1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Various routines to handle identification 30 * and classification of x86 processors. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/archsystm.h> 35 #include <sys/x86_archext.h> 36 #include <sys/kmem.h> 37 #include <sys/systm.h> 38 #include <sys/cmn_err.h> 39 #include <sys/sunddi.h> 40 #include <sys/sunndi.h> 41 #include <sys/cpuvar.h> 42 #include <sys/processor.h> 43 #include <sys/sysmacros.h> 44 #include <sys/pg.h> 45 #include <sys/fp.h> 46 #include <sys/controlregs.h> 47 #include <sys/auxv_386.h> 48 #include <sys/bitmap.h> 49 #include <sys/memnode.h> 50 51 /* 52 * Pass 0 of cpuid feature analysis happens in locore. It contains special code 53 * to recognize Cyrix processors that are not cpuid-compliant, and to deal with 54 * them accordingly. For most modern processors, feature detection occurs here 55 * in pass 1. 56 * 57 * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() 58 * for the boot CPU and does the basic analysis that the early kernel needs. 59 * x86_feature is set based on the return value of cpuid_pass1() of the boot 60 * CPU. 61 * 62 * Pass 1 includes: 63 * 64 * o Determining vendor/model/family/stepping and setting x86_type and 65 * x86_vendor accordingly. 66 * o Processing the feature flags returned by the cpuid instruction while 67 * applying any workarounds or tricks for the specific processor. 68 * o Mapping the feature flags into Solaris feature bits (X86_*). 69 * o Processing extended feature flags if supported by the processor, 70 * again while applying specific processor knowledge. 71 * o Determining the CMT characteristics of the system. 72 * 73 * Pass 1 is done on non-boot CPUs during their initialization and the results 74 * are used only as a meager attempt at ensuring that all processors within the 75 * system support the same features. 76 * 77 * Pass 2 of cpuid feature analysis happens just at the beginning 78 * of startup(). It just copies in and corrects the remainder 79 * of the cpuid data we depend on: standard cpuid functions that we didn't 80 * need for pass1 feature analysis, and extended cpuid functions beyond the 81 * simple feature processing done in pass1. 82 * 83 * Pass 3 of cpuid analysis is invoked after basic kernel services; in 84 * particular kernel memory allocation has been made available. It creates a 85 * readable brand string based on the data collected in the first two passes. 86 * 87 * Pass 4 of cpuid analysis is invoked after post_startup() when all 88 * the support infrastructure for various hardware features has been 89 * initialized. It determines which processor features will be reported 90 * to userland via the aux vector. 91 * 92 * All passes are executed on all CPUs, but only the boot CPU determines what 93 * features the kernel will use. 94 * 95 * Much of the worst junk in this file is for the support of processors 96 * that didn't really implement the cpuid instruction properly. 97 * 98 * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, 99 * the pass numbers. Accordingly, changes to the pass code may require changes 100 * to the accessor code. 101 */ 102 103 uint_t x86_feature = 0; 104 uint_t x86_vendor = X86_VENDOR_IntelClone; 105 uint_t x86_type = X86_TYPE_OTHER; 106 107 uint_t pentiumpro_bug4046376; 108 uint_t pentiumpro_bug4064495; 109 110 uint_t enable486; 111 112 /* 113 * This set of strings are for processors rumored to support the cpuid 114 * instruction, and is used by locore.s to figure out how to set x86_vendor 115 */ 116 const char CyrixInstead[] = "CyrixInstead"; 117 118 /* 119 * monitor/mwait info. 120 * 121 * size_actual and buf_actual are the real address and size allocated to get 122 * proper mwait_buf alignement. buf_actual and size_actual should be passed 123 * to kmem_free(). Currently kmem_alloc() and mwait happen to both use 124 * processor cache-line alignment, but this is not guarantied in the furture. 125 */ 126 struct mwait_info { 127 size_t mon_min; /* min size to avoid missed wakeups */ 128 size_t mon_max; /* size to avoid false wakeups */ 129 size_t size_actual; /* size actually allocated */ 130 void *buf_actual; /* memory actually allocated */ 131 uint32_t support; /* processor support of monitor/mwait */ 132 }; 133 134 /* 135 * These constants determine how many of the elements of the 136 * cpuid we cache in the cpuid_info data structure; the 137 * remaining elements are accessible via the cpuid instruction. 138 */ 139 140 #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ 141 #define NMAX_CPI_EXTD 9 /* eax = 0x80000000 .. 0x80000008 */ 142 143 struct cpuid_info { 144 uint_t cpi_pass; /* last pass completed */ 145 /* 146 * standard function information 147 */ 148 uint_t cpi_maxeax; /* fn 0: %eax */ 149 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 150 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 151 152 uint_t cpi_family; /* fn 1: extended family */ 153 uint_t cpi_model; /* fn 1: extended model */ 154 uint_t cpi_step; /* fn 1: stepping */ 155 chipid_t cpi_chipid; /* fn 1: %ebx: chip # on ht cpus */ 156 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 157 int cpi_clogid; /* fn 1: %ebx: thread # */ 158 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 159 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 160 uint_t cpi_ncache; /* fn 2: number of elements */ 161 uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */ 162 id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */ 163 uint_t cpi_std_4_size; /* fn 4: number of fn 4 elements */ 164 struct cpuid_regs **cpi_std_4; /* fn 4: %ecx == 0 .. fn4_size */ 165 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ 166 /* 167 * extended function information 168 */ 169 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 170 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 171 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 172 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 173 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */ 174 id_t cpi_coreid; 175 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 176 /* Intel: fn 4: %eax[31-26] */ 177 /* 178 * supported feature information 179 */ 180 uint32_t cpi_support[5]; 181 #define STD_EDX_FEATURES 0 182 #define AMD_EDX_FEATURES 1 183 #define TM_EDX_FEATURES 2 184 #define STD_ECX_FEATURES 3 185 #define AMD_ECX_FEATURES 4 186 /* 187 * Synthesized information, where known. 188 */ 189 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 190 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 191 uint32_t cpi_socket; /* Chip package/socket type */ 192 193 struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */ 194 }; 195 196 197 static struct cpuid_info cpuid_info0; 198 199 /* 200 * These bit fields are defined by the Intel Application Note AP-485 201 * "Intel Processor Identification and the CPUID Instruction" 202 */ 203 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 204 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 205 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 206 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 207 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 208 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 209 210 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 211 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 212 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 213 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 214 215 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 216 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 217 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 218 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 219 220 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 221 #define CPI_XMAXEAX_MAX 0x80000100 222 #define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */ 223 224 /* 225 * Function 4 (Deterministic Cache Parameters) macros 226 * Defined by Intel Application Note AP-485 227 */ 228 #define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26) 229 #define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14) 230 #define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9) 231 #define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8) 232 #define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5) 233 #define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0) 234 235 #define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22) 236 #define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12) 237 #define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0) 238 239 #define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0) 240 241 #define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0) 242 243 244 /* 245 * A couple of shorthand macros to identify "later" P6-family chips 246 * like the Pentium M and Core. First, the "older" P6-based stuff 247 * (loosely defined as "pre-Pentium-4"): 248 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 249 */ 250 251 #define IS_LEGACY_P6(cpi) ( \ 252 cpi->cpi_family == 6 && \ 253 (cpi->cpi_model == 1 || \ 254 cpi->cpi_model == 3 || \ 255 cpi->cpi_model == 5 || \ 256 cpi->cpi_model == 6 || \ 257 cpi->cpi_model == 7 || \ 258 cpi->cpi_model == 8 || \ 259 cpi->cpi_model == 0xA || \ 260 cpi->cpi_model == 0xB) \ 261 ) 262 263 /* A "new F6" is everything with family 6 that's not the above */ 264 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 265 266 /* Extended family/model support */ 267 #define IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \ 268 cpi->cpi_family >= 0xf) 269 270 /* 271 * AMD family 0xf and family 0x10 socket types. 272 * First index : 273 * 0 for family 0xf, revs B thru E 274 * 1 for family 0xf, revs F and G 275 * 2 for family 0x10, rev B 276 * Second index by (model & 0x3) 277 */ 278 static uint32_t amd_skts[3][4] = { 279 /* 280 * Family 0xf revisions B through E 281 */ 282 #define A_SKTS_0 0 283 { 284 X86_SOCKET_754, /* 0b00 */ 285 X86_SOCKET_940, /* 0b01 */ 286 X86_SOCKET_754, /* 0b10 */ 287 X86_SOCKET_939 /* 0b11 */ 288 }, 289 /* 290 * Family 0xf revisions F and G 291 */ 292 #define A_SKTS_1 1 293 { 294 X86_SOCKET_S1g1, /* 0b00 */ 295 X86_SOCKET_F1207, /* 0b01 */ 296 X86_SOCKET_UNKNOWN, /* 0b10 */ 297 X86_SOCKET_AM2 /* 0b11 */ 298 }, 299 /* 300 * Family 0x10 revisions A and B 301 * It is not clear whether, as new sockets release, that 302 * model & 0x3 will id socket for this family 303 */ 304 #define A_SKTS_2 2 305 { 306 X86_SOCKET_F1207, /* 0b00 */ 307 X86_SOCKET_F1207, /* 0b01 */ 308 X86_SOCKET_F1207, /* 0b10 */ 309 X86_SOCKET_F1207, /* 0b11 */ 310 } 311 }; 312 313 /* 314 * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping 315 * combination to chip "revision" and socket type. 316 * 317 * The first member of this array that matches a given family, extended model 318 * plus model range, and stepping range will be considered a match. 319 */ 320 static const struct amd_rev_mapent { 321 uint_t rm_family; 322 uint_t rm_modello; 323 uint_t rm_modelhi; 324 uint_t rm_steplo; 325 uint_t rm_stephi; 326 uint32_t rm_chiprev; 327 const char *rm_chiprevstr; 328 int rm_sktidx; 329 } amd_revmap[] = { 330 /* 331 * =============== AuthenticAMD Family 0xf =============== 332 */ 333 334 /* 335 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1. 336 */ 337 { 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 }, 338 { 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 }, 339 /* 340 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8 341 */ 342 { 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 }, 343 /* 344 * Rev CG is the rest of extended model 0x0 - i.e., everything 345 * but the rev B and C0 combinations covered above. 346 */ 347 { 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 }, 348 /* 349 * Rev D has extended model 0x1. 350 */ 351 { 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 }, 352 /* 353 * Rev E has extended model 0x2. 354 * Extended model 0x3 is unused but available to grow into. 355 */ 356 { 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 }, 357 /* 358 * Rev F has extended models 0x4 and 0x5. 359 */ 360 { 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 }, 361 /* 362 * Rev G has extended model 0x6. 363 */ 364 { 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 }, 365 366 /* 367 * =============== AuthenticAMD Family 0x10 =============== 368 */ 369 370 /* 371 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}. 372 * Give all of model 0 stepping range to rev A. 373 */ 374 { 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 }, 375 376 /* 377 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}. 378 * Give all of model 2 stepping range to rev B. 379 */ 380 { 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 }, 381 }; 382 383 /* 384 * Info for monitor/mwait idle loop. 385 * 386 * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's 387 * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November 388 * 2006. 389 * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual 390 * Documentation Updates" #33633, Rev 2.05, December 2006. 