xref: /titanic_44/usr/src/uts/i86pc/os/cpuid.c (revision 15deec582ef80846f1c88f9f61d26d8dbb992894)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/pg.h>
44 #include <sys/fp.h>
45 #include <sys/controlregs.h>
46 #include <sys/auxv_386.h>
47 #include <sys/bitmap.h>
48 #include <sys/memnode.h>
49 
50 /*
51  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
52  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
53  * them accordingly. For most modern processors, feature detection occurs here
54  * in pass 1.
55  *
56  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
57  * for the boot CPU and does the basic analysis that the early kernel needs.
58  * x86_feature is set based on the return value of cpuid_pass1() of the boot
59  * CPU.
60  *
61  * Pass 1 includes:
62  *
63  *	o Determining vendor/model/family/stepping and setting x86_type and
64  *	  x86_vendor accordingly.
65  *	o Processing the feature flags returned by the cpuid instruction while
66  *	  applying any workarounds or tricks for the specific processor.
67  *	o Mapping the feature flags into Solaris feature bits (X86_*).
68  *	o Processing extended feature flags if supported by the processor,
69  *	  again while applying specific processor knowledge.
70  *	o Determining the CMT characteristics of the system.
71  *
72  * Pass 1 is done on non-boot CPUs during their initialization and the results
73  * are used only as a meager attempt at ensuring that all processors within the
74  * system support the same features.
75  *
76  * Pass 2 of cpuid feature analysis happens just at the beginning
77  * of startup().  It just copies in and corrects the remainder
78  * of the cpuid data we depend on: standard cpuid functions that we didn't
79  * need for pass1 feature analysis, and extended cpuid functions beyond the
80  * simple feature processing done in pass1.
81  *
82  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
83  * particular kernel memory allocation has been made available. It creates a
84  * readable brand string based on the data collected in the first two passes.
85  *
86  * Pass 4 of cpuid analysis is invoked after post_startup() when all
87  * the support infrastructure for various hardware features has been
88  * initialized. It determines which processor features will be reported
89  * to userland via the aux vector.
90  *
91  * All passes are executed on all CPUs, but only the boot CPU determines what
92  * features the kernel will use.
93  *
94  * Much of the worst junk in this file is for the support of processors
95  * that didn't really implement the cpuid instruction properly.
96  *
97  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
98  * the pass numbers.  Accordingly, changes to the pass code may require changes
99  * to the accessor code.
100  */
101 
102 uint_t x86_feature = 0;
103 uint_t x86_vendor = X86_VENDOR_IntelClone;
104 uint_t x86_type = X86_TYPE_OTHER;
105 
106 uint_t pentiumpro_bug4046376;
107 uint_t pentiumpro_bug4064495;
108 
109 uint_t enable486;
110 
111 /*
112  * This set of strings are for processors rumored to support the cpuid
113  * instruction, and is used by locore.s to figure out how to set x86_vendor
114  */
115 const char CyrixInstead[] = "CyrixInstead";
116 
117 /*
118  * monitor/mwait info.
119  */
120 struct mwait_info {
121 	size_t		mon_min;	/* min size to avoid missed wakeups */
122 	size_t		mon_max;	/* size to avoid false wakeups */
123 	uint32_t	support;	/* processor support of monitor/mwait */
124 };
125 
126 /*
127  * These constants determine how many of the elements of the
128  * cpuid we cache in the cpuid_info data structure; the
129  * remaining elements are accessible via the cpuid instruction.
130  */
131 
132 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
133 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
134 
135 struct cpuid_info {
136 	uint_t cpi_pass;		/* last pass completed */
137 	/*
138 	 * standard function information
139 	 */
140 	uint_t cpi_maxeax;		/* fn 0: %eax */
141 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
142 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
143 
144 	uint_t cpi_family;		/* fn 1: extended family */
145 	uint_t cpi_model;		/* fn 1: extended model */
146 	uint_t cpi_step;		/* fn 1: stepping */
147 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
148 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
149 	int cpi_clogid;			/* fn 1: %ebx: thread # */
150 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
151 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
152 	uint_t cpi_ncache;		/* fn 2: number of elements */
153 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
154 	/*
155 	 * extended function information
156 	 */
157 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
158 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
159 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
160 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
161 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
162 	id_t cpi_coreid;
163 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
164 					/* Intel: fn 4: %eax[31-26] */
165 	/*
166 	 * supported feature information
167 	 */
168 	uint32_t cpi_support[5];
169 #define	STD_EDX_FEATURES	0
170 #define	AMD_EDX_FEATURES	1
171 #define	TM_EDX_FEATURES		2
172 #define	STD_ECX_FEATURES	3
173 #define	AMD_ECX_FEATURES	4
174 	/*
175 	 * Synthesized information, where known.
176 	 */
177 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
178 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
179 	uint32_t cpi_socket;		/* Chip package/socket type */
180 
181 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
182 };
183 
184 
185 static struct cpuid_info cpuid_info0;
186 
187 /*
188  * These bit fields are defined by the Intel Application Note AP-485
189  * "Intel Processor Identification and the CPUID Instruction"
190  */
191 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
192 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
193 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
194 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
195 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
196 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
197 
198 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
199 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
200 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
201 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
202 
203 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
204 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
205 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
206 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
207 
208 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
209 #define	CPI_XMAXEAX_MAX		0x80000100
210 
211 /*
212  * A couple of shorthand macros to identify "later" P6-family chips
213  * like the Pentium M and Core.  First, the "older" P6-based stuff
214  * (loosely defined as "pre-Pentium-4"):
215  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
216  */
217 
218 #define	IS_LEGACY_P6(cpi) (			\
219 	cpi->cpi_family == 6 && 		\
220 		(cpi->cpi_model == 1 ||		\
221 		cpi->cpi_model == 3 ||		\
222 		cpi->cpi_model == 5 ||		\
223 		cpi->cpi_model == 6 ||		\
224 		cpi->cpi_model == 7 ||		\
225 		cpi->cpi_model == 8 ||		\
226 		cpi->cpi_model == 0xA ||	\
227 		cpi->cpi_model == 0xB)		\
228 )
229 
230 /* A "new F6" is everything with family 6 that's not the above */
231 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
232 
233 /*
234  * AMD family 0xf socket types.
235  * First index is 0 for revs B thru E, 1 for F and G.
236  * Second index by (model & 0x3)
237  */
238 static uint32_t amd_skts[2][4] = {
239 	{
240 		X86_SOCKET_754,		/* 0b00 */
241 		X86_SOCKET_940,		/* 0b01 */
242 		X86_SOCKET_754,		/* 0b10 */
243 		X86_SOCKET_939		/* 0b11 */
244 	},
245 	{
246 		X86_SOCKET_S1g1,	/* 0b00 */
247 		X86_SOCKET_F1207,	/* 0b01 */
248 		X86_SOCKET_UNKNOWN,	/* 0b10 */
249 		X86_SOCKET_AM2		/* 0b11 */
250 	}
251 };
252 
253 /*
254  * Table for mapping AMD Family 0xf model/stepping combination to
255  * chip "revision" and socket type.  Only rm_family 0xf is used at the
256  * moment, but AMD family 0x10 will extend the exsiting revision names
257  * so will likely also use this table.
258  *
259  * The first member of this array that matches a given family, extended model
260  * plus model range, and stepping range will be considered a match.
261  */
262 static const struct amd_rev_mapent {
263 	uint_t rm_family;
264 	uint_t rm_modello;
265 	uint_t rm_modelhi;
266 	uint_t rm_steplo;
267 	uint_t rm_stephi;
268 	uint32_t rm_chiprev;
269 	const char *rm_chiprevstr;
270 	int rm_sktidx;
271 } amd_revmap[] = {
272 	/*
273 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
274 	 */
275 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
276 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
277 	/*
278 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
279 	 */
280 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
281 	/*
282 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
283 	 * but the rev B and C0 combinations covered above.
284 	 */
285 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
286 	/*
287 	 * Rev D has extended model 0x1.
288 	 */
289 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
290 	/*
291 	 * Rev E has extended model 0x2.
292 	 * Extended model 0x3 is unused but available to grow into.
293 	 */
294 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
295 	/*
296 	 * Rev F has extended models 0x4 and 0x5.
297 	 */
298 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
299 	/*
300 	 * Rev G has extended model 0x6.
301 	 */
302 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
303 };
304 
305 /*
306  * Info for monitor/mwait idle loop.
307  *
308  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
309  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
310  * 2006.
311  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
312  * Documentation Updates" #33633, Rev 2.05, December 2006.
313  */
314 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
315 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
316 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
317 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
318 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
319 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
320 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
321 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
322 /*
323  * Number of sub-cstates for a given c-state.
324  */
325 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
326 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
327 
328 static void
329 synth_amd_info(struct cpuid_info *cpi)
330 {
331 	const struct amd_rev_mapent *rmp;
332 	uint_t family, model, step;
333 	int i;
334 
335 	/*
336 	 * Currently only AMD family 0xf uses these fields.
337 	 */
338 	if (cpi->cpi_family != 0xf)
339 		return;
340 
341 	family = cpi->cpi_family;
342 	model = cpi->cpi_model;
343 	step = cpi->cpi_step;
344 
345 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
346 	    i++, rmp++) {
347 		if (family == rmp->rm_family &&
348 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
349 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
350 			cpi->cpi_chiprev = rmp->rm_chiprev;
351 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
352 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
353 			return;
354 		}
355 	}
356 }
357 
358 static void
359 synth_info(struct cpuid_info *cpi)
360 {
361 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
362 	cpi->cpi_chiprevstr = "Unknown";
363 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
364 
365 	switch (cpi->cpi_vendor) {
366 	case X86_VENDOR_AMD:
367 		synth_amd_info(cpi);
368 		break;
369 
370 	default:
371 		break;
372 
373 	}
374 }
375 
376 /*
377  * Apply up various platform-dependent restrictions where the
378  * underlying platform restrictions mean the CPU can be marked
379  * as less capable than its cpuid instruction would imply.
380  */
381 
382 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
383 
384 /*
385  *  Some undocumented ways of patching the results of the cpuid
386  *  instruction to permit running Solaris 10 on future cpus that
387  *  we don't currently support.  Could be set to non-zero values
388  *  via settings in eeprom.
389  */
390 
391 uint32_t cpuid_feature_ecx_include;
392 uint32_t cpuid_feature_ecx_exclude;
393 uint32_t cpuid_feature_edx_include;
394 uint32_t cpuid_feature_edx_exclude;
395 
396 void
397 cpuid_alloc_space(cpu_t *cpu)
398 {
399 	/*
400 	 * By convention, cpu0 is the boot cpu, which is set up
401 	 * before memory allocation is available.  All other cpus get
402 	 * their cpuid_info struct allocated here.
403 	 */
404 	ASSERT(cpu->cpu_id != 0);
405 	cpu->cpu_m.mcpu_cpi =
406 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
407 }
408 
409 void
410 cpuid_free_space(cpu_t *cpu)
411 {
412 	ASSERT(cpu->cpu_id != 0);
413 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
414 }
415 
416 uint_t
417 cpuid_pass1(cpu_t *cpu)
418 {
419 	uint32_t mask_ecx, mask_edx;
420 	uint_t feature = X86_CPUID;
421 	struct cpuid_info *cpi;
422 	struct cpuid_regs *cp;
423 	int xcpuid;
424 
425 
426 	/*
427 	 * Space statically allocated for cpu0, ensure pointer is set
428 	 */
429 	if (cpu->cpu_id == 0)
430 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
431 	cpi = cpu->cpu_m.mcpu_cpi;
432 	ASSERT(cpi != NULL);
433 	cp = &cpi->cpi_std[0];
434 	cp->cp_eax = 0;
435 	cpi->cpi_maxeax = __cpuid_insn(cp);
436 	{
437 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
438 		*iptr++ = cp->cp_ebx;
439 		*iptr++ = cp->cp_edx;
440 		*iptr++ = cp->cp_ecx;
441 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
442 	}
443 
444 	/*
445 	 * Map the vendor string to a type code
446 	 */
447 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
448 		cpi->cpi_vendor = X86_VENDOR_Intel;
449 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
450 		cpi->cpi_vendor = X86_VENDOR_AMD;
451 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
452 		cpi->cpi_vendor = X86_VENDOR_TM;
453 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
454 		/*
455 		 * CyrixInstead is a variable used by the Cyrix detection code
456 		 * in locore.
