xref: /titanic_44/usr/src/uts/i86pc/ml/syscall_asm_amd64.s (revision 990b4856d0eaada6f8140335733a1b1771ed2746)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/asm_linkage.h>
29#include <sys/asm_misc.h>
30#include <sys/regset.h>
31#include <sys/privregs.h>
32#include <sys/psw.h>
33#include <sys/machbrand.h>
34
35#if defined(__lint)
36
37#include <sys/types.h>
38#include <sys/thread.h>
39#include <sys/systm.h>
40
41#else	/* __lint */
42
43#include <sys/segments.h>
44#include <sys/pcb.h>
45#include <sys/trap.h>
46#include <sys/ftrace.h>
47#include <sys/traptrace.h>
48#include <sys/clock.h>
49#include <sys/model.h>
50#include <sys/panic.h>
51
52#if defined(__xpv)
53#include <sys/hypervisor.h>
54#endif
55
56#include "assym.h"
57
58#endif	/* __lint */
59
60/*
61 * We implement five flavours of system call entry points
62 *
63 * -	syscall/sysretq		(amd64 generic)
64 * -	syscall/sysretl		(i386 plus SYSC bit)
65 * -	sysenter/sysexit	(i386 plus SEP bit)
66 * -	int/iret		(i386 generic)
67 * -	lcall/iret		(i386 generic)
68 *
69 * The current libc included in Solaris uses int/iret as the base unoptimized
70 * kernel entry method. Older libc implementations and legacy binaries may use
71 * the lcall call gate, so it must continue to be supported.
72 *
73 * System calls that use an lcall call gate are processed in trap() via a
74 * segment-not-present trap, i.e. lcalls are extremely slow(!).
75 *
76 * The basic pattern used in the 32-bit SYSC handler at this point in time is
77 * to have the bare minimum of assembler, and get to the C handlers as
78 * quickly as possible.
79 *
80 * The 64-bit handler is much closer to the sparcv9 handler; that's
81 * because of passing arguments in registers.  The 32-bit world still
82 * passes arguments on the stack -- that makes that handler substantially
83 * more complex.
84 *
85 * The two handlers share a few code fragments which are broken
86 * out into preprocessor macros below.
87 *
88 * XX64	come back and speed all this up later.  The 32-bit stuff looks
89 * especially easy to speed up the argument copying part ..
90 *
91 *
92 * Notes about segment register usage (c.f. the 32-bit kernel)
93 *
94 * In the 32-bit kernel, segment registers are dutifully saved and
95 * restored on all mode transitions because the kernel uses them directly.
96 * When the processor is running in 64-bit mode, segment registers are
97 * largely ignored.
98 *
99 * %cs and %ss
100 *	controlled by the hardware mechanisms that make mode transitions
101 *
102 * The remaining segment registers have to either be pointing at a valid
103 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
104 *
105 * %ds and %es
106 *	always ignored
107 *
108 * %fs and %gs
109 *	fsbase and gsbase are used to control the place they really point at.
110 *	The kernel only depends on %gs, and controls its own gsbase via swapgs
111 *
112 * Note that loading segment registers is still costly because the GDT
113 * lookup still happens (this is because the hardware can't know that we're
114 * not setting up these segment registers for a 32-bit program).  Thus we
115 * avoid doing this in the syscall path, and defer them to lwp context switch
116 * handlers, so the register values remain virtualized to the lwp.
117 */
118
119#if defined(SYSCALLTRACE)
120#define	ORL_SYSCALLTRACE(r32)		\
121	orl	syscalltrace(%rip), r32
122#else
123#define	ORL_SYSCALLTRACE(r32)
124#endif
125
126/*
127 * In the 32-bit kernel, we do absolutely nothing before getting into the
128 * brand callback checks.  In 64-bit land, we do swapgs and then come here.
129 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
130 * are still unused.
131 *
132 * When the callback is invoked, we will be on the user's %gs and
133 * the stack will look like this:
134 *
135 * stack:  --------------------------------------
136 *         | callback pointer			|
137 *    |    | user stack pointer			|
138 *    |    | lwp brand data			|
139 *    |    | proc brand data			|
140 *    v    | userland return address		|
141 *         | callback wrapper return addr	|
142 *         --------------------------------------
143 *
144 */
145#define	BRAND_CALLBACK(callback_id)					    \
146	movq	%rsp, %gs:CPU_RTMP_RSP  /* save the stack pointer       */ ;\
147	movq	%r15, %gs:CPU_RTMP_R15	/* save %r15			*/ ;\
148	movq	%gs:CPU_THREAD, %r15	/* load the thread pointer	*/ ;\
149	movq	T_STACK(%r15), %rsp	/* switch to the kernel stack	*/ ;\
150	subq	$16, %rsp		/* save space for two pointers	*/ ;\
151	pushq	%r14			/* save %r14			*/ ;\
152	movq	%gs:CPU_RTMP_RSP, %r14					   ;\
153	movq	%r14, 8(%rsp)		/* stash the user stack pointer	*/ ;\
154	popq	%r14			/* restore %r14			*/ ;\
155	movq	T_LWP(%r15), %r15	/* load the lwp pointer		*/ ;\
156	pushq	LWP_BRAND(%r15)		/* push the lwp's brand data	*/ ;\
157	movq	LWP_PROCP(%r15), %r15	/* load the proc pointer	*/ ;\
158	pushq	P_BRAND_DATA(%r15)	/* push the proc's brand data	*/ ;\
159	movq	P_BRAND(%r15), %r15	/* load the brand pointer	*/ ;\
160	movq	B_MACHOPS(%r15), %r15	/* load the machops pointer	*/ ;\
161	movq	_CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15		   ;\
162	cmpq	$0, %r15						   ;\
163	je	1f							   ;\
164	movq	%r15, 24(%rsp)		/* save the callback pointer	*/ ;\
165	movq	%gs:CPU_RTMP_RSP, %r15	/* grab the user stack pointer	*/ ;\
166	pushq	(%r15)			/* push the return address	*/ ;\
167	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
168	SWAPGS				/* user gsbase                  */ ;\
169	call	*32(%rsp)		/* call callback		*/ ;\
170	SWAPGS				/* kernel gsbase                */ ;\
1711:	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
172	movq	%gs:CPU_RTMP_RSP, %rsp	/* restore the stack pointer	*/
173
174#define	MSTATE_TRANSITION(from, to)		\
175	movl	$from, %edi;			\
176	movl	$to, %esi;			\
177	call	syscall_mstate
178
179/*
180 * Check to see if a simple (direct) return is possible i.e.
