xref: /titanic_44/usr/src/uts/i86pc/os/cpuid.c (revision b6917abefc343244b784f0cc34bc65b01469c3bf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/sysmacros.h>
44 #include <sys/pg.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 uint_t pentiumpro_bug4046376;
108 uint_t pentiumpro_bug4064495;
109 
110 uint_t enable486;
111 
112 /*
113  * This set of strings are for processors rumored to support the cpuid
114  * instruction, and is used by locore.s to figure out how to set x86_vendor
115  */
116 const char CyrixInstead[] = "CyrixInstead";
117 
118 /*
119  * monitor/mwait info.
120  *
121  * size_actual and buf_actual are the real address and size allocated to get
122  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
123  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
124  * processor cache-line alignment, but this is not guarantied in the furture.
125  */
126 struct mwait_info {
127 	size_t		mon_min;	/* min size to avoid missed wakeups */
128 	size_t		mon_max;	/* size to avoid false wakeups */
129 	size_t		size_actual;	/* size actually allocated */
130 	void		*buf_actual;	/* memory actually allocated */
131 	uint32_t	support;	/* processor support of monitor/mwait */
132 };
133 
134 /*
135  * These constants determine how many of the elements of the
136  * cpuid we cache in the cpuid_info data structure; the
137  * remaining elements are accessible via the cpuid instruction.
138  */
139 
140 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
141 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
142 
143 struct cpuid_info {
144 	uint_t cpi_pass;		/* last pass completed */
145 	/*
146 	 * standard function information
147 	 */
148 	uint_t cpi_maxeax;		/* fn 0: %eax */
149 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
150 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
151 
152 	uint_t cpi_family;		/* fn 1: extended family */
153 	uint_t cpi_model;		/* fn 1: extended model */
154 	uint_t cpi_step;		/* fn 1: stepping */
155 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
156 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
157 	int cpi_clogid;			/* fn 1: %ebx: thread # */
158 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
159 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
160 	uint_t cpi_ncache;		/* fn 2: number of elements */
161 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
162 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
163 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
164 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
165 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
166 	/*
167 	 * extended function information
168 	 */
169 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
170 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
171 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
172 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
173 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
174 	id_t cpi_coreid;		/* same coreid => strands share core */
175 	int cpi_pkgcoreid;		/* core number within single package */
176 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
177 					/* Intel: fn 4: %eax[31-26] */
178 	/*
179 	 * supported feature information
180 	 */
181 	uint32_t cpi_support[5];
182 #define	STD_EDX_FEATURES	0
183 #define	AMD_EDX_FEATURES	1
184 #define	TM_EDX_FEATURES		2
185 #define	STD_ECX_FEATURES	3
186 #define	AMD_ECX_FEATURES	4
187 	/*
188 	 * Synthesized information, where known.
189 	 */
190 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
191 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
192 	uint32_t cpi_socket;		/* Chip package/socket type */
193 
194 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
195 	uint32_t cpi_apicid;
196 };
197 
198 
199 static struct cpuid_info cpuid_info0;
200 
201 /*
202  * These bit fields are defined by the Intel Application Note AP-485
203  * "Intel Processor Identification and the CPUID Instruction"
204  */
205 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
206 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
207 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
208 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
209 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
210 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
211 
212 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
213 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
214 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
215 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
216 
217 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
218 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
219 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
220 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
221 
222 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
223 #define	CPI_XMAXEAX_MAX		0x80000100
224 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
225 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
226 
227 /*
228  * Function 4 (Deterministic Cache Parameters) macros
229  * Defined by Intel Application Note AP-485
230  */
231 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
232 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
233 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
234 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
235 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
236 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
237 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
238 
239 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
240 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
241 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
242 
243 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
244 
245 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
246 
247 
248 /*
249  * A couple of shorthand macros to identify "later" P6-family chips
250  * like the Pentium M and Core.  First, the "older" P6-based stuff
251  * (loosely defined as "pre-Pentium-4"):
252  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
253  */
254 
255 #define	IS_LEGACY_P6(cpi) (			\
256 	cpi->cpi_family == 6 && 		\
257 		(cpi->cpi_model == 1 ||		\
258 		cpi->cpi_model == 3 ||		\
259 		cpi->cpi_model == 5 ||		\
260 		cpi->cpi_model == 6 ||		\
261 		cpi->cpi_model == 7 ||		\
262 		cpi->cpi_model == 8 ||		\
263 		cpi->cpi_model == 0xA ||	\
264 		cpi->cpi_model == 0xB)		\
265 )
266 
267 /* A "new F6" is everything with family 6 that's not the above */
268 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
269 
270 /* Extended family/model support */
271 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
272 	cpi->cpi_family >= 0xf)
273 
274 /*
275  * AMD family 0xf and family 0x10 socket types.
276  * First index :
277  *		0 for family 0xf, revs B thru E
278  *		1 for family 0xf, revs F and G
279  *		2 for family 0x10, rev B
280  * Second index by (model & 0x3)
281  */
282 static uint32_t amd_skts[3][4] = {
283 	/*
284 	 * Family 0xf revisions B through E
285 	 */
286 #define	A_SKTS_0			0
287 	{
288 		X86_SOCKET_754,		/* 0b00 */
289 		X86_SOCKET_940,		/* 0b01 */
290 		X86_SOCKET_754,		/* 0b10 */
291 		X86_SOCKET_939		/* 0b11 */
292 	},
293 	/*
294 	 * Family 0xf revisions F and G
295 	 */
296 #define	A_SKTS_1			1
297 	{
298 		X86_SOCKET_S1g1,	/* 0b00 */
299 		X86_SOCKET_F1207,	/* 0b01 */
300 		X86_SOCKET_UNKNOWN,	/* 0b10 */
301 		X86_SOCKET_AM2		/* 0b11 */
302 	},
303 	/*
304 	 * Family 0x10 revisions A and B
305 	 * It is not clear whether, as new sockets release, that
306 	 * model & 0x3 will id socket for this family
307 	 */
308 #define	A_SKTS_2			2
309 	{
310 		X86_SOCKET_F1207,	/* 0b00 */
311 		X86_SOCKET_F1207,	/* 0b01 */
312 		X86_SOCKET_F1207,	/* 0b10 */
313 		X86_SOCKET_F1207,	/* 0b11 */
314 	}
315 };
316 
317 /*
318  * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping
319  * combination to chip "revision" and socket type.
320  *
321  * The first member of this array that matches a given family, extended model
322  * plus model range, and stepping range will be considered a match.
323  */
324 static const struct amd_rev_mapent {
325 	uint_t rm_family;
326 	uint_t rm_modello;
327 	uint_t rm_modelhi;
328 	uint_t rm_steplo;
329 	uint_t rm_stephi;
330 	uint32_t rm_chiprev;
331 	const char *rm_chiprevstr;
332 	int rm_sktidx;
333 } amd_revmap[] = {
334 	/*
335 	 * =============== AuthenticAMD Family 0xf ===============
336 	 */
337 
338 	/*
339 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
340 	 */
341 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
342 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
343 	/*
344 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
345 	 */
346 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 },
347 	/*
348 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
349 	 * but the rev B and C0 combinations covered above.
350 	 */
351 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 },
352 	/*
353 	 * Rev D has extended model 0x1.
354 	 */
355 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 },
356 	/*
357 	 * Rev E has extended model 0x2.
358 	 * Extended model 0x3 is unused but available to grow into.
359 	 */
360 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 },
361 	/*
362 	 * Rev F has extended models 0x4 and 0x5.
363 	 */
364 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 },
365 	/*
366 	 * Rev G has extended model 0x6.
367 	 */
368 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 },
369 
370 	/*
371 	 * =============== AuthenticAMD Family 0x10 ===============
372 	 */
373 
374 	/*
375 	 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}.
376 	 * Give all of model 0 stepping range to rev A.
377 	 */
378 	{ 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 },
379 
380 	/*
381 	 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}.
382 	 * Give all of model 2 stepping range to rev B.
383 	 */
384 	{ 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 },
385 };
386 
387 /*
388  * Info for monitor/mwait idle loop.
389  *
390  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
391  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
392  * 2006.
393  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
394  * Documentation Updates" #33633, Rev 2.05, December 2006.
395  */
396 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
397 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
398 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
399 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
400 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
401 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
402 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
403 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
404 /*
405  * Number of sub-cstates for a given c-state.
406  */
407 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
408 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
409 
410 static void
411 synth_amd_info(struct cpuid_info *cpi)
412 {
413 	const struct amd_rev_mapent *rmp;
414 	uint_t family, model, step;
415 	int i;
416 
417 	/*
418 	 * Currently only AMD family 0xf and family 0x10 use these fields.
419 	 */
420 	if (cpi->cpi_family != 0xf && cpi->cpi_family != 0x10)
421 		return;
422 
423 	family = cpi->cpi_family;
424 	model = cpi->cpi_model;
425 	step = cpi->cpi_step;
426 
427 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
428 	    i++, rmp++) {
429 		if (family == rmp->rm_family &&
430 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
431 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
432 			cpi->cpi_chiprev = rmp->rm_chiprev;
433 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
434 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
435 			return;
436 		}
437 	}
438 }
439 
440 static void
441 synth_info(struct cpuid_info *cpi)
442 {
443 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
444 	cpi->cpi_chiprevstr = "Unknown";
445 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
446 
447 	switch (cpi->cpi_vendor) {
448 	case X86_VENDOR_AMD:
449 		synth_amd_info(cpi);
450 		break;
451 
452 	default:
453 		break;
454 
455 	}
456 }
457 
458 /*
459  * Apply up various platform-dependent restrictions where the
460  * underlying platform restrictions mean the CPU can be marked
461  * as less capable than its cpuid instruction would imply.
462  */
463 #if defined(__xpv)
464 static void
465 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
466 {
467 	switch (eax) {
468 	case 1:
469 		cp->cp_edx &=
470 		    ~(CPUID_INTC_EDX_PSE |
471 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
472 		    CPUID_INTC_EDX_MCA |	/* XXPV true on dom0? */
473 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
474 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
475 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
476 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
477 		break;
478 
479 	case 0x80000001:
480 		cp->cp_edx &=
481 		    ~(CPUID_AMD_EDX_PSE |
482 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
483 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
484 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
485 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
486 		    CPUID_AMD_EDX_TSCP);
487 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
488 		break;
489 	default:
490 		break;
491 	}
492 
493 	switch (vendor) {
494 	case X86_VENDOR_Intel:
495 		switch (eax) {
496 		case 4:
497 			/*
498 			 * Zero out the (ncores-per-chip - 1) field
499 			 */
500 			cp->cp_eax &= 0x03fffffff;
501 			break;
502 		default:
503 			break;
504 		}
505 		break;
506 	case X86_VENDOR_AMD:
507 		switch (eax) {
508 		case 0x80000008:
509 			/*
510 			 * Zero out the (ncores-per-chip - 1) field
511 			 */
512 			cp->cp_ecx &= 0xffffff00;
513 			break;
514 		default:
515 			break;
516 		}
517 		break;
518 	default:
519 		break;
520 	}
521 }
522 #else
523 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
524 #endif
525 
526 /*
527  *  Some undocumented ways of patching the results of the cpuid
528  *  instruction to permit running Solaris 10 on future cpus that
529  *  we don't currently support.  Could be set to non-zero values
530  *  via settings in eeprom.
531  */
532 
533 uint32_t cpuid_feature_ecx_include;
534 uint32_t cpuid_feature_ecx_exclude;
535 uint32_t cpuid_feature_edx_include;
536 uint32_t cpuid_feature_edx_exclude;
537 
538 void
539 cpuid_alloc_space(cpu_t *cpu)
540 {
541 	/*
542 	 * By convention, cpu0 is the boot cpu, which is set up
543 	 * before memory allocation is available.  All other cpus get
544 	 * their cpuid_info struct allocated here.
545 	 */
546 	ASSERT(cpu->cpu_id != 0);
547 	cpu->cpu_m.mcpu_cpi =
548 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
549 }
550 
551 void
552 cpuid_free_space(cpu_t *cpu)
553 {
554 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
555 	int i;
556 
557 	ASSERT(cpu->cpu_id != 0);
558 
559 	/*
560 	 * Free up any function 4 related dynamic storage
561 	 */
562 	for (i = 1; i < cpi->cpi_std_4_size; i++)
563 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
564 	if (cpi->cpi_std_4_size > 0)
565 		kmem_free(cpi->cpi_std_4,
566 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
567 
568 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
569 }
570 
571 #if !defined(__xpv)
572 
573 static void
574 check_for_hvm()
575 {
576 	struct cpuid_regs cp;
577 	char *xen_str;
578 	uint32_t xen_signature[4];
579 	extern int xpv_is_hvm;
580 
581 	/*
582 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
583 	 * 0x40000000 returns a string representing the Xen signature in
584 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
585 	 * function.
586 	 */
587 	cp.cp_eax = 0x40000000;
588 	(void) __cpuid_insn(&cp);
589 	xen_signature[0] = cp.cp_ebx;
590 	xen_signature[1] = cp.cp_ecx;
591 	xen_signature[2] = cp.cp_edx;
592 	xen_signature[3] = 0;
593 	xen_str = (char *)xen_signature;
594 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
595 		xpv_is_hvm = 1;
596 }
597 #endif	/* __xpv */
598 
599 uint_t
600 cpuid_pass1(cpu_t *cpu)
601 {
602 	uint32_t mask_ecx, mask_edx;
603 	uint_t feature = X86_CPUID;
604 	struct cpuid_info *cpi;
605 	struct cpuid_regs *cp;
606 	int xcpuid;
607 #if !defined(__xpv)
608 	extern int idle_cpu_prefer_mwait;
609 #endif
610 
611 	/*
612 	 * Space statically allocated for cpu0, ensure pointer is set
613 	 */
614 	if (cpu->cpu_id == 0)
615 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
616 	cpi = cpu->cpu_m.mcpu_cpi;
617 	ASSERT(cpi != NULL);
618 	cp = &cpi->cpi_std[0];
619 	cp->cp_eax = 0;
620 	cpi->cpi_maxeax = __cpuid_insn(cp);
621 	{
622 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
623 		*iptr++ = cp->cp_ebx;
624 		*iptr++ = cp->cp_edx;
625 		*iptr++ = cp->cp_ecx;
626 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
627 	}
628 
629 	/*
630 	 * Map the vendor string to a type code
631 	 */
632 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
633 		cpi->cpi_vendor = X86_VENDOR_Intel;
634 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
635 		cpi->cpi_vendor = X86_VENDOR_AMD;
636 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
637 		cpi->cpi_vendor = X86_VENDOR_TM;
638 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
639 		/*
640 		 * CyrixInstead is a variable used by the Cyrix detection code
641 		 * in locore.