457 		 */
458 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
459 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
460 		cpi->cpi_vendor = X86_VENDOR_UMC;
461 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
462 		cpi->cpi_vendor = X86_VENDOR_NexGen;
463 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
464 		cpi->cpi_vendor = X86_VENDOR_Centaur;
465 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
466 		cpi->cpi_vendor = X86_VENDOR_Rise;
467 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
468 		cpi->cpi_vendor = X86_VENDOR_SiS;
469 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
470 		cpi->cpi_vendor = X86_VENDOR_NSC;
471 	else
472 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
473 
474 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
475 
476 	/*
477 	 * Limit the range in case of weird hardware
478 	 */
479 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
480 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
481 	if (cpi->cpi_maxeax < 1)
482 		goto pass1_done;
483 
484 	cp = &cpi->cpi_std[1];
485 	cp->cp_eax = 1;
486 	(void) __cpuid_insn(cp);
487 
488 	/*
489 	 * Extract identifying constants for easy access.
490 	 */
491 	cpi->cpi_model = CPI_MODEL(cpi);
492 	cpi->cpi_family = CPI_FAMILY(cpi);
493 
494 	if (cpi->cpi_family == 0xf)
495 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
496 
497 	/*
498 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
499 	 * Intel, and presumably everyone else, uses model == 0xf, as
500 	 * one would expect (max value means possible overflow).  Sigh.
501 	 */
502 
503 	switch (cpi->cpi_vendor) {
504 	case X86_VENDOR_AMD:
505 		if (CPI_FAMILY(cpi) == 0xf)
506 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
507 		break;
508 	default:
509 		if (cpi->cpi_model == 0xf)
510 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
511 		break;
512 	}
513 
514 	cpi->cpi_step = CPI_STEP(cpi);
515 	cpi->cpi_brandid = CPI_BRANDID(cpi);
516 
517 	/*
518 	 * *default* assumptions:
519 	 * - believe %edx feature word
520 	 * - ignore %ecx feature word
521 	 * - 32-bit virtual and physical addressing
522 	 */
523 	mask_edx = 0xffffffff;
524 	mask_ecx = 0;
525 
526 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
527 
528 	switch (cpi->cpi_vendor) {
529 	case X86_VENDOR_Intel:
530 		if (cpi->cpi_family == 5)
531 			x86_type = X86_TYPE_P5;
532 		else if (IS_LEGACY_P6(cpi)) {
533 			x86_type = X86_TYPE_P6;
534 			pentiumpro_bug4046376 = 1;
535 			pentiumpro_bug4064495 = 1;
536 			/*
537 			 * Clear the SEP bit when it was set erroneously
538 			 */
539 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
540 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
541 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
542 			x86_type = X86_TYPE_P4;
543 			/*
544 			 * We don't currently depend on any of the %ecx
545 			 * features until Prescott, so we'll only check
546 			 * this from P4 onwards.  We might want to revisit
547 			 * that idea later.
548 			 */
549 			mask_ecx = 0xffffffff;
550 		} else if (cpi->cpi_family > 0xf)
551 			mask_ecx = 0xffffffff;
552 		break;
553 	case X86_VENDOR_IntelClone:
554 	default:
555 		break;
556 	case X86_VENDOR_AMD:
557 #if defined(OPTERON_ERRATUM_108)
558 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
559 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
560 			cpi->cpi_model = 0xc;
561 		} else
562 #endif
563 		if (cpi->cpi_family == 5) {
564 			/*
565 			 * AMD K5 and K6
566 			 *
567 			 * These CPUs have an incomplete implementation
568 			 * of MCA/MCE which we mask away.
569 			 */
570 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
571 
572 			/*
573 			 * Model 0 uses the wrong (APIC) bit
574 			 * to indicate PGE.  Fix it here.
575 			 */
576 			if (cpi->cpi_model == 0) {
577 				if (cp->cp_edx & 0x200) {
578 					cp->cp_edx &= ~0x200;
579 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
580 				}
581 			}
582 
583 			/*
584 			 * Early models had problems w/ MMX; disable.
585 			 */
586 			if (cpi->cpi_model < 6)
587 				mask_edx &= ~CPUID_INTC_EDX_MMX;
588 		}
589 
590 		/*
591 		 * For newer families, SSE3 and CX16, at least, are valid;
592 		 * enable all
593 		 */
594 		if (cpi->cpi_family >= 0xf)
595 			mask_ecx = 0xffffffff;
596 		break;
597 	case X86_VENDOR_TM:
598 		/*
599 		 * workaround the NT workaround in CMS 4.1
600 		 */
601 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
602 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
603 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
604 		break;
605 	case X86_VENDOR_Centaur:
606 		/*
607 		 * workaround the NT workarounds again
608 		 */
609 		if (cpi->cpi_family == 6)
610 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
611 		break;
612 	case X86_VENDOR_Cyrix:
613 		/*
614 		 * We rely heavily on the probing in locore
615 		 * to actually figure out what parts, if any,
616 		 * of the Cyrix cpuid instruction to believe.
617 		 */
618 		switch (x86_type) {
619 		case X86_TYPE_CYRIX_486:
620 			mask_edx = 0;
621 			break;
622 		case X86_TYPE_CYRIX_6x86:
623 			mask_edx = 0;
624 			break;
625 		case X86_TYPE_CYRIX_6x86L:
626 			mask_edx =
627 			    CPUID_INTC_EDX_DE |
628 			    CPUID_INTC_EDX_CX8;
629 			break;
630 		case X86_TYPE_CYRIX_6x86MX:
631 			mask_edx =
632 			    CPUID_INTC_EDX_DE |
633 			    CPUID_INTC_EDX_MSR |
634 			    CPUID_INTC_EDX_CX8 |
635 			    CPUID_INTC_EDX_PGE |
636 			    CPUID_INTC_EDX_CMOV |
637 			    CPUID_INTC_EDX_MMX;
638 			break;
639 		case X86_TYPE_CYRIX_GXm:
640 			mask_edx =
641 			    CPUID_INTC_EDX_MSR |
642 			    CPUID_INTC_EDX_CX8 |
643 			    CPUID_INTC_EDX_CMOV |
644 			    CPUID_INTC_EDX_MMX;
645 			break;
646 		case X86_TYPE_CYRIX_MediaGX:
647 			break;
648 		case X86_TYPE_CYRIX_MII:
649 		case X86_TYPE_VIA_CYRIX_III:
650 			mask_edx =
651 			    CPUID_INTC_EDX_DE |
652 			    CPUID_INTC_EDX_TSC |
653 			    CPUID_INTC_EDX_MSR |
654 			    CPUID_INTC_EDX_CX8 |
655 			    CPUID_INTC_EDX_PGE |
656 			    CPUID_INTC_EDX_CMOV |
657 			    CPUID_INTC_EDX_MMX;
658 			break;
659 		default:
660 			break;
661 		}
662 		break;
663 	}
664 
665 	/*
666 	 * Now we've figured out the masks that determine
667 	 * which bits we choose to believe, apply the masks
668 	 * to the feature words, then map the kernel's view
669 	 * of these feature words into its feature word.
670 	 */
671 	cp->cp_edx &= mask_edx;
672 	cp->cp_ecx &= mask_ecx;
673 
674 	/*
675 	 * apply any platform restrictions (we don't call this
676 	 * immediately after __cpuid_insn here, because we need the
677 	 * workarounds applied above first)
678 	 */
679 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
680 
681 	/*
682 	 * fold in overrides from the "eeprom" mechanism
683 	 */
684 	cp->cp_edx |= cpuid_feature_edx_include;
685 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
686 
687 	cp->cp_ecx |= cpuid_feature_ecx_include;
688 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
689 
690 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
691 		feature |= X86_LARGEPAGE;
692 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
693 		feature |= X86_TSC;
694 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
695 		feature |= X86_MSR;
696 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
697 		feature |= X86_MTRR;
698 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
699 		feature |= X86_PGE;
700 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
701 		feature |= X86_CMOV;
702 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
703 		feature |= X86_MMX;
704 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
705 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
706 		feature |= X86_MCA;
707 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
708 		feature |= X86_PAE;
709 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
710 		feature |= X86_CX8;
711 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
712 		feature |= X86_CX16;
713 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
714 		feature |= X86_PAT;
715 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
716 		feature |= X86_SEP;
717 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
718 		/*
719 		 * In our implementation, fxsave/fxrstor
720 		 * are prerequisites before we'll even
721 		 * try and do SSE things.
722 		 */
723 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
724 			feature |= X86_SSE;
725 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
726 			feature |= X86_SSE2;
727 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
728 			feature |= X86_SSE3;
729 	}
730 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
731 		feature |= X86_DE;
732 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
733 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
734 		feature |= X86_MWAIT;
735 	}
736 
737 	if (feature & X86_PAE)
738 		cpi->cpi_pabits = 36;
739 
740 	/*
741 	 * Hyperthreading configuration is slightly tricky on Intel
742 	 * and pure clones, and even trickier on AMD.
743 	 *
744 	 * (AMD chose to set the HTT bit on their CMP processors,
745 	 * even though they're not actually hyperthreaded.  Thus it
746 	 * takes a bit more work to figure out what's really going
747 	 * on ... see the handling of the CMP_LGCY bit below)
748 	 */
749 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
750 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
751 		if (cpi->cpi_ncpu_per_chip > 1)
752 			feature |= X86_HTT;
753 	} else {
754 		cpi->cpi_ncpu_per_chip = 1;
755 	}
756 
757 	/*
758 	 * Work on the "extended" feature information, doing
759 	 * some basic initialization for cpuid_pass2()
760 	 */
761 	xcpuid = 0;
762 	switch (cpi->cpi_vendor) {
763 	case X86_VENDOR_Intel:
764 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
765 			xcpuid++;
766 		break;
767 	case X86_VENDOR_AMD:
768 		if (cpi->cpi_family > 5 ||
769 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
770 			xcpuid++;
771 		break;
772 	case X86_VENDOR_Cyrix:
773 		/*
774 		 * Only these Cyrix CPUs are -known- to support
775 		 * extended cpuid operations.
776 		 */
777 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
778 		    x86_type == X86_TYPE_CYRIX_GXm)
779 			xcpuid++;
780 		break;
781 	case X86_VENDOR_Centaur:
782 	case X86_VENDOR_TM:
783 	default:
784 		xcpuid++;
785 		break;
786 	}
787 
788 	if (xcpuid) {
789 		cp = &cpi->cpi_extd[0];
790 		cp->cp_eax = 0x80000000;
791 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
792 	}
793 
794 	if (cpi->cpi_xmaxeax & 0x80000000) {
795 
796 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
797 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
798 
799 		switch (cpi->cpi_vendor) {
800 		case X86_VENDOR_Intel:
801 		case X86_VENDOR_AMD:
802 			if (cpi->cpi_xmaxeax < 0x80000001)
803 				break;
804 			cp = &cpi->cpi_extd[1];
805 			cp->cp_eax = 0x80000001;
806 			(void) __cpuid_insn(cp);
807 
808 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
809 			    cpi->cpi_family == 5 &&
810 			    cpi->cpi_model == 6 &&
811 			    cpi->cpi_step == 6) {
812 				/*
813 				 * K6 model 6 uses bit 10 to indicate SYSC
814 				 * Later models use bit 11. Fix it here.
815 				 */
816 				if (cp->cp_edx & 0x400) {
817 					cp->cp_edx &= ~0x400;
818 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
819 				}
820 			}
821 
822 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
823 
824 			/*
825 			 * Compute the additions to the kernel's feature word.
