1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * University Copyright- Copyright (c) 1982, 1986, 1988 30 * The Regents of the University of California 31 * All Rights Reserved 32 * 33 * University Acknowledgment- Portions of this document are derived from 34 * software developed by the University of California, Berkeley, and its 35 * contributors. 36 */ 37 38 /* 39 * VM - physical page management. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/errno.h> 47 #include <sys/time.h> 48 #include <sys/vnode.h> 49 #include <sys/vm.h> 50 #include <sys/vtrace.h> 51 #include <sys/swap.h> 52 #include <sys/cmn_err.h> 53 #include <sys/tuneable.h> 54 #include <sys/sysmacros.h> 55 #include <sys/cpuvar.h> 56 #include <sys/callb.h> 57 #include <sys/debug.h> 58 #include <sys/tnf_probe.h> 59 #include <sys/condvar_impl.h> 60 #include <sys/mem_config.h> 61 #include <sys/mem_cage.h> 62 #include <sys/kmem.h> 63 #include <sys/atomic.h> 64 #include <sys/strlog.h> 65 #include <sys/mman.h> 66 #include <sys/ontrap.h> 67 #include <sys/lgrp.h> 68 #include <sys/vfs.h> 69 70 #include <vm/hat.h> 71 #include <vm/anon.h> 72 #include <vm/page.h> 73 #include <vm/seg.h> 74 #include <vm/pvn.h> 75 #include <vm/seg_kmem.h> 76 #include <vm/vm_dep.h> 77 #include <sys/vm_usage.h> 78 #include <fs/fs_subr.h> 79 #include <sys/ddi.h> 80 #include <sys/modctl.h> 81 82 static int nopageage = 0; 83 84 static pgcnt_t max_page_get; /* max page_get request size in pages */ 85 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 86 87 /* 88 * freemem_lock protects all freemem variables: 89 * availrmem. Also this lock protects the globals which track the 90 * availrmem changes for accurate kernel footprint calculation. 91 * See below for an explanation of these 92 * globals. 93 */ 94 kmutex_t freemem_lock; 95 pgcnt_t availrmem; 96 pgcnt_t availrmem_initial; 97 98 /* 99 * These globals track availrmem changes to get a more accurate 100 * estimate of tke kernel size. Historically pp_kernel is used for 101 * kernel size and is based on availrmem. But availrmem is adjusted for 102 * locked pages in the system not just for kernel locked pages. 103 * These new counters will track the pages locked through segvn and 104 * by explicit user locking. 105 * 106 * pages_locked : How many pages are locked because of user specified 107 * locking through mlock or plock. 108 * 109 * pages_useclaim,pages_claimed : These two variables track the 110 * claim adjustments because of the protection changes on a segvn segment. 111 * 112 * All these globals are protected by the same lock which protects availrmem. 113 */ 114 pgcnt_t pages_locked = 0; 115 pgcnt_t pages_useclaim = 0; 116 pgcnt_t pages_claimed = 0; 117 118 119 /* 120 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 121 */ 122 static kmutex_t new_freemem_lock; 123 static uint_t freemem_wait; /* someone waiting for freemem */ 124 static kcondvar_t freemem_cv; 125 126 /* 127 * The logical page free list is maintained as two lists, the 'free' 128 * and the 'cache' lists. 129 * The free list contains those pages that should be reused first. 130 * 131 * The implementation of the lists is machine dependent. 132 * page_get_freelist(), page_get_cachelist(), 133 * page_list_sub(), and page_list_add() 134 * form the interface to the machine dependent implementation. 135 * 136 * Pages with p_free set are on the cache list. 137 * Pages with p_free and p_age set are on the free list, 138 * 139 * A page may be locked while on either list. 140 */ 141 142 /* 143 * free list accounting stuff. 144 * 145 * 146 * Spread out the value for the number of pages on the 147 * page free and page cache lists. If there is just one 148 * value, then it must be under just one lock. 149 * The lock contention and cache traffic are a real bother. 150 * 151 * When we acquire and then drop a single pcf lock 152 * we can start in the middle of the array of pcf structures. 153 * If we acquire more than one pcf lock at a time, we need to 154 * start at the front to avoid deadlocking. 155 * 156 * pcf_count holds the number of pages in each pool. 157 * 158 * pcf_block is set when page_create_get_something() has asked the 159 * PSM page freelist and page cachelist routines without specifying 160 * a color and nothing came back. This is used to block anything 161 * else from moving pages from one list to the other while the 162 * lists are searched again. If a page is freeed while pcf_block is 163 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 164 * of clearning pcf_block, doing the wakeups, etc. 165 */ 166 167 #define MAX_PCF_FANOUT NCPU 168 static uint_t pcf_fanout = 1; /* Will get changed at boot time */ 169 static uint_t pcf_fanout_mask = 0; 170 171 struct pcf { 172 kmutex_t pcf_lock; /* protects the structure */ 173 uint_t pcf_count; /* page count */ 174 uint_t pcf_wait; /* number of waiters */ 175 uint_t pcf_block; /* pcgs flag to page_free() */ 176 uint_t pcf_reserve; /* pages freed after pcf_block set */ 177 uint_t pcf_fill[10]; /* to line up on the caches */ 178 }; 179 180 /* 181 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where 182 * it will hash the cpu to). This is done to prevent a drain condition 183 * from happening. This drain condition will occur when pcf_count decrement 184 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An 185 * example of this shows up with device interrupts. The dma buffer is allocated 186 * by the cpu requesting the IO thus the pcf_count is decremented based on that. 187 * When the memory is returned by the interrupt thread, the pcf_count will be 188 * incremented based on the cpu servicing the interrupt. 