181 *
182 *	if (t->t_post_sys_ast | syscalltrace |
183 *	    lwp->lwp_pcb.pcb_rupdate == 1)
184 *		do full version	;
185 *
186 * Preconditions:
187 * -	t is curthread
188 * Postconditions:
189 * -	condition code NE is set if post-sys is too complex
190 * -	rtmp is zeroed if it isn't (we rely on this!)
191 * -	ltmp is smashed
192 */
193#define	CHECK_POSTSYS_NE(t, ltmp, rtmp)			\
194	movq	T_LWP(t), ltmp;				\
195	movzbl	PCB_RUPDATE(ltmp), rtmp;		\
196	ORL_SYSCALLTRACE(rtmp);				\
197	orl	T_POST_SYS_AST(t), rtmp;		\
198	cmpl	$0, rtmp
199
200/*
201 * Fix up the lwp, thread, and eflags for a successful return
202 *
203 * Preconditions:
204 * -	zwreg contains zero
205 */
206#define	SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)		\
207	movb	$LWP_USER, LWP_STATE(lwp);		\
208	movw	zwreg, T_SYSNUM(t);			\
209	andb	$_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
210
211/*
212 * ASSERT(lwptoregs(lwp) == rp);
213 *
214 * This may seem obvious, but very odd things happen if this
215 * assertion is false
216 *
217 * Preconditions:
218 *	(%rsp is ready for normal call sequence)
219 * Postconditions (if assertion is true):
220 *	%r11 is smashed
221 *
222 * ASSERT(rp->r_cs == descnum)
223 *
224 * The code selector is written into the regs structure when the
225 * lwp stack is created.  We use this ASSERT to validate that
226 * the regs structure really matches how we came in.
227 *
228 * Preconditions:
229 *	(%rsp is ready for normal call sequence)
230 * Postconditions (if assertion is true):
231 *	-none-
232 *
233 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
234 *
235 * If this is false, it meant that we returned to userland without
236 * updating the segment registers as we were supposed to.
237 *
238 * Note that we must ensure no interrupts or other traps intervene
239 * between entering privileged mode and performing the assertion,
240 * otherwise we may perform a context switch on the thread, which
241 * will end up setting pcb_rupdate to 1 again.
242 */
243#if defined(DEBUG)
244
245#if !defined(__lint)
246
247__lwptoregs_msg:
248	.string	"%M%:%d lwptoregs(%p) [%p] != rp [%p]"
249
250__codesel_msg:
251	.string	"%M%:%d rp->r_cs [%ld] != %ld"
252
253__no_rupdate_msg:
254	.string	"%M%:%d lwp %p, pcb_rupdate != 0"
255
256#endif	/* !__lint */
257
258#define	ASSERT_LWPTOREGS(lwp, rp)			\
259	movq	LWP_REGS(lwp), %r11;			\
260	cmpq	rp, %r11;				\
261	je	7f;					\
262	leaq	__lwptoregs_msg(%rip), %rdi;		\
263	movl	$__LINE__, %esi;			\
264	movq	lwp, %rdx;				\
265	movq	%r11, %rcx;				\
266	movq	rp, %r8;				\
267	xorl	%eax, %eax;				\
268	call	panic;					\
2697:
270
271#define	ASSERT_NO_RUPDATE_PENDING(lwp)			\
272	testb	$0x1, PCB_RUPDATE(lwp);			\
273	je	8f;					\
274	movq	lwp, %rdx;				\
275	leaq	__no_rupdate_msg(%rip), %rdi;		\
276	movl	$__LINE__, %esi;			\
277	xorl	%eax, %eax;				\
278	call	panic;					\
2798:
280
281#else
282#define	ASSERT_LWPTOREGS(lwp, rp)
283#define	ASSERT_NO_RUPDATE_PENDING(lwp)
284#endif
285
286/*
287 * Do the traptrace thing and restore any registers we used
288 * in situ.  Assumes that %rsp is pointing at the base of
289 * the struct regs, obviously ..
290 */
291#ifdef TRAPTRACE
292#define	SYSCALL_TRAPTRACE(ttype)				\
293	TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);		\
294	TRACE_REGS(%rdi, %rsp, %rbx, %rcx);			\
295	TRACE_STAMP(%rdi);	/* rdtsc clobbers %eax, %edx */	\
296	movq	REGOFF_RAX(%rsp), %rax;				\
297	movq	REGOFF_RBX(%rsp), %rbx;				\
298	movq	REGOFF_RCX(%rsp), %rcx;				\
299	movq	REGOFF_RDX(%rsp), %rdx;				\
300	movl	%eax, TTR_SYSNUM(%rdi);				\
301	movq	REGOFF_RDI(%rsp), %rdi
302
303#define	SYSCALL_TRAPTRACE32(ttype)				\
304	SYSCALL_TRAPTRACE(ttype);				\
305	/* paranoia: clean the top 32-bits of the registers */	\
306	orl	%eax, %eax;					\
307	orl	%ebx, %ebx;					\
308	orl	%ecx, %ecx;					\
309	orl	%edx, %edx;					\
310	orl	%edi, %edi
311#else	/* TRAPTRACE */
312#define	SYSCALL_TRAPTRACE(ttype)
313#define	SYSCALL_TRAPTRACE32(ttype)
314#endif	/* TRAPTRACE */
315
316/*
317 * The 64-bit libc syscall wrapper does this:
318 *
319 * fn(<args>)
320 * {
321 *	movq	%rcx, %r10	-- because syscall smashes %rcx
322 *	movl	$CODE, %eax
323 *	syscall
324 *	<error processing>
325 * }
326 *
327 * Thus when we come into the kernel:
328 *
329 *	%rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
330 *	%rax is the syscall number
331 *	%r12-%r15 contain caller state
332 *
333 * The syscall instruction arranges that:
334 *
335 *	%rcx contains the return %rip
336 *	%r11d contains bottom 32-bits of %rflags
337 *	%rflags is masked (as determined by the SFMASK msr)
338 *	%cs is set to UCS_SEL (as determined by the STAR msr)
339 *	%ss is set to UDS_SEL (as determined by the STAR msr)
340 *	%rip is set to sys_syscall (as determined by the LSTAR msr)
341 *
342 * Or in other words, we have no registers available at all.