642 		 */
643 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
644 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
645 		cpi->cpi_vendor = X86_VENDOR_UMC;
646 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
647 		cpi->cpi_vendor = X86_VENDOR_NexGen;
648 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
649 		cpi->cpi_vendor = X86_VENDOR_Centaur;
650 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
651 		cpi->cpi_vendor = X86_VENDOR_Rise;
652 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
653 		cpi->cpi_vendor = X86_VENDOR_SiS;
654 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
655 		cpi->cpi_vendor = X86_VENDOR_NSC;
656 	else
657 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
658 
659 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
660 
661 	/*
662 	 * Limit the range in case of weird hardware
663 	 */
664 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
665 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
666 	if (cpi->cpi_maxeax < 1)
667 		goto pass1_done;
668 
669 	cp = &cpi->cpi_std[1];
670 	cp->cp_eax = 1;
671 	(void) __cpuid_insn(cp);
672 
673 	/*
674 	 * Extract identifying constants for easy access.
675 	 */
676 	cpi->cpi_model = CPI_MODEL(cpi);
677 	cpi->cpi_family = CPI_FAMILY(cpi);
678 
679 	if (cpi->cpi_family == 0xf)
680 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
681 
682 	/*
683 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
684 	 * Intel, and presumably everyone else, uses model == 0xf, as
685 	 * one would expect (max value means possible overflow).  Sigh.
686 	 */
687 
688 	switch (cpi->cpi_vendor) {
689 	case X86_VENDOR_Intel:
690 		if (IS_EXTENDED_MODEL_INTEL(cpi))
691 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
692 		break;
693 	case X86_VENDOR_AMD:
694 		if (CPI_FAMILY(cpi) == 0xf)
695 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
696 		break;
697 	default:
698 		if (cpi->cpi_model == 0xf)
699 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
700 		break;
701 	}
702 
703 	cpi->cpi_step = CPI_STEP(cpi);
704 	cpi->cpi_brandid = CPI_BRANDID(cpi);
705 
706 	/*
707 	 * *default* assumptions:
708 	 * - believe %edx feature word
709 	 * - ignore %ecx feature word
710 	 * - 32-bit virtual and physical addressing
711 	 */
712 	mask_edx = 0xffffffff;
713 	mask_ecx = 0;
714 
715 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
716 
717 	switch (cpi->cpi_vendor) {
718 	case X86_VENDOR_Intel:
719 		if (cpi->cpi_family == 5)
720 			x86_type = X86_TYPE_P5;
721 		else if (IS_LEGACY_P6(cpi)) {
722 			x86_type = X86_TYPE_P6;
723 			pentiumpro_bug4046376 = 1;
724 			pentiumpro_bug4064495 = 1;
725 			/*
726 			 * Clear the SEP bit when it was set erroneously
727 			 */
728 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
729 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
730 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
731 			x86_type = X86_TYPE_P4;
732 			/*
733 			 * We don't currently depend on any of the %ecx
734 			 * features until Prescott, so we'll only check
735 			 * this from P4 onwards.  We might want to revisit
736 			 * that idea later.
737 			 */
738 			mask_ecx = 0xffffffff;
739 		} else if (cpi->cpi_family > 0xf)
740 			mask_ecx = 0xffffffff;
741 		/*
742 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
743 		 * to obtain the monitor linesize.
744 		 */
745 		if (cpi->cpi_maxeax < 5)
746 			mask_ecx &= ~CPUID_INTC_ECX_MON;
747 		break;
748 	case X86_VENDOR_IntelClone:
749 	default:
750 		break;
751 	case X86_VENDOR_AMD:
752 #if defined(OPTERON_ERRATUM_108)
753 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
754 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
755 			cpi->cpi_model = 0xc;
756 		} else
757 #endif
758 		if (cpi->cpi_family == 5) {
759 			/*
760 			 * AMD K5 and K6
761 			 *
762 			 * These CPUs have an incomplete implementation
763 			 * of MCA/MCE which we mask away.
764 			 */
765 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
766 
767 			/*
768 			 * Model 0 uses the wrong (APIC) bit
769 			 * to indicate PGE.  Fix it here.
770 			 */
771 			if (cpi->cpi_model == 0) {
772 				if (cp->cp_edx & 0x200) {
773 					cp->cp_edx &= ~0x200;
774 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
775 				}
776 			}
777 
778 			/*
779 			 * Early models had problems w/ MMX; disable.
780 			 */
781 			if (cpi->cpi_model < 6)
782 				mask_edx &= ~CPUID_INTC_EDX_MMX;
783 		}
784 
785 		/*
786 		 * For newer families, SSE3 and CX16, at least, are valid;
787 		 * enable all
788 		 */
789 		if (cpi->cpi_family >= 0xf)
790 			mask_ecx = 0xffffffff;
791 		/*
792 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
793 		 * to obtain the monitor linesize.
794 		 */
795 		if (cpi->cpi_maxeax < 5)
796 			mask_ecx &= ~CPUID_INTC_ECX_MON;
797 
798 #if !defined(__xpv)
799 		/*
800 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
801 		 * processors.  AMD does not intend MWAIT to be used in the cpu
802 		 * idle loop on current and future processors.  10h and future
803 		 * AMD processors use more power in MWAIT than HLT.
804 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
805 		 */
806 		idle_cpu_prefer_mwait = 0;
807 #endif
808 
809 		break;
810 	case X86_VENDOR_TM:
811 		/*
812 		 * workaround the NT workaround in CMS 4.1
813 		 */
814 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
815 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
816 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
817 		break;
818 	case X86_VENDOR_Centaur:
819 		/*
820 		 * workaround the NT workarounds again
821 		 */
822 		if (cpi->cpi_family == 6)
823 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
824 		break;
825 	case X86_VENDOR_Cyrix:
826 		/*
827 		 * We rely heavily on the probing in locore
828 		 * to actually figure out what parts, if any,
829 		 * of the Cyrix cpuid instruction to believe.
830 		 */
831 		switch (x86_type) {
832 		case X86_TYPE_CYRIX_486:
833 			mask_edx = 0;
834 			break;
835 		case X86_TYPE_CYRIX_6x86:
836 			mask_edx = 0;
837 			break;
838 		case X86_TYPE_CYRIX_6x86L:
839 			mask_edx =
840 			    CPUID_INTC_EDX_DE |
841 			    CPUID_INTC_EDX_CX8;
842 			break;
843 		case X86_TYPE_CYRIX_6x86MX:
844 			mask_edx =
845 			    CPUID_INTC_EDX_DE |
846 			    CPUID_INTC_EDX_MSR |
847 			    CPUID_INTC_EDX_CX8 |
848 			    CPUID_INTC_EDX_PGE |
849 			    CPUID_INTC_EDX_CMOV |
850 			    CPUID_INTC_EDX_MMX;
851 			break;
852 		case X86_TYPE_CYRIX_GXm:
853 			mask_edx =
854 			    CPUID_INTC_EDX_MSR |
855 			    CPUID_INTC_EDX_CX8 |
856 			    CPUID_INTC_EDX_CMOV |
857 			    CPUID_INTC_EDX_MMX;
858 			break;
859 		case X86_TYPE_CYRIX_MediaGX:
860 			break;
861 		case X86_TYPE_CYRIX_MII:
862 		case X86_TYPE_VIA_CYRIX_III:
863 			mask_edx =
864 			    CPUID_INTC_EDX_DE |
865 			    CPUID_INTC_EDX_TSC |
866 			    CPUID_INTC_EDX_MSR |
867 			    CPUID_INTC_EDX_CX8 |
868 			    CPUID_INTC_EDX_PGE |
869 			    CPUID_INTC_EDX_CMOV |
870 			    CPUID_INTC_EDX_MMX;
871 			break;
872 		default:
873 			break;
874 		}
875 		break;
876 	}
877 
878 #if defined(__xpv)
879 	/*
880 	 * Do not support MONITOR/MWAIT under a hypervisor
881 	 */
882 	mask_ecx &= ~CPUID_INTC_ECX_MON;
883 #endif	/* __xpv */
884 
885 	/*
886 	 * Now we've figured out the masks that determine
887 	 * which bits we choose to believe, apply the masks
888 	 * to the feature words, then map the kernel's view
889 	 * of these feature words into its feature word.
890 	 */
891 	cp->cp_edx &= mask_edx;
892 	cp->cp_ecx &= mask_ecx;
893 
894 	/*
895 	 * apply any platform restrictions (we don't call this
896 	 * immediately after __cpuid_insn here, because we need the
897 	 * workarounds applied above first)
898 	 */
899 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
900 
901 	/*
902 	 * fold in overrides from the "eeprom" mechanism
903 	 */
904 	cp->cp_edx |= cpuid_feature_edx_include;
905 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
906 
907 	cp->cp_ecx |= cpuid_feature_ecx_include;
908 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
909 
910 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
911 		feature |= X86_LARGEPAGE;
912 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
913 		feature |= X86_TSC;
914 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
915 		feature |= X86_MSR;
916 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
917 		feature |= X86_MTRR;
918 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
919 		feature |= X86_PGE;
920 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
921 		feature |= X86_CMOV;
922 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
923 		feature |= X86_MMX;
924 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
925 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
926 		feature |= X86_MCA;
927 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
928 		feature |= X86_PAE;
929 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
930 		feature |= X86_CX8;
931 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
932 		feature |= X86_CX16;
933 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
934 		feature |= X86_PAT;
935 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
936 		feature |= X86_SEP;
937 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
938 		/*
939 		 * In our implementation, fxsave/fxrstor
940 		 * are prerequisites before we'll even
941 		 * try and do SSE things.
942 		 */
943 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
944 			feature |= X86_SSE;
945 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
946 			feature |= X86_SSE2;
947 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
948 			feature |= X86_SSE3;
949 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
950 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
951 				feature |= X86_SSSE3;
952 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
953 				feature |= X86_SSE4_1;
954 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
955 				feature |= X86_SSE4_2;
956 		}
957 	}
958 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
959 		feature |= X86_DE;
960 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
961 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
962 		feature |= X86_MWAIT;
963 	}
964 
965 	if (feature & X86_PAE)
966 		cpi->cpi_pabits = 36;
967 
968 	/*
969 	 * Hyperthreading configuration is slightly tricky on Intel
970 	 * and pure clones, and even trickier on AMD.
971 	 *
972 	 * (AMD chose to set the HTT bit on their CMP processors,
973 	 * even though they're not actually hyperthreaded.  Thus it
974 	 * takes a bit more work to figure out what's really going
975 	 * on ... see the handling of the CMP_LGCY bit below)
976 	 */
977 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
978 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
979 		if (cpi->cpi_ncpu_per_chip > 1)
980 			feature |= X86_HTT;
981 	} else {
982 		cpi->cpi_ncpu_per_chip = 1;
983 	}
984 
985 	/*
986 	 * Work on the "extended" feature information, doing
987 	 * some basic initialization for cpuid_pass2()
988 	 */
989 	xcpuid = 0;
990 	switch (cpi->cpi_vendor) {
991 	case X86_VENDOR_Intel:
992 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
993 			xcpuid++;
994 		break;
995 	case X86_VENDOR_AMD:
996 		if (cpi->cpi_family > 5 ||
997 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
998 			xcpuid++;
999 		break;
1000 	case X86_VENDOR_Cyrix:
1001 		/*
1002 		 * Only these Cyrix CPUs are -known- to support
1003 		 * extended cpuid operations.
1004 		 */
1005 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
1006 		    x86_type == X86_TYPE_CYRIX_GXm)
1007 			xcpuid++;
1008 		break;
1009 	case X86_VENDOR_Centaur:
1010 	case X86_VENDOR_TM:
1011 	default:
1012 		xcpuid++;
1013 		break;
1014 	}
1015 
1016 	if (xcpuid) {
1017 		cp = &cpi->cpi_extd[0];
1018 		cp->cp_eax = 0x80000000;
1019 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
1020 	}
1021 
1022 	if (cpi->cpi_xmaxeax & 0x80000000) {
1023 
1024 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
1025 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
1026 
1027 		switch (cpi->cpi_vendor) {
1028 		case X86_VENDOR_Intel:
1029 		case X86_VENDOR_AMD:
1030 			if (cpi->cpi_xmaxeax < 0x80000001)
1031 				break;
1032 			cp = &cpi->cpi_extd[1];
1033 			cp->cp_eax = 0x80000001;
1034 			(void) __cpuid_insn(cp);
1035 
1036 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1037 			    cpi->cpi_family == 5 &&
1038 			    cpi->cpi_model == 6 &&
1039 			    cpi->cpi_step == 6) {
1040 				/*
1041 				 * K6 model 6 uses bit 10 to indicate SYSC
1042 				 * Later models use bit 11. Fix it here.
1043 				 */
1044 				if (cp->cp_edx & 0x400) {
1045 					cp->cp_edx &= ~0x400;
1046 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
1047 				}
1048 			}
1049 
1050 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
1051 
1052 			/*
1053 			 * Compute the additions to the kernel's feature word.
1054 			 */
1055 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
1056 				feature |= X86_NX;
1057 
1058 #if defined(__amd64)
1059 			/* 1 GB large page - enable only for 64 bit kernel */
1060 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
1061 				feature |= X86_1GPG;
1062 #endif
1063 
1064 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
1065 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
1066 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
1067 				feature |= X86_SSE4A;
1068 
1069 			/*
1070 			 * If both the HTT and CMP_LGCY bits are set,
1071 			 * then we're not actually HyperThreaded.  Read
1072 			 * "AMD CPUID Specification" for more details.
1073 			 */
1074 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1075 			    (feature & X86_HTT) &&
1076 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
1077 				feature &= ~X86_HTT;
1078 				feature |= X86_CMP;
1079 			}
1080 #if defined(__amd64)
1081 			/*
1082 			 * It's really tricky to support syscall/sysret in
1083 			 * the i386 kernel; we rely on sysenter/sysexit
1084 			 * instead.  In the amd64 kernel, things are -way-
1085 			 * better.
1086 			 */
1087 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
1088 				feature |= X86_ASYSC;
1089 
1090 			/*
1091 			 * While we're thinking about system calls, note
1092 			 * that AMD processors don't support sysenter
1093 			 * in long mode at all, so don't try to program them.
1094 			 */
1095 			if (x86_vendor == X86_VENDOR_AMD)
1096 				feature &= ~X86_SEP;
1097 #endif
1098 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
1099 				feature |= X86_TSCP;
1100 			break;
1101 		default:
1102 			break;
1103 		}
1104 
1105 		/*
1106 		 * Get CPUID data about processor cores and hyperthreads.