826 			 */
827 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
828 				feature |= X86_NX;
829 
830 			/*
831 			 * If both the HTT and CMP_LGCY bits are set,
832 			 * then we're not actually HyperThreaded.  Read
833 			 * "AMD CPUID Specification" for more details.
834 			 */
835 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
836 			    (feature & X86_HTT) &&
837 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
838 				feature &= ~X86_HTT;
839 				feature |= X86_CMP;
840 			}
841 #if defined(__amd64)
842 			/*
843 			 * It's really tricky to support syscall/sysret in
844 			 * the i386 kernel; we rely on sysenter/sysexit
845 			 * instead.  In the amd64 kernel, things are -way-
846 			 * better.
847 			 */
848 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
849 				feature |= X86_ASYSC;
850 
851 			/*
852 			 * While we're thinking about system calls, note
853 			 * that AMD processors don't support sysenter
854 			 * in long mode at all, so don't try to program them.
855 			 */
856 			if (x86_vendor == X86_VENDOR_AMD)
857 				feature &= ~X86_SEP;
858 #endif
859 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
860 				feature |= X86_TSCP;
861 			break;
862 		default:
863 			break;
864 		}
865 
866 		/*
867 		 * Get CPUID data about processor cores and hyperthreads.
868 		 */
869 		switch (cpi->cpi_vendor) {
870 		case X86_VENDOR_Intel:
871 			if (cpi->cpi_maxeax >= 4) {
872 				cp = &cpi->cpi_std[4];
873 				cp->cp_eax = 4;
874 				cp->cp_ecx = 0;
875 				(void) __cpuid_insn(cp);
876 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
877 			}
878 			/*FALLTHROUGH*/
879 		case X86_VENDOR_AMD:
880 			if (cpi->cpi_xmaxeax < 0x80000008)
881 				break;
882 			cp = &cpi->cpi_extd[8];
883 			cp->cp_eax = 0x80000008;
884 			(void) __cpuid_insn(cp);
885 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
886 
887 			/*
888 			 * Virtual and physical address limits from
889 			 * cpuid override previously guessed values.
890 			 */
891 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
892 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
893 			break;
894 		default:
895 			break;
896 		}
897 
898 		switch (cpi->cpi_vendor) {
899 		case X86_VENDOR_Intel:
900 			if (cpi->cpi_maxeax < 4) {
901 				cpi->cpi_ncore_per_chip = 1;
902 				break;
903 			} else {
904 				cpi->cpi_ncore_per_chip =
905 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
906 			}
907 			break;
908 		case X86_VENDOR_AMD:
909 			if (cpi->cpi_xmaxeax < 0x80000008) {
910 				cpi->cpi_ncore_per_chip = 1;
911 				break;
912 			} else {
913 				cpi->cpi_ncore_per_chip =
914 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
915 			}
916 			break;
917 		default:
918 			cpi->cpi_ncore_per_chip = 1;
919 			break;
920 		}
921 	}
922 
923 	/*
924 	 * If more than one core, then this processor is CMP.
925 	 */
926 	if (cpi->cpi_ncore_per_chip > 1)
927 		feature |= X86_CMP;
928 
929 	/*
930 	 * If the number of cores is the same as the number
931 	 * of CPUs, then we cannot have HyperThreading.
932 	 */
933 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
934 		feature &= ~X86_HTT;
935 
936 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
937 		/*
938 		 * Single-core single-threaded processors.
939 		 */
940 		cpi->cpi_chipid = -1;
941 		cpi->cpi_clogid = 0;
942 		cpi->cpi_coreid = cpu->cpu_id;
943 	} else if (cpi->cpi_ncpu_per_chip > 1) {
944 		uint_t i;
945 		uint_t chipid_shift = 0;
946 		uint_t coreid_shift = 0;
947 		uint_t apic_id = CPI_APIC_ID(cpi);
948 
949 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
950 			chipid_shift++;
951 		cpi->cpi_chipid = apic_id >> chipid_shift;
952 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
953 
954 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
955 			if (feature & X86_CMP) {
956 				/*
957 				 * Multi-core (and possibly multi-threaded)
958 				 * processors.
959 				 */
960 				uint_t ncpu_per_core;
961 				if (cpi->cpi_ncore_per_chip == 1)
962 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
963 				else if (cpi->cpi_ncore_per_chip > 1)
964 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
965 					    cpi->cpi_ncore_per_chip;
966 				/*
967 				 * 8bit APIC IDs on dual core Pentiums
968 				 * look like this:
969 				 *
970 				 * +-----------------------+------+------+
971 				 * | Physical Package ID   |  MC  |  HT  |
972 				 * +-----------------------+------+------+
973 				 * <------- chipid -------->
974 				 * <------- coreid --------------->
975 				 *			   <--- clogid -->
976 				 *
977 				 * Where the number of bits necessary to
978 				 * represent MC and HT fields together equals
979 				 * to the minimum number of bits necessary to
980 				 * store the value of cpi->cpi_ncpu_per_chip.
981 				 * Of those bits, the MC part uses the number
982 				 * of bits necessary to store the value of
983 				 * cpi->cpi_ncore_per_chip.
984 				 */
985 				for (i = 1; i < ncpu_per_core; i <<= 1)
986 					coreid_shift++;
987 				cpi->cpi_coreid = apic_id >> coreid_shift;
988 			} else if (feature & X86_HTT) {
989 				/*
990 				 * Single-core multi-threaded processors.
991 				 */
992 				cpi->cpi_coreid = cpi->cpi_chipid;
993 			}
994 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
995 			/*
996 			 * AMD currently only has dual-core processors with
997 			 * single-threaded cores.  If they ever release
998 			 * multi-threaded processors, then this code
999 			 * will have to be updated.
1000 			 */
1001 			cpi->cpi_coreid = cpu->cpu_id;
1002 		} else {
1003 			/*
1004 			 * All other processors are currently
1005 			 * assumed to have single cores.
1006 			 */
1007 			cpi->cpi_coreid = cpi->cpi_chipid;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Synthesize chip "revision" and socket type
1013 	 */
1014 	synth_info(cpi);
1015 
1016 pass1_done:
1017 	cpi->cpi_pass = 1;
1018 	return (feature);
1019 }
1020 
1021 /*
1022  * Make copies of the cpuid table entries we depend on, in
1023  * part for ease of parsing now, in part so that we have only
1024  * one place to correct any of it, in part for ease of
1025  * later export to userland, and in part so we can look at
1026  * this stuff in a crash dump.
1027  */
1028 
1029 /*ARGSUSED*/
1030 void
1031 cpuid_pass2(cpu_t *cpu)
1032 {
1033 	uint_t n, nmax;
1034 	int i;
1035 	struct cpuid_regs *cp;
1036 	uint8_t *dp;
1037 	uint32_t *iptr;
1038 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1039 
1040 	ASSERT(cpi->cpi_pass == 1);
1041 
1042 	if (cpi->cpi_maxeax < 1)
1043 		goto pass2_done;
1044 
1045 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1046 		nmax = NMAX_CPI_STD;
1047 	/*
1048 	 * (We already handled n == 0 and n == 1 in pass 1)
1049 	 */
1050 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1051 		cp->cp_eax = n;
1052 		(void) __cpuid_insn(cp);
1053 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1054 		switch (n) {
1055 		case 2:
1056 			/*
1057 			 * "the lower 8 bits of the %eax register
1058 			 * contain a value that identifies the number
1059 			 * of times the cpuid [instruction] has to be
1060 			 * executed to obtain a complete image of the
1061 			 * processor's caching systems."
1062 			 *
1063 			 * How *do* they make this stuff up?
1064 			 */
1065 			cpi->cpi_ncache = sizeof (*cp) *
1066 			    BITX(cp->cp_eax, 7, 0);
1067 			if (cpi->cpi_ncache == 0)
1068 				break;
1069 			cpi->cpi_ncache--;	/* skip count byte */
1070 
1071 			/*
1072 			 * Well, for now, rather than attempt to implement
1073 			 * this slightly dubious algorithm, we just look
1074 			 * at the first 15 ..
1075 			 */
1076 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1077 				cpi->cpi_ncache = sizeof (*cp) - 1;
1078 
1079 			dp = cpi->cpi_cacheinfo;
1080 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1081 				uint8_t *p = (void *)&cp->cp_eax;
1082 				for (i = 1; i < 3; i++)
1083 					if (p[i] != 0)
1084 						*dp++ = p[i];
1085 			}
1086 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1087 				uint8_t *p = (void *)&cp->cp_ebx;
1088 				for (i = 0; i < 4; i++)
1089 					if (p[i] != 0)
1090 						*dp++ = p[i];
1091 			}
1092 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1093 				uint8_t *p = (void *)&cp->cp_ecx;
1094 				for (i = 0; i < 4; i++)
1095 					if (p[i] != 0)
1096 						*dp++ = p[i];
1097 			}
1098 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1099 				uint8_t *p = (void *)&cp->cp_edx;
1100 				for (i = 0; i < 4; i++)
1101 					if (p[i] != 0)
1102 						*dp++ = p[i];
1103 			}
1104 			break;
1105 
1106 		case 3:	/* Processor serial number, if PSN supported */
1107 			break;
1108 
1109 		case 4:	/* Deterministic cache parameters */
1110 			break;
1111 
1112 		case 5:	/* Monitor/Mwait parameters */
1113 
1114 			/*
1115 			 * check cpi_mwait.support which was set in cpuid_pass1
1116 			 */
1117 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1118 				break;
1119 
1120 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1121 			cpi->cpi_mwait.mon_max = (size_t)MWAIT_SIZE_MAX(cpi);
1122 			if (MWAIT_EXTENSION(cpi)) {
1123 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1124 				if (MWAIT_INT_ENABLE(cpi))
1125 					cpi->cpi_mwait.support |=
1126 					    MWAIT_ECX_INT_ENABLE;
1127 			}
1128 			break;
1129 
1130 		default:
1131 			break;
1132 		}
1133 	}
1134 
1135 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1136 		goto pass2_done;
1137 
1138 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1139 		nmax = NMAX_CPI_EXTD;
1140 	/*
1141 	 * Copy the extended properties, fixing them as we go.
1142 	 * (We already handled n == 0 and n == 1 in pass 1)
1143 	 */
1144 	iptr = (void *)cpi->cpi_brandstr;
1145 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1146 		cp->cp_eax = 0x80000000 + n;
1147 		(void) __cpuid_insn(cp);
1148 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1149 		switch (n) {
1150 		case 2:
1151 		case 3:
1152 		case 4:
1153 			/*
1154 			 * Extract the brand string
1155 			 */
1156 			*iptr++ = cp->cp_eax;
1157 			*iptr++ = cp->cp_ebx;
1158 			*iptr++ = cp->cp_ecx;
1159 			*iptr++ = cp->cp_edx;
1160 			break;
1161 		case 5:
1162 			switch (cpi->cpi_vendor) {
1163 			case X86_VENDOR_AMD:
1164 				/*
1165 				 * The Athlon and Duron were the first
1166 				 * parts to report the sizes of the
1167 				 * TLB for large pages. Before then,
1168 				 * we don't trust the data.
1169 				 */
1170 				if (cpi->cpi_family < 6 ||
1171 				    (cpi->cpi_family == 6 &&
1172 				    cpi->cpi_model < 1))
1173 					cp->cp_eax = 0;
1174 				break;
1175 			default:
1176 				break;
1177 			}
1178 			break;
1179 		case 6:
1180 			switch (cpi->cpi_vendor) {
1181 			case X86_VENDOR_AMD:
1182 				/*
1183 				 * The Athlon and Duron were the first
1184 				 * AMD parts with L2 TLB's.
1185 				 * Before then, don't trust the data.