343 * Only swapgs can save us!
344 */
345
346#if defined(__lint)
347
348/*ARGSUSED*/
349void
350sys_syscall()
351{}
352
353void
354_allsyscalls()
355{}
356
357size_t _allsyscalls_size;
358
359#else	/* __lint */
360
361	ENTRY_NP2(brand_sys_syscall,_allsyscalls)
362	SWAPGS				/* kernel gsbase */
363	XPV_TRAP_POP
364	BRAND_CALLBACK(BRAND_CB_SYSCALL)
365	SWAPGS				/* user gsbase */
366
367#if defined(__xpv)
368	/*
369	 * Note that swapgs is handled for us by the hypervisor. Here
370	 * it is empty.
371	 */
372	jmp	nopop_sys_syscall
373#endif
374
375	ALTENTRY(sys_syscall)
376	SWAPGS				/* kernel gsbase */
377#if defined(__xpv)
378	/*
379	 * Even though we got here by a syscall instruction from user land
380	 * the hypervisor constructs our stack the same way as is done
381	 * for interrupt gates. The only exception is that it pushes kernel
382	 * cs and ss instead of user cs and ss for some reason.  This is all
383	 * different from running native on the metal.
384	 *
385	 * Stack on entry:
386	 *      (0x0)rsp	rcx	(user rip)
387	 *      (0x8)rsp	r11	(user rflags)
388	 *      (0x10)rsp	user rip
389	 *      (0x18)rsp	kernel cs
390	 *      (0x20)rsp	user rflags
391	 *      (0x28)rsp	user rsp
392	 *      (0x30)rsp	kernel ss
393	 */
394
395	XPV_TRAP_POP
396nopop_sys_syscall:
397	ASSERT_UPCALL_MASK_IS_SET
398
399	movq	%r15, %gs:CPU_RTMP_R15
400	movq	0x18(%rsp), %r15		/* save user stack */
401	movq	%r15, %gs:CPU_RTMP_RSP
402#else
403	movq	%r15, %gs:CPU_RTMP_R15
404	movq	%rsp, %gs:CPU_RTMP_RSP
405#endif	/* __xpv */
406
407	movq	%gs:CPU_THREAD, %r15
408	movq	T_STACK(%r15), %rsp
409
410	movl	$UCS_SEL, REGOFF_CS(%rsp)
411	movq	%rcx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
412	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
413	movl	$UDS_SEL, REGOFF_SS(%rsp)
414
415	movl	%eax, %eax			/* wrapper: sysc# -> %eax */
416	movq	%rdi, REGOFF_RDI(%rsp)
417	movq	%rsi, REGOFF_RSI(%rsp)
418	movq	%rdx, REGOFF_RDX(%rsp)
419	movq	%r10, REGOFF_RCX(%rsp)		/* wrapper: %rcx -> %r10 */
420	movq	%r10, %rcx			/* arg[3] for direct calls */
421
422	movq	%r8, REGOFF_R8(%rsp)
423	movq	%r9, REGOFF_R9(%rsp)
424	movq	%rax, REGOFF_RAX(%rsp)
425	movq	%rbx, REGOFF_RBX(%rsp)
426
427	movq	%rbp, REGOFF_RBP(%rsp)
428	movq	%r10, REGOFF_R10(%rsp)
429	movq	%gs:CPU_RTMP_RSP, %r11
430	movq	%r11, REGOFF_RSP(%rsp)
431	movq	%r12, REGOFF_R12(%rsp)
432
433	movq	%r13, REGOFF_R13(%rsp)
434	movq	%r14, REGOFF_R14(%rsp)
435	movq	%gs:CPU_RTMP_R15, %r10
436	movq	%r10, REGOFF_R15(%rsp)
437	movq	$0, REGOFF_SAVFP(%rsp)
438	movq	$0, REGOFF_SAVPC(%rsp)
439
440	/*
441	 * Copy these registers here in case we end up stopped with
442	 * someone (like, say, /proc) messing with our register state.
443	 * We don't -restore- them unless we have to in update_sregs.
444	 *
445	 * Since userland -can't- change fsbase or gsbase directly,
446	 * and capturing them involves two serializing instructions,
447	 * we don't bother to capture them here.