1107 		 */
1108 		switch (cpi->cpi_vendor) {
1109 		case X86_VENDOR_Intel:
1110 			if (cpi->cpi_maxeax >= 4) {
1111 				cp = &cpi->cpi_std[4];
1112 				cp->cp_eax = 4;
1113 				cp->cp_ecx = 0;
1114 				(void) __cpuid_insn(cp);
1115 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1116 			}
1117 			/*FALLTHROUGH*/
1118 		case X86_VENDOR_AMD:
1119 			if (cpi->cpi_xmaxeax < 0x80000008)
1120 				break;
1121 			cp = &cpi->cpi_extd[8];
1122 			cp->cp_eax = 0x80000008;
1123 			(void) __cpuid_insn(cp);
1124 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1125 
1126 			/*
1127 			 * Virtual and physical address limits from
1128 			 * cpuid override previously guessed values.
1129 			 */
1130 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1131 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1132 			break;
1133 		default:
1134 			break;
1135 		}
1136 
1137 		/*
1138 		 * Derive the number of cores per chip
1139 		 */
1140 		switch (cpi->cpi_vendor) {
1141 		case X86_VENDOR_Intel:
1142 			if (cpi->cpi_maxeax < 4) {
1143 				cpi->cpi_ncore_per_chip = 1;
1144 				break;
1145 			} else {
1146 				cpi->cpi_ncore_per_chip =
1147 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1148 			}
1149 			break;
1150 		case X86_VENDOR_AMD:
1151 			if (cpi->cpi_xmaxeax < 0x80000008) {
1152 				cpi->cpi_ncore_per_chip = 1;
1153 				break;
1154 			} else {
1155 				/*
1156 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1157 				 * 1 less than the number of physical cores on
1158 				 * the chip.  In family 0x10 this value can
1159 				 * be affected by "downcoring" - it reflects
1160 				 * 1 less than the number of cores actually
1161 				 * enabled on this node.
1162 				 */
1163 				cpi->cpi_ncore_per_chip =
1164 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1165 			}
1166 			break;
1167 		default:
1168 			cpi->cpi_ncore_per_chip = 1;
1169 			break;
1170 		}
1171 	} else {
1172 		cpi->cpi_ncore_per_chip = 1;
1173 	}
1174 
1175 	/*
1176 	 * If more than one core, then this processor is CMP.
1177 	 */
1178 	if (cpi->cpi_ncore_per_chip > 1)
1179 		feature |= X86_CMP;
1180 
1181 	/*
1182 	 * If the number of cores is the same as the number
1183 	 * of CPUs, then we cannot have HyperThreading.
1184 	 */
1185 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1186 		feature &= ~X86_HTT;
1187 
1188 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1189 		/*
1190 		 * Single-core single-threaded processors.
1191 		 */
1192 		cpi->cpi_chipid = -1;
1193 		cpi->cpi_clogid = 0;
1194 		cpi->cpi_coreid = cpu->cpu_id;
1195 		cpi->cpi_pkgcoreid = 0;
1196 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1197 		uint_t i;
1198 		uint_t chipid_shift = 0;
1199 		uint_t coreid_shift = 0;
1200 		uint_t apic_id = CPI_APIC_ID(cpi);
1201 
1202 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1203 			chipid_shift++;
1204 		cpi->cpi_chipid = apic_id >> chipid_shift;
1205 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1206 
1207 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1208 			if (feature & X86_CMP) {
1209 				/*
1210 				 * Multi-core (and possibly multi-threaded)
1211 				 * processors.
1212 				 */
1213 				uint_t ncpu_per_core;
1214 				if (cpi->cpi_ncore_per_chip == 1)
1215 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1216 				else if (cpi->cpi_ncore_per_chip > 1)
1217 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1218 					    cpi->cpi_ncore_per_chip;
1219 				/*
1220 				 * 8bit APIC IDs on dual core Pentiums
1221 				 * look like this:
1222 				 *
1223 				 * +-----------------------+------+------+
1224 				 * | Physical Package ID   |  MC  |  HT  |
1225 				 * +-----------------------+------+------+
1226 				 * <------- chipid -------->
1227 				 * <------- coreid --------------->
1228 				 *			   <--- clogid -->
1229 				 *			   <------>
1230 				 *			   pkgcoreid
1231 				 *
1232 				 * Where the number of bits necessary to
1233 				 * represent MC and HT fields together equals
1234 				 * to the minimum number of bits necessary to
1235 				 * store the value of cpi->cpi_ncpu_per_chip.
1236 				 * Of those bits, the MC part uses the number
1237 				 * of bits necessary to store the value of
1238 				 * cpi->cpi_ncore_per_chip.
1239 				 */
1240 				for (i = 1; i < ncpu_per_core; i <<= 1)
1241 					coreid_shift++;
1242 				cpi->cpi_coreid = apic_id >> coreid_shift;
1243 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1244 				    coreid_shift;
1245 			} else if (feature & X86_HTT) {
1246 				/*
1247 				 * Single-core multi-threaded processors.
1248 				 */
1249 				cpi->cpi_coreid = cpi->cpi_chipid;
1250 				cpi->cpi_pkgcoreid = 0;
1251 			}
1252 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1253 			/*
1254 			 * AMD CMP chips currently have a single thread per
1255 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1256 			 * cores on family 0x10.
1257 			 *
1258 			 * Since no two cpus share a core we must assign a
1259 			 * distinct coreid per cpu, and we do this by using
1260 			 * the cpu_id.  This scheme does not, however,
1261 			 * guarantee that sibling cores of a chip will have
1262 			 * sequential coreids starting at a multiple of the
1263 			 * number of cores per chip - that is usually the
1264 			 * case, but if the ACPI MADT table is presented
1265 			 * in a different order then we need to perform a
1266 			 * few more gymnastics for the pkgcoreid.
1267 			 *
1268 			 * In family 0xf CMPs there are 2 cores on all nodes
1269 			 * present - no mixing of single and dual core parts.
1270 			 *
1271 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1272 			 * "ApicIdCoreIdSize[3:0]" tells us how
1273 			 * many least-significant bits in the ApicId
1274 			 * are used to represent the core number
1275 			 * within the node.  Cores are always
1276 			 * numbered sequentially from 0 regardless
1277 			 * of how many or which are disabled, and
1278 			 * there seems to be no way to discover the
1279 			 * real core id when some are disabled.
1280 			 */
1281 			cpi->cpi_coreid = cpu->cpu_id;
1282 
1283 			if (cpi->cpi_family == 0x10 &&
1284 			    cpi->cpi_xmaxeax >= 0x80000008) {
1285 				int coreidsz =
1286 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1287 
1288 				cpi->cpi_pkgcoreid =
1289 				    apic_id & ((1 << coreidsz) - 1);
1290 			} else {
1291 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1292 			}
1293 		} else {
1294 			/*
1295 			 * All other processors are currently
1296 			 * assumed to have single cores.
1297 			 */
1298 			cpi->cpi_coreid = cpi->cpi_chipid;
1299 			cpi->cpi_pkgcoreid = 0;
1300 		}
1301 	}
1302 
1303 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1304 
1305 	/*
1306 	 * Synthesize chip "revision" and socket type
1307 	 */
1308 	synth_info(cpi);
1309 
1310 pass1_done:
1311 #if !defined(__xpv)
1312 	check_for_hvm();
1313 #endif
1314 	cpi->cpi_pass = 1;
1315 	return (feature);
1316 }
1317 
1318 /*
1319  * Make copies of the cpuid table entries we depend on, in
1320  * part for ease of parsing now, in part so that we have only
1321  * one place to correct any of it, in part for ease of
1322  * later export to userland, and in part so we can look at
1323  * this stuff in a crash dump.
1324  */
1325 
1326 /*ARGSUSED*/
1327 void
1328 cpuid_pass2(cpu_t *cpu)
1329 {
1330 	uint_t n, nmax;
1331 	int i;
1332 	struct cpuid_regs *cp;
1333 	uint8_t *dp;
1334 	uint32_t *iptr;
1335 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1336 
1337 	ASSERT(cpi->cpi_pass == 1);
1338 
1339 	if (cpi->cpi_maxeax < 1)
1340 		goto pass2_done;
1341 
1342 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1343 		nmax = NMAX_CPI_STD;
1344 	/*
1345 	 * (We already handled n == 0 and n == 1 in pass 1)
1346 	 */
1347 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1348 		cp->cp_eax = n;
1349 
1350 		/*
1351 		 * CPUID function 4 expects %ecx to be initialized
1352 		 * with an index which indicates which cache to return
1353 		 * information about. The OS is expected to call function 4
1354 		 * with %ecx set to 0, 1, 2, ... until it returns with
1355 		 * EAX[4:0] set to 0, which indicates there are no more
1356 		 * caches.
1357 		 *
1358 		 * Here, populate cpi_std[4] with the information returned by
1359 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1360 		 * when dynamic memory allocation becomes available.
1361 		 *
1362 		 * Note: we need to explicitly initialize %ecx here, since
1363 		 * function 4 may have been previously invoked.
1364 		 */
1365 		if (n == 4)
1366 			cp->cp_ecx = 0;
1367 
1368 		(void) __cpuid_insn(cp);
1369 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1370 		switch (n) {
1371 		case 2:
1372 			/*
1373 			 * "the lower 8 bits of the %eax register
1374 			 * contain a value that identifies the number
1375 			 * of times the cpuid [instruction] has to be
1376 			 * executed to obtain a complete image of the
1377 			 * processor's caching systems."
1378 			 *
1379 			 * How *do* they make this stuff up?
1380 			 */
1381 			cpi->cpi_ncache = sizeof (*cp) *
1382 			    BITX(cp->cp_eax, 7, 0);
1383 			if (cpi->cpi_ncache == 0)
1384 				break;
1385 			cpi->cpi_ncache--;	/* skip count byte */
1386 
1387 			/*
1388 			 * Well, for now, rather than attempt to implement
1389 			 * this slightly dubious algorithm, we just look
1390 			 * at the first 15 ..
1391 			 */
1392 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1393 				cpi->cpi_ncache = sizeof (*cp) - 1;
1394 
1395 			dp = cpi->cpi_cacheinfo;
1396 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1397 				uint8_t *p = (void *)&cp->cp_eax;
1398 				for (i = 1; i < 4; i++)
1399 					if (p[i] != 0)
1400 						*dp++ = p[i];
1401 			}
1402 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1403 				uint8_t *p = (void *)&cp->cp_ebx;
1404 				for (i = 0; i < 4; i++)
1405 					if (p[i] != 0)
1406 						*dp++ = p[i];
1407 			}
1408 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1409 				uint8_t *p = (void *)&cp->cp_ecx;
1410 				for (i = 0; i < 4; i++)
1411 					if (p[i] != 0)
1412 						*dp++ = p[i];
1413 			}
1414 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1415 				uint8_t *p = (void *)&cp->cp_edx;
1416 				for (i = 0; i < 4; i++)
1417 					if (p[i] != 0)
1418 						*dp++ = p[i];
1419 			}
1420 			break;
1421 
1422 		case 3:	/* Processor serial number, if PSN supported */
1423 			break;
1424 
1425 		case 4:	/* Deterministic cache parameters */
1426 			break;
1427 
1428 		case 5:	/* Monitor/Mwait parameters */
1429 		{
1430 			size_t mwait_size;
1431 
1432 			/*
1433 			 * check cpi_mwait.support which was set in cpuid_pass1
1434 			 */
1435 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1436 				break;
1437 
1438 			/*
1439 			 * Protect ourself from insane mwait line size.
1440 			 * Workaround for incomplete hardware emulator(s).
1441 			 */
1442 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1443 			if (mwait_size < sizeof (uint32_t) ||
1444 			    !ISP2(mwait_size)) {
1445 #if DEBUG
1446 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1447 				    "size %ld",
1448 				    cpu->cpu_id, (long)mwait_size);
1449 #endif
1450 				break;
1451 			}
1452 
1453 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1454 			cpi->cpi_mwait.mon_max = mwait_size;
1455 			if (MWAIT_EXTENSION(cpi)) {
1456 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1457 				if (MWAIT_INT_ENABLE(cpi))
1458 					cpi->cpi_mwait.support |=
1459 					    MWAIT_ECX_INT_ENABLE;
1460 			}
1461 			break;
1462 		}
1463 		default:
1464 			break;
1465 		}
1466 	}
1467 
1468 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1469 		cp->cp_eax = 0xB;
1470 		cp->cp_ecx = 0;
1471 
1472 		(void) __cpuid_insn(cp);
1473 
1474 		/*
1475 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1476 		 * indicates that the extended topology enumeration leaf is
1477 		 * available.
1478 		 */
1479 		if (cp->cp_ebx) {
1480 			uint32_t x2apic_id;
1481 			uint_t coreid_shift = 0;
1482 			uint_t ncpu_per_core = 1;
1483 			uint_t chipid_shift = 0;
1484 			uint_t ncpu_per_chip = 1;
1485 			uint_t i;
1486 			uint_t level;
1487 
1488 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1489 				cp->cp_eax = 0xB;
1490 				cp->cp_ecx = i;
1491 
1492 				(void) __cpuid_insn(cp);
1493 				level = CPI_CPU_LEVEL_TYPE(cp);
1494 
1495 				if (level == 1) {
1496 					x2apic_id = cp->cp_edx;
1497 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1498 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1499 				} else if (level == 2) {
1500 					x2apic_id = cp->cp_edx;
1501 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1502 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1503 				}
1504 			}
1505 
1506 			cpi->cpi_apicid = x2apic_id;
1507 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1508 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1509 			    ncpu_per_core;
1510 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1511 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1512 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1513 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1514 		}
1515 	}
1516 
1517 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1518 		goto pass2_done;
1519 
1520 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1521 		nmax = NMAX_CPI_EXTD;
1522 	/*
1523 	 * Copy the extended properties, fixing them as we go.
1524 	 * (We already handled n == 0 and n == 1 in pass 1)
1525 	 */
1526 	iptr = (void *)cpi->cpi_brandstr;
1527 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1528 		cp->cp_eax = 0x80000000 + n;
1529 		(void) __cpuid_insn(cp);
1530 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1531 		switch (n) {
1532 		case 2:
1533 		case 3:
1534 		case 4:
1535 			/*
1536 			 * Extract the brand string
1537 			 */
1538 			*iptr++ = cp->cp_eax;
1539 			*iptr++ = cp->cp_ebx;
1540 			*iptr++ = cp->cp_ecx;
1541 			*iptr++ = cp->cp_edx;
1542 			break;
1543 		case 5:
1544 			switch (cpi->cpi_vendor) {
1545 			case X86_VENDOR_AMD:
1546 				/*
1547 				 * The Athlon and Duron were the first
1548 				 * parts to report the sizes of the
1549 				 * TLB for large pages. Before then,
1550 				 * we don't trust the data.
