xref: /titanic_44/usr/src/uts/i86pc/io/rootnex.c (revision 2118502410471b138a83f86603d01c141d2741fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * x86 root nexus driver
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/conf.h>
32 #include <sys/autoconf.h>
33 #include <sys/sysmacros.h>
34 #include <sys/debug.h>
35 #include <sys/psw.h>
36 #include <sys/ddidmareq.h>
37 #include <sys/promif.h>
38 #include <sys/devops.h>
39 #include <sys/kmem.h>
40 #include <sys/cmn_err.h>
41 #include <vm/seg.h>
42 #include <vm/seg_kmem.h>
43 #include <vm/seg_dev.h>
44 #include <sys/vmem.h>
45 #include <sys/mman.h>
46 #include <vm/hat.h>
47 #include <vm/as.h>
48 #include <vm/page.h>
49 #include <sys/avintr.h>
50 #include <sys/errno.h>
51 #include <sys/modctl.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/sunddi.h>
54 #include <sys/sunndi.h>
55 #include <sys/mach_intr.h>
56 #include <sys/psm.h>
57 #include <sys/ontrap.h>
58 #include <sys/atomic.h>
59 #include <sys/sdt.h>
60 #include <sys/rootnex.h>
61 #include <vm/hat_i86.h>
62 #include <sys/ddifm.h>
63 #include <sys/ddi_isa.h>
64 
65 #ifdef __xpv
66 #include <sys/bootinfo.h>
67 #include <sys/hypervisor.h>
68 #include <sys/bootconf.h>
69 #include <vm/kboot_mmu.h>
70 #endif
71 
72 #if defined(__amd64) && !defined(__xpv)
73 #include <sys/immu.h>
74 #endif
75 
76 
77 /*
78  * enable/disable extra checking of function parameters. Useful for debugging
79  * drivers.
80  */
81 #ifdef	DEBUG
82 int rootnex_alloc_check_parms = 1;
83 int rootnex_bind_check_parms = 1;
84 int rootnex_bind_check_inuse = 1;
85 int rootnex_unbind_verify_buffer = 0;
86 int rootnex_sync_check_parms = 1;
87 #else
88 int rootnex_alloc_check_parms = 0;
89 int rootnex_bind_check_parms = 0;
90 int rootnex_bind_check_inuse = 0;
91 int rootnex_unbind_verify_buffer = 0;
92 int rootnex_sync_check_parms = 0;
93 #endif
94 
95 boolean_t rootnex_dmar_not_setup;
96 
97 /* Master Abort and Target Abort panic flag */
98 int rootnex_fm_ma_ta_panic_flag = 0;
99 
100 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
101 int rootnex_bind_fail = 1;
102 int rootnex_bind_warn = 1;
103 uint8_t *rootnex_warn_list;
104 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
105 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
106 
107 /*
108  * revert back to old broken behavior of always sync'ing entire copy buffer.
109  * This is useful if be have a buggy driver which doesn't correctly pass in
110  * the offset and size into ddi_dma_sync().
111  */
112 int rootnex_sync_ignore_params = 0;
113 
114 /*
115  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
116  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
117  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
118  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
119  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
120  * (< 8K). We will still need to allocate the copy buffer during bind though
121  * (if we need one). These can only be modified in /etc/system before rootnex
122  * attach.
123  */
124 #if defined(__amd64)
125 int rootnex_prealloc_cookies = 65;
126 int rootnex_prealloc_windows = 4;
127 int rootnex_prealloc_copybuf = 2;
128 #else
129 int rootnex_prealloc_cookies = 33;
130 int rootnex_prealloc_windows = 4;
131 int rootnex_prealloc_copybuf = 2;
132 #endif
133 
134 /* driver global state */
135 static rootnex_state_t *rootnex_state;
136 
137 /* shortcut to rootnex counters */
138 static uint64_t *rootnex_cnt;
139 
140 /*
141  * XXX - does x86 even need these or are they left over from the SPARC days?
142  */
143 /* statically defined integer/boolean properties for the root node */
144 static rootnex_intprop_t rootnex_intprp[] = {
145 	{ "PAGESIZE",			PAGESIZE },
146 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
147 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
148 	{ DDI_RELATIVE_ADDRESSING,	1 },
149 };
150 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
151 
152 #ifdef __xpv
153 typedef maddr_t rootnex_addr_t;
154 #define	ROOTNEX_PADDR_TO_RBASE(xinfo, pa)	\
155 	(DOMAIN_IS_INITDOMAIN(xinfo) ? pa_to_ma(pa) : (pa))
156 #else
157 typedef paddr_t rootnex_addr_t;
158 #endif
159 
160 #if !defined(__xpv)
161 char _depends_on[] = "mach/pcplusmp misc/iommulib misc/acpica";
162 #endif
163 
164 static struct cb_ops rootnex_cb_ops = {
165 	nodev,		/* open */
166 	nodev,		/* close */
167 	nodev,		/* strategy */
168 	nodev,		/* print */
169 	nodev,		/* dump */
170 	nodev,		/* read */
171 	nodev,		/* write */
172 	nodev,		/* ioctl */
173 	nodev,		/* devmap */
174 	nodev,		/* mmap */
175 	nodev,		/* segmap */
176 	nochpoll,	/* chpoll */
177 	ddi_prop_op,	/* cb_prop_op */
178 	NULL,		/* struct streamtab */
179 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
180 	CB_REV,		/* Rev */
181 	nodev,		/* cb_aread */
182 	nodev		/* cb_awrite */
183 };
184 
185 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
186     off_t offset, off_t len, caddr_t *vaddrp);
187 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
188     struct hat *hat, struct seg *seg, caddr_t addr,
189     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
190 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
191     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep);
192 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
193     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
194     ddi_dma_handle_t *handlep);
195 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
196     ddi_dma_handle_t handle);
197 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
198     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
199     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
200 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
201     ddi_dma_handle_t handle);
202 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
203     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
204 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
205     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
206     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
207 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
208     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
209     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
210 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
211     ddi_ctl_enum_t ctlop, void *arg, void *result);
212 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
213     ddi_iblock_cookie_t *ibc);
214 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
215     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
216 
217 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
218     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
219     ddi_dma_handle_t *handlep);
220 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
221     ddi_dma_handle_t handle);
222 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
223     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
224     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
225 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
226     ddi_dma_handle_t handle);
227 #if defined(__amd64) && !defined(__xpv)
228 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
229     ddi_dma_handle_t handle);
230 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
231     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
232 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
233     ddi_dma_cookie_t *cookiep, uint_t ccount);
234 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
235     ddi_dma_handle_t handle);
236 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
237 #endif
238 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
239     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
240 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
241     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
242     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
243 
244 static struct bus_ops rootnex_bus_ops = {
245 	BUSO_REV,
246 	rootnex_map,
247 	NULL,
248 	NULL,
249 	NULL,
250 	rootnex_map_fault,
251 	rootnex_dma_map,
252 	rootnex_dma_allochdl,
253 	rootnex_dma_freehdl,
254 	rootnex_dma_bindhdl,
255 	rootnex_dma_unbindhdl,
256 	rootnex_dma_sync,
257 	rootnex_dma_win,
258 	rootnex_dma_mctl,
259 	rootnex_ctlops,
260 	ddi_bus_prop_op,
261 	i_ddi_rootnex_get_eventcookie,
262 	i_ddi_rootnex_add_eventcall,
263 	i_ddi_rootnex_remove_eventcall,
264 	i_ddi_rootnex_post_event,
265 	0,			/* bus_intr_ctl */
266 	0,			/* bus_config */
267 	0,			/* bus_unconfig */
268 	rootnex_fm_init,	/* bus_fm_init */
269 	NULL,			/* bus_fm_fini */
270 	NULL,			/* bus_fm_access_enter */
271 	NULL,			/* bus_fm_access_exit */
272 	NULL,			/* bus_powr */
273 	rootnex_intr_ops	/* bus_intr_op */
274 };
275 
276 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
277 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
278 static int rootnex_quiesce(dev_info_t *dip);
279 
280 static struct dev_ops rootnex_ops = {
281 	DEVO_REV,
282 	0,
283 	ddi_no_info,
284 	nulldev,
285 	nulldev,
286 	rootnex_attach,
287 	rootnex_detach,
288 	nulldev,
289 	&rootnex_cb_ops,
290 	&rootnex_bus_ops,
291 	NULL,
292 	rootnex_quiesce,		/* quiesce */
293 };
294 
295 static struct modldrv rootnex_modldrv = {
296 	&mod_driverops,
297 	"i86pc root nexus",
298 	&rootnex_ops
299 };
300 
301 static struct modlinkage rootnex_modlinkage = {
302 	MODREV_1,
303 	(void *)&rootnex_modldrv,
304 	NULL
305 };
306 
307 #if defined(__amd64) && !defined(__xpv)
308 static iommulib_nexops_t iommulib_nexops = {
309 	IOMMU_NEXOPS_VERSION,
310 	"Rootnex IOMMU ops Vers 1.1",
311 	NULL,
312 	rootnex_coredma_allochdl,
313 	rootnex_coredma_freehdl,
314 	rootnex_coredma_bindhdl,
315 	rootnex_coredma_unbindhdl,
316 	rootnex_coredma_reset_cookies,
317 	rootnex_coredma_get_cookies,
318 	rootnex_coredma_set_cookies,
319 	rootnex_coredma_clear_cookies,
320 	rootnex_coredma_get_sleep_flags,
321 	rootnex_coredma_sync,
322 	rootnex_coredma_win,
323 	rootnex_dma_map,
324 	rootnex_dma_mctl
325 };
326 #endif
327 
328 /*
329  *  extern hacks
330  */
331 extern struct seg_ops segdev_ops;
332 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
333 #ifdef	DDI_MAP_DEBUG
334 extern int ddi_map_debug_flag;
335 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
336 #endif
337 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
338 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
339 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
340     psm_intr_op_t, int *);
341 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
342 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
343 
344 /*
345  * Use device arena to use for device control register mappings.
346  * Various kernel memory walkers (debugger, dtrace) need to know
347  * to avoid this address range to prevent undesired device activity.
348  */
349 extern void *device_arena_alloc(size_t size, int vm_flag);
350 extern void device_arena_free(void * vaddr, size_t size);
351 
352 
353 /*
354  *  Internal functions
355  */
356 static int rootnex_dma_init();
357 static void rootnex_add_props(dev_info_t *);
358 static int rootnex_ctl_reportdev(dev_info_t *dip);
359 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
360 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
361 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
362 static int rootnex_map_handle(ddi_map_req_t *mp);
363 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
364 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
365 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
366     ddi_dma_attr_t *attr);
367 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
368     rootnex_sglinfo_t *sglinfo);
369 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
370     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag);
371 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
372     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
373 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
374 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
375     ddi_dma_attr_t *attr, int kmflag);
376 static void rootnex_teardown_windows(rootnex_dma_t *dma);
377 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
378     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
379 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
380     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
381     size_t *copybuf_used, page_t **cur_pp);
382 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
383     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
384     ddi_dma_attr_t *attr, off_t cur_offset);
385 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
386     rootnex_dma_t *dma, rootnex_window_t **windowp,
387     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
388 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
389     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
390 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
391     off_t offset, size_t size, uint_t cache_flags);
392 static int rootnex_verify_buffer(rootnex_dma_t *dma);
393 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
394     const void *comp_addr, const void *not_used);
395 
396 /*
397  * _init()
398  *
399  */
400 int
401 _init(void)
402 {
403 
404 	rootnex_state = NULL;
405 	return (mod_install(&rootnex_modlinkage));
406 }
407 
408 
409 /*
410  * _info()
411  *
412  */
413 int
414 _info(struct modinfo *modinfop)
415 {
416 	return (mod_info(&rootnex_modlinkage, modinfop));
417 }
418 
419 
420 /*
421  * _fini()
422  *
423  */
424 int
425 _fini(void)
426 {
427 	return (EBUSY);
428 }
429 
430 
431 /*
432  * rootnex_attach()
433  *
434  */
435 static int
436 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
437 {
438 	int fmcap;
439 	int e;
440 
441 	switch (cmd) {
442 	case DDI_ATTACH:
443 		break;
444 	case DDI_RESUME:
445 #if defined(__amd64) && !defined(__xpv)
446 		return (immu_unquiesce());
447 #else
448 		return (DDI_SUCCESS);
449 #endif
450 	default:
451 		return (DDI_FAILURE);
452 	}
453 
454 	/*
455 	 * We should only have one instance of rootnex. Save it away since we
456 	 * don't have an easy way to get it back later.
457 	 */
458 	ASSERT(rootnex_state == NULL);
459 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
460 
461 	rootnex_state->r_dip = dip;
462 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
463 	rootnex_state->r_reserved_msg_printed = B_FALSE;
464 	rootnex_cnt = &rootnex_state->r_counters[0];
465 
466 	/*
467 	 * Set minimum fm capability level for i86pc platforms and then
468 	 * initialize error handling. Since we're the rootnex, we don't
469 	 * care what's returned in the fmcap field.
470 	 */
471 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
472 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
473 	fmcap = ddi_system_fmcap;
474 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
475 
476 	/* initialize DMA related state */
477 	e = rootnex_dma_init();
478 	if (e != DDI_SUCCESS) {
479 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
480 		return (DDI_FAILURE);
481 	}
482 
483 	/* Add static root node properties */
484 	rootnex_add_props(dip);
485 
486 	/* since we can't call ddi_report_dev() */
487 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
488 
489 	/* Initialize rootnex event handle */
490 	i_ddi_rootnex_init_events(dip);
491 
492 #if defined(__amd64) && !defined(__xpv)
493 	e = iommulib_nexus_register(dip, &iommulib_nexops,
494 	    &rootnex_state->r_iommulib_handle);
495 
496 	ASSERT(e == DDI_SUCCESS);
497 #endif
498 
499 	return (DDI_SUCCESS);
500 }
501 
502 
503 /*
504  * rootnex_detach()
505  *
506  */
507 /*ARGSUSED*/
508 static int
509 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
510 {
511 	switch (cmd) {
512 	case DDI_SUSPEND:
513 #if defined(__amd64) && !defined(__xpv)
514 		return (immu_quiesce());
515 #else
516 		return (DDI_SUCCESS);
517 #endif
518 	default:
519 		return (DDI_FAILURE);
520 	}
521 	/*NOTREACHED*/
522 
523 }
524 
525 
526 /*
527  * rootnex_dma_init()
528  *
529  */
530 /*ARGSUSED*/
531 static int
532 rootnex_dma_init()
533 {
534 	size_t bufsize;
535 
536 
537 	/*
538 	 * size of our cookie/window/copybuf state needed in dma bind that we
539 	 * pre-alloc in dma_alloc_handle
540 	 */
541 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
542 	rootnex_state->r_prealloc_size =
543 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
544 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
545 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
546 
547 	/*
548 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
549 	 * allocate 16 extra bytes for struct pointer alignment
550 	 * (p->dmai_private & dma->dp_prealloc_buffer)
551 	 */
552 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
553 	    rootnex_state->r_prealloc_size + 0x10;
554 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
555 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
556 	if (rootnex_state->r_dmahdl_cache == NULL) {
557 		return (DDI_FAILURE);
558 	}
559 
560 	/*
561 	 * allocate array to track which major numbers we have printed warnings
562 	 * for.
563 	 */
564 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
565 	    KM_SLEEP);
566 
567 	return (DDI_SUCCESS);
568 }
569 
570 
571 /*
572  * rootnex_add_props()
573  *
574  */
575 static void
576 rootnex_add_props(dev_info_t *dip)
577 {
578 	rootnex_intprop_t *rpp;
579 	int i;
580 
581 	/* Add static integer/boolean properties to the root node */
582 	rpp = rootnex_intprp;
583 	for (i = 0; i < NROOT_INTPROPS; i++) {
584 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
585 		    rpp[i].prop_name, rpp[i].prop_value);
586 	}
587 }
588 
589 
590 
591 /*
592  * *************************
593  *  ctlops related routines
594  * *************************
595  */
596 
597 /*
598  * rootnex_ctlops()
599  *
600  */
601 /*ARGSUSED*/
602 static int
603 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
604     void *arg, void *result)
605 {
606 	int n, *ptr;
607 	struct ddi_parent_private_data *pdp;
608 
609 	switch (ctlop) {
610 	case DDI_CTLOPS_DMAPMAPC:
611 		/*
612 		 * Return 'partial' to indicate that dma mapping
613 		 * has to be done in the main MMU.
614 		 */
615 		return (DDI_DMA_PARTIAL);
616 
617 	case DDI_CTLOPS_BTOP:
618 		/*
619 		 * Convert byte count input to physical page units.
620 		 * (byte counts that are not a page-size multiple
621 		 * are rounded down)
622 		 */
623 		*(ulong_t *)result = btop(*(ulong_t *)arg);
624 		return (DDI_SUCCESS);
625 
626 	case DDI_CTLOPS_PTOB:
627 		/*
628 		 * Convert size in physical pages to bytes
629 		 */
630 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
631 		return (DDI_SUCCESS);
632 
633 	case DDI_CTLOPS_BTOPR:
634 		/*
635 		 * Convert byte count input to physical page units
636 		 * (byte counts that are not a page-size multiple
637 		 * are rounded up)
638 		 */
639 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
640 		return (DDI_SUCCESS);
641 
642 	case DDI_CTLOPS_INITCHILD:
643 		return (impl_ddi_sunbus_initchild(arg));
644 
645 	case DDI_CTLOPS_UNINITCHILD:
646 		impl_ddi_sunbus_removechild(arg);
647 		return (DDI_SUCCESS);
648 
649 	case DDI_CTLOPS_REPORTDEV:
650 		return (rootnex_ctl_reportdev(rdip));
651 
652 	case DDI_CTLOPS_IOMIN:
653 		/*
654 		 * Nothing to do here but reflect back..