189 */ 190 static struct pcf pcf[MAX_PCF_FANOUT]; 191 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \ 192 (randtick() >> 24)) & (pcf_fanout_mask)) 193 194 static int pcf_decrement_bucket(pgcnt_t); 195 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int); 196 197 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 198 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 199 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 200 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 201 202 #ifdef VM_STATS 203 204 /* 205 * No locks, but so what, they are only statistics. 206 */ 207 208 static struct page_tcnt { 209 int pc_free_cache; /* free's into cache list */ 210 int pc_free_dontneed; /* free's with dontneed */ 211 int pc_free_pageout; /* free's from pageout */ 212 int pc_free_free; /* free's into free list */ 213 int pc_free_pages; /* free's into large page free list */ 214 int pc_destroy_pages; /* large page destroy's */ 215 int pc_get_cache; /* get's from cache list */ 216 int pc_get_free; /* get's from free list */ 217 int pc_reclaim; /* reclaim's */ 218 int pc_abortfree; /* abort's of free pages */ 219 int pc_find_hit; /* find's that find page */ 220 int pc_find_miss; /* find's that don't find page */ 221 int pc_destroy_free; /* # of free pages destroyed */ 222 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 223 int pc_find_hashlen[PC_HASH_CNT+1]; 224 int pc_addclaim_pages; 225 int pc_subclaim_pages; 226 int pc_free_replacement_page[2]; 227 int pc_try_demote_pages[6]; 228 int pc_demote_pages[2]; 229 } pagecnt; 230 231 uint_t hashin_count; 232 uint_t hashin_not_held; 233 uint_t hashin_already; 234 235 uint_t hashout_count; 236 uint_t hashout_not_held; 237 238 uint_t page_create_count; 239 uint_t page_create_not_enough; 240 uint_t page_create_not_enough_again; 241 uint_t page_create_zero; 242 uint_t page_create_hashout; 243 uint_t page_create_page_lock_failed; 244 uint_t page_create_trylock_failed; 245 uint_t page_create_found_one; 246 uint_t page_create_hashin_failed; 247 uint_t page_create_dropped_phm; 248 249 uint_t page_create_new; 250 uint_t page_create_exists; 251 uint_t page_create_putbacks; 252 uint_t page_create_overshoot; 253 254 uint_t page_reclaim_zero; 255 uint_t page_reclaim_zero_locked; 256 257 uint_t page_rename_exists; 258 uint_t page_rename_count; 259 260 uint_t page_lookup_cnt[20]; 261 uint_t page_lookup_nowait_cnt[10]; 262 uint_t page_find_cnt; 263 uint_t page_exists_cnt; 264 uint_t page_exists_forreal_cnt; 265 uint_t page_lookup_dev_cnt; 266 uint_t get_cachelist_cnt; 267 uint_t page_create_cnt[10]; 268 uint_t alloc_pages[9]; 269 uint_t page_exphcontg[19]; 270 uint_t page_create_large_cnt[10]; 271 272 /* 273 * Collects statistics. 274 */ 275 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 276 uint_t mylen = 0; \ 277 \ 278 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \ 279 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 280 break; \ 281 } \ 282 if ((pp) != NULL) \ 283 pagecnt.pc_find_hit++; \ 284 else \ 285 pagecnt.pc_find_miss++; \ 286 if (mylen > PC_HASH_CNT) \ 287 mylen = PC_HASH_CNT; \ 288 pagecnt.pc_find_hashlen[mylen]++; \ 289 } 290 291 #else /* VM_STATS */ 292 293 /* 294 * Don't collect statistics 295 */ 296 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 297 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 298 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 299 break; \ 300 } \ 301 } 302 303 #endif /* VM_STATS */ 304 305 306 307 #ifdef DEBUG 308 #define MEMSEG_SEARCH_STATS 309 #endif 310 311 #ifdef MEMSEG_SEARCH_STATS 312 struct memseg_stats { 313 uint_t nsearch; 314 uint_t nlastwon; 315 uint_t nhashwon; 316 uint_t nnotfound; 317 } memseg_stats; 318 319 #define MEMSEG_STAT_INCR(v) \ 320 atomic_add_32(&memseg_stats.v, 1) 321 #else 322 #define MEMSEG_STAT_INCR(x) 323 #endif 324 325 struct memseg *memsegs; /* list of memory segments */ 326 327 /* 328 * /etc/system tunable to control large page allocation hueristic. 329 * 330 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup 331 * for large page allocation requests. If a large page is not readily 332 * avaliable on the local freelists we will go through additional effort 333 * to create a large page, potentially moving smaller pages around to coalesce 334 * larger pages in the local lgroup. 335 * Default value of LPAP_DEFAULT will go to remote freelists if large pages 336 * are not readily available in the local lgroup. 337 */ 338 enum lpap { 339 LPAP_DEFAULT, /* default large page allocation policy */ 340 LPAP_LOCAL /* local large page allocation policy */ 341 }; 342 343 enum lpap lpg_alloc_prefer = LPAP_DEFAULT; 344 345 static void page_init_mem_config(void); 346 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 347 static void page_do_hashout(page_t *); 348 static void page_capture_init(); 349 int page_capture_take_action(page_t *, uint_t, void *); 350 351 static void page_demote_vp_pages(page_t *); 352 353 354 void 355 pcf_init(void) 356 357 { 358 if (boot_ncpus != -1) { 359 pcf_fanout = boot_ncpus; 360 } else { 361 pcf_fanout = max_ncpus; 362 } 363 #ifdef sun4v 364 /* 365 * Force at least 4 buckets if possible for sun4v. 366 */ 367 pcf_fanout = MAX(pcf_fanout, 4); 368 #endif /* sun4v */ 369 370 /* 371 * Round up to the nearest power of 2. 