xref: /titanic_44/usr/src/uts/i86pc/i86hvm/io/pv_cmdk.c (revision 076d97abc78bcba2f2216859fe2c6913cc7aff32)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/scsi/scsi_types.h>
28 #include <sys/modctl.h>
29 #include <sys/cmlb.h>
30 #include <sys/types.h>
31 #include <sys/xpv_support.h>
32 #include <sys/xendev.h>
33 #include <sys/gnttab.h>
34 #include <public/xen.h>
35 #include <public/grant_table.h>
36 #include <io/xdf.h>
37 #include <sys/vtoc.h>
38 #include <sys/dkio.h>
39 #include <sys/dktp/dadev.h>
40 #include <sys/dktp/dadkio.h>
41 #include <sys/dktp/tgdk.h>
42 #include <sys/dktp/bbh.h>
43 #include <sys/dktp/cmdk.h>
44 #include <sys/dktp/altsctr.h>
45 
46 /*
47  * General Notes
48  *
49  * We don't support disks with bad block mappins.  We have this
50  * limitation because the underlying xdf driver doesn't support
51  * bad block remapping.  If there is a need to support this feature
52  * it should be added directly to the xdf driver and we should just
53  * pass requests strait on through and let it handle the remapping.
54  * Also, it's probably worth pointing out that most modern disks do bad
55  * block remapping internally in the hardware so there's actually less
56  * of a chance of us ever discovering bad blocks.  Also, in most cases
57  * this driver (and the xdf driver) will only be used with virtualized
58  * devices, so one might wonder why a virtual device would ever actually
59  * experience bad blocks.  To wrap this up, you might be wondering how
60  * these bad block mappings get created and how they are managed.  Well,
61  * there are two tools for managing bad block mappings, format(1M) and
62  * addbadsec(1M).  Format(1M) can be used to do a surface scan of a disk
63  * to attempt to find bad block and create mappings for them.  Format(1M)
64  * and addbadsec(1M) can also be used to edit existing mappings that may
65  * be saved on the disk.
66  *
67  * The underlying PV driver that this driver passes on requests to is the
68  * xdf driver.  Since in most cases the xdf driver doesn't deal with
69  * physical disks it has it's own algorithm for assigning a physical
70  * geometry to a virtual disk (ie, cylinder count, head count, etc.)
71  * The default values chosen by the xdf driver may not match those
72  * assigned to a disk by a hardware disk emulator in an HVM environment.
73  * This is a problem since these physical geometry attributes affect
74  * things like the partition table, backup label location, etc.  So
75  * to emulate disk devices correctly we need to know the physical geometry
76  * that was assigned to a disk at the time of it's initalization.
77  * Normally in an HVM environment this information will passed to
78  * the BIOS and operating system from the hardware emulator that is
79  * emulating the disk devices.  In the case of a solaris dom0+xvm
80  * this would be qemu.  So to work around this issue, this driver will
81  * query the emulated hardware to get the assigned physical geometry
82  * and then pass this geometry onto the xdf driver so that it can use it.
83  * But really, this information is essentially metadata about the disk
84  * that should be kept with the disk image itself.  (Assuming or course
85  * that a disk image is the actual backingstore for this emulated device.)
86  * This metadata should also be made available to PV drivers via a common
87  * mechamisn, probably the xenstore.  The fact that this metadata isn't
88  * available outside of HVM domains means that it's difficult to move
89  * disks between HVM and PV domains, since a fully PV domain will have no
90  * way of knowing what the correct geometry of the target device is.
91  * (Short of reading the disk, looking for things like partition tables
92  * and labels, and taking a best guess at what the geometry was when
93  * the disk was initialized.  Unsuprisingly, qemu actually does this.)
94  *
95  * This driver has to map cmdk device instances into their corresponding
96  * xdf device instances.  We have to do this to ensure that when a user
97  * accesses a emulated cmdk device we map those accesses to the proper
98  * paravirtualized device.  Basically what we need to know is how multiple
99  * 'disk' entries in a domU configuration file get mapped to emulated
100  * cmdk devices and to xdf devices.  The 'disk' entry to xdf instance
101  * mappings we know because those are done within the Solaris xvdi code
102  * and the xpvd nexus driver.  But the config to emulated devices mappings
103  * are handled entirely within the xen management tool chain and the
104  * hardware emulator.  Since all the tools that establish these mappings
105  * live in dom0, dom0 should really supply us with this information,
106  * probably via the xenstore.  Unfortunatly it doesn't so, since there's
107  * no good way to determine this mapping dynamically, this driver uses
108  * a hard coded set of static mappings.  These mappings are hardware
109  * emulator specific because each different hardware emulator could have
110  * a different device tree with different cmdk device paths.  This
111  * means that if we want to continue to use this static mapping approach
112  * to allow Solaris to run on different hardware emulators we'll have
113  * to analyze each of those emulators to determine what paths they
114  * use and hard code those paths into this driver.  yech.  This metadata
115  * really needs to be supplied to us by dom0.
116  *
117  * This driver access underlying xdf nodes.  Unfortunatly, devices
118  * must create minor nodes during attach, and for disk devices to create
119  * minor nodes, they have to look at the label on the disk, so this means
120  * that disk drivers must be able to access a disk contents during
121  * attach.  That means that this disk driver must be able to access
122  * underlying xdf nodes during attach.  Unfortunatly, due to device tree
123  * locking restrictions, we cannot have an attach operation occuring on
124  * this device and then attempt to access another device which may
125  * cause another attach to occur in a different device tree branch
126  * since this could result in deadlock.  Hence, this driver can only
127  * access xdf device nodes that we know are attached, and it can't use
128  * any ddi interfaces to access those nodes if those interfaces could
129  * trigger an attach of the xdf device.  So this driver works around
130  * these restrictions by talking directly to xdf devices via
131  * xdf_hvm_hold().  This interface takes a pathname to an xdf device,
132  * and if that device is already attached then it returns the a held dip
133  * pointer for that device node.  This prevents us from getting into
134  * deadlock situations, but now we need a mechanism to ensure that all
135  * the xdf device nodes this driver might access are attached before
136  * this driver tries to access them.  This is accomplished via the
137  * hvmboot_rootconf() callback which is invoked just before root is
138  * mounted.  hvmboot_rootconf() will attach xpvd and tell it to configure
139  * all xdf device visible to the system.  All these xdf device nodes
140  * will also be marked with the "ddi-no-autodetach" property so that
141  * once they are configured, the will not be automatically unconfigured.
142  * The only way that they could be unconfigured is if the administrator
143  * explicitly attempts to unload required modules via rem_drv(1M)
144  * or modunload(1M).