1186 				 */
1187 				if (cpi->cpi_family < 6 ||
1188 				    cpi->cpi_family == 6 &&
1189 				    cpi->cpi_model < 1)
1190 					cp->cp_eax = cp->cp_ebx = 0;
1191 				/*
1192 				 * AMD Duron rev A0 reports L2
1193 				 * cache size incorrectly as 1K
1194 				 * when it is really 64K
1195 				 */
1196 				if (cpi->cpi_family == 6 &&
1197 				    cpi->cpi_model == 3 &&
1198 				    cpi->cpi_step == 0) {
1199 					cp->cp_ecx &= 0xffff;
1200 					cp->cp_ecx |= 0x400000;
1201 				}
1202 				break;
1203 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1204 				/*
1205 				 * VIA C3 processors are a bit messed
1206 				 * up w.r.t. encoding cache sizes in %ecx
1207 				 */
1208 				if (cpi->cpi_family != 6)
1209 					break;
1210 				/*
1211 				 * model 7 and 8 were incorrectly encoded
1212 				 *
1213 				 * xxx is model 8 really broken?
1214 				 */
1215 				if (cpi->cpi_model == 7 ||
1216 				    cpi->cpi_model == 8)
1217 					cp->cp_ecx =
1218 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1219 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1220 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1221 					    BITX(cp->cp_ecx, 7, 0);
1222 				/*
1223 				 * model 9 stepping 1 has wrong associativity
1224 				 */
1225 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1226 					cp->cp_ecx |= 8 << 12;
1227 				break;
1228 			case X86_VENDOR_Intel:
1229 				/*
1230 				 * Extended L2 Cache features function.
1231 				 * First appeared on Prescott.
1232 				 */
1233 			default:
1234 				break;
1235 			}
1236 			break;
1237 		default:
1238 			break;
1239 		}
1240 	}
1241 
1242 pass2_done:
1243 	cpi->cpi_pass = 2;
1244 }
1245 
1246 static const char *
1247 intel_cpubrand(const struct cpuid_info *cpi)
1248 {
1249 	int i;
1250 
1251 	if ((x86_feature & X86_CPUID) == 0 ||
1252 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1253 		return ("i486");
1254 
1255 	switch (cpi->cpi_family) {
1256 	case 5:
1257 		return ("Intel Pentium(r)");
1258 	case 6:
1259 		switch (cpi->cpi_model) {
1260 			uint_t celeron, xeon;
1261 			const struct cpuid_regs *cp;
1262 		case 0:
1263 		case 1:
1264 		case 2:
1265 			return ("Intel Pentium(r) Pro");
1266 		case 3:
1267 		case 4:
1268 			return ("Intel Pentium(r) II");
1269 		case 6:
1270 			return ("Intel Celeron(r)");
1271 		case 5:
1272 		case 7:
1273 			celeron = xeon = 0;
1274 			cp = &cpi->cpi_std[2];	/* cache info */
1275 
1276 			for (i = 1; i < 3; i++) {
1277 				uint_t tmp;
1278 
1279 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1280 				if (tmp == 0x40)
1281 					celeron++;
1282 				if (tmp >= 0x44 && tmp <= 0x45)
1283 					xeon++;
1284 			}
1285 
1286 			for (i = 0; i < 2; i++) {
1287 				uint_t tmp;
1288 
1289 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1290 				if (tmp == 0x40)
1291 					celeron++;
1292 				else if (tmp >= 0x44 && tmp <= 0x45)
1293 					xeon++;
1294 			}
1295 
1296 			for (i = 0; i < 4; i++) {
1297 				uint_t tmp;
1298 
1299 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1300 				if (tmp == 0x40)
1301 					celeron++;
1302 				else if (tmp >= 0x44 && tmp <= 0x45)
1303 					xeon++;
1304 			}
1305 
1306 			for (i = 0; i < 4; i++) {
1307 				uint_t tmp;
1308 
1309 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1310 				if (tmp == 0x40)
1311 					celeron++;
1312 				else if (tmp >= 0x44 && tmp <= 0x45)
1313 					xeon++;
1314 			}
1315 
1316 			if (celeron)
1317 				return ("Intel Celeron(r)");
1318 			if (xeon)
1319 				return (cpi->cpi_model == 5 ?
1320 				    "Intel Pentium(r) II Xeon(tm)" :
1321 				    "Intel Pentium(r) III Xeon(tm)");
1322 			return (cpi->cpi_model == 5 ?
1323 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1324 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1325 		default:
1326 			break;
1327 		}
1328 	default:
1329 		break;
1330 	}
1331 
1332 	/* BrandID is present if the field is nonzero */
1333 	if (cpi->cpi_brandid != 0) {
1334 		static const struct {
1335 			uint_t bt_bid;
1336 			const char *bt_str;
1337 		} brand_tbl[] = {
1338 			{ 0x1,	"Intel(r) Celeron(r)" },
1339 			{ 0x2,	"Intel(r) Pentium(r) III" },
1340 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1341 			{ 0x4,	"Intel(r) Pentium(r) III" },
1342 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1343 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1344 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1345 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1346 			{ 0xa,	"Intel(r) Celeron(r)" },
1347 			{ 0xb,	"Intel(r) Xeon(tm)" },
1348 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1349 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1350 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1351 			{ 0x11, "Mobile Genuine Intel(r)" },
1352 			{ 0x12, "Intel(r) Celeron(r) M" },
1353 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1354 			{ 0x14, "Intel(r) Celeron(r)" },
1355 			{ 0x15, "Mobile Genuine Intel(r)" },
1356 			{ 0x16,	"Intel(r) Pentium(r) M" },
1357 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1358 		};
1359 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1360 		uint_t sgn;
1361 
1362 		sgn = (cpi->cpi_family << 8) |
1363 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1364 
1365 		for (i = 0; i < btblmax; i++)
1366 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1367 				break;
1368 		if (i < btblmax) {
1369 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1370 				return ("Intel(r) Celeron(r)");
1371 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1372 				return ("Intel(r) Xeon(tm) MP");
1373 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1374 				return ("Intel(r) Xeon(tm)");
1375 			return (brand_tbl[i].bt_str);
1376 		}
1377 	}
1378 
1379 	return (NULL);
1380 }
1381 
1382 static const char *
1383 amd_cpubrand(const struct cpuid_info *cpi)
1384 {
1385 	if ((x86_feature & X86_CPUID) == 0 ||
1386 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1387 		return ("i486 compatible");
1388 
1389 	switch (cpi->cpi_family) {
1390 	case 5:
1391 		switch (cpi->cpi_model) {
1392 		case 0:
1393 		case 1:
1394 		case 2:
1395 		case 3:
1396 		case 4:
1397 		case 5:
1398 			return ("AMD-K5(r)");
1399 		case 6:
1400 		case 7:
1401 			return ("AMD-K6(r)");
1402 		case 8:
1403 			return ("AMD-K6(r)-2");
1404 		case 9:
1405 			return ("AMD-K6(r)-III");
1406 		default:
1407 			return ("AMD (family 5)");
1408 		}
1409 	case 6:
1410 		switch (cpi->cpi_model) {
1411 		case 1:
1412 			return ("AMD-K7(tm)");
1413 		case 0:
1414 		case 2:
1415 		case 4:
1416 			return ("AMD Athlon(tm)");
1417 		case 3:
1418 		case 7:
1419 			return ("AMD Duron(tm)");
1420 		case 6:
1421 		case 8:
1422 		case 10:
1423 			/*
1424 			 * Use the L2 cache size to distinguish
1425 			 */
1426 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1427 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1428 		default:
1429 			return ("AMD (family 6)");
1430 		}
1431 	default:
1432 		break;
1433 	}
1434 
1435 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1436 	    cpi->cpi_brandid != 0) {
1437 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1438 		case 3:
1439 			return ("AMD Opteron(tm) UP 1xx");
1440 		case 4:
1441 			return ("AMD Opteron(tm) DP 2xx");
1442 		case 5:
1443 			return ("AMD Opteron(tm) MP 8xx");
1444 		default:
1445 			return ("AMD Opteron(tm)");
1446 		}
1447 	}
1448 
1449 	return (NULL);
1450 }
1451 
1452 static const char *
1453 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1454 {
1455 	if ((x86_feature & X86_CPUID) == 0 ||
1456 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1457 	    type == X86_TYPE_CYRIX_486)
1458 		return ("i486 compatible");
1459 
1460 	switch (type) {
1461 	case X86_TYPE_CYRIX_6x86:
1462 		return ("Cyrix 6x86");
1463 	case X86_TYPE_CYRIX_6x86L:
1464 		return ("Cyrix 6x86L");
1465 	case X86_TYPE_CYRIX_6x86MX:
1466 		return ("Cyrix 6x86MX");
1467 	case X86_TYPE_CYRIX_GXm:
1468 		return ("Cyrix GXm");
1469 	case X86_TYPE_CYRIX_MediaGX:
1470 		return ("Cyrix MediaGX");
1471 	case X86_TYPE_CYRIX_MII:
1472 		return ("Cyrix M2");
1473 	case X86_TYPE_VIA_CYRIX_III:
1474 		return ("VIA Cyrix M3");
1475 	default:
1476 		/*
1477 		 * Have another wild guess ..
1478 		 */
1479 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1480 			return ("Cyrix 5x86");
1481 		else if (cpi->cpi_family == 5) {
1482 			switch (cpi->cpi_model) {
1483 			case 2:
1484 				return ("Cyrix 6x86");	/* Cyrix M1 */
1485 			case 4:
1486 				return ("Cyrix MediaGX");
1487 			default:
1488 				break;
1489 			}
1490 		} else if (cpi->cpi_family == 6) {
1491 			switch (cpi->cpi_model) {
1492 			case 0:
1493 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1494 			case 5:
1495 			case 6:
1496 			case 7:
1497 			case 8:
1498 			case 9:
1499 				return ("VIA C3");
1500 			default:
1501 				break;
1502 			}
1503 		}
1504 		break;
1505 	}
1506 	return (NULL);
1507 }
1508 
1509 /*
1510  * This only gets called in the case that the CPU extended
1511  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1512  * aren't available, or contain null bytes for some reason.
1513  */
1514 static void
1515 fabricate_brandstr(struct cpuid_info *cpi)
1516 {
1517 	const char *brand = NULL;
1518 
1519 	switch (cpi->cpi_vendor) {
1520 	case X86_VENDOR_Intel:
1521 		brand = intel_cpubrand(cpi);
1522 		break;
1523 	case X86_VENDOR_AMD:
1524 		brand = amd_cpubrand(cpi);
1525 		break;
1526 	case X86_VENDOR_Cyrix:
1527 		brand = cyrix_cpubrand(cpi, x86_type);
1528 		break;
1529 	case X86_VENDOR_NexGen:
1530 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1531 			brand = "NexGen Nx586";
1532 		break;
1533 	case X86_VENDOR_Centaur:
1534 		if (cpi->cpi_family == 5)
1535 			switch (cpi->cpi_model) {
1536 			case 4:
1537 				brand = "Centaur C6";
1538 				break;
1539 			case 8:
1540 				brand = "Centaur C2";
1541 				break;
1542 			case 9:
1543 				brand = "Centaur C3";
1544 				break;
1545 			default:
1546 				break;
1547 			}
1548 		break;
1549 	case X86_VENDOR_Rise:
1550 		if (cpi->cpi_family == 5 &&
1551 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1552 			brand = "Rise mP6";
1553 		break;
1554 	case X86_VENDOR_SiS:
1555 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1556 			brand = "SiS 55x";
1557 		break;
1558 	case X86_VENDOR_TM:
1559 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1560 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1561 		break;
1562 	case X86_VENDOR_NSC:
1563 	case X86_VENDOR_UMC:
1564 	default:
1565 		break;
1566 	}
1567 	if (brand) {
1568 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1569 		return;
1570 	}
1571 
1572 	/*
1573 	 * If all else fails ...
1574 	 */
1575 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1576 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1577 	    cpi->cpi_model, cpi->cpi_step);
1578 }
1579 
1580 /*
1581  * This routine is called just after kernel memory allocation
1582  * becomes available on cpu0, and as part of mp_startup() on
1583  * the other cpus.
1584  *
1585  * Fixup the brand string.