655 		 */
656 		return (DDI_SUCCESS);
657 
658 	case DDI_CTLOPS_REGSIZE:
659 	case DDI_CTLOPS_NREGS:
660 		break;
661 
662 	case DDI_CTLOPS_SIDDEV:
663 		if (ndi_dev_is_prom_node(rdip))
664 			return (DDI_SUCCESS);
665 		if (ndi_dev_is_persistent_node(rdip))
666 			return (DDI_SUCCESS);
667 		return (DDI_FAILURE);
668 
669 	case DDI_CTLOPS_POWER:
670 		return ((*pm_platform_power)((power_req_t *)arg));
671 
672 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
673 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
674 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
675 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
676 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
677 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
678 		if (!rootnex_state->r_reserved_msg_printed) {
679 			rootnex_state->r_reserved_msg_printed = B_TRUE;
680 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
681 			    "1 or more reserved/obsolete operations.");
682 		}
683 		return (DDI_FAILURE);
684 
685 	default:
686 		return (DDI_FAILURE);
687 	}
688 	/*
689 	 * The rest are for "hardware" properties
690 	 */
691 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
692 		return (DDI_FAILURE);
693 
694 	if (ctlop == DDI_CTLOPS_NREGS) {
695 		ptr = (int *)result;
696 		*ptr = pdp->par_nreg;
697 	} else {
698 		off_t *size = (off_t *)result;
699 
700 		ptr = (int *)arg;
701 		n = *ptr;
702 		if (n >= pdp->par_nreg) {
703 			return (DDI_FAILURE);
704 		}
705 		*size = (off_t)pdp->par_reg[n].regspec_size;
706 	}
707 	return (DDI_SUCCESS);
708 }
709 
710 
711 /*
712  * rootnex_ctl_reportdev()
713  *
714  */
715 static int
716 rootnex_ctl_reportdev(dev_info_t *dev)
717 {
718 	int i, n, len, f_len = 0;
719 	char *buf;
720 
721 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
722 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
723 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
724 	len = strlen(buf);
725 
726 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
727 
728 		struct regspec *rp = sparc_pd_getreg(dev, i);
729 
730 		if (i == 0)
731 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
732 			    ": ");
733 		else
734 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
735 			    " and ");
736 		len = strlen(buf);
737 
738 		switch (rp->regspec_bustype) {
739 
740 		case BTEISA:
741 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
742 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
743 			break;
744 
745 		case BTISA:
746 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
747 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
748 			break;
749 
750 		default:
751 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
752 			    "space %x offset %x",
753 			    rp->regspec_bustype, rp->regspec_addr);
754 			break;
755 		}
756 		len = strlen(buf);
757 	}
758 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
759 		int pri;
760 
761 		if (i != 0) {
762 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
763 			    ",");
764 			len = strlen(buf);
765 		}
766 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
767 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
768 		    " sparc ipl %d", pri);
769 		len = strlen(buf);
770 	}
771 #ifdef DEBUG
772 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
773 		cmn_err(CE_NOTE, "next message is truncated: "
774 		    "printed length 1024, real length %d", f_len);
775 	}
776 #endif /* DEBUG */
777 	cmn_err(CE_CONT, "?%s\n", buf);
778 	kmem_free(buf, REPORTDEV_BUFSIZE);
779 	return (DDI_SUCCESS);
780 }
781 
782 
783 /*
784  * ******************
785  *  map related code
786  * ******************
787  */
788 
789 /*
790  * rootnex_map()
791  *
792  */
793 static int
794 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
795     off_t len, caddr_t *vaddrp)
796 {
797 	struct regspec *rp, tmp_reg;
798 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
799 	int error;
800 
801 	mp = &mr;
802 
803 	switch (mp->map_op)  {
804 	case DDI_MO_MAP_LOCKED:
805 	case DDI_MO_UNMAP:
806 	case DDI_MO_MAP_HANDLE:
807 		break;
808 	default:
809 #ifdef	DDI_MAP_DEBUG
810 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
811 		    mp->map_op);
812 #endif	/* DDI_MAP_DEBUG */
813 		return (DDI_ME_UNIMPLEMENTED);
814 	}
815 
816 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
817 #ifdef	DDI_MAP_DEBUG
818 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
819 #endif	/* DDI_MAP_DEBUG */
820 		return (DDI_ME_UNIMPLEMENTED);
821 	}
822 
823 	/*
824 	 * First, if given an rnumber, convert it to a regspec...
825 	 * (Presumably, this is on behalf of a child of the root node?)
826 	 */
827 
828 	if (mp->map_type == DDI_MT_RNUMBER)  {
829 
830 		int rnumber = mp->map_obj.rnumber;
831 #ifdef	DDI_MAP_DEBUG
832 		static char *out_of_range =
833 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
834 #endif	/* DDI_MAP_DEBUG */
835 
836 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
837 		if (rp == NULL)  {
838 #ifdef	DDI_MAP_DEBUG
839 			cmn_err(CE_WARN, out_of_range, rnumber,
840 			    ddi_get_name(rdip));
841 #endif	/* DDI_MAP_DEBUG */
842 			return (DDI_ME_RNUMBER_RANGE);
843 		}
844 
845 		/*
846 		 * Convert the given ddi_map_req_t from rnumber to regspec...
847 		 */
848 
849 		mp->map_type = DDI_MT_REGSPEC;
850 		mp->map_obj.rp = rp;
851 	}
852 
853 	/*
854 	 * Adjust offset and length correspnding to called values...
855 	 * XXX: A non-zero length means override the one in the regspec
856 	 * XXX: (regardless of what's in the parent's range?)
857 	 */
858 
859 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
860 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
861 
862 #ifdef	DDI_MAP_DEBUG
863 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
864 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
865 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset,
866 	    len, mp->map_handlep);
867 #endif	/* DDI_MAP_DEBUG */
868 
869 	/*
870 	 * I/O or memory mapping:
871 	 *
872 	 *	<bustype=0, addr=x, len=x>: memory
873 	 *	<bustype=1, addr=x, len=x>: i/o
874 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
875 	 */
876 
877 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
878 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
879 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
880 		    ddi_get_name(rdip), rp->regspec_bustype,
881 		    rp->regspec_addr, rp->regspec_size);
882 		return (DDI_ME_INVAL);
883 	}
884 
885 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
886 		/*
887 		 * compatibility i/o mapping
888 		 */
889 		rp->regspec_bustype += (uint_t)offset;
890 	} else {
891 		/*
892 		 * Normal memory or i/o mapping
893 		 */
894 		rp->regspec_addr += (uint_t)offset;
895 	}
896 
897 	if (len != 0)
898 		rp->regspec_size = (uint_t)len;
899 
900 #ifdef	DDI_MAP_DEBUG
901 	cmn_err(CE_CONT, "             <%s,%s> <0x%x, 0x%x, 0x%d> offset %d "
902 	    "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
903 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
904 	    offset, len, mp->map_handlep);
905 #endif	/* DDI_MAP_DEBUG */
906 
907 	/*
908 	 * Apply any parent ranges at this level, if applicable.
909 	 * (This is where nexus specific regspec translation takes place.
910 	 * Use of this function is implicit agreement that translation is
911 	 * provided via ddi_apply_range.)
912 	 */
913 
914 #ifdef	DDI_MAP_DEBUG
915 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
916 	    ddi_get_name(dip), ddi_get_name(rdip));
917 #endif	/* DDI_MAP_DEBUG */
918 
919 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
920 		return (error);
921 
922 	switch (mp->map_op)  {
923 	case DDI_MO_MAP_LOCKED:
924 
925 		/*
926 		 * Set up the locked down kernel mapping to the regspec...
927 		 */
928 
929 		return (rootnex_map_regspec(mp, vaddrp));
930 
931 	case DDI_MO_UNMAP:
932 
933 		/*
934 		 * Release mapping...
935 		 */
936 
937 		return (rootnex_unmap_regspec(mp, vaddrp));
938 
939 	case DDI_MO_MAP_HANDLE:
940 
941 		return (rootnex_map_handle(mp));
942 
943 	default:
944 		return (DDI_ME_UNIMPLEMENTED);
945 	}
946 }
947 
948 
949 /*
950  * rootnex_map_fault()
951  *
952  *	fault in mappings for requestors
953  */
954 /*ARGSUSED*/
955 static int
956 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
957     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
958     uint_t lock)
959 {
960 
961 #ifdef	DDI_MAP_DEBUG
962 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
963 	ddi_map_debug(" Seg <%s>\n",
964 	    seg->s_ops == &segdev_ops ? "segdev" :
965 	    seg == &kvseg ? "segkmem" : "NONE!");
966 #endif	/* DDI_MAP_DEBUG */
967 
968 	/*
969 	 * This is all terribly broken, but it is a start
970 	 *
971 	 * XXX	Note that this test means that segdev_ops
972 	 *	must be exported from seg_dev.c.
973 	 * XXX	What about devices with their own segment drivers?
974 	 */
975 	if (seg->s_ops == &segdev_ops) {
976 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
977 
978 		if (hat == NULL) {
979 			/*
980 			 * This is one plausible interpretation of
981 			 * a null hat i.e. use the first hat on the
982 			 * address space hat list which by convention is
983 			 * the hat of the system MMU.  At alternative
984 			 * would be to panic .. this might well be better ..
985 			 */
986 			ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock));
987 			hat = seg->s_as->a_hat;
988 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
989 		}
990 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
991 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
992 	} else if (seg == &kvseg && dp == NULL) {
993 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
994 		    HAT_LOAD_LOCK);
995 	} else
996 		return (DDI_FAILURE);
997 	return (DDI_SUCCESS);
998 }
999 
1000 
1001 /*
1002  * rootnex_map_regspec()
1003  *     we don't support mapping of I/O cards above 4Gb
1004  */
1005 static int
1006 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1007 {
1008 	rootnex_addr_t rbase;
1009 	void *cvaddr;
1010 	uint_t npages, pgoffset;
1011 	struct regspec *rp;
1012 	ddi_acc_hdl_t *hp;
1013 	ddi_acc_impl_t *ap;
1014 	uint_t	hat_acc_flags;
1015 	paddr_t pbase;
1016 
1017 	rp = mp->map_obj.rp;
1018 	hp = mp->map_handlep;
1019 
1020 #ifdef	DDI_MAP_DEBUG
1021 	ddi_map_debug(
1022 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1023 	    rp->regspec_bustype, rp->regspec_addr,
1024 	    rp->regspec_size, mp->map_handlep);
1025 #endif	/* DDI_MAP_DEBUG */
1026 
1027 	/*
1028 	 * I/O or memory mapping
1029 	 *
1030 	 *	<bustype=0, addr=x, len=x>: memory
1031 	 *	<bustype=1, addr=x, len=x>: i/o
1032 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1033 	 */
1034 
1035 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1036 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1037 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1038 		    rp->regspec_addr, rp->regspec_size);
1039 		return (DDI_FAILURE);
1040 	}
1041 
1042 	if (rp->regspec_bustype != 0) {
1043 		/*
1044 		 * I/O space - needs a handle.
1045 		 */
1046 		if (hp == NULL) {
1047 			return (DDI_FAILURE);
1048 		}
1049 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1050 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1051 		impl_acc_hdl_init(hp);
1052 
1053 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1054 #ifdef  DDI_MAP_DEBUG
1055 			ddi_map_debug("rootnex_map_regspec: mmap() "
1056 			    "to I/O space is not supported.\n");
1057 #endif  /* DDI_MAP_DEBUG */
1058 			return (DDI_ME_INVAL);
1059 		} else {
1060 			/*
1061 			 * 1275-compliant vs. compatibility i/o mapping
1062 			 */
1063 			*vaddrp =
1064 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1065 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1066 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1067 #ifdef __xpv
1068 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1069 				hp->ah_pfn = xen_assign_pfn(
1070 				    mmu_btop((ulong_t)rp->regspec_addr &
1071 				    MMU_PAGEMASK));
1072 			} else {
1073 				hp->ah_pfn = mmu_btop(
1074 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1075 			}
1076 #else
1077 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1078 			    MMU_PAGEMASK);
1079 #endif
1080 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1081 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1082 		}
1083 
1084 #ifdef	DDI_MAP_DEBUG
1085 		ddi_map_debug(
1086 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1087 		    rp->regspec_size, *vaddrp);
1088 #endif	/* DDI_MAP_DEBUG */
1089 		return (DDI_SUCCESS);
1090 	}
1091 
1092 	/*
1093 	 * Memory space
1094 	 */
1095 
1096 	if (hp != NULL) {
1097 		/*
1098 		 * hat layer ignores
1099 		 * hp->ah_acc.devacc_attr_endian_flags.
1100 		 */
1101 		switch (hp->ah_acc.devacc_attr_dataorder) {
1102 		case DDI_STRICTORDER_ACC:
1103 			hat_acc_flags = HAT_STRICTORDER;
1104 			break;
1105 		case DDI_UNORDERED_OK_ACC:
1106 			hat_acc_flags = HAT_UNORDERED_OK;
1107 			break;
1108 		case DDI_MERGING_OK_ACC:
1109 			hat_acc_flags = HAT_MERGING_OK;
1110 			break;
1111 		case DDI_LOADCACHING_OK_ACC:
1112 			hat_acc_flags = HAT_LOADCACHING_OK;
1113 			break;
1114 		case DDI_STORECACHING_OK_ACC:
1115 			hat_acc_flags = HAT_STORECACHING_OK;
1116 			break;
1117 		}
1118 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1119 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1120 		impl_acc_hdl_init(hp);
1121 		hp->ah_hat_flags = hat_acc_flags;
1122 	} else {
1123 		hat_acc_flags = HAT_STRICTORDER;
1124 	}
1125 
1126 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1127 #ifdef __xpv
1128 	/*
1129 	 * If we're dom0, we're using a real device so we need to translate
1130 	 * the MA to a PA.
1131 	 */
1132 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1133 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1134 	} else {
1135 		pbase = rbase;
1136 	}
1137 #else
1138 	pbase = rbase;
1139 #endif
1140 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1141 
1142 	if (rp->regspec_size == 0) {
1143 #ifdef  DDI_MAP_DEBUG
1144 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1145 #endif  /* DDI_MAP_DEBUG */
1146 		return (DDI_ME_INVAL);
1147 	}
1148 
1149 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1150 		/* extra cast to make gcc happy */
1151 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1152 	} else {
1153 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1154 
1155 #ifdef	DDI_MAP_DEBUG
1156 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1157 		    "physical %llx", npages, pbase);
1158 #endif	/* DDI_MAP_DEBUG */
1159 
1160 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1161 		if (cvaddr == NULL)
1162 			return (DDI_ME_NORESOURCES);
1163 
1164 		/*
1165 		 * Now map in the pages we've allocated...
1166 		 */
1167 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1168 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1169 		    HAT_LOAD_LOCK);
1170 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1171 
1172 		/* save away pfn and npages for FMA */
1173 		hp = mp->map_handlep;
1174 		if (hp) {
1175 			hp->ah_pfn = mmu_btop(pbase);
1176 			hp->ah_pnum = npages;
1177 		}
1178 	}
1179 
1180 #ifdef	DDI_MAP_DEBUG
1181 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1182 #endif	/* DDI_MAP_DEBUG */
1183 	return (DDI_SUCCESS);
1184 }
1185 
1186 
1187 /*
1188  * rootnex_unmap_regspec()
1189  *
1190  */
1191 static int
1192 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1193 {
1194 	caddr_t addr = (caddr_t)*vaddrp;
1195 	uint_t npages, pgoffset;
1196 	struct regspec *rp;
1197 
1198 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1199 		return (0);
1200 
1201 	rp = mp->map_obj.rp;
1202 
1203 	if (rp->regspec_size == 0) {
1204 #ifdef  DDI_MAP_DEBUG
1205 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1206 #endif  /* DDI_MAP_DEBUG */
1207 		return (DDI_ME_INVAL);
1208 	}
1209 
1210 	/*
1211 	 * I/O or memory mapping:
1212 	 *
1213 	 *	<bustype=0, addr=x, len=x>: memory
1214 	 *	<bustype=1, addr=x, len=x>: i/o
1215 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1216 	 */
1217 	if (rp->regspec_bustype != 0) {
1218 		/*
1219 		 * This is I/O space, which requires no particular
1220 		 * processing on unmap since it isn't mapped in the
1221 		 * first place.
1222 		 */
1223 		return (DDI_SUCCESS);
1224 	}
1225 
1226 	/*
1227 	 * Memory space
1228 	 */
1229 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1230 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1231 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1232 	device_arena_free(addr - pgoffset, ptob(npages));
1233 
1234 	/*
1235 	 * Destroy the pointer - the mapping has logically gone
1236 	 */
1237 	*vaddrp = NULL;
1238 
1239 	return (DDI_SUCCESS);
1240 }
1241 
1242 
1243 /*
1244  * rootnex_map_handle()
1245  *
1246  */
1247 static int
1248 rootnex_map_handle(ddi_map_req_t *mp)
1249 {
1250 	rootnex_addr_t rbase;
1251 	ddi_acc_hdl_t *hp;
1252 	uint_t pgoffset;
1253 	struct regspec *rp;
1254 	paddr_t pbase;
1255 
1256 	rp = mp->map_obj.rp;
1257 
1258 #ifdef	DDI_MAP_DEBUG
1259 	ddi_map_debug(
1260 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1261 	    rp->regspec_bustype, rp->regspec_addr,
1262 	    rp->regspec_size, mp->map_handlep);
1263 #endif	/* DDI_MAP_DEBUG */
1264 
1265 	/*
1266 	 * I/O or memory mapping:
1267 	 *
1268 	 *	<bustype=0, addr=x, len=x>: memory
1269 	 *	<bustype=1, addr=x, len=x>: i/o
1270 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1271 	 */
1272 	if (rp->regspec_bustype != 0) {
1273 		/*
1274 		 * This refers to I/O space, and we don't support "mapping"
1275 		 * I/O space to a user.
1276 		 */
1277 		return (DDI_FAILURE);
1278 	}
1279 
1280 	/*
1281 	 * Set up the hat_flags for the mapping.
1282 	 */
1283 	hp = mp->map_handlep;
1284 
1285 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1286 	case DDI_NEVERSWAP_ACC:
1287 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1288 		break;
1289 	case DDI_STRUCTURE_LE_ACC:
1290 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1291 		break;
1292 	case DDI_STRUCTURE_BE_ACC:
1293 		return (DDI_FAILURE);
1294 	default:
1295 		return (DDI_REGS_ACC_CONFLICT);
1296 	}
1297 
1298 	switch (hp->ah_acc.devacc_attr_dataorder) {
1299 	case DDI_STRICTORDER_ACC:
1300 		break;
1301 	case DDI_UNORDERED_OK_ACC:
1302 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1303 		break;
1304 	case DDI_MERGING_OK_ACC:
1305 		hp->ah_hat_flags |= HAT_MERGING_OK;
1306 		break;
1307 	case DDI_LOADCACHING_OK_ACC:
1308 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1309 		break;
1310 	case DDI_STORECACHING_OK_ACC:
1311 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1312 		break;
1313 	default:
1314 		return (DDI_FAILURE);
1315 	}
1316 
1317 	rbase = (rootnex_addr_t)rp->regspec_addr &
1318 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1319 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1320 
1321 	if (rp->regspec_size == 0)
1322 		return (DDI_ME_INVAL);
1323 
1324 #ifdef __xpv
1325 	/*
1326 	 * If we're dom0, we're using a real device so we need to translate
1327 	 * the MA to a PA.
1328 	 */
1329 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1330 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1331 		    (rbase & MMU_PAGEOFFSET);
1332 	} else {
1333 		pbase = rbase;
1334 	}
1335 #else
1336 	pbase = rbase;
1337 #endif
1338 
1339 	hp->ah_pfn = mmu_btop(pbase);
1340 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1341 
1342 	return (DDI_SUCCESS);
1343 }
1344 
1345 
1346 
1347 /*
1348  * ************************
1349  *  interrupt related code
1350  * ************************
1351  */
1352 
1353 /*
1354  * rootnex_intr_ops()
1355  *	bus_intr_op() function for interrupt support
1356  */
1357 /* ARGSUSED */
1358 static int
1359 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1360     ddi_intr_handle_impl_t *hdlp, void *result)
1361 {
1362 	struct intrspec			*ispec;
1363 	struct ddi_parent_private_data	*pdp;
1364 
1365 	DDI_INTR_NEXDBG((CE_CONT,
1366 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1367 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1368 
1369 	/* Process the interrupt operation */
1370 	switch (intr_op) {
1371 	case DDI_INTROP_GETCAP:
1372 		/* First check with pcplusmp */
1373 		if (psm_intr_ops == NULL)
1374 			return (DDI_FAILURE);
1375 
1376 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1377 			*(int *)result = 0;
1378 			return (DDI_FAILURE);
1379 		}
1380 		break;
1381 	case DDI_INTROP_SETCAP:
1382 		if (psm_intr_ops == NULL)
1383 			return (DDI_FAILURE);
1384 
1385 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1386 			return (DDI_FAILURE);
1387 		break;
1388 	case DDI_INTROP_ALLOC:
1389 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1390 			return (DDI_FAILURE);
1391 		hdlp->ih_pri = ispec->intrspec_pri;
1392 		*(int *)result = hdlp->ih_scratch1;
1393 		break;
1394 	case DDI_INTROP_FREE:
1395 		pdp = ddi_get_parent_data(rdip);
1396 		/*
1397 		 * Special case for 'pcic' driver' only.