448	 */
449	xorl	%ebx, %ebx
450	movw	%ds, %bx
451	movq	%rbx, REGOFF_DS(%rsp)
452	movw	%es, %bx
453	movq	%rbx, REGOFF_ES(%rsp)
454	movw	%fs, %bx
455	movq	%rbx, REGOFF_FS(%rsp)
456	movw	%gs, %bx
457	movq	%rbx, REGOFF_GS(%rsp)
458
459	/*
460	 * Machine state saved in the regs structure on the stack
461	 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
462	 * %eax is the syscall number
463	 * %rsp is the thread's stack, %r15 is curthread
464	 * REG_RSP(%rsp) is the user's stack
465	 */
466
467	SYSCALL_TRAPTRACE($TT_SYSC64)
468
469	movq	%rsp, %rbp
470
471	movq	T_LWP(%r15), %r14
472	ASSERT_NO_RUPDATE_PENDING(%r14)
473	ENABLE_INTR_FLAGS
474
475	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
476	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
477
478	ASSERT_LWPTOREGS(%r14, %rsp)
479
480	movb	$LWP_SYS, LWP_STATE(%r14)
481	incq	LWP_RU_SYSC(%r14)
482	movb	$NORMALRETURN, LWP_EOSYS(%r14)
483
484	incq	%gs:CPU_STATS_SYS_SYSCALL
485
486	movw	%ax, T_SYSNUM(%r15)
487	movzbl	T_PRE_SYS(%r15), %ebx
488	ORL_SYSCALLTRACE(%ebx)
489	testl	%ebx, %ebx
490	jne	_syscall_pre
491
492_syscall_invoke:
493	movq	REGOFF_RDI(%rbp), %rdi
494	movq	REGOFF_RSI(%rbp), %rsi
495	movq	REGOFF_RDX(%rbp), %rdx
496	movq	REGOFF_RCX(%rbp), %rcx
497	movq	REGOFF_R8(%rbp), %r8
498	movq	REGOFF_R9(%rbp), %r9
499
500	cmpl	$NSYSCALL, %eax
501	jae	_syscall_ill
502	shll	$SYSENT_SIZE_SHIFT, %eax
503	leaq	sysent(%rax), %rbx
504
505	call	*SY_CALLC(%rbx)
506
507	movq	%rax, %r12
508	movq	%rdx, %r13
509
510	/*
511	 * If the handler returns two ints, then we need to split the
512	 * 64-bit return value into two 32-bit values.
513	 */
514	testw	$SE_32RVAL2, SY_FLAGS(%rbx)
515	je	5f
516	movq	%r12, %r13
517	shrq	$32, %r13	/* upper 32-bits into %edx */
518	movl	%r12d, %r12d	/* lower 32-bits into %eax */
5195:
520	/*
521	 * Optimistically assume that there's no post-syscall
522	 * work to do.  (This is to avoid having to call syscall_mstate()
523	 * with interrupts disabled)
524	 */
525	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
526
527	/*
528	 * We must protect ourselves from being descheduled here;
529	 * If we were, and we ended up on another cpu, or another
530	 * lwp got in ahead of us, it could change the segment
531	 * registers without us noticing before we return to userland.
532	 */
533	CLI(%r14)
534	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
535	jne	_syscall_post
536	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
537
538	movq	%r12, REGOFF_RAX(%rsp)
539	movq	%r13, REGOFF_RDX(%rsp)
540
541	/*
542	 * To get back to userland, we need the return %rip in %rcx and
543	 * the return %rfl in %r11d.  The sysretq instruction also arranges
544	 * to fix up %cs and %ss; everything else is our responsibility.
545	 */
546	movq	REGOFF_RDI(%rsp), %rdi
547	movq	REGOFF_RSI(%rsp), %rsi
548	movq	REGOFF_RDX(%rsp), %rdx
549	/* %rcx used to restore %rip value */
550
551	movq	REGOFF_R8(%rsp), %r8
552	movq	REGOFF_R9(%rsp), %r9
553	movq	REGOFF_RAX(%rsp), %rax
554	movq	REGOFF_RBX(%rsp), %rbx
555
556	movq	REGOFF_RBP(%rsp), %rbp
557	movq	REGOFF_R10(%rsp), %r10
558	/* %r11 used to restore %rfl value */
559	movq	REGOFF_R12(%rsp), %r12
560
561	movq	REGOFF_R13(%rsp), %r13
562	movq	REGOFF_R14(%rsp), %r14
563	movq	REGOFF_R15(%rsp), %r15
564
565	movq	REGOFF_RIP(%rsp), %rcx
566	movl	REGOFF_RFL(%rsp), %r11d
567
568#if defined(__xpv)
569	addq	$REGOFF_RIP, %rsp
570#else
571	movq	REGOFF_RSP(%rsp), %rsp
572#endif
573
574        /*
575         * There can be no instructions between the ALTENTRY below and
576	 * SYSRET or we could end up breaking brand support. See label usage
577         * in sn1_brand_syscall_callback for an example.
578         */
579	ASSERT_UPCALL_MASK_IS_SET
580	SWAPGS				/* user gsbase */
581        ALTENTRY(nopop_sys_syscall_sysretq)
582	SYSRETQ
583        /*NOTREACHED*/
584        SET_SIZE(nopop_sys_syscall_sysretq)
585
586_syscall_pre:
587	call	pre_syscall
588	movl	%eax, %r12d
589	testl	%eax, %eax
590	jne	_syscall_post_call
591	/*
592	 * Didn't abort, so reload the syscall args and invoke the handler.
593	 */
594	movzwl	T_SYSNUM(%r15), %eax
595	jmp	_syscall_invoke
596
597_syscall_ill:
598	call	nosys
599	movq	%rax, %r12
600	movq	%rdx, %r13
601	jmp	_syscall_post_call
602
603_syscall_post:
604	STI
605	/*
606	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
607	 * so that we can account for the extra work it takes us to finish.