1586  */
1587 /*ARGSUSED*/
1588 void
1589 cpuid_pass3(cpu_t *cpu)
1590 {
1591 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1592 
1593 	ASSERT(cpi->cpi_pass == 2);
1594 
1595 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1596 		fabricate_brandstr(cpi);
1597 		goto pass3_done;
1598 	}
1599 
1600 	/*
1601 	 * If we successfully extracted a brand string from the cpuid
1602 	 * instruction, clean it up by removing leading spaces and
1603 	 * similar junk.
1604 	 */
1605 	if (cpi->cpi_brandstr[0]) {
1606 		size_t maxlen = sizeof (cpi->cpi_brandstr);
1607 		char *src, *dst;
1608 
1609 		dst = src = (char *)cpi->cpi_brandstr;
1610 		src[maxlen - 1] = '\0';
1611 		/*
1612 		 * strip leading spaces
1613 		 */
1614 		while (*src == ' ')
1615 			src++;
1616 		/*
1617 		 * Remove any 'Genuine' or "Authentic" prefixes
1618 		 */
1619 		if (strncmp(src, "Genuine ", 8) == 0)
1620 			src += 8;
1621 		if (strncmp(src, "Authentic ", 10) == 0)
1622 			src += 10;
1623 
1624 		/*
1625 		 * Now do an in-place copy.
1626 		 * Map (R) to (r) and (TM) to (tm).
1627 		 * The era of teletypes is long gone, and there's
1628 		 * -really- no need to shout.
1629 		 */
1630 		while (*src != '\0') {
1631 			if (src[0] == '(') {
1632 				if (strncmp(src + 1, "R)", 2) == 0) {
1633 					(void) strncpy(dst, "(r)", 3);
1634 					src += 3;
1635 					dst += 3;
1636 					continue;
1637 				}
1638 				if (strncmp(src + 1, "TM)", 3) == 0) {
1639 					(void) strncpy(dst, "(tm)", 4);
1640 					src += 4;
1641 					dst += 4;
1642 					continue;
1643 				}
1644 			}
1645 			*dst++ = *src++;
1646 		}
1647 		*dst = '\0';
1648 
1649 		/*
1650 		 * Finally, remove any trailing spaces
1651 		 */
1652 		while (--dst > cpi->cpi_brandstr)
1653 			if (*dst == ' ')
1654 				*dst = '\0';
1655 			else
1656 				break;
1657 	} else
1658 		fabricate_brandstr(cpi);
1659 
1660 pass3_done:
1661 	cpi->cpi_pass = 3;
1662 }
1663 
1664 /*
1665  * This routine is called out of bind_hwcap() much later in the life
1666  * of the kernel (post_startup()).  The job of this routine is to resolve
1667  * the hardware feature support and kernel support for those features into
1668  * what we're actually going to tell applications via the aux vector.
1669  */
1670 uint_t
1671 cpuid_pass4(cpu_t *cpu)
1672 {
1673 	struct cpuid_info *cpi;
1674 	uint_t hwcap_flags = 0;
1675 
1676 	if (cpu == NULL)
1677 		cpu = CPU;
1678 	cpi = cpu->cpu_m.mcpu_cpi;
1679 
1680 	ASSERT(cpi->cpi_pass == 3);
1681 
1682 	if (cpi->cpi_maxeax >= 1) {
1683 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1684 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1685 
1686 		*edx = CPI_FEATURES_EDX(cpi);
1687 		*ecx = CPI_FEATURES_ECX(cpi);
1688 
1689 		/*
1690 		 * [these require explicit kernel support]
1691 		 */
1692 		if ((x86_feature & X86_SEP) == 0)
1693 			*edx &= ~CPUID_INTC_EDX_SEP;
1694 
1695 		if ((x86_feature & X86_SSE) == 0)
1696 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1697 		if ((x86_feature & X86_SSE2) == 0)
1698 			*edx &= ~CPUID_INTC_EDX_SSE2;
1699 
1700 		if ((x86_feature & X86_HTT) == 0)
1701 			*edx &= ~CPUID_INTC_EDX_HTT;
1702 
1703 		if ((x86_feature & X86_SSE3) == 0)
1704 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1705 
1706 		/*
1707 		 * [no explicit support required beyond x87 fp context]
1708 		 */
1709 		if (!fpu_exists)
1710 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1711 
1712 		/*
1713 		 * Now map the supported feature vector to things that we
1714 		 * think userland will care about.
1715 		 */
1716 		if (*edx & CPUID_INTC_EDX_SEP)
1717 			hwcap_flags |= AV_386_SEP;
1718 		if (*edx & CPUID_INTC_EDX_SSE)
1719 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1720 		if (*edx & CPUID_INTC_EDX_SSE2)
1721 			hwcap_flags |= AV_386_SSE2;
1722 		if (*ecx & CPUID_INTC_ECX_SSE3)
1723 			hwcap_flags |= AV_386_SSE3;
1724 
1725 		if (*edx & CPUID_INTC_EDX_FPU)
1726 			hwcap_flags |= AV_386_FPU;
1727 		if (*edx & CPUID_INTC_EDX_MMX)
1728 			hwcap_flags |= AV_386_MMX;
1729 
1730 		if (*edx & CPUID_INTC_EDX_TSC)
1731 			hwcap_flags |= AV_386_TSC;
1732 		if (*edx & CPUID_INTC_EDX_CX8)
1733 			hwcap_flags |= AV_386_CX8;
1734 		if (*edx & CPUID_INTC_EDX_CMOV)
1735 			hwcap_flags |= AV_386_CMOV;
1736 		if (*ecx & CPUID_INTC_ECX_MON)
1737 			hwcap_flags |= AV_386_MON;
1738 		if (*ecx & CPUID_INTC_ECX_CX16)
1739 			hwcap_flags |= AV_386_CX16;
1740 	}
1741 
1742 	if (x86_feature & X86_HTT)
1743 		hwcap_flags |= AV_386_PAUSE;
1744 
1745 	if (cpi->cpi_xmaxeax < 0x80000001)
1746 		goto pass4_done;
1747 
1748 	switch (cpi->cpi_vendor) {
1749 		struct cpuid_regs cp;
1750 		uint32_t *edx, *ecx;
1751 
1752 	case X86_VENDOR_Intel:
1753 		/*
1754 		 * Seems like Intel duplicated what we necessary
1755 		 * here to make the initial crop of 64-bit OS's work.
1756 		 * Hopefully, those are the only "extended" bits
1757 		 * they'll add.
1758 		 */
1759 		/*FALLTHROUGH*/
1760 
1761 	case X86_VENDOR_AMD:
1762 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1763 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
1764 
1765 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1766 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
1767 
1768 		/*
1769 		 * [these features require explicit kernel support]
1770 		 */
1771 		switch (cpi->cpi_vendor) {
1772 		case X86_VENDOR_Intel:
1773 			break;
1774 
1775 		case X86_VENDOR_AMD:
1776 			if ((x86_feature & X86_TSCP) == 0)
1777 				*edx &= ~CPUID_AMD_EDX_TSCP;
1778 			break;
1779 
1780 		default:
1781 			break;
1782 		}
1783 
1784 		/*
1785 		 * [no explicit support required beyond
1786 		 * x87 fp context and exception handlers]
1787 		 */
1788 		if (!fpu_exists)
1789 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1790 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1791 
1792 		if ((x86_feature & X86_NX) == 0)
1793 			*edx &= ~CPUID_AMD_EDX_NX;
1794 #if !defined(__amd64)
1795 		*edx &= ~CPUID_AMD_EDX_LM;
1796 #endif
1797 		/*
1798 		 * Now map the supported feature vector to
1799 		 * things that we think userland will care about.
1800 		 */
1801 #if defined(__amd64)
1802 		if (*edx & CPUID_AMD_EDX_SYSC)
1803 			hwcap_flags |= AV_386_AMD_SYSC;
1804 #endif
1805 		if (*edx & CPUID_AMD_EDX_MMXamd)
1806 			hwcap_flags |= AV_386_AMD_MMX;
1807 		if (*edx & CPUID_AMD_EDX_3DNow)
1808 			hwcap_flags |= AV_386_AMD_3DNow;
1809 		if (*edx & CPUID_AMD_EDX_3DNowx)
1810 			hwcap_flags |= AV_386_AMD_3DNowx;
1811 
1812 		switch (cpi->cpi_vendor) {
1813 		case X86_VENDOR_AMD:
1814 			if (*edx & CPUID_AMD_EDX_TSCP)
1815 				hwcap_flags |= AV_386_TSCP;
1816 			if (*ecx & CPUID_AMD_ECX_AHF64)
1817 				hwcap_flags |= AV_386_AHF;
1818 			break;
1819 
1820 		case X86_VENDOR_Intel:
1821 			/*
1822 			 * Aarrgh.
1823 			 * Intel uses a different bit in the same word.
1824 			 */
1825 			if (*ecx & CPUID_INTC_ECX_AHF64)
1826 				hwcap_flags |= AV_386_AHF;
1827 			break;
1828 
1829 		default:
1830 			break;
1831 		}
1832 		break;
1833 
1834 	case X86_VENDOR_TM:
1835 		cp.cp_eax = 0x80860001;
1836 		(void) __cpuid_insn(&cp);
1837 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
1838 		break;
1839 
1840 	default:
1841 		break;
1842 	}
1843 
1844 pass4_done:
1845 	cpi->cpi_pass = 4;
1846 	return (hwcap_flags);
1847 }
1848 
1849 
1850 /*
1851  * Simulate the cpuid instruction using the data we previously
1852  * captured about this CPU.  We try our best to return the truth
1853  * about the hardware, independently of kernel support.
1854  */
1855 uint32_t
1856 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
1857 {
1858 	struct cpuid_info *cpi;
1859 	struct cpuid_regs *xcp;
1860 
1861 	if (cpu == NULL)
1862 		cpu = CPU;
1863 	cpi = cpu->cpu_m.mcpu_cpi;
1864 
1865 	ASSERT(cpuid_checkpass(cpu, 3));
1866 
1867 	/*
1868 	 * CPUID data is cached in two separate places: cpi_std for standard
1869 	 * CPUID functions, and cpi_extd for extended CPUID functions.
1870 	 */
1871 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
1872 		xcp = &cpi->cpi_std[cp->cp_eax];
1873 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
1874 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
1875 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
1876 	else
1877 		/*
1878 		 * The caller is asking for data from an input parameter which
1879 		 * the kernel has not cached.  In this case we go fetch from
1880 		 * the hardware and return the data directly to the user.
1881 		 */
1882 		return (__cpuid_insn(cp));
1883 
1884 	cp->cp_eax = xcp->cp_eax;
1885 	cp->cp_ebx = xcp->cp_ebx;
1886 	cp->cp_ecx = xcp->cp_ecx;
1887 	cp->cp_edx = xcp->cp_edx;
1888 	return (cp->cp_eax);
1889 }
1890 
1891 int
1892 cpuid_checkpass(cpu_t *cpu, int pass)
1893 {
1894 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
1895 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
1896 }
1897 
1898 int
1899 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
1900 {
1901 	ASSERT(cpuid_checkpass(cpu, 3));
1902 
1903 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
1904 }
1905 
1906 int
1907 cpuid_is_cmt(cpu_t *cpu)
1908 {
1909 	if (cpu == NULL)
1910 		cpu = CPU;
1911 
1912 	ASSERT(cpuid_checkpass(cpu, 1));
1913 
1914 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
1915 }
1916 
1917 /*
1918  * AMD and Intel both implement the 64-bit variant of the syscall
1919  * instruction (syscallq), so if there's -any- support for syscall,
1920  * cpuid currently says "yes, we support this".
1921  *
1922  * However, Intel decided to -not- implement the 32-bit variant of the
1923  * syscall instruction, so we provide a predicate to allow our caller
1924  * to test that subtlety here.