391 */ 392 #define MWAIT_SUPPORT (0x00000001) /* mwait supported */ 393 #define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */ 394 #define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */ 395 #define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON) 396 #define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2) 397 #define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1) 398 #define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0) 399 #define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0) 400 /* 401 * Number of sub-cstates for a given c-state. 402 */ 403 #define MWAIT_NUM_SUBC_STATES(cpi, c_state) \ 404 BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state) 405 406 static void 407 synth_amd_info(struct cpuid_info *cpi) 408 { 409 const struct amd_rev_mapent *rmp; 410 uint_t family, model, step; 411 int i; 412 413 /* 414 * Currently only AMD family 0xf and family 0x10 use these fields. 415 */ 416 if (cpi->cpi_family != 0xf && cpi->cpi_family != 0x10) 417 return; 418 419 family = cpi->cpi_family; 420 model = cpi->cpi_model; 421 step = cpi->cpi_step; 422 423 for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp); 424 i++, rmp++) { 425 if (family == rmp->rm_family && 426 model >= rmp->rm_modello && model <= rmp->rm_modelhi && 427 step >= rmp->rm_steplo && step <= rmp->rm_stephi) { 428 cpi->cpi_chiprev = rmp->rm_chiprev; 429 cpi->cpi_chiprevstr = rmp->rm_chiprevstr; 430 cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3]; 431 return; 432 } 433 } 434 } 435 436 static void 437 synth_info(struct cpuid_info *cpi) 438 { 439 cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN; 440 cpi->cpi_chiprevstr = "Unknown"; 441 cpi->cpi_socket = X86_SOCKET_UNKNOWN; 442 443 switch (cpi->cpi_vendor) { 444 case X86_VENDOR_AMD: 445 synth_amd_info(cpi); 446 break; 447 448 default: 449 break; 450 451 } 452 } 453 454 /* 455 * Apply up various platform-dependent restrictions where the 456 * underlying platform restrictions mean the CPU can be marked 457 * as less capable than its cpuid instruction would imply. 458 */ 459 #if defined(__xpv) 460 static void 461 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp) 462 { 463 switch (eax) { 464 case 1: 465 cp->cp_edx &= 466 ~(CPUID_INTC_EDX_PSE | 467 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 468 CPUID_INTC_EDX_MCA | /* XXPV true on dom0? */ 469 CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR | 470 CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT | 471 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 472 CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT); 473 break; 474 475 case 0x80000001: 476 cp->cp_edx &= 477 ~(CPUID_AMD_EDX_PSE | 478 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 479 CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE | 480 CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 | 481 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 482 CPUID_AMD_EDX_TSCP); 483 cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY; 484 break; 485 default: 486 break; 487 } 488 489 switch (vendor) { 490 case X86_VENDOR_Intel: 491 switch (eax) { 492 case 4: 493 /* 494 * Zero out the (ncores-per-chip - 1) field 495 */ 496 cp->cp_eax &= 0x03fffffff; 497 break; 498 default: 499 break; 500 } 501 break; 502 case X86_VENDOR_AMD: 503 switch (eax) { 504 case 0x80000008: 505 /* 506 * Zero out the (ncores-per-chip - 1) field 507 */ 508 cp->cp_ecx &= 0xffffff00; 509 break; 510 default: 511 break; 512 } 513 break; 514 default: 515 break; 516 } 517 } 518 #else 519 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 520 #endif 521 522 /* 523 * Some undocumented ways of patching the results of the cpuid 524 * instruction to permit running Solaris 10 on future cpus that 525 * we don't currently support. Could be set to non-zero values 526 * via settings in eeprom. 527 */ 528 529 uint32_t cpuid_feature_ecx_include; 530 uint32_t cpuid_feature_ecx_exclude; 531 uint32_t cpuid_feature_edx_include; 532 uint32_t cpuid_feature_edx_exclude; 533 534 void 535 cpuid_alloc_space(cpu_t *cpu) 536 { 537 /* 538 * By convention, cpu0 is the boot cpu, which is set up 539 * before memory allocation is available. All other cpus get 540 * their cpuid_info struct allocated here. 541 */ 542 ASSERT(cpu->cpu_id != 0); 543 cpu->cpu_m.mcpu_cpi = 544 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 545 } 546 547 void 548 cpuid_free_space(cpu_t *cpu) 549 { 550 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 551 int i; 552 553 ASSERT(cpu->cpu_id != 0); 554 555 /* 556 * Free up any function 4 related dynamic storage 557 */ 558 for (i = 1; i < cpi->cpi_std_4_size; i++) 559 kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs)); 560 if (cpi->cpi_std_4_size > 0) 561 kmem_free(cpi->cpi_std_4, 562 cpi->cpi_std_4_size * sizeof (struct cpuid_regs *)); 563 564 kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi)); 565 } 566 567 uint_t 568 cpuid_pass1(cpu_t *cpu) 569 { 570 uint32_t mask_ecx, mask_edx; 571 uint_t feature = X86_CPUID; 572 struct cpuid_info *cpi; 573 struct cpuid_regs *cp; 574 int xcpuid; 575 #if !defined(__xpv) 576 extern int idle_cpu_prefer_mwait; 577 #endif 578 579 /* 580 * Space statically allocated for cpu0, ensure pointer is set 581 */ 582 if (cpu->cpu_id == 0) 583 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 584 cpi = cpu->cpu_m.mcpu_cpi; 585 ASSERT(cpi != NULL); 586 cp = &cpi->cpi_std[0]; 587 cp->cp_eax = 0; 588 cpi->cpi_maxeax = __cpuid_insn(cp); 589 { 590 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 591 *iptr++ = cp->cp_ebx; 592 *iptr++ = cp->cp_edx; 593 *iptr++ = cp->cp_ecx; 594 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 595 } 596 597 /* 598 * Map the vendor string to a type code 599 */ 600 if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0) 601 cpi->cpi_vendor = X86_VENDOR_Intel; 602 else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0) 603 cpi->cpi_vendor = X86_VENDOR_AMD; 604 else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0) 605 cpi->cpi_vendor = X86_VENDOR_TM; 606 else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0) 607 /* 608 * CyrixInstead is a variable used by the Cyrix detection code 609 * in locore. 610 */ 611 cpi->cpi_vendor = X86_VENDOR_Cyrix; 612 else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0) 613 cpi->cpi_vendor = X86_VENDOR_UMC; 614 else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0) 615 cpi->cpi_vendor = X86_VENDOR_NexGen; 616 else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0) 617 cpi->cpi_vendor = X86_VENDOR_Centaur; 618 else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0) 619 cpi->cpi_vendor = X86_VENDOR_Rise; 620 else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0) 621 cpi->cpi_vendor = X86_VENDOR_SiS; 622 else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0) 623 cpi->cpi_vendor = X86_VENDOR_NSC; 624 else 625 cpi->cpi_vendor = X86_VENDOR_IntelClone; 626 627 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 628 629 /* 630 * Limit the range in case of weird hardware 631 */ 632 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 633 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 634 if (cpi->cpi_maxeax < 1) 635 goto pass1_done; 636 637 cp = &cpi->cpi_std[1]; 638 cp->cp_eax = 1; 639 (void) __cpuid_insn(cp); 640 641 /* 642 * Extract identifying constants for easy access. 643 */ 644 cpi->cpi_model = CPI_MODEL(cpi); 645 cpi->cpi_family = CPI_FAMILY(cpi); 646 647 if (cpi->cpi_family == 0xf) 648 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 649 650 /* 651 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf. 652 * Intel, and presumably everyone else, uses model == 0xf, as 653 * one would expect (max value means possible overflow). Sigh. 654 */ 655 656 switch (cpi->cpi_vendor) { 657 case X86_VENDOR_Intel: 658 if (IS_EXTENDED_MODEL_INTEL(cpi)) 659 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 660 break; 661 case X86_VENDOR_AMD: 662 if (CPI_FAMILY(cpi) == 0xf) 663 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 664 break; 665 default: 666 if (cpi->cpi_model == 0xf) 667 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 668 break; 669 } 670 671 cpi->cpi_step = CPI_STEP(cpi); 672 cpi->cpi_brandid = CPI_BRANDID(cpi); 673 674 /* 675 * *default* assumptions: 676 * - believe %edx feature word 677 * - ignore %ecx feature word 678 * - 32-bit virtual and physical addressing 679 */ 680 mask_edx = 0xffffffff; 681 mask_ecx = 0; 682 683 cpi->cpi_pabits = cpi->cpi_vabits = 32; 684 685 switch (cpi->cpi_vendor) { 686 case X86_VENDOR_Intel: 687 if (cpi->cpi_family == 5) 688 x86_type = X86_TYPE_P5; 689 else if (IS_LEGACY_P6(cpi)) { 690 x86_type = X86_TYPE_P6; 691 pentiumpro_bug4046376 = 1; 692 pentiumpro_bug4064495 = 1; 693 /* 694 * Clear the SEP bit when it was set erroneously 695 */ 696 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 697 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 698 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 699 x86_type = X86_TYPE_P4; 700 /* 701 * We don't currently depend on any of the %ecx 702 * features until Prescott, so we'll only check 703 * this from P4 onwards. We might want to revisit 704 * that idea later. 705 */ 706 mask_ecx = 0xffffffff; 707 } else if (cpi->cpi_family > 0xf) 708 mask_ecx = 0xffffffff; 709 /* 710 * We don't support MONITOR/MWAIT if leaf 5 is not available 711 * to obtain the monitor linesize. 712 */ 713 if (cpi->cpi_maxeax < 5) 714 mask_ecx &= ~CPUID_INTC_ECX_MON; 715 break; 716 case X86_VENDOR_IntelClone: 717 default: 718 break; 719 case X86_VENDOR_AMD: 720 #if defined(OPTERON_ERRATUM_108) 721 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 722 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 723 cpi->cpi_model = 0xc; 724 } else 725 #endif 726 if (cpi->cpi_family == 5) { 727 /* 728 * AMD K5 and K6 729 * 730 * These CPUs have an incomplete implementation 731 * of MCA/MCE which we mask away. 732 */ 733 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 734 735 /* 736 * Model 0 uses the wrong (APIC) bit 737 * to indicate PGE. Fix it here. 738 */ 739 if (cpi->cpi_model == 0) { 740 if (cp->cp_edx & 0x200) { 741 cp->cp_edx &= ~0x200; 742 cp->cp_edx |= CPUID_INTC_EDX_PGE; 743 } 744 } 745 746 /* 747 * Early models had problems w/ MMX; disable. 748 */ 749 if (cpi->cpi_model < 6) 750 mask_edx &= ~CPUID_INTC_EDX_MMX; 751 } 752 753 /* 754 * For newer families, SSE3 and CX16, at least, are valid; 755 * enable all 756 */ 757 if (cpi->cpi_family >= 0xf) 758 mask_ecx = 0xffffffff; 759 /* 760 * We don't support MONITOR/MWAIT if leaf 5 is not available 761 * to obtain the monitor linesize. 762 */ 763 if (cpi->cpi_maxeax < 5) 764 mask_ecx &= ~CPUID_INTC_ECX_MON; 765 766 #if !defined(__xpv) 767 /* 768 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD 769 * processors. AMD does not intend MWAIT to be used in the cpu 770 * idle loop on current and future processors. 10h and future 771 * AMD processors use more power in MWAIT than HLT. 772 * Pre-family-10h Opterons do not have the MWAIT instruction. 773 */ 774 idle_cpu_prefer_mwait = 0; 775 #endif 776 777 break; 778 case X86_VENDOR_TM: 779 /* 780 * workaround the NT workaround in CMS 4.1 781 */ 782 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 783 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 784 cp->cp_edx |= CPUID_INTC_EDX_CX8; 785 break; 786 case X86_VENDOR_Centaur: 787 /* 788 * workaround the NT workarounds again 789 */ 790 if (cpi->cpi_family == 6) 791 cp->cp_edx |= CPUID_INTC_EDX_CX8; 792 break; 793 case X86_VENDOR_Cyrix: 794 /* 795 * We rely heavily on the probing in locore 796 * to actually figure out what parts, if any, 797 * of the Cyrix cpuid instruction to believe. 