1551 				 */
1552 				if (cpi->cpi_family < 6 ||
1553 				    (cpi->cpi_family == 6 &&
1554 				    cpi->cpi_model < 1))
1555 					cp->cp_eax = 0;
1556 				break;
1557 			default:
1558 				break;
1559 			}
1560 			break;
1561 		case 6:
1562 			switch (cpi->cpi_vendor) {
1563 			case X86_VENDOR_AMD:
1564 				/*
1565 				 * The Athlon and Duron were the first
1566 				 * AMD parts with L2 TLB's.
1567 				 * Before then, don't trust the data.
1568 				 */
1569 				if (cpi->cpi_family < 6 ||
1570 				    cpi->cpi_family == 6 &&
1571 				    cpi->cpi_model < 1)
1572 					cp->cp_eax = cp->cp_ebx = 0;
1573 				/*
1574 				 * AMD Duron rev A0 reports L2
1575 				 * cache size incorrectly as 1K
1576 				 * when it is really 64K
1577 				 */
1578 				if (cpi->cpi_family == 6 &&
1579 				    cpi->cpi_model == 3 &&
1580 				    cpi->cpi_step == 0) {
1581 					cp->cp_ecx &= 0xffff;
1582 					cp->cp_ecx |= 0x400000;
1583 				}
1584 				break;
1585 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1586 				/*
1587 				 * VIA C3 processors are a bit messed
1588 				 * up w.r.t. encoding cache sizes in %ecx
1589 				 */
1590 				if (cpi->cpi_family != 6)
1591 					break;
1592 				/*
1593 				 * model 7 and 8 were incorrectly encoded
1594 				 *
1595 				 * xxx is model 8 really broken?
1596 				 */
1597 				if (cpi->cpi_model == 7 ||
1598 				    cpi->cpi_model == 8)
1599 					cp->cp_ecx =
1600 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1601 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1602 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1603 					    BITX(cp->cp_ecx, 7, 0);
1604 				/*
1605 				 * model 9 stepping 1 has wrong associativity
1606 				 */
1607 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1608 					cp->cp_ecx |= 8 << 12;
1609 				break;
1610 			case X86_VENDOR_Intel:
1611 				/*
1612 				 * Extended L2 Cache features function.
1613 				 * First appeared on Prescott.
1614 				 */
1615 			default:
1616 				break;
1617 			}
1618 			break;
1619 		default:
1620 			break;
1621 		}
1622 	}
1623 
1624 pass2_done:
1625 	cpi->cpi_pass = 2;
1626 }
1627 
1628 static const char *
1629 intel_cpubrand(const struct cpuid_info *cpi)
1630 {
1631 	int i;
1632 
1633 	if ((x86_feature & X86_CPUID) == 0 ||
1634 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1635 		return ("i486");
1636 
1637 	switch (cpi->cpi_family) {
1638 	case 5:
1639 		return ("Intel Pentium(r)");
1640 	case 6:
1641 		switch (cpi->cpi_model) {
1642 			uint_t celeron, xeon;
1643 			const struct cpuid_regs *cp;
1644 		case 0:
1645 		case 1:
1646 		case 2:
1647 			return ("Intel Pentium(r) Pro");
1648 		case 3:
1649 		case 4:
1650 			return ("Intel Pentium(r) II");
1651 		case 6:
1652 			return ("Intel Celeron(r)");
1653 		case 5:
1654 		case 7:
1655 			celeron = xeon = 0;
1656 			cp = &cpi->cpi_std[2];	/* cache info */
1657 
1658 			for (i = 1; i < 4; i++) {
1659 				uint_t tmp;
1660 
1661 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1662 				if (tmp == 0x40)
1663 					celeron++;
1664 				if (tmp >= 0x44 && tmp <= 0x45)
1665 					xeon++;
1666 			}
1667 
1668 			for (i = 0; i < 2; i++) {
1669 				uint_t tmp;
1670 
1671 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1672 				if (tmp == 0x40)
1673 					celeron++;
1674 				else if (tmp >= 0x44 && tmp <= 0x45)
1675 					xeon++;
1676 			}
1677 
1678 			for (i = 0; i < 4; i++) {
1679 				uint_t tmp;
1680 
1681 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1682 				if (tmp == 0x40)
1683 					celeron++;
1684 				else if (tmp >= 0x44 && tmp <= 0x45)
1685 					xeon++;
1686 			}
1687 
1688 			for (i = 0; i < 4; i++) {
1689 				uint_t tmp;
1690 
1691 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1692 				if (tmp == 0x40)
1693 					celeron++;
1694 				else if (tmp >= 0x44 && tmp <= 0x45)
1695 					xeon++;
1696 			}
1697 
1698 			if (celeron)
1699 				return ("Intel Celeron(r)");
1700 			if (xeon)
1701 				return (cpi->cpi_model == 5 ?
1702 				    "Intel Pentium(r) II Xeon(tm)" :
1703 				    "Intel Pentium(r) III Xeon(tm)");
1704 			return (cpi->cpi_model == 5 ?
1705 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1706 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1707 		default:
1708 			break;
1709 		}
1710 	default:
1711 		break;
1712 	}
1713 
1714 	/* BrandID is present if the field is nonzero */
1715 	if (cpi->cpi_brandid != 0) {
1716 		static const struct {
1717 			uint_t bt_bid;
1718 			const char *bt_str;
1719 		} brand_tbl[] = {
1720 			{ 0x1,	"Intel(r) Celeron(r)" },
1721 			{ 0x2,	"Intel(r) Pentium(r) III" },
1722 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1723 			{ 0x4,	"Intel(r) Pentium(r) III" },
1724 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1725 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1726 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1727 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1728 			{ 0xa,	"Intel(r) Celeron(r)" },
1729 			{ 0xb,	"Intel(r) Xeon(tm)" },
1730 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1731 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1732 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1733 			{ 0x11, "Mobile Genuine Intel(r)" },
1734 			{ 0x12, "Intel(r) Celeron(r) M" },
1735 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1736 			{ 0x14, "Intel(r) Celeron(r)" },
1737 			{ 0x15, "Mobile Genuine Intel(r)" },
1738 			{ 0x16,	"Intel(r) Pentium(r) M" },
1739 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1740 		};
1741 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1742 		uint_t sgn;
1743 
1744 		sgn = (cpi->cpi_family << 8) |
1745 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1746 
1747 		for (i = 0; i < btblmax; i++)
1748 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1749 				break;
1750 		if (i < btblmax) {
1751 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1752 				return ("Intel(r) Celeron(r)");
1753 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1754 				return ("Intel(r) Xeon(tm) MP");
1755 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1756 				return ("Intel(r) Xeon(tm)");
1757 			return (brand_tbl[i].bt_str);
1758 		}
1759 	}
1760 
1761 	return (NULL);
1762 }
1763 
1764 static const char *
1765 amd_cpubrand(const struct cpuid_info *cpi)
1766 {
1767 	if ((x86_feature & X86_CPUID) == 0 ||
1768 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1769 		return ("i486 compatible");
1770 
1771 	switch (cpi->cpi_family) {
1772 	case 5:
1773 		switch (cpi->cpi_model) {
1774 		case 0:
1775 		case 1:
1776 		case 2:
1777 		case 3:
1778 		case 4:
1779 		case 5:
1780 			return ("AMD-K5(r)");
1781 		case 6:
1782 		case 7:
1783 			return ("AMD-K6(r)");
1784 		case 8:
1785 			return ("AMD-K6(r)-2");
1786 		case 9:
1787 			return ("AMD-K6(r)-III");
1788 		default:
1789 			return ("AMD (family 5)");
1790 		}
1791 	case 6:
1792 		switch (cpi->cpi_model) {
1793 		case 1:
1794 			return ("AMD-K7(tm)");
1795 		case 0:
1796 		case 2:
1797 		case 4:
1798 			return ("AMD Athlon(tm)");
1799 		case 3:
1800 		case 7:
1801 			return ("AMD Duron(tm)");
1802 		case 6:
1803 		case 8:
1804 		case 10:
1805 			/*
1806 			 * Use the L2 cache size to distinguish
1807 			 */
1808 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1809 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1810 		default:
1811 			return ("AMD (family 6)");
1812 		}
1813 	default:
1814 		break;
1815 	}
1816 
1817 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1818 	    cpi->cpi_brandid != 0) {
1819 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1820 		case 3:
1821 			return ("AMD Opteron(tm) UP 1xx");
1822 		case 4:
1823 			return ("AMD Opteron(tm) DP 2xx");
1824 		case 5:
1825 			return ("AMD Opteron(tm) MP 8xx");
1826 		default:
1827 			return ("AMD Opteron(tm)");
1828 		}
1829 	}
1830 
1831 	return (NULL);
1832 }
1833 
1834 static const char *
1835 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1836 {
1837 	if ((x86_feature & X86_CPUID) == 0 ||
1838 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1839 	    type == X86_TYPE_CYRIX_486)
1840 		return ("i486 compatible");
1841 
1842 	switch (type) {
1843 	case X86_TYPE_CYRIX_6x86:
1844 		return ("Cyrix 6x86");
1845 	case X86_TYPE_CYRIX_6x86L:
1846 		return ("Cyrix 6x86L");
1847 	case X86_TYPE_CYRIX_6x86MX:
1848 		return ("Cyrix 6x86MX");
1849 	case X86_TYPE_CYRIX_GXm:
1850 		return ("Cyrix GXm");
1851 	case X86_TYPE_CYRIX_MediaGX:
1852 		return ("Cyrix MediaGX");
1853 	case X86_TYPE_CYRIX_MII:
1854 		return ("Cyrix M2");
1855 	case X86_TYPE_VIA_CYRIX_III:
1856 		return ("VIA Cyrix M3");
1857 	default:
1858 		/*
1859 		 * Have another wild guess ..
1860 		 */
1861 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1862 			return ("Cyrix 5x86");
1863 		else if (cpi->cpi_family == 5) {
1864 			switch (cpi->cpi_model) {
1865 			case 2:
1866 				return ("Cyrix 6x86");	/* Cyrix M1 */
1867 			case 4:
1868 				return ("Cyrix MediaGX");
1869 			default:
1870 				break;
1871 			}
1872 		} else if (cpi->cpi_family == 6) {
1873 			switch (cpi->cpi_model) {
1874 			case 0:
1875 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1876 			case 5:
1877 			case 6:
1878 			case 7:
1879 			case 8:
1880 			case 9:
1881 				return ("VIA C3");
1882 			default:
1883 				break;
1884 			}
1885 		}
1886 		break;
1887 	}
1888 	return (NULL);
1889 }
1890 
1891 /*
1892  * This only gets called in the case that the CPU extended
1893  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1894  * aren't available, or contain null bytes for some reason.
1895  */
1896 static void
1897 fabricate_brandstr(struct cpuid_info *cpi)
1898 {
1899 	const char *brand = NULL;
1900 
1901 	switch (cpi->cpi_vendor) {
1902 	case X86_VENDOR_Intel:
1903 		brand = intel_cpubrand(cpi);
1904 		break;
1905 	case X86_VENDOR_AMD:
1906 		brand = amd_cpubrand(cpi);
1907 		break;
1908 	case X86_VENDOR_Cyrix:
1909 		brand = cyrix_cpubrand(cpi, x86_type);
1910 		break;
1911 	case X86_VENDOR_NexGen:
1912 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1913 			brand = "NexGen Nx586";
1914 		break;
1915 	case X86_VENDOR_Centaur:
1916 		if (cpi->cpi_family == 5)
1917 			switch (cpi->cpi_model) {
1918 			case 4:
1919 				brand = "Centaur C6";
1920 				break;
1921 			case 8:
1922 				brand = "Centaur C2";
1923 				break;
1924 			case 9:
1925 				brand = "Centaur C3";
1926 				break;
1927 			default:
1928 				break;
1929 			}
1930 		break;
1931 	case X86_VENDOR_Rise:
1932 		if (cpi->cpi_family == 5 &&
1933 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1934 			brand = "Rise mP6";
1935 		break;
1936 	case X86_VENDOR_SiS:
1937 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1938 			brand = "SiS 55x";
1939 		break;
1940 	case X86_VENDOR_TM:
1941 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1942 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1943 		break;
1944 	case X86_VENDOR_NSC:
1945 	case X86_VENDOR_UMC:
1946 	default:
1947 		break;
1948 	}
1949 	if (brand) {
1950 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1951 		return;
1952 	}
1953 
1954 	/*
1955 	 * If all else fails ...
1956 	 */
1957 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1958 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1959 	    cpi->cpi_model, cpi->cpi_step);
1960 }
1961 
1962 /*
1963  * This routine is called just after kernel memory allocation
1964  * becomes available on cpu0, and as part of mp_startup() on
1965  * the other cpus.
1966  *
1967  * Fixup the brand string, and collect any information from cpuid
1968  * that requires dynamicically allocated storage to represent.
1969  */
1970 /*ARGSUSED*/
1971 void
1972 cpuid_pass3(cpu_t *cpu)
1973 {
1974 	int	i, max, shft, level, size;
1975 	struct cpuid_regs regs;
1976 	struct cpuid_regs *cp;
1977 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1978 
1979 	ASSERT(cpi->cpi_pass == 2);
1980 
1981 	/*
1982 	 * Function 4: Deterministic cache parameters
1983 	 *
1984 	 * Take this opportunity to detect the number of threads
1985 	 * sharing the last level cache, and construct a corresponding
1986 	 * cache id. The respective cpuid_info members are initialized
1987 	 * to the default case of "no last level cache sharing".
1988 	 */
1989 	cpi->cpi_ncpu_shr_last_cache = 1;
1990 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1991 
1992 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1993 
1994 		/*
1995 		 * Find the # of elements (size) returned by fn 4, and along
1996 		 * the way detect last level cache sharing details.