372 */ 373 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT); 374 if (!ISP2(pcf_fanout)) { 375 pcf_fanout = 1 << highbit(pcf_fanout); 376 377 if (pcf_fanout > MAX_PCF_FANOUT) { 378 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1); 379 } 380 } 381 pcf_fanout_mask = pcf_fanout - 1; 382 } 383 384 /* 385 * vm subsystem related initialization 386 */ 387 void 388 vm_init(void) 389 { 390 boolean_t callb_vm_cpr(void *, int); 391 392 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 393 page_init_mem_config(); 394 page_retire_init(); 395 vm_usage_init(); 396 page_capture_init(); 397 } 398 399 /* 400 * This function is called at startup and when memory is added or deleted. 401 */ 402 void 403 init_pages_pp_maximum() 404 { 405 static pgcnt_t p_min; 406 static pgcnt_t pages_pp_maximum_startup; 407 static pgcnt_t avrmem_delta; 408 static int init_done; 409 static int user_set; /* true if set in /etc/system */ 410 411 if (init_done == 0) { 412 413 /* If the user specified a value, save it */ 414 if (pages_pp_maximum != 0) { 415 user_set = 1; 416 pages_pp_maximum_startup = pages_pp_maximum; 417 } 418 419 /* 420 * Setting of pages_pp_maximum is based first time 421 * on the value of availrmem just after the start-up 422 * allocations. To preserve this relationship at run 423 * time, use a delta from availrmem_initial. 424 */ 425 ASSERT(availrmem_initial >= availrmem); 426 avrmem_delta = availrmem_initial - availrmem; 427 428 /* The allowable floor of pages_pp_maximum */ 429 p_min = tune.t_minarmem + 100; 430 431 /* Make sure we don't come through here again. */ 432 init_done = 1; 433 } 434 /* 435 * Determine pages_pp_maximum, the number of currently available 436 * pages (availrmem) that can't be `locked'. If not set by 437 * the user, we set it to 4% of the currently available memory 438 * plus 4MB. 439 * But we also insist that it be greater than tune.t_minarmem; 440 * otherwise a process could lock down a lot of memory, get swapped 441 * out, and never have enough to get swapped back in. 442 */ 443 if (user_set) 444 pages_pp_maximum = pages_pp_maximum_startup; 445 else 446 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 447 + btop(4 * 1024 * 1024); 448 449 if (pages_pp_maximum <= p_min) { 450 pages_pp_maximum = p_min; 451 } 452 } 453 454 void 455 set_max_page_get(pgcnt_t target_total_pages) 456 { 457 max_page_get = target_total_pages / 2; 458 } 459 460 static pgcnt_t pending_delete; 461 462 /*ARGSUSED*/ 463 static void 464 page_mem_config_post_add( 465 void *arg, 466 pgcnt_t delta_pages) 467 { 468 set_max_page_get(total_pages - pending_delete); 469 init_pages_pp_maximum(); 470 } 471 472 /*ARGSUSED*/ 473 static int 474 page_mem_config_pre_del( 475 void *arg, 476 pgcnt_t delta_pages) 477 { 478 pgcnt_t nv; 479 480 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 481 set_max_page_get(total_pages - nv); 482 return (0); 483 } 484 485 /*ARGSUSED*/ 486 static void 487 page_mem_config_post_del( 488 void *arg, 489 pgcnt_t delta_pages, 490 int cancelled) 491 { 492 pgcnt_t nv; 493 494 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 495 set_max_page_get(total_pages - nv); 496 if (!cancelled) 497 init_pages_pp_maximum(); 498 } 499 500 static kphysm_setup_vector_t page_mem_config_vec = { 501 KPHYSM_SETUP_VECTOR_VERSION, 502 page_mem_config_post_add, 503 page_mem_config_pre_del, 504 page_mem_config_post_del, 505 }; 506 507 static void 508 page_init_mem_config(void) 509 { 510 int ret; 511 512 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 513 ASSERT(ret == 0); 514 } 515 516 /* 517 * Evenly spread out the PCF counters for large free pages 518 */ 519 static void 520 page_free_large_ctr(pgcnt_t npages) 521 { 522 static struct pcf *p = pcf; 523 pgcnt_t lump; 524 525 freemem += npages; 526 527 lump = roundup(npages, pcf_fanout) / pcf_fanout; 528 529 while (npages > 0) { 530 531 ASSERT(!p->pcf_block); 532 533 if (lump < npages) { 534 p->pcf_count += (uint_t)lump; 535 npages -= lump; 536 } else { 537 p->pcf_count += (uint_t)npages; 538 npages = 0; 539 } 540 541 ASSERT(!p->pcf_wait); 542 543 if (++p > &pcf[pcf_fanout - 1]) 544 p = pcf; 545 } 546 547 ASSERT(npages == 0); 548 } 549 550 /* 551 * Add a physical chunk of memory to the system free lists during startup. 552 * Platform specific startup() allocates the memory for the page structs. 553 * 554 * num - number of page structures 555 * base - page number (pfn) to be associated with the first page. 556 * 557 * Since we are doing this during startup (ie. single threaded), we will 558 * use shortcut routines to avoid any locking overhead while putting all 559 * these pages on the freelists. 560 * 561 * NOTE: Any changes performed to page_free(), must also be performed to 562 * add_physmem() since this is how we initialize all page_t's at 563 * boot time. 564 */ 565 void 566 add_physmem( 567 page_t *pp, 568 pgcnt_t num, 569 pfn_t pnum) 570 { 571 page_t *root = NULL; 572 uint_t szc = page_num_pagesizes() - 1; 573 pgcnt_t large = page_get_pagecnt(szc); 574 pgcnt_t cnt = 0; 575 576 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 577 "add_physmem:pp %p num %lu", pp, num); 578 579 /* 580 * Arbitrarily limit the max page_get request 581 * to 1/2 of the page structs we have. 582 */ 583 total_pages += num; 584 set_max_page_get(total_pages); 585 586 PLCNT_MODIFY_MAX(pnum, (long)num); 587 588 /* 589 * The physical space for the pages array 590 * representing ram pages has already been 591 * allocated. Here we initialize each lock 592 * in the page structure, and put each on 593 * the free list 594 */ 595 for (; num; pp++, pnum++, num--) { 596 597 /* 598 * this needs to fill in the page number 599 * and do any other arch specific initialization 600 */ 601 add_physmem_cb(pp, pnum); 602 603 pp->p_lckcnt = 0; 604 pp->p_cowcnt = 0; 605 pp->p_slckcnt = 0; 606 607 /* 608 * Initialize the page lock as unlocked, since nobody 609 * can see or access this page yet. 610 */ 611 pp->p_selock = 0; 612 613 /* 614 * Initialize IO lock 615 */ 616 page_iolock_init(pp); 617 618 /* 619 * initialize other fields in the page_t 620 */ 621 PP_SETFREE(pp); 622 page_clr_all_props(pp); 623 PP_SETAGED(pp); 624 pp->p_offset = (u_offset_t)-1; 625 pp->p_next = pp; 626 pp->p_prev = pp; 627 628 /* 629 * Simple case: System doesn't support large pages. 