798 */ 799 switch (x86_type) { 800 case X86_TYPE_CYRIX_486: 801 mask_edx = 0; 802 break; 803 case X86_TYPE_CYRIX_6x86: 804 mask_edx = 0; 805 break; 806 case X86_TYPE_CYRIX_6x86L: 807 mask_edx = 808 CPUID_INTC_EDX_DE | 809 CPUID_INTC_EDX_CX8; 810 break; 811 case X86_TYPE_CYRIX_6x86MX: 812 mask_edx = 813 CPUID_INTC_EDX_DE | 814 CPUID_INTC_EDX_MSR | 815 CPUID_INTC_EDX_CX8 | 816 CPUID_INTC_EDX_PGE | 817 CPUID_INTC_EDX_CMOV | 818 CPUID_INTC_EDX_MMX; 819 break; 820 case X86_TYPE_CYRIX_GXm: 821 mask_edx = 822 CPUID_INTC_EDX_MSR | 823 CPUID_INTC_EDX_CX8 | 824 CPUID_INTC_EDX_CMOV | 825 CPUID_INTC_EDX_MMX; 826 break; 827 case X86_TYPE_CYRIX_MediaGX: 828 break; 829 case X86_TYPE_CYRIX_MII: 830 case X86_TYPE_VIA_CYRIX_III: 831 mask_edx = 832 CPUID_INTC_EDX_DE | 833 CPUID_INTC_EDX_TSC | 834 CPUID_INTC_EDX_MSR | 835 CPUID_INTC_EDX_CX8 | 836 CPUID_INTC_EDX_PGE | 837 CPUID_INTC_EDX_CMOV | 838 CPUID_INTC_EDX_MMX; 839 break; 840 default: 841 break; 842 } 843 break; 844 } 845 846 #if defined(__xpv) 847 /* 848 * Do not support MONITOR/MWAIT under a hypervisor 849 */ 850 mask_ecx &= ~CPUID_INTC_ECX_MON; 851 #endif /* __xpv */ 852 853 /* 854 * Now we've figured out the masks that determine 855 * which bits we choose to believe, apply the masks 856 * to the feature words, then map the kernel's view 857 * of these feature words into its feature word. 858 */ 859 cp->cp_edx &= mask_edx; 860 cp->cp_ecx &= mask_ecx; 861 862 /* 863 * apply any platform restrictions (we don't call this 864 * immediately after __cpuid_insn here, because we need the 865 * workarounds applied above first) 866 */ 867 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 868 869 /* 870 * fold in overrides from the "eeprom" mechanism 871 */ 872 cp->cp_edx |= cpuid_feature_edx_include; 873 cp->cp_edx &= ~cpuid_feature_edx_exclude; 874 875 cp->cp_ecx |= cpuid_feature_ecx_include; 876 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 877 878 if (cp->cp_edx & CPUID_INTC_EDX_PSE) 879 feature |= X86_LARGEPAGE; 880 if (cp->cp_edx & CPUID_INTC_EDX_TSC) 881 feature |= X86_TSC; 882 if (cp->cp_edx & CPUID_INTC_EDX_MSR) 883 feature |= X86_MSR; 884 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) 885 feature |= X86_MTRR; 886 if (cp->cp_edx & CPUID_INTC_EDX_PGE) 887 feature |= X86_PGE; 888 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) 889 feature |= X86_CMOV; 890 if (cp->cp_edx & CPUID_INTC_EDX_MMX) 891 feature |= X86_MMX; 892 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 893 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) 894 feature |= X86_MCA; 895 if (cp->cp_edx & CPUID_INTC_EDX_PAE) 896 feature |= X86_PAE; 897 if (cp->cp_edx & CPUID_INTC_EDX_CX8) 898 feature |= X86_CX8; 899 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) 900 feature |= X86_CX16; 901 if (cp->cp_edx & CPUID_INTC_EDX_PAT) 902 feature |= X86_PAT; 903 if (cp->cp_edx & CPUID_INTC_EDX_SEP) 904 feature |= X86_SEP; 905 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 906 /* 907 * In our implementation, fxsave/fxrstor 908 * are prerequisites before we'll even 909 * try and do SSE things. 910 */ 911 if (cp->cp_edx & CPUID_INTC_EDX_SSE) 912 feature |= X86_SSE; 913 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) 914 feature |= X86_SSE2; 915 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) 916 feature |= X86_SSE3; 917 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 918 if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) 919 feature |= X86_SSSE3; 920 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) 921 feature |= X86_SSE4_1; 922 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) 923 feature |= X86_SSE4_2; 924 } 925 } 926 if (cp->cp_edx & CPUID_INTC_EDX_DE) 927 feature |= X86_DE; 928 if (cp->cp_ecx & CPUID_INTC_ECX_MON) { 929 cpi->cpi_mwait.support |= MWAIT_SUPPORT; 930 feature |= X86_MWAIT; 931 } 932 933 if (feature & X86_PAE) 934 cpi->cpi_pabits = 36; 935 936 /* 937 * Hyperthreading configuration is slightly tricky on Intel 938 * and pure clones, and even trickier on AMD. 939 * 940 * (AMD chose to set the HTT bit on their CMP processors, 941 * even though they're not actually hyperthreaded. Thus it 942 * takes a bit more work to figure out what's really going 943 * on ... see the handling of the CMP_LGCY bit below) 944 */ 945 if (cp->cp_edx & CPUID_INTC_EDX_HTT) { 946 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 947 if (cpi->cpi_ncpu_per_chip > 1) 948 feature |= X86_HTT; 949 } else { 950 cpi->cpi_ncpu_per_chip = 1; 951 } 952 953 /* 954 * Work on the "extended" feature information, doing 955 * some basic initialization for cpuid_pass2() 956 */ 957 xcpuid = 0; 958 switch (cpi->cpi_vendor) { 959 case X86_VENDOR_Intel: 960 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf) 961 xcpuid++; 962 break; 963 case X86_VENDOR_AMD: 964 if (cpi->cpi_family > 5 || 965 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 966 xcpuid++; 967 break; 968 case X86_VENDOR_Cyrix: 969 /* 970 * Only these Cyrix CPUs are -known- to support 971 * extended cpuid operations. 972 */ 973 if (x86_type == X86_TYPE_VIA_CYRIX_III || 974 x86_type == X86_TYPE_CYRIX_GXm) 975 xcpuid++; 976 break; 977 case X86_VENDOR_Centaur: 978 case X86_VENDOR_TM: 979 default: 980 xcpuid++; 981 break; 982 } 983 984 if (xcpuid) { 985 cp = &cpi->cpi_extd[0]; 986 cp->cp_eax = 0x80000000; 987 cpi->cpi_xmaxeax = __cpuid_insn(cp); 988 } 989 990 if (cpi->cpi_xmaxeax & 0x80000000) { 991 992 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 993 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 994 995 switch (cpi->cpi_vendor) { 996 case X86_VENDOR_Intel: 997 case X86_VENDOR_AMD: 998 if (cpi->cpi_xmaxeax < 0x80000001) 999 break; 1000 cp = &cpi->cpi_extd[1]; 1001 cp->cp_eax = 0x80000001; 1002 (void) __cpuid_insn(cp); 1003 1004 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1005 cpi->cpi_family == 5 && 1006 cpi->cpi_model == 6 && 1007 cpi->cpi_step == 6) { 1008 /* 1009 * K6 model 6 uses bit 10 to indicate SYSC 1010 * Later models use bit 11. Fix it here. 1011 */ 1012 if (cp->cp_edx & 0x400) { 1013 cp->cp_edx &= ~0x400; 1014 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 1015 } 1016 } 1017 1018 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 1019 1020 /* 1021 * Compute the additions to the kernel's feature word. 1022 */ 1023 if (cp->cp_edx & CPUID_AMD_EDX_NX) 1024 feature |= X86_NX; 1025 1026 #if defined(__amd64) 1027 /* 1 GB large page - enable only for 64 bit kernel */ 1028 if (cp->cp_edx & CPUID_AMD_EDX_1GPG) 1029 feature |= X86_1GPG; 1030 #endif 1031 1032 if ((cpi->cpi_vendor == X86_VENDOR_AMD) && 1033 (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) && 1034 (cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) 1035 feature |= X86_SSE4A; 1036 1037 /* 1038 * If both the HTT and CMP_LGCY bits are set, 1039 * then we're not actually HyperThreaded. Read 1040 * "AMD CPUID Specification" for more details. 1041 */ 1042 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1043 (feature & X86_HTT) && 1044 (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) { 1045 feature &= ~X86_HTT; 1046 feature |= X86_CMP; 1047 } 1048 #if defined(__amd64) 1049 /* 1050 * It's really tricky to support syscall/sysret in 1051 * the i386 kernel; we rely on sysenter/sysexit 1052 * instead. In the amd64 kernel, things are -way- 1053 * better. 1054 */ 1055 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) 1056 feature |= X86_ASYSC; 1057 1058 /* 1059 * While we're thinking about system calls, note 1060 * that AMD processors don't support sysenter 1061 * in long mode at all, so don't try to program them. 1062 */ 1063 if (x86_vendor == X86_VENDOR_AMD) 1064 feature &= ~X86_SEP; 1065 #endif 1066 if (x86_vendor == X86_VENDOR_AMD && 1067 cp->cp_edx & CPUID_AMD_EDX_TSCP) 1068 feature |= X86_TSCP; 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 /* 1075 * Get CPUID data about processor cores and hyperthreads. 1076 */ 1077 switch (cpi->cpi_vendor) { 1078 case X86_VENDOR_Intel: 1079 if (cpi->cpi_maxeax >= 4) { 1080 cp = &cpi->cpi_std[4]; 1081 cp->cp_eax = 4; 1082 cp->cp_ecx = 0; 1083 (void) __cpuid_insn(cp); 1084 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 1085 } 1086 /*FALLTHROUGH*/ 1087 case X86_VENDOR_AMD: 1088 if (cpi->cpi_xmaxeax < 0x80000008) 1089 break; 1090 cp = &cpi->cpi_extd[8]; 1091 cp->cp_eax = 0x80000008; 1092 (void) __cpuid_insn(cp); 1093 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp); 1094 1095 /* 1096 * Virtual and physical address limits from 1097 * cpuid override previously guessed values. 1098 */ 1099 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 1100 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 1101 break; 1102 default: 1103 break; 1104 } 1105 1106 /* 1107 * Derive the number of cores per chip 1108 */ 1109 switch (cpi->cpi_vendor) { 1110 case X86_VENDOR_Intel: 1111 if (cpi->cpi_maxeax < 4) { 1112 cpi->cpi_ncore_per_chip = 1; 1113 break; 1114 } else { 1115 cpi->cpi_ncore_per_chip = 1116 BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1; 1117 } 1118 break; 1119 case X86_VENDOR_AMD: 1120 if (cpi->cpi_xmaxeax < 0x80000008) { 1121 cpi->cpi_ncore_per_chip = 1; 1122 break; 1123 } else { 1124 cpi->cpi_ncore_per_chip = 1125 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 1126 } 1127 break; 1128 default: 1129 cpi->cpi_ncore_per_chip = 1; 1130 break; 1131 } 1132 } else { 1133 cpi->cpi_ncore_per_chip = 1; 1134 } 1135 1136 /* 1137 * If more than one core, then this processor is CMP. 1138 */ 1139 if (cpi->cpi_ncore_per_chip > 1) 1140 feature |= X86_CMP; 1141 1142 /* 1143 * If the number of cores is the same as the number 1144 * of CPUs, then we cannot have HyperThreading. 1145 */ 1146 if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) 1147 feature &= ~X86_HTT; 1148 1149 if ((feature & (X86_HTT | X86_CMP)) == 0) { 1150 /* 1151 * Single-core single-threaded processors. 1152 */ 1153 cpi->cpi_chipid = -1; 1154 cpi->cpi_clogid = 0; 1155 cpi->cpi_coreid = cpu->cpu_id; 1156 } else if (cpi->cpi_ncpu_per_chip > 1) { 1157 uint_t i; 1158 uint_t chipid_shift = 0; 1159 uint_t coreid_shift = 0; 1160 uint_t apic_id = CPI_APIC_ID(cpi); 1161 1162 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 1163 chipid_shift++; 1164 cpi->cpi_chipid = apic_id >> chipid_shift; 1165 cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1); 1166 1167 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 1168 if (feature & X86_CMP) { 1169 /* 1170 * Multi-core (and possibly multi-threaded) 1171 * processors. 1172 */ 1173 uint_t ncpu_per_core; 1174 if (cpi->cpi_ncore_per_chip == 1) 1175 ncpu_per_core = cpi->cpi_ncpu_per_chip; 1176 else if (cpi->cpi_ncore_per_chip > 1) 1177 ncpu_per_core = cpi->cpi_ncpu_per_chip / 1178 cpi->cpi_ncore_per_chip; 1179 /* 1180 * 8bit APIC IDs on dual core Pentiums 1181 * look like this: 1182 * 1183 * +-----------------------+------+------+ 1184 * | Physical Package ID | MC | HT | 1185 * +-----------------------+------+------+ 1186 * <------- chipid --------> 1187 * <------- coreid ---------------> 1188 * <--- clogid --> 1189 * 1190 * Where the number of bits necessary to 1191 * represent MC and HT fields together equals 1192 * to the minimum number of bits necessary to 1193 * store the value of cpi->cpi_ncpu_per_chip. 1194 * Of those bits, the MC part uses the number 1195 * of bits necessary to store the value of 1196 * cpi->cpi_ncore_per_chip. 1197 */ 1198 for (i = 1; i < ncpu_per_core; i <<= 1) 1199 coreid_shift++; 1200 cpi->cpi_coreid = apic_id >> coreid_shift; 1201 } else if (feature & X86_HTT) { 1202 /* 1203 * Single-core multi-threaded processors. 1204 */ 1205 cpi->cpi_coreid = cpi->cpi_chipid; 1206 } 1207 } else if (cpi->cpi_vendor == X86_VENDOR_AMD) { 1208 /* 1209 * AMD currently only has dual-core processors with 1210 * single-threaded cores. If they ever release 1211 * multi-threaded processors, then this code 1212 * will have to be updated. 1213 */ 1214 cpi->cpi_coreid = cpu->cpu_id; 1215 } else { 1216 /* 1217 * All other processors are currently 1218 * assumed to have single cores. 1219 */ 1220 cpi->cpi_coreid = cpi->cpi_chipid; 1221 } 1222 } 1223 1224 /* 1225 * Synthesize chip "revision" and socket type 1226 */ 1227 synth_info(cpi); 1228 1229 pass1_done: 1230 cpi->cpi_pass = 1; 1231 return (feature); 1232 } 1233 1234 /* 1235 * Make copies of the cpuid table entries we depend on, in 1236 * part for ease of parsing now, in part so that we have only 1237 * one place to correct any of it, in part for ease of 1238 * later export to userland, and in part so we can look at 1239 * this stuff in a crash dump. 1240 */ 1241 1242 /*ARGSUSED*/ 1243 void 1244 cpuid_pass2(cpu_t *cpu) 1245 { 1246 uint_t n, nmax; 1247 int i; 1248 struct cpuid_regs *cp; 1249 uint8_t *dp; 1250 uint32_t *iptr; 1251 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1252 1253 ASSERT(cpi->cpi_pass == 1); 1254 1255 if (cpi->cpi_maxeax < 1) 1256 goto pass2_done; 1257 1258 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 1259 nmax = NMAX_CPI_STD; 1260 /* 1261 * (We already handled n == 0 and n == 1 in pass 1) 1262 */ 1263 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 1264 cp->cp_eax = n; 1265 1266 /* 1267 * CPUID function 4 expects %ecx to be initialized 1268 * with an index which indicates which cache to return 1269 * information about. The OS is expected to call function 4 1270 * with %ecx set to 0, 1, 2, ... until it returns with 1271 * EAX[4:0] set to 0, which indicates there are no more 1272 * caches. 1273 * 1274 * Here, populate cpi_std[4] with the information returned by 1275 * function 4 when %ecx == 0, and do the rest in cpuid_pass3() 1276 * when dynamic memory allocation becomes available. 1277 * 1278 * Note: we need to explicitly initialize %ecx here, since 1279 * function 4 may have been previously invoked. 1280 */ 1281 if (n == 4) 1282 cp->cp_ecx = 0; 1283 1284 (void) __cpuid_insn(cp); 1285 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 1286 switch (n) { 1287 case 2: 1288 /* 1289 * "the lower 8 bits of the %eax register 1290 * contain a value that identifies the number 1291 * of times the cpuid [instruction] has to be 1292 * executed to obtain a complete image of the 1293 * processor's caching systems." 1294 * 1295 * How *do* they make this stuff up? 1296 */ 1297 cpi->cpi_ncache = sizeof (*cp) * 1298 BITX(cp->cp_eax, 7, 0); 1299 if (cpi->cpi_ncache == 0) 1300 break; 1301 cpi->cpi_ncache--; /* skip count byte */ 1302 1303 /* 1304 * Well, for now, rather than attempt to implement 1305 * this slightly dubious algorithm, we just look 1306 * at the first 15 .. 