1398 		 * If an intrspec was created for it, clean it up here
1399 		 * See detailed comments on this in the function
1400 		 * rootnex_get_ispec().
1401 		 */
1402 		if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1403 			kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1404 			    pdp->par_nintr);
1405 			/*
1406 			 * Set it to zero; so that
1407 			 * DDI framework doesn't free it again
1408 			 */
1409 			pdp->par_intr = NULL;
1410 			pdp->par_nintr = 0;
1411 		}
1412 		break;
1413 	case DDI_INTROP_GETPRI:
1414 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1415 			return (DDI_FAILURE);
1416 		*(int *)result = ispec->intrspec_pri;
1417 		break;
1418 	case DDI_INTROP_SETPRI:
1419 		/* Validate the interrupt priority passed to us */
1420 		if (*(int *)result > LOCK_LEVEL)
1421 			return (DDI_FAILURE);
1422 
1423 		/* Ensure that PSM is all initialized and ispec is ok */
1424 		if ((psm_intr_ops == NULL) ||
1425 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1426 			return (DDI_FAILURE);
1427 
1428 		/* Change the priority */
1429 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1430 		    PSM_FAILURE)
1431 			return (DDI_FAILURE);
1432 
1433 		/* update the ispec with the new priority */
1434 		ispec->intrspec_pri =  *(int *)result;
1435 		break;
1436 	case DDI_INTROP_ADDISR:
1437 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1438 			return (DDI_FAILURE);
1439 		ispec->intrspec_func = hdlp->ih_cb_func;
1440 		break;
1441 	case DDI_INTROP_REMISR:
1442 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1443 			return (DDI_FAILURE);
1444 		ispec->intrspec_func = (uint_t (*)()) 0;
1445 		break;
1446 	case DDI_INTROP_ENABLE:
1447 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1448 			return (DDI_FAILURE);
1449 
1450 		/* Call psmi to translate irq with the dip */
1451 		if (psm_intr_ops == NULL)
1452 			return (DDI_FAILURE);
1453 
1454 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1455 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1456 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1457 			return (DDI_FAILURE);
1458 
1459 		/* Add the interrupt handler */
1460 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1461 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1462 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1463 			return (DDI_FAILURE);
1464 		break;
1465 	case DDI_INTROP_DISABLE:
1466 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1467 			return (DDI_FAILURE);
1468 
1469 		/* Call psm_ops() to translate irq with the dip */
1470 		if (psm_intr_ops == NULL)
1471 			return (DDI_FAILURE);
1472 
1473 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1474 		(void) (*psm_intr_ops)(rdip, hdlp,
1475 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1476 
1477 		/* Remove the interrupt handler */
1478 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1479 		    hdlp->ih_cb_func, hdlp->ih_vector);
1480 		break;
1481 	case DDI_INTROP_SETMASK:
1482 		if (psm_intr_ops == NULL)
1483 			return (DDI_FAILURE);
1484 
1485 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1486 			return (DDI_FAILURE);
1487 		break;
1488 	case DDI_INTROP_CLRMASK:
1489 		if (psm_intr_ops == NULL)
1490 			return (DDI_FAILURE);
1491 
1492 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1493 			return (DDI_FAILURE);
1494 		break;
1495 	case DDI_INTROP_GETPENDING:
1496 		if (psm_intr_ops == NULL)
1497 			return (DDI_FAILURE);
1498 
1499 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1500 		    result)) {
1501 			*(int *)result = 0;
1502 			return (DDI_FAILURE);
1503 		}
1504 		break;
1505 	case DDI_INTROP_NAVAIL:
1506 	case DDI_INTROP_NINTRS:
1507 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1508 		if (*(int *)result == 0) {
1509 			/*
1510 			 * Special case for 'pcic' driver' only. This driver
1511 			 * driver is a child of 'isa' and 'rootnex' drivers.
1512 			 *
1513 			 * See detailed comments on this in the function
1514 			 * rootnex_get_ispec().
1515 			 *
1516 			 * Children of 'pcic' send 'NINITR' request all the
1517 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1518 			 * field may not initialized. So, we fake it here
1519 			 * to return 1 (a la what PCMCIA nexus does).
1520 			 */
1521 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1522 				*(int *)result = 1;
1523 			else
1524 				return (DDI_FAILURE);
1525 		}
1526 		break;
1527 	case DDI_INTROP_SUPPORTED_TYPES:
1528 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1529 		break;
1530 	default:
1531 		return (DDI_FAILURE);
1532 	}
1533 
1534 	return (DDI_SUCCESS);
1535 }
1536 
1537 
1538 /*
1539  * rootnex_get_ispec()
1540  *	convert an interrupt number to an interrupt specification.
1541  *	The interrupt number determines which interrupt spec will be
1542  *	returned if more than one exists.
1543  *
1544  *	Look into the parent private data area of the 'rdip' to find out
1545  *	the interrupt specification.  First check to make sure there is
1546  *	one that matchs "inumber" and then return a pointer to it.
1547  *
1548  *	Return NULL if one could not be found.
1549  *
1550  *	NOTE: This is needed for rootnex_intr_ops()
1551  */
1552 static struct intrspec *
1553 rootnex_get_ispec(dev_info_t *rdip, int inum)
1554 {
1555 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1556 
1557 	/*
1558 	 * Special case handling for drivers that provide their own
1559 	 * intrspec structures instead of relying on the DDI framework.
1560 	 *
1561 	 * A broken hardware driver in ON could potentially provide its
1562 	 * own intrspec structure, instead of relying on the hardware.
1563 	 * If these drivers are children of 'rootnex' then we need to
1564 	 * continue to provide backward compatibility to them here.
1565 	 *
1566 	 * Following check is a special case for 'pcic' driver which
1567 	 * was found to have broken hardwre andby provides its own intrspec.
1568 	 *
1569 	 * Verbatim comments from this driver are shown here:
1570 	 * "Don't use the ddi_add_intr since we don't have a
1571 	 * default intrspec in all cases."
1572 	 *
1573 	 * Since an 'ispec' may not be always created for it,
1574 	 * check for that and create one if so.
1575 	 *
1576 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1577 	 */
1578 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1579 		pdp->par_nintr = 1;
1580 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1581 		    pdp->par_nintr, KM_SLEEP);
1582 	}
1583 
1584 	/* Validate the interrupt number */
1585 	if (inum >= pdp->par_nintr)
1586 		return (NULL);
1587 
1588 	/* Get the interrupt structure pointer and return that */
1589 	return ((struct intrspec *)&pdp->par_intr[inum]);
1590 }
1591 
1592 
1593 /*
1594  * ******************
1595  *  dma related code
1596  * ******************
1597  */
1598 
1599 /*ARGSUSED*/
1600 static int
1601 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1602     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1603     ddi_dma_handle_t *handlep)
1604 {
1605 	uint64_t maxsegmentsize_ll;
1606 	uint_t maxsegmentsize;
1607 	ddi_dma_impl_t *hp;
1608 	rootnex_dma_t *dma;
1609 	uint64_t count_max;
1610 	uint64_t seg;
1611 	int kmflag;
1612 	int e;
1613 
1614 
1615 	/* convert our sleep flags */
1616 	if (waitfp == DDI_DMA_SLEEP) {
1617 		kmflag = KM_SLEEP;
1618 	} else {
1619 		kmflag = KM_NOSLEEP;
1620 	}
1621 
1622 	/*
1623 	 * We try to do only one memory allocation here. We'll do a little
1624 	 * pointer manipulation later. If the bind ends up taking more than
1625 	 * our prealloc's space, we'll have to allocate more memory in the
1626 	 * bind operation. Not great, but much better than before and the
1627 	 * best we can do with the current bind interfaces.
1628 	 */
1629 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1630 	if (hp == NULL) {
1631 		if (waitfp != DDI_DMA_DONTWAIT) {
1632 			ddi_set_callback(waitfp, arg,
1633 			    &rootnex_state->r_dvma_call_list_id);
1634 		}
1635 		return (DDI_DMA_NORESOURCES);
1636 	}
1637 
1638 	/* Do our pointer manipulation now, align the structures */
1639 	hp->dmai_private = (void *)(((uintptr_t)hp +
1640 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1641 	dma = (rootnex_dma_t *)hp->dmai_private;
1642 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1643 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1644 
1645 	/* setup the handle */
1646 	rootnex_clean_dmahdl(hp);
1647 	dma->dp_dip = rdip;
1648 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1649 	dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1650 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1651 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1652 	hp->dmai_rdip = rdip;
1653 	hp->dmai_attr = *attr;
1654 
1655 	/* we don't need to worry about the SPL since we do a tryenter */
1656 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1657 
1658 	/*
1659 	 * Figure out our maximum segment size. If the segment size is greater
1660 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1661 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1662 	 * dma_attr_count_max are size-1 type values.
1663 	 *
1664 	 * Maximum segment size is the largest physically contiguous chunk of
1665 	 * memory that we can return from a bind (i.e. the maximum size of a
1666 	 * single cookie).
1667 	 */
1668 
1669 	/* handle the rollover cases */
1670 	seg = attr->dma_attr_seg + 1;
1671 	if (seg < attr->dma_attr_seg) {
1672 		seg = attr->dma_attr_seg;
1673 	}
1674 	count_max = attr->dma_attr_count_max + 1;
1675 	if (count_max < attr->dma_attr_count_max) {
1676 		count_max = attr->dma_attr_count_max;
1677 	}
1678 
1679 	/*
1680 	 * granularity may or may not be a power of two. If it isn't, we can't
1681 	 * use a simple mask.
1682 	 */
1683 	if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) {
1684 		dma->dp_granularity_power_2 = B_FALSE;
1685 	} else {
1686 		dma->dp_granularity_power_2 = B_TRUE;
1687 	}
1688 
1689 	/*
1690 	 * maxxfer should be a whole multiple of granularity. If we're going to
1691 	 * break up a window because we're greater than maxxfer, we might as
1692 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1693 	 * worry about triming the window later on for this case.
1694 	 */
1695 	if (attr->dma_attr_granular > 1) {
1696 		if (dma->dp_granularity_power_2) {
1697 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1698 			    (attr->dma_attr_maxxfer &
1699 			    (attr->dma_attr_granular - 1));
1700 		} else {
1701 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1702 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1703 		}
1704 	} else {
1705 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1706 	}
1707 
1708 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1709 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1710 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1711 		maxsegmentsize = 0xFFFFFFFF;
1712 	} else {
1713 		maxsegmentsize = maxsegmentsize_ll;
1714 	}
1715 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1716 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1717 
1718 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1719 	if (rootnex_alloc_check_parms) {
1720 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1721 		if (e != DDI_SUCCESS) {
1722 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1723 			(void) rootnex_dma_freehdl(dip, rdip,
1724 			    (ddi_dma_handle_t)hp);
1725 			return (e);
1726 		}
1727 	}
1728 
1729 	*handlep = (ddi_dma_handle_t)hp;
1730 
1731 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1732 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1733 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1734 
1735 	return (DDI_SUCCESS);
1736 }
1737 
1738 
1739 /*
1740  * rootnex_dma_allochdl()
1741  *    called from ddi_dma_alloc_handle().
1742  */
1743 static int
1744 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1745     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1746 {
1747 #if defined(__amd64) && !defined(__xpv)
1748 	uint_t error = ENOTSUP;
1749 	int retval;
1750 
1751 	retval = iommulib_nex_open(rdip, &error);
1752 
1753 	if (retval != DDI_SUCCESS && error == ENOTSUP) {
1754 		/* No IOMMU */
1755 		return (rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1756 		    handlep));
1757 	} else if (retval != DDI_SUCCESS) {
1758 		return (DDI_FAILURE);
1759 	}
1760 
1761 	ASSERT(IOMMU_USED(rdip));
1762 
1763 	/* has an IOMMU */
1764 	return (iommulib_nexdma_allochdl(dip, rdip, attr,
1765 	    waitfp, arg, handlep));
1766 #else
1767 	return (rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1768 	    handlep));
1769 #endif
1770 }
1771 
1772 /*ARGSUSED*/
1773 static int
1774 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1775     ddi_dma_handle_t handle)
1776 {
1777 	ddi_dma_impl_t *hp;
1778 	rootnex_dma_t *dma;
1779 
1780 
1781 	hp = (ddi_dma_impl_t *)handle;
1782 	dma = (rootnex_dma_t *)hp->dmai_private;
1783 
1784 	/* unbind should have been called first */
1785 	ASSERT(!dma->dp_inuse);
1786 
1787 	mutex_destroy(&dma->dp_mutex);
1788 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1789 
1790 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1791 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1792 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1793 
1794 	if (rootnex_state->r_dvma_call_list_id)
1795 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1796 
1797 	return (DDI_SUCCESS);
1798 }
1799 
1800 /*
1801  * rootnex_dma_freehdl()
1802  *    called from ddi_dma_free_handle().
1803  */
1804 static int
1805 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1806 {
1807 #if defined(__amd64) && !defined(__xpv)
1808 	if (IOMMU_USED(rdip)) {
1809 		return (iommulib_nexdma_freehdl(dip, rdip, handle));
1810 	}
1811 #endif
1812 	return (rootnex_coredma_freehdl(dip, rdip, handle));
1813 }
1814 
1815 /*ARGSUSED*/
1816 static int
1817 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1818     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1819     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1820 {
1821 	rootnex_sglinfo_t *sinfo;
1822 	ddi_dma_attr_t *attr;
1823 	ddi_dma_impl_t *hp;
1824 	rootnex_dma_t *dma;
1825 	int kmflag;
1826 	int e;
1827 
1828 	hp = (ddi_dma_impl_t *)handle;
1829 	dma = (rootnex_dma_t *)hp->dmai_private;
1830 	sinfo = &dma->dp_sglinfo;
1831 	attr = &hp->dmai_attr;
1832 
1833 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1834 		dma->dp_sleep_flags = KM_SLEEP;
1835 	} else {
1836 		dma->dp_sleep_flags = KM_NOSLEEP;
1837 	}
1838 
1839 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1840 
1841 	/*
1842 	 * This is useful for debugging a driver. Not as useful in a production
1843 	 * system. The only time this will fail is if you have a driver bug.
1844 	 */
1845 	if (rootnex_bind_check_inuse) {
1846 		/*
1847 		 * No one else should ever have this lock unless someone else
1848 		 * is trying to use this handle. So contention on the lock
1849 		 * is the same as inuse being set.
1850 		 */
1851 		e = mutex_tryenter(&dma->dp_mutex);
1852 		if (e == 0) {
1853 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1854 			return (DDI_DMA_INUSE);
1855 		}
1856 		if (dma->dp_inuse) {
1857 			mutex_exit(&dma->dp_mutex);
1858 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1859 			return (DDI_DMA_INUSE);
1860 		}
1861 		dma->dp_inuse = B_TRUE;
1862 		mutex_exit(&dma->dp_mutex);
1863 	}
1864 
1865 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1866 	if (rootnex_bind_check_parms) {
1867 		e = rootnex_valid_bind_parms(dmareq, attr);
1868 		if (e != DDI_SUCCESS) {
1869 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1870 			rootnex_clean_dmahdl(hp);
1871 			return (e);
1872 		}
1873 	}
1874 
1875 	/* save away the original bind info */
1876 	dma->dp_dma = dmareq->dmar_object;
1877 
1878 #if defined(__amd64) && !defined(__xpv)
1879 	e = immu_map_sgl(hp, dmareq, rootnex_prealloc_cookies, rdip);
1880 	switch (e) {
1881 	case DDI_DMA_MAPPED:
1882 		goto out;
1883 	case DDI_DMA_USE_PHYSICAL:
1884 		break;
1885 	case DDI_DMA_PARTIAL:
1886 		ddi_err(DER_PANIC, rdip, "Partial DVMA map");
1887 		e = DDI_DMA_NORESOURCES;
1888 		/*FALLTHROUGH*/
1889 	default:
1890 		ddi_err(DER_MODE, rdip, "DVMA map failed");
1891 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1892 		rootnex_clean_dmahdl(hp);
1893 		return (e);
1894 	}
1895 #endif
1896 
1897 	/*
1898 	 * Figure out a rough estimate of what maximum number of pages this
1899 	 * buffer could use (a high estimate of course).
1900 	 */
1901 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
1902 
1903 	/*
1904 	 * We'll use the pre-allocated cookies for any bind that will *always*
1905 	 * fit (more important to be consistent, we don't want to create
1906 	 * additional degenerate cases).
1907 	 */
1908 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
1909 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
1910 		dma->dp_need_to_free_cookie = B_FALSE;
1911 		DTRACE_PROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
1912 		    uint_t, sinfo->si_max_pages);
1913 
1914 	/*
1915 	 * For anything larger than that, we'll go ahead and allocate the
1916 	 * maximum number of pages we expect to see. Hopefuly, we won't be
1917 	 * seeing this path in the fast path for high performance devices very
1918 	 * frequently.
1919 	 *
1920 	 * a ddi bind interface that allowed the driver to provide storage to
1921 	 * the bind interface would speed this case up.
1922 	 */
1923 	} else {
1924 		/* convert the sleep flags */
1925 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1926 			kmflag =  KM_SLEEP;
1927 		} else {
1928 			kmflag =  KM_NOSLEEP;
1929 		}
1930 
1931 		/*
1932 		 * Save away how much memory we allocated. If we're doing a
1933 		 * nosleep, the alloc could fail...
1934 		 */
1935 		dma->dp_cookie_size = sinfo->si_max_pages *
1936 		    sizeof (ddi_dma_cookie_t);
1937 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
1938 		if (dma->dp_cookies == NULL) {
1939 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1940 			rootnex_clean_dmahdl(hp);
1941 			return (DDI_DMA_NORESOURCES);
1942 		}
1943 		dma->dp_need_to_free_cookie = B_TRUE;
1944 		DTRACE_PROBE2(rootnex__bind__alloc, dev_info_t *, rdip, uint_t,
1945 		    sinfo->si_max_pages);
1946 	}
1947 	hp->dmai_cookie = dma->dp_cookies;
1948 
1949 	/*
1950 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
1951 	 * looking at the constraints in the dma structure. It will then put
1952 	 * some additional state about the sgl in the dma struct (i.e. is
1953 	 * the sgl clean, or do we need to do some munging; how many pages
1954 	 * need to be copied, etc.)
1955 	 */
1956 	rootnex_get_sgl(&dmareq->dmar_object, dma->dp_cookies,
1957 	    &dma->dp_sglinfo);
1958 
1959 out:
1960 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
1961 	/* if we don't need a copy buffer, we don't need to sync */
1962 	if (sinfo->si_copybuf_req == 0) {
1963 		hp->dmai_rflags |= DMP_NOSYNC;
1964 	}
1965 
1966 	/*
1967 	 * if we don't need the copybuf and we don't need to do a partial,  we
1968 	 * hit the fast path. All the high performance devices should be trying
1969 	 * to hit this path. To hit this path, a device should be able to reach
1970 	 * all of memory, shouldn't try to bind more than it can transfer, and
1971 	 * the buffer shouldn't require more cookies than the driver/device can
1972 	 * handle [sgllen]).