1925  */
1926 /*ARGSUSED*/
1927 int
1928 cpuid_syscall32_insn(cpu_t *cpu)
1929 {
1930 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
1931 
1932 	if (cpu == NULL)
1933 		cpu = CPU;
1934 
1935 	/*CSTYLED*/
1936 	{
1937 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1938 
1939 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1940 		    cpi->cpi_xmaxeax >= 0x80000001 &&
1941 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
1942 			return (1);
1943 	}
1944 	return (0);
1945 }
1946 
1947 int
1948 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
1949 {
1950 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1951 
1952 	static const char fmt[] =
1953 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
1954 	static const char fmt_ht[] =
1955 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
1956 
1957 	ASSERT(cpuid_checkpass(cpu, 1));
1958 
1959 	if (cpuid_is_cmt(cpu))
1960 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
1961 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
1962 		    cpi->cpi_family, cpi->cpi_model,
1963 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1964 	return (snprintf(s, n, fmt,
1965 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
1966 	    cpi->cpi_family, cpi->cpi_model,
1967 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1968 }
1969 
1970 const char *
1971 cpuid_getvendorstr(cpu_t *cpu)
1972 {
1973 	ASSERT(cpuid_checkpass(cpu, 1));
1974 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
1975 }
1976 
1977 uint_t
1978 cpuid_getvendor(cpu_t *cpu)
1979 {
1980 	ASSERT(cpuid_checkpass(cpu, 1));
1981 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
1982 }
1983 
1984 uint_t
1985 cpuid_getfamily(cpu_t *cpu)
1986 {
1987 	ASSERT(cpuid_checkpass(cpu, 1));
1988 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
1989 }
1990 
1991 uint_t
1992 cpuid_getmodel(cpu_t *cpu)
1993 {
1994 	ASSERT(cpuid_checkpass(cpu, 1));
1995 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
1996 }
1997 
1998 uint_t
1999 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2000 {
2001 	ASSERT(cpuid_checkpass(cpu, 1));
2002 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2003 }
2004 
2005 uint_t
2006 cpuid_get_ncore_per_chip(cpu_t *cpu)
2007 {
2008 	ASSERT(cpuid_checkpass(cpu, 1));
2009 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2010 }
2011 
2012 uint_t
2013 cpuid_getstep(cpu_t *cpu)
2014 {
2015 	ASSERT(cpuid_checkpass(cpu, 1));
2016 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2017 }
2018 
2019 uint_t
2020 cpuid_getsig(struct cpu *cpu)
2021 {
2022 	ASSERT(cpuid_checkpass(cpu, 1));
2023 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2024 }
2025 
2026 uint32_t
2027 cpuid_getchiprev(struct cpu *cpu)
2028 {
2029 	ASSERT(cpuid_checkpass(cpu, 1));
2030 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2031 }
2032 
2033 const char *
2034 cpuid_getchiprevstr(struct cpu *cpu)
2035 {
2036 	ASSERT(cpuid_checkpass(cpu, 1));
2037 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2038 }
2039 
2040 uint32_t
2041 cpuid_getsockettype(struct cpu *cpu)
2042 {
2043 	ASSERT(cpuid_checkpass(cpu, 1));
2044 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2045 }
2046 
2047 int
2048 cpuid_get_chipid(cpu_t *cpu)
2049 {
2050 	ASSERT(cpuid_checkpass(cpu, 1));
2051 
2052 	if (cpuid_is_cmt(cpu))
2053 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2054 	return (cpu->cpu_id);
2055 }
2056 
2057 id_t
2058 cpuid_get_coreid(cpu_t *cpu)
2059 {
2060 	ASSERT(cpuid_checkpass(cpu, 1));
2061 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2062 }
2063 
2064 int
2065 cpuid_get_clogid(cpu_t *cpu)
2066 {
2067 	ASSERT(cpuid_checkpass(cpu, 1));
2068 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2069 }
2070 
2071 void
2072 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2073 {
2074 	struct cpuid_info *cpi;
2075 
2076 	if (cpu == NULL)
2077 		cpu = CPU;
2078 	cpi = cpu->cpu_m.mcpu_cpi;
2079 
2080 	ASSERT(cpuid_checkpass(cpu, 1));
2081 
2082 	if (pabits)
2083 		*pabits = cpi->cpi_pabits;
2084 	if (vabits)
2085 		*vabits = cpi->cpi_vabits;
2086 }
2087 
2088 /*
2089  * Returns the number of data TLB entries for a corresponding
2090  * pagesize.  If it can't be computed, or isn't known, the
2091  * routine returns zero.  If you ask about an architecturally
2092  * impossible pagesize, the routine will panic (so that the
2093  * hat implementor knows that things are inconsistent.)
2094  */
2095 uint_t
2096 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2097 {
2098 	struct cpuid_info *cpi;
2099 	uint_t dtlb_nent = 0;
2100 
2101 	if (cpu == NULL)
2102 		cpu = CPU;
2103 	cpi = cpu->cpu_m.mcpu_cpi;
2104 
2105 	ASSERT(cpuid_checkpass(cpu, 1));
2106 
2107 	/*
2108 	 * Check the L2 TLB info
2109 	 */
2110 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2111 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2112 
2113 		switch (pagesize) {
2114 
2115 		case 4 * 1024:
2116 			/*
2117 			 * All zero in the top 16 bits of the register
2118 			 * indicates a unified TLB. Size is in low 16 bits.
2119 			 */
2120 			if ((cp->cp_ebx & 0xffff0000) == 0)
2121 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2122 			else
2123 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2124 			break;
2125 
2126 		case 2 * 1024 * 1024:
2127 			if ((cp->cp_eax & 0xffff0000) == 0)
2128 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2129 			else
2130 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2131 			break;
2132 
2133 		default:
2134 			panic("unknown L2 pagesize");
2135 			/*NOTREACHED*/
2136 		}
2137 	}
2138 
2139 	if (dtlb_nent != 0)
2140 		return (dtlb_nent);
2141 
2142 	/*
2143 	 * No L2 TLB support for this size, try L1.
2144 	 */
2145 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2146 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2147 
2148 		switch (pagesize) {
2149 		case 4 * 1024:
2150 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2151 			break;
2152 		case 2 * 1024 * 1024:
2153 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2154 			break;
2155 		default:
2156 			panic("unknown L1 d-TLB pagesize");
2157 			/*NOTREACHED*/
2158 		}
2159 	}
2160 
2161 	return (dtlb_nent);
2162 }
2163 
2164 /*
2165  * Return 0 if the erratum is not present or not applicable, positive
2166  * if it is, and negative if the status of the erratum is unknown.
2167  *
2168  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2169  * Processors" #25759, Rev 3.57, August 2005
2170  */
2171 int
2172 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2173 {
2174 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2175 	uint_t eax;
2176 
2177 	/*
2178 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2179 	 * a legacy (32-bit) AMD CPU.
2180 	 */
2181 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2182 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2183 	    cpi->cpi_family == 6)
2184 
2185 		return (0);
2186 
2187 	eax = cpi->cpi_std[1].cp_eax;
2188 
2189 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2190 #define	SH_B3(eax) 	(eax == 0xf51)
2191 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2192 
2193 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2194 
2195 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2196 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2197 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2198 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2199 
2200 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2201 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2202 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2203 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2204 
2205 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2206 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2207 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2208 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2209 #define	BH_E4(eax)	(eax == 0x20fb1)
2210 #define	SH_E5(eax)	(eax == 0x20f42)
2211 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2212 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2213 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2214 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2215 			    DH_E6(eax) || JH_E6(eax))
2216 
2217 	switch (erratum) {
2218 	case 1:
2219 		return (cpi->cpi_family < 0x10);
2220 	case 51:	/* what does the asterisk mean? */
2221 		return (B(eax) || SH_C0(eax) || CG(eax));
2222 	case 52:
2223 		return (B(eax));
2224 	case 57:
2225 		return (cpi->cpi_family <= 0x10);
2226 	case 58:
2227 		return (B(eax));
2228 	case 60:
2229 		return (cpi->cpi_family <= 0x10);
2230 	case 61:
2231 	case 62:
2232 	case 63:
2233 	case 64:
2234 	case 65:
2235 	case 66:
2236 	case 68:
2237 	case 69:
2238 	case 70:
2239 	case 71:
2240 		return (B(eax));
2241 	case 72:
2242 		return (SH_B0(eax));
2243 	case 74:
2244 		return (B(eax));
2245 	case 75:
2246 		return (cpi->cpi_family < 0x10);
2247 	case 76:
2248 		return (B(eax));
2249 	case 77:
2250 		return (cpi->cpi_family <= 0x10);
2251 	case 78:
2252 		return (B(eax) || SH_C0(eax));
2253 	case 79:
2254 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2255 	case 80:
2256 	case 81:
2257 	case 82:
2258 		return (B(eax));
2259 	case 83:
2260 		return (B(eax) || SH_C0(eax) || CG(eax));
2261 	case 85:
2262 		return (cpi->cpi_family < 0x10);
2263 	case 86:
2264 		return (SH_C0(eax) || CG(eax));
2265 	case 88:
2266 #if !defined(__amd64)
2267 		return (0);
2268 #else
2269 		return (B(eax) || SH_C0(eax));
2270 #endif
2271 	case 89:
2272 		return (cpi->cpi_family < 0x10);
2273 	case 90:
2274 		return (B(eax) || SH_C0(eax) || CG(eax));
2275 	case 91:
2276 	case 92:
2277 		return (B(eax) || SH_C0(eax));
2278 	case 93:
2279 		return (SH_C0(eax));
2280 	case 94:
2281 		return (B(eax) || SH_C0(eax) || CG(eax));
2282 	case 95:
2283 #if !defined(__amd64)
2284 		return (0);
2285 #else
2286 		return (B(eax) || SH_C0(eax));
2287 #endif
2288 	case 96:
2289 		return (B(eax) || SH_C0(eax) || CG(eax));
2290 	case 97:
2291 	case 98:
2292 		return (SH_C0(eax) || CG(eax));
2293 	case 99:
2294 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2295 	case 100:
2296 		return (B(eax) || SH_C0(eax));
2297 	case 101:
2298 	case 103:
2299 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2300 	case 104:
2301 		return (SH_C0(eax) || CG(eax) || D0(eax));
2302 	case 105:
2303 	case 106:
2304 	case 107:
2305 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2306 	case 108:
2307 		return (DH_CG(eax));
2308 	case 109:
2309 		return (SH_C0(eax) || CG(eax) || D0(eax));
2310 	case 110:
2311 		return (D0(eax) || EX(eax));
2312 	case 111:
2313 		return (CG(eax));
2314 	case 112:
2315 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2316 	case 113:
2317 		return (eax == 0x20fc0);
2318 	case 114:
2319 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2320 	case 115:
2321 		return (SH_E0(eax) || JH_E1(eax));
2322 	case 116:
2323 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2324 	case 117:
2325 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2326 	case 118:
2327 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2328 		    JH_E6(eax));
2329 	case 121:
2330 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2331 	case 122:
2332 		return (cpi->cpi_family < 0x10);
2333 	case 123:
2334 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2335 	case 131:
2336 		return (cpi->cpi_family < 0x10);
2337 	case 6336786:
2338 		/*
2339 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2340 		 * if this is a K8 family or newer processor
2341 		 */
2342 		if (CPI_FAMILY(cpi) == 0xf) {
2343 			struct cpuid_regs regs;
2344 			regs.cp_eax = 0x80000007;
2345 			(void) __cpuid_insn(&regs);
2346 			return (!(regs.cp_edx & 0x100));
2347 		}
2348 		return (0);
2349 	case 6323525:
2350 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2351 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2352 
2353 	default:
2354 		return (-1);
2355 	}
2356 }
2357 
2358 static const char assoc_str[] = "associativity";
2359 static const char line_str[] = "line-size";
2360 static const char size_str[] = "size";
2361 
2362 static void
2363 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2364     uint32_t val)
2365 {
2366 	char buf[128];
2367 
2368 	/*
2369 	 * ndi_prop_update_int() is used because it is desirable for
2370 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2371 	 */
2372 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2373 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2374 }
2375 
2376 /*
2377  * Intel-style cache/tlb description
2378  *
2379  * Standard cpuid level 2 gives a randomly ordered
2380  * selection of tags that index into a table that describes
2381  * cache and tlb properties.