608	 */
609	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
610_syscall_post_call:
611	movq	%r12, %rdi
612	movq	%r13, %rsi
613	call	post_syscall
614	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
615	jmp	_sys_rtt
616	SET_SIZE(sys_syscall)
617	SET_SIZE(brand_sys_syscall)
618
619#endif	/* __lint */
620
621#if defined(__lint)
622
623/*ARGSUSED*/
624void
625sys_syscall32()
626{}
627
628#else	/* __lint */
629
630	ENTRY_NP(brand_sys_syscall32)
631	SWAPGS				/* kernel gsbase */
632	XPV_TRAP_POP
633	BRAND_CALLBACK(BRAND_CB_SYSCALL32)
634	SWAPGS				/* user gsbase */
635
636#if defined(__xpv)
637	jmp	nopop_sys_syscall32
638#endif
639
640	ALTENTRY(sys_syscall32)
641	SWAPGS				/* kernel gsbase */
642
643#if defined(__xpv)
644	XPV_TRAP_POP
645nopop_sys_syscall32:
646#endif
647
648	movl	%esp, %r10d
649	movq	%gs:CPU_THREAD, %r15
650	movq	T_STACK(%r15), %rsp
651	movl	%eax, %eax
652
653	movl	$U32CS_SEL, REGOFF_CS(%rsp)
654	movl	%ecx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
655	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
656	movq	%r10, REGOFF_RSP(%rsp)
657	movl	$UDS_SEL, REGOFF_SS(%rsp)
658
659_syscall32_save:
660	movl	%edi, REGOFF_RDI(%rsp)
661	movl	%esi, REGOFF_RSI(%rsp)
662	movl	%ebp, REGOFF_RBP(%rsp)
663	movl	%ebx, REGOFF_RBX(%rsp)
664	movl	%edx, REGOFF_RDX(%rsp)
665	movl	%ecx, REGOFF_RCX(%rsp)
666	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
667	movq	$0, REGOFF_SAVFP(%rsp)
668	movq	$0, REGOFF_SAVPC(%rsp)
669
670	/*
671	 * Copy these registers here in case we end up stopped with
672	 * someone (like, say, /proc) messing with our register state.
673	 * We don't -restore- them unless we have to in update_sregs.
674	 *
675	 * Since userland -can't- change fsbase or gsbase directly,
676	 * we don't bother to capture them here.
677	 */
678	xorl	%ebx, %ebx
679	movw	%ds, %bx
680	movq	%rbx, REGOFF_DS(%rsp)
681	movw	%es, %bx
682	movq	%rbx, REGOFF_ES(%rsp)
683	movw	%fs, %bx
684	movq	%rbx, REGOFF_FS(%rsp)
685	movw	%gs, %bx
686	movq	%rbx, REGOFF_GS(%rsp)
687
688	/*
689	 * Application state saved in the regs structure on the stack
690	 * %eax is the syscall number
691	 * %rsp is the thread's stack, %r15 is curthread
692	 * REG_RSP(%rsp) is the user's stack
693	 */
694
695	SYSCALL_TRAPTRACE32($TT_SYSC)
696
697	movq	%rsp, %rbp
698
699	movq	T_LWP(%r15), %r14
700	ASSERT_NO_RUPDATE_PENDING(%r14)
701
702	ENABLE_INTR_FLAGS
703
704	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
705	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
706
707	ASSERT_LWPTOREGS(%r14, %rsp)
708
709	incq	 %gs:CPU_STATS_SYS_SYSCALL
710
711	/*
712	 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
713	 * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
714	 * more succinctly:
715	 *
716	 *	SA(MAXSYSARGS * sizeof (long)) == 64
717	 */
718#define	SYS_DROP	64			/* drop for args */
719	subq	$SYS_DROP, %rsp
720	movb	$LWP_SYS, LWP_STATE(%r14)
721	movq	%r15, %rdi
722	movq	%rsp, %rsi
723	call	syscall_entry
724
725	/*
726	 * Fetch the arguments copied onto the kernel stack and put
727	 * them in the right registers to invoke a C-style syscall handler.
728	 * %rax contains the handler address.
729	 *
730	 * Ideas for making all this go faster of course include simply
731	 * forcibly fetching 6 arguments from the user stack under lofault
732	 * protection, reverting to copyin_args only when watchpoints
733	 * are in effect.
734	 *
735	 * (If we do this, make sure that exec and libthread leave
736	 * enough space at the top of the stack to ensure that we'll
737	 * never do a fetch from an invalid page.)
738	 *
739	 * Lots of ideas here, but they won't really help with bringup B-)
740	 * Correctness can't wait, performance can wait a little longer ..
741	 */
742
743	movq	%rax, %rbx
744	movl	0(%rsp), %edi
745	movl	8(%rsp), %esi
746	movl	0x10(%rsp), %edx
747	movl	0x18(%rsp), %ecx
748	movl	0x20(%rsp), %r8d
749	movl	0x28(%rsp), %r9d
750
751	call	*SY_CALLC(%rbx)
752
753	movq	%rbp, %rsp	/* pop the args */
754
755	/*
756	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
757	 * On the 32-bit kernel, they always return that value in %eax:%edx
758	 * as required by the 32-bit ABI.
759	 *
760	 * Simulate the same behaviour by unconditionally splitting the
761	 * return value in the same way.
762	 */
763	movq	%rax, %r13
764	shrq	$32, %r13	/* upper 32-bits into %edx */
765	movl	%eax, %r12d	/* lower 32-bits into %eax */
766
767	/*
768	 * Optimistically assume that there's no post-syscall
769	 * work to do.  (This is to avoid having to call syscall_mstate()
770	 * with interrupts disabled)
771	 */
772	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
773
774	/*
775	 * We must protect ourselves from being descheduled here;
776	 * If we were, and we ended up on another cpu, or another
777	 * lwp got in ahead of us, it could change the segment
778	 * registers without us noticing before we return to userland.
779	 */
780	CLI(%r14)
781	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
782	jne	_full_syscall_postsys32
783	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
784
785	/*
786	 * To get back to userland, we need to put the return %rip in %rcx and
787	 * the return %rfl in %r11d.  The sysret instruction also arranges
788	 * to fix up %cs and %ss; everything else is our responsibility.