145  */
146 
147 /*
148  * 16 paritions + fdisk (see xdf.h)
149  */
150 #define	XDF_DEV2UNIT(dev)	XDF_INST((getminor((dev))))
151 #define	XDF_DEV2PART(dev)	XDF_PART((getminor((dev))))
152 
153 #define	OTYP_VALID(otyp)	((otyp == OTYP_BLK) || \
154 					(otyp == OTYP_CHR) || \
155 					(otyp == OTYP_LYR))
156 
157 #define	PV_CMDK_NODES		4
158 
159 typedef struct hvm_to_pv {
160 	char	*h2p_hvm_path;
161 	char	*h2p_pv_path;
162 } hvm_to_pv_t;
163 
164 /*
165  */
166 static hvm_to_pv_t pv_cmdk_h2p_xen_qemu[] = {
167 	/*
168 	 * The paths mapping here are very specific to xen and qemu.  When a
169 	 * domU is booted under xen in HVM mode, qemu is normally used to
170 	 * emulate up to four ide disks.  These disks always have the four
171 	 * path listed below.  To configure an emulated ide device, the
172 	 * xen domain configuration file normally has an entry that looks
173 	 * like this:
174 	 *	disk = [ 'file:/foo.img,hda,w' ]
175 	 *
176 	 * The part we're interested in is the 'hda', which we'll call the
177 	 * xen disk device name here.  The xen management tools (which parse
178 	 * the xen domain configuration file and launch qemu) makes the
179 	 * following assumptions about this value:
180 	 *	hda == emulated ide disk 0 (ide bus 0, master)
181 	 *	hdb == emulated ide disk 1 (ide bus 0, slave)
182 	 *	hdc == emulated ide disk 2 (ide bus 1, master)
183 	 *	hdd == emulated ide disk 3 (ide bus 1, slave)
184 	 *
185 	 * (Uncoincidentally, these xen disk device names actually map to
186 	 * the /dev filesystem names of ide disk devices in Linux.  So in
187 	 * Linux /dev/hda is the first ide disk.)  So for the first part of
188 	 * our mapping we've just hardcoded the cmdk paths that we know
189 	 * qemu will use.
190 	 *
191 	 * To understand the second half of the mapping (ie, the xdf device
192 	 * that each emulated cmdk device should be mapped two) we need to
193 	 * know the solaris device node address that will be assigned to
194 	 * each xdf device.  (The device node address is the decimal
195 	 * number that comes after the "xdf@" in the device path.)
196 	 *
197 	 * So the question becomes, how do we know what the xenstore device
198 	 * id for emulated disk will be?  Well, it turns out that since the
199 	 * xen management tools expect the disk device names to be Linux
200 	 * device names, those same management tools assign each disk a
201 	 * device id that matches the dev_t of the corresponding device
202 	 * under Linux.  (Big shocker.)  This xen device name-to-id mapping
203 	 * is currently all hard coded here:
204 	 *	xen.hg/tools/python/xen/util/blkif.py`blkdev_name_to_number()
205 	 *
206 	 * So looking at the code above we can see the following xen disk
207 	 * device name to xenstore device id mappings:
208 	 *	'hda' == 0t768  == ((3  * 256) + (0 * 64))
209 	 *	'hdb' == 0t832  == ((3  * 256) + (1 * 64))
210 	 *	'hdc' == 0t5632 == ((22 * 256) + (0 * 64))
211 	 *	'hdd' == 0t5696 == ((22 * 256) + (1 * 64))
212 	 */
213 	{ "/pci@0,0/pci-ide@1,1/ide@0/cmdk@0,0", "/xpvd/xdf@768" },
214 	{ "/pci@0,0/pci-ide@1,1/ide@0/cmdk@1,0", "/xpvd/xdf@832" },
215 	{ "/pci@0,0/pci-ide@1,1/ide@1/cmdk@0,0", "/xpvd/xdf@5632" },
216 	{ "/pci@0,0/pci-ide@1,1/ide@1/cmdk@1,0", "/xpvd/xdf@5696" },
217 	{ NULL, 0 }
218 };
219 
220 typedef struct pv_cmdk {
221 	dev_info_t	*dk_dip;
222 	cmlb_handle_t	dk_cmlbhandle;
223 	ddi_devid_t	dk_devid;
224 	kmutex_t	dk_mutex;
225 	dev_info_t	*dk_xdf_dip;
226 	dev_t		dk_xdf_dev;
227 	int		dk_xdf_otyp_count[OTYPCNT][XDF_PEXT];
228 	ldi_handle_t	dk_xdf_lh[XDF_PEXT];
229 } pv_cmdk_t;
230 
231 /*
232  * Globals
233  */
234 static void *pv_cmdk_state;
235 static major_t pv_cmdk_major;
236 static hvm_to_pv_t *pv_cmdk_h2p;
237 
238 /*
239  * Function prototypes for xdf callback functions
240  */
241 extern int xdf_lb_getinfo(dev_info_t *, int, void *, void *);
242 extern int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t,
243     void *);
244 
245 static boolean_t
246 pv_cmdk_isopen_part(struct pv_cmdk *dkp, int part)
247 {
248 	int otyp;
249 
250 	ASSERT(MUTEX_HELD(&dkp->dk_mutex));
251 
252 	for (otyp = 0; (otyp < OTYPCNT); otyp++) {
253 		if (dkp->dk_xdf_otyp_count[otyp][part] != 0)
254 			return (B_TRUE);
255 	}
256 	return (B_FALSE);
257 }
258 
259 /*
260  * Cmlb ops vectors, allows the cmlb module to directly access the entire
261  * pv_cmdk disk device without going through any partitioning layers.
262  */
263 /*ARGSUSED*/
264 static int
265 pv_cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
266     diskaddr_t start, size_t count, void *tg_cookie)
267 {
268 	int		instance = ddi_get_instance(dip);
269 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
270 
271 	if (dkp == NULL)
272 		return (ENXIO);
273 
274 	return (xdf_lb_rdwr(dkp->dk_xdf_dip, cmd, bufaddr, start, count,
275 	    tg_cookie));
276 }
277 
278 /*ARGSUSED*/
279 static int
280 pv_cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
281 {
282 	int		instance = ddi_get_instance(dip);
283 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
284 	int		err;
285 
286 	if (dkp == NULL)
287 		return (ENXIO);
288 
289 	if (cmd == TG_GETVIRTGEOM) {
290 		cmlb_geom_t	pgeom, *vgeomp;
291 		diskaddr_t	capacity;
292 
293 		/*
294 		 * The native xdf driver doesn't support this ioctl.
295 		 * Intead of passing it on, emulate it here so that the
296 		 * results look the same as what we get for a real cmdk
297 		 * device.
298 		 *
299 		 * Get the real size of the device
300 		 */
301 		if ((err = xdf_lb_getinfo(dkp->dk_xdf_dip,
302 		    TG_GETPHYGEOM, &pgeom, tg_cookie)) != 0)
303 			return (err);
304 		capacity = pgeom.g_capacity;
305 
306 		/*
307 		 * If the controller returned us something that doesn't
308 		 * really fit into an Int 13/function 8 geometry
309 		 * result, just fail the ioctl.  See PSARC 1998/313.
310 		 */
311 		if (capacity >= (63 * 254 * 1024))
312 			return (EINVAL);
313 
314 		vgeomp = (cmlb_geom_t *)arg;
315 		vgeomp->g_capacity	= capacity;
316 		vgeomp->g_nsect		= 63;
317 		vgeomp->g_nhead		= 254;
318 		vgeomp->g_ncyl		= capacity / (63 * 254);
319 		vgeomp->g_acyl		= 0;
320 		vgeomp->g_secsize	= 512;
321 		vgeomp->g_intrlv	= 1;
322 		vgeomp->g_rpm		= 3600;
323 		return (0);
324 	}
325 
326 	return (xdf_lb_getinfo(dkp->dk_xdf_dip, cmd, arg, tg_cookie));
327 }
328 
329 static cmlb_tg_ops_t pv_cmdk_lb_ops = {
330 	TG_DK_OPS_VERSION_1,
331 	pv_cmdk_lb_rdwr,
332 	pv_cmdk_lb_getinfo
333 };
334 
335 /*
336  * devid management functions
337  */
338 
339 /*
340  * pv_cmdk_get_modser() is basically a local copy of
341  * cmdk_get_modser() modified to work without the dadk layer.
342  * (which the non-pv version of the cmdk driver uses.)