2382  */
2383 
2384 static const char l1_icache_str[] = "l1-icache";
2385 static const char l1_dcache_str[] = "l1-dcache";
2386 static const char l2_cache_str[] = "l2-cache";
2387 static const char l3_cache_str[] = "l3-cache";
2388 static const char itlb4k_str[] = "itlb-4K";
2389 static const char dtlb4k_str[] = "dtlb-4K";
2390 static const char itlb4M_str[] = "itlb-4M";
2391 static const char dtlb4M_str[] = "dtlb-4M";
2392 static const char itlb424_str[] = "itlb-4K-2M-4M";
2393 static const char dtlb44_str[] = "dtlb-4K-4M";
2394 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2395 static const char sl2_cache_str[] = "sectored-l2-cache";
2396 static const char itrace_str[] = "itrace-cache";
2397 static const char sl3_cache_str[] = "sectored-l3-cache";
2398 
2399 static const struct cachetab {
2400 	uint8_t 	ct_code;
2401 	uint8_t		ct_assoc;
2402 	uint16_t 	ct_line_size;
2403 	size_t		ct_size;
2404 	const char	*ct_label;
2405 } intel_ctab[] = {
2406 	/* maintain descending order! */
2407 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2408 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2409 	{ 0xb0, 4, 0, 128, itlb4k_str },
2410 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2411 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2412 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2413 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2414 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2415 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2416 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2417 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2418 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2419 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2420 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2421 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2422 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2423 	{ 0x73, 8, 0, 64*1024, itrace_str},
2424 	{ 0x72, 8, 0, 32*1024, itrace_str},
2425 	{ 0x71, 8, 0, 16*1024, itrace_str},
2426 	{ 0x70, 8, 0, 12*1024, itrace_str},
2427 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2428 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2429 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2430 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2431 	{ 0x5d, 0, 0, 256, dtlb44_str},
2432 	{ 0x5c, 0, 0, 128, dtlb44_str},
2433 	{ 0x5b, 0, 0, 64, dtlb44_str},
2434 	{ 0x52, 0, 0, 256, itlb424_str},
2435 	{ 0x51, 0, 0, 128, itlb424_str},
2436 	{ 0x50, 0, 0, 64, itlb424_str},
2437 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2438 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2439 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2440 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2441 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2442 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2443 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2444 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2445 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2446 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2447 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2448 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2449 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2450 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2451 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2452 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2453 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2454 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2455 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2456 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2457 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2458 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2459 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2460 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2461 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2462 	{ 0x0b, 4, 0, 4, itlb4M_str},
2463 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2464 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2465 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2466 	{ 0x04, 4, 0, 8, dtlb4M_str},
2467 	{ 0x03, 4, 0, 64, dtlb4k_str},
2468 	{ 0x02, 4, 0, 2, itlb4M_str},
2469 	{ 0x01, 4, 0, 32, itlb4k_str},
2470 	{ 0 }
2471 };
2472 
2473 static const struct cachetab cyrix_ctab[] = {
2474 	{ 0x70, 4, 0, 32, "tlb-4K" },
2475 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2476 	{ 0 }
2477 };
2478 
2479 /*
2480  * Search a cache table for a matching entry
2481  */
2482 static const struct cachetab *
2483 find_cacheent(const struct cachetab *ct, uint_t code)
2484 {
2485 	if (code != 0) {
2486 		for (; ct->ct_code != 0; ct++)
2487 			if (ct->ct_code <= code)
2488 				break;
2489 		if (ct->ct_code == code)
2490 			return (ct);
2491 	}
2492 	return (NULL);
2493 }
2494 
2495 /*
2496  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2497  * The walk is terminated if the walker returns non-zero.
2498  */
2499 static void
2500 intel_walk_cacheinfo(struct cpuid_info *cpi,
2501     void *arg, int (*func)(void *, const struct cachetab *))
2502 {
2503 	const struct cachetab *ct;
2504 	uint8_t *dp;
2505 	int i;
2506 
2507 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2508 		return;
2509 	for (i = 0; i < cpi->cpi_ncache; i++, dp++)
2510 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2511 			if (func(arg, ct) != 0)
2512 				break;
2513 		}
2514 }
2515 
2516 /*
2517  * (Like the Intel one, except for Cyrix CPUs)
2518  */
2519 static void
2520 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2521     void *arg, int (*func)(void *, const struct cachetab *))
2522 {
2523 	const struct cachetab *ct;
2524 	uint8_t *dp;
2525 	int i;
2526 
2527 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2528 		return;
2529 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2530 		/*
2531 		 * Search Cyrix-specific descriptor table first ..
2532 		 */
2533 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2534 			if (func(arg, ct) != 0)
2535 				break;
2536 			continue;
2537 		}
2538 		/*
2539 		 * .. else fall back to the Intel one
2540 		 */
2541 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2542 			if (func(arg, ct) != 0)
2543 				break;
2544 			continue;
2545 		}
2546 	}
2547 }
2548 
2549 /*
2550  * A cacheinfo walker that adds associativity, line-size, and size properties
2551  * to the devinfo node it is passed as an argument.
2552  */
2553 static int
2554 add_cacheent_props(void *arg, const struct cachetab *ct)
2555 {
2556 	dev_info_t *devi = arg;
2557 
2558 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2559 	if (ct->ct_line_size != 0)
2560 		add_cache_prop(devi, ct->ct_label, line_str,
2561 		    ct->ct_line_size);
2562 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2563 	return (0);
2564 }
2565 
2566 static const char fully_assoc[] = "fully-associative?";
2567 
2568 /*
2569  * AMD style cache/tlb description
2570  *
2571  * Extended functions 5 and 6 directly describe properties of
2572  * tlbs and various cache levels.
2573  */
2574 static void
2575 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2576 {
2577 	switch (assoc) {
2578 	case 0:	/* reserved; ignore */
2579 		break;
2580 	default:
2581 		add_cache_prop(devi, label, assoc_str, assoc);
2582 		break;
2583 	case 0xff:
2584 		add_cache_prop(devi, label, fully_assoc, 1);
2585 		break;
2586 	}
2587 }
2588 
2589 static void
2590 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2591 {
2592 	if (size == 0)
2593 		return;
2594 	add_cache_prop(devi, label, size_str, size);
2595 	add_amd_assoc(devi, label, assoc);
2596 }
2597 
2598 static void
2599 add_amd_cache(dev_info_t *devi, const char *label,
2600     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2601 {
2602 	if (size == 0 || line_size == 0)
2603 		return;
2604 	add_amd_assoc(devi, label, assoc);
2605 	/*
2606 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2607 	 * associated with each tag. A sector consists of all cache lines
2608 	 * associated with a tag. For example, the AMD K6-III has a sector
2609 	 * size of 2 cache lines per tag.
2610 	 */
2611 	if (lines_per_tag != 0)
2612 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2613 	add_cache_prop(devi, label, line_str, line_size);
2614 	add_cache_prop(devi, label, size_str, size * 1024);
2615 }
2616 
2617 static void
2618 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2619 {
2620 	switch (assoc) {
2621 	case 0:	/* off */
2622 		break;
2623 	case 1:
2624 	case 2:
2625 	case 4:
2626 		add_cache_prop(devi, label, assoc_str, assoc);
2627 		break;
2628 	case 6:
2629 		add_cache_prop(devi, label, assoc_str, 8);
2630 		break;
2631 	case 8:
2632 		add_cache_prop(devi, label, assoc_str, 16);
2633 		break;
2634 	case 0xf:
2635 		add_cache_prop(devi, label, fully_assoc, 1);
2636 		break;
2637 	default: /* reserved; ignore */
2638 		break;
2639 	}
2640 }
2641 
2642 static void
2643 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2644 {
2645 	if (size == 0 || assoc == 0)
2646 		return;
2647 	add_amd_l2_assoc(devi, label, assoc);
2648 	add_cache_prop(devi, label, size_str, size);
2649 }
2650 
2651 static void
2652 add_amd_l2_cache(dev_info_t *devi, const char *label,
2653     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2654 {
2655 	if (size == 0 || assoc == 0 || line_size == 0)
2656 		return;
2657 	add_amd_l2_assoc(devi, label, assoc);
2658 	if (lines_per_tag != 0)
2659 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2660 	add_cache_prop(devi, label, line_str, line_size);
2661 	add_cache_prop(devi, label, size_str, size * 1024);
2662 }
2663 
2664 static void
2665 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2666 {
2667 	struct cpuid_regs *cp;
2668 
2669 	if (cpi->cpi_xmaxeax < 0x80000005)
2670 		return;
2671 	cp = &cpi->cpi_extd[5];
2672 
2673 	/*
2674 	 * 4M/2M L1 TLB configuration
2675 	 *
2676 	 * We report the size for 2M pages because AMD uses two
2677 	 * TLB entries for one 4M page.
2678 	 */
2679 	add_amd_tlb(devi, "dtlb-2M",
2680 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2681 	add_amd_tlb(devi, "itlb-2M",
2682 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2683 
2684 	/*
2685 	 * 4K L1 TLB configuration
2686 	 */
2687 
2688 	switch (cpi->cpi_vendor) {
2689 		uint_t nentries;
2690 	case X86_VENDOR_TM:
2691 		if (cpi->cpi_family >= 5) {
2692 			/*
2693 			 * Crusoe processors have 256 TLB entries, but
2694 			 * cpuid data format constrains them to only
2695 			 * reporting 255 of them.
2696 			 */
2697 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2698 				nentries = 256;
2699 			/*
2700 			 * Crusoe processors also have a unified TLB
2701 			 */
2702 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2703 			    nentries);
2704 			break;
2705 		}
2706 		/*FALLTHROUGH*/
2707 	default:
2708 		add_amd_tlb(devi, itlb4k_str,
2709 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2710 		add_amd_tlb(devi, dtlb4k_str,
2711 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2712 		break;
2713 	}
2714 
2715 	/*
2716 	 * data L1 cache configuration
2717 	 */
2718 
2719 	add_amd_cache(devi, l1_dcache_str,
2720 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2721 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2722 
2723 	/*
2724 	 * code L1 cache configuration
2725 	 */
2726 
2727 	add_amd_cache(devi, l1_icache_str,
2728 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
2729 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
2730 
2731 	if (cpi->cpi_xmaxeax < 0x80000006)
2732 		return;
2733 	cp = &cpi->cpi_extd[6];
2734 
2735 	/* Check for a unified L2 TLB for large pages */
2736 
2737 	if (BITX(cp->cp_eax, 31, 16) == 0)
2738 		add_amd_l2_tlb(devi, "l2-tlb-2M",
2739 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2740 	else {
2741 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
2742 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2743 		add_amd_l2_tlb(devi, "l2-itlb-2M",
2744 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2745 	}
2746 
2747 	/* Check for a unified L2 TLB for 4K pages */
2748 
2749 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
2750 		add_amd_l2_tlb(devi, "l2-tlb-4K",
2751 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2752 	} else {
2753 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
2754 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2755 		add_amd_l2_tlb(devi, "l2-itlb-4K",
2756 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2757 	}
2758 
2759 	add_amd_l2_cache(devi, l2_cache_str,
2760 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
2761 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
2762 }
2763 
2764 /*
2765  * There are two basic ways that the x86 world describes it cache
2766  * and tlb architecture - Intel's way and AMD's way.
2767  *
2768  * Return which flavor of cache architecture we should use
2769  */
2770 static int
2771 x86_which_cacheinfo(struct cpuid_info *cpi)
2772 {
2773 	switch (cpi->cpi_vendor) {
2774 	case X86_VENDOR_Intel:
2775 		if (cpi->cpi_maxeax >= 2)
2776 			return (X86_VENDOR_Intel);
2777 		break;
2778 	case X86_VENDOR_AMD:
2779 		/*
2780 		 * The K5 model 1 was the first part from AMD that reported
2781 		 * cache sizes via extended cpuid functions.