1973 	 */
1974 	if ((sinfo->si_copybuf_req == 0) &&
1975 	    (sinfo->si_sgl_size <= attr->dma_attr_sgllen) &&
1976 	    (dma->dp_dma.dmao_size < dma->dp_maxxfer)) {
1977 		/*
1978 		 * If the driver supports FMA, insert the handle in the FMA DMA
1979 		 * handle cache.
1980 		 */
1981 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR) {
1982 			hp->dmai_error.err_cf = rootnex_dma_check;
1983 			(void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL);
1984 		}
1985 
1986 		/*
1987 		 * copy out the first cookie and ccountp, set the cookie
1988 		 * pointer to the second cookie. The first cookie is passed
1989 		 * back on the stack. Additional cookies are accessed via
1990 		 * ddi_dma_nextcookie()
1991 		 */
1992 		*cookiep = dma->dp_cookies[0];
1993 		*ccountp = sinfo->si_sgl_size;
1994 		hp->dmai_cookie++;
1995 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
1996 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
1997 		DTRACE_PROBE3(rootnex__bind__fast, dev_info_t *, rdip,
1998 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
1999 		    uint_t, dma->dp_dma.dmao_size);
2000 
2001 
2002 		return (DDI_DMA_MAPPED);
2003 	}
2004 
2005 	/*
2006 	 * go to the slow path, we may need to alloc more memory, create
2007 	 * multiple windows, and munge up a sgl to make the device happy.
2008 	 */
2009 	e = rootnex_bind_slowpath(hp, dmareq, dma, attr, kmflag);
2010 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2011 		if (dma->dp_need_to_free_cookie) {
2012 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2013 		}
2014 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2015 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2016 		return (e);
2017 	}
2018 
2019 	/*
2020 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2021 	 * cache.
2022 	 */
2023 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR) {
2024 		hp->dmai_error.err_cf = rootnex_dma_check;
2025 		(void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL);
2026 	}
2027 
2028 	/* if the first window uses the copy buffer, sync it for the device */
2029 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2030 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2031 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2032 		    DDI_DMA_SYNC_FORDEV);
2033 	}
2034 
2035 	/*
2036 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2037 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2038 	 * If we have a partial map (i.e. multiple windows), the number of
2039 	 * cookies we return is the number of cookies in the first window.
2040 	 */
2041 	if (e == DDI_DMA_MAPPED) {
2042 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2043 		*ccountp = sinfo->si_sgl_size;
2044 		hp->dmai_nwin = 1;
2045 	} else {
2046 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2047 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2048 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2049 	}
2050 	*cookiep = dma->dp_cookies[0];
2051 	hp->dmai_cookie++;
2052 
2053 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2054 	ROOTNEX_DPROBE3(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2055 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2056 	    dma->dp_dma.dmao_size);
2057 	return (e);
2058 }
2059 
2060 /*
2061  * rootnex_dma_bindhdl()
2062  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2063  */
2064 static int
2065 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2066     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2067     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2068 {
2069 #if defined(__amd64) && !defined(__xpv)
2070 	if (IOMMU_USED(rdip)) {
2071 		return (iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2072 		    cookiep, ccountp));
2073 	}
2074 #endif
2075 	return (rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2076 	    cookiep, ccountp));
2077 }
2078 
2079 
2080 
2081 /*ARGSUSED*/
2082 static int
2083 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2084     ddi_dma_handle_t handle)
2085 {
2086 	ddi_dma_impl_t *hp;
2087 	rootnex_dma_t *dma;
2088 	int e;
2089 
2090 	hp = (ddi_dma_impl_t *)handle;
2091 	dma = (rootnex_dma_t *)hp->dmai_private;
2092 
2093 	/* make sure the buffer wasn't free'd before calling unbind */
2094 	if (rootnex_unbind_verify_buffer) {
2095 		e = rootnex_verify_buffer(dma);
2096 		if (e != DDI_SUCCESS) {
2097 			ASSERT(0);
2098 			return (DDI_FAILURE);
2099 		}
2100 	}
2101 
2102 	/* sync the current window before unbinding the buffer */
2103 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2104 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2105 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2106 		    DDI_DMA_SYNC_FORCPU);
2107 	}
2108 
2109 	/*
2110 	 * If the driver supports FMA, remove the handle in the FMA DMA handle
2111 	 * cache.
2112 	 */
2113 	if (hp->dmai_attr.dma_attr_flags & DDI_DMA_FLAGERR) {
2114 		if ((DEVI(rdip)->devi_fmhdl != NULL) &&
2115 		    (DDI_FM_DMA_ERR_CAP(DEVI(rdip)->devi_fmhdl->fh_cap))) {
2116 			(void) ndi_fmc_remove(rdip, DMA_HANDLE, hp);
2117 		}
2118 	}
2119 
2120 	/*
2121 	 * cleanup and copy buffer or window state. if we didn't use the copy
2122 	 * buffer or windows, there won't be much to do :-)
2123 	 */
2124 	rootnex_teardown_copybuf(dma);
2125 	rootnex_teardown_windows(dma);
2126 
2127 #if defined(__amd64) && !defined(__xpv)
2128 	/*
2129 	 * Clean up the page tables and free the dvma
2130 	 */
2131 	e = immu_unmap_sgl(hp, rdip);
2132 	if (e != DDI_DMA_USE_PHYSICAL && e != DDI_SUCCESS) {
2133 		return (e);
2134 	}
2135 #endif
2136 
2137 	/*
2138 	 * If we had to allocate space to for the worse case sgl (it didn't
2139 	 * fit into our pre-allocate buffer), free that up now
2140 	 */
2141 	if (dma->dp_need_to_free_cookie) {
2142 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2143 	}
2144 
2145 	/*
2146 	 * clean up the handle so it's ready for the next bind (i.e. if the
2147 	 * handle is reused).
2148 	 */
2149 	rootnex_clean_dmahdl(hp);
2150 
2151 	if (rootnex_state->r_dvma_call_list_id)
2152 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2153 
2154 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2155 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2156 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2157 
2158 	return (DDI_SUCCESS);
2159 }
2160 
2161 /*
2162  * rootnex_dma_unbindhdl()
2163  *    called from ddi_dma_unbind_handle()
2164  */
2165 /*ARGSUSED*/
2166 static int
2167 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2168     ddi_dma_handle_t handle)
2169 {
2170 #if defined(__amd64) && !defined(__xpv)
2171 	if (IOMMU_USED(rdip)) {
2172 		return (iommulib_nexdma_unbindhdl(dip, rdip, handle));
2173 	}
2174 #endif
2175 	return (rootnex_coredma_unbindhdl(dip, rdip, handle));
2176 }
2177 
2178 #if defined(__amd64) && !defined(__xpv)
2179 
2180 static int
2181 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2182 {
2183 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2184 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2185 
2186 	if (dma->dp_sleep_flags != KM_SLEEP &&
2187 	    dma->dp_sleep_flags != KM_NOSLEEP)
2188 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2189 	return (dma->dp_sleep_flags);
2190 }
2191 /*ARGSUSED*/
2192 static void
2193 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2194 {
2195 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2196 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2197 	rootnex_window_t *window;
2198 
2199 	if (dma->dp_window) {
2200 		window = &dma->dp_window[dma->dp_current_win];
2201 		hp->dmai_cookie = window->wd_first_cookie;
2202 	} else {
2203 		hp->dmai_cookie = dma->dp_cookies;
2204 	}
2205 	hp->dmai_cookie++;
2206 }
2207 
2208 /*ARGSUSED*/
2209 static int
2210 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2211     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2212 {
2213 	int i;
2214 	int km_flags;
2215 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2216 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2217 	rootnex_window_t *window;
2218 	ddi_dma_cookie_t *cp;
2219 	ddi_dma_cookie_t *cookie;
2220 
2221 	ASSERT(*cookiepp == NULL);
2222 	ASSERT(*ccountp == 0);
2223 
2224 	if (dma->dp_window) {
2225 		window = &dma->dp_window[dma->dp_current_win];
2226 		cp = window->wd_first_cookie;
2227 		*ccountp = window->wd_cookie_cnt;
2228 	} else {
2229 		cp = dma->dp_cookies;
2230 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2231 	}
2232 
2233 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2234 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2235 	if (cookie == NULL) {
2236 		return (DDI_DMA_NORESOURCES);
2237 	}
2238 
2239 	for (i = 0; i < *ccountp; i++) {
2240 		cookie[i].dmac_notused = cp[i].dmac_notused;
2241 		cookie[i].dmac_type = cp[i].dmac_type;
2242 		cookie[i].dmac_address = cp[i].dmac_address;
2243 		cookie[i].dmac_size = cp[i].dmac_size;
2244 	}
2245 
2246 	*cookiepp = cookie;
2247 
2248 	return (DDI_SUCCESS);
2249 }
2250 
2251 /*ARGSUSED*/
2252 static int
2253 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2254     ddi_dma_cookie_t *cookiep, uint_t ccount)
2255 {
2256 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2257 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2258 	rootnex_window_t *window;
2259 	ddi_dma_cookie_t *cur_cookiep;
2260 
2261 	ASSERT(cookiep);
2262 	ASSERT(ccount != 0);
2263 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2264 
2265 	if (dma->dp_window) {
2266 		window = &dma->dp_window[dma->dp_current_win];
2267 		dma->dp_saved_cookies = window->wd_first_cookie;
2268 		window->wd_first_cookie = cookiep;
2269 		ASSERT(ccount == window->wd_cookie_cnt);
2270 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2271 		    + window->wd_first_cookie;
2272 	} else {
2273 		dma->dp_saved_cookies = dma->dp_cookies;
2274 		dma->dp_cookies = cookiep;
2275 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2276 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2277 		    + dma->dp_cookies;
2278 	}
2279 
2280 	dma->dp_need_to_switch_cookies = B_TRUE;
2281 	hp->dmai_cookie = cur_cookiep;
2282 
2283 	return (DDI_SUCCESS);
2284 }
2285 
2286 /*ARGSUSED*/
2287 static int
2288 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2289 {
2290 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2291 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2292 	rootnex_window_t *window;
2293 	ddi_dma_cookie_t *cur_cookiep;
2294 	ddi_dma_cookie_t *cookie_array;
2295 	uint_t ccount;
2296 
2297 	/* check if cookies have not been switched */
2298 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2299 		return (DDI_SUCCESS);
2300 
2301 	ASSERT(dma->dp_saved_cookies);
2302 
2303 	if (dma->dp_window) {
2304 		window = &dma->dp_window[dma->dp_current_win];
2305 		cookie_array = window->wd_first_cookie;
2306 		window->wd_first_cookie = dma->dp_saved_cookies;
2307 		dma->dp_saved_cookies = NULL;
2308 		ccount = window->wd_cookie_cnt;
2309 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2310 		    + window->wd_first_cookie;
2311 	} else {
2312 		cookie_array = dma->dp_cookies;
2313 		dma->dp_cookies = dma->dp_saved_cookies;
2314 		dma->dp_saved_cookies = NULL;
2315 		ccount = dma->dp_sglinfo.si_sgl_size;
2316 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2317 		    + dma->dp_cookies;
2318 	}
2319 
2320 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2321 
2322 	hp->dmai_cookie = cur_cookiep;
2323 
2324 	dma->dp_need_to_switch_cookies = B_FALSE;
2325 
2326 	return (DDI_SUCCESS);
2327 }
2328 
2329 #endif
2330 
2331 /*
2332  * rootnex_verify_buffer()
2333  *   verify buffer wasn't free'd
2334  */
2335 static int
2336 rootnex_verify_buffer(rootnex_dma_t *dma)
2337 {
2338 	page_t **pplist;
2339 	caddr_t vaddr;
2340 	uint_t pcnt;
2341 	uint_t poff;
2342 	page_t *pp;
2343 	char b;
2344 	int i;
2345 
2346 	/* Figure out how many pages this buffer occupies */
2347 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2348 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2349 	} else {
2350 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2351 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2352 	}
2353 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2354 
2355 	switch (dma->dp_dma.dmao_type) {
2356 	case DMA_OTYP_PAGES:
2357 		/*
2358 		 * for a linked list of pp's walk through them to make sure
2359 		 * they're locked and not free.
2360 		 */
2361 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2362 		for (i = 0; i < pcnt; i++) {
2363 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2364 				return (DDI_FAILURE);
2365 			}
2366 			pp = pp->p_next;
2367 		}
2368 		break;
2369 
2370 	case DMA_OTYP_VADDR:
2371 	case DMA_OTYP_BUFVADDR:
2372 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2373 		/*
2374 		 * for an array of pp's walk through them to make sure they're
2375 		 * not free. It's possible that they may not be locked.
2376 		 */
2377 		if (pplist) {
2378 			for (i = 0; i < pcnt; i++) {
2379 				if (PP_ISFREE(pplist[i])) {
2380 					return (DDI_FAILURE);
2381 				}
2382 			}
2383 
2384 		/* For a virtual address, try to peek at each page */
2385 		} else {
2386 			if (dma->dp_sglinfo.si_asp == &kas) {
2387 				for (i = 0; i < pcnt; i++) {
2388 					if (ddi_peek8(NULL, vaddr, &b) ==
2389 					    DDI_FAILURE)
2390 						return (DDI_FAILURE);
2391 					vaddr += MMU_PAGESIZE;
2392 				}
2393 			}
2394 		}
2395 		break;
2396 
2397 	default:
2398 		ASSERT(0);
2399 		break;
2400 	}
2401 
2402 	return (DDI_SUCCESS);
2403 }
2404 
2405 
2406 /*
2407  * rootnex_clean_dmahdl()
2408  *    Clean the dma handle. This should be called on a handle alloc and an
2409  *    unbind handle. Set the handle state to the default settings.
2410  */
2411 static void
2412 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2413 {
2414 	rootnex_dma_t *dma;
2415 
2416 
2417 	dma = (rootnex_dma_t *)hp->dmai_private;
2418 
2419 	hp->dmai_nwin = 0;
2420 	dma->dp_current_cookie = 0;
2421 	dma->dp_copybuf_size = 0;
2422 	dma->dp_window = NULL;
2423 	dma->dp_cbaddr = NULL;
2424 	dma->dp_inuse = B_FALSE;
2425 	dma->dp_need_to_free_cookie = B_FALSE;
2426 	dma->dp_need_to_switch_cookies = B_FALSE;
2427 	dma->dp_saved_cookies = NULL;
2428 	dma->dp_sleep_flags = KM_PANIC;
2429 	dma->dp_need_to_free_window = B_FALSE;
2430 	dma->dp_partial_required = B_FALSE;
2431 	dma->dp_trim_required = B_FALSE;
2432 	dma->dp_sglinfo.si_copybuf_req = 0;
2433 #if !defined(__amd64)
2434 	dma->dp_cb_remaping = B_FALSE;
2435 	dma->dp_kva = NULL;
2436 #endif
2437 
2438 	/* FMA related initialization */
2439 	hp->dmai_fault = 0;
2440 	hp->dmai_fault_check = NULL;
2441 	hp->dmai_fault_notify = NULL;
2442 	hp->dmai_error.err_ena = 0;
2443 	hp->dmai_error.err_status = DDI_FM_OK;
2444 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2445 	hp->dmai_error.err_ontrap = NULL;
2446 	hp->dmai_error.err_fep = NULL;
2447 	hp->dmai_error.err_cf = NULL;
2448 }
2449 
2450 
2451 /*
2452  * rootnex_valid_alloc_parms()
2453  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2454  */
2455 static int
2456 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2457 {
2458 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2459 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2460 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2461 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2462 		return (DDI_DMA_BADATTR);
2463 	}
2464 
2465 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2466 		return (DDI_DMA_BADATTR);
2467 	}
2468 
2469 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2470 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2471 	    attr->dma_attr_sgllen <= 0) {
2472 		return (DDI_DMA_BADATTR);
2473 	}
2474 
2475 	/* We should be able to DMA into every byte offset in a page */
2476 	if (maxsegmentsize < MMU_PAGESIZE) {
2477 		return (DDI_DMA_BADATTR);
2478 	}
2479 
2480 	return (DDI_SUCCESS);
2481 }
2482 
2483 /*
2484  * rootnex_valid_bind_parms()
2485  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2486  */
2487 /* ARGSUSED */
2488 static int
2489 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2490 {
2491 #if !defined(__amd64)
2492 	/*
2493 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2494 	 * we can track the offset for the obsoleted interfaces.
2495 	 */
2496 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2497 		return (DDI_DMA_TOOBIG);
2498 	}
2499 #endif
2500 
2501 	return (DDI_SUCCESS);
2502 }
2503 
2504 
2505 /*
2506  * rootnex_get_sgl()
2507  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2508  *    with a call to the vm layer when vm2.0 comes around...
2509  */
2510 static void
2511 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2512     rootnex_sglinfo_t *sglinfo)
2513 {
2514 	ddi_dma_atyp_t buftype;
2515 	rootnex_addr_t raddr;
2516 	uint64_t last_page;
2517 	uint64_t offset;
2518 	uint64_t addrhi;
2519 	uint64_t addrlo;
2520 	uint64_t maxseg;
2521 	page_t **pplist;
2522 	uint64_t paddr;
2523 	uint32_t psize;
2524 	uint32_t size;
2525 	caddr_t vaddr;
2526 	uint_t pcnt;
2527 	page_t *pp;
2528 	uint_t cnt;
2529 
2530 
2531 	/* shortcuts */
2532 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2533 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2534 	maxseg = sglinfo->si_max_cookie_size;
2535 	buftype = dmar_object->dmao_type;
2536 	addrhi = sglinfo->si_max_addr;
2537 	addrlo = sglinfo->si_min_addr;
2538 	size = dmar_object->dmao_size;
2539 
2540 	pcnt = 0;
2541 	cnt = 0;
2542 
2543 	/*
2544 	 * if we were passed down a linked list of pages, i.e. pointer to
2545 	 * page_t, use this to get our physical address and buf offset.
2546 	 */
2547 	if (buftype == DMA_OTYP_PAGES) {
2548 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2549 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2550 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2551 		    MMU_PAGEOFFSET;
2552 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2553 		psize = MIN(size, (MMU_PAGESIZE - offset));
2554 		pp = pp->p_next;
2555 		sglinfo->si_asp = NULL;
2556 
2557 	/*
2558 	 * We weren't passed down a linked list of pages, but if we were passed
2559 	 * down an array of pages, use this to get our physical address and buf
2560 	 * offset.
2561 	 */
2562 	} else if (pplist != NULL) {
2563 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2564 		    (buftype == DMA_OTYP_BUFVADDR));
2565 
2566 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2567 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2568 		if (sglinfo->si_asp == NULL) {
2569 			sglinfo->si_asp = &kas;
2570 		}
2571 
2572 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2573 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2574 		paddr += offset;
2575 		psize = MIN(size, (MMU_PAGESIZE - offset));
2576 		pcnt++;
2577 
2578 	/*
2579 	 * All we have is a virtual address, we'll need to call into the VM
2580 	 * to get the physical address.