343  */
344 static int
345 pv_cmdk_get_modser(struct pv_cmdk *dkp, int ioccmd, char *buf, int len)
346 {
347 	struct scsi_device	*scsi_device;
348 	opaque_t		ctlobjp;
349 	dadk_ioc_string_t	strarg;
350 	char			*s;
351 	char			ch;
352 	boolean_t		ret;
353 	int			i;
354 	int			tb;
355 
356 	strarg.is_buf = buf;
357 	strarg.is_size = len;
358 	scsi_device = ddi_get_driver_private(dkp->dk_dip);
359 	ctlobjp = scsi_device->sd_address.a_hba_tran;
360 	if (CTL_IOCTL(ctlobjp,
361 	    ioccmd, (uintptr_t)&strarg, FNATIVE | FKIOCTL) != 0)
362 		return (0);
363 
364 	/*
365 	 * valid model/serial string must contain a non-zero non-space
366 	 * trim trailing spaces/NULL
367 	 */
368 	ret = B_FALSE;
369 	s = buf;
370 	for (i = 0; i < strarg.is_size; i++) {
371 		ch = *s++;
372 		if (ch != ' ' && ch != '\0')
373 			tb = i + 1;
374 		if (ch != ' ' && ch != '\0' && ch != '0')
375 			ret = B_TRUE;
376 	}
377 
378 	if (ret == B_FALSE)
379 		return (0);
380 
381 	return (tb);
382 }
383 
384 /*
385  * pv_cmdk_devid_modser() is basically a copy of cmdk_devid_modser()
386  * that has been modified to use local pv cmdk driver functions.
387  *
388  * Build a devid from the model and serial number
389  * Return DDI_SUCCESS or DDI_FAILURE.
390  */
391 static int
392 pv_cmdk_devid_modser(struct pv_cmdk *dkp)
393 {
394 	int	rc = DDI_FAILURE;
395 	char	*hwid;
396 	int	modlen;
397 	int	serlen;
398 
399 	/*
400 	 * device ID is a concatenation of model number, '=', serial number.
401 	 */
402 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
403 	modlen = pv_cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
404 	if (modlen == 0)
405 		goto err;
406 
407 	hwid[modlen++] = '=';
408 	serlen = pv_cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
409 	    hwid + modlen, CMDK_HWIDLEN - modlen);
410 	if (serlen == 0)
411 		goto err;
412 
413 	hwid[modlen + serlen] = 0;
414 
415 	/* Initialize the device ID, trailing NULL not included */
416 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
417 	    hwid, (ddi_devid_t *)&dkp->dk_devid);
418 	if (rc != DDI_SUCCESS)
419 		goto err;
420 
421 	kmem_free(hwid, CMDK_HWIDLEN);
422 	return (DDI_SUCCESS);
423 
424 err:
425 	kmem_free(hwid, CMDK_HWIDLEN);
426 	return (DDI_FAILURE);
427 }
428 
429 /*
430  * pv_cmdk_devid_read() is basically a local copy of
431  * cmdk_devid_read() modified to work without the dadk layer.
432  * (which the non-pv version of the cmdk driver uses.)
433  *
434  * Read a devid from on the first block of the last track of
435  * the last cylinder.  Make sure what we read is a valid devid.
436  * Return DDI_SUCCESS or DDI_FAILURE.
437  */
438 static int
439 pv_cmdk_devid_read(struct pv_cmdk *dkp)
440 {
441 	diskaddr_t	blk;
442 	struct dk_devid *dkdevidp;
443 	uint_t		*ip, chksum;
444 	int		i;
445 
446 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0) != 0)
447 		return (DDI_FAILURE);
448 
449 	dkdevidp = kmem_zalloc(NBPSCTR, KM_SLEEP);
450 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
451 	    TG_READ, dkdevidp, blk, NBPSCTR, NULL) != 0)
452 		goto err;
453 
454 	/* Validate the revision */
455 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
456 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
457 		goto err;
458 
459 	/* Calculate the checksum */
460 	chksum = 0;
461 	ip = (uint_t *)dkdevidp;
462 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
463 		chksum ^= ip[i];
464 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
465 		goto err;
466 
467 	/* Validate the device id */
468 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
469 		goto err;
470 
471 	/* keep a copy of the device id */
472 	i = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
473 	dkp->dk_devid = kmem_alloc(i, KM_SLEEP);
474 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, i);
475 	kmem_free(dkdevidp, NBPSCTR);
476 	return (DDI_SUCCESS);
477 
478 err:
479 	kmem_free(dkdevidp, NBPSCTR);
480 	return (DDI_FAILURE);
481 }
482 
483 /*
484  * pv_cmdk_devid_fabricate() is basically a local copy of
485  * cmdk_devid_fabricate() modified to work without the dadk layer.
486  * (which the non-pv version of the cmdk driver uses.)
487  *
488  * Create a devid and write it on the first block of the last track of
489  * the last cylinder.
490  * Return DDI_SUCCESS or DDI_FAILURE.
491  */
492 static int
493 pv_cmdk_devid_fabricate(struct pv_cmdk *dkp)
494 {
495 	ddi_devid_t	devid = NULL; /* devid made by ddi_devid_init  */
496 	struct dk_devid	*dkdevidp = NULL; /* devid struct stored on disk */
497 	diskaddr_t	blk;
498 	uint_t		*ip, chksum;
499 	int		i;
500 
501 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0) != 0)
502 		return (DDI_FAILURE);
503 
504 	if (ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid) !=
505 	    DDI_SUCCESS)
506 		return (DDI_FAILURE);
507 
508 	/* allocate a buffer */
509 	dkdevidp = (struct dk_devid *)kmem_zalloc(NBPSCTR, KM_SLEEP);
510 
511 	/* Fill in the revision */
512 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
513 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
514 
515 	/* Copy in the device id */
516 	i = ddi_devid_sizeof(devid);
517 	if (i > DK_DEVID_SIZE)
518 		goto err;
519 	bcopy(devid, dkdevidp->dkd_devid, i);
520 
521 	/* Calculate the chksum */
522 	chksum = 0;
523 	ip = (uint_t *)dkdevidp;
524 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
525 		chksum ^= ip[i];
526 
527 	/* Fill in the checksum */
528 	DKD_FORMCHKSUM(chksum, dkdevidp);
529 
530 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
531 	    TG_WRITE, dkdevidp, blk, NBPSCTR, NULL) != 0)
532 		goto err;
533 
534 	kmem_free(dkdevidp, NBPSCTR);
535 
536 	dkp->dk_devid = devid;
537 	return (DDI_SUCCESS);
538 
539 err:
540 	if (dkdevidp != NULL)
541 		kmem_free(dkdevidp, NBPSCTR);
542 	if (devid != NULL)
543 		ddi_devid_free(devid);
544 	return (DDI_FAILURE);
545 }
546 
547 /*
548  * pv_cmdk_devid_setup() is basically a local copy ofcmdk_devid_setup()
549  * that has been modified to use local pv cmdk driver functions.
550  *
551  * Create and register the devid.
552  * There are 4 different ways we can get a device id:
553  *    1. Already have one - nothing to do
554  *    2. Build one from the drive's model and serial numbers
555  *    3. Read one from the disk (first sector of last track)
556  *    4. Fabricate one and write it on the disk.