630 */ 631 if (szc == 0) { 632 pp->p_szc = 0; 633 page_free_at_startup(pp); 634 continue; 635 } 636 637 /* 638 * Handle unaligned pages, we collect them up onto 639 * the root page until we have a full large page. 640 */ 641 if (!IS_P2ALIGNED(pnum, large)) { 642 643 /* 644 * If not in a large page, 645 * just free as small page. 646 */ 647 if (root == NULL) { 648 pp->p_szc = 0; 649 page_free_at_startup(pp); 650 continue; 651 } 652 653 /* 654 * Link a constituent page into the large page. 655 */ 656 pp->p_szc = szc; 657 page_list_concat(&root, &pp); 658 659 /* 660 * When large page is fully formed, free it. 661 */ 662 if (++cnt == large) { 663 page_free_large_ctr(cnt); 664 page_list_add_pages(root, PG_LIST_ISINIT); 665 root = NULL; 666 cnt = 0; 667 } 668 continue; 669 } 670 671 /* 672 * At this point we have a page number which 673 * is aligned. We assert that we aren't already 674 * in a different large page. 675 */ 676 ASSERT(IS_P2ALIGNED(pnum, large)); 677 ASSERT(root == NULL && cnt == 0); 678 679 /* 680 * If insufficient number of pages left to form 681 * a large page, just free the small page. 682 */ 683 if (num < large) { 684 pp->p_szc = 0; 685 page_free_at_startup(pp); 686 continue; 687 } 688 689 /* 690 * Otherwise start a new large page. 691 */ 692 pp->p_szc = szc; 693 cnt++; 694 root = pp; 695 } 696 ASSERT(root == NULL && cnt == 0); 697 } 698 699 /* 700 * Find a page representing the specified [vp, offset]. 701 * If we find the page but it is intransit coming in, 702 * it will have an "exclusive" lock and we wait for 703 * the i/o to complete. A page found on the free list 704 * is always reclaimed and then locked. On success, the page 705 * is locked, its data is valid and it isn't on the free 706 * list, while a NULL is returned if the page doesn't exist. 707 */ 708 page_t * 709 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 710 { 711 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 712 } 713 714 /* 715 * Find a page representing the specified [vp, offset]. 716 * We either return the one we found or, if passed in, 717 * create one with identity of [vp, offset] of the 718 * pre-allocated page. If we find existing page but it is 719 * intransit coming in, it will have an "exclusive" lock 720 * and we wait for the i/o to complete. A page found on 721 * the free list is always reclaimed and then locked. 722 * On success, the page is locked, its data is valid and 723 * it isn't on the free list, while a NULL is returned 724 * if the page doesn't exist and newpp is NULL; 725 */ 726 page_t * 727 page_lookup_create( 728 vnode_t *vp, 729 u_offset_t off, 730 se_t se, 731 page_t *newpp, 732 spgcnt_t *nrelocp, 733 int flags) 734 { 735 page_t *pp; 736 kmutex_t *phm; 737 ulong_t index; 738 uint_t hash_locked; 739 uint_t es; 740 741 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 742 VM_STAT_ADD(page_lookup_cnt[0]); 743 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 744 745 /* 746 * Acquire the appropriate page hash lock since 747 * we have to search the hash list. Pages that 748 * hash to this list can't change identity while 749 * this lock is held. 750 */ 751 hash_locked = 0; 752 index = PAGE_HASH_FUNC(vp, off); 753 phm = NULL; 754 top: 755 PAGE_HASH_SEARCH(index, pp, vp, off); 756 if (pp != NULL) { 757 VM_STAT_ADD(page_lookup_cnt[1]); 758 es = (newpp != NULL) ? 1 : 0; 759 es |= flags; 760 if (!hash_locked) { 761 VM_STAT_ADD(page_lookup_cnt[2]); 762 if (!page_try_reclaim_lock(pp, se, es)) { 763 /* 764 * On a miss, acquire the phm. Then 765 * next time, page_lock() will be called, 766 * causing a wait if the page is busy. 767 * just looping with page_trylock() would 768 * get pretty boring. 769 */ 770 VM_STAT_ADD(page_lookup_cnt[3]); 771 phm = PAGE_HASH_MUTEX(index); 772 mutex_enter(phm); 773 hash_locked = 1; 774 goto top; 775 } 776 } else { 777 VM_STAT_ADD(page_lookup_cnt[4]); 778 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 779 VM_STAT_ADD(page_lookup_cnt[5]); 780 goto top; 781 } 782 } 783 784 /* 785 * Since `pp' is locked it can not change identity now. 786 * Reconfirm we locked the correct page. 787 * 788 * Both the p_vnode and p_offset *must* be cast volatile 789 * to force a reload of their values: The PAGE_HASH_SEARCH 790 * macro will have stuffed p_vnode and p_offset into 791 * registers before calling page_trylock(); another thread, 792 * actually holding the hash lock, could have changed the 793 * page's identity in memory, but our registers would not 794 * be changed, fooling the reconfirmation. If the hash 795 * lock was held during the search, the casting would 796 * not be needed. 797 */ 798 VM_STAT_ADD(page_lookup_cnt[6]); 799 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 800 ((volatile u_offset_t)(pp->p_offset) != off)) { 801 VM_STAT_ADD(page_lookup_cnt[7]); 802 if (hash_locked) { 803 panic("page_lookup_create: lost page %p", 804 (void *)pp); 805 /*NOTREACHED*/ 806 } 807 page_unlock(pp); 808 phm = PAGE_HASH_MUTEX(index); 809 mutex_enter(phm); 810 hash_locked = 1; 811 goto top; 812 } 813 814 /* 815 * If page_trylock() was called, then pp may still be on 816 * the cachelist (can't be on the free list, it would not 817 * have been found in the search). If it is on the 818 * cachelist it must be pulled now. To pull the page from 819 * the cachelist, it must be exclusively locked. 