1997 		 */
1998 		bzero(&regs, sizeof (regs));
1999 		cp = &regs;
2000 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
2001 			cp->cp_eax = 4;
2002 			cp->cp_ecx = i;
2003 
2004 			(void) __cpuid_insn(cp);
2005 
2006 			if (CPI_CACHE_TYPE(cp) == 0)
2007 				break;
2008 			level = CPI_CACHE_LVL(cp);
2009 			if (level > max) {
2010 				max = level;
2011 				cpi->cpi_ncpu_shr_last_cache =
2012 				    CPI_NTHR_SHR_CACHE(cp) + 1;
2013 			}
2014 		}
2015 		cpi->cpi_std_4_size = size = i;
2016 
2017 		/*
2018 		 * Allocate the cpi_std_4 array. The first element
2019 		 * references the regs for fn 4, %ecx == 0, which
2020 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
2021 		 */
2022 		if (size > 0) {
2023 			cpi->cpi_std_4 =
2024 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
2025 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
2026 
2027 			/*
2028 			 * Allocate storage to hold the additional regs
2029 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
2030 			 *
2031 			 * The regs for fn 4, %ecx == 0 has already
2032 			 * been allocated as indicated above.
2033 			 */
2034 			for (i = 1; i < size; i++) {
2035 				cp = cpi->cpi_std_4[i] =
2036 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
2037 				cp->cp_eax = 4;
2038 				cp->cp_ecx = i;
2039 
2040 				(void) __cpuid_insn(cp);
2041 			}
2042 		}
2043 		/*
2044 		 * Determine the number of bits needed to represent
2045 		 * the number of CPUs sharing the last level cache.
2046 		 *
2047 		 * Shift off that number of bits from the APIC id to
2048 		 * derive the cache id.
2049 		 */
2050 		shft = 0;
2051 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
2052 			shft++;
2053 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
2054 	}
2055 
2056 	/*
2057 	 * Now fixup the brand string
2058 	 */
2059 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
2060 		fabricate_brandstr(cpi);
2061 	} else {
2062 
2063 		/*
2064 		 * If we successfully extracted a brand string from the cpuid
2065 		 * instruction, clean it up by removing leading spaces and
2066 		 * similar junk.
2067 		 */
2068 		if (cpi->cpi_brandstr[0]) {
2069 			size_t maxlen = sizeof (cpi->cpi_brandstr);
2070 			char *src, *dst;
2071 
2072 			dst = src = (char *)cpi->cpi_brandstr;
2073 			src[maxlen - 1] = '\0';
2074 			/*
2075 			 * strip leading spaces
2076 			 */
2077 			while (*src == ' ')
2078 				src++;
2079 			/*
2080 			 * Remove any 'Genuine' or "Authentic" prefixes
2081 			 */
2082 			if (strncmp(src, "Genuine ", 8) == 0)
2083 				src += 8;
2084 			if (strncmp(src, "Authentic ", 10) == 0)
2085 				src += 10;
2086 
2087 			/*
2088 			 * Now do an in-place copy.
2089 			 * Map (R) to (r) and (TM) to (tm).
2090 			 * The era of teletypes is long gone, and there's
2091 			 * -really- no need to shout.
2092 			 */
2093 			while (*src != '\0') {
2094 				if (src[0] == '(') {
2095 					if (strncmp(src + 1, "R)", 2) == 0) {
2096 						(void) strncpy(dst, "(r)", 3);
2097 						src += 3;
2098 						dst += 3;
2099 						continue;
2100 					}
2101 					if (strncmp(src + 1, "TM)", 3) == 0) {
2102 						(void) strncpy(dst, "(tm)", 4);
2103 						src += 4;
2104 						dst += 4;
2105 						continue;
2106 					}
2107 				}
2108 				*dst++ = *src++;
2109 			}
2110 			*dst = '\0';
2111 
2112 			/*
2113 			 * Finally, remove any trailing spaces
2114 			 */
2115 			while (--dst > cpi->cpi_brandstr)
2116 				if (*dst == ' ')
2117 					*dst = '\0';
2118 				else
2119 					break;
2120 		} else
2121 			fabricate_brandstr(cpi);
2122 	}
2123 	cpi->cpi_pass = 3;
2124 }
2125 
2126 /*
2127  * This routine is called out of bind_hwcap() much later in the life
2128  * of the kernel (post_startup()).  The job of this routine is to resolve
2129  * the hardware feature support and kernel support for those features into
2130  * what we're actually going to tell applications via the aux vector.
2131  */
2132 uint_t
2133 cpuid_pass4(cpu_t *cpu)
2134 {
2135 	struct cpuid_info *cpi;
2136 	uint_t hwcap_flags = 0;
2137 
2138 	if (cpu == NULL)
2139 		cpu = CPU;
2140 	cpi = cpu->cpu_m.mcpu_cpi;
2141 
2142 	ASSERT(cpi->cpi_pass == 3);
2143 
2144 	if (cpi->cpi_maxeax >= 1) {
2145 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2146 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2147 
2148 		*edx = CPI_FEATURES_EDX(cpi);
2149 		*ecx = CPI_FEATURES_ECX(cpi);
2150 
2151 		/*
2152 		 * [these require explicit kernel support]
2153 		 */
2154 		if ((x86_feature & X86_SEP) == 0)
2155 			*edx &= ~CPUID_INTC_EDX_SEP;
2156 
2157 		if ((x86_feature & X86_SSE) == 0)
2158 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2159 		if ((x86_feature & X86_SSE2) == 0)
2160 			*edx &= ~CPUID_INTC_EDX_SSE2;
2161 
2162 		if ((x86_feature & X86_HTT) == 0)
2163 			*edx &= ~CPUID_INTC_EDX_HTT;
2164 
2165 		if ((x86_feature & X86_SSE3) == 0)
2166 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2167 
2168 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2169 			if ((x86_feature & X86_SSSE3) == 0)
2170 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2171 			if ((x86_feature & X86_SSE4_1) == 0)
2172 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2173 			if ((x86_feature & X86_SSE4_2) == 0)
2174 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2175 		}
2176 
2177 		/*
2178 		 * [no explicit support required beyond x87 fp context]
2179 		 */
2180 		if (!fpu_exists)
2181 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2182 
2183 		/*
2184 		 * Now map the supported feature vector to things that we
2185 		 * think userland will care about.
2186 		 */
2187 		if (*edx & CPUID_INTC_EDX_SEP)
2188 			hwcap_flags |= AV_386_SEP;
2189 		if (*edx & CPUID_INTC_EDX_SSE)
2190 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2191 		if (*edx & CPUID_INTC_EDX_SSE2)
2192 			hwcap_flags |= AV_386_SSE2;
2193 		if (*ecx & CPUID_INTC_ECX_SSE3)
2194 			hwcap_flags |= AV_386_SSE3;
2195 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2196 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2197 				hwcap_flags |= AV_386_SSSE3;
2198 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2199 				hwcap_flags |= AV_386_SSE4_1;
2200 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2201 				hwcap_flags |= AV_386_SSE4_2;
2202 		}
2203 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2204 			hwcap_flags |= AV_386_POPCNT;
2205 		if (*edx & CPUID_INTC_EDX_FPU)
2206 			hwcap_flags |= AV_386_FPU;
2207 		if (*edx & CPUID_INTC_EDX_MMX)
2208 			hwcap_flags |= AV_386_MMX;
2209 
2210 		if (*edx & CPUID_INTC_EDX_TSC)
2211 			hwcap_flags |= AV_386_TSC;
2212 		if (*edx & CPUID_INTC_EDX_CX8)
2213 			hwcap_flags |= AV_386_CX8;
2214 		if (*edx & CPUID_INTC_EDX_CMOV)
2215 			hwcap_flags |= AV_386_CMOV;
2216 		if (*ecx & CPUID_INTC_ECX_MON)
2217 			hwcap_flags |= AV_386_MON;
2218 		if (*ecx & CPUID_INTC_ECX_CX16)
2219 			hwcap_flags |= AV_386_CX16;
2220 	}
2221 
2222 	if (x86_feature & X86_HTT)
2223 		hwcap_flags |= AV_386_PAUSE;
2224 
2225 	if (cpi->cpi_xmaxeax < 0x80000001)
2226 		goto pass4_done;
2227 
2228 	switch (cpi->cpi_vendor) {
2229 		struct cpuid_regs cp;
2230 		uint32_t *edx, *ecx;
2231 
2232 	case X86_VENDOR_Intel:
2233 		/*
2234 		 * Seems like Intel duplicated what we necessary
2235 		 * here to make the initial crop of 64-bit OS's work.
2236 		 * Hopefully, those are the only "extended" bits
2237 		 * they'll add.
2238 		 */
2239 		/*FALLTHROUGH*/
2240 
2241 	case X86_VENDOR_AMD:
2242 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2243 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2244 
2245 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2246 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2247 
2248 		/*
2249 		 * [these features require explicit kernel support]
2250 		 */
2251 		switch (cpi->cpi_vendor) {
2252 		case X86_VENDOR_Intel:
2253 			if ((x86_feature & X86_TSCP) == 0)
2254 				*edx &= ~CPUID_AMD_EDX_TSCP;
2255 			break;
2256 
2257 		case X86_VENDOR_AMD:
2258 			if ((x86_feature & X86_TSCP) == 0)
2259 				*edx &= ~CPUID_AMD_EDX_TSCP;
2260 			if ((x86_feature & X86_SSE4A) == 0)
2261 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2262 			break;
2263 
2264 		default:
2265 			break;
2266 		}
2267 
2268 		/*
2269 		 * [no explicit support required beyond
2270 		 * x87 fp context and exception handlers]
2271 		 */
2272 		if (!fpu_exists)
2273 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2274 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2275 
2276 		if ((x86_feature & X86_NX) == 0)
2277 			*edx &= ~CPUID_AMD_EDX_NX;
2278 #if !defined(__amd64)
2279 		*edx &= ~CPUID_AMD_EDX_LM;
2280 #endif
2281 		/*
2282 		 * Now map the supported feature vector to
2283 		 * things that we think userland will care about.
2284 		 */
2285 #if defined(__amd64)
2286 		if (*edx & CPUID_AMD_EDX_SYSC)
2287 			hwcap_flags |= AV_386_AMD_SYSC;
2288 #endif
2289 		if (*edx & CPUID_AMD_EDX_MMXamd)
2290 			hwcap_flags |= AV_386_AMD_MMX;
2291 		if (*edx & CPUID_AMD_EDX_3DNow)
2292 			hwcap_flags |= AV_386_AMD_3DNow;
2293 		if (*edx & CPUID_AMD_EDX_3DNowx)
2294 			hwcap_flags |= AV_386_AMD_3DNowx;
2295 
2296 		switch (cpi->cpi_vendor) {
2297 		case X86_VENDOR_AMD:
2298 			if (*edx & CPUID_AMD_EDX_TSCP)
2299 				hwcap_flags |= AV_386_TSCP;
2300 			if (*ecx & CPUID_AMD_ECX_AHF64)
2301 				hwcap_flags |= AV_386_AHF;
2302 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2303 				hwcap_flags |= AV_386_AMD_SSE4A;
2304 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2305 				hwcap_flags |= AV_386_AMD_LZCNT;
2306 			break;
2307 
2308 		case X86_VENDOR_Intel:
2309 			if (*edx & CPUID_AMD_EDX_TSCP)
2310 				hwcap_flags |= AV_386_TSCP;
2311 			/*
2312 			 * Aarrgh.
2313 			 * Intel uses a different bit in the same word.
2314 			 */
2315 			if (*ecx & CPUID_INTC_ECX_AHF64)
2316 				hwcap_flags |= AV_386_AHF;
2317 			break;
2318 
2319 		default:
2320 			break;
2321 		}
2322 		break;
2323 
2324 	case X86_VENDOR_TM:
2325 		cp.cp_eax = 0x80860001;
2326 		(void) __cpuid_insn(&cp);
2327 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2328 		break;
2329 
2330 	default:
2331 		break;
2332 	}
2333 
2334 pass4_done:
2335 	cpi->cpi_pass = 4;
2336 	return (hwcap_flags);
2337 }
2338 
2339 
2340 /*
2341  * Simulate the cpuid instruction using the data we previously
2342  * captured about this CPU.  We try our best to return the truth
2343  * about the hardware, independently of kernel support.
2344  */
2345 uint32_t
2346 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2347 {
2348 	struct cpuid_info *cpi;
2349 	struct cpuid_regs *xcp;
2350 
2351 	if (cpu == NULL)
2352 		cpu = CPU;
2353 	cpi = cpu->cpu_m.mcpu_cpi;
2354 
2355 	ASSERT(cpuid_checkpass(cpu, 3));
2356 
2357 	/*
2358 	 * CPUID data is cached in two separate places: cpi_std for standard
2359 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2360 	 */
2361 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2362 		xcp = &cpi->cpi_std[cp->cp_eax];
2363 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2364 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2365 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2366 	else
2367 		/*
2368 		 * The caller is asking for data from an input parameter which
2369 		 * the kernel has not cached.  In this case we go fetch from
2370 		 * the hardware and return the data directly to the user.
2371 		 */
2372 		return (__cpuid_insn(cp));
2373 
2374 	cp->cp_eax = xcp->cp_eax;
2375 	cp->cp_ebx = xcp->cp_ebx;
2376 	cp->cp_ecx = xcp->cp_ecx;
2377 	cp->cp_edx = xcp->cp_edx;
2378 	return (cp->cp_eax);
2379 }
2380 
2381 int
2382 cpuid_checkpass(cpu_t *cpu, int pass)
2383 {
2384 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2385 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2386 }
2387 
2388 int
2389 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2390 {
2391 	ASSERT(cpuid_checkpass(cpu, 3));
2392 
2393 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2394 }
2395 
2396 int
2397 cpuid_is_cmt(cpu_t *cpu)
2398 {
2399 	if (cpu == NULL)
2400 		cpu = CPU;
2401 
2402 	ASSERT(cpuid_checkpass(cpu, 1));
2403 
2404 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2405 }
2406 
2407 /*
2408  * AMD and Intel both implement the 64-bit variant of the syscall
2409  * instruction (syscallq), so if there's -any- support for syscall,
2410  * cpuid currently says "yes, we support this".
2411  *
2412  * However, Intel decided to -not- implement the 32-bit variant of the
2413  * syscall instruction, so we provide a predicate to allow our caller
2414  * to test that subtlety here.
2415  *
2416  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2417  *	even in the case where the hardware would in fact support it.