557  * If any of these succeeds, register the deviceid
558  */
559 static void
560 pv_cmdk_devid_setup(struct pv_cmdk *dkp)
561 {
562 	int	rc;
563 
564 	/* Try options until one succeeds, or all have failed */
565 
566 	/* 1. All done if already registered */
567 
568 	if (dkp->dk_devid != NULL)
569 		return;
570 
571 	/* 2. Build a devid from the model and serial number */
572 	rc = pv_cmdk_devid_modser(dkp);
573 	if (rc != DDI_SUCCESS) {
574 		/* 3. Read devid from the disk, if present */
575 		rc = pv_cmdk_devid_read(dkp);
576 
577 		/* 4. otherwise make one up and write it on the disk */
578 		if (rc != DDI_SUCCESS)
579 			rc = pv_cmdk_devid_fabricate(dkp);
580 	}
581 
582 	/* If we managed to get a devid any of the above ways, register it */
583 	if (rc == DDI_SUCCESS)
584 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
585 }
586 
587 /*
588  * Local Functions
589  */
590 static int
591 pv_cmdk_iodone(struct buf *bp)
592 {
593 	struct buf	*bp_orig = bp->b_chain;
594 
595 	/* Propegate back the io results */
596 	bp_orig->b_resid = bp->b_resid;
597 	bioerror(bp_orig, geterror(bp));
598 	biodone(bp_orig);
599 
600 	freerbuf(bp);
601 	return (0);
602 }
603 
604 static int
605 pv_cmdkstrategy(struct buf *bp)
606 {
607 	dev_t		dev = bp->b_edev;
608 	int		instance = XDF_DEV2UNIT(dev);
609 	int		part = XDF_DEV2PART(dev);
610 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
611 	dev_t		xdf_devt;
612 	struct buf	*bp_clone;
613 
614 	/*
615 	 * Sanity checks that the dev_t associated with the buf we were
616 	 * passed actually corresponds us and that the partition we're
617 	 * trying to access is actually open.  On debug kernels we'll
618 	 * panic and on non-debug kernels we'll return failure.
619 	 */
620 	ASSERT(getmajor(dev) == pv_cmdk_major);
621 	if (getmajor(dev) != pv_cmdk_major)
622 		goto err;
623 
624 	mutex_enter(&dkp->dk_mutex);
625 	ASSERT(pv_cmdk_isopen_part(dkp, part));
626 	if (!pv_cmdk_isopen_part(dkp, part)) {
627 		mutex_exit(&dkp->dk_mutex);
628 		goto err;
629 	}
630 	mutex_exit(&dkp->dk_mutex);
631 
632 	/* clone this buffer */
633 	xdf_devt = dkp->dk_xdf_dev | part;
634 	bp_clone = bioclone(bp, 0, bp->b_bcount, xdf_devt, bp->b_blkno,
635 	    pv_cmdk_iodone, NULL, KM_SLEEP);
636 	bp_clone->b_chain = bp;
637 
638 	/*
639 	 * If we're being invoked on behalf of the physio() call in
640 	 * pv_cmdk_dioctl_rwcmd() then b_private will be set to
641 	 * XB_SLICE_NONE and we need to propegate this flag into the
642 	 * cloned buffer so that the xdf driver will see it.
643 	 */
644 	if (bp->b_private == (void *)XB_SLICE_NONE)
645 		bp_clone->b_private = (void *)XB_SLICE_NONE;
646 
647 	/*
648 	 * Pass on the cloned buffer.  Note that we don't bother to check
649 	 * for failure because the xdf strategy routine will have to
650 	 * invoke biodone() if it wants to return an error, which means
651 	 * that the pv_cmdk_iodone() callback will get invoked and it
652 	 * will propegate the error back up the stack and free the cloned
653 	 * buffer.
654 	 */
655 	ASSERT(dkp->dk_xdf_lh[part] != NULL);
656 	return (ldi_strategy(dkp->dk_xdf_lh[part], bp_clone));
657 
658 err:
659 	bioerror(bp, ENXIO);
660 	bp->b_resid = bp->b_bcount;
661 	biodone(bp);
662 	return (0);
663 }
664 
665 /*ARGSUSED*/
666 static int
667 pv_cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
668 {
669 	int		instance = XDF_DEV2UNIT(dev);
670 	int		part = XDF_DEV2PART(dev);
671 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
672 
673 	return (ldi_read(dkp->dk_xdf_lh[part], uio, credp));
674 }
675 
676 /*ARGSUSED*/
677 static int
678 pv_cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
679 {
680 	int		instance = XDF_DEV2UNIT(dev);
681 	int		part = XDF_DEV2PART(dev);
682 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
683 
684 	return (ldi_write(dkp->dk_xdf_lh[part], uio, credp));
685 }
686 
687 /*ARGSUSED*/
688 static int
689 pv_cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
690 {
691 	int		instance = XDF_DEV2UNIT(dev);
692 	int		part = XDF_DEV2PART(dev);
693 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
694 	return (ldi_aread(dkp->dk_xdf_lh[part], aio, credp));
695 }
696 
697 /*ARGSUSED*/
698 static int
699 pv_cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
700 {
701 	int		instance = XDF_DEV2UNIT(dev);
702 	int		part = XDF_DEV2PART(dev);
703 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
704 	return (ldi_awrite(dkp->dk_xdf_lh[part], aio, credp));
705 }
706 
707 static int
708 pv_cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
709 {
710 	int		instance = XDF_DEV2UNIT(dev);
711 	int		part = XDF_DEV2PART(dev);
712 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
713 
714 	return (ldi_dump(dkp->dk_xdf_lh[part], addr, blkno, nblk));
715 }
716 
717 /*
718  * pv_rwcmd_copyin() is a duplicate of rwcmd_copyin().
719  */
720 static int
721 pv_rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
722 {
723 	switch (ddi_model_convert_from(flag)) {
724 		case DDI_MODEL_ILP32: {
725 			struct dadkio_rwcmd32 cmd32;
726 
727 			if (ddi_copyin(inaddr, &cmd32,
728 			    sizeof (struct dadkio_rwcmd32), flag)) {
729 				return (EFAULT);
730 			}
731 
732 			rwcmdp->cmd = cmd32.cmd;
733 			rwcmdp->flags = cmd32.flags;
734 			rwcmdp->blkaddr = (blkaddr_t)cmd32.blkaddr;
735 			rwcmdp->buflen = cmd32.buflen;
736 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
737 			/*
738 			 * Note: we do not convert the 'status' field,
739 			 * as it should not contain valid data at this
740 			 * point.
741 			 */
742 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
743 			break;
744 		}
745 		case DDI_MODEL_NONE: {
746 			if (ddi_copyin(inaddr, rwcmdp,
747 			    sizeof (struct dadkio_rwcmd), flag)) {
748 				return (EFAULT);
749 			}
750 		}
751 	}
752 	return (0);
753 }
754 
755 /*
756  * pv_rwcmd_copyout() is a duplicate of rwcmd_copyout().