1307 */ 1308 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 1309 cpi->cpi_ncache = sizeof (*cp) - 1; 1310 1311 dp = cpi->cpi_cacheinfo; 1312 if (BITX(cp->cp_eax, 31, 31) == 0) { 1313 uint8_t *p = (void *)&cp->cp_eax; 1314 for (i = 1; i < 3; i++) 1315 if (p[i] != 0) 1316 *dp++ = p[i]; 1317 } 1318 if (BITX(cp->cp_ebx, 31, 31) == 0) { 1319 uint8_t *p = (void *)&cp->cp_ebx; 1320 for (i = 0; i < 4; i++) 1321 if (p[i] != 0) 1322 *dp++ = p[i]; 1323 } 1324 if (BITX(cp->cp_ecx, 31, 31) == 0) { 1325 uint8_t *p = (void *)&cp->cp_ecx; 1326 for (i = 0; i < 4; i++) 1327 if (p[i] != 0) 1328 *dp++ = p[i]; 1329 } 1330 if (BITX(cp->cp_edx, 31, 31) == 0) { 1331 uint8_t *p = (void *)&cp->cp_edx; 1332 for (i = 0; i < 4; i++) 1333 if (p[i] != 0) 1334 *dp++ = p[i]; 1335 } 1336 break; 1337 1338 case 3: /* Processor serial number, if PSN supported */ 1339 break; 1340 1341 case 4: /* Deterministic cache parameters */ 1342 break; 1343 1344 case 5: /* Monitor/Mwait parameters */ 1345 { 1346 size_t mwait_size; 1347 1348 /* 1349 * check cpi_mwait.support which was set in cpuid_pass1 1350 */ 1351 if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT)) 1352 break; 1353 1354 /* 1355 * Protect ourself from insane mwait line size. 1356 * Workaround for incomplete hardware emulator(s). 1357 */ 1358 mwait_size = (size_t)MWAIT_SIZE_MAX(cpi); 1359 if (mwait_size < sizeof (uint32_t) || 1360 !ISP2(mwait_size)) { 1361 #if DEBUG 1362 cmn_err(CE_NOTE, "Cannot handle cpu %d mwait " 1363 "size %ld", 1364 cpu->cpu_id, (long)mwait_size); 1365 #endif 1366 break; 1367 } 1368 1369 cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi); 1370 cpi->cpi_mwait.mon_max = mwait_size; 1371 if (MWAIT_EXTENSION(cpi)) { 1372 cpi->cpi_mwait.support |= MWAIT_EXTENSIONS; 1373 if (MWAIT_INT_ENABLE(cpi)) 1374 cpi->cpi_mwait.support |= 1375 MWAIT_ECX_INT_ENABLE; 1376 } 1377 break; 1378 } 1379 default: 1380 break; 1381 } 1382 } 1383 1384 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) 1385 goto pass2_done; 1386 1387 if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) 1388 nmax = NMAX_CPI_EXTD; 1389 /* 1390 * Copy the extended properties, fixing them as we go. 1391 * (We already handled n == 0 and n == 1 in pass 1) 1392 */ 1393 iptr = (void *)cpi->cpi_brandstr; 1394 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 1395 cp->cp_eax = 0x80000000 + n; 1396 (void) __cpuid_insn(cp); 1397 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp); 1398 switch (n) { 1399 case 2: 1400 case 3: 1401 case 4: 1402 /* 1403 * Extract the brand string 1404 */ 1405 *iptr++ = cp->cp_eax; 1406 *iptr++ = cp->cp_ebx; 1407 *iptr++ = cp->cp_ecx; 1408 *iptr++ = cp->cp_edx; 1409 break; 1410 case 5: 1411 switch (cpi->cpi_vendor) { 1412 case X86_VENDOR_AMD: 1413 /* 1414 * The Athlon and Duron were the first 1415 * parts to report the sizes of the 1416 * TLB for large pages. Before then, 1417 * we don't trust the data. 1418 */ 1419 if (cpi->cpi_family < 6 || 1420 (cpi->cpi_family == 6 && 1421 cpi->cpi_model < 1)) 1422 cp->cp_eax = 0; 1423 break; 1424 default: 1425 break; 1426 } 1427 break; 1428 case 6: 1429 switch (cpi->cpi_vendor) { 1430 case X86_VENDOR_AMD: 1431 /* 1432 * The Athlon and Duron were the first 1433 * AMD parts with L2 TLB's. 1434 * Before then, don't trust the data. 1435 */ 1436 if (cpi->cpi_family < 6 || 1437 cpi->cpi_family == 6 && 1438 cpi->cpi_model < 1) 1439 cp->cp_eax = cp->cp_ebx = 0; 1440 /* 1441 * AMD Duron rev A0 reports L2 1442 * cache size incorrectly as 1K 1443 * when it is really 64K 1444 */ 1445 if (cpi->cpi_family == 6 && 1446 cpi->cpi_model == 3 && 1447 cpi->cpi_step == 0) { 1448 cp->cp_ecx &= 0xffff; 1449 cp->cp_ecx |= 0x400000; 1450 } 1451 break; 1452 case X86_VENDOR_Cyrix: /* VIA C3 */ 1453 /* 1454 * VIA C3 processors are a bit messed 1455 * up w.r.t. encoding cache sizes in %ecx 1456 */ 1457 if (cpi->cpi_family != 6) 1458 break; 1459 /* 1460 * model 7 and 8 were incorrectly encoded 1461 * 1462 * xxx is model 8 really broken? 1463 */ 1464 if (cpi->cpi_model == 7 || 1465 cpi->cpi_model == 8) 1466 cp->cp_ecx = 1467 BITX(cp->cp_ecx, 31, 24) << 16 | 1468 BITX(cp->cp_ecx, 23, 16) << 12 | 1469 BITX(cp->cp_ecx, 15, 8) << 8 | 1470 BITX(cp->cp_ecx, 7, 0); 1471 /* 1472 * model 9 stepping 1 has wrong associativity 1473 */ 1474 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 1475 cp->cp_ecx |= 8 << 12; 1476 break; 1477 case X86_VENDOR_Intel: 1478 /* 1479 * Extended L2 Cache features function. 1480 * First appeared on Prescott. 1481 */ 1482 default: 1483 break; 1484 } 1485 break; 1486 default: 1487 break; 1488 } 1489 } 1490 1491 pass2_done: 1492 cpi->cpi_pass = 2; 1493 } 1494 1495 static const char * 1496 intel_cpubrand(const struct cpuid_info *cpi) 1497 { 1498 int i; 1499 1500 if ((x86_feature & X86_CPUID) == 0 || 1501 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1502 return ("i486"); 1503 1504 switch (cpi->cpi_family) { 1505 case 5: 1506 return ("Intel Pentium(r)"); 1507 case 6: 1508 switch (cpi->cpi_model) { 1509 uint_t celeron, xeon; 1510 const struct cpuid_regs *cp; 1511 case 0: 1512 case 1: 1513 case 2: 1514 return ("Intel Pentium(r) Pro"); 1515 case 3: 1516 case 4: 1517 return ("Intel Pentium(r) II"); 1518 case 6: 1519 return ("Intel Celeron(r)"); 1520 case 5: 1521 case 7: 1522 celeron = xeon = 0; 1523 cp = &cpi->cpi_std[2]; /* cache info */ 1524 1525 for (i = 1; i < 3; i++) { 1526 uint_t tmp; 1527 1528 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 1529 if (tmp == 0x40) 1530 celeron++; 1531 if (tmp >= 0x44 && tmp <= 0x45) 1532 xeon++; 1533 } 1534 1535 for (i = 0; i < 2; i++) { 1536 uint_t tmp; 1537 1538 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 1539 if (tmp == 0x40) 1540 celeron++; 1541 else if (tmp >= 0x44 && tmp <= 0x45) 1542 xeon++; 1543 } 1544 1545 for (i = 0; i < 4; i++) { 1546 uint_t tmp; 1547 1548 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 1549 if (tmp == 0x40) 1550 celeron++; 1551 else if (tmp >= 0x44 && tmp <= 0x45) 1552 xeon++; 1553 } 1554 1555 for (i = 0; i < 4; i++) { 1556 uint_t tmp; 1557 1558 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 1559 if (tmp == 0x40) 1560 celeron++; 1561 else if (tmp >= 0x44 && tmp <= 0x45) 1562 xeon++; 1563 } 1564 1565 if (celeron) 1566 return ("Intel Celeron(r)"); 1567 if (xeon) 1568 return (cpi->cpi_model == 5 ? 1569 "Intel Pentium(r) II Xeon(tm)" : 1570 "Intel Pentium(r) III Xeon(tm)"); 1571 return (cpi->cpi_model == 5 ? 1572 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 1573 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 1574 default: 1575 break; 1576 } 1577 default: 1578 break; 1579 } 1580 1581 /* BrandID is present if the field is nonzero */ 1582 if (cpi->cpi_brandid != 0) { 1583 static const struct { 1584 uint_t bt_bid; 1585 const char *bt_str; 1586 } brand_tbl[] = { 1587 { 0x1, "Intel(r) Celeron(r)" }, 1588 { 0x2, "Intel(r) Pentium(r) III" }, 1589 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 1590 { 0x4, "Intel(r) Pentium(r) III" }, 1591 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 1592 { 0x7, "Mobile Intel(r) Celeron(r)" }, 1593 { 0x8, "Intel(r) Pentium(r) 4" }, 1594 { 0x9, "Intel(r) Pentium(r) 4" }, 1595 { 0xa, "Intel(r) Celeron(r)" }, 1596 { 0xb, "Intel(r) Xeon(tm)" }, 1597 { 0xc, "Intel(r) Xeon(tm) MP" }, 1598 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 1599 { 0xf, "Mobile Intel(r) Celeron(r)" }, 1600 { 0x11, "Mobile Genuine Intel(r)" }, 1601 { 0x12, "Intel(r) Celeron(r) M" }, 1602 { 0x13, "Mobile Intel(r) Celeron(r)" }, 1603 { 0x14, "Intel(r) Celeron(r)" }, 1604 { 0x15, "Mobile Genuine Intel(r)" }, 1605 { 0x16, "Intel(r) Pentium(r) M" }, 1606 { 0x17, "Mobile Intel(r) Celeron(r)" } 1607 }; 1608 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 1609 uint_t sgn; 1610 1611 sgn = (cpi->cpi_family << 8) | 1612 (cpi->cpi_model << 4) | cpi->cpi_step; 1613 1614 for (i = 0; i < btblmax; i++) 1615 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 1616 break; 1617 if (i < btblmax) { 1618 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 1619 return ("Intel(r) Celeron(r)"); 1620 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 1621 return ("Intel(r) Xeon(tm) MP"); 1622 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 1623 return ("Intel(r) Xeon(tm)"); 1624 return (brand_tbl[i].bt_str); 1625 } 1626 } 1627 1628 return (NULL); 1629 } 1630 1631 static const char * 1632 amd_cpubrand(const struct cpuid_info *cpi) 1633 { 1634 if ((x86_feature & X86_CPUID) == 0 || 1635 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1636 return ("i486 compatible"); 1637 1638 switch (cpi->cpi_family) { 1639 case 5: 1640 switch (cpi->cpi_model) { 1641 case 0: 1642 case 1: 1643 case 2: 1644 case 3: 1645 case 4: 1646 case 5: 1647 return ("AMD-K5(r)"); 1648 case 6: 1649 case 7: 1650 return ("AMD-K6(r)"); 1651 case 8: 1652 return ("AMD-K6(r)-2"); 1653 case 9: 1654 return ("AMD-K6(r)-III"); 1655 default: 1656 return ("AMD (family 5)"); 1657 } 1658 case 6: 1659 switch (cpi->cpi_model) { 1660 case 1: 1661 return ("AMD-K7(tm)"); 1662 case 0: 1663 case 2: 1664 case 4: 1665 return ("AMD Athlon(tm)"); 1666 case 3: 1667 case 7: 1668 return ("AMD Duron(tm)"); 1669 case 6: 1670 case 8: 1671 case 10: 1672 /* 1673 * Use the L2 cache size to distinguish 1674 */ 1675 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 1676 "AMD Athlon(tm)" : "AMD Duron(tm)"); 1677 default: 1678 return ("AMD (family 6)"); 1679 } 1680 default: 1681 break; 1682 } 1683 1684 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 1685 cpi->cpi_brandid != 0) { 1686 switch (BITX(cpi->cpi_brandid, 7, 5)) { 1687 case 3: 1688 return ("AMD Opteron(tm) UP 1xx"); 1689 case 4: 1690 return ("AMD Opteron(tm) DP 2xx"); 1691 case 5: 1692 return ("AMD Opteron(tm) MP 8xx"); 1693 default: 1694 return ("AMD Opteron(tm)"); 1695 } 1696 } 1697 1698 return (NULL); 1699 } 1700 1701 static const char * 1702 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 1703 { 1704 if ((x86_feature & X86_CPUID) == 0 || 1705 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 1706 type == X86_TYPE_CYRIX_486) 1707 return ("i486 compatible"); 1708 1709 switch (type) { 1710 case X86_TYPE_CYRIX_6x86: 1711 return ("Cyrix 6x86"); 1712 case X86_TYPE_CYRIX_6x86L: 1713 return ("Cyrix 6x86L"); 1714 case X86_TYPE_CYRIX_6x86MX: 1715 return ("Cyrix 6x86MX"); 1716 case X86_TYPE_CYRIX_GXm: 1717 return ("Cyrix GXm"); 1718 case X86_TYPE_CYRIX_MediaGX: 1719 return ("Cyrix MediaGX"); 1720 case X86_TYPE_CYRIX_MII: 1721 return ("Cyrix M2"); 1722 case X86_TYPE_VIA_CYRIX_III: 1723 return ("VIA Cyrix M3"); 1724 default: 1725 /* 1726 * Have another wild guess .. 1727 */ 1728 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 1729 return ("Cyrix 5x86"); 1730 else if (cpi->cpi_family == 5) { 1731 switch (cpi->cpi_model) { 1732 case 2: 1733 return ("Cyrix 6x86"); /* Cyrix M1 */ 1734 case 4: 1735 return ("Cyrix MediaGX"); 1736 default: 1737 break; 1738 } 1739 } else if (cpi->cpi_family == 6) { 1740 switch (cpi->cpi_model) { 1741 case 0: 1742 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 1743 case 5: 1744 case 6: 1745 case 7: 1746 case 8: 1747 case 9: 1748 return ("VIA C3"); 1749 default: 1750 break; 1751 } 1752 } 1753 break; 1754 } 1755 return (NULL); 1756 } 1757 1758 /* 1759 * This only gets called in the case that the CPU extended 1760 * feature brand string (0x80000002, 0x80000003, 0x80000004) 1761 * aren't available, or contain null bytes for some reason. 1762 */ 1763 static void 1764 fabricate_brandstr(struct cpuid_info *cpi) 1765 { 1766 const char *brand = NULL; 1767 1768 switch (cpi->cpi_vendor) { 1769 case X86_VENDOR_Intel: 1770 brand = intel_cpubrand(cpi); 1771 break; 1772 case X86_VENDOR_AMD: 1773 brand = amd_cpubrand(cpi); 1774 break; 1775 case X86_VENDOR_Cyrix: 1776 brand = cyrix_cpubrand(cpi, x86_type); 1777 break; 1778 case X86_VENDOR_NexGen: 1779 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1780 brand = "NexGen Nx586"; 1781 break; 1782 case X86_VENDOR_Centaur: 1783 if (cpi->cpi_family == 5) 1784 switch (cpi->cpi_model) { 1785 case 4: 1786 brand = "Centaur C6"; 1787 break; 1788 case 8: 1789 brand = "Centaur C2"; 1790 break; 1791 case 9: 1792 brand = "Centaur C3"; 1793 break; 1794 default: 1795 break; 1796 } 1797 break; 1798 case X86_VENDOR_Rise: 1799 if (cpi->cpi_family == 5 && 1800 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 1801 brand = "Rise mP6"; 1802 break; 1803 case X86_VENDOR_SiS: 1804 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1805 brand = "SiS 55x"; 1806 break; 1807 case X86_VENDOR_TM: 1808 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 1809 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 1810 break; 1811 case X86_VENDOR_NSC: 1812 case X86_VENDOR_UMC: 1813 default: 1814 break; 1815 } 1816 if (brand) { 1817 (void) strcpy((char *)cpi->cpi_brandstr, brand); 1818 return; 1819 } 1820 1821 /* 1822 * If all else fails ... 1823 */ 1824 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 1825 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 1826 cpi->cpi_model, cpi->cpi_step); 1827 } 1828 1829 /* 1830 * This routine is called just after kernel memory allocation 1831 * becomes available on cpu0, and as part of mp_startup() on 1832 * the other cpus. 1833 * 1834 * Fixup the brand string, and collect any information from cpuid 1835 * that requires dynamicically allocated storage to represent. 