2418  */
2419 /*ARGSUSED*/
2420 int
2421 cpuid_syscall32_insn(cpu_t *cpu)
2422 {
2423 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2424 
2425 #if !defined(__xpv)
2426 	if (cpu == NULL)
2427 		cpu = CPU;
2428 
2429 	/*CSTYLED*/
2430 	{
2431 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2432 
2433 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2434 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2435 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2436 			return (1);
2437 	}
2438 #endif
2439 	return (0);
2440 }
2441 
2442 int
2443 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2444 {
2445 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2446 
2447 	static const char fmt[] =
2448 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2449 	static const char fmt_ht[] =
2450 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2451 
2452 	ASSERT(cpuid_checkpass(cpu, 1));
2453 
2454 	if (cpuid_is_cmt(cpu))
2455 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2456 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2457 		    cpi->cpi_family, cpi->cpi_model,
2458 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2459 	return (snprintf(s, n, fmt,
2460 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2461 	    cpi->cpi_family, cpi->cpi_model,
2462 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2463 }
2464 
2465 const char *
2466 cpuid_getvendorstr(cpu_t *cpu)
2467 {
2468 	ASSERT(cpuid_checkpass(cpu, 1));
2469 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2470 }
2471 
2472 uint_t
2473 cpuid_getvendor(cpu_t *cpu)
2474 {
2475 	ASSERT(cpuid_checkpass(cpu, 1));
2476 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2477 }
2478 
2479 uint_t
2480 cpuid_getfamily(cpu_t *cpu)
2481 {
2482 	ASSERT(cpuid_checkpass(cpu, 1));
2483 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2484 }
2485 
2486 uint_t
2487 cpuid_getmodel(cpu_t *cpu)
2488 {
2489 	ASSERT(cpuid_checkpass(cpu, 1));
2490 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2491 }
2492 
2493 uint_t
2494 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2495 {
2496 	ASSERT(cpuid_checkpass(cpu, 1));
2497 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2498 }
2499 
2500 uint_t
2501 cpuid_get_ncore_per_chip(cpu_t *cpu)
2502 {
2503 	ASSERT(cpuid_checkpass(cpu, 1));
2504 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2505 }
2506 
2507 uint_t
2508 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2509 {
2510 	ASSERT(cpuid_checkpass(cpu, 2));
2511 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2512 }
2513 
2514 id_t
2515 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2516 {
2517 	ASSERT(cpuid_checkpass(cpu, 2));
2518 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2519 }
2520 
2521 uint_t
2522 cpuid_getstep(cpu_t *cpu)
2523 {
2524 	ASSERT(cpuid_checkpass(cpu, 1));
2525 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2526 }
2527 
2528 uint_t
2529 cpuid_getsig(struct cpu *cpu)
2530 {
2531 	ASSERT(cpuid_checkpass(cpu, 1));
2532 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2533 }
2534 
2535 uint32_t
2536 cpuid_getchiprev(struct cpu *cpu)
2537 {
2538 	ASSERT(cpuid_checkpass(cpu, 1));
2539 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2540 }
2541 
2542 const char *
2543 cpuid_getchiprevstr(struct cpu *cpu)
2544 {
2545 	ASSERT(cpuid_checkpass(cpu, 1));
2546 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2547 }
2548 
2549 uint32_t
2550 cpuid_getsockettype(struct cpu *cpu)
2551 {
2552 	ASSERT(cpuid_checkpass(cpu, 1));
2553 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2554 }
2555 
2556 int
2557 cpuid_get_chipid(cpu_t *cpu)
2558 {
2559 	ASSERT(cpuid_checkpass(cpu, 1));
2560 
2561 	if (cpuid_is_cmt(cpu))
2562 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2563 	return (cpu->cpu_id);
2564 }
2565 
2566 id_t
2567 cpuid_get_coreid(cpu_t *cpu)
2568 {
2569 	ASSERT(cpuid_checkpass(cpu, 1));
2570 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2571 }
2572 
2573 int
2574 cpuid_get_pkgcoreid(cpu_t *cpu)
2575 {
2576 	ASSERT(cpuid_checkpass(cpu, 1));
2577 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2578 }
2579 
2580 int
2581 cpuid_get_clogid(cpu_t *cpu)
2582 {
2583 	ASSERT(cpuid_checkpass(cpu, 1));
2584 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2585 }
2586 
2587 void
2588 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2589 {
2590 	struct cpuid_info *cpi;
2591 
2592 	if (cpu == NULL)
2593 		cpu = CPU;
2594 	cpi = cpu->cpu_m.mcpu_cpi;
2595 
2596 	ASSERT(cpuid_checkpass(cpu, 1));
2597 
2598 	if (pabits)
2599 		*pabits = cpi->cpi_pabits;
2600 	if (vabits)
2601 		*vabits = cpi->cpi_vabits;
2602 }
2603 
2604 /*
2605  * Returns the number of data TLB entries for a corresponding
2606  * pagesize.  If it can't be computed, or isn't known, the
2607  * routine returns zero.  If you ask about an architecturally
2608  * impossible pagesize, the routine will panic (so that the
2609  * hat implementor knows that things are inconsistent.)
2610  */
2611 uint_t
2612 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2613 {
2614 	struct cpuid_info *cpi;
2615 	uint_t dtlb_nent = 0;
2616 
2617 	if (cpu == NULL)
2618 		cpu = CPU;
2619 	cpi = cpu->cpu_m.mcpu_cpi;
2620 
2621 	ASSERT(cpuid_checkpass(cpu, 1));
2622 
2623 	/*
2624 	 * Check the L2 TLB info
2625 	 */
2626 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2627 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2628 
2629 		switch (pagesize) {
2630 
2631 		case 4 * 1024:
2632 			/*
2633 			 * All zero in the top 16 bits of the register
2634 			 * indicates a unified TLB. Size is in low 16 bits.
2635 			 */
2636 			if ((cp->cp_ebx & 0xffff0000) == 0)
2637 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2638 			else
2639 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2640 			break;
2641 
2642 		case 2 * 1024 * 1024:
2643 			if ((cp->cp_eax & 0xffff0000) == 0)
2644 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2645 			else
2646 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2647 			break;
2648 
2649 		default:
2650 			panic("unknown L2 pagesize");
2651 			/*NOTREACHED*/
2652 		}
2653 	}
2654 
2655 	if (dtlb_nent != 0)
2656 		return (dtlb_nent);
2657 
2658 	/*
2659 	 * No L2 TLB support for this size, try L1.
2660 	 */
2661 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2662 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2663 
2664 		switch (pagesize) {
2665 		case 4 * 1024:
2666 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2667 			break;
2668 		case 2 * 1024 * 1024:
2669 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2670 			break;
2671 		default:
2672 			panic("unknown L1 d-TLB pagesize");
2673 			/*NOTREACHED*/
2674 		}
2675 	}
2676 
2677 	return (dtlb_nent);
2678 }
2679 
2680 /*
2681  * Return 0 if the erratum is not present or not applicable, positive
2682  * if it is, and negative if the status of the erratum is unknown.
2683  *
2684  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2685  * Processors" #25759, Rev 3.57, August 2005
2686  */
2687 int
2688 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2689 {
2690 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2691 	uint_t eax;
2692 
2693 	/*
2694 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2695 	 * a legacy (32-bit) AMD CPU.
2696 	 */
2697 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2698 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2699 	    cpi->cpi_family == 6)
2700 
2701 		return (0);
2702 
2703 	eax = cpi->cpi_std[1].cp_eax;
2704 
2705 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2706 #define	SH_B3(eax) 	(eax == 0xf51)
2707 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2708 
2709 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2710 
2711 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2712 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2713 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2714 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2715 
2716 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2717 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2718 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2719 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2720 
2721 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2722 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2723 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2724 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2725 #define	BH_E4(eax)	(eax == 0x20fb1)
2726 #define	SH_E5(eax)	(eax == 0x20f42)
2727 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2728 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2729 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2730 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2731 			    DH_E6(eax) || JH_E6(eax))
2732 
2733 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2734 #define	DR_B0(eax)	(eax == 0x100f20)
2735 #define	DR_B1(eax)	(eax == 0x100f21)
2736 #define	DR_BA(eax)	(eax == 0x100f2a)
2737 #define	DR_B2(eax)	(eax == 0x100f22)
2738 #define	DR_B3(eax)	(eax == 0x100f23)
2739 #define	RB_C0(eax)	(eax == 0x100f40)
2740 
2741 	switch (erratum) {
2742 	case 1:
2743 		return (cpi->cpi_family < 0x10);
2744 	case 51:	/* what does the asterisk mean? */
2745 		return (B(eax) || SH_C0(eax) || CG(eax));
2746 	case 52:
2747 		return (B(eax));
2748 	case 57:
2749 		return (cpi->cpi_family <= 0x11);
2750 	case 58:
2751 		return (B(eax));
2752 	case 60:
2753 		return (cpi->cpi_family <= 0x11);
2754 	case 61:
2755 	case 62:
2756 	case 63:
2757 	case 64:
2758 	case 65:
2759 	case 66:
2760 	case 68:
2761 	case 69:
2762 	case 70:
2763 	case 71:
2764 		return (B(eax));
2765 	case 72:
2766 		return (SH_B0(eax));
2767 	case 74:
2768 		return (B(eax));
2769 	case 75:
2770 		return (cpi->cpi_family < 0x10);
2771 	case 76:
2772 		return (B(eax));
2773 	case 77:
2774 		return (cpi->cpi_family <= 0x11);
2775 	case 78:
2776 		return (B(eax) || SH_C0(eax));
2777 	case 79:
2778 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2779 	case 80:
2780 	case 81:
2781 	case 82:
2782 		return (B(eax));
2783 	case 83:
2784 		return (B(eax) || SH_C0(eax) || CG(eax));
2785 	case 85:
2786 		return (cpi->cpi_family < 0x10);
2787 	case 86:
2788 		return (SH_C0(eax) || CG(eax));
2789 	case 88:
2790 #if !defined(__amd64)
2791 		return (0);
2792 #else
2793 		return (B(eax) || SH_C0(eax));
2794 #endif
2795 	case 89:
2796 		return (cpi->cpi_family < 0x10);
2797 	case 90:
2798 		return (B(eax) || SH_C0(eax) || CG(eax));
2799 	case 91:
2800 	case 92:
2801 		return (B(eax) || SH_C0(eax));
2802 	case 93:
2803 		return (SH_C0(eax));
2804 	case 94:
2805 		return (B(eax) || SH_C0(eax) || CG(eax));
2806 	case 95:
2807 #if !defined(__amd64)
2808 		return (0);
2809 #else
2810 		return (B(eax) || SH_C0(eax));
2811 #endif
2812 	case 96:
2813 		return (B(eax) || SH_C0(eax) || CG(eax));
2814 	case 97:
2815 	case 98:
2816 		return (SH_C0(eax) || CG(eax));
2817 	case 99:
2818 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2819 	case 100:
2820 		return (B(eax) || SH_C0(eax));
2821 	case 101:
2822 	case 103:
2823 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2824 	case 104:
2825 		return (SH_C0(eax) || CG(eax) || D0(eax));
2826 	case 105:
2827 	case 106:
2828 	case 107:
2829 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2830 	case 108:
2831 		return (DH_CG(eax));
2832 	case 109:
2833 		return (SH_C0(eax) || CG(eax) || D0(eax));
2834 	case 110:
2835 		return (D0(eax) || EX(eax));
2836 	case 111:
2837 		return (CG(eax));
2838 	case 112:
2839 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2840 	case 113:
2841 		return (eax == 0x20fc0);
2842 	case 114:
2843 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2844 	case 115:
2845 		return (SH_E0(eax) || JH_E1(eax));
2846 	case 116:
2847 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2848 	case 117:
2849 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2850 	case 118:
2851 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2852 		    JH_E6(eax));
2853 	case 121:
2854 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2855 	case 122:
2856 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2857 	case 123:
2858 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2859 	case 131:
2860 		return (cpi->cpi_family < 0x10);
2861 	case 6336786:
2862 		/*
2863 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2864 		 * if this is a K8 family or newer processor
2865 		 */
2866 		if (CPI_FAMILY(cpi) == 0xf) {
2867 			struct cpuid_regs regs;
2868 			regs.cp_eax = 0x80000007;
2869 			(void) __cpuid_insn(&regs);
2870 			return (!(regs.cp_edx & 0x100));
2871 		}
2872 		return (0);
2873 	case 6323525:
2874 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2875 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2876 
2877 	case 6671130:
2878 		/*
2879 		 * check for processors (pre-Shanghai) that do not provide
2880 		 * optimal management of 1gb ptes in its tlb.
2881 		 */
2882 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2883 
2884 	case 298:
2885 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2886 		    DR_B2(eax) || RB_C0(eax));
2887 
2888 	default:
2889 		return (-1);
2890 
2891 	}
2892 }
2893 
2894 /*
2895  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2896  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2897  */
2898 int
2899 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2900 {
2901 	struct cpuid_info	*cpi;
2902 	uint_t			osvwid;
2903 	static int		osvwfeature = -1;
2904 	uint64_t		osvwlength;
2905 
2906 
2907 	cpi = cpu->cpu_m.mcpu_cpi;
2908 
2909 	/* confirm OSVW supported */
2910 	if (osvwfeature == -1) {
2911 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2912 	} else {
2913 		/* assert that osvw feature setting is consistent on all cpus */
2914 		ASSERT(osvwfeature ==
2915 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2916 	}
2917 	if (!osvwfeature)
2918 		return (-1);
2919 
2920 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2921 
2922 	switch (erratum) {
2923 	case 298:	/* osvwid is 0 */
2924 		osvwid = 0;
2925 		if (osvwlength <= (uint64_t)osvwid) {
2926 			/* osvwid 0 is unknown */
2927 			return (-1);
2928 		}
2929 
2930 		/*
2931 		 * Check the OSVW STATUS MSR to determine the state
2932 		 * of the erratum where:
2933 		 *   0 - fixed by HW
2934 		 *   1 - BIOS has applied the workaround when BIOS
2935 		 *   workaround is available. (Or for other errata,
2936 		 *   OS workaround is required.)
2937 		 * For a value of 1, caller will confirm that the
2938 		 * erratum 298 workaround has indeed been applied by BIOS.
2939 		 *
2940 		 * A 1 may be set in cpus that have a HW fix
2941 		 * in a mixed cpu system. Regarding erratum 298:
2942 		 *   In a multiprocessor platform, the workaround above
2943 		 *   should be applied to all processors regardless of
2944 		 *   silicon revision when an affected processor is
2945 		 *   present.
2946 		 */
2947 
2948 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2949 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2950 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2951 
2952 	default:
2953 		return (-1);
2954 	}
2955 }
2956 
2957 static const char assoc_str[] = "associativity";
2958 static const char line_str[] = "line-size";
2959 static const char size_str[] = "size";
2960 
2961 static void
2962 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2963     uint32_t val)
2964 {
2965 	char buf[128];
2966 
2967 	/*
2968 	 * ndi_prop_update_int() is used because it is desirable for
2969 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2970 	 */
2971 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2972 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2973 }
2974 
2975 /*
2976  * Intel-style cache/tlb description
2977  *
2978  * Standard cpuid level 2 gives a randomly ordered
2979  * selection of tags that index into a table that describes
2980  * cache and tlb properties.