757  */
758 static int
759 pv_rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
760 {
761 	switch (ddi_model_convert_from(flag)) {
762 		case DDI_MODEL_ILP32: {
763 			struct dadkio_rwcmd32 cmd32;
764 
765 			cmd32.cmd = rwcmdp->cmd;
766 			cmd32.flags = rwcmdp->flags;
767 			cmd32.blkaddr = rwcmdp->blkaddr;
768 			cmd32.buflen = rwcmdp->buflen;
769 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
770 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
771 
772 			cmd32.status.status = rwcmdp->status.status;
773 			cmd32.status.resid = rwcmdp->status.resid;
774 			cmd32.status.failed_blk_is_valid =
775 			    rwcmdp->status.failed_blk_is_valid;
776 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
777 			cmd32.status.fru_code_is_valid =
778 			    rwcmdp->status.fru_code_is_valid;
779 			cmd32.status.fru_code = rwcmdp->status.fru_code;
780 
781 			bcopy(rwcmdp->status.add_error_info,
782 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
783 
784 			if (ddi_copyout(&cmd32, outaddr,
785 			    sizeof (struct dadkio_rwcmd32), flag))
786 				return (EFAULT);
787 			break;
788 		}
789 		case DDI_MODEL_NONE: {
790 			if (ddi_copyout(rwcmdp, outaddr,
791 			    sizeof (struct dadkio_rwcmd), flag))
792 			return (EFAULT);
793 		}
794 	}
795 	return (0);
796 }
797 
798 static void
799 pv_cmdkmin(struct buf *bp)
800 {
801 	if (bp->b_bcount > DK_MAXRECSIZE)
802 		bp->b_bcount = DK_MAXRECSIZE;
803 }
804 
805 static int
806 pv_cmdk_dioctl_rwcmd(dev_t dev, intptr_t arg, int flag)
807 {
808 	struct dadkio_rwcmd	*rwcmdp;
809 	struct iovec		aiov;
810 	struct uio		auio;
811 	struct buf		*bp;
812 	int			rw, status;
813 
814 	rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
815 	status = pv_rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
816 
817 	if (status != 0)
818 		goto out;
819 
820 	switch (rwcmdp->cmd) {
821 		case DADKIO_RWCMD_READ:
822 		case DADKIO_RWCMD_WRITE:
823 			break;
824 		default:
825 			status = EINVAL;
826 			goto out;
827 	}
828 
829 	bzero((caddr_t)&aiov, sizeof (struct iovec));
830 	aiov.iov_base = rwcmdp->bufaddr;
831 	aiov.iov_len = rwcmdp->buflen;
832 
833 	bzero((caddr_t)&auio, sizeof (struct uio));
834 	auio.uio_iov = &aiov;
835 	auio.uio_iovcnt = 1;
836 	auio.uio_loffset = (offset_t)rwcmdp->blkaddr * (offset_t)XB_BSIZE;
837 	auio.uio_resid = rwcmdp->buflen;
838 	auio.uio_segflg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
839 
840 	/*
841 	 * Tell the xdf driver that this I/O request is using an absolute
842 	 * offset.
843 	 */
844 	bp = getrbuf(KM_SLEEP);
845 	bp->b_private = (void *)XB_SLICE_NONE;
846 
847 	rw = ((rwcmdp->cmd == DADKIO_RWCMD_WRITE) ? B_WRITE : B_READ);
848 	status = physio(pv_cmdkstrategy, bp, dev, rw, pv_cmdkmin, &auio);
849 
850 	biofini(bp);
851 	kmem_free(bp, sizeof (buf_t));
852 
853 	if (status == 0)
854 		status = pv_rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
855 
856 out:
857 	kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
858 	return (status);
859 }
860 
861 static int
862 pv_cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
863     int *rvalp)
864 {
865 	int		instance = XDF_DEV2UNIT(dev);
866 	int		part = XDF_DEV2PART(dev);
867 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
868 	int		err;
869 
870 	switch (cmd) {
871 	default:
872 		return (ldi_ioctl(dkp->dk_xdf_lh[part],
873 		    cmd, arg, flag, credp, rvalp));
874 	case DKIOCGETWCE:
875 	case DKIOCSETWCE:
876 		return (EIO);
877 	case DKIOCADDBAD: {
878 		/*
879 		 * This is for ata/ide bad block handling.  It is supposed
880 		 * to cause the driver to re-read the bad block list and
881 		 * alternate map after it has been updated.  Our driver
882 		 * will refuse to attach to any disk which has a bad blocks
883 		 * list defined, so there really isn't much to do here.
884 		 */
885 		return (0);
886 	}
887 	case DKIOCGETDEF: {
888 		/*
889 		 * I can't actually find any code that utilizes this ioctl,
890 		 * hence we're leaving it explicitly unimplemented.
891 		 */
892 		ASSERT("ioctl cmd unsupported by pv_cmdk: DKIOCGETDEF");
893 		return (EIO);
894 	}
895 	case DIOCTL_RWCMD: {
896 		/*
897 		 * This just seems to just be an alternate interface for
898 		 * reading and writing the disk.  Great, another way to
899 		 * do the same thing...
900 		 */
901 		return (pv_cmdk_dioctl_rwcmd(dev, arg, flag));
902 	}
903 	case DKIOCINFO: {
904 		dev_info_t	*dip = dkp->dk_dip;
905 		struct dk_cinfo	info;
906 
907 		/* Pass on the ioctl request, save the response */
908 		if ((err = ldi_ioctl(dkp->dk_xdf_lh[part],
909 		    cmd, (intptr_t)&info, FKIOCTL, credp, rvalp)) != 0)
910 			return (err);
911 
912 		/* Update controller info */
913 		info.dki_cnum = ddi_get_instance(ddi_get_parent(dip));
914 		(void) strlcpy(info.dki_cname,
915 		    ddi_get_name(ddi_get_parent(dip)), sizeof (info.dki_cname));
916 
917 		/* Update unit info. */
918 		if (info.dki_ctype == DKC_VBD)
919 			info.dki_ctype = DKC_DIRECT;
920 		info.dki_unit = instance;
921 		(void) strlcpy(info.dki_dname,
922 		    ddi_driver_name(dip), sizeof (info.dki_dname));
923 		info.dki_addr = 1;
924 
925 		if (ddi_copyout(&info, (void *)arg, sizeof (info), flag))
926 			return (EFAULT);
927 		return (0);
928 	}
929 	} /* switch (cmd) */
930 	/*NOTREACHED*/
931 }
932 
933 /*ARGSUSED*/
934 static int
935 pv_cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
936 {
937 	ldi_ident_t	li;
938 	dev_t		dev = *dev_p;
939 	int		instance = XDF_DEV2UNIT(dev);
940 	int		part = XDF_DEV2PART(dev);
941 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
942 	dev_t		xdf_devt = dkp->dk_xdf_dev | part;
943 	int		err = 0;
944 
945 	if ((otyp < 0) || (otyp >= OTYPCNT))
946 		return (EINVAL);
947 
948 	/* allocate an ldi handle */
949 	VERIFY(ldi_ident_from_dev(*dev_p, &li) == 0);
950 
951 	mutex_enter(&dkp->dk_mutex);
952 
953 	/*
954 	 * We translate all device opens (chr, blk, and lyr) into
955 	 * block device opens.  Why?  Because for all the opens that
956 	 * come through this driver, we only keep around one LDI handle.
957 	 * So that handle can only be of one open type.  The reason
958 	 * that we choose the block interface for this is that to use
959 	 * the block interfaces for a device the system needs to allocatex
960 	 * buf_ts, which are associated with system memory which can act
961 	 * as a cache for device data.  So normally when a block device
962 	 * is closed the system will ensure that all these pages get
963 	 * flushed out of memory.  But if we were to open the device
964 	 * as a character device, then when we went to close the underlying
965 	 * device (even if we had invoked the block interfaces) any data
966 	 * remaining in memory wouldn't necessairly be flushed out
967 	 * before the device was closed.