820 * 821 * The other big difference between page_trylock() and 822 * page_lock(), is that page_lock() will pull the 823 * page from whatever free list (the cache list in this 824 * case) the page is on. If page_trylock() was used 825 * above, then we have to do the reclaim ourselves. 826 */ 827 if ((!hash_locked) && (PP_ISFREE(pp))) { 828 ASSERT(PP_ISAGED(pp) == 0); 829 VM_STAT_ADD(page_lookup_cnt[8]); 830 831 /* 832 * page_relcaim will insure that we 833 * have this page exclusively 834 */ 835 836 if (!page_reclaim(pp, NULL)) { 837 /* 838 * Page_reclaim dropped whatever lock 839 * we held. 840 */ 841 VM_STAT_ADD(page_lookup_cnt[9]); 842 phm = PAGE_HASH_MUTEX(index); 843 mutex_enter(phm); 844 hash_locked = 1; 845 goto top; 846 } else if (se == SE_SHARED && newpp == NULL) { 847 VM_STAT_ADD(page_lookup_cnt[10]); 848 page_downgrade(pp); 849 } 850 } 851 852 if (hash_locked) { 853 mutex_exit(phm); 854 } 855 856 if (newpp != NULL && pp->p_szc < newpp->p_szc && 857 PAGE_EXCL(pp) && nrelocp != NULL) { 858 ASSERT(nrelocp != NULL); 859 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 860 NULL); 861 if (*nrelocp > 0) { 862 VM_STAT_COND_ADD(*nrelocp == 1, 863 page_lookup_cnt[11]); 864 VM_STAT_COND_ADD(*nrelocp > 1, 865 page_lookup_cnt[12]); 866 pp = newpp; 867 se = SE_EXCL; 868 } else { 869 if (se == SE_SHARED) { 870 page_downgrade(pp); 871 } 872 VM_STAT_ADD(page_lookup_cnt[13]); 873 } 874 } else if (newpp != NULL && nrelocp != NULL) { 875 if (PAGE_EXCL(pp) && se == SE_SHARED) { 876 page_downgrade(pp); 877 } 878 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 879 page_lookup_cnt[14]); 880 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 881 page_lookup_cnt[15]); 882 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 883 page_lookup_cnt[16]); 884 } else if (newpp != NULL && PAGE_EXCL(pp)) { 885 se = SE_EXCL; 886 } 887 } else if (!hash_locked) { 888 VM_STAT_ADD(page_lookup_cnt[17]); 889 phm = PAGE_HASH_MUTEX(index); 890 mutex_enter(phm); 891 hash_locked = 1; 892 goto top; 893 } else if (newpp != NULL) { 894 /* 895 * If we have a preallocated page then 896 * insert it now and basically behave like 897 * page_create. 898 */ 899 VM_STAT_ADD(page_lookup_cnt[18]); 900 /* 901 * Since we hold the page hash mutex and 902 * just searched for this page, page_hashin 903 * had better not fail. If it does, that 904 * means some thread did not follow the 905 * page hash mutex rules. Panic now and 906 * get it over with. As usual, go down 907 * holding all the locks. 908 */ 909 ASSERT(MUTEX_HELD(phm)); 910 if (!page_hashin(newpp, vp, off, phm)) { 911 ASSERT(MUTEX_HELD(phm)); 912 panic("page_lookup_create: hashin failed %p %p %llx %p", 913 (void *)newpp, (void *)vp, off, (void *)phm); 914 /*NOTREACHED*/ 915 } 916 ASSERT(MUTEX_HELD(phm)); 917 mutex_exit(phm); 918 phm = NULL; 919 page_set_props(newpp, P_REF); 920 page_io_lock(newpp); 921 pp = newpp; 922 se = SE_EXCL; 923 } else { 924 VM_STAT_ADD(page_lookup_cnt[19]); 925 mutex_exit(phm); 926 } 927 928 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 929 930 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 931 932 return (pp); 933 } 934 935 /* 936 * Search the hash list for the page representing the 937 * specified [vp, offset] and return it locked. Skip 938 * free pages and pages that cannot be locked as requested. 939 * Used while attempting to kluster pages. 940 */ 941 page_t * 942 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 943 { 944 page_t *pp; 945 kmutex_t *phm; 946 ulong_t index; 947 uint_t locked; 948 949 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 950 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 951 952 index = PAGE_HASH_FUNC(vp, off); 953 PAGE_HASH_SEARCH(index, pp, vp, off); 954 locked = 0; 955 if (pp == NULL) { 956 top: 957 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 958 locked = 1; 959 phm = PAGE_HASH_MUTEX(index); 960 mutex_enter(phm); 961 PAGE_HASH_SEARCH(index, pp, vp, off); 962 } 963 964 if (pp == NULL || PP_ISFREE(pp)) { 965 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 966 pp = NULL; 967 } else { 968 if (!page_trylock(pp, se)) { 969 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 970 pp = NULL; 971 } else { 972 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 973 /* 974 * See the comment in page_lookup() 975 */ 976 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 977 ((u_offset_t)(pp->p_offset) != off)) { 978 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 979 if (locked) { 980 panic("page_lookup_nowait %p", 981 (void *)pp); 982 /*NOTREACHED*/ 983 } 984 page_unlock(pp); 985 goto top; 986 } 987 if (PP_ISFREE(pp)) { 988 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 989 page_unlock(pp); 990 pp = NULL; 991 } 992 } 993 } 994 if (locked) { 995 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 996 mutex_exit(phm); 997 } 998 999 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 1000 1001 return (pp); 1002 } 1003 1004 /* 1005 * Search the hash list for a page with the specified [vp, off] 1006 * that is known to exist and is already locked. This routine 1007 * is typically used by segment SOFTUNLOCK routines. 