2981  */
2982 
2983 static const char l1_icache_str[] = "l1-icache";
2984 static const char l1_dcache_str[] = "l1-dcache";
2985 static const char l2_cache_str[] = "l2-cache";
2986 static const char l3_cache_str[] = "l3-cache";
2987 static const char itlb4k_str[] = "itlb-4K";
2988 static const char dtlb4k_str[] = "dtlb-4K";
2989 static const char itlb2M_str[] = "itlb-2M";
2990 static const char itlb4M_str[] = "itlb-4M";
2991 static const char dtlb4M_str[] = "dtlb-4M";
2992 static const char dtlb24_str[] = "dtlb0-2M-4M";
2993 static const char itlb424_str[] = "itlb-4K-2M-4M";
2994 static const char itlb24_str[] = "itlb-2M-4M";
2995 static const char dtlb44_str[] = "dtlb-4K-4M";
2996 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2997 static const char sl2_cache_str[] = "sectored-l2-cache";
2998 static const char itrace_str[] = "itrace-cache";
2999 static const char sl3_cache_str[] = "sectored-l3-cache";
3000 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
3001 
3002 static const struct cachetab {
3003 	uint8_t 	ct_code;
3004 	uint8_t		ct_assoc;
3005 	uint16_t 	ct_line_size;
3006 	size_t		ct_size;
3007 	const char	*ct_label;
3008 } intel_ctab[] = {
3009 	/*
3010 	 * maintain descending order!
3011 	 *
3012 	 * Codes ignored - Reason
3013 	 * ----------------------
3014 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
3015 	 * f0H/f1H - Currently we do not interpret prefetch size by design
3016 	 */
3017 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
3018 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
3019 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
3020 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
3021 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
3022 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
3023 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
3024 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
3025 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
3026 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
3027 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
3028 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
3029 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
3030 	{ 0xc0, 4, 0, 8, dtlb44_str },
3031 	{ 0xba, 4, 0, 64, dtlb4k_str },
3032 	{ 0xb4, 4, 0, 256, dtlb4k_str },
3033 	{ 0xb3, 4, 0, 128, dtlb4k_str },
3034 	{ 0xb2, 4, 0, 64, itlb4k_str },
3035 	{ 0xb0, 4, 0, 128, itlb4k_str },
3036 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
3037 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
3038 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
3039 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
3040 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
3041 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
3042 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
3043 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
3044 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
3045 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
3046 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
3047 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
3048 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
3049 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
3050 	{ 0x73, 8, 0, 64*1024, itrace_str},
3051 	{ 0x72, 8, 0, 32*1024, itrace_str},
3052 	{ 0x71, 8, 0, 16*1024, itrace_str},
3053 	{ 0x70, 8, 0, 12*1024, itrace_str},
3054 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
3055 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
3056 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
3057 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
3058 	{ 0x5d, 0, 0, 256, dtlb44_str},
3059 	{ 0x5c, 0, 0, 128, dtlb44_str},
3060 	{ 0x5b, 0, 0, 64, dtlb44_str},
3061 	{ 0x5a, 4, 0, 32, dtlb24_str},
3062 	{ 0x59, 0, 0, 16, dtlb4k_str},
3063 	{ 0x57, 4, 0, 16, dtlb4k_str},
3064 	{ 0x56, 4, 0, 16, dtlb4M_str},
3065 	{ 0x55, 0, 0, 7, itlb24_str},
3066 	{ 0x52, 0, 0, 256, itlb424_str},
3067 	{ 0x51, 0, 0, 128, itlb424_str},
3068 	{ 0x50, 0, 0, 64, itlb424_str},
3069 	{ 0x4f, 0, 0, 32, itlb4k_str},
3070 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
3071 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
3072 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
3073 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
3074 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
3075 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
3076 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
3077 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
3078 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
3079 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
3080 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
3081 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
3082 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
3083 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
3084 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
3085 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
3086 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
3087 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
3088 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
3089 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
3090 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
3091 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
3092 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
3093 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
3094 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
3095 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
3096 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
3097 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
3098 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
3099 	{ 0x0b, 4, 0, 4, itlb4M_str},
3100 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
3101 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
3102 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
3103 	{ 0x05, 4, 0, 32, dtlb4M_str},
3104 	{ 0x04, 4, 0, 8, dtlb4M_str},
3105 	{ 0x03, 4, 0, 64, dtlb4k_str},
3106 	{ 0x02, 4, 0, 2, itlb4M_str},
3107 	{ 0x01, 4, 0, 32, itlb4k_str},
3108 	{ 0 }
3109 };
3110 
3111 static const struct cachetab cyrix_ctab[] = {
3112 	{ 0x70, 4, 0, 32, "tlb-4K" },
3113 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3114 	{ 0 }
3115 };
3116 
3117 /*
3118  * Search a cache table for a matching entry
3119  */
3120 static const struct cachetab *
3121 find_cacheent(const struct cachetab *ct, uint_t code)
3122 {
3123 	if (code != 0) {
3124 		for (; ct->ct_code != 0; ct++)
3125 			if (ct->ct_code <= code)
3126 				break;
3127 		if (ct->ct_code == code)
3128 			return (ct);
3129 	}
3130 	return (NULL);
3131 }
3132 
3133 /*
3134  * Populate cachetab entry with L2 or L3 cache-information using
3135  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3136  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3137  * information is found.
3138  */
3139 static int
3140 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3141 {
3142 	uint32_t level, i;
3143 	int ret = 0;
3144 
3145 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3146 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3147 
3148 		if (level == 2 || level == 3) {
3149 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3150 			ct->ct_line_size =
3151 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3152 			ct->ct_size = ct->ct_assoc *
3153 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3154 			    ct->ct_line_size *
3155 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3156 
3157 			if (level == 2) {
3158 				ct->ct_label = l2_cache_str;
3159 			} else if (level == 3) {
3160 				ct->ct_label = l3_cache_str;
3161 			}
3162 			ret = 1;
3163 		}
3164 	}
3165 
3166 	return (ret);
3167 }
3168 
3169 /*
3170  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3171  * The walk is terminated if the walker returns non-zero.
3172  */
3173 static void
3174 intel_walk_cacheinfo(struct cpuid_info *cpi,
3175     void *arg, int (*func)(void *, const struct cachetab *))
3176 {
3177 	const struct cachetab *ct;
3178 	struct cachetab des_49_ct, des_b1_ct;
3179 	uint8_t *dp;
3180 	int i;
3181 
3182 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3183 		return;
3184 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3185 		/*
3186 		 * For overloaded descriptor 0x49 we use cpuid function 4
3187 		 * if supported by the current processor, to create
3188 		 * cache information.
3189 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3190 		 * to disambiguate the cache information.
3191 		 */
3192 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3193 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3194 				ct = &des_49_ct;
3195 		} else if (*dp == 0xb1) {
3196 			des_b1_ct.ct_code = 0xb1;
3197 			des_b1_ct.ct_assoc = 4;
3198 			des_b1_ct.ct_line_size = 0;
3199 			if (x86_feature & X86_PAE) {
3200 				des_b1_ct.ct_size = 8;
3201 				des_b1_ct.ct_label = itlb2M_str;
3202 			} else {
3203 				des_b1_ct.ct_size = 4;
3204 				des_b1_ct.ct_label = itlb4M_str;
3205 			}
3206 			ct = &des_b1_ct;
3207 		} else {
3208 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3209 				continue;
3210 			}
3211 		}
3212 
3213 		if (func(arg, ct) != 0) {
3214 			break;
3215 		}
3216 	}
3217 }
3218 
3219 /*
3220  * (Like the Intel one, except for Cyrix CPUs)
3221  */
3222 static void
3223 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3224     void *arg, int (*func)(void *, const struct cachetab *))
3225 {
3226 	const struct cachetab *ct;
3227 	uint8_t *dp;
3228 	int i;
3229 
3230 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3231 		return;
3232 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3233 		/*
3234 		 * Search Cyrix-specific descriptor table first ..
3235 		 */
3236 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3237 			if (func(arg, ct) != 0)
3238 				break;
3239 			continue;
3240 		}
3241 		/*
3242 		 * .. else fall back to the Intel one
3243 		 */
3244 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3245 			if (func(arg, ct) != 0)
3246 				break;
3247 			continue;
3248 		}
3249 	}
3250 }
3251 
3252 /*
3253  * A cacheinfo walker that adds associativity, line-size, and size properties
3254  * to the devinfo node it is passed as an argument.
3255  */
3256 static int
3257 add_cacheent_props(void *arg, const struct cachetab *ct)
3258 {
3259 	dev_info_t *devi = arg;
3260 
3261 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3262 	if (ct->ct_line_size != 0)
3263 		add_cache_prop(devi, ct->ct_label, line_str,
3264 		    ct->ct_line_size);
3265 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3266 	return (0);
3267 }
3268 
3269 
3270 static const char fully_assoc[] = "fully-associative?";
3271 
3272 /*
3273  * AMD style cache/tlb description
3274  *
3275  * Extended functions 5 and 6 directly describe properties of
3276  * tlbs and various cache levels.
3277  */
3278 static void
3279 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3280 {
3281 	switch (assoc) {
3282 	case 0:	/* reserved; ignore */
3283 		break;
3284 	default:
3285 		add_cache_prop(devi, label, assoc_str, assoc);
3286 		break;
3287 	case 0xff:
3288 		add_cache_prop(devi, label, fully_assoc, 1);
3289 		break;
3290 	}
3291 }
3292 
3293 static void
3294 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3295 {
3296 	if (size == 0)
3297 		return;
3298 	add_cache_prop(devi, label, size_str, size);
3299 	add_amd_assoc(devi, label, assoc);
3300 }
3301 
3302 static void
3303 add_amd_cache(dev_info_t *devi, const char *label,
3304     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3305 {
3306 	if (size == 0 || line_size == 0)
3307 		return;
3308 	add_amd_assoc(devi, label, assoc);
3309 	/*
3310 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3311 	 * associated with each tag. A sector consists of all cache lines
3312 	 * associated with a tag. For example, the AMD K6-III has a sector
3313 	 * size of 2 cache lines per tag.
3314 	 */
3315 	if (lines_per_tag != 0)
3316 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3317 	add_cache_prop(devi, label, line_str, line_size);
3318 	add_cache_prop(devi, label, size_str, size * 1024);
3319 }
3320 
3321 static void
3322 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3323 {
3324 	switch (assoc) {
3325 	case 0:	/* off */
3326 		break;
3327 	case 1:
3328 	case 2:
3329 	case 4:
3330 		add_cache_prop(devi, label, assoc_str, assoc);
3331 		break;
3332 	case 6:
3333 		add_cache_prop(devi, label, assoc_str, 8);
3334 		break;
3335 	case 8:
3336 		add_cache_prop(devi, label, assoc_str, 16);
3337 		break;
3338 	case 0xf:
3339 		add_cache_prop(devi, label, fully_assoc, 1);
3340 		break;
3341 	default: /* reserved; ignore */
3342 		break;
3343 	}
3344 }
3345 
3346 static void
3347 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3348 {
3349 	if (size == 0 || assoc == 0)
3350 		return;
3351 	add_amd_l2_assoc(devi, label, assoc);
3352 	add_cache_prop(devi, label, size_str, size);
3353 }
3354 
3355 static void
3356 add_amd_l2_cache(dev_info_t *devi, const char *label,
3357     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3358 {
3359 	if (size == 0 || assoc == 0 || line_size == 0)
3360 		return;
3361 	add_amd_l2_assoc(devi, label, assoc);
3362 	if (lines_per_tag != 0)
3363 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3364 	add_cache_prop(devi, label, line_str, line_size);
3365 	add_cache_prop(devi, label, size_str, size * 1024);
3366 }
3367 
3368 static void
3369 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3370 {
3371 	struct cpuid_regs *cp;
3372 
3373 	if (cpi->cpi_xmaxeax < 0x80000005)
3374 		return;
3375 	cp = &cpi->cpi_extd[5];
3376 
3377 	/*
3378 	 * 4M/2M L1 TLB configuration
3379 	 *
3380 	 * We report the size for 2M pages because AMD uses two
3381 	 * TLB entries for one 4M page.
3382 	 */
3383 	add_amd_tlb(devi, "dtlb-2M",
3384 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3385 	add_amd_tlb(devi, "itlb-2M",
3386 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3387 
3388 	/*
3389 	 * 4K L1 TLB configuration
3390 	 */
3391 
3392 	switch (cpi->cpi_vendor) {
3393 		uint_t nentries;
3394 	case X86_VENDOR_TM:
3395 		if (cpi->cpi_family >= 5) {
3396 			/*
3397 			 * Crusoe processors have 256 TLB entries, but
3398 			 * cpuid data format constrains them to only
3399 			 * reporting 255 of them.
3400 			 */
3401 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3402 				nentries = 256;
3403 			/*
3404 			 * Crusoe processors also have a unified TLB
3405 			 */
3406 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3407 			    nentries);
3408 			break;
3409 		}
3410 		/*FALLTHROUGH*/
3411 	default:
3412 		add_amd_tlb(devi, itlb4k_str,
3413 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3414 		add_amd_tlb(devi, dtlb4k_str,
3415 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3416 		break;
3417 	}
3418 
3419 	/*
3420 	 * data L1 cache configuration
3421 	 */
3422 
3423 	add_amd_cache(devi, l1_dcache_str,
3424 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3425 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3426 
3427 	/*
3428 	 * code L1 cache configuration
3429 	 */
3430 
3431 	add_amd_cache(devi, l1_icache_str,
3432 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3433 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3434 
3435 	if (cpi->cpi_xmaxeax < 0x80000006)
3436 		return;
3437 	cp = &cpi->cpi_extd[6];
3438 
3439 	/* Check for a unified L2 TLB for large pages */
3440 
3441 	if (BITX(cp->cp_eax, 31, 16) == 0)
3442 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3443 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3444 	else {
3445 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3446 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3447 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3448 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3449 	}
3450 
3451 	/* Check for a unified L2 TLB for 4K pages */
3452 
3453 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3454 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3455 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3456 	} else {
3457 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3458 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3459 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3460 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3461 	}
3462 
3463 	add_amd_l2_cache(devi, l2_cache_str,
3464 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3465 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3466 }
3467 
3468 /*
3469  * There are two basic ways that the x86 world describes it cache
3470  * and tlb architecture - Intel's way and AMD's way.