789	 */
790
791	movl	%r12d, %eax			/* %eax: rval1 */
792	movl	REGOFF_RBX(%rsp), %ebx
793	/* %ecx used for return pointer */
794	movl	%r13d, %edx			/* %edx: rval2 */
795	movl	REGOFF_RBP(%rsp), %ebp
796	movl	REGOFF_RSI(%rsp), %esi
797	movl	REGOFF_RDI(%rsp), %edi
798
799	movl	REGOFF_RFL(%rsp), %r11d		/* %r11 -> eflags */
800	movl	REGOFF_RIP(%rsp), %ecx		/* %ecx -> %eip */
801	movl	REGOFF_RSP(%rsp), %esp
802
803	ASSERT_UPCALL_MASK_IS_SET
804	SWAPGS				/* user gsbase */
805        ALTENTRY(nopop_sys_syscall32_sysretl)
806	SYSRETL
807        SET_SIZE(nopop_sys_syscall32_sysretl)
808	/*NOTREACHED*/
809
810_full_syscall_postsys32:
811	STI
812	/*
813	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
814	 * so that we can account for the extra work it takes us to finish.
815	 */
816	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
817	movq	%r15, %rdi
818	movq	%r12, %rsi			/* rval1 - %eax */
819	movq	%r13, %rdx			/* rval2 - %edx */
820	call	syscall_exit
821	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
822	jmp	_sys_rtt
823	SET_SIZE(sys_syscall32)
824	SET_SIZE(brand_sys_syscall32)
825
826#endif	/* __lint */
827
828/*
829 * System call handler via the sysenter instruction
830 * Used only for 32-bit system calls on the 64-bit kernel.
831 *
832 * The caller in userland has arranged that:
833 *
834 * -	%eax contains the syscall number
835 * -	%ecx contains the user %esp
836 * -	%edx contains the return %eip
837 * -	the user stack contains the args to the syscall
838 *
839 * Hardware and (privileged) initialization code have arranged that by
840 * the time the sysenter instructions completes:
841 *
842 * - %rip is pointing to sys_sysenter (below).
843 * - %cs and %ss are set to kernel text and stack (data) selectors.
844 * - %rsp is pointing at the lwp's stack
845 * - interrupts have been disabled.
846 *
847 * Note that we are unable to return both "rvals" to userland with
848 * this call, as %edx is used by the sysexit instruction.
849 *
850 * One final complication in this routine is its interaction with
851 * single-stepping in a debugger.  For most of the system call mechanisms,
852 * the CPU automatically clears the single-step flag before we enter the
853 * kernel.  The sysenter mechanism does not clear the flag, so a user
854 * single-stepping through a libc routine may suddenly find him/herself
855 * single-stepping through the kernel.  To detect this, kmdb compares the
856 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
857 * If it finds that we have single-stepped to a sysenter entry point, it
858 * explicitly clears the flag and executes the sys_sysenter routine.
859 *
860 * One final complication in this final complication is the fact that we
861 * have two different entry points for sysenter: brand_sys_sysenter and
862 * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
863 * through the kernel with kmdb, we will eventually hit the instruction at
864 * sys_sysenter.  kmdb cannot distinguish between that valid single-step
865 * and the undesirable one mentioned above.  To avoid this situation, we
866 * simply add a jump over the instruction at sys_sysenter to make it
867 * impossible to single-step to it.
868 */
869#if defined(__lint)
870
871void
872sys_sysenter()
873{}
874
875#else	/* __lint */
876
877	ENTRY_NP(brand_sys_sysenter)
878	SWAPGS				/* kernel gsbase */
879	ALTENTRY(_brand_sys_sysenter_post_swapgs)
880	BRAND_CALLBACK(BRAND_CB_SYSENTER)
881	/*
882	 * Jump over sys_sysenter to allow single-stepping as described
883	 * above.
884	 */
885	jmp	_sys_sysenter_post_swapgs
886
887	ALTENTRY(sys_sysenter)
888	SWAPGS				/* kernel gsbase */
889
890	ALTENTRY(_sys_sysenter_post_swapgs)
891	movq	%gs:CPU_THREAD, %r15
892
893	movl	$U32CS_SEL, REGOFF_CS(%rsp)
894	movl	%ecx, REGOFF_RSP(%rsp)		/* wrapper: %esp -> %ecx */
895	movl	%edx, REGOFF_RIP(%rsp)		/* wrapper: %eip -> %edx */
896	pushfq
897	popq	%r10
898	movl	$UDS_SEL, REGOFF_SS(%rsp)
899
900	/*
901	 * Set the interrupt flag before storing the flags to the
902	 * flags image on the stack so we can return to user with
903	 * interrupts enabled if we return via sys_rtt_syscall32
904	 */
905	orq	$PS_IE, %r10
906	movq	%r10, REGOFF_RFL(%rsp)
907
908	movl	%edi, REGOFF_RDI(%rsp)
909	movl	%esi, REGOFF_RSI(%rsp)
910	movl	%ebp, REGOFF_RBP(%rsp)
911	movl	%ebx, REGOFF_RBX(%rsp)
912	movl	%edx, REGOFF_RDX(%rsp)
913	movl	%ecx, REGOFF_RCX(%rsp)
914	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
915	movq	$0, REGOFF_SAVFP(%rsp)
916	movq	$0, REGOFF_SAVPC(%rsp)
917
918	/*
919	 * Copy these registers here in case we end up stopped with
920	 * someone (like, say, /proc) messing with our register state.
921	 * We don't -restore- them unless we have to in update_sregs.
922	 *
923	 * Since userland -can't- change fsbase or gsbase directly,
924	 * we don't bother to capture them here.