1008 */ 1009 page_t * 1010 page_find(vnode_t *vp, u_offset_t off) 1011 { 1012 page_t *pp; 1013 kmutex_t *phm; 1014 ulong_t index; 1015 1016 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1017 VM_STAT_ADD(page_find_cnt); 1018 1019 index = PAGE_HASH_FUNC(vp, off); 1020 phm = PAGE_HASH_MUTEX(index); 1021 1022 mutex_enter(phm); 1023 PAGE_HASH_SEARCH(index, pp, vp, off); 1024 mutex_exit(phm); 1025 1026 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 1027 return (pp); 1028 } 1029 1030 /* 1031 * Determine whether a page with the specified [vp, off] 1032 * currently exists in the system. Obviously this should 1033 * only be considered as a hint since nothing prevents the 1034 * page from disappearing or appearing immediately after 1035 * the return from this routine. Subsequently, we don't 1036 * even bother to lock the list. 1037 */ 1038 page_t * 1039 page_exists(vnode_t *vp, u_offset_t off) 1040 { 1041 page_t *pp; 1042 ulong_t index; 1043 1044 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1045 VM_STAT_ADD(page_exists_cnt); 1046 1047 index = PAGE_HASH_FUNC(vp, off); 1048 PAGE_HASH_SEARCH(index, pp, vp, off); 1049 1050 return (pp); 1051 } 1052 1053 /* 1054 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1055 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1056 * with these pages locked SHARED. If necessary reclaim pages from 1057 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1058 * 1059 * If we fail to lock pages still return 1 if pages exist and contiguous. 1060 * But in this case return value is just a hint. ppa array won't be filled. 1061 * Caller should initialize ppa[0] as NULL to distinguish return value. 1062 * 1063 * Returns 0 if pages don't exist or not physically contiguous. 1064 * 1065 * This routine doesn't work for anonymous(swapfs) pages. 1066 */ 1067 int 1068 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1069 { 1070 pgcnt_t pages; 1071 pfn_t pfn; 1072 page_t *rootpp; 1073 pgcnt_t i; 1074 pgcnt_t j; 1075 u_offset_t save_off = off; 1076 ulong_t index; 1077 kmutex_t *phm; 1078 page_t *pp; 1079 uint_t pszc; 1080 int loopcnt = 0; 1081 1082 ASSERT(szc != 0); 1083 ASSERT(vp != NULL); 1084 ASSERT(!IS_SWAPFSVP(vp)); 1085 ASSERT(!VN_ISKAS(vp)); 1086 1087 again: 1088 if (++loopcnt > 3) { 1089 VM_STAT_ADD(page_exphcontg[0]); 1090 return (0); 1091 } 1092 1093 index = PAGE_HASH_FUNC(vp, off); 1094 phm = PAGE_HASH_MUTEX(index); 1095 1096 mutex_enter(phm); 1097 PAGE_HASH_SEARCH(index, pp, vp, off); 1098 mutex_exit(phm); 1099 1100 VM_STAT_ADD(page_exphcontg[1]); 1101 1102 if (pp == NULL) { 1103 VM_STAT_ADD(page_exphcontg[2]); 1104 return (0); 1105 } 1106 1107 pages = page_get_pagecnt(szc); 1108 rootpp = pp; 1109 pfn = rootpp->p_pagenum; 1110 1111 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1112 VM_STAT_ADD(page_exphcontg[3]); 1113 if (!page_trylock(pp, SE_SHARED)) { 1114 VM_STAT_ADD(page_exphcontg[4]); 1115 return (1); 1116 } 1117 /* 1118 * Also check whether p_pagenum was modified by DR. 1119 */ 1120 if (pp->p_szc != pszc || pp->p_vnode != vp || 1121 pp->p_offset != off || pp->p_pagenum != pfn) { 1122 VM_STAT_ADD(page_exphcontg[5]); 1123 page_unlock(pp); 1124 off = save_off; 1125 goto again; 1126 } 1127 /* 1128 * szc was non zero and vnode and offset matched after we 1129 * locked the page it means it can't become free on us. 1130 */ 1131 ASSERT(!PP_ISFREE(pp)); 1132 if (!IS_P2ALIGNED(pfn, pages)) { 1133 page_unlock(pp); 1134 return (0); 1135 } 1136 ppa[0] = pp; 1137 pp++; 1138 off += PAGESIZE; 1139 pfn++; 1140 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1141 if (!page_trylock(pp, SE_SHARED)) { 1142 VM_STAT_ADD(page_exphcontg[6]); 1143 pp--; 1144 while (i-- > 0) { 1145 page_unlock(pp); 1146 pp--; 1147 } 1148 ppa[0] = NULL; 1149 return (1); 1150 } 1151 if (pp->p_szc != pszc) { 1152 VM_STAT_ADD(page_exphcontg[7]); 1153 page_unlock(pp); 1154 pp--; 1155 while (i-- > 0) { 1156 page_unlock(pp); 1157 pp--; 1158 } 1159 ppa[0] = NULL; 1160 off = save_off; 1161 goto again; 1162 } 1163 /* 1164 * szc the same as for previous already locked pages 1165 * with right identity. Since this page had correct 1166 * szc after we locked it can't get freed or destroyed 1167 * and therefore must have the expected identity. 1168 */ 1169 ASSERT(!PP_ISFREE(pp)); 1170 if (pp->p_vnode != vp || 1171 pp->p_offset != off) { 1172 panic("page_exists_physcontig: " 1173 "large page identity doesn't match"); 1174 } 1175 ppa[i] = pp; 1176 ASSERT(pp->p_pagenum == pfn); 1177 } 1178 VM_STAT_ADD(page_exphcontg[8]); 1179 ppa[pages] = NULL; 1180 return (1); 1181 } else if (pszc >= szc) { 1182 VM_STAT_ADD(page_exphcontg[9]); 1183 if (!IS_P2ALIGNED(pfn, pages)) { 1184 return (0); 1185 } 1186 return (1); 1187 } 1188 1189 if (!IS_P2ALIGNED(pfn, pages)) { 1190 VM_STAT_ADD(page_exphcontg[10]); 1191 return (0); 1192 } 1193 1194 if (page_numtomemseg_nolock(pfn) != 1195 page_numtomemseg_nolock(pfn + pages - 1)) { 1196 VM_STAT_ADD(page_exphcontg[11]); 1197 return (0); 1198 } 1199 1200 /* 1201 * We loop up 4 times across pages to promote page size. 1202 * We're extra cautious to promote page size atomically with respect 1203 * to everybody else. But we can probably optimize into 1 loop if 1204 * this becomes an issue. 1205 */ 1206 1207 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1208 if (!page_trylock(pp, SE_EXCL)) { 1209 VM_STAT_ADD(page_exphcontg[12]); 1210 break; 1211 } 1212 /* 1213 * Check whether p_pagenum was modified by DR. 1214 */ 1215 if (pp->p_pagenum != pfn) { 1216 page_unlock(pp); 1217 break; 1218 } 1219 if (pp->p_vnode != vp || 1220 pp->p_offset != off) { 1221 VM_STAT_ADD(page_exphcontg[13]); 1222 page_unlock(pp); 1223 break; 1224 } 1225 if (pp->p_szc >= szc) { 1226 ASSERT(i == 0); 1227 page_unlock(pp); 1228 off = save_off; 1229 goto again; 1230 } 1231 } 1232 1233 if (i != pages) { 1234 VM_STAT_ADD(page_exphcontg[14]); 1235 --pp; 1236 while (i-- > 0) { 1237 page_unlock(pp); 1238 --pp; 1239 } 1240 return (0); 1241 } 1242 1243 pp = rootpp; 1244 for (i = 0; i < pages; i++, pp++) { 1245 if (PP_ISFREE(pp)) { 1246 VM_STAT_ADD(page_exphcontg[15]); 1247 ASSERT(!PP_ISAGED(pp)); 1248 ASSERT(pp->p_szc == 0); 1249 if (!page_reclaim(pp, NULL)) { 1250 break; 1251 } 1252 } else { 1253 ASSERT(pp->p_szc < szc); 1254 VM_STAT_ADD(page_exphcontg[16]); 1255 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1256 } 1257 } 1258 if (i < pages) { 1259 VM_STAT_ADD(page_exphcontg[17]); 1260 /* 1261 * page_reclaim failed because we were out of memory. 