2581 	 */
2582 	} else {
2583 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2584 		    (buftype == DMA_OTYP_BUFVADDR));
2585 
2586 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2587 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2588 		if (sglinfo->si_asp == NULL) {
2589 			sglinfo->si_asp = &kas;
2590 		}
2591 
2592 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2593 		paddr += offset;
2594 		psize = MIN(size, (MMU_PAGESIZE - offset));
2595 		vaddr += psize;
2596 	}
2597 
2598 #ifdef __xpv
2599 	/*
2600 	 * If we're dom0, we're using a real device so we need to load
2601 	 * the cookies with MFNs instead of PFNs.
2602 	 */
2603 	raddr = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
2604 #else
2605 	raddr = paddr;
2606 #endif
2607 
2608 	/*
2609 	 * Setup the first cookie with the physical address of the page and the
2610 	 * size of the page (which takes into account the initial offset into
2611 	 * the page.
2612 	 */
2613 	sgl[cnt].dmac_laddress = raddr;
2614 	sgl[cnt].dmac_size = psize;
2615 	sgl[cnt].dmac_type = 0;
2616 
2617 	/*
2618 	 * Save away the buffer offset into the page. We'll need this later in
2619 	 * the copy buffer code to help figure out the page index within the
2620 	 * buffer and the offset into the current page.
2621 	 */
2622 	sglinfo->si_buf_offset = offset;
2623 
2624 	/*
2625 	 * If the DMA engine can't reach the physical address, increase how
2626 	 * much copy buffer we need. We always increase by pagesize so we don't
2627 	 * have to worry about converting offsets. Set a flag in the cookies
2628 	 * dmac_type to indicate that it uses the copy buffer. If this isn't the
2629 	 * last cookie, go to the next cookie (since we separate each page which
2630 	 * uses the copy buffer in case the copy buffer is not physically
2631 	 * contiguous.
2632 	 */
2633 	if ((raddr < addrlo) || ((raddr + psize) > addrhi)) {
2634 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
2635 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2636 		if ((cnt + 1) < sglinfo->si_max_pages) {
2637 			cnt++;
2638 			sgl[cnt].dmac_laddress = 0;
2639 			sgl[cnt].dmac_size = 0;
2640 			sgl[cnt].dmac_type = 0;
2641 		}
2642 	}
2643 
2644 	/*
2645 	 * save this page's physical address so we can figure out if the next
2646 	 * page is physically contiguous. Keep decrementing size until we are
2647 	 * done with the buffer.
2648 	 */
2649 	last_page = raddr & MMU_PAGEMASK;
2650 	size -= psize;
2651 
2652 	while (size > 0) {
2653 		/* Get the size for this page (i.e. partial or full page) */
2654 		psize = MIN(size, MMU_PAGESIZE);
2655 
2656 		if (buftype == DMA_OTYP_PAGES) {
2657 			/* get the paddr from the page_t */
2658 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2659 			paddr = pfn_to_pa(pp->p_pagenum);
2660 			pp = pp->p_next;
2661 		} else if (pplist != NULL) {
2662 			/* index into the array of page_t's to get the paddr */
2663 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2664 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2665 			pcnt++;
2666 		} else {
2667 			/* call into the VM to get the paddr */
2668 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2669 			    vaddr));
2670 			vaddr += psize;
2671 		}
2672 
2673 #ifdef __xpv
2674 		/*
2675 		 * If we're dom0, we're using a real device so we need to load
2676 		 * the cookies with MFNs instead of PFNs.
2677 		 */
2678 		raddr = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
2679 #else
2680 		raddr = paddr;
2681 #endif
2682 		/* check to see if this page needs the copy buffer */
2683 		if ((raddr < addrlo) || ((raddr + psize) > addrhi)) {
2684 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
2685 
2686 			/*
2687 			 * if there is something in the current cookie, go to
2688 			 * the next one. We only want one page in a cookie which
2689 			 * uses the copybuf since the copybuf doesn't have to
2690 			 * be physically contiguous.
2691 			 */
2692 			if (sgl[cnt].dmac_size != 0) {
2693 				cnt++;
2694 			}
2695 			sgl[cnt].dmac_laddress = raddr;
2696 			sgl[cnt].dmac_size = psize;
2697 #if defined(__amd64)
2698 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2699 #else
2700 			/*
2701 			 * save the buf offset for 32-bit kernel. used in the
2702 			 * obsoleted interfaces.
2703 			 */
2704 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
2705 			    (dmar_object->dmao_size - size);
2706 #endif
2707 			/* if this isn't the last cookie, go to the next one */
2708 			if ((cnt + 1) < sglinfo->si_max_pages) {
2709 				cnt++;
2710 				sgl[cnt].dmac_laddress = 0;
2711 				sgl[cnt].dmac_size = 0;
2712 				sgl[cnt].dmac_type = 0;
2713 			}
2714 
2715 		/*
2716 		 * this page didn't need the copy buffer, if it's not physically
2717 		 * contiguous, or it would put us over a segment boundary, or it
2718 		 * puts us over the max cookie size, or the current sgl doesn't
2719 		 * have anything in it.
2720 		 */
2721 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
2722 		    !(raddr & sglinfo->si_segmask) ||
2723 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
2724 		    (sgl[cnt].dmac_size == 0)) {
2725 			/*
2726 			 * if we're not already in a new cookie, go to the next
2727 			 * cookie.
2728 			 */
2729 			if (sgl[cnt].dmac_size != 0) {
2730 				cnt++;
2731 			}
2732 
2733 			/* save the cookie information */
2734 			sgl[cnt].dmac_laddress = raddr;
2735 			sgl[cnt].dmac_size = psize;
2736 #if defined(__amd64)
2737 			sgl[cnt].dmac_type = 0;
2738 #else
2739 			/*
2740 			 * save the buf offset for 32-bit kernel. used in the
2741 			 * obsoleted interfaces.
2742 			 */
2743 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
2744 #endif
2745 
2746 		/*
2747 		 * this page didn't need the copy buffer, it is physically
2748 		 * contiguous with the last page, and it's <= the max cookie
2749 		 * size.
2750 		 */
2751 		} else {
2752 			sgl[cnt].dmac_size += psize;
2753 
2754 			/*
2755 			 * if this exactly ==  the maximum cookie size, and
2756 			 * it isn't the last cookie, go to the next cookie.
2757 			 */
2758 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
2759 			    ((cnt + 1) < sglinfo->si_max_pages)) {
2760 				cnt++;
2761 				sgl[cnt].dmac_laddress = 0;
2762 				sgl[cnt].dmac_size = 0;
2763 				sgl[cnt].dmac_type = 0;
2764 			}
2765 		}
2766 
2767 		/*
2768 		 * save this page's physical address so we can figure out if the
2769 		 * next page is physically contiguous. Keep decrementing size
2770 		 * until we are done with the buffer.
2771 		 */
2772 		last_page = raddr;
2773 		size -= psize;
2774 	}
2775 
2776 	/* we're done, save away how many cookies the sgl has */
2777 	if (sgl[cnt].dmac_size == 0) {
2778 		ASSERT(cnt < sglinfo->si_max_pages);
2779 		sglinfo->si_sgl_size = cnt;
2780 	} else {
2781 		sglinfo->si_sgl_size = cnt + 1;
2782 	}
2783 }
2784 
2785 /*
2786  * rootnex_bind_slowpath()
2787  *    Call in the bind path if the calling driver can't use the sgl without
2788  *    modifying it. We either need to use the copy buffer and/or we will end up
2789  *    with a partial bind.
2790  */
2791 static int
2792 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
2793     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag)
2794 {
2795 	rootnex_sglinfo_t *sinfo;
2796 	rootnex_window_t *window;
2797 	ddi_dma_cookie_t *cookie;
2798 	size_t copybuf_used;
2799 	size_t dmac_size;
2800 	boolean_t partial;
2801 	off_t cur_offset;
2802 	page_t *cur_pp;
2803 	major_t mnum;
2804 	int e;
2805 	int i;
2806 
2807 
2808 	sinfo = &dma->dp_sglinfo;
2809 	copybuf_used = 0;
2810 	partial = B_FALSE;
2811 
2812 	/*
2813 	 * If we're using the copybuf, set the copybuf state in dma struct.
2814 	 * Needs to be first since it sets the copy buffer size.
2815 	 */
2816 	if (sinfo->si_copybuf_req != 0) {
2817 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
2818 		if (e != DDI_SUCCESS) {
2819 			return (e);
2820 		}
2821 	} else {
2822 		dma->dp_copybuf_size = 0;
2823 	}
2824 
2825 	/*
2826 	 * Figure out if we need to do a partial mapping. If so, figure out
2827 	 * if we need to trim the buffers when we munge the sgl.
2828 	 */
2829 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
2830 	    (dma->dp_dma.dmao_size > dma->dp_maxxfer) ||
2831 	    (attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
2832 		dma->dp_partial_required = B_TRUE;
2833 		if (attr->dma_attr_granular != 1) {
2834 			dma->dp_trim_required = B_TRUE;
2835 		}
2836 	} else {
2837 		dma->dp_partial_required = B_FALSE;
2838 		dma->dp_trim_required = B_FALSE;
2839 	}
2840 
2841 	/* If we need to do a partial bind, make sure the driver supports it */
2842 	if (dma->dp_partial_required &&
2843 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
2844 
2845 		mnum = ddi_driver_major(dma->dp_dip);
2846 		/*
2847 		 * patchable which allows us to print one warning per major
2848 		 * number.
2849 		 */
2850 		if ((rootnex_bind_warn) &&
2851 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
2852 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
2853 			cmn_err(CE_WARN, "!%s: coding error detected, the "
2854 			    "driver is using ddi_dma_attr(9S) incorrectly. "
2855 			    "There is a small risk of data corruption in "
2856 			    "particular with large I/Os. The driver should be "
2857 			    "replaced with a corrected version for proper "
2858 			    "system operation. To disable this warning, add "
2859 			    "'set rootnex:rootnex_bind_warn=0' to "
2860 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
2861 		}
2862 		return (DDI_DMA_TOOBIG);
2863 	}
2864 
2865 	/*
2866 	 * we might need multiple windows, setup state to handle them. In this
2867 	 * code path, we will have at least one window.
2868 	 */
2869 	e = rootnex_setup_windows(hp, dma, attr, kmflag);
2870 	if (e != DDI_SUCCESS) {
2871 		rootnex_teardown_copybuf(dma);
2872 		return (e);
2873 	}
2874 
2875 	window = &dma->dp_window[0];
2876 	cookie = &dma->dp_cookies[0];
2877 	cur_offset = 0;
2878 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
2879 	if (dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) {
2880 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
2881 	}
2882 
2883 	/* loop though all the cookies we got back from get_sgl() */
2884 	for (i = 0; i < sinfo->si_sgl_size; i++) {
2885 		/*
2886 		 * If we're using the copy buffer, check this cookie and setup
2887 		 * its associated copy buffer state. If this cookie uses the
2888 		 * copy buffer, make sure we sync this window during dma_sync.
2889 		 */
2890 		if (dma->dp_copybuf_size > 0) {
2891 			rootnex_setup_cookie(&dmareq->dmar_object, dma, cookie,
2892 			    cur_offset, &copybuf_used, &cur_pp);
2893 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2894 				window->wd_dosync = B_TRUE;
2895 			}
2896 		}
2897 
2898 		/*
2899 		 * save away the cookie size, since it could be modified in
2900 		 * the windowing code.
2901 		 */
2902 		dmac_size = cookie->dmac_size;
2903 
2904 		/* if we went over max copybuf size */
2905 		if (dma->dp_copybuf_size &&
2906 		    (copybuf_used > dma->dp_copybuf_size)) {
2907 			partial = B_TRUE;
2908 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
2909 			    cookie, cur_offset, &copybuf_used);
2910 			if (e != DDI_SUCCESS) {
2911 				rootnex_teardown_copybuf(dma);
2912 				rootnex_teardown_windows(dma);
2913 				return (e);
2914 			}
2915 
2916 			/*
2917 			 * if the coookie uses the copy buffer, make sure the
2918 			 * new window we just moved to is set to sync.
2919 			 */
2920 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2921 				window->wd_dosync = B_TRUE;
2922 			}
2923 			DTRACE_PROBE1(rootnex__copybuf__window, dev_info_t *,
2924 			    dma->dp_dip);
2925 
2926 		/* if the cookie cnt == max sgllen, move to the next window */
2927 		} else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) {
2928 			partial = B_TRUE;
2929 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
2930 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
2931 			    cookie, attr, cur_offset);
2932 			if (e != DDI_SUCCESS) {
2933 				rootnex_teardown_copybuf(dma);
2934 				rootnex_teardown_windows(dma);
2935 				return (e);
2936 			}
2937 
2938 			/*
2939 			 * if the coookie uses the copy buffer, make sure the
2940 			 * new window we just moved to is set to sync.
2941 			 */
2942 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2943 				window->wd_dosync = B_TRUE;
2944 			}
2945 			DTRACE_PROBE1(rootnex__sgllen__window, dev_info_t *,
2946 			    dma->dp_dip);
2947 
2948 		/* else if we will be over maxxfer */
2949 		} else if ((window->wd_size + dmac_size) >
2950 		    dma->dp_maxxfer) {
2951 			partial = B_TRUE;
2952 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
2953 			    cookie);
2954 			if (e != DDI_SUCCESS) {
2955 				rootnex_teardown_copybuf(dma);
2956 				rootnex_teardown_windows(dma);
2957 				return (e);
2958 			}
2959 
2960 			/*
2961 			 * if the coookie uses the copy buffer, make sure the
2962 			 * new window we just moved to is set to sync.
2963 			 */
2964 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2965 				window->wd_dosync = B_TRUE;
2966 			}
2967 			DTRACE_PROBE1(rootnex__maxxfer__window, dev_info_t *,
2968 			    dma->dp_dip);
2969 
2970 		/* else this cookie fits in the current window */
2971 		} else {
2972 			window->wd_cookie_cnt++;
2973 			window->wd_size += dmac_size;
2974 		}
2975 
2976 		/* track our offset into the buffer, go to the next cookie */
2977 		ASSERT(dmac_size <= dma->dp_dma.dmao_size);
2978 		ASSERT(cookie->dmac_size <= dmac_size);
2979 		cur_offset += dmac_size;
2980 		cookie++;
2981 	}
2982 
2983 	/* if we ended up with a zero sized window in the end, clean it up */
2984 	if (window->wd_size == 0) {
2985 		hp->dmai_nwin--;
2986 		window--;
2987 	}
2988 
2989 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
2990 
2991 	if (!partial) {
2992 		return (DDI_DMA_MAPPED);
2993 	}
2994 
2995 	ASSERT(dma->dp_partial_required);
2996 	return (DDI_DMA_PARTIAL_MAP);
2997 }
2998 
2999 
3000 /*
3001  * rootnex_setup_copybuf()
3002  *    Called in bind slowpath. Figures out if we're going to use the copy
3003  *    buffer, and if we do, sets up the basic state to handle it.
3004  */
3005 static int
3006 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3007     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3008 {
3009 	rootnex_sglinfo_t *sinfo;
3010 	ddi_dma_attr_t lattr;
3011 	size_t max_copybuf;
3012 	int cansleep;
3013 	int e;
3014 #if !defined(__amd64)
3015 	int vmflag;
3016 #endif
3017 
3018 
3019 	sinfo = &dma->dp_sglinfo;
3020 
3021 	/* read this first so it's consistent through the routine  */
3022 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3023 
3024 	/* We need to call into the rootnex on ddi_dma_sync() */
3025 	hp->dmai_rflags &= ~DMP_NOSYNC;
3026 
3027 	/* make sure the copybuf size <= the max size */
3028 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3029 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3030 
3031 #if !defined(__amd64)
3032 	/*
3033 	 * if we don't have kva space to copy to/from, allocate the KVA space
3034 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3035 	 * the 64-bit kernel.
3036 	 */
3037 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3038 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3039 
3040 		/* convert the sleep flags */
3041 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3042 			vmflag = VM_SLEEP;
3043 		} else {
3044 			vmflag = VM_NOSLEEP;
3045 		}
3046 
3047 		/* allocate Kernel VA space that we can bcopy to/from */
3048 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3049 		    vmflag);
3050 		if (dma->dp_kva == NULL) {
3051 			return (DDI_DMA_NORESOURCES);
3052 		}
3053 	}
3054 #endif
3055 
3056 	/* convert the sleep flags */
3057 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3058 		cansleep = 1;
3059 	} else {
3060 		cansleep = 0;
3061 	}
3062 
3063 	/*
3064 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3065 	 * engine limits, so we can't use kmem_alloc... We don't need
3066 	 * contiguous memory (sgllen) since we will be forcing windows on
3067 	 * sgllen anyway.
3068 	 */
3069 	lattr = *attr;
3070 	lattr.dma_attr_align = MMU_PAGESIZE;
3071 	/*
3072 	 * this should be < 0 to indicate no limit, but due to a bug in
3073 	 * the rootnex, we'll set it to the maximum positive int.
3074 	 */
3075 	lattr.dma_attr_sgllen = 0x7fffffff;
3076 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3077 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3078 	if (e != DDI_SUCCESS) {
3079 #if !defined(__amd64)
3080 		if (dma->dp_kva != NULL) {
3081 			vmem_free(heap_arena, dma->dp_kva,
3082 			    dma->dp_copybuf_size);
3083 		}
3084 #endif
3085 		return (DDI_DMA_NORESOURCES);
3086 	}
3087 
3088 	DTRACE_PROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3089 	    size_t, dma->dp_copybuf_size);
3090 
3091 	return (DDI_SUCCESS);
3092 }
3093 
3094 
3095 /*
3096  * rootnex_setup_windows()
3097  *    Called in bind slowpath to setup the window state. We always have windows
3098  *    in the slowpath. Even if the window count = 1.
3099  */
3100 static int
3101 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3102     ddi_dma_attr_t *attr, int kmflag)
3103 {
3104 	rootnex_window_t *windowp;
3105 	rootnex_sglinfo_t *sinfo;
3106 	size_t copy_state_size;
3107 	size_t win_state_size;
3108 	size_t state_available;
3109 	size_t space_needed;
3110 	uint_t copybuf_win;
3111 	uint_t maxxfer_win;
3112 	size_t space_used;
3113 	uint_t sglwin;
3114 
3115 
3116 	sinfo = &dma->dp_sglinfo;
3117 
3118 	dma->dp_current_win = 0;
3119 	hp->dmai_nwin = 0;
3120 
3121 	/* If we don't need to do a partial, we only have one window */
3122 	if (!dma->dp_partial_required) {
3123 		dma->dp_max_win = 1;
3124 
3125 	/*
3126 	 * we need multiple windows, need to figure out the worse case number
3127 	 * of windows.
3128 	 */
3129 	} else {
3130 		/*
3131 		 * if we need windows because we need more copy buffer that
3132 		 * we allow, the worse case number of windows we could need
3133 		 * here would be (copybuf space required / copybuf space that
3134 		 * we have) plus one for remainder, and plus 2 to handle the
3135 		 * extra pages on the trim for the first and last pages of the
3136 		 * buffer (a page is the minimum window size so under the right
3137 		 * attr settings, you could have a window for each page).
3138 		 * The last page will only be hit here if the size is not a
3139 		 * multiple of the granularity (which theoretically shouldn't
3140 		 * be the case but never has been enforced, so we could have
3141 		 * broken things without it).