968 	 */
969 	if (dkp->dk_xdf_lh[part] == NULL) {
970 		ASSERT(!pv_cmdk_isopen_part(dkp, part));
971 
972 		err = ldi_open_by_dev(&xdf_devt, OTYP_BLK, flag, credp,
973 		    &dkp->dk_xdf_lh[part], li);
974 
975 		if (err != 0) {
976 			mutex_exit(&dkp->dk_mutex);
977 			ldi_ident_release(li);
978 			return (err);
979 		}
980 
981 		/* Disk devices really shouldn't clone */
982 		ASSERT(xdf_devt == (dkp->dk_xdf_dev | part));
983 	} else {
984 		ldi_handle_t lh_tmp;
985 
986 		ASSERT(pv_cmdk_isopen_part(dkp, part));
987 
988 		/* do ldi open/close to get flags and cred check */
989 		err = ldi_open_by_dev(&xdf_devt, OTYP_BLK, flag, credp,
990 		    &lh_tmp, li);
991 		if (err != 0) {
992 			mutex_exit(&dkp->dk_mutex);
993 			ldi_ident_release(li);
994 			return (err);
995 		}
996 
997 		/* Disk devices really shouldn't clone */
998 		ASSERT(xdf_devt == (dkp->dk_xdf_dev | part));
999 		(void) ldi_close(lh_tmp, flag, credp);
1000 	}
1001 	ldi_ident_release(li);
1002 
1003 	dkp->dk_xdf_otyp_count[otyp][part]++;
1004 
1005 	mutex_exit(&dkp->dk_mutex);
1006 	return (0);
1007 }
1008 
1009 /*ARGSUSED*/
1010 static int
1011 pv_cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1012 {
1013 	int		instance = XDF_DEV2UNIT(dev);
1014 	int		part = XDF_DEV2PART(dev);
1015 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1016 	int		err = 0;
1017 
1018 	ASSERT((otyp >= 0) && otyp < OTYPCNT);
1019 
1020 	/*
1021 	 * Sanity check that that the dev_t specified corresponds to this
1022 	 * driver and that the device is actually open.  On debug kernels we'll
1023 	 * panic and on non-debug kernels we'll return failure.
1024 	 */
1025 	ASSERT(getmajor(dev) == pv_cmdk_major);
1026 	if (getmajor(dev) != pv_cmdk_major)
1027 		return (ENXIO);
1028 
1029 	mutex_enter(&dkp->dk_mutex);
1030 	ASSERT(pv_cmdk_isopen_part(dkp, part));
1031 	if (!pv_cmdk_isopen_part(dkp, part)) {
1032 		mutex_exit(&dkp->dk_mutex);
1033 		return (ENXIO);
1034 	}
1035 
1036 	ASSERT(dkp->dk_xdf_lh[part] != NULL);
1037 	ASSERT(dkp->dk_xdf_otyp_count[otyp][part] > 0);
1038 	if (otyp == OTYP_LYR) {
1039 		dkp->dk_xdf_otyp_count[otyp][part]--;
1040 	} else {
1041 		dkp->dk_xdf_otyp_count[otyp][part] = 0;
1042 	}
1043 
1044 	if (!pv_cmdk_isopen_part(dkp, part)) {
1045 		err = ldi_close(dkp->dk_xdf_lh[part], flag, credp);
1046 		dkp->dk_xdf_lh[part] = NULL;
1047 	}
1048 
1049 	mutex_exit(&dkp->dk_mutex);
1050 
1051 	return (err);
1052 }
1053 
1054 static int
1055 pv_cmdk_getpgeom(dev_info_t *dip, cmlb_geom_t *pgeom)
1056 {
1057 	struct scsi_device	*scsi_device;
1058 	struct tgdk_geom	tgdk_geom;
1059 	opaque_t		ctlobjp;
1060 	int			err;
1061 
1062 	scsi_device = ddi_get_driver_private(dip);
1063 	ctlobjp = scsi_device->sd_address.a_hba_tran;
1064 	if ((err = CTL_IOCTL(ctlobjp,
1065 	    DIOCTL_GETPHYGEOM, (uintptr_t)&tgdk_geom, FKIOCTL)) != 0)
1066 		return (err);
1067 
1068 	/* This driver won't work if this isn't true */
1069 	ASSERT(tgdk_geom.g_secsiz == XB_BSIZE);
1070 
1071 	pgeom->g_ncyl = tgdk_geom.g_cyl;
1072 	pgeom->g_acyl = tgdk_geom.g_acyl;
1073 	pgeom->g_nhead = tgdk_geom.g_head;
1074 	pgeom->g_nsect = tgdk_geom.g_sec;
1075 	pgeom->g_secsize = tgdk_geom.g_secsiz;
1076 	pgeom->g_capacity = tgdk_geom.g_cap;
1077 	pgeom->g_intrlv = 1;
1078 	pgeom->g_rpm = 3600;
1079 	return (0);
1080 }
1081 
1082 /*
1083  * pv_cmdk_bb_check() checks for the existance of bad blocks mappings in
1084  * the alternate partition/slice.  Returns B_FALSE is there are no bad
1085  * block mappins found, and B_TRUE is there are bad block mappins found.
1086  */
1087 static boolean_t
1088 pv_cmdk_bb_check(struct pv_cmdk *dkp)
1089 {
1090 	struct alts_parttbl	*ap;
1091 	diskaddr_t		nblocks, blk;
1092 	uint32_t		altused, altbase, altlast;
1093 	uint16_t		vtoctag;
1094 	int			alts;
1095 
1096 	/* find slice with V_ALTSCTR tag */
1097 	for (alts = 0; alts < NDKMAP; alts++) {
1098 
1099 		if (cmlb_partinfo(dkp->dk_cmlbhandle, alts,
1100 		    &nblocks, &blk, NULL, &vtoctag, 0) != 0) {
1101 			/* no partition table exists */
1102 			return (B_FALSE);
1103 		}
1104 
1105 		if ((vtoctag == V_ALTSCTR) && (nblocks > 1))
1106 			break;
1107 	}
1108 	if (alts >= NDKMAP)
1109 		return (B_FALSE); /* no V_ALTSCTR slice defined */
1110 
1111 	/* read in ALTS label block */
1112 	ap = (struct alts_parttbl *)kmem_zalloc(NBPSCTR, KM_SLEEP);
1113 	if (pv_cmdk_lb_rdwr(dkp->dk_dip,
1114 	    TG_READ, ap, blk, NBPSCTR, NULL) != 0)
1115 		goto err;
1116 
1117 	altused = ap->alts_ent_used;	/* number of BB entries */
1118 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1119 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1120 
1121 	if ((altused == 0) || (altbase < 1) ||
1122 	    (altbase > altlast) || (altlast >= nblocks))
1123 		goto err;
1124 
1125 	/* we found bad block mappins */
1126 	kmem_free(ap, NBPSCTR);
1127 	return (B_TRUE);
1128 
1129 err:
1130 	kmem_free(ap, NBPSCTR);
1131 	return (B_FALSE);
1132 }
1133 
1134 /*
1135  * Autoconfiguration Routines
1136  */
1137 static int
1138 pv_cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1139 {
1140 	int			instance = ddi_get_instance(dip);
1141 	dev_info_t		*xdf_dip = NULL;
1142 	struct pv_cmdk		*dkp;
1143 	cmlb_geom_t		pgeom;
1144 	char			*path;
1145 	int			i;
1146 
1147 	if (cmd != DDI_ATTACH)
1148 		return (DDI_FAILURE);
1149 
1150 	/*
1151 	 * This cmdk device layers on top of an xdf device.  So the first
1152 	 * thing we need to do is determine which xdf device instance this
1153 	 * cmdk instance should be layered on top of.
1154 	 */
1155 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1156 	(void) ddi_pathname(dip, path);
1157 	for (i = 0; pv_cmdk_h2p[i].h2p_hvm_path != NULL; i++) {
1158 		if (strcmp(pv_cmdk_h2p[i].h2p_hvm_path, path) == 0)
1159 			break;
1160 	}
1161 	kmem_free(path, MAXPATHLEN);
1162 
1163 	if (pv_cmdk_h2p[i].h2p_hvm_path == NULL) {
1164 		/*
1165 		 * UhOh.  We don't know what xdf instance this cmdk device
1166 		 * should be mapped to.