1262 * drop the rest of the locks and return because this page 1263 * must be already reallocated anyway. 1264 */ 1265 pp = rootpp; 1266 for (j = 0; j < pages; j++, pp++) { 1267 if (j != i) { 1268 page_unlock(pp); 1269 } 1270 } 1271 return (0); 1272 } 1273 1274 off = save_off; 1275 pp = rootpp; 1276 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1277 ASSERT(PAGE_EXCL(pp)); 1278 ASSERT(!PP_ISFREE(pp)); 1279 ASSERT(!hat_page_is_mapped(pp)); 1280 ASSERT(pp->p_vnode == vp); 1281 ASSERT(pp->p_offset == off); 1282 pp->p_szc = szc; 1283 } 1284 pp = rootpp; 1285 for (i = 0; i < pages; i++, pp++) { 1286 if (ppa == NULL) { 1287 page_unlock(pp); 1288 } else { 1289 ppa[i] = pp; 1290 page_downgrade(ppa[i]); 1291 } 1292 } 1293 if (ppa != NULL) { 1294 ppa[pages] = NULL; 1295 } 1296 VM_STAT_ADD(page_exphcontg[18]); 1297 ASSERT(vp->v_pages != NULL); 1298 return (1); 1299 } 1300 1301 /* 1302 * Determine whether a page with the specified [vp, off] 1303 * currently exists in the system and if so return its 1304 * size code. Obviously this should only be considered as 1305 * a hint since nothing prevents the page from disappearing 1306 * or appearing immediately after the return from this routine. 1307 */ 1308 int 1309 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1310 { 1311 page_t *pp; 1312 kmutex_t *phm; 1313 ulong_t index; 1314 int rc = 0; 1315 1316 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1317 ASSERT(szc != NULL); 1318 VM_STAT_ADD(page_exists_forreal_cnt); 1319 1320 index = PAGE_HASH_FUNC(vp, off); 1321 phm = PAGE_HASH_MUTEX(index); 1322 1323 mutex_enter(phm); 1324 PAGE_HASH_SEARCH(index, pp, vp, off); 1325 if (pp != NULL) { 1326 *szc = pp->p_szc; 1327 rc = 1; 1328 } 1329 mutex_exit(phm); 1330 return (rc); 1331 } 1332 1333 /* wakeup threads waiting for pages in page_create_get_something() */ 1334 void 1335 wakeup_pcgs(void) 1336 { 1337 if (!CV_HAS_WAITERS(&pcgs_cv)) 1338 return; 1339 cv_broadcast(&pcgs_cv); 1340 } 1341 1342 /* 1343 * 'freemem' is used all over the kernel as an indication of how many 1344 * pages are free (either on the cache list or on the free page list) 1345 * in the system. In very few places is a really accurate 'freemem' 1346 * needed. To avoid contention of the lock protecting a the 1347 * single freemem, it was spread out into NCPU buckets. Set_freemem 1348 * sets freemem to the total of all NCPU buckets. It is called from 1349 * clock() on each TICK. 1350 */ 1351 void 1352 set_freemem() 1353 { 1354 struct pcf *p; 1355 ulong_t t; 1356 uint_t i; 1357 1358 t = 0; 1359 p = pcf; 1360 for (i = 0; i < pcf_fanout; i++) { 1361 t += p->pcf_count; 1362 p++; 1363 } 1364 freemem = t; 1365 1366 /* 1367 * Don't worry about grabbing mutex. It's not that 1368 * critical if we miss a tick or two. This is 1369 * where we wakeup possible delayers in 1370 * page_create_get_something(). 1371 */ 1372 wakeup_pcgs(); 1373 } 1374 1375 ulong_t 1376 get_freemem() 1377 { 1378 struct pcf *p; 1379 ulong_t t; 1380 uint_t i; 1381 1382 t = 0; 1383 p = pcf; 1384 for (i = 0; i < pcf_fanout; i++) { 1385 t += p->pcf_count; 1386 p++; 1387 } 1388 /* 1389 * We just calculated it, might as well set it. 1390 */ 1391 freemem = t; 1392 return (t); 1393 } 1394 1395 /* 1396 * Acquire all of the page cache & free (pcf) locks. 1397 */ 1398 void 1399 pcf_acquire_all() 1400 { 1401 struct pcf *p; 1402 uint_t i; 1403 1404 p = pcf; 1405 for (i = 0; i < pcf_fanout; i++) { 1406 mutex_enter(&p->pcf_lock); 1407 p++; 1408 } 1409 } 1410 1411 /* 1412 * Release all the pcf_locks. 1413 */ 1414 void 1415 pcf_release_all() 1416 { 1417 struct pcf *p; 1418 uint_t i; 1419 1420 p = pcf; 1421 for (i = 0; i < pcf_fanout; i++) { 1422 mutex_exit(&p->pcf_lock); 1423 p++; 1424 } 1425 } 1426 1427 /* 1428 * Inform the VM system that we need some pages freed up. 1429 * Calls must be symmetric, e.g.: 1430 * 1431 * page_needfree(100); 1432 * wait a bit; 1433 * page_needfree(-100); 1434 */ 1435 void 1436 page_needfree(spgcnt_t npages) 1437 { 1438 mutex_enter(&new_freemem_lock); 1439 needfree += npages; 1440 mutex_exit(&new_freemem_lock); 1441 } 1442 1443 /* 1444 * Throttle for page_create(): try to prevent freemem from dropping 1445 * below throttlefree. We can't provide a 100% guarantee because 1446 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1447 * nibble away at the freelist. However, we can block all PG_WAIT 1448 * allocations until memory becomes available. The motivation is 1449 * that several things can fall apart when there's no free memory: 1450 * 1451 * (1) If pageout() needs memory to push a page, the system deadlocks. 1452 * 1453 * (2) By (broken) specification, timeout(9F) can neither fail nor 1454 * block, so it has no choice but to panic the system if it 1455 * cannot allocate a callout structure. 1456 * 1457 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1458 * it panics if it cannot allocate a callback structure. 1459 * 1460 * (4) Untold numbers of third-party drivers have not yet been hardened 1461 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1462 * success and panic the system with a data fault on failure. 