925	 */
926	xorl	%ebx, %ebx
927	movw	%ds, %bx
928	movq	%rbx, REGOFF_DS(%rsp)
929	movw	%es, %bx
930	movq	%rbx, REGOFF_ES(%rsp)
931	movw	%fs, %bx
932	movq	%rbx, REGOFF_FS(%rsp)
933	movw	%gs, %bx
934	movq	%rbx, REGOFF_GS(%rsp)
935
936	/*
937	 * Application state saved in the regs structure on the stack
938	 * %eax is the syscall number
939	 * %rsp is the thread's stack, %r15 is curthread
940	 * REG_RSP(%rsp) is the user's stack
941	 */
942
943	SYSCALL_TRAPTRACE($TT_SYSENTER)
944
945	movq	%rsp, %rbp
946
947	movq	T_LWP(%r15), %r14
948	ASSERT_NO_RUPDATE_PENDING(%r14)
949
950	ENABLE_INTR_FLAGS
951
952	/*
953	 * Catch 64-bit process trying to issue sysenter instruction
954	 * on Nocona based systems.
955	 */
956	movq	LWP_PROCP(%r14), %rax
957	cmpq	$DATAMODEL_ILP32, P_MODEL(%rax)
958	je	7f
959
960	/*
961	 * For a non-32-bit process, simulate a #ud, since that's what
962	 * native hardware does.  The traptrace entry (above) will
963	 * let you know what really happened.
964	 */
965	movq	$T_ILLINST, REGOFF_TRAPNO(%rsp)
966	movq	REGOFF_CS(%rsp), %rdi
967	movq	%rdi, REGOFF_ERR(%rsp)
968	movq	%rsp, %rdi
969	movq	REGOFF_RIP(%rsp), %rsi
970	movl	%gs:CPU_ID, %edx
971	call	trap
972	jmp	_sys_rtt
9737:
974
975	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
976	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate calls) */
977
978	ASSERT_LWPTOREGS(%r14, %rsp)
979
980	incq	%gs:CPU_STATS_SYS_SYSCALL
981
982	/*
983	 * Make some space for MAXSYSARGS (currently 8) 32-bit args
984	 * placed into 64-bit (long) arg slots, plus one 64-bit
985	 * (long) arg count, maintaining 16 byte alignment.
986	 */
987	subq	$SYS_DROP, %rsp
988	movb	$LWP_SYS, LWP_STATE(%r14)
989	movq	%r15, %rdi
990	movq	%rsp, %rsi
991	call	syscall_entry
992
993	/*
994	 * Fetch the arguments copied onto the kernel stack and put
995	 * them in the right registers to invoke a C-style syscall handler.
996	 * %rax contains the handler address.
997	 */
998	movq	%rax, %rbx
999	movl	0(%rsp), %edi
1000	movl	8(%rsp), %esi
1001	movl	0x10(%rsp), %edx
1002	movl	0x18(%rsp), %ecx
1003	movl	0x20(%rsp), %r8d
1004	movl	0x28(%rsp), %r9d
1005
1006	call	*SY_CALLC(%rbx)
1007
1008	movq	%rbp, %rsp	/* pop the args */
1009
1010	/*
1011	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
1012	 * On the 32-bit kernel, the always return that value in %eax:%edx
1013	 * as required by the 32-bit ABI.
1014	 *
1015	 * Simulate the same behaviour by unconditionally splitting the
1016	 * return value in the same way.
1017	 */
1018	movq	%rax, %r13
1019	shrq	$32, %r13	/* upper 32-bits into %edx */
1020	movl	%eax, %r12d	/* lower 32-bits into %eax */
1021
1022	/*
1023	 * Optimistically assume that there's no post-syscall
1024	 * work to do.  (This is to avoid having to call syscall_mstate()
1025	 * with interrupts disabled)
1026	 */
1027	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1028
1029	/*
1030	 * We must protect ourselves from being descheduled here;
1031	 * If we were, and we ended up on another cpu, or another
1032	 * lwp got int ahead of us, it could change the segment
1033	 * registers without us noticing before we return to userland.
1034	 */
1035	cli
1036	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1037	jne	_full_syscall_postsys32
1038	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1039
1040	/*
1041	 * To get back to userland, load up the 32-bit registers and
1042	 * sysexit back where we came from.
1043	 */
1044
1045	/*
1046	 * Interrupts will be turned on by the 'sti' executed just before
1047	 * sysexit.  The following ensures that restoring the user's rflags
1048	 * doesn't enable interrupts too soon.
1049	 */
1050	andq	$_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1051
1052	/*
1053	 * (There's no point in loading up %edx because the sysexit
1054	 * mechanism smashes it.)
1055	 */
1056	movl	%r12d, %eax
1057	movl	REGOFF_RBX(%rsp), %ebx
1058	movl	REGOFF_RBP(%rsp), %ebp
1059	movl	REGOFF_RSI(%rsp), %esi
1060	movl	REGOFF_RDI(%rsp), %edi
1061
1062	movl	REGOFF_RIP(%rsp), %edx	/* sysexit: %edx -> %eip */
1063	pushq	REGOFF_RFL(%rsp)
1064	popfq
1065	movl	REGOFF_RSP(%rsp), %ecx	/* sysexit: %ecx -> %esp */
1066	swapgs
1067	sti
1068	sysexit
1069	SET_SIZE(sys_sysenter)
1070	SET_SIZE(_sys_sysenter_post_swapgs)
1071	SET_SIZE(brand_sys_sysenter)
1072
1073#endif	/* __lint */
1074
1075#if defined(__lint)
1076/*
1077 * System call via an int80.  This entry point is only used by the Linux
1078 * application environment.  Unlike the other entry points, there is no
1079 * default action to take if no callback is registered for this process.
1080 */
1081void
1082sys_int80()
1083{}
1084
1085#else	/* __lint */
1086
1087	ENTRY_NP(brand_sys_int80)
1088	SWAPGS				/* kernel gsbase */
1089	XPV_TRAP_POP
1090	BRAND_CALLBACK(BRAND_CB_INT80)
1091	SWAPGS				/* user gsbase */
1092#if defined(__xpv)
1093	jmp	nopop_int80
1094#endif
1095
1096	ENTRY_NP(sys_int80)
1097	/*
1098	 * We hit an int80, but this process isn't of a brand with an int80
1099	 * handler.  Bad process!  Make it look as if the INT failed.