1836 */ 1837 /*ARGSUSED*/ 1838 void 1839 cpuid_pass3(cpu_t *cpu) 1840 { 1841 int i, max, shft, level, size; 1842 struct cpuid_regs regs; 1843 struct cpuid_regs *cp; 1844 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1845 1846 ASSERT(cpi->cpi_pass == 2); 1847 1848 /* 1849 * Function 4: Deterministic cache parameters 1850 * 1851 * Take this opportunity to detect the number of threads 1852 * sharing the last level cache, and construct a corresponding 1853 * cache id. The respective cpuid_info members are initialized 1854 * to the default case of "no last level cache sharing". 1855 */ 1856 cpi->cpi_ncpu_shr_last_cache = 1; 1857 cpi->cpi_last_lvl_cacheid = cpu->cpu_id; 1858 1859 if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) { 1860 1861 /* 1862 * Find the # of elements (size) returned by fn 4, and along 1863 * the way detect last level cache sharing details. 1864 */ 1865 bzero(®s, sizeof (regs)); 1866 cp = ®s; 1867 for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) { 1868 cp->cp_eax = 4; 1869 cp->cp_ecx = i; 1870 1871 (void) __cpuid_insn(cp); 1872 1873 if (CPI_CACHE_TYPE(cp) == 0) 1874 break; 1875 level = CPI_CACHE_LVL(cp); 1876 if (level > max) { 1877 max = level; 1878 cpi->cpi_ncpu_shr_last_cache = 1879 CPI_NTHR_SHR_CACHE(cp) + 1; 1880 } 1881 } 1882 cpi->cpi_std_4_size = size = i; 1883 1884 /* 1885 * Allocate the cpi_std_4 array. The first element 1886 * references the regs for fn 4, %ecx == 0, which 1887 * cpuid_pass2() stashed in cpi->cpi_std[4]. 1888 */ 1889 if (size > 0) { 1890 cpi->cpi_std_4 = 1891 kmem_alloc(size * sizeof (cp), KM_SLEEP); 1892 cpi->cpi_std_4[0] = &cpi->cpi_std[4]; 1893 1894 /* 1895 * Allocate storage to hold the additional regs 1896 * for function 4, %ecx == 1 .. cpi_std_4_size. 1897 * 1898 * The regs for fn 4, %ecx == 0 has already 1899 * been allocated as indicated above. 1900 */ 1901 for (i = 1; i < size; i++) { 1902 cp = cpi->cpi_std_4[i] = 1903 kmem_zalloc(sizeof (regs), KM_SLEEP); 1904 cp->cp_eax = 4; 1905 cp->cp_ecx = i; 1906 1907 (void) __cpuid_insn(cp); 1908 } 1909 } 1910 /* 1911 * Determine the number of bits needed to represent 1912 * the number of CPUs sharing the last level cache. 1913 * 1914 * Shift off that number of bits from the APIC id to 1915 * derive the cache id. 1916 */ 1917 shft = 0; 1918 for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1) 1919 shft++; 1920 cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft; 1921 } 1922 1923 /* 1924 * Now fixup the brand string 1925 */ 1926 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { 1927 fabricate_brandstr(cpi); 1928 } else { 1929 1930 /* 1931 * If we successfully extracted a brand string from the cpuid 1932 * instruction, clean it up by removing leading spaces and 1933 * similar junk. 1934 */ 1935 if (cpi->cpi_brandstr[0]) { 1936 size_t maxlen = sizeof (cpi->cpi_brandstr); 1937 char *src, *dst; 1938 1939 dst = src = (char *)cpi->cpi_brandstr; 1940 src[maxlen - 1] = '\0'; 1941 /* 1942 * strip leading spaces 1943 */ 1944 while (*src == ' ') 1945 src++; 1946 /* 1947 * Remove any 'Genuine' or "Authentic" prefixes 1948 */ 1949 if (strncmp(src, "Genuine ", 8) == 0) 1950 src += 8; 1951 if (strncmp(src, "Authentic ", 10) == 0) 1952 src += 10; 1953 1954 /* 1955 * Now do an in-place copy. 1956 * Map (R) to (r) and (TM) to (tm). 1957 * The era of teletypes is long gone, and there's 1958 * -really- no need to shout. 1959 */ 1960 while (*src != '\0') { 1961 if (src[0] == '(') { 1962 if (strncmp(src + 1, "R)", 2) == 0) { 1963 (void) strncpy(dst, "(r)", 3); 1964 src += 3; 1965 dst += 3; 1966 continue; 1967 } 1968 if (strncmp(src + 1, "TM)", 3) == 0) { 1969 (void) strncpy(dst, "(tm)", 4); 1970 src += 4; 1971 dst += 4; 1972 continue; 1973 } 1974 } 1975 *dst++ = *src++; 1976 } 1977 *dst = '\0'; 1978 1979 /* 1980 * Finally, remove any trailing spaces 1981 */ 1982 while (--dst > cpi->cpi_brandstr) 1983 if (*dst == ' ') 1984 *dst = '\0'; 1985 else 1986 break; 1987 } else 1988 fabricate_brandstr(cpi); 1989 } 1990 cpi->cpi_pass = 3; 1991 } 1992 1993 /* 1994 * This routine is called out of bind_hwcap() much later in the life 1995 * of the kernel (post_startup()). The job of this routine is to resolve 1996 * the hardware feature support and kernel support for those features into 1997 * what we're actually going to tell applications via the aux vector. 1998 */ 1999 uint_t 2000 cpuid_pass4(cpu_t *cpu) 2001 { 2002 struct cpuid_info *cpi; 2003 uint_t hwcap_flags = 0; 2004 2005 if (cpu == NULL) 2006 cpu = CPU; 2007 cpi = cpu->cpu_m.mcpu_cpi; 2008 2009 ASSERT(cpi->cpi_pass == 3); 2010 2011 if (cpi->cpi_maxeax >= 1) { 2012 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 2013 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 2014 2015 *edx = CPI_FEATURES_EDX(cpi); 2016 *ecx = CPI_FEATURES_ECX(cpi); 2017 2018 /* 2019 * [these require explicit kernel support] 2020 */ 2021 if ((x86_feature & X86_SEP) == 0) 2022 *edx &= ~CPUID_INTC_EDX_SEP; 2023 2024 if ((x86_feature & X86_SSE) == 0) 2025 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 2026 if ((x86_feature & X86_SSE2) == 0) 2027 *edx &= ~CPUID_INTC_EDX_SSE2; 2028 2029 if ((x86_feature & X86_HTT) == 0) 2030 *edx &= ~CPUID_INTC_EDX_HTT; 2031 2032 if ((x86_feature & X86_SSE3) == 0) 2033 *ecx &= ~CPUID_INTC_ECX_SSE3; 2034 2035 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2036 if ((x86_feature & X86_SSSE3) == 0) 2037 *ecx &= ~CPUID_INTC_ECX_SSSE3; 2038 if ((x86_feature & X86_SSE4_1) == 0) 2039 *ecx &= ~CPUID_INTC_ECX_SSE4_1; 2040 if ((x86_feature & X86_SSE4_2) == 0) 2041 *ecx &= ~CPUID_INTC_ECX_SSE4_2; 2042 } 2043 2044 /* 2045 * [no explicit support required beyond x87 fp context] 2046 */ 2047 if (!fpu_exists) 2048 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 2049 2050 /* 2051 * Now map the supported feature vector to things that we 2052 * think userland will care about. 2053 */ 2054 if (*edx & CPUID_INTC_EDX_SEP) 2055 hwcap_flags |= AV_386_SEP; 2056 if (*edx & CPUID_INTC_EDX_SSE) 2057 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 2058 if (*edx & CPUID_INTC_EDX_SSE2) 2059 hwcap_flags |= AV_386_SSE2; 2060 if (*ecx & CPUID_INTC_ECX_SSE3) 2061 hwcap_flags |= AV_386_SSE3; 2062 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2063 if (*ecx & CPUID_INTC_ECX_SSSE3) 2064 hwcap_flags |= AV_386_SSSE3; 2065 if (*ecx & CPUID_INTC_ECX_SSE4_1) 2066 hwcap_flags |= AV_386_SSE4_1; 2067 if (*ecx & CPUID_INTC_ECX_SSE4_2) 2068 hwcap_flags |= AV_386_SSE4_2; 2069 } 2070 if (*ecx & CPUID_INTC_ECX_POPCNT) 2071 hwcap_flags |= AV_386_POPCNT; 2072 if (*edx & CPUID_INTC_EDX_FPU) 2073 hwcap_flags |= AV_386_FPU; 2074 if (*edx & CPUID_INTC_EDX_MMX) 2075 hwcap_flags |= AV_386_MMX; 2076 2077 if (*edx & CPUID_INTC_EDX_TSC) 2078 hwcap_flags |= AV_386_TSC; 2079 if (*edx & CPUID_INTC_EDX_CX8) 2080 hwcap_flags |= AV_386_CX8; 2081 if (*edx & CPUID_INTC_EDX_CMOV) 2082 hwcap_flags |= AV_386_CMOV; 2083 if (*ecx & CPUID_INTC_ECX_MON) 2084 hwcap_flags |= AV_386_MON; 2085 if (*ecx & CPUID_INTC_ECX_CX16) 2086 hwcap_flags |= AV_386_CX16; 2087 } 2088 2089 if (x86_feature & X86_HTT) 2090 hwcap_flags |= AV_386_PAUSE; 2091 2092 if (cpi->cpi_xmaxeax < 0x80000001) 2093 goto pass4_done; 2094 2095 switch (cpi->cpi_vendor) { 2096 struct cpuid_regs cp; 2097 uint32_t *edx, *ecx; 2098 2099 case X86_VENDOR_Intel: 2100 /* 2101 * Seems like Intel duplicated what we necessary 2102 * here to make the initial crop of 64-bit OS's work. 2103 * Hopefully, those are the only "extended" bits 2104 * they'll add. 2105 */ 2106 /*FALLTHROUGH*/ 2107 2108 case X86_VENDOR_AMD: 2109 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 2110 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 2111 2112 *edx = CPI_FEATURES_XTD_EDX(cpi); 2113 *ecx = CPI_FEATURES_XTD_ECX(cpi); 2114 2115 /* 2116 * [these features require explicit kernel support] 2117 */ 2118 switch (cpi->cpi_vendor) { 2119 case X86_VENDOR_Intel: 2120 break; 2121 2122 case X86_VENDOR_AMD: 2123 if ((x86_feature & X86_TSCP) == 0) 2124 *edx &= ~CPUID_AMD_EDX_TSCP; 2125 if ((x86_feature & X86_SSE4A) == 0) 2126 *ecx &= ~CPUID_AMD_ECX_SSE4A; 2127 break; 2128 2129 default: 2130 break; 2131 } 2132 2133 /* 2134 * [no explicit support required beyond 2135 * x87 fp context and exception handlers] 2136 */ 2137 if (!fpu_exists) 2138 *edx &= ~(CPUID_AMD_EDX_MMXamd | 2139 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 2140 2141 if ((x86_feature & X86_NX) == 0) 2142 *edx &= ~CPUID_AMD_EDX_NX; 2143 #if !defined(__amd64) 2144 *edx &= ~CPUID_AMD_EDX_LM; 2145 #endif 2146 /* 2147 * Now map the supported feature vector to 2148 * things that we think userland will care about. 2149 */ 2150 #if defined(__amd64) 2151 if (*edx & CPUID_AMD_EDX_SYSC) 2152 hwcap_flags |= AV_386_AMD_SYSC; 2153 #endif 2154 if (*edx & CPUID_AMD_EDX_MMXamd) 2155 hwcap_flags |= AV_386_AMD_MMX; 2156 if (*edx & CPUID_AMD_EDX_3DNow) 2157 hwcap_flags |= AV_386_AMD_3DNow; 2158 if (*edx & CPUID_AMD_EDX_3DNowx) 2159 hwcap_flags |= AV_386_AMD_3DNowx; 2160 2161 switch (cpi->cpi_vendor) { 2162 case X86_VENDOR_AMD: 2163 if (*edx & CPUID_AMD_EDX_TSCP) 2164 hwcap_flags |= AV_386_TSCP; 2165 if (*ecx & CPUID_AMD_ECX_AHF64) 2166 hwcap_flags |= AV_386_AHF; 2167 if (*ecx & CPUID_AMD_ECX_SSE4A) 2168 hwcap_flags |= AV_386_AMD_SSE4A; 2169 if (*ecx & CPUID_AMD_ECX_LZCNT) 2170 hwcap_flags |= AV_386_AMD_LZCNT; 2171 break; 2172 2173 case X86_VENDOR_Intel: 2174 /* 2175 * Aarrgh. 2176 * Intel uses a different bit in the same word. 2177 */ 2178 if (*ecx & CPUID_INTC_ECX_AHF64) 2179 hwcap_flags |= AV_386_AHF; 2180 break; 2181 2182 default: 2183 break; 2184 } 2185 break; 2186 2187 case X86_VENDOR_TM: 2188 cp.cp_eax = 0x80860001; 2189 (void) __cpuid_insn(&cp); 2190 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 2191 break; 2192 2193 default: 2194 break; 2195 } 2196 2197 pass4_done: 2198 cpi->cpi_pass = 4; 2199 return (hwcap_flags); 2200 } 2201 2202 2203 /* 2204 * Simulate the cpuid instruction using the data we previously 2205 * captured about this CPU. We try our best to return the truth 2206 * about the hardware, independently of kernel support. 2207 */ 2208 uint32_t 2209 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 2210 { 2211 struct cpuid_info *cpi; 2212 struct cpuid_regs *xcp; 2213 2214 if (cpu == NULL) 2215 cpu = CPU; 2216 cpi = cpu->cpu_m.mcpu_cpi; 2217 2218 ASSERT(cpuid_checkpass(cpu, 3)); 2219 2220 /* 2221 * CPUID data is cached in two separate places: cpi_std for standard 2222 * CPUID functions, and cpi_extd for extended CPUID functions. 2223 */ 2224 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) 2225 xcp = &cpi->cpi_std[cp->cp_eax]; 2226 else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax && 2227 cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD) 2228 xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000]; 2229 else 2230 /* 2231 * The caller is asking for data from an input parameter which 2232 * the kernel has not cached. In this case we go fetch from 2233 * the hardware and return the data directly to the user. 2234 */ 2235 return (__cpuid_insn(cp)); 2236 2237 cp->cp_eax = xcp->cp_eax; 2238 cp->cp_ebx = xcp->cp_ebx; 2239 cp->cp_ecx = xcp->cp_ecx; 2240 cp->cp_edx = xcp->cp_edx; 2241 return (cp->cp_eax); 2242 } 2243 2244 int 2245 cpuid_checkpass(cpu_t *cpu, int pass) 2246 { 2247 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 2248 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 2249 } 2250 2251 int 2252 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 2253 { 2254 ASSERT(cpuid_checkpass(cpu, 3)); 2255 2256 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 2257 } 2258 2259 int 2260 cpuid_is_cmt(cpu_t *cpu) 2261 { 2262 if (cpu == NULL) 2263 cpu = CPU; 2264 2265 ASSERT(cpuid_checkpass(cpu, 1)); 2266 2267 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 2268 } 2269 2270 /* 2271 * AMD and Intel both implement the 64-bit variant of the syscall 2272 * instruction (syscallq), so if there's -any- support for syscall, 2273 * cpuid currently says "yes, we support this". 