2782 		 */
2783 		if (cpi->cpi_family > 5 ||
2784 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
2785 			return (X86_VENDOR_AMD);
2786 		break;
2787 	case X86_VENDOR_TM:
2788 		if (cpi->cpi_family >= 5)
2789 			return (X86_VENDOR_AMD);
2790 		/*FALLTHROUGH*/
2791 	default:
2792 		/*
2793 		 * If they have extended CPU data for 0x80000005
2794 		 * then we assume they have AMD-format cache
2795 		 * information.
2796 		 *
2797 		 * If not, and the vendor happens to be Cyrix,
2798 		 * then try our-Cyrix specific handler.
2799 		 *
2800 		 * If we're not Cyrix, then assume we're using Intel's
2801 		 * table-driven format instead.
2802 		 */
2803 		if (cpi->cpi_xmaxeax >= 0x80000005)
2804 			return (X86_VENDOR_AMD);
2805 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
2806 			return (X86_VENDOR_Cyrix);
2807 		else if (cpi->cpi_maxeax >= 2)
2808 			return (X86_VENDOR_Intel);
2809 		break;
2810 	}
2811 	return (-1);
2812 }
2813 
2814 /*
2815  * create a node for the given cpu under the prom root node.
2816  * Also, create a cpu node in the device tree.
2817  */
2818 static dev_info_t *cpu_nex_devi = NULL;
2819 static kmutex_t cpu_node_lock;
2820 
2821 /*
2822  * Called from post_startup() and mp_startup()
2823  */
2824 void
2825 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
2826 {
2827 	dev_info_t *cpu_devi;
2828 	int create;
2829 
2830 	mutex_enter(&cpu_node_lock);
2831 
2832 	/*
2833 	 * create a nexus node for all cpus identified as 'cpu_id' under
2834 	 * the root node.
2835 	 */
2836 	if (cpu_nex_devi == NULL) {
2837 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
2838 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
2839 			mutex_exit(&cpu_node_lock);
2840 			return;
2841 		}
2842 		(void) ndi_devi_online(cpu_nex_devi, 0);
2843 	}
2844 
2845 	/*
2846 	 * create a child node for cpu identified as 'cpu_id'
2847 	 */
2848 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
2849 	    cpu_id);
2850 	if (cpu_devi == NULL) {
2851 		mutex_exit(&cpu_node_lock);
2852 		return;
2853 	}
2854 
2855 	/* device_type */
2856 
2857 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2858 	    "device_type", "cpu");
2859 
2860 	/* reg */
2861 
2862 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2863 	    "reg", cpu_id);
2864 
2865 	/* cpu-mhz, and clock-frequency */
2866 
2867 	if (cpu_freq > 0) {
2868 		long long mul;
2869 
2870 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2871 		    "cpu-mhz", cpu_freq);
2872 
2873 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
2874 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2875 			    "clock-frequency", (int)mul);
2876 	}
2877 
2878 	(void) ndi_devi_online(cpu_devi, 0);
2879 
2880 	if ((x86_feature & X86_CPUID) == 0) {
2881 		mutex_exit(&cpu_node_lock);
2882 		return;
2883 	}
2884 
2885 	/* vendor-id */
2886 
2887 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2888 	    "vendor-id", cpi->cpi_vendorstr);
2889 
2890 	if (cpi->cpi_maxeax == 0) {
2891 		mutex_exit(&cpu_node_lock);
2892 		return;
2893 	}
2894 
2895 	/*
2896 	 * family, model, and step
2897 	 */
2898 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2899 	    "family", CPI_FAMILY(cpi));
2900 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2901 	    "cpu-model", CPI_MODEL(cpi));
2902 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2903 	    "stepping-id", CPI_STEP(cpi));
2904 
2905 	/* type */
2906 
2907 	switch (cpi->cpi_vendor) {
2908 	case X86_VENDOR_Intel:
2909 		create = 1;
2910 		break;
2911 	default:
2912 		create = 0;
2913 		break;
2914 	}
2915 	if (create)
2916 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2917 		    "type", CPI_TYPE(cpi));
2918 
2919 	/* ext-family */
2920 
2921 	switch (cpi->cpi_vendor) {
2922 	case X86_VENDOR_Intel:
2923 	case X86_VENDOR_AMD:
2924 		create = cpi->cpi_family >= 0xf;
2925 		break;
2926 	default:
2927 		create = 0;
2928 		break;
2929 	}
2930 	if (create)
2931 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2932 		    "ext-family", CPI_FAMILY_XTD(cpi));
2933 
2934 	/* ext-model */
2935 
2936 	switch (cpi->cpi_vendor) {
2937 	case X86_VENDOR_Intel:
2938 		create = CPI_MODEL(cpi) == 0xf;
2939 		break;
2940 	case X86_VENDOR_AMD:
2941 		create = CPI_FAMILY(cpi) == 0xf;
2942 		break;
2943 	default:
2944 		create = 0;
2945 		break;
2946 	}
2947 	if (create)
2948 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2949 		    "ext-model", CPI_MODEL_XTD(cpi));
2950 
2951 	/* generation */
2952 
2953 	switch (cpi->cpi_vendor) {
2954 	case X86_VENDOR_AMD:
2955 		/*
2956 		 * AMD K5 model 1 was the first part to support this
2957 		 */
2958 		create = cpi->cpi_xmaxeax >= 0x80000001;
2959 		break;
2960 	default:
2961 		create = 0;
2962 		break;
2963 	}
2964 	if (create)
2965 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2966 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
2967 
2968 	/* brand-id */
2969 
2970 	switch (cpi->cpi_vendor) {
2971 	case X86_VENDOR_Intel:
2972 		/*
2973 		 * brand id first appeared on Pentium III Xeon model 8,
2974 		 * and Celeron model 8 processors and Opteron
2975 		 */
2976 		create = cpi->cpi_family > 6 ||
2977 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
2978 		break;
2979 	case X86_VENDOR_AMD:
2980 		create = cpi->cpi_family >= 0xf;
2981 		break;
2982 	default:
2983 		create = 0;
2984 		break;
2985 	}
2986 	if (create && cpi->cpi_brandid != 0) {
2987 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2988 		    "brand-id", cpi->cpi_brandid);
2989 	}
2990 
2991 	/* chunks, and apic-id */
2992 
2993 	switch (cpi->cpi_vendor) {
2994 		/*
2995 		 * first available on Pentium IV and Opteron (K8)
2996 		 */
2997 	case X86_VENDOR_Intel:
2998 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
2999 		break;
3000 	case X86_VENDOR_AMD:
3001 		create = cpi->cpi_family >= 0xf;
3002 		break;
3003 	default:
3004 		create = 0;
3005 		break;
3006 	}
3007 	if (create) {
3008 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3009 		    "chunks", CPI_CHUNKS(cpi));
3010 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3011 		    "apic-id", CPI_APIC_ID(cpi));
3012 		if (cpi->cpi_chipid >= 0) {
3013 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3014 			    "chip#", cpi->cpi_chipid);
3015 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3016 			    "clog#", cpi->cpi_clogid);
3017 		}
3018 	}
3019 
3020 	/* cpuid-features */
3021 
3022 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3023 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3024 
3025 
3026 	/* cpuid-features-ecx */
3027 
3028 	switch (cpi->cpi_vendor) {
3029 	case X86_VENDOR_Intel:
3030 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3031 		break;
3032 	default:
3033 		create = 0;
3034 		break;
3035 	}
3036 	if (create)
3037 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3038 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3039 
3040 	/* ext-cpuid-features */
3041 
3042 	switch (cpi->cpi_vendor) {
3043 	case X86_VENDOR_Intel:
3044 	case X86_VENDOR_AMD:
3045 	case X86_VENDOR_Cyrix:
3046 	case X86_VENDOR_TM:
3047 	case X86_VENDOR_Centaur:
3048 		create = cpi->cpi_xmaxeax >= 0x80000001;
3049 		break;
3050 	default:
3051 		create = 0;
3052 		break;
3053 	}
3054 	if (create) {
3055 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3056 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3057 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3058 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3059 	}
3060 
3061 	/*
3062 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3063 	 * model 1, and Cyrix GXm.  On earlier models we try and
3064 	 * simulate something similar .. so this string should always
3065 	 * same -something- about the processor, however lame.
3066 	 */
3067 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3068 	    "brand-string", cpi->cpi_brandstr);
3069 
3070 	/*
3071 	 * Finally, cache and tlb information
3072 	 */
3073 	switch (x86_which_cacheinfo(cpi)) {
3074 	case X86_VENDOR_Intel:
3075 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3076 		break;
3077 	case X86_VENDOR_Cyrix:
3078 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3079 		break;
3080 	case X86_VENDOR_AMD:
3081 		amd_cache_info(cpi, cpu_devi);
3082 		break;
3083 	default:
3084 		break;
3085 	}
3086 
3087 	mutex_exit(&cpu_node_lock);
3088 }
3089 
3090 struct l2info {
3091 	int *l2i_csz;
3092 	int *l2i_lsz;
3093 	int *l2i_assoc;
3094 	int l2i_ret;
3095 };
3096 
3097 /*
3098  * A cacheinfo walker that fetches the size, line-size and associativity
3099  * of the L2 cache
3100  */
3101 static int
3102 intel_l2cinfo(void *arg, const struct cachetab *ct)
3103 {
3104 	struct l2info *l2i = arg;
3105 	int *ip;
3106 
3107 	if (ct->ct_label != l2_cache_str &&
3108 	    ct->ct_label != sl2_cache_str)
3109 		return (0);	/* not an L2 -- keep walking */
3110 
3111 	if ((ip = l2i->l2i_csz) != NULL)
3112 		*ip = ct->ct_size;
3113 	if ((ip = l2i->l2i_lsz) != NULL)
3114 		*ip = ct->ct_line_size;
3115 	if ((ip = l2i->l2i_assoc) != NULL)
3116 		*ip = ct->ct_assoc;
3117 	l2i->l2i_ret = ct->ct_size;
3118 	return (1);		/* was an L2 -- terminate walk */
3119 }
3120 
3121 static void
3122 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3123 {
3124 	struct cpuid_regs *cp;
3125 	uint_t size, assoc;
3126 	int *ip;
3127 
3128 	if (cpi->cpi_xmaxeax < 0x80000006)
3129 		return;
3130 	cp = &cpi->cpi_extd[6];
3131 
3132 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3133 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3134 		uint_t cachesz = size * 1024;
3135 
3136 
3137 		if ((ip = l2i->l2i_csz) != NULL)
3138 			*ip = cachesz;
3139 		if ((ip = l2i->l2i_lsz) != NULL)
3140 			*ip = BITX(cp->cp_ecx, 7, 0);
3141 		if ((ip = l2i->l2i_assoc) != NULL)
3142 			*ip = assoc;
3143 		l2i->l2i_ret = cachesz;
3144 	}
3145 }
3146 
3147 int
3148 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3149 {
3150 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3151 	struct l2info __l2info, *l2i = &__l2info;
3152 
3153 	l2i->l2i_csz = csz;
3154 	l2i->l2i_lsz = lsz;
3155 	l2i->l2i_assoc = assoc;
3156 	l2i->l2i_ret = -1;
3157 
3158 	switch (x86_which_cacheinfo(cpi)) {
3159 	case X86_VENDOR_Intel:
3160 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3161 		break;
3162 	case X86_VENDOR_Cyrix:
3163 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3164 		break;
3165 	case X86_VENDOR_AMD:
3166 		amd_l2cacheinfo(cpi, l2i);
3167 		break;
3168 	default:
3169 		break;
3170 	}
3171 	return (l2i->l2i_ret);
3172 }
3173 
3174 size_t
3175 cpuid_get_mwait_size(cpu_t *cpu)
3176 {
3177 	ASSERT(cpuid_checkpass(cpu, 2));
3178 	return (cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max);
3179 }
3180