3142 		 */
3143 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3144 			ASSERT(dma->dp_copybuf_size > 0);
3145 			copybuf_win = (sinfo->si_copybuf_req /
3146 			    dma->dp_copybuf_size) + 1 + 2;
3147 		} else {
3148 			copybuf_win = 0;
3149 		}
3150 
3151 		/*
3152 		 * if we need windows because we have more cookies than the H/W
3153 		 * can handle, the number of windows we would need here would
3154 		 * be (cookie count / cookies count H/W supports) plus one for
3155 		 * remainder, and plus 2 to handle the extra pages on the trim
3156 		 * (see above comment about trim)
3157 		 */
3158 		if (attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3159 			sglwin = ((sinfo->si_sgl_size / attr->dma_attr_sgllen)
3160 			    + 1) + 2;
3161 		} else {
3162 			sglwin = 0;
3163 		}
3164 
3165 		/*
3166 		 * if we need windows because we're binding more memory than the
3167 		 * H/W can transfer at once, the number of windows we would need
3168 		 * here would be (xfer count / max xfer H/W supports) plus one
3169 		 * for remainder, and plus 2 to handle the extra pages on the
3170 		 * trim (see above comment about trim)
3171 		 */
3172 		if (dma->dp_dma.dmao_size > dma->dp_maxxfer) {
3173 			maxxfer_win = (dma->dp_dma.dmao_size /
3174 			    dma->dp_maxxfer) + 1 + 2;
3175 		} else {
3176 			maxxfer_win = 0;
3177 		}
3178 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3179 		ASSERT(dma->dp_max_win > 0);
3180 	}
3181 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3182 
3183 	/*
3184 	 * Get space for window and potential copy buffer state. Before we
3185 	 * go and allocate memory, see if we can get away with using what's
3186 	 * left in the pre-allocted state or the dynamically allocated sgl.
3187 	 */
3188 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3189 	    sizeof (ddi_dma_cookie_t));
3190 
3191 	/* if we dynamically allocated space for the cookies */
3192 	if (dma->dp_need_to_free_cookie) {
3193 		/* if we have more space in the pre-allocted buffer, use it */
3194 		ASSERT(space_used <= dma->dp_cookie_size);
3195 		if ((dma->dp_cookie_size - space_used) <=
3196 		    rootnex_state->r_prealloc_size) {
3197 			state_available = rootnex_state->r_prealloc_size;
3198 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3199 
3200 		/*
3201 		 * else, we have more free space in the dynamically allocated
3202 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3203 		 * didn't need a lot of cookies.
3204 		 */
3205 		} else {
3206 			state_available = dma->dp_cookie_size - space_used;
3207 			windowp = (rootnex_window_t *)
3208 			    &dma->dp_cookies[sinfo->si_sgl_size];
3209 		}
3210 
3211 	/* we used the pre-alloced buffer */
3212 	} else {
3213 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3214 		state_available = rootnex_state->r_prealloc_size - space_used;
3215 		windowp = (rootnex_window_t *)
3216 		    &dma->dp_cookies[sinfo->si_sgl_size];
3217 	}
3218 
3219 	/*
3220 	 * figure out how much state we need to track the copy buffer. Add an
3221 	 * addition 8 bytes for pointer alignemnt later.
3222 	 */
3223 	if (dma->dp_copybuf_size > 0) {
3224 		copy_state_size = sinfo->si_max_pages *
3225 		    sizeof (rootnex_pgmap_t);
3226 	} else {
3227 		copy_state_size = 0;
3228 	}
3229 	/* add an additional 8 bytes for pointer alignment */
3230 	space_needed = win_state_size + copy_state_size + 0x8;
3231 
3232 	/* if we have enough space already, use it */
3233 	if (state_available >= space_needed) {
3234 		dma->dp_window = windowp;
3235 		dma->dp_need_to_free_window = B_FALSE;
3236 
3237 	/* not enough space, need to allocate more. */
3238 	} else {
3239 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3240 		if (dma->dp_window == NULL) {
3241 			return (DDI_DMA_NORESOURCES);
3242 		}
3243 		dma->dp_need_to_free_window = B_TRUE;
3244 		dma->dp_window_size = space_needed;
3245 		DTRACE_PROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3246 		    dma->dp_dip, size_t, space_needed);
3247 	}
3248 
3249 	/*
3250 	 * we allocate copy buffer state and window state at the same time.
3251 	 * setup our copy buffer state pointers. Make sure it's aligned.
3252 	 */
3253 	if (dma->dp_copybuf_size > 0) {
3254 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3255 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3256 
3257 #if !defined(__amd64)
3258 		/*
3259 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3260 		 * false/NULL. Should be quicker to bzero vs loop and set.
3261 		 */
3262 		bzero(dma->dp_pgmap, copy_state_size);
3263 #endif
3264 	} else {
3265 		dma->dp_pgmap = NULL;
3266 	}
3267 
3268 	return (DDI_SUCCESS);
3269 }
3270 
3271 
3272 /*
3273  * rootnex_teardown_copybuf()
3274  *    cleans up after rootnex_setup_copybuf()
3275  */
3276 static void
3277 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3278 {
3279 #if !defined(__amd64)
3280 	int i;
3281 
3282 	/*
3283 	 * if we allocated kernel heap VMEM space, go through all the pages and
3284 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3285 	 * arena. Then free the VMEM space.
3286 	 */
3287 	if (dma->dp_kva != NULL) {
3288 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3289 			if (dma->dp_pgmap[i].pm_mapped) {
3290 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3291 				    MMU_PAGESIZE, HAT_UNLOAD);
3292 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3293 			}
3294 		}
3295 
3296 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3297 	}
3298 
3299 #endif
3300 
3301 	/* if we allocated a copy buffer, free it */
3302 	if (dma->dp_cbaddr != NULL) {
3303 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3304 	}
3305 }
3306 
3307 
3308 /*
3309  * rootnex_teardown_windows()
3310  *    cleans up after rootnex_setup_windows()
3311  */
3312 static void
3313 rootnex_teardown_windows(rootnex_dma_t *dma)
3314 {
3315 	/*
3316 	 * if we had to allocate window state on the last bind (because we
3317 	 * didn't have enough pre-allocated space in the handle), free it.
3318 	 */
3319 	if (dma->dp_need_to_free_window) {
3320 		kmem_free(dma->dp_window, dma->dp_window_size);
3321 	}
3322 }
3323 
3324 
3325 /*
3326  * rootnex_init_win()
3327  *    Called in bind slow path during creation of a new window. Initializes
3328  *    window state to default values.
3329  */
3330 /*ARGSUSED*/
3331 static void
3332 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3333     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3334 {
3335 	hp->dmai_nwin++;
3336 	window->wd_dosync = B_FALSE;
3337 	window->wd_offset = cur_offset;
3338 	window->wd_size = 0;
3339 	window->wd_first_cookie = cookie;
3340 	window->wd_cookie_cnt = 0;
3341 	window->wd_trim.tr_trim_first = B_FALSE;
3342 	window->wd_trim.tr_trim_last = B_FALSE;
3343 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3344 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3345 #if !defined(__amd64)
3346 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3347 #endif
3348 }
3349 
3350 
3351 /*
3352  * rootnex_setup_cookie()
3353  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3354  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3355  *    out if it uses the copy buffer, and if it does, save away everything we'll
3356  *    need during sync.
3357  */
3358 static void
3359 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3360     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3361     page_t **cur_pp)
3362 {
3363 	boolean_t copybuf_sz_power_2;
3364 	rootnex_sglinfo_t *sinfo;
3365 	paddr_t paddr;
3366 	uint_t pidx;
3367 	uint_t pcnt;
3368 	off_t poff;
3369 #if defined(__amd64)
3370 	pfn_t pfn;
3371 #else
3372 	page_t **pplist;
3373 #endif
3374 
3375 	sinfo = &dma->dp_sglinfo;
3376 
3377 	/*
3378 	 * Calculate the page index relative to the start of the buffer. The
3379 	 * index to the current page for our buffer is the offset into the
3380 	 * first page of the buffer plus our current offset into the buffer
3381 	 * itself, shifted of course...
3382 	 */
3383 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3384 	ASSERT(pidx < sinfo->si_max_pages);
3385 
3386 	/* if this cookie uses the copy buffer */
3387 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3388 		/*
3389 		 * NOTE: we know that since this cookie uses the copy buffer, it
3390 		 * is <= MMU_PAGESIZE.
3391 		 */
3392 
3393 		/*
3394 		 * get the offset into the page. For the 64-bit kernel, get the
3395 		 * pfn which we'll use with seg kpm.
3396 		 */
3397 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3398 #if defined(__amd64)
3399 		/* mfn_to_pfn() is a NOP on i86pc */
3400 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3401 #endif /* __amd64 */
3402 
3403 		/* figure out if the copybuf size is a power of 2 */
3404 		if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) {
3405 			copybuf_sz_power_2 = B_FALSE;
3406 		} else {
3407 			copybuf_sz_power_2 = B_TRUE;
3408 		}
3409 
3410 		/* This page uses the copy buffer */
3411 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3412 
3413 		/*
3414 		 * save the copy buffer KVA that we'll use with this page.
3415 		 * if we still fit within the copybuf, it's a simple add.
3416 		 * otherwise, we need to wrap over using & or % accordingly.
3417 		 */
3418 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3419 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3420 			    *copybuf_used;
3421 		} else {
3422 			if (copybuf_sz_power_2) {
3423 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3424 				    (uintptr_t)dma->dp_cbaddr +
3425 				    (*copybuf_used &
3426 				    (dma->dp_copybuf_size - 1)));
3427 			} else {
3428 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3429 				    (uintptr_t)dma->dp_cbaddr +
3430 				    (*copybuf_used % dma->dp_copybuf_size));
3431 			}
3432 		}
3433 
3434 		/*
3435 		 * over write the cookie physical address with the address of
3436 		 * the physical address of the copy buffer page that we will
3437 		 * use.
3438 		 */
3439 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3440 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3441 
3442 #ifdef __xpv
3443 		/*
3444 		 * If we're dom0, we're using a real device so we need to load
3445 		 * the cookies with MAs instead of PAs.
3446 		 */
3447 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3448 #else
3449 		cookie->dmac_laddress = paddr;
3450 #endif
3451 
3452 		/* if we have a kernel VA, it's easy, just save that address */
3453 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3454 		    (sinfo->si_asp == &kas)) {
3455 			/*
3456 			 * save away the page aligned virtual address of the
3457 			 * driver buffer. Offsets are handled in the sync code.
3458 			 */
3459 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3460 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3461 			    & MMU_PAGEMASK);
3462 #if !defined(__amd64)
3463 			/*
3464 			 * we didn't need to, and will never need to map this
3465 			 * page.
3466 			 */
3467 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3468 #endif
3469 
3470 		/* we don't have a kernel VA. We need one for the bcopy. */
3471 		} else {
3472 #if defined(__amd64)
3473 			/*
3474 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3475 			 * get a Kernel VA for the corresponding pfn.
3476 			 */
3477 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3478 #else
3479 			/*
3480 			 * for the 32-bit kernel, this is a pain. First we'll
3481 			 * save away the page_t or user VA for this page. This
3482 			 * is needed in rootnex_dma_win() when we switch to a
3483 			 * new window which requires us to re-map the copy
3484 			 * buffer.
3485 			 */
3486 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3487 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3488 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3489 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3490 			} else if (pplist != NULL) {
3491 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3492 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3493 			} else {
3494 				dma->dp_pgmap[pidx].pm_pp = NULL;
3495 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3496 				    (((uintptr_t)
3497 				    dmar_object->dmao_obj.virt_obj.v_addr +
3498 				    cur_offset) & MMU_PAGEMASK);
3499 			}
3500 
3501 			/*
3502 			 * save away the page aligned virtual address which was
3503 			 * allocated from the kernel heap arena (taking into
3504 			 * account if we need more copy buffer than we alloced
3505 			 * and use multiple windows to handle this, i.e. &,%).
3506 			 * NOTE: there isn't and physical memory backing up this
3507 			 * virtual address space currently.
3508 			 */
3509 			if ((*copybuf_used + MMU_PAGESIZE) <=
3510 			    dma->dp_copybuf_size) {
3511 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3512 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3513 				    MMU_PAGEMASK);
3514 			} else {
3515 				if (copybuf_sz_power_2) {
3516 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3517 					    (((uintptr_t)dma->dp_kva +
3518 					    (*copybuf_used &
3519 					    (dma->dp_copybuf_size - 1))) &
3520 					    MMU_PAGEMASK);
3521 				} else {
3522 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3523 					    (((uintptr_t)dma->dp_kva +
3524 					    (*copybuf_used %
3525 					    dma->dp_copybuf_size)) &
3526 					    MMU_PAGEMASK);
3527 				}
3528 			}
3529 
3530 			/*
3531 			 * if we haven't used up the available copy buffer yet,
3532 			 * map the kva to the physical page.
3533 			 */
3534 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3535 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3536 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3537 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3538 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
3539 					    dma->dp_pgmap[pidx].pm_kaddr);
3540 				} else {
3541 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
3542 					    sinfo->si_asp,
3543 					    dma->dp_pgmap[pidx].pm_kaddr);
3544 				}
3545 
3546 			/*
3547 			 * we've used up the available copy buffer, this page
3548 			 * will have to be mapped during rootnex_dma_win() when
3549 			 * we switch to a new window which requires a re-map
3550 			 * the copy buffer. (32-bit kernel only)
3551 			 */
3552 			} else {
3553 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3554 			}
3555 #endif
3556 			/* go to the next page_t */
3557 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3558 				*cur_pp = (*cur_pp)->p_next;
3559 			}
3560 		}
3561 
3562 		/* add to the copy buffer count */
3563 		*copybuf_used += MMU_PAGESIZE;
3564 
3565 	/*
3566 	 * This cookie doesn't use the copy buffer. Walk through the pages this
3567 	 * cookie occupies to reflect this.
3568 	 */
3569 	} else {
3570 		/*
3571 		 * figure out how many pages the cookie occupies. We need to
3572 		 * use the original page offset of the buffer and the cookies
3573 		 * offset in the buffer to do this.
3574 		 */
3575 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
3576 		pcnt = mmu_btopr(cookie->dmac_size + poff);
3577 
3578 		while (pcnt > 0) {
3579 #if !defined(__amd64)
3580 			/*
3581 			 * the 32-bit kernel doesn't have seg kpm, so we need
3582 			 * to map in the driver buffer (if it didn't come down
3583 			 * with a kernel VA) on the fly. Since this page doesn't
3584 			 * use the copy buffer, it's not, or will it ever, have
3585 			 * to be mapped in.
3586 			 */
3587 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3588 #endif
3589 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
3590 
3591 			/*
3592 			 * we need to update pidx and cur_pp or we'll loose
3593 			 * track of where we are.
3594 			 */
3595 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3596 				*cur_pp = (*cur_pp)->p_next;
3597 			}
3598 			pidx++;
3599 			pcnt--;
3600 		}
3601 	}
3602 }
3603 
3604 
3605 /*
3606  * rootnex_sgllen_window_boundary()
3607  *    Called in the bind slow path when the next cookie causes us to exceed (in
3608  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
3609  *    length supported by the DMA H/W.
3610  */
3611 static int
3612 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3613     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
3614     off_t cur_offset)
3615 {
3616 	off_t new_offset;
3617 	size_t trim_sz;
3618 	off_t coffset;
3619 
3620 
3621 	/*
3622 	 * if we know we'll never have to trim, it's pretty easy. Just move to
3623 	 * the next window and init it. We're done.
3624 	 */
3625 	if (!dma->dp_trim_required) {
3626 		(*windowp)++;
3627 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3628 		(*windowp)->wd_cookie_cnt++;
3629 		(*windowp)->wd_size = cookie->dmac_size;
3630 		return (DDI_SUCCESS);
3631 	}
3632 
3633 	/* figure out how much we need to trim from the window */
3634 	ASSERT(attr->dma_attr_granular != 0);
3635 	if (dma->dp_granularity_power_2) {
3636 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
3637 	} else {
3638 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
3639 	}
3640 
3641 	/* The window's a whole multiple of granularity. We're done */
3642 	if (trim_sz == 0) {
3643 		(*windowp)++;
3644 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3645 		(*windowp)->wd_cookie_cnt++;
3646 		(*windowp)->wd_size = cookie->dmac_size;
3647 		return (DDI_SUCCESS);
3648 	}
3649 
3650 	/*
3651 	 * The window's not a whole multiple of granularity, since we know this
3652 	 * is due to the sgllen, we need to go back to the last cookie and trim
3653 	 * that one, add the left over part of the old cookie into the new
3654 	 * window, and then add in the new cookie into the new window.
3655 	 */
3656 
3657 	/*
3658 	 * make sure the driver isn't making us do something bad... Trimming and
3659 	 * sgllen == 1 don't go together.
3660 	 */
3661 	if (attr->dma_attr_sgllen == 1) {
3662 		return (DDI_DMA_NOMAPPING);
3663 	}
3664 
3665 	/*
3666 	 * first, setup the current window to account for the trim. Need to go
3667 	 * back to the last cookie for this.
3668 	 */
3669 	cookie--;
3670 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3671 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3672 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3673 	ASSERT(cookie->dmac_size > trim_sz);
3674 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3675 	(*windowp)->wd_size -= trim_sz;
3676 
3677 	/* save the buffer offsets for the next window */
3678 	coffset = cookie->dmac_size - trim_sz;
3679 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3680 
3681 	/*
3682 	 * set this now in case this is the first window. all other cases are
3683 	 * set in dma_win()
3684 	 */
3685 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3686 
3687 	/*
3688 	 * initialize the next window using what's left over in the previous
3689 	 * cookie.
3690 	 */
3691 	(*windowp)++;
3692 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3693 	(*windowp)->wd_cookie_cnt++;
3694 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3695 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
3696 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3697 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3698 		(*windowp)->wd_dosync = B_TRUE;
3699 	}
3700 
3701 	/*
3702 	 * now go back to the current cookie and add it to the new window. set
3703 	 * the new window size to the what was left over from the previous
3704 	 * cookie and what's in the current cookie.
3705 	 */
3706 	cookie++;
3707 	(*windowp)->wd_cookie_cnt++;
3708 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
3709 
3710 	/*
3711 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
3712 	 * a max size of maxxfer). Handle that case.
3713 	 */
3714 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
3715 		/*
3716 		 * maxxfer is already a whole multiple of granularity, and this
3717 		 * trim will be <= the previous trim (since a cookie can't be
3718 		 * larger than maxxfer). Make things simple here.
3719 		 */
3720 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
3721 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3722 		(*windowp)->wd_trim.tr_last_cookie = cookie;
3723 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3724 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3725 		(*windowp)->wd_size -= trim_sz;
3726 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
3727 
3728 		/* save the buffer offsets for the next window */
3729 		coffset = cookie->dmac_size - trim_sz;
3730 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3731 
3732 		/* setup the next window */
3733 		(*windowp)++;
3734 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3735 		(*windowp)->wd_cookie_cnt++;
3736 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3737 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
3738 		    coffset;
3739 		(*windowp)->wd_trim.tr_first_size = trim_sz;
3740 	}
3741 
3742 	return (DDI_SUCCESS);
3743 }
3744 
3745 
3746 /*
3747  * rootnex_copybuf_window_boundary()
3748  *    Called in bind slowpath when we get to a window boundary because we used
3749  *    up all the copy buffer that we have.