2274 * 2275 * However, Intel decided to -not- implement the 32-bit variant of the 2276 * syscall instruction, so we provide a predicate to allow our caller 2277 * to test that subtlety here. 2278 * 2279 * XXPV Currently, 32-bit syscall instructions don't work via the hypervisor, 2280 * even in the case where the hardware would in fact support it. 2281 */ 2282 /*ARGSUSED*/ 2283 int 2284 cpuid_syscall32_insn(cpu_t *cpu) 2285 { 2286 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 2287 2288 #if !defined(__xpv) 2289 if (cpu == NULL) 2290 cpu = CPU; 2291 2292 /*CSTYLED*/ 2293 { 2294 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2295 2296 if (cpi->cpi_vendor == X86_VENDOR_AMD && 2297 cpi->cpi_xmaxeax >= 0x80000001 && 2298 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 2299 return (1); 2300 } 2301 #endif 2302 return (0); 2303 } 2304 2305 int 2306 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 2307 { 2308 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2309 2310 static const char fmt[] = 2311 "x86 (%s %X family %d model %d step %d clock %d MHz)"; 2312 static const char fmt_ht[] = 2313 "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)"; 2314 2315 ASSERT(cpuid_checkpass(cpu, 1)); 2316 2317 if (cpuid_is_cmt(cpu)) 2318 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 2319 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2320 cpi->cpi_family, cpi->cpi_model, 2321 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2322 return (snprintf(s, n, fmt, 2323 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2324 cpi->cpi_family, cpi->cpi_model, 2325 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2326 } 2327 2328 const char * 2329 cpuid_getvendorstr(cpu_t *cpu) 2330 { 2331 ASSERT(cpuid_checkpass(cpu, 1)); 2332 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 2333 } 2334 2335 uint_t 2336 cpuid_getvendor(cpu_t *cpu) 2337 { 2338 ASSERT(cpuid_checkpass(cpu, 1)); 2339 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 2340 } 2341 2342 uint_t 2343 cpuid_getfamily(cpu_t *cpu) 2344 { 2345 ASSERT(cpuid_checkpass(cpu, 1)); 2346 return (cpu->cpu_m.mcpu_cpi->cpi_family); 2347 } 2348 2349 uint_t 2350 cpuid_getmodel(cpu_t *cpu) 2351 { 2352 ASSERT(cpuid_checkpass(cpu, 1)); 2353 return (cpu->cpu_m.mcpu_cpi->cpi_model); 2354 } 2355 2356 uint_t 2357 cpuid_get_ncpu_per_chip(cpu_t *cpu) 2358 { 2359 ASSERT(cpuid_checkpass(cpu, 1)); 2360 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 2361 } 2362 2363 uint_t 2364 cpuid_get_ncore_per_chip(cpu_t *cpu) 2365 { 2366 ASSERT(cpuid_checkpass(cpu, 1)); 2367 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 2368 } 2369 2370 uint_t 2371 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu) 2372 { 2373 ASSERT(cpuid_checkpass(cpu, 2)); 2374 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache); 2375 } 2376 2377 id_t 2378 cpuid_get_last_lvl_cacheid(cpu_t *cpu) 2379 { 2380 ASSERT(cpuid_checkpass(cpu, 2)); 2381 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 2382 } 2383 2384 uint_t 2385 cpuid_getstep(cpu_t *cpu) 2386 { 2387 ASSERT(cpuid_checkpass(cpu, 1)); 2388 return (cpu->cpu_m.mcpu_cpi->cpi_step); 2389 } 2390 2391 uint_t 2392 cpuid_getsig(struct cpu *cpu) 2393 { 2394 ASSERT(cpuid_checkpass(cpu, 1)); 2395 return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax); 2396 } 2397 2398 uint32_t 2399 cpuid_getchiprev(struct cpu *cpu) 2400 { 2401 ASSERT(cpuid_checkpass(cpu, 1)); 2402 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 2403 } 2404 2405 const char * 2406 cpuid_getchiprevstr(struct cpu *cpu) 2407 { 2408 ASSERT(cpuid_checkpass(cpu, 1)); 2409 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 2410 } 2411 2412 uint32_t 2413 cpuid_getsockettype(struct cpu *cpu) 2414 { 2415 ASSERT(cpuid_checkpass(cpu, 1)); 2416 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 2417 } 2418 2419 int 2420 cpuid_get_chipid(cpu_t *cpu) 2421 { 2422 ASSERT(cpuid_checkpass(cpu, 1)); 2423 2424 if (cpuid_is_cmt(cpu)) 2425 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 2426 return (cpu->cpu_id); 2427 } 2428 2429 id_t 2430 cpuid_get_coreid(cpu_t *cpu) 2431 { 2432 ASSERT(cpuid_checkpass(cpu, 1)); 2433 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 2434 } 2435 2436 int 2437 cpuid_get_clogid(cpu_t *cpu) 2438 { 2439 ASSERT(cpuid_checkpass(cpu, 1)); 2440 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 2441 } 2442 2443 void 2444 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 2445 { 2446 struct cpuid_info *cpi; 2447 2448 if (cpu == NULL) 2449 cpu = CPU; 2450 cpi = cpu->cpu_m.mcpu_cpi; 2451 2452 ASSERT(cpuid_checkpass(cpu, 1)); 2453 2454 if (pabits) 2455 *pabits = cpi->cpi_pabits; 2456 if (vabits) 2457 *vabits = cpi->cpi_vabits; 2458 } 2459 2460 /* 2461 * Returns the number of data TLB entries for a corresponding 2462 * pagesize. If it can't be computed, or isn't known, the 2463 * routine returns zero. If you ask about an architecturally 2464 * impossible pagesize, the routine will panic (so that the 2465 * hat implementor knows that things are inconsistent.) 2466 */ 2467 uint_t 2468 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 2469 { 2470 struct cpuid_info *cpi; 2471 uint_t dtlb_nent = 0; 2472 2473 if (cpu == NULL) 2474 cpu = CPU; 2475 cpi = cpu->cpu_m.mcpu_cpi; 2476 2477 ASSERT(cpuid_checkpass(cpu, 1)); 2478 2479 /* 2480 * Check the L2 TLB info 2481 */ 2482 if (cpi->cpi_xmaxeax >= 0x80000006) { 2483 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 2484 2485 switch (pagesize) { 2486 2487 case 4 * 1024: 2488 /* 2489 * All zero in the top 16 bits of the register 2490 * indicates a unified TLB. Size is in low 16 bits. 2491 */ 2492 if ((cp->cp_ebx & 0xffff0000) == 0) 2493 dtlb_nent = cp->cp_ebx & 0x0000ffff; 2494 else 2495 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 2496 break; 2497 2498 case 2 * 1024 * 1024: 2499 if ((cp->cp_eax & 0xffff0000) == 0) 2500 dtlb_nent = cp->cp_eax & 0x0000ffff; 2501 else 2502 dtlb_nent = BITX(cp->cp_eax, 27, 16); 2503 break; 2504 2505 default: 2506 panic("unknown L2 pagesize"); 2507 /*NOTREACHED*/ 2508 } 2509 } 2510 2511 if (dtlb_nent != 0) 2512 return (dtlb_nent); 2513 2514 /* 2515 * No L2 TLB support for this size, try L1. 2516 */ 2517 if (cpi->cpi_xmaxeax >= 0x80000005) { 2518 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 2519 2520 switch (pagesize) { 2521 case 4 * 1024: 2522 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 2523 break; 2524 case 2 * 1024 * 1024: 2525 dtlb_nent = BITX(cp->cp_eax, 23, 16); 2526 break; 2527 default: 2528 panic("unknown L1 d-TLB pagesize"); 2529 /*NOTREACHED*/ 2530 } 2531 } 2532 2533 return (dtlb_nent); 2534 } 2535 2536 /* 2537 * Return 0 if the erratum is not present or not applicable, positive 2538 * if it is, and negative if the status of the erratum is unknown. 2539 * 2540 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 2541 * Processors" #25759, Rev 3.57, August 2005 2542 */ 2543 int 2544 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 2545 { 2546 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2547 uint_t eax; 2548 2549 /* 2550 * Bail out if this CPU isn't an AMD CPU, or if it's 2551 * a legacy (32-bit) AMD CPU. 2552 */ 2553 if (cpi->cpi_vendor != X86_VENDOR_AMD || 2554 cpi->cpi_family == 4 || cpi->cpi_family == 5 || 2555 cpi->cpi_family == 6) 2556 2557 return (0); 2558 2559 eax = cpi->cpi_std[1].cp_eax; 2560 2561 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 2562 #define SH_B3(eax) (eax == 0xf51) 2563 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 2564 2565 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 2566 2567 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 2568 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 2569 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 2570 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 2571 2572 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 2573 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 2574 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 2575 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 2576 2577 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 2578 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 2579 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 2580 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 2581 #define BH_E4(eax) (eax == 0x20fb1) 2582 #define SH_E5(eax) (eax == 0x20f42) 2583 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 2584 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 2585 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 2586 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 2587 DH_E6(eax) || JH_E6(eax)) 2588 2589 switch (erratum) { 2590 case 1: 2591 return (cpi->cpi_family < 0x10); 2592 case 51: /* what does the asterisk mean? */ 2593 return (B(eax) || SH_C0(eax) || CG(eax)); 2594 case 52: 2595 return (B(eax)); 2596 case 57: 2597 return (cpi->cpi_family <= 0x10); 2598 case 58: 2599 return (B(eax)); 2600 case 60: 2601 return (cpi->cpi_family <= 0x10); 2602 case 61: 2603 case 62: 2604 case 63: 2605 case 64: 2606 case 65: 2607 case 66: 2608 case 68: 2609 case 69: 2610 case 70: 2611 case 71: 2612 return (B(eax)); 2613 case 72: 2614 return (SH_B0(eax)); 2615 case 74: 2616 return (B(eax)); 2617 case 75: 2618 return (cpi->cpi_family < 0x10); 2619 case 76: 2620 return (B(eax)); 2621 case 77: 2622 return (cpi->cpi_family <= 0x10); 2623 case 78: 2624 return (B(eax) || SH_C0(eax)); 2625 case 79: 2626 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2627 case 80: 2628 case 81: 2629 case 82: 2630 return (B(eax)); 2631 case 83: 2632 return (B(eax) || SH_C0(eax) || CG(eax)); 2633 case 85: 2634 return (cpi->cpi_family < 0x10); 2635 case 86: 2636 return (SH_C0(eax) || CG(eax)); 2637 case 88: 2638 #if !defined(__amd64) 2639 return (0); 2640 #else 2641 return (B(eax) || SH_C0(eax)); 2642 #endif 2643 case 89: 2644 return (cpi->cpi_family < 0x10); 2645 case 90: 2646 return (B(eax) || SH_C0(eax) || CG(eax)); 2647 case 91: 2648 case 92: 2649 return (B(eax) || SH_C0(eax)); 2650 case 93: 2651 return (SH_C0(eax)); 2652 case 94: 2653 return (B(eax) || SH_C0(eax) || CG(eax)); 2654 case 95: 2655 #if !defined(__amd64) 2656 return (0); 2657 #else 2658 return (B(eax) || SH_C0(eax)); 2659 #endif 2660 case 96: 2661 return (B(eax) || SH_C0(eax) || CG(eax)); 2662 case 97: 2663 case 98: 2664 return (SH_C0(eax) || CG(eax)); 2665 case 99: 2666 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2667 case 100: 2668 return (B(eax) || SH_C0(eax)); 2669 case 101: 2670 case 103: 2671 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2672 case 104: 2673 return (SH_C0(eax) || CG(eax) || D0(eax)); 2674 case 105: 2675 case 106: 2676 case 107: 2677 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2678 case 108: 2679 return (DH_CG(eax)); 2680 case 109: 2681 return (SH_C0(eax) || CG(eax) || D0(eax)); 2682 case 110: 2683 return (D0(eax) || EX(eax)); 2684 case 111: 2685 return (CG(eax)); 2686 case 112: 2687 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2688 case 113: 2689 return (eax == 0x20fc0); 2690 case 114: 2691 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2692 case 115: 2693 return (SH_E0(eax) || JH_E1(eax)); 2694 case 116: 2695 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2696 case 117: 2697 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2698 case 118: 2699 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 2700 JH_E6(eax)); 2701 case 121: 2702 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2703 case 122: 2704 return (cpi->cpi_family < 0x10); 2705 case 123: 2706 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 2707 case 131: 2708 return (cpi->cpi_family < 0x10); 2709 case 6336786: 2710 /* 2711 * Test for AdvPowerMgmtInfo.TscPStateInvariant 2712 * if this is a K8 family or newer processor 2713 */ 2714 if (CPI_FAMILY(cpi) == 0xf) { 2715 struct cpuid_regs regs; 2716 regs.cp_eax = 0x80000007; 2717 (void) __cpuid_insn(®s); 2718 return (!(regs.cp_edx & 0x100)); 2719 } 2720 return (0); 2721 case 6323525: 2722 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 2723 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 2724 2725 default: 2726 return (-1); 2727 } 2728 } 2729 2730 static const char assoc_str[] = "associativity"; 2731 static const char line_str[] = "line-size"; 2732 static const char size_str[] = "size"; 2733 2734 static void 2735 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 2736 uint32_t val) 2737 { 2738 char buf[128]; 2739 2740 /* 2741 * ndi_prop_update_int() is used because it is desirable for 2742 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 2743 */ 2744 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 2745 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 2746 } 2747 2748 /* 2749 * Intel-style cache/tlb description 2750 * 2751 * Standard cpuid level 2 gives a randomly ordered 2752 * selection of tags that index into a table that describes 2753 * cache and tlb properties. 