1167 		 */
1168 		return (DDI_FAILURE);
1169 	}
1170 
1171 	/* Check if this device exists */
1172 	xdf_dip = xdf_hvm_hold(pv_cmdk_h2p[i].h2p_pv_path);
1173 	if (xdf_dip == NULL)
1174 		return (DDI_FAILURE);
1175 
1176 	/* allocate and initialize our state structure */
1177 	(void) ddi_soft_state_zalloc(pv_cmdk_state, instance);
1178 	dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1179 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
1180 	dkp->dk_dip = dip;
1181 	dkp->dk_xdf_dip = xdf_dip;
1182 	dkp->dk_xdf_dev = makedevice(ddi_driver_major(xdf_dip),
1183 	    XDF_MINOR(ddi_get_instance(xdf_dip), 0));
1184 
1185 	ASSERT((dkp->dk_xdf_dev & XDF_PMASK) == 0);
1186 
1187 	/*
1188 	 * GROSS HACK ALERT!  GROSS HACK ALERT!
1189 	 *
1190 	 * Before we can initialize the cmlb layer, we have to tell the
1191 	 * underlying xdf device what it's physical geometry should be.
1192 	 * See the block comments at the top of this file for more info.
1193 	 */
1194 	if ((pv_cmdk_getpgeom(dip, &pgeom) != 0) ||
1195 	    (xdf_hvm_setpgeom(dkp->dk_xdf_dip, &pgeom) != 0)) {
1196 		ddi_release_devi(dkp->dk_xdf_dip);
1197 		mutex_destroy(&dkp->dk_mutex);
1198 		ddi_soft_state_free(pv_cmdk_state, instance);
1199 		return (DDI_FAILURE);
1200 	}
1201 
1202 	/* create kstat for iostat(1M) */
1203 	if (xdf_kstat_create(dkp->dk_xdf_dip, "cmdk", instance) != 0) {
1204 		ddi_release_devi(dkp->dk_xdf_dip);
1205 		mutex_destroy(&dkp->dk_mutex);
1206 		ddi_soft_state_free(pv_cmdk_state, instance);
1207 		return (DDI_FAILURE);
1208 	}
1209 
1210 	/*
1211 	 * Force the xdf front end driver to connect to the backend.  From
1212 	 * the solaris device tree perspective, the xdf driver devinfo node
1213 	 * is already in the ATTACHED state.  (Otherwise xdf_hvm_hold()
1214 	 * would not have returned a dip.)  But this doesn't mean that the
1215 	 * xdf device has actually established a connection to it's back
1216 	 * end driver.  For us to be able to access the xdf device it needs
1217 	 * to be connected.  There are two ways to force the xdf driver to
1218 	 * connect to the backend device.
1219 	 */
1220 	if (xdf_hvm_connect(dkp->dk_xdf_dip) != 0) {
1221 		cmn_err(CE_WARN,
1222 		    "pv driver failed to connect: %s",
1223 		    pv_cmdk_h2p[i].h2p_pv_path);
1224 		xdf_kstat_delete(dkp->dk_xdf_dip);
1225 		ddi_release_devi(dkp->dk_xdf_dip);
1226 		mutex_destroy(&dkp->dk_mutex);
1227 		ddi_soft_state_free(pv_cmdk_state, instance);
1228 		return (DDI_FAILURE);
1229 	}
1230 
1231 	/*
1232 	 * Initalize cmlb.  Note that for partition information cmlb
1233 	 * will access the underly xdf disk device directly via
1234 	 * pv_cmdk_lb_rdwr() and pv_cmdk_lb_getinfo().  There are no
1235 	 * layered driver handles associated with this access because
1236 	 * it is a direct disk access that doesn't go through
1237 	 * any of the device nodes exported by the xdf device (since
1238 	 * all exported device nodes only reflect the portion of
1239 	 * the device visible via the partition/slice that the node
1240 	 * is associated with.)  So while not observable via the LDI,
1241 	 * this direct disk access is ok since we're actually holding
1242 	 * the target device.
1243 	 */
1244 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
1245 	if (cmlb_attach(dkp->dk_dip, &pv_cmdk_lb_ops,
1246 	    DTYPE_DIRECT,		/* device_type */
1247 	    0,				/* not removable */
1248 	    0,				/* not hot pluggable */
1249 	    DDI_NT_BLOCK,
1250 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* mimic cmdk */
1251 	    dkp->dk_cmlbhandle, 0) != 0) {
1252 		cmlb_free_handle(&dkp->dk_cmlbhandle);
1253 		xdf_kstat_delete(dkp->dk_xdf_dip);
1254 		ddi_release_devi(dkp->dk_xdf_dip);
1255 		mutex_destroy(&dkp->dk_mutex);
1256 		ddi_soft_state_free(pv_cmdk_state, instance);
1257 		return (DDI_FAILURE);
1258 	}
1259 
1260 	if (pv_cmdk_bb_check(dkp)) {
1261 		cmn_err(CE_WARN,
1262 		    "pv cmdk disks with bad blocks are unsupported: %s",
1263 		    pv_cmdk_h2p[i].h2p_hvm_path);
1264 
1265 		cmlb_detach(dkp->dk_cmlbhandle, 0);
1266 		cmlb_free_handle(&dkp->dk_cmlbhandle);
1267 		xdf_kstat_delete(dkp->dk_xdf_dip);
1268 		ddi_release_devi(dkp->dk_xdf_dip);
1269 		mutex_destroy(&dkp->dk_mutex);
1270 		ddi_soft_state_free(pv_cmdk_state, instance);
1271 		return (DDI_FAILURE);
1272 	}
1273 
1274 	/* setup devid string */
1275 	pv_cmdk_devid_setup(dkp);
1276 
1277 	/* Calling validate will create minor nodes according to disk label */
1278 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
1279 
1280 	/*
1281 	 * Add a zero-length attribute to tell the world we support
1282 	 * kernel ioctls (for layered drivers).
1283 	 */
1284 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1285 	    DDI_KERNEL_IOCTL, NULL, 0);
1286 
1287 	/* Have the system report any newly created device nodes */
1288 	ddi_report_dev(dip);
1289 
1290 	return (DDI_SUCCESS);
1291 }
1292 
1293 static int
1294 pv_cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1295 {
1296 	int		instance = ddi_get_instance(dip);
1297 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1298 
1299 	if (cmd != DDI_DETACH)
1300 		return (DDI_FAILURE);
1301 
1302 	ASSERT(MUTEX_NOT_HELD(&dkp->dk_mutex));
1303 
1304 	ddi_devid_unregister(dip);
1305 	if (dkp->dk_devid)
1306 		ddi_devid_free(dkp->dk_devid);
1307 	cmlb_detach(dkp->dk_cmlbhandle, 0);
1308 	cmlb_free_handle(&dkp->dk_cmlbhandle);
1309 	mutex_destroy(&dkp->dk_mutex);
1310 	xdf_kstat_delete(dkp->dk_xdf_dip);
1311 	ddi_release_devi(dkp->dk_xdf_dip);
1312 	ddi_soft_state_free(pv_cmdk_state, instance);
1313 	ddi_prop_remove_all(dip);
1314 
1315 	return (DDI_SUCCESS);
1316 }
1317 
1318 /*ARGSUSED*/
1319 static int
1320 pv_cmdk_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1321     void **result)
1322 {
1323 	dev_t		dev = (dev_t)arg;
1324 	int		instance = XDF_DEV2UNIT(dev);
1325 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1326 
1327 	switch (infocmd) {
1328 		case DDI_INFO_DEVT2DEVINFO:
1329 			if (dkp == NULL)
1330 				return (DDI_FAILURE);
1331 			*result = (void *)dkp->dk_dip;
1332 			break;
1333 		case DDI_INFO_DEVT2INSTANCE:
1334 			*result = (void *)(intptr_t)instance;
1335 			break;
1336 		default:
1337 			return (DDI_FAILURE);
1338 	}
1339 	return (DDI_SUCCESS);
1340 }
1341 
1342 static int
1343 pv_cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1344     int flags, char *name, caddr_t valuep, int *lengthp)
1345 {
1346 	int		instance = ddi_get_instance(dip);
1347 	struct pv_cmdk	*dkp = ddi_get_soft_state(pv_cmdk_state, instance);
1348 	dev_info_t	*xdf_dip;
1349 	dev_t		xdf_devt;
1350 	int		err;
1351 
1352 	/*
1353 	 * Sanity check that if a dev_t or dip were specified that they
1354 	 * correspond to this device driver.  On debug kernels we'll
1355 	 * panic and on non-debug kernels we'll return failure.