3750  */
3751 static int
3752 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3753     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
3754     size_t *copybuf_used)
3755 {
3756 	rootnex_sglinfo_t *sinfo;
3757 	off_t new_offset;
3758 	size_t trim_sz;
3759 	paddr_t paddr;
3760 	off_t coffset;
3761 	uint_t pidx;
3762 	off_t poff;
3763 
3764 
3765 	sinfo = &dma->dp_sglinfo;
3766 
3767 	/*
3768 	 * the copy buffer should be a whole multiple of page size. We know that
3769 	 * this cookie is <= MMU_PAGESIZE.
3770 	 */
3771 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
3772 
3773 	/*
3774 	 * from now on, all new windows in this bind need to be re-mapped during
3775 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
3776 	 * space...
3777 	 */
3778 #if !defined(__amd64)
3779 	dma->dp_cb_remaping = B_TRUE;
3780 #endif
3781 
3782 	/* reset copybuf used */
3783 	*copybuf_used = 0;
3784 
3785 	/*
3786 	 * if we don't have to trim (since granularity is set to 1), go to the
3787 	 * next window and add the current cookie to it. We know the current
3788 	 * cookie uses the copy buffer since we're in this code path.
3789 	 */
3790 	if (!dma->dp_trim_required) {
3791 		(*windowp)++;
3792 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3793 
3794 		/* Add this cookie to the new window */
3795 		(*windowp)->wd_cookie_cnt++;
3796 		(*windowp)->wd_size += cookie->dmac_size;
3797 		*copybuf_used += MMU_PAGESIZE;
3798 		return (DDI_SUCCESS);
3799 	}
3800 
3801 	/*
3802 	 * *** may need to trim, figure it out.
3803 	 */
3804 
3805 	/* figure out how much we need to trim from the window */
3806 	if (dma->dp_granularity_power_2) {
3807 		trim_sz = (*windowp)->wd_size &
3808 		    (hp->dmai_attr.dma_attr_granular - 1);
3809 	} else {
3810 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
3811 	}
3812 
3813 	/*
3814 	 * if the window's a whole multiple of granularity, go to the next
3815 	 * window, init it, then add in the current cookie. We know the current
3816 	 * cookie uses the copy buffer since we're in this code path.
3817 	 */
3818 	if (trim_sz == 0) {
3819 		(*windowp)++;
3820 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3821 
3822 		/* Add this cookie to the new window */
3823 		(*windowp)->wd_cookie_cnt++;
3824 		(*windowp)->wd_size += cookie->dmac_size;
3825 		*copybuf_used += MMU_PAGESIZE;
3826 		return (DDI_SUCCESS);
3827 	}
3828 
3829 	/*
3830 	 * *** We figured it out, we definitly need to trim
3831 	 */
3832 
3833 	/*
3834 	 * make sure the driver isn't making us do something bad...
3835 	 * Trimming and sgllen == 1 don't go together.
3836 	 */
3837 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
3838 		return (DDI_DMA_NOMAPPING);
3839 	}
3840 
3841 	/*
3842 	 * first, setup the current window to account for the trim. Need to go
3843 	 * back to the last cookie for this. Some of the last cookie will be in
3844 	 * the current window, and some of the last cookie will be in the new
3845 	 * window. All of the current cookie will be in the new window.
3846 	 */
3847 	cookie--;
3848 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3849 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3850 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3851 	ASSERT(cookie->dmac_size > trim_sz);
3852 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3853 	(*windowp)->wd_size -= trim_sz;
3854 
3855 	/*
3856 	 * we're trimming the last cookie (not the current cookie). So that
3857 	 * last cookie may have or may not have been using the copy buffer (
3858 	 * we know the cookie passed in uses the copy buffer since we're in
3859 	 * this code path).
3860 	 *
3861 	 * If the last cookie doesn't use the copy buffer, nothing special to
3862 	 * do. However, if it does uses the copy buffer, it will be both the
3863 	 * last page in the current window and the first page in the next
3864 	 * window. Since we are reusing the copy buffer (and KVA space on the
3865 	 * 32-bit kernel), this page will use the end of the copy buffer in the
3866 	 * current window, and the start of the copy buffer in the next window.
3867 	 * Track that info... The cookie physical address was already set to
3868 	 * the copy buffer physical address in setup_cookie..
3869 	 */
3870 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3871 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
3872 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
3873 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
3874 		(*windowp)->wd_trim.tr_last_pidx = pidx;
3875 		(*windowp)->wd_trim.tr_last_cbaddr =
3876 		    dma->dp_pgmap[pidx].pm_cbaddr;
3877 #if !defined(__amd64)
3878 		(*windowp)->wd_trim.tr_last_kaddr =
3879 		    dma->dp_pgmap[pidx].pm_kaddr;
3880 #endif
3881 	}
3882 
3883 	/* save the buffer offsets for the next window */
3884 	coffset = cookie->dmac_size - trim_sz;
3885 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3886 
3887 	/*
3888 	 * set this now in case this is the first window. all other cases are
3889 	 * set in dma_win()
3890 	 */
3891 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3892 
3893 	/*
3894 	 * initialize the next window using what's left over in the previous
3895 	 * cookie.
3896 	 */
3897 	(*windowp)++;
3898 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3899 	(*windowp)->wd_cookie_cnt++;
3900 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3901 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
3902 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3903 
3904 	/*
3905 	 * again, we're tracking if the last cookie uses the copy buffer.
3906 	 * read the comment above for more info on why we need to track
3907 	 * additional state.
3908 	 *
3909 	 * For the first cookie in the new window, we need reset the physical
3910 	 * address to DMA into to the start of the copy buffer plus any
3911 	 * initial page offset which may be present.
3912 	 */
3913 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3914 		(*windowp)->wd_dosync = B_TRUE;
3915 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
3916 		(*windowp)->wd_trim.tr_first_pidx = pidx;
3917 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
3918 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
3919 
3920 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
3921 		    poff;
3922 #ifdef __xpv
3923 		/*
3924 		 * If we're dom0, we're using a real device so we need to load
3925 		 * the cookies with MAs instead of PAs.
3926 		 */
3927 		(*windowp)->wd_trim.tr_first_paddr =
3928 		    ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3929 #else
3930 		(*windowp)->wd_trim.tr_first_paddr = paddr;
3931 #endif
3932 
3933 #if !defined(__amd64)
3934 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
3935 #endif
3936 		/* account for the cookie copybuf usage in the new window */
3937 		*copybuf_used += MMU_PAGESIZE;
3938 
3939 		/*
3940 		 * every piece of code has to have a hack, and here is this
3941 		 * ones :-)
3942 		 *
3943 		 * There is a complex interaction between setup_cookie and the
3944 		 * copybuf window boundary. The complexity had to be in either
3945 		 * the maxxfer window, or the copybuf window, and I chose the
3946 		 * copybuf code.
3947 		 *
3948 		 * So in this code path, we have taken the last cookie,
3949 		 * virtually broken it in half due to the trim, and it happens
3950 		 * to use the copybuf which further complicates life. At the
3951 		 * same time, we have already setup the current cookie, which
3952 		 * is now wrong. More background info: the current cookie uses
3953 		 * the copybuf, so it is only a page long max. So we need to
3954 		 * fix the current cookies copy buffer address, physical
3955 		 * address, and kva for the 32-bit kernel. We due this by
3956 		 * bumping them by page size (of course, we can't due this on
3957 		 * the physical address since the copy buffer may not be
3958 		 * physically contiguous).
3959 		 */
3960 		cookie++;
3961 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
3962 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3963 
3964 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3965 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
3966 #ifdef __xpv
3967 		/*
3968 		 * If we're dom0, we're using a real device so we need to load
3969 		 * the cookies with MAs instead of PAs.
3970 		 */
3971 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3972 #else
3973 		cookie->dmac_laddress = paddr;
3974 #endif
3975 
3976 #if !defined(__amd64)
3977 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
3978 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
3979 #endif
3980 	} else {
3981 		/* go back to the current cookie */
3982 		cookie++;
3983 	}
3984 
3985 	/*
3986 	 * add the current cookie to the new window. set the new window size to
3987 	 * the what was left over from the previous cookie and what's in the
3988 	 * current cookie.
3989 	 */
3990 	(*windowp)->wd_cookie_cnt++;
3991 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
3992 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
3993 
3994 	/*
3995 	 * we know that the cookie passed in always uses the copy buffer. We
3996 	 * wouldn't be here if it didn't.
3997 	 */
3998 	*copybuf_used += MMU_PAGESIZE;
3999 
4000 	return (DDI_SUCCESS);
4001 }
4002 
4003 
4004 /*
4005  * rootnex_maxxfer_window_boundary()
4006  *    Called in bind slowpath when we get to a window boundary because we will
4007  *    go over maxxfer.
4008  */
4009 static int
4010 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4011     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4012 {
4013 	size_t dmac_size;
4014 	off_t new_offset;
4015 	size_t trim_sz;
4016 	off_t coffset;
4017 
4018 
4019 	/*
4020 	 * calculate how much we have to trim off of the current cookie to equal
4021 	 * maxxfer. We don't have to account for granularity here since our
4022 	 * maxxfer already takes that into account.
4023 	 */
4024 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4025 	ASSERT(trim_sz <= cookie->dmac_size);
4026 	ASSERT(trim_sz <= dma->dp_maxxfer);
4027 
4028 	/* save cookie size since we need it later and we might change it */
4029 	dmac_size = cookie->dmac_size;
4030 
4031 	/*
4032 	 * if we're not trimming the entire cookie, setup the current window to
4033 	 * account for the trim.
4034 	 */
4035 	if (trim_sz < cookie->dmac_size) {
4036 		(*windowp)->wd_cookie_cnt++;
4037 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4038 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4039 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4040 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4041 		(*windowp)->wd_size = dma->dp_maxxfer;
4042 
4043 		/*
4044 		 * set the adjusted cookie size now in case this is the first
4045 		 * window. All other windows are taken care of in get win
4046 		 */
4047 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4048 	}
4049 
4050 	/*
4051 	 * coffset is the current offset within the cookie, new_offset is the
4052 	 * current offset with the entire buffer.
4053 	 */
4054 	coffset = dmac_size - trim_sz;
4055 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4056 
4057 	/* initialize the next window */
4058 	(*windowp)++;
4059 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4060 	(*windowp)->wd_cookie_cnt++;
4061 	(*windowp)->wd_size = trim_sz;
4062 	if (trim_sz < dmac_size) {
4063 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4064 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4065 		    coffset;
4066 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4067 	}
4068 
4069 	return (DDI_SUCCESS);
4070 }
4071 
4072 
4073 /*ARGSUSED*/
4074 static int
4075 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4076     off_t off, size_t len, uint_t cache_flags)
4077 {
4078 	rootnex_sglinfo_t *sinfo;
4079 	rootnex_pgmap_t *cbpage;
4080 	rootnex_window_t *win;
4081 	ddi_dma_impl_t *hp;
4082 	rootnex_dma_t *dma;
4083 	caddr_t fromaddr;
4084 	caddr_t toaddr;
4085 	uint_t psize;
4086 	off_t offset;
4087 	uint_t pidx;
4088 	size_t size;
4089 	off_t poff;
4090 	int e;
4091 
4092 
4093 	hp = (ddi_dma_impl_t *)handle;
4094 	dma = (rootnex_dma_t *)hp->dmai_private;
4095 	sinfo = &dma->dp_sglinfo;
4096 
4097 	/*
4098 	 * if we don't have any windows, we don't need to sync. A copybuf
4099 	 * will cause us to have at least one window.
4100 	 */
4101 	if (dma->dp_window == NULL) {
4102 		return (DDI_SUCCESS);
4103 	}
4104 
4105 	/* This window may not need to be sync'd */
4106 	win = &dma->dp_window[dma->dp_current_win];
4107 	if (!win->wd_dosync) {
4108 		return (DDI_SUCCESS);
4109 	}
4110 
4111 	/* handle off and len special cases */
4112 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4113 		offset = win->wd_offset;
4114 	} else {
4115 		offset = off;
4116 	}
4117 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4118 		size = win->wd_size;
4119 	} else {
4120 		size = len;
4121 	}
4122 
4123 	/* check the sync args to make sure they make a little sense */
4124 	if (rootnex_sync_check_parms) {
4125 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4126 		    cache_flags);
4127 		if (e != DDI_SUCCESS) {
4128 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4129 			return (DDI_FAILURE);
4130 		}
4131 	}
4132 
4133 	/*
4134 	 * special case the first page to handle the offset into the page. The
4135 	 * offset to the current page for our buffer is the offset into the
4136 	 * first page of the buffer plus our current offset into the buffer
4137 	 * itself, masked of course.
4138 	 */
4139 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4140 	psize = MIN((MMU_PAGESIZE - poff), size);
4141 
4142 	/* go through all the pages that we want to sync */
4143 	while (size > 0) {
4144 		/*
4145 		 * Calculate the page index relative to the start of the buffer.
4146 		 * The index to the current page for our buffer is the offset
4147 		 * into the first page of the buffer plus our current offset
4148 		 * into the buffer itself, shifted of course...
4149 		 */
4150 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4151 		ASSERT(pidx < sinfo->si_max_pages);
4152 
4153 		/*
4154 		 * if this page uses the copy buffer, we need to sync it,
4155 		 * otherwise, go on to the next page.
4156 		 */
4157 		cbpage = &dma->dp_pgmap[pidx];
4158 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4159 		    (cbpage->pm_uses_copybuf == B_FALSE));
4160 		if (cbpage->pm_uses_copybuf) {
4161 			/* cbaddr and kaddr should be page aligned */
4162 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4163 			    MMU_PAGEOFFSET) == 0);
4164 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4165 			    MMU_PAGEOFFSET) == 0);
4166 
4167 			/*
4168 			 * if we're copying for the device, we are going to
4169 			 * copy from the drivers buffer and to the rootnex
4170 			 * allocated copy buffer.
4171 			 */
4172 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4173 				fromaddr = cbpage->pm_kaddr + poff;
4174 				toaddr = cbpage->pm_cbaddr + poff;
4175 				DTRACE_PROBE2(rootnex__sync__dev,
4176 				    dev_info_t *, dma->dp_dip, size_t, psize);
4177 
4178 			/*
4179 			 * if we're copying for the cpu/kernel, we are going to
4180 			 * copy from the rootnex allocated copy buffer to the
4181 			 * drivers buffer.
4182 			 */
4183 			} else {
4184 				fromaddr = cbpage->pm_cbaddr + poff;
4185 				toaddr = cbpage->pm_kaddr + poff;
4186 				DTRACE_PROBE2(rootnex__sync__cpu,
4187 				    dev_info_t *, dma->dp_dip, size_t, psize);
4188 			}
4189 
4190 			bcopy(fromaddr, toaddr, psize);
4191 		}
4192 
4193 		/*
4194 		 * decrement size until we're done, update our offset into the
4195 		 * buffer, and get the next page size.
4196 		 */
4197 		size -= psize;
4198 		offset += psize;
4199 		psize = MIN(MMU_PAGESIZE, size);
4200 
4201 		/* page offset is zero for the rest of this loop */
4202 		poff = 0;
4203 	}
4204 
4205 	return (DDI_SUCCESS);
4206 }
4207 
4208 /*
4209  * rootnex_dma_sync()
4210  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4211  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4212  *    is set, ddi_dma_sync() returns immediately passing back success.
4213  */
4214 /*ARGSUSED*/
4215 static int
4216 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4217     off_t off, size_t len, uint_t cache_flags)
4218 {
4219 #if defined(__amd64) && !defined(__xpv)
4220 	if (IOMMU_USED(rdip)) {
4221 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4222 		    cache_flags));
4223 	}
4224 #endif
4225 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4226 	    cache_flags));
4227 }
4228 
4229 /*
4230  * rootnex_valid_sync_parms()
4231  *    checks the parameters passed to sync to verify they are correct.
4232  */
4233 static int
4234 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4235     off_t offset, size_t size, uint_t cache_flags)
4236 {
4237 	off_t woffset;
4238 
4239 
4240 	/*
4241 	 * the first part of the test to make sure the offset passed in is
4242 	 * within the window.
4243 	 */
4244 	if (offset < win->wd_offset) {
4245 		return (DDI_FAILURE);
4246 	}
4247 
4248 	/*
4249 	 * second and last part of the test to make sure the offset and length
4250 	 * passed in is within the window.
4251 	 */
4252 	woffset = offset - win->wd_offset;
4253 	if ((woffset + size) > win->wd_size) {
4254 		return (DDI_FAILURE);
4255 	}
4256 
4257 	/*
4258 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4259 	 * be set too.
4260 	 */
4261 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4262 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4263 		return (DDI_SUCCESS);
4264 	}
4265 
4266 	/*
4267 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4268 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4269 	 */
4270 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4271 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4272 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4273 		return (DDI_SUCCESS);
4274 	}
4275 
4276 	return (DDI_FAILURE);
4277 }
4278 
4279 
4280 /*ARGSUSED*/
4281 static int
4282 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4283     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4284     uint_t *ccountp)
4285 {
4286 	rootnex_window_t *window;
4287 	rootnex_trim_t *trim;
4288 	ddi_dma_impl_t *hp;
4289 	rootnex_dma_t *dma;
4290 #if !defined(__amd64)
4291 	rootnex_sglinfo_t *sinfo;
4292 	rootnex_pgmap_t *pmap;
4293 	uint_t pidx;
4294 	uint_t pcnt;
4295 	off_t poff;
4296 	int i;
4297 #endif
4298 
4299 
4300 	hp = (ddi_dma_impl_t *)handle;
4301 	dma = (rootnex_dma_t *)hp->dmai_private;
4302 #if !defined(__amd64)
4303 	sinfo = &dma->dp_sglinfo;
4304 #endif
4305 
4306 	/* If we try and get a window which doesn't exist, return failure */
4307 	if (win >= hp->dmai_nwin) {
4308 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4309 		return (DDI_FAILURE);
4310 	}
4311 
4312 	/*
4313 	 * if we don't have any windows, and they're asking for the first
4314 	 * window, setup the cookie pointer to the first cookie in the bind.
4315 	 * setup our return values, then increment the cookie since we return
4316 	 * the first cookie on the stack.
4317 	 */
4318 	if (dma->dp_window == NULL) {
4319 		if (win != 0) {
4320 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4321 			return (DDI_FAILURE);
4322 		}
4323 		hp->dmai_cookie = dma->dp_cookies;
4324 		*offp = 0;
4325 		*lenp = dma->dp_dma.dmao_size;
4326 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4327 		*cookiep = hp->dmai_cookie[0];
4328 		hp->dmai_cookie++;
4329 		return (DDI_SUCCESS);
4330 	}
4331 
4332 	/* sync the old window before moving on to the new one */
4333 	window = &dma->dp_window[dma->dp_current_win];
4334 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4335 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4336 		    DDI_DMA_SYNC_FORCPU);
4337 	}
4338 
4339 #if !defined(__amd64)
4340 	/*
4341 	 * before we move to the next window, if we need to re-map, unmap all
4342 	 * the pages in this window.
4343 	 */
4344 	if (dma->dp_cb_remaping) {
4345 		/*
4346 		 * If we switch to this window again, we'll need to map in
4347 		 * on the fly next time.
4348 		 */
4349 		window->wd_remap_copybuf = B_TRUE;
4350 
4351 		/*
4352 		 * calculate the page index into the buffer where this window
4353 		 * starts, and the number of pages this window takes up.