2754 */ 2755 2756 static const char l1_icache_str[] = "l1-icache"; 2757 static const char l1_dcache_str[] = "l1-dcache"; 2758 static const char l2_cache_str[] = "l2-cache"; 2759 static const char l3_cache_str[] = "l3-cache"; 2760 static const char itlb4k_str[] = "itlb-4K"; 2761 static const char dtlb4k_str[] = "dtlb-4K"; 2762 static const char itlb4M_str[] = "itlb-4M"; 2763 static const char dtlb4M_str[] = "dtlb-4M"; 2764 static const char itlb424_str[] = "itlb-4K-2M-4M"; 2765 static const char dtlb44_str[] = "dtlb-4K-4M"; 2766 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 2767 static const char sl2_cache_str[] = "sectored-l2-cache"; 2768 static const char itrace_str[] = "itrace-cache"; 2769 static const char sl3_cache_str[] = "sectored-l3-cache"; 2770 2771 static const struct cachetab { 2772 uint8_t ct_code; 2773 uint8_t ct_assoc; 2774 uint16_t ct_line_size; 2775 size_t ct_size; 2776 const char *ct_label; 2777 } intel_ctab[] = { 2778 /* maintain descending order! */ 2779 { 0xb4, 4, 0, 256, dtlb4k_str }, 2780 { 0xb3, 4, 0, 128, dtlb4k_str }, 2781 { 0xb0, 4, 0, 128, itlb4k_str }, 2782 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 2783 { 0x86, 4, 64, 512*1024, l2_cache_str}, 2784 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 2785 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 2786 { 0x83, 8, 32, 512*1024, l2_cache_str}, 2787 { 0x82, 8, 32, 256*1024, l2_cache_str}, 2788 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 2789 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 2790 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 2791 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 2792 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 2793 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 2794 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 2795 { 0x73, 8, 0, 64*1024, itrace_str}, 2796 { 0x72, 8, 0, 32*1024, itrace_str}, 2797 { 0x71, 8, 0, 16*1024, itrace_str}, 2798 { 0x70, 8, 0, 12*1024, itrace_str}, 2799 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 2800 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 2801 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 2802 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 2803 { 0x5d, 0, 0, 256, dtlb44_str}, 2804 { 0x5c, 0, 0, 128, dtlb44_str}, 2805 { 0x5b, 0, 0, 64, dtlb44_str}, 2806 { 0x52, 0, 0, 256, itlb424_str}, 2807 { 0x51, 0, 0, 128, itlb424_str}, 2808 { 0x50, 0, 0, 64, itlb424_str}, 2809 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 2810 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 2811 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 2812 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 2813 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 2814 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 2815 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 2816 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 2817 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 2818 { 0x43, 4, 32, 512*1024, l2_cache_str}, 2819 { 0x42, 4, 32, 256*1024, l2_cache_str}, 2820 { 0x41, 4, 32, 128*1024, l2_cache_str}, 2821 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 2822 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 2823 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 2824 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 2825 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 2826 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 2827 { 0x30, 8, 64, 32*1024, l1_icache_str}, 2828 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 2829 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 2830 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 2831 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 2832 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 2833 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 2834 { 0x0b, 4, 0, 4, itlb4M_str}, 2835 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 2836 { 0x08, 4, 32, 16*1024, l1_icache_str}, 2837 { 0x06, 4, 32, 8*1024, l1_icache_str}, 2838 { 0x04, 4, 0, 8, dtlb4M_str}, 2839 { 0x03, 4, 0, 64, dtlb4k_str}, 2840 { 0x02, 4, 0, 2, itlb4M_str}, 2841 { 0x01, 4, 0, 32, itlb4k_str}, 2842 { 0 } 2843 }; 2844 2845 static const struct cachetab cyrix_ctab[] = { 2846 { 0x70, 4, 0, 32, "tlb-4K" }, 2847 { 0x80, 4, 16, 16*1024, "l1-cache" }, 2848 { 0 } 2849 }; 2850 2851 /* 2852 * Search a cache table for a matching entry 2853 */ 2854 static const struct cachetab * 2855 find_cacheent(const struct cachetab *ct, uint_t code) 2856 { 2857 if (code != 0) { 2858 for (; ct->ct_code != 0; ct++) 2859 if (ct->ct_code <= code) 2860 break; 2861 if (ct->ct_code == code) 2862 return (ct); 2863 } 2864 return (NULL); 2865 } 2866 2867 /* 2868 * Populate cachetab entry with L2 or L3 cache-information using 2869 * cpuid function 4. This function is called from intel_walk_cacheinfo() 2870 * when descriptor 0x49 is encountered. It returns 0 if no such cache 2871 * information is found. 2872 */ 2873 static int 2874 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi) 2875 { 2876 uint32_t level, i; 2877 int ret = 0; 2878 2879 for (i = 0; i < cpi->cpi_std_4_size; i++) { 2880 level = CPI_CACHE_LVL(cpi->cpi_std_4[i]); 2881 2882 if (level == 2 || level == 3) { 2883 ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1; 2884 ct->ct_line_size = 2885 CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1; 2886 ct->ct_size = ct->ct_assoc * 2887 (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) * 2888 ct->ct_line_size * 2889 (cpi->cpi_std_4[i]->cp_ecx + 1); 2890 2891 if (level == 2) { 2892 ct->ct_label = l2_cache_str; 2893 } else if (level == 3) { 2894 ct->ct_label = l3_cache_str; 2895 } 2896 ret = 1; 2897 } 2898 } 2899 2900 return (ret); 2901 } 2902 2903 /* 2904 * Walk the cacheinfo descriptor, applying 'func' to every valid element 2905 * The walk is terminated if the walker returns non-zero. 2906 */ 2907 static void 2908 intel_walk_cacheinfo(struct cpuid_info *cpi, 2909 void *arg, int (*func)(void *, const struct cachetab *)) 2910 { 2911 const struct cachetab *ct; 2912 struct cachetab des_49_ct; 2913 uint8_t *dp; 2914 int i; 2915 2916 if ((dp = cpi->cpi_cacheinfo) == NULL) 2917 return; 2918 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 2919 /* 2920 * For overloaded descriptor 0x49 we use cpuid function 4 2921 * if supported by the current processor, to create 2922 * cache information. 2923 */ 2924 if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 && 2925 intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) { 2926 ct = &des_49_ct; 2927 } else { 2928 if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) { 2929 continue; 2930 } 2931 } 2932 2933 if (func(arg, ct) != 0) { 2934 break; 2935 } 2936 } 2937 } 2938 2939 /* 2940 * (Like the Intel one, except for Cyrix CPUs) 2941 */ 2942 static void 2943 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 2944 void *arg, int (*func)(void *, const struct cachetab *)) 2945 { 2946 const struct cachetab *ct; 2947 uint8_t *dp; 2948 int i; 2949 2950 if ((dp = cpi->cpi_cacheinfo) == NULL) 2951 return; 2952 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 2953 /* 2954 * Search Cyrix-specific descriptor table first .. 2955 */ 2956 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 2957 if (func(arg, ct) != 0) 2958 break; 2959 continue; 2960 } 2961 /* 2962 * .. else fall back to the Intel one 2963 */ 2964 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 2965 if (func(arg, ct) != 0) 2966 break; 2967 continue; 2968 } 2969 } 2970 } 2971 2972 /* 2973 * A cacheinfo walker that adds associativity, line-size, and size properties 2974 * to the devinfo node it is passed as an argument. 2975 */ 2976 static int 2977 add_cacheent_props(void *arg, const struct cachetab *ct) 2978 { 2979 dev_info_t *devi = arg; 2980 2981 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 2982 if (ct->ct_line_size != 0) 2983 add_cache_prop(devi, ct->ct_label, line_str, 2984 ct->ct_line_size); 2985 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 2986 return (0); 2987 } 2988 2989 2990 static const char fully_assoc[] = "fully-associative?"; 2991 2992 /* 2993 * AMD style cache/tlb description 2994 * 2995 * Extended functions 5 and 6 directly describe properties of 2996 * tlbs and various cache levels. 2997 */ 2998 static void 2999 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3000 { 3001 switch (assoc) { 3002 case 0: /* reserved; ignore */ 3003 break; 3004 default: 3005 add_cache_prop(devi, label, assoc_str, assoc); 3006 break; 3007 case 0xff: 3008 add_cache_prop(devi, label, fully_assoc, 1); 3009 break; 3010 } 3011 } 3012 3013 static void 3014 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3015 { 3016 if (size == 0) 3017 return; 3018 add_cache_prop(devi, label, size_str, size); 3019 add_amd_assoc(devi, label, assoc); 3020 } 3021 3022 static void 3023 add_amd_cache(dev_info_t *devi, const char *label, 3024 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3025 { 3026 if (size == 0 || line_size == 0) 3027 return; 3028 add_amd_assoc(devi, label, assoc); 3029 /* 3030 * Most AMD parts have a sectored cache. Multiple cache lines are 3031 * associated with each tag. A sector consists of all cache lines 3032 * associated with a tag. For example, the AMD K6-III has a sector 3033 * size of 2 cache lines per tag. 3034 */ 3035 if (lines_per_tag != 0) 3036 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3037 add_cache_prop(devi, label, line_str, line_size); 3038 add_cache_prop(devi, label, size_str, size * 1024); 3039 } 3040 3041 static void 3042 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3043 { 3044 switch (assoc) { 3045 case 0: /* off */ 3046 break; 3047 case 1: 3048 case 2: 3049 case 4: 3050 add_cache_prop(devi, label, assoc_str, assoc); 3051 break; 3052 case 6: 3053 add_cache_prop(devi, label, assoc_str, 8); 3054 break; 3055 case 8: 3056 add_cache_prop(devi, label, assoc_str, 16); 3057 break; 3058 case 0xf: 3059 add_cache_prop(devi, label, fully_assoc, 1); 3060 break; 3061 default: /* reserved; ignore */ 3062 break; 3063 } 3064 } 3065 3066 static void 3067 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3068 { 3069 if (size == 0 || assoc == 0) 3070 return; 3071 add_amd_l2_assoc(devi, label, assoc); 3072 add_cache_prop(devi, label, size_str, size); 3073 } 3074 3075 static void 3076 add_amd_l2_cache(dev_info_t *devi, const char *label, 3077 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3078 { 3079 if (size == 0 || assoc == 0 || line_size == 0) 3080 return; 3081 add_amd_l2_assoc(devi, label, assoc); 3082 if (lines_per_tag != 0) 3083 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3084 add_cache_prop(devi, label, line_str, line_size); 3085 add_cache_prop(devi, label, size_str, size * 1024); 3086 } 3087 3088 static void 3089 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 3090 { 3091 struct cpuid_regs *cp; 3092 3093 if (cpi->cpi_xmaxeax < 0x80000005) 3094 return; 3095 cp = &cpi->cpi_extd[5]; 3096 3097 /* 3098 * 4M/2M L1 TLB configuration 3099 * 3100 * We report the size for 2M pages because AMD uses two 3101 * TLB entries for one 4M page. 3102 */ 3103 add_amd_tlb(devi, "dtlb-2M", 3104 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 3105 add_amd_tlb(devi, "itlb-2M", 3106 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 3107 3108 /* 3109 * 4K L1 TLB configuration 3110 */ 3111 3112 switch (cpi->cpi_vendor) { 3113 uint_t nentries; 3114 case X86_VENDOR_TM: 3115 if (cpi->cpi_family >= 5) { 3116 /* 3117 * Crusoe processors have 256 TLB entries, but 3118 * cpuid data format constrains them to only 3119 * reporting 255 of them. 3120 */ 3121 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 3122 nentries = 256; 3123 /* 3124 * Crusoe processors also have a unified TLB 3125 */ 3126 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 3127 nentries); 3128 break; 3129 } 3130 /*FALLTHROUGH*/ 3131 default: 3132 add_amd_tlb(devi, itlb4k_str, 3133 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 3134 add_amd_tlb(devi, dtlb4k_str, 3135 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 3136 break; 3137 } 3138 3139 /* 3140 * data L1 cache configuration 3141 */ 3142 3143 add_amd_cache(devi, l1_dcache_str, 3144 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 3145 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 3146 3147 /* 3148 * code L1 cache configuration 3149 */ 3150 3151 add_amd_cache(devi, l1_icache_str, 3152 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 3153 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 3154 3155 if (cpi->cpi_xmaxeax < 0x80000006) 3156 return; 3157 cp = &cpi->cpi_extd[6]; 3158 3159 /* Check for a unified L2 TLB for large pages */ 3160 3161 if (BITX(cp->cp_eax, 31, 16) == 0) 3162 add_amd_l2_tlb(devi, "l2-tlb-2M", 3163 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3164 else { 3165 add_amd_l2_tlb(devi, "l2-dtlb-2M", 3166 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3167 add_amd_l2_tlb(devi, "l2-itlb-2M", 3168 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3169 } 3170 3171 /* Check for a unified L2 TLB for 4K pages */ 3172 3173 if (BITX(cp->cp_ebx, 31, 16) == 0) { 3174 add_amd_l2_tlb(devi, "l2-tlb-4K", 3175 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3176 } else { 3177 add_amd_l2_tlb(devi, "l2-dtlb-4K", 3178 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3179 add_amd_l2_tlb(devi, "l2-itlb-4K", 3180 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3181 } 3182 3183 add_amd_l2_cache(devi, l2_cache_str, 3184 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 3185 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 3186 } 3187 3188 /* 3189 * There are two basic ways that the x86 world describes it cache 3190 * and tlb architecture - Intel's way and AMD's way. 3191 * 3192 * Return which flavor of cache architecture we should use 3193 */ 3194 static int 3195 x86_which_cacheinfo(struct cpuid_info *cpi) 3196 { 3197 switch (cpi->cpi_vendor) { 3198 case X86_VENDOR_Intel: 3199 if (cpi->cpi_maxeax >= 2) 3200 return (X86_VENDOR_Intel); 3201 break; 3202 case X86_VENDOR_AMD: 3203 /* 3204 * The K5 model 1 was the first part from AMD that reported 3205 * cache sizes via extended cpuid functions. 