1100	 * Modify %rip to point before the INT, push the expected error
1101	 * code and fake a GP fault. Note on 64-bit hypervisor we need
1102	 * to undo the XPV_TRAP_POP and push rcx and r11 back on the stack
1103	 * because gptrap will pop them again with its own XPV_TRAP_POP.
1104	 */
1105#if defined(__xpv)
1106	XPV_TRAP_POP
1107nopop_int80:
1108#endif
1109	subq	$2, (%rsp)	/* int insn 2-bytes */
1110	pushq	$_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
1111#if defined(__xpv)
1112	push	%r11
1113	push	%rcx
1114#endif
1115	jmp	gptrap			/ GP fault
1116	SET_SIZE(sys_int80)
1117	SET_SIZE(brand_sys_int80)
1118#endif	/* __lint */
1119
1120
1121/*
1122 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1123 * the generic i386 libc to do system calls. We do a small amount of setup
1124 * before jumping into the existing sys_syscall32 path.
1125 */
1126#if defined(__lint)
1127
1128/*ARGSUSED*/
1129void
1130sys_syscall_int()
1131{}
1132
1133#else	/* __lint */
1134
1135	ENTRY_NP(brand_sys_syscall_int)
1136	SWAPGS				/* kernel gsbase */
1137	XPV_TRAP_POP
1138	BRAND_CALLBACK(BRAND_CB_INT91)
1139	SWAPGS				/* user gsbase */
1140
1141#if defined(__xpv)
1142	jmp	nopop_syscall_int
1143#endif
1144
1145	ALTENTRY(sys_syscall_int)
1146	SWAPGS				/* kernel gsbase */
1147
1148#if defined(__xpv)
1149	XPV_TRAP_POP
1150nopop_syscall_int:
1151#endif
1152
1153	movq	%gs:CPU_THREAD, %r15
1154	movq	T_STACK(%r15), %rsp
1155	movl	%eax, %eax
1156	/*
1157	 * Set t_post_sys on this thread to force ourselves out via the slow
1158	 * path. It might be possible at some later date to optimize this out
1159	 * and use a faster return mechanism.
1160	 */
1161	movb	$1, T_POST_SYS(%r15)
1162	CLEAN_CS
1163	jmp	_syscall32_save
1164	SET_SIZE(sys_syscall_int)
1165	SET_SIZE(brand_sys_syscall_int)
1166
1167#endif	/* __lint */
1168
1169/*
1170 * Legacy 32-bit applications and old libc implementations do lcalls;
1171 * we should never get here because the LDT entry containing the syscall
1172 * segment descriptor has the "segment present" bit cleared, which means
1173 * we end up processing those system calls in trap() via a not-present trap.
1174 *
1175 * We do it this way because a call gate unhelpfully does -nothing- to the
1176 * interrupt flag bit, so an interrupt can run us just after the lcall
1177 * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1178 * INTR_POP paths would have to be slightly more complex to dance around
1179 * this problem, and end up depending explicitly on the first
1180 * instruction of this handler being either swapgs or cli.
1181 */
1182
1183#if defined(__lint)
1184
1185/*ARGSUSED*/
1186void
1187sys_lcall32()
1188{}
1189
1190#else	/* __lint */
1191
1192	ENTRY_NP(sys_lcall32)
1193	SWAPGS				/* kernel gsbase */
1194	pushq	$0
1195	pushq	%rbp
1196	movq	%rsp, %rbp
1197	leaq	__lcall_panic_str(%rip), %rdi
1198	xorl	%eax, %eax
1199	call	panic
1200	SET_SIZE(sys_lcall32)
1201
1202__lcall_panic_str:
1203	.string	"sys_lcall32: shouldn't be here!"
1204
1205/*
1206 * Declare a uintptr_t which covers the entire pc range of syscall
1207 * handlers for the stack walkers that need this.
1208 */
1209	.align	CPTRSIZE
1210	.globl	_allsyscalls_size
1211	.type	_allsyscalls_size, @object
1212_allsyscalls_size:
1213	.NWORD	. - _allsyscalls
1214	SET_SIZE(_allsyscalls_size)
1215
1216#endif	/* __lint */
1217
1218/*
1219 * These are the thread context handlers for lwps using sysenter/sysexit.
1220 */
1221
1222#if defined(__lint)
1223
1224/*ARGSUSED*/
1225void
1226sep_save(void *ksp)
1227{}
1228
1229/*ARGSUSED*/
1230void
1231sep_restore(void *ksp)
1232{}
1233
1234#else	/* __lint */
1235
1236	/*
1237	 * setting this value to zero as we switch away causes the
1238	 * stack-pointer-on-sysenter to be NULL, ensuring that we
1239	 * don't silently corrupt another (preempted) thread stack
1240	 * when running an lwp that (somehow) didn't get sep_restore'd
1241	 */
1242	ENTRY_NP(sep_save)
1243	xorl	%edx, %edx
1244	xorl	%eax, %eax
1245	movl	$MSR_INTC_SEP_ESP, %ecx
1246	wrmsr
1247	ret
1248	SET_SIZE(sep_save)
1249
1250	/*
1251	 * Update the kernel stack pointer as we resume onto this cpu.
1252	 */
1253	ENTRY_NP(sep_restore)
1254	movq	%rdi, %rdx
1255	shrq	$32, %rdx
1256	movl	%edi, %eax
1257	movl	$MSR_INTC_SEP_ESP, %ecx
1258	wrmsr
1259	ret
1260	SET_SIZE(sep_restore)
1261
1262#endif	/* __lint */
1263