4354 		 */
4355 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4356 		    MMU_PAGESHIFT;
4357 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4358 		    MMU_PAGEOFFSET;
4359 		pcnt = mmu_btopr(window->wd_size + poff);
4360 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4361 
4362 		/* unmap pages which are currently mapped in this window */
4363 		for (i = 0; i < pcnt; i++) {
4364 			if (dma->dp_pgmap[pidx].pm_mapped) {
4365 				hat_unload(kas.a_hat,
4366 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4367 				    HAT_UNLOAD);
4368 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4369 			}
4370 			pidx++;
4371 		}
4372 	}
4373 #endif
4374 
4375 	/*
4376 	 * Move to the new window.
4377 	 * NOTE: current_win must be set for sync to work right
4378 	 */
4379 	dma->dp_current_win = win;
4380 	window = &dma->dp_window[win];
4381 
4382 	/* if needed, adjust the first and/or last cookies for trim */
4383 	trim = &window->wd_trim;
4384 	if (trim->tr_trim_first) {
4385 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4386 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4387 #if !defined(__amd64)
4388 		window->wd_first_cookie->dmac_type =
4389 		    (window->wd_first_cookie->dmac_type &
4390 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4391 #endif
4392 		if (trim->tr_first_copybuf_win) {
4393 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4394 			    trim->tr_first_cbaddr;
4395 #if !defined(__amd64)
4396 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4397 			    trim->tr_first_kaddr;
4398 #endif
4399 		}
4400 	}
4401 	if (trim->tr_trim_last) {
4402 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4403 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4404 		if (trim->tr_last_copybuf_win) {
4405 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4406 			    trim->tr_last_cbaddr;
4407 #if !defined(__amd64)
4408 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4409 			    trim->tr_last_kaddr;
4410 #endif
4411 		}
4412 	}
4413 
4414 	/*
4415 	 * setup the cookie pointer to the first cookie in the window. setup
4416 	 * our return values, then increment the cookie since we return the
4417 	 * first cookie on the stack.
4418 	 */
4419 	hp->dmai_cookie = window->wd_first_cookie;
4420 	*offp = window->wd_offset;
4421 	*lenp = window->wd_size;
4422 	*ccountp = window->wd_cookie_cnt;
4423 	*cookiep = hp->dmai_cookie[0];
4424 	hp->dmai_cookie++;
4425 
4426 #if !defined(__amd64)
4427 	/* re-map copybuf if required for this window */
4428 	if (dma->dp_cb_remaping) {
4429 		/*
4430 		 * calculate the page index into the buffer where this
4431 		 * window starts.
4432 		 */
4433 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4434 		    MMU_PAGESHIFT;
4435 		ASSERT(pidx < sinfo->si_max_pages);
4436 
4437 		/*
4438 		 * the first page can get unmapped if it's shared with the
4439 		 * previous window. Even if the rest of this window is already
4440 		 * mapped in, we need to still check this one.
4441 		 */
4442 		pmap = &dma->dp_pgmap[pidx];
4443 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4444 			if (pmap->pm_pp != NULL) {
4445 				pmap->pm_mapped = B_TRUE;
4446 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4447 			} else if (pmap->pm_vaddr != NULL) {
4448 				pmap->pm_mapped = B_TRUE;
4449 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4450 				    pmap->pm_kaddr);
4451 			}
4452 		}
4453 		pidx++;
4454 
4455 		/* map in the rest of the pages if required */
4456 		if (window->wd_remap_copybuf) {
4457 			window->wd_remap_copybuf = B_FALSE;
4458 
4459 			/* figure out many pages this window takes up */
4460 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4461 			    MMU_PAGEOFFSET;
4462 			pcnt = mmu_btopr(window->wd_size + poff);
4463 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4464 
4465 			/* map pages which require it */
4466 			for (i = 1; i < pcnt; i++) {
4467 				pmap = &dma->dp_pgmap[pidx];
4468 				if (pmap->pm_uses_copybuf) {
4469 					ASSERT(pmap->pm_mapped == B_FALSE);
4470 					if (pmap->pm_pp != NULL) {
4471 						pmap->pm_mapped = B_TRUE;
4472 						i86_pp_map(pmap->pm_pp,
4473 						    pmap->pm_kaddr);
4474 					} else if (pmap->pm_vaddr != NULL) {
4475 						pmap->pm_mapped = B_TRUE;
4476 						i86_va_map(pmap->pm_vaddr,
4477 						    sinfo->si_asp,
4478 						    pmap->pm_kaddr);
4479 					}
4480 				}
4481 				pidx++;
4482 			}
4483 		}
4484 	}
4485 #endif
4486 
4487 	/* if the new window uses the copy buffer, sync it for the device */
4488 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4489 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4490 		    DDI_DMA_SYNC_FORDEV);
4491 	}
4492 
4493 	return (DDI_SUCCESS);
4494 }
4495 
4496 /*
4497  * rootnex_dma_win()
4498  *    called from ddi_dma_getwin()
4499  */
4500 /*ARGSUSED*/
4501 static int
4502 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4503     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4504     uint_t *ccountp)
4505 {
4506 #if defined(__amd64) && !defined(__xpv)
4507 	if (IOMMU_USED(rdip)) {
4508 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4509 		    cookiep, ccountp));
4510 	}
4511 #endif
4512 
4513 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4514 	    cookiep, ccountp));
4515 }
4516 
4517 /*
4518  * ************************
4519  *  obsoleted dma routines
4520  * ************************
4521  */
4522 
4523 /*
4524  * rootnex_dma_map()
4525  *    called from ddi_dma_setup()
4526  * NO IOMMU in 32 bit mode. The below routines doesn't work in 64 bit mode.
4527  */
4528 /* ARGSUSED */
4529 static int
4530 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
4531     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep)
4532 {
4533 #if defined(__amd64)
4534 	/*
4535 	 * this interface is not supported in 64-bit x86 kernel. See comment in
4536 	 * rootnex_dma_mctl()
4537 	 */
4538 	return (DDI_DMA_NORESOURCES);
4539 
4540 #else /* 32-bit x86 kernel */
4541 	ddi_dma_handle_t *lhandlep;
4542 	ddi_dma_handle_t lhandle;
4543 	ddi_dma_cookie_t cookie;
4544 	ddi_dma_attr_t dma_attr;
4545 	ddi_dma_lim_t *dma_lim;
4546 	uint_t ccnt;
4547 	int e;
4548 
4549 
4550 	/*
4551 	 * if the driver is just testing to see if it's possible to do the bind,
4552 	 * we'll use local state. Otherwise, use the handle pointer passed in.
4553 	 */
4554 	if (handlep == NULL) {
4555 		lhandlep = &lhandle;
4556 	} else {
4557 		lhandlep = handlep;
4558 	}
4559 
4560 	/* convert the limit structure to a dma_attr one */
4561 	dma_lim = dmareq->dmar_limits;
4562 	dma_attr.dma_attr_version = DMA_ATTR_V0;
4563 	dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo;
4564 	dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi;
4565 	dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer;
4566 	dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max;
4567 	dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max;
4568 	dma_attr.dma_attr_granular = dma_lim->dlim_granular;
4569 	dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen;
4570 	dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize;
4571 	dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes;
4572 	dma_attr.dma_attr_align = MMU_PAGESIZE;
4573 	dma_attr.dma_attr_flags = 0;
4574 
4575 	e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp,
4576 	    dmareq->dmar_arg, lhandlep);
4577 	if (e != DDI_SUCCESS) {
4578 		return (e);
4579 	}
4580 
4581 	e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt);
4582 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
4583 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4584 		return (e);
4585 	}
4586 
4587 	/*
4588 	 * if the driver is just testing to see if it's possible to do the bind,
4589 	 * free up the local state and return the result.
4590 	 */
4591 	if (handlep == NULL) {
4592 		(void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep);
4593 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4594 		if (e == DDI_DMA_MAPPED) {
4595 			return (DDI_DMA_MAPOK);
4596 		} else {
4597 			return (DDI_DMA_NOMAPPING);
4598 		}
4599 	}
4600 
4601 	return (e);
4602 #endif /* defined(__amd64) */
4603 }
4604 
4605 /*
4606  * rootnex_dma_mctl()
4607  *
4608  * No IOMMU in 32 bit mode. The below routine doesn't work in 64 bit mode.
4609  */
4610 /* ARGSUSED */
4611 static int
4612 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4613     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
4614     uint_t cache_flags)
4615 {
4616 #if defined(__amd64)
4617 	/*
4618 	 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a
4619 	 * common implementation in genunix, so they no longer have x86
4620 	 * specific functionality which called into dma_ctl.
4621 	 *
4622 	 * The rest of the obsoleted interfaces were never supported in the
4623 	 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface
4624 	 * was not ported to the x86 64-bit kernel do to serious x86 rootnex
4625 	 * implementation issues.
4626 	 *
4627 	 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and
4628 	 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we
4629 	 * reflect that now too...
4630 	 *
4631 	 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are
4632 	 * not going to put this functionality into the 64-bit x86 kernel now.
4633 	 * It wasn't ported to the 64-bit kernel for s10, no reason to change
4634 	 * that in a future release.
4635 	 */
4636 	return (DDI_FAILURE);
4637 
4638 #else /* 32-bit x86 kernel */
4639 	ddi_dma_cookie_t lcookie;
4640 	ddi_dma_cookie_t *cookie;
4641 	rootnex_window_t *window;
4642 	ddi_dma_impl_t *hp;
4643 	rootnex_dma_t *dma;
4644 	uint_t nwin;
4645 	uint_t ccnt;
4646 	size_t len;
4647 	off_t off;
4648 	int e;
4649 
4650 
4651 	/*
4652 	 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little
4653 	 * hacky since were optimizing for the current interfaces and so we can
4654 	 * cleanup the mess in genunix. Hopefully we will remove the this
4655 	 * obsoleted routines someday soon.
4656 	 */
4657 
4658 	switch (request) {
4659 
4660 	case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */
4661 		hp = (ddi_dma_impl_t *)handle;
4662 		cookie = (ddi_dma_cookie_t *)objpp;
4663 
4664 		/*
4665 		 * convert segment to cookie. We don't distinguish between the
4666 		 * two :-)
4667 		 */
4668 		*cookie = *hp->dmai_cookie;
4669 		*lenp = cookie->dmac_size;
4670 		*offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF;
4671 		return (DDI_SUCCESS);
4672 
4673 	case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */
4674 		hp = (ddi_dma_impl_t *)handle;
4675 		dma = (rootnex_dma_t *)hp->dmai_private;
4676 
4677 		if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) {
4678 			return (DDI_DMA_STALE);
4679 		}
4680 
4681 		/* handle the case where we don't have any windows */
4682 		if (dma->dp_window == NULL) {
4683 			/*
4684 			 * if seg == NULL, and we don't have any windows,
4685 			 * return the first cookie in the sgl.
4686 			 */
4687 			if (*lenp == NULL) {
4688 				dma->dp_current_cookie = 0;
4689 				hp->dmai_cookie = dma->dp_cookies;
4690 				*objpp = (caddr_t)handle;
4691 				return (DDI_SUCCESS);
4692 
4693 			/* if we have more cookies, go to the next cookie */
4694 			} else {
4695 				if ((dma->dp_current_cookie + 1) >=
4696 				    dma->dp_sglinfo.si_sgl_size) {
4697 					return (DDI_DMA_DONE);
4698 				}
4699 				dma->dp_current_cookie++;
4700 				hp->dmai_cookie++;
4701 				return (DDI_SUCCESS);
4702 			}
4703 		}
4704 
4705 		/* We have one or more windows */
4706 		window = &dma->dp_window[dma->dp_current_win];
4707 
4708 		/*
4709 		 * if seg == NULL, return the first cookie in the current
4710 		 * window
4711 		 */
4712 		if (*lenp == NULL) {
4713 			dma->dp_current_cookie = 0;
4714 			hp->dmai_cookie = window->wd_first_cookie;
4715 
4716 		/*
4717 		 * go to the next cookie in the window then see if we done with
4718 		 * this window.
4719 		 */
4720 		} else {
4721 			if ((dma->dp_current_cookie + 1) >=
4722 			    window->wd_cookie_cnt) {
4723 				return (DDI_DMA_DONE);
4724 			}
4725 			dma->dp_current_cookie++;
4726 			hp->dmai_cookie++;
4727 		}
4728 		*objpp = (caddr_t)handle;
4729 		return (DDI_SUCCESS);
4730 
4731 	case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */
4732 		hp = (ddi_dma_impl_t *)handle;
4733 		dma = (rootnex_dma_t *)hp->dmai_private;
4734 
4735 		if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) {
4736 			return (DDI_DMA_STALE);
4737 		}
4738 
4739 		/* if win == NULL, return the first window in the bind */
4740 		if (*offp == NULL) {
4741 			nwin = 0;
4742 
4743 		/*
4744 		 * else, go to the next window then see if we're done with all
4745 		 * the windows.
4746 		 */
4747 		} else {
4748 			nwin = dma->dp_current_win + 1;
4749 			if (nwin >= hp->dmai_nwin) {
4750 				return (DDI_DMA_DONE);
4751 			}
4752 		}
4753 
4754 		/* switch to the next window */
4755 		e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len,
4756 		    &lcookie, &ccnt);
4757 		ASSERT(e == DDI_SUCCESS);
4758 		if (e != DDI_SUCCESS) {
4759 			return (DDI_DMA_STALE);
4760 		}
4761 
4762 		/* reset the cookie back to the first cookie in the window */
4763 		if (dma->dp_window != NULL) {
4764 			window = &dma->dp_window[dma->dp_current_win];
4765 			hp->dmai_cookie = window->wd_first_cookie;
4766 		} else {
4767 			hp->dmai_cookie = dma->dp_cookies;
4768 		}
4769 
4770 		*objpp = (caddr_t)handle;
4771 		return (DDI_SUCCESS);
4772 
4773 	case DDI_DMA_FREE: /* ddi_dma_free() */
4774 		(void) rootnex_dma_unbindhdl(dip, rdip, handle);
4775 		(void) rootnex_dma_freehdl(dip, rdip, handle);
4776 		if (rootnex_state->r_dvma_call_list_id) {
4777 			ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
4778 		}
4779 		return (DDI_SUCCESS);
4780 
4781 	case DDI_DMA_IOPB_ALLOC:	/* get contiguous DMA-able memory */
4782 	case DDI_DMA_SMEM_ALLOC:	/* get contiguous DMA-able memory */
4783 		/* should never get here, handled in genunix */
4784 		ASSERT(0);
4785 		return (DDI_FAILURE);
4786 
4787 	case DDI_DMA_KVADDR:
4788 	case DDI_DMA_GETERR:
4789 	case DDI_DMA_COFF:
4790 		return (DDI_FAILURE);
4791 	}
4792 
4793 	return (DDI_FAILURE);
4794 #endif /* defined(__amd64) */
4795 }
4796 
4797 /*
4798  * *********
4799  *  FMA Code
4800  * *********
4801  */
4802 
4803 /*
4804  * rootnex_fm_init()
4805  *    FMA init busop
4806  */
4807 /* ARGSUSED */
4808 static int
4809 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
4810     ddi_iblock_cookie_t *ibc)
4811 {
4812 	*ibc = rootnex_state->r_err_ibc;
4813 
4814 	return (ddi_system_fmcap);
4815 }
4816 
4817 /*
4818  * rootnex_dma_check()
4819  *    Function called after a dma fault occurred to find out whether the
4820  *    fault address is associated with a driver that is able to handle faults
4821  *    and recover from faults.
4822  */
4823 /* ARGSUSED */
4824 static int
4825 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
4826     const void *not_used)
4827 {
4828 	rootnex_window_t *window;
4829 	uint64_t start_addr;
4830 	uint64_t fault_addr;
4831 	ddi_dma_impl_t *hp;
4832 	rootnex_dma_t *dma;
4833 	uint64_t end_addr;
4834 	size_t csize;
4835 	int i;
4836 	int j;
4837 
4838 
4839 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
4840 	hp = (ddi_dma_impl_t *)handle;
4841 	ASSERT(hp);
4842 
4843 	dma = (rootnex_dma_t *)hp->dmai_private;
4844 
4845 	/* Get the address that we need to search for */
4846 	fault_addr = *(uint64_t *)addr;
4847 
4848 	/*
4849 	 * if we don't have any windows, we can just walk through all the
4850 	 * cookies.
4851 	 */
4852 	if (dma->dp_window == NULL) {
4853 		/* for each cookie */
4854 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
4855 			/*
4856 			 * if the faulted address is within the physical address
4857 			 * range of the cookie, return DDI_FM_NONFATAL.
4858 			 */
4859 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
4860 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
4861 			    dma->dp_cookies[i].dmac_size))) {
4862 				return (DDI_FM_NONFATAL);
4863 			}
4864 		}
4865 
4866 		/* fault_addr not within this DMA handle */
4867 		return (DDI_FM_UNKNOWN);
4868 	}
4869 
4870 	/* we have mutiple windows, walk through each window */
4871 	for (i = 0; i < hp->dmai_nwin; i++) {
4872 		window = &dma->dp_window[i];
4873 
4874 		/* Go through all the cookies in the window */
4875 		for (j = 0; j < window->wd_cookie_cnt; j++) {
4876 
4877 			start_addr = window->wd_first_cookie[j].dmac_laddress;
4878 			csize = window->wd_first_cookie[j].dmac_size;
4879 
4880 			/*
4881 			 * if we are trimming the first cookie in the window,
4882 			 * and this is the first cookie, adjust the start
4883 			 * address and size of the cookie to account for the
4884 			 * trim.
4885 			 */
4886 			if (window->wd_trim.tr_trim_first && (j == 0)) {
4887 				start_addr = window->wd_trim.tr_first_paddr;
4888 				csize = window->wd_trim.tr_first_size;
4889 			}
4890 
4891 			/*
4892 			 * if we are trimming the last cookie in the window,
4893 			 * and this is the last cookie, adjust the start
4894 			 * address and size of the cookie to account for the
4895 			 * trim.
4896 			 */
4897 			if (window->wd_trim.tr_trim_last &&
4898 			    (j == (window->wd_cookie_cnt - 1))) {
4899 				start_addr = window->wd_trim.tr_last_paddr;
4900 				csize = window->wd_trim.tr_last_size;
4901 			}
4902 
4903 			end_addr = start_addr + csize;
4904 
4905 			/*
4906 			 * if the faulted address is within the physical
4907 			 * address of the cookie, return DDI_FM_NONFATAL.
4908 			 */
4909 			if ((fault_addr >= start_addr) &&
4910 			    (fault_addr <= end_addr)) {
4911 				return (DDI_FM_NONFATAL);
4912 			}
4913 		}
4914 	}
4915 
4916 	/* fault_addr not within this DMA handle */
4917 	return (DDI_FM_UNKNOWN);
4918 }
4919 
4920 /*ARGSUSED*/
4921 static int
4922 rootnex_quiesce(dev_info_t *dip)
4923 {
4924 #if defined(__amd64) && !defined(__xpv)
4925 	return (immu_quiesce());
4926 #else
4927 	return (DDI_SUCCESS);
4928 #endif
4929 }
4930 
4931 #if defined(__xpv)
4932 void
4933 immu_init(void)
4934 {
4935 	;
4936 }
4937 
4938 void
4939 immu_startup(void)
4940 {
4941 	;
4942 }
4943 /*ARGSUSED*/
4944 void
4945 immu_physmem_update(uint64_t addr, uint64_t size)
4946 {
4947 	;
4948 }
4949 #endif
4950