3206 */ 3207 if (cpi->cpi_family > 5 || 3208 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 3209 return (X86_VENDOR_AMD); 3210 break; 3211 case X86_VENDOR_TM: 3212 if (cpi->cpi_family >= 5) 3213 return (X86_VENDOR_AMD); 3214 /*FALLTHROUGH*/ 3215 default: 3216 /* 3217 * If they have extended CPU data for 0x80000005 3218 * then we assume they have AMD-format cache 3219 * information. 3220 * 3221 * If not, and the vendor happens to be Cyrix, 3222 * then try our-Cyrix specific handler. 3223 * 3224 * If we're not Cyrix, then assume we're using Intel's 3225 * table-driven format instead. 3226 */ 3227 if (cpi->cpi_xmaxeax >= 0x80000005) 3228 return (X86_VENDOR_AMD); 3229 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 3230 return (X86_VENDOR_Cyrix); 3231 else if (cpi->cpi_maxeax >= 2) 3232 return (X86_VENDOR_Intel); 3233 break; 3234 } 3235 return (-1); 3236 } 3237 3238 /* 3239 * create a node for the given cpu under the prom root node. 3240 * Also, create a cpu node in the device tree. 3241 */ 3242 static dev_info_t *cpu_nex_devi = NULL; 3243 static kmutex_t cpu_node_lock; 3244 3245 /* 3246 * Called from post_startup() and mp_startup() 3247 */ 3248 void 3249 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi) 3250 { 3251 dev_info_t *cpu_devi; 3252 int create; 3253 3254 mutex_enter(&cpu_node_lock); 3255 3256 /* 3257 * create a nexus node for all cpus identified as 'cpu_id' under 3258 * the root node. 3259 */ 3260 if (cpu_nex_devi == NULL) { 3261 if (ndi_devi_alloc(ddi_root_node(), "cpus", 3262 (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) { 3263 mutex_exit(&cpu_node_lock); 3264 return; 3265 } 3266 (void) ndi_devi_online(cpu_nex_devi, 0); 3267 } 3268 3269 /* 3270 * create a child node for cpu identified as 'cpu_id' 3271 */ 3272 cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, 3273 cpu_id); 3274 if (cpu_devi == NULL) { 3275 mutex_exit(&cpu_node_lock); 3276 return; 3277 } 3278 3279 /* device_type */ 3280 3281 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3282 "device_type", "cpu"); 3283 3284 /* reg */ 3285 3286 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3287 "reg", cpu_id); 3288 3289 /* cpu-mhz, and clock-frequency */ 3290 3291 if (cpu_freq > 0) { 3292 long long mul; 3293 3294 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3295 "cpu-mhz", cpu_freq); 3296 3297 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 3298 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3299 "clock-frequency", (int)mul); 3300 } 3301 3302 (void) ndi_devi_online(cpu_devi, 0); 3303 3304 if ((x86_feature & X86_CPUID) == 0) { 3305 mutex_exit(&cpu_node_lock); 3306 return; 3307 } 3308 3309 /* vendor-id */ 3310 3311 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3312 "vendor-id", cpi->cpi_vendorstr); 3313 3314 if (cpi->cpi_maxeax == 0) { 3315 mutex_exit(&cpu_node_lock); 3316 return; 3317 } 3318 3319 /* 3320 * family, model, and step 3321 */ 3322 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3323 "family", CPI_FAMILY(cpi)); 3324 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3325 "cpu-model", CPI_MODEL(cpi)); 3326 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3327 "stepping-id", CPI_STEP(cpi)); 3328 3329 /* type */ 3330 3331 switch (cpi->cpi_vendor) { 3332 case X86_VENDOR_Intel: 3333 create = 1; 3334 break; 3335 default: 3336 create = 0; 3337 break; 3338 } 3339 if (create) 3340 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3341 "type", CPI_TYPE(cpi)); 3342 3343 /* ext-family */ 3344 3345 switch (cpi->cpi_vendor) { 3346 case X86_VENDOR_Intel: 3347 case X86_VENDOR_AMD: 3348 create = cpi->cpi_family >= 0xf; 3349 break; 3350 default: 3351 create = 0; 3352 break; 3353 } 3354 if (create) 3355 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3356 "ext-family", CPI_FAMILY_XTD(cpi)); 3357 3358 /* ext-model */ 3359 3360 switch (cpi->cpi_vendor) { 3361 case X86_VENDOR_Intel: 3362 create = CPI_MODEL(cpi) == 0xf; 3363 break; 3364 case X86_VENDOR_AMD: 3365 create = CPI_FAMILY(cpi) == 0xf; 3366 break; 3367 default: 3368 create = 0; 3369 break; 3370 } 3371 if (create) 3372 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3373 "ext-model", CPI_MODEL_XTD(cpi)); 3374 3375 /* generation */ 3376 3377 switch (cpi->cpi_vendor) { 3378 case X86_VENDOR_AMD: 3379 /* 3380 * AMD K5 model 1 was the first part to support this 3381 */ 3382 create = cpi->cpi_xmaxeax >= 0x80000001; 3383 break; 3384 default: 3385 create = 0; 3386 break; 3387 } 3388 if (create) 3389 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3390 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 3391 3392 /* brand-id */ 3393 3394 switch (cpi->cpi_vendor) { 3395 case X86_VENDOR_Intel: 3396 /* 3397 * brand id first appeared on Pentium III Xeon model 8, 3398 * and Celeron model 8 processors and Opteron 3399 */ 3400 create = cpi->cpi_family > 6 || 3401 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 3402 break; 3403 case X86_VENDOR_AMD: 3404 create = cpi->cpi_family >= 0xf; 3405 break; 3406 default: 3407 create = 0; 3408 break; 3409 } 3410 if (create && cpi->cpi_brandid != 0) { 3411 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3412 "brand-id", cpi->cpi_brandid); 3413 } 3414 3415 /* chunks, and apic-id */ 3416 3417 switch (cpi->cpi_vendor) { 3418 /* 3419 * first available on Pentium IV and Opteron (K8) 3420 */ 3421 case X86_VENDOR_Intel: 3422 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3423 break; 3424 case X86_VENDOR_AMD: 3425 create = cpi->cpi_family >= 0xf; 3426 break; 3427 default: 3428 create = 0; 3429 break; 3430 } 3431 if (create) { 3432 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3433 "chunks", CPI_CHUNKS(cpi)); 3434 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3435 "apic-id", CPI_APIC_ID(cpi)); 3436 if (cpi->cpi_chipid >= 0) { 3437 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3438 "chip#", cpi->cpi_chipid); 3439 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3440 "clog#", cpi->cpi_clogid); 3441 } 3442 } 3443 3444 /* cpuid-features */ 3445 3446 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3447 "cpuid-features", CPI_FEATURES_EDX(cpi)); 3448 3449 3450 /* cpuid-features-ecx */ 3451 3452 switch (cpi->cpi_vendor) { 3453 case X86_VENDOR_Intel: 3454 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3455 break; 3456 default: 3457 create = 0; 3458 break; 3459 } 3460 if (create) 3461 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3462 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 3463 3464 /* ext-cpuid-features */ 3465 3466 switch (cpi->cpi_vendor) { 3467 case X86_VENDOR_Intel: 3468 case X86_VENDOR_AMD: 3469 case X86_VENDOR_Cyrix: 3470 case X86_VENDOR_TM: 3471 case X86_VENDOR_Centaur: 3472 create = cpi->cpi_xmaxeax >= 0x80000001; 3473 break; 3474 default: 3475 create = 0; 3476 break; 3477 } 3478 if (create) { 3479 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3480 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 3481 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3482 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 3483 } 3484 3485 /* 3486 * Brand String first appeared in Intel Pentium IV, AMD K5 3487 * model 1, and Cyrix GXm. On earlier models we try and 3488 * simulate something similar .. so this string should always 3489 * same -something- about the processor, however lame. 3490 */ 3491 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3492 "brand-string", cpi->cpi_brandstr); 3493 3494 /* 3495 * Finally, cache and tlb information 3496 */ 3497 switch (x86_which_cacheinfo(cpi)) { 3498 case X86_VENDOR_Intel: 3499 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3500 break; 3501 case X86_VENDOR_Cyrix: 3502 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3503 break; 3504 case X86_VENDOR_AMD: 3505 amd_cache_info(cpi, cpu_devi); 3506 break; 3507 default: 3508 break; 3509 } 3510 3511 mutex_exit(&cpu_node_lock); 3512 } 3513 3514 struct l2info { 3515 int *l2i_csz; 3516 int *l2i_lsz; 3517 int *l2i_assoc; 3518 int l2i_ret; 3519 }; 3520 3521 /* 3522 * A cacheinfo walker that fetches the size, line-size and associativity 3523 * of the L2 cache 3524 */ 3525 static int 3526 intel_l2cinfo(void *arg, const struct cachetab *ct) 3527 { 3528 struct l2info *l2i = arg; 3529 int *ip; 3530 3531 if (ct->ct_label != l2_cache_str && 3532 ct->ct_label != sl2_cache_str) 3533 return (0); /* not an L2 -- keep walking */ 3534 3535 if ((ip = l2i->l2i_csz) != NULL) 3536 *ip = ct->ct_size; 3537 if ((ip = l2i->l2i_lsz) != NULL) 3538 *ip = ct->ct_line_size; 3539 if ((ip = l2i->l2i_assoc) != NULL) 3540 *ip = ct->ct_assoc; 3541 l2i->l2i_ret = ct->ct_size; 3542 return (1); /* was an L2 -- terminate walk */ 3543 } 3544 3545 /* 3546 * AMD L2/L3 Cache and TLB Associativity Field Definition: 3547 * 3548 * Unlike the associativity for the L1 cache and tlb where the 8 bit 3549 * value is the associativity, the associativity for the L2 cache and 3550 * tlb is encoded in the following table. The 4 bit L2 value serves as 3551 * an index into the amd_afd[] array to determine the associativity. 3552 * -1 is undefined. 0 is fully associative. 3553 */ 3554 3555 static int amd_afd[] = 3556 {-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0}; 3557 3558 static void 3559 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 3560 { 3561 struct cpuid_regs *cp; 3562 uint_t size, assoc; 3563 int i; 3564 int *ip; 3565 3566 if (cpi->cpi_xmaxeax < 0x80000006) 3567 return; 3568 cp = &cpi->cpi_extd[6]; 3569 3570 if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 && 3571 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 3572 uint_t cachesz = size * 1024; 3573 assoc = amd_afd[i]; 3574 3575 ASSERT(assoc != -1); 3576 3577 if ((ip = l2i->l2i_csz) != NULL) 3578 *ip = cachesz; 3579 if ((ip = l2i->l2i_lsz) != NULL) 3580 *ip = BITX(cp->cp_ecx, 7, 0); 3581 if ((ip = l2i->l2i_assoc) != NULL) 3582 *ip = assoc; 3583 l2i->l2i_ret = cachesz; 3584 } 3585 } 3586 3587 int 3588 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 3589 { 3590 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3591 struct l2info __l2info, *l2i = &__l2info; 3592 3593 l2i->l2i_csz = csz; 3594 l2i->l2i_lsz = lsz; 3595 l2i->l2i_assoc = assoc; 3596 l2i->l2i_ret = -1; 3597 3598 switch (x86_which_cacheinfo(cpi)) { 3599 case X86_VENDOR_Intel: 3600 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3601 break; 3602 case X86_VENDOR_Cyrix: 3603 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3604 break; 3605 case X86_VENDOR_AMD: 3606 amd_l2cacheinfo(cpi, l2i); 3607 break; 3608 default: 3609 break; 3610 } 3611 return (l2i->l2i_ret); 3612 } 3613 3614 #if !defined(__xpv) 3615 3616 uint32_t * 3617 cpuid_mwait_alloc(cpu_t *cpu) 3618 { 3619 uint32_t *ret; 3620 size_t mwait_size; 3621 3622 ASSERT(cpuid_checkpass(cpu, 2)); 3623 3624 mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max; 3625 if (mwait_size == 0) 3626 return (NULL); 3627 3628 /* 3629 * kmem_alloc() returns cache line size aligned data for mwait_size 3630 * allocations. mwait_size is currently cache line sized. Neither 3631 * of these implementation details are guarantied to be true in the 3632 * future. 3633 * 3634 * First try allocating mwait_size as kmem_alloc() currently returns 3635 * correctly aligned memory. If kmem_alloc() does not return 3636 * mwait_size aligned memory, then use mwait_size ROUNDUP. 3637 * 3638 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we 3639 * decide to free this memory. 3640 */ 3641 ret = kmem_zalloc(mwait_size, KM_SLEEP); 3642 if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) { 3643 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 3644 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size; 3645 *ret = MWAIT_RUNNING; 3646 return (ret); 3647 } else { 3648 kmem_free(ret, mwait_size); 3649 ret = kmem_zalloc(mwait_size * 2, KM_SLEEP); 3650 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 3651 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2; 3652 ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size); 3653 *ret = MWAIT_RUNNING; 3654 return (ret); 3655 } 3656 } 3657 3658 void 3659 cpuid_mwait_free(cpu_t *cpu) 3660 { 3661 ASSERT(cpuid_checkpass(cpu, 2)); 3662 3663 if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL && 3664 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) { 3665 kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual, 3666 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual); 3667 } 3668 3669 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL; 3670 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0; 3671 } 3672 3673 void 3674 patch_tsc_read(int flag) 3675 { 3676 size_t cnt; 3677 3678 switch (flag) { 3679 case X86_NO_TSC: 3680 cnt = &_no_rdtsc_end - &_no_rdtsc_start; 3681 (void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt); 3682 break; 3683 case X86_HAVE_TSCP: 3684 cnt = &_tscp_end - &_tscp_start; 3685 (void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt); 3686 break; 3687 case X86_TSC_MFENCE: 3688 cnt = &_tsc_mfence_end - &_tsc_mfence_start; 3689 (void) memcpy((void *)tsc_read, 3690 (void *)&_tsc_mfence_start, cnt); 3691 break; 3692 default: 3693 break; 3694 } 3695 } 3696 3697 #endif /* !__xpv */ 3698