1463 * (The long-term solution to this particular problem is to ship 1464 * hostile fault-injecting DEBUG kernels with the DDK.) 1465 * 1466 * It is theoretically impossible to guarantee success of non-blocking 1467 * allocations, but in practice, this throttle is very hard to break. 1468 */ 1469 static int 1470 page_create_throttle(pgcnt_t npages, int flags) 1471 { 1472 ulong_t fm; 1473 uint_t i; 1474 pgcnt_t tf; /* effective value of throttlefree */ 1475 1476 /* 1477 * Never deny pages when: 1478 * - it's a thread that cannot block [NOMEMWAIT()] 1479 * - the allocation cannot block and must not fail 1480 * - the allocation cannot block and is pageout dispensated 1481 */ 1482 if (NOMEMWAIT() || 1483 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1484 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1485 return (1); 1486 1487 /* 1488 * If the allocation can't block, we look favorably upon it 1489 * unless we're below pageout_reserve. In that case we fail 1490 * the allocation because we want to make sure there are a few 1491 * pages available for pageout. 1492 */ 1493 if ((flags & PG_WAIT) == 0) 1494 return (freemem >= npages + pageout_reserve); 1495 1496 /* Calculate the effective throttlefree value */ 1497 tf = throttlefree - 1498 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1499 1500 cv_signal(&proc_pageout->p_cv); 1501 1502 for (;;) { 1503 fm = 0; 1504 pcf_acquire_all(); 1505 mutex_enter(&new_freemem_lock); 1506 for (i = 0; i < pcf_fanout; i++) { 1507 fm += pcf[i].pcf_count; 1508 pcf[i].pcf_wait++; 1509 mutex_exit(&pcf[i].pcf_lock); 1510 } 1511 freemem = fm; 1512 if (freemem >= npages + tf) { 1513 mutex_exit(&new_freemem_lock); 1514 break; 1515 } 1516 needfree += npages; 1517 freemem_wait++; 1518 cv_wait(&freemem_cv, &new_freemem_lock); 1519 freemem_wait--; 1520 needfree -= npages; 1521 mutex_exit(&new_freemem_lock); 1522 } 1523 return (1); 1524 } 1525 1526 /* 1527 * page_create_wait() is called to either coalesce pages from the 1528 * different pcf buckets or to wait because there simply are not 1529 * enough pages to satisfy the caller's request. 1530 * 1531 * Sadly, this is called from platform/vm/vm_machdep.c 1532 */ 1533 int 1534 page_create_wait(pgcnt_t npages, uint_t flags) 1535 { 1536 pgcnt_t total; 1537 uint_t i; 1538 struct pcf *p; 1539 1540 /* 1541 * Wait until there are enough free pages to satisfy our 1542 * entire request. 1543 * We set needfree += npages before prodding pageout, to make sure 1544 * it does real work when npages > lotsfree > freemem. 1545 */ 1546 VM_STAT_ADD(page_create_not_enough); 1547 1548 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1549 checkagain: 1550 if ((flags & PG_NORELOC) && 1551 kcage_freemem < kcage_throttlefree + npages) 1552 (void) kcage_create_throttle(npages, flags); 1553 1554 if (freemem < npages + throttlefree) 1555 if (!page_create_throttle(npages, flags)) 1556 return (0); 1557 1558 if (pcf_decrement_bucket(npages) || 1559 pcf_decrement_multiple(&total, npages, 0)) 1560 return (1); 1561 1562 /* 1563 * All of the pcf locks are held, there are not enough pages 1564 * to satisfy the request (npages < total). 1565 * Be sure to acquire the new_freemem_lock before dropping 1566 * the pcf locks. This prevents dropping wakeups in page_free(). 1567 * The order is always pcf_lock then new_freemem_lock. 1568 * 1569 * Since we hold all the pcf locks, it is a good time to set freemem. 1570 * 1571 * If the caller does not want to wait, return now. 1572 * Else turn the pageout daemon loose to find something 1573 * and wait till it does. 1574 * 1575 */ 1576 freemem = total; 1577 1578 if ((flags & PG_WAIT) == 0) { 1579 pcf_release_all(); 1580 1581 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1582 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1583 return (0); 1584 } 1585 1586 ASSERT(proc_pageout != NULL); 1587 cv_signal(&proc_pageout->p_cv); 1588 1589 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1590 "page_create_sleep_start: freemem %ld needfree %ld", 1591 freemem, needfree); 1592 1593 /* 1594 * We are going to wait. 1595 * We currently hold all of the pcf_locks, 1596 * get the new_freemem_lock (it protects freemem_wait), 1597 * before dropping the pcf_locks. 1598 */ 1599 mutex_enter(&new_freemem_lock); 1600 1601 p = pcf; 1602 for (i = 0; i < pcf_fanout; i++) { 1603 p->pcf_wait++; 1604 mutex_exit(&p->pcf_lock); 1605 p++; 1606 } 1607 1608 needfree += npages; 1609 freemem_wait++; 1610 1611 cv_wait(&freemem_cv, &new_freemem_lock); 1612 1613 freemem_wait--; 1614 needfree -= npages; 1615 1616 mutex_exit(&new_freemem_lock); 1617 1618 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1619 "page_create_sleep_end: freemem %ld needfree %ld", 1620 freemem, needfree); 1621 1622 VM_STAT_ADD(page_create_not_enough_again); 1623 goto checkagain; 1624 } 1625 /* 1626 * A routine to do the opposite of page_create_wait(). 1627 */ 1628 void 1629 page_create_putback(spgcnt_t npages) 1630 { 1631 struct pcf *p; 1632 pgcnt_t lump; 1633 uint_t *which; 1634 1635 /* 1636 * When a contiguous lump is broken up, we have to 1637 * deal with lots of pages (min 64) so lets spread 1638 * the wealth around. 1639 */ 1640 lump = roundup(npages, pcf_fanout) / pcf_fanout; 1641 freemem += npages; 1642 1643 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) { 1644 which = &p->pcf_count; 1645 1646 mutex_enter(&p->pcf_lock); 1647 1648 if (p->pcf_block) { 1649 which = &p->pcf_reserve; 1650 } 1651 1652 if (lump < npages) { 1653 *which += (uint_t)lump; 1654 npages -= lump; 1655 } else { 1656 *which += (uint_