3471  *
3472  * Return which flavor of cache architecture we should use
3473  */
3474 static int
3475 x86_which_cacheinfo(struct cpuid_info *cpi)
3476 {
3477 	switch (cpi->cpi_vendor) {
3478 	case X86_VENDOR_Intel:
3479 		if (cpi->cpi_maxeax >= 2)
3480 			return (X86_VENDOR_Intel);
3481 		break;
3482 	case X86_VENDOR_AMD:
3483 		/*
3484 		 * The K5 model 1 was the first part from AMD that reported
3485 		 * cache sizes via extended cpuid functions.
3486 		 */
3487 		if (cpi->cpi_family > 5 ||
3488 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3489 			return (X86_VENDOR_AMD);
3490 		break;
3491 	case X86_VENDOR_TM:
3492 		if (cpi->cpi_family >= 5)
3493 			return (X86_VENDOR_AMD);
3494 		/*FALLTHROUGH*/
3495 	default:
3496 		/*
3497 		 * If they have extended CPU data for 0x80000005
3498 		 * then we assume they have AMD-format cache
3499 		 * information.
3500 		 *
3501 		 * If not, and the vendor happens to be Cyrix,
3502 		 * then try our-Cyrix specific handler.
3503 		 *
3504 		 * If we're not Cyrix, then assume we're using Intel's
3505 		 * table-driven format instead.
3506 		 */
3507 		if (cpi->cpi_xmaxeax >= 0x80000005)
3508 			return (X86_VENDOR_AMD);
3509 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3510 			return (X86_VENDOR_Cyrix);
3511 		else if (cpi->cpi_maxeax >= 2)
3512 			return (X86_VENDOR_Intel);
3513 		break;
3514 	}
3515 	return (-1);
3516 }
3517 
3518 /*
3519  * create a node for the given cpu under the prom root node.
3520  * Also, create a cpu node in the device tree.
3521  */
3522 static dev_info_t *cpu_nex_devi = NULL;
3523 static kmutex_t cpu_node_lock;
3524 
3525 /*
3526  * Called from post_startup() and mp_startup()
3527  */
3528 void
3529 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3530 {
3531 	dev_info_t *cpu_devi;
3532 	int create;
3533 
3534 	mutex_enter(&cpu_node_lock);
3535 
3536 	/*
3537 	 * create a nexus node for all cpus identified as 'cpu_id' under
3538 	 * the root node.
3539 	 */
3540 	if (cpu_nex_devi == NULL) {
3541 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3542 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3543 			mutex_exit(&cpu_node_lock);
3544 			return;
3545 		}
3546 		(void) ndi_devi_online(cpu_nex_devi, 0);
3547 	}
3548 
3549 	/*
3550 	 * create a child node for cpu identified as 'cpu_id'
3551 	 */
3552 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3553 	    cpu_id);
3554 	if (cpu_devi == NULL) {
3555 		mutex_exit(&cpu_node_lock);
3556 		return;
3557 	}
3558 
3559 	/* device_type */
3560 
3561 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3562 	    "device_type", "cpu");
3563 
3564 	/* reg */
3565 
3566 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3567 	    "reg", cpu_id);
3568 
3569 	/* cpu-mhz, and clock-frequency */
3570 
3571 	if (cpu_freq > 0) {
3572 		long long mul;
3573 
3574 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3575 		    "cpu-mhz", cpu_freq);
3576 
3577 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3578 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3579 			    "clock-frequency", (int)mul);
3580 	}
3581 
3582 	(void) ndi_devi_online(cpu_devi, 0);
3583 
3584 	if ((x86_feature & X86_CPUID) == 0) {
3585 		mutex_exit(&cpu_node_lock);
3586 		return;
3587 	}
3588 
3589 	/* vendor-id */
3590 
3591 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3592 	    "vendor-id", cpi->cpi_vendorstr);
3593 
3594 	if (cpi->cpi_maxeax == 0) {
3595 		mutex_exit(&cpu_node_lock);
3596 		return;
3597 	}
3598 
3599 	/*
3600 	 * family, model, and step
3601 	 */
3602 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3603 	    "family", CPI_FAMILY(cpi));
3604 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3605 	    "cpu-model", CPI_MODEL(cpi));
3606 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3607 	    "stepping-id", CPI_STEP(cpi));
3608 
3609 	/* type */
3610 
3611 	switch (cpi->cpi_vendor) {
3612 	case X86_VENDOR_Intel:
3613 		create = 1;
3614 		break;
3615 	default:
3616 		create = 0;
3617 		break;
3618 	}
3619 	if (create)
3620 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3621 		    "type", CPI_TYPE(cpi));
3622 
3623 	/* ext-family */
3624 
3625 	switch (cpi->cpi_vendor) {
3626 	case X86_VENDOR_Intel:
3627 	case X86_VENDOR_AMD:
3628 		create = cpi->cpi_family >= 0xf;
3629 		break;
3630 	default:
3631 		create = 0;
3632 		break;
3633 	}
3634 	if (create)
3635 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3636 		    "ext-family", CPI_FAMILY_XTD(cpi));
3637 
3638 	/* ext-model */
3639 
3640 	switch (cpi->cpi_vendor) {
3641 	case X86_VENDOR_Intel:
3642 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3643 		break;
3644 	case X86_VENDOR_AMD:
3645 		create = CPI_FAMILY(cpi) == 0xf;
3646 		break;
3647 	default:
3648 		create = 0;
3649 		break;
3650 	}
3651 	if (create)
3652 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3653 		    "ext-model", CPI_MODEL_XTD(cpi));
3654 
3655 	/* generation */
3656 
3657 	switch (cpi->cpi_vendor) {
3658 	case X86_VENDOR_AMD:
3659 		/*
3660 		 * AMD K5 model 1 was the first part to support this
3661 		 */
3662 		create = cpi->cpi_xmaxeax >= 0x80000001;
3663 		break;
3664 	default:
3665 		create = 0;
3666 		break;
3667 	}
3668 	if (create)
3669 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3670 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3671 
3672 	/* brand-id */
3673 
3674 	switch (cpi->cpi_vendor) {
3675 	case X86_VENDOR_Intel:
3676 		/*
3677 		 * brand id first appeared on Pentium III Xeon model 8,
3678 		 * and Celeron model 8 processors and Opteron
3679 		 */
3680 		create = cpi->cpi_family > 6 ||
3681 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3682 		break;
3683 	case X86_VENDOR_AMD:
3684 		create = cpi->cpi_family >= 0xf;
3685 		break;
3686 	default:
3687 		create = 0;
3688 		break;
3689 	}
3690 	if (create && cpi->cpi_brandid != 0) {
3691 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3692 		    "brand-id", cpi->cpi_brandid);
3693 	}
3694 
3695 	/* chunks, and apic-id */
3696 
3697 	switch (cpi->cpi_vendor) {
3698 		/*
3699 		 * first available on Pentium IV and Opteron (K8)
3700 		 */
3701 	case X86_VENDOR_Intel:
3702 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3703 		break;
3704 	case X86_VENDOR_AMD:
3705 		create = cpi->cpi_family >= 0xf;
3706 		break;
3707 	default:
3708 		create = 0;
3709 		break;
3710 	}
3711 	if (create) {
3712 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3713 		    "chunks", CPI_CHUNKS(cpi));
3714 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3715 		    "apic-id", cpi->cpi_apicid);
3716 		if (cpi->cpi_chipid >= 0) {
3717 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3718 			    "chip#", cpi->cpi_chipid);
3719 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3720 			    "clog#", cpi->cpi_clogid);
3721 		}
3722 	}
3723 
3724 	/* cpuid-features */
3725 
3726 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3727 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3728 
3729 
3730 	/* cpuid-features-ecx */
3731 
3732 	switch (cpi->cpi_vendor) {
3733 	case X86_VENDOR_Intel:
3734 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3735 		break;
3736 	default:
3737 		create = 0;
3738 		break;
3739 	}
3740 	if (create)
3741 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3742 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3743 
3744 	/* ext-cpuid-features */
3745 
3746 	switch (cpi->cpi_vendor) {
3747 	case X86_VENDOR_Intel:
3748 	case X86_VENDOR_AMD:
3749 	case X86_VENDOR_Cyrix:
3750 	case X86_VENDOR_TM:
3751 	case X86_VENDOR_Centaur:
3752 		create = cpi->cpi_xmaxeax >= 0x80000001;
3753 		break;
3754 	default:
3755 		create = 0;
3756 		break;
3757 	}
3758 	if (create) {
3759 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3760 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3761 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3762 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3763 	}
3764 
3765 	/*
3766 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3767 	 * model 1, and Cyrix GXm.  On earlier models we try and
3768 	 * simulate something similar .. so this string should always
3769 	 * same -something- about the processor, however lame.
3770 	 */
3771 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3772 	    "brand-string", cpi->cpi_brandstr);
3773 
3774 	/*
3775 	 * Finally, cache and tlb information
3776 	 */
3777 	switch (x86_which_cacheinfo(cpi)) {
3778 	case X86_VENDOR_Intel:
3779 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3780 		break;
3781 	case X86_VENDOR_Cyrix:
3782 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3783 		break;
3784 	case X86_VENDOR_AMD:
3785 		amd_cache_info(cpi, cpu_devi);
3786 		break;
3787 	default:
3788 		break;
3789 	}
3790 
3791 	mutex_exit(&cpu_node_lock);
3792 }
3793 
3794 struct l2info {
3795 	int *l2i_csz;
3796 	int *l2i_lsz;
3797 	int *l2i_assoc;
3798 	int l2i_ret;
3799 };
3800 
3801 /*
3802  * A cacheinfo walker that fetches the size, line-size and associativity
3803  * of the L2 cache
3804  */
3805 static int
3806 intel_l2cinfo(void *arg, const struct cachetab *ct)
3807 {
3808 	struct l2info *l2i = arg;
3809 	int *ip;
3810 
3811 	if (ct->ct_label != l2_cache_str &&
3812 	    ct->ct_label != sl2_cache_str)
3813 		return (0);	/* not an L2 -- keep walking */
3814 
3815 	if ((ip = l2i->l2i_csz) != NULL)
3816 		*ip = ct->ct_size;
3817 	if ((ip = l2i->l2i_lsz) != NULL)
3818 		*ip = ct->ct_line_size;
3819 	if ((ip = l2i->l2i_assoc) != NULL)
3820 		*ip = ct->ct_assoc;
3821 	l2i->l2i_ret = ct->ct_size;
3822 	return (1);		/* was an L2 -- terminate walk */
3823 }
3824 
3825 /*
3826  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3827  *
3828  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3829  *	value is the associativity, the associativity for the L2 cache and
3830  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3831  *	an index into the amd_afd[] array to determine the associativity.
3832  *	-1 is undefined. 0 is fully associative.
3833  */
3834 
3835 static int amd_afd[] =
3836 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3837 
3838 static void
3839 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3840 {
3841 	struct cpuid_regs *cp;
3842 	uint_t size, assoc;
3843 	int i;
3844 	int *ip;
3845 
3846 	if (cpi->cpi_xmaxeax < 0x80000006)
3847 		return;
3848 	cp = &cpi->cpi_extd[6];
3849 
3850 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3851 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3852 		uint_t cachesz = size * 1024;
3853 		assoc = amd_afd[i];
3854 
3855 		ASSERT(assoc != -1);
3856 
3857 		if ((ip = l2i->l2i_csz) != NULL)
3858 			*ip = cachesz;
3859 		if ((ip = l2i->l2i_lsz) != NULL)
3860 			*ip = BITX(cp->cp_ecx, 7, 0);
3861 		if ((ip = l2i->l2i_assoc) != NULL)
3862 			*ip = assoc;
3863 		l2i->l2i_ret = cachesz;
3864 	}
3865 }
3866 
3867 int
3868 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3869 {
3870 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3871 	struct l2info __l2info, *l2i = &__l2info;
3872 
3873 	l2i->l2i_csz = csz;
3874 	l2i->l2i_lsz = lsz;
3875 	l2i->l2i_assoc = assoc;
3876 	l2i->l2i_ret = -1;
3877 
3878 	switch (x86_which_cacheinfo(cpi)) {
3879 	case X86_VENDOR_Intel:
3880 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3881 		break;
3882 	case X86_VENDOR_Cyrix:
3883 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3884 		break;
3885 	case X86_VENDOR_AMD:
3886 		amd_l2cacheinfo(cpi, l2i);
3887 		break;
3888 	default:
3889 		break;
3890 	}
3891 	return (l2i->l2i_ret);
3892 }
3893 
3894 #if !defined(__xpv)
3895 
3896 uint32_t *
3897 cpuid_mwait_alloc(cpu_t *cpu)
3898 {
3899 	uint32_t	*ret;
3900 	size_t		mwait_size;
3901 
3902 	ASSERT(cpuid_checkpass(cpu, 2));
3903 
3904 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3905 	if (mwait_size == 0)
3906 		return (NULL);
3907 
3908 	/*
3909 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3910 	 * allocations.  mwait_size is currently cache line sized.  Neither
3911 	 * of these implementation details are guarantied to be true in the
3912 	 * future.
3913 	 *
3914 	 * First try allocating mwait_size as kmem_alloc() currently returns
3915 	 * correctly aligned memory.  If kmem_alloc() does not return
3916 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3917 	 *
3918 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3919 	 * decide to free this memory.
3920 	 */
3921 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3922 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3923 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3924 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3925 		*ret = MWAIT_RUNNING;
3926 		return (ret);
3927 	} else {
3928 		kmem_free(ret, mwait_size);
3929 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3930 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3931 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3932 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3933 		*ret = MWAIT_RUNNING;
3934 		return (ret);
3935 	}
3936 }
3937 
3938 void
3939 cpuid_mwait_free(cpu_t *cpu)
3940 {
3941 	ASSERT(cpuid_checkpass(cpu, 2));
3942 
3943 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3944 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3945 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3946 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3947 	}
3948 
3949 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3950 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3951 }
3952 
3953 void
3954 patch_tsc_read(int flag)
3955 {
3956 	size_t cnt;
3957 	switch (flag) {
3958 	case X86_NO_TSC:
3959 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3960 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3961 		break;
3962 	case X86_HAVE_TSCP:
3963 		cnt = &_tscp_end - &_tscp_start;
3964 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3965 		break;
3966 	case X86_TSC_MFENCE:
3967 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3968 		(void) memcpy((void *)tsc_read,
3969 		    (void *)&_tsc_mfence_start, cnt);
3970 		break;
3971 	case X86_TSC_LFENCE:
3972 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3973 		(void) memcpy((void *)tsc_read,
3974 		    (void *)&_tsc_lfence_start, cnt);
3975 		break;
3976 	default:
3977 		break;
3978 	}
3979 }
3980 
3981 #endif	/* !__xpv */
3982