ramdisk_start", (void *)&ramdisk_start);
2098 	(void) BOP_GETPROP(bootops,
2099 	    "ramdisk_end", (void *)&ramdisk_end);
2100 
2101 	rd_mem_prop.phys = ramdisk_start;
2102 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2103 
2104 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2105 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2106 	    sizeof (rd_mem_prop));
2107 	err = ndi_devi_bind_driver(xdip, 0);
2108 	ASSERT(err == 0);
2109 
2110 	/* isa node */
2111 	ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2112 	    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2113 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2114 	    "device_type", "isa");
2115 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2116 	    "bus-type", "isa");
2117 	(void) ndi_devi_bind_driver(isa_dip, 0);
2118 
2119 	/*
2120 	 * Read in the properties from the boot.
2121 	 */
2122 	get_boot_properties();
2123 
2124 	/* do bus dependent probes. */
2125 	impl_bus_initialprobe();
2126 
2127 	/* not framebuffer should be enumerated, if present */
2128 	get_vga_properties();
2129 }
2130 
2131 dev_t
2132 getrootdev(void)
2133 {
2134 	/*
2135 	 * Precedence given to rootdev if set in /etc/system
2136 	 */
2137 	if (root_is_svm) {
2138 		return (ddi_pathname_to_dev_t(svm_bootpath));
2139 	}
2140 
2141 	/*
2142 	 * Usually rootfs.bo_name is initialized by the
2143 	 * the bootpath property from bootenv.rc, but
2144 	 * defaults to "/ramdisk:a" otherwise.
2145 	 */
2146 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2147 }
2148 
2149 static struct bus_probe {
2150 	struct bus_probe *next;
2151 	void (*probe)(int);
2152 } *bus_probes;
2153 
2154 void
2155 impl_bus_add_probe(void (*func)(int))
2156 {
2157 	struct bus_probe *probe;
2158 
2159 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2160 	probe->next = bus_probes;
2161 	probe->probe = func;
2162 	bus_probes = probe;
2163 }
2164 
2165 /*ARGSUSED*/
2166 void
2167 impl_bus_delete_probe(void (*func)(int))
2168 {
2169 	struct bus_probe *prev = NULL;
2170 	struct bus_probe *probe = bus_probes;
2171 
2172 	while (probe) {
2173 		if (probe->probe == func)
2174 			break;
2175 		prev = probe;
2176 		probe = probe->next;
2177 	}
2178 
2179 	if (probe == NULL)
2180 		return;
2181 
2182 	if (prev)
2183 		prev->next = probe->next;
2184 	else
2185 		bus_probes = probe->next;
2186 
2187 	kmem_free(probe, sizeof (struct bus_probe));
2188 }
2189 
2190 /*
2191  * impl_bus_initialprobe
2192  *	Modload the prom simulator, then let it probe to verify existence
2193  *	and type of PCI support.
2194  */
2195 static void
2196 impl_bus_initialprobe(void)
2197 {
2198 	struct bus_probe *probe;
2199 
2200 	/* load modules to install bus probes */
2201 	if (modload("misc", "pci_autoconfig") < 0) {
2202 		cmn_err(CE_PANIC, "failed to load misc/pci_autoconfig");
2203 	}
2204 
2205 	probe = bus_probes;
2206 	while (probe) {
2207 		/* run the probe function */
2208 		(*probe->probe)(0);
2209 		probe = probe->next;
2210 	}
2211 }
2212 
2213 /*
2214  * impl_bus_reprobe
2215  *	Reprogram devices not set up by firmware.
2216  */
2217 static void
2218 impl_bus_reprobe(void)
2219 {
2220 	struct bus_probe *probe;
2221 
2222 	probe = bus_probes;
2223 	while (probe) {
2224 		/* run the probe function */
2225 		(*probe->probe)(1);
2226 		probe = probe->next;
2227 	}
2228 }
2229