1356 	 */
1357 	ASSERT(ddi_driver_major(dip) == pv_cmdk_major);
1358 	ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == pv_cmdk_major));
1359 	if ((ddi_driver_major(dip) != pv_cmdk_major) ||
1360 	    ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != pv_cmdk_major)))
1361 		return (DDI_PROP_NOT_FOUND);
1362 
1363 	/*
1364 	 * This property lookup might be associated with a device node
1365 	 * that is not yet attached, if so pass it onto ddi_prop_op().
1366 	 */
1367 	if (dkp == NULL)
1368 		return (ddi_prop_op(dev, dip, prop_op, flags,
1369 		    name, valuep, lengthp));
1370 
1371 	/*
1372 	 * Make sure we only lookup static properties.
1373 	 *
1374 	 * If there are static properties of the underlying xdf driver
1375 	 * that we want to mirror, then we'll have to explicity look them
1376 	 * up and define them during attach.  There are a few reasons
1377 	 * for this.  Most importantly, most static properties are typed
1378 	 * and all dynamic properties are untyped, ie, for dynamic
1379 	 * properties the caller must know the type of the property and
1380 	 * how to interpret the value of the property.  the prop_op drivedr
1381 	 * entry point is only designed for returning dynamic/untyped
1382 	 * properties, so if we were to attempt to lookup and pass back
1383 	 * static properties of the underlying device here then we would
1384 	 * be losing the type information for those properties.  Another
1385 	 * reason we don't want to pass on static property requests is that
1386 	 * static properties are enumerable in the device tree, where as
1387 	 * dynamic ones are not.
1388 	 */
1389 	flags |= DDI_PROP_DYNAMIC;
1390 
1391 	/*
1392 	 * We can't use the ldi here to access the underlying device because
1393 	 * the ldi actually opens the device, and that open might fail if the
1394 	 * device has already been opened with the FEXCL flag.  If we used
1395 	 * the ldi here, it would also be possible for some other caller
1396 	 * to try open the device with the FEXCL flag and get a failure
1397 	 * back because we have it open to do a property query.
1398 	 *
1399 	 * Instad we'll grab a hold on the target dip and query the
1400 	 * property directly.
1401 	 */
1402 	mutex_enter(&dkp->dk_mutex);
1403 
1404 	if ((xdf_dip = dkp->dk_xdf_dip) == NULL) {
1405 		mutex_exit(&dkp->dk_mutex);
1406 		return (DDI_PROP_NOT_FOUND);
1407 	}
1408 	e_ddi_hold_devi(xdf_dip);
1409 
1410 	/* figure out the dev_t we're going to pass on down */
1411 	if (dev == DDI_DEV_T_ANY) {
1412 		xdf_devt = DDI_DEV_T_ANY;
1413 	} else {
1414 		xdf_devt = dkp->dk_xdf_dev | XDF_DEV2PART(dev);
1415 	}
1416 
1417 	mutex_exit(&dkp->dk_mutex);
1418 
1419 	/*
1420 	 * Cdev_prop_op() is not a public interface, and normally the caller
1421 	 * is required to make sure that the target driver actually implements
1422 	 * this interface before trying to invoke it.  In this case we know
1423 	 * that we're always accessing the xdf driver and it does have this
1424 	 * interface defined, so we can skip the check.
1425 	 */
1426 	err = cdev_prop_op(xdf_devt, xdf_dip,
1427 	    prop_op, flags, name, valuep, lengthp);
1428 	ddi_release_devi(xdf_dip);
1429 	return (err);
1430 }
1431 
1432 /*
1433  * Device driver ops vector
1434  */
1435 static struct cb_ops pv_cmdk_cb_ops = {
1436 	pv_cmdkopen,		/* open */
1437 	pv_cmdkclose,		/* close */
1438 	pv_cmdkstrategy,	/* strategy */
1439 	nodev,			/* print */
1440 	pv_cmdkdump,		/* dump */
1441 	pv_cmdkread,		/* read */
1442 	pv_cmdkwrite,		/* write */
1443 	pv_cmdkioctl,		/* ioctl */
1444 	nodev,			/* devmap */
1445 	nodev,			/* mmap */
1446 	nodev,			/* segmap */
1447 	nochpoll,		/* poll */
1448 	pv_cmdk_prop_op,	/* cb_prop_op */
1449 	0,			/* streamtab  */
1450 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
1451 	CB_REV,			/* cb_rev */
1452 	pv_cmdkaread,		/* async read */
1453 	pv_cmdkawrite		/* async write */
1454 };
1455 
1456 struct dev_ops pv_cmdk_ops = {
1457 	DEVO_REV,		/* devo_rev, */
1458 	0,			/* refcnt  */
1459 	pv_cmdk_getinfo,	/* info */
1460 	nulldev,		/* identify */
1461 	nulldev,		/* probe */
1462 	pv_cmdkattach,		/* attach */
1463 	pv_cmdkdetach,		/* detach */
1464 	nodev,			/* reset */
1465 	&pv_cmdk_cb_ops,	/* driver operations */
1466 	(struct bus_ops *)0	/* bus operations */
1467 };
1468 
1469 /*
1470  * Module linkage information for the kernel.
1471  */
1472 static struct modldrv modldrv = {
1473 	&mod_driverops,		/* Type of module. This one is a driver */
1474 	"PV Common Direct Access Disk",
1475 	&pv_cmdk_ops,		/* driver ops		*/
1476 };
1477 
1478 static struct modlinkage modlinkage = {
1479 	MODREV_1, (void *)&modldrv, NULL
1480 };
1481 
1482 int
1483 _init(void)
1484 {
1485 	int rval;
1486 
1487 	if ((pv_cmdk_major = ddi_name_to_major("cmdk")) == (major_t)-1)
1488 		return (EINVAL);
1489 
1490 	/*
1491 	 * In general ide usually supports 4 disk devices, this same
1492 	 * limitation also applies to software emulating ide devices.
1493 	 * so by default we pre-allocate 4 cmdk soft state structures.
1494 	 */
1495 	if ((rval = ddi_soft_state_init(&pv_cmdk_state,
1496 	    sizeof (struct pv_cmdk), PV_CMDK_NODES)) != 0)
1497 		return (rval);
1498 
1499 	/*
1500 	 * Currently we only support qemu as the backing hardware emulator
1501 	 * for cmdk devices.
1502 	 */
1503 	pv_cmdk_h2p = pv_cmdk_h2p_xen_qemu;
1504 
1505 	/* Install our module */
1506 	if ((rval = mod_install(&modlinkage)) != 0) {
1507 		ddi_soft_state_fini(&pv_cmdk_state);
1508 		return (rval);
1509 	}
1510 
1511 	return (0);
1512 }
1513 
1514 int
1515 _info(struct modinfo *modinfop)
1516 {
1517 	return (mod_info(&modlinkage, modinfop));
1518 }
1519 
1520 int
1521 _fini(void)
1522 {
1523 	int	rval;
1524 	if ((rval = mod_remove(&modlinkage)) != 0)
1525 		return (rval);
1526 	ddi_soft_state_fini(&pv_cmdk_state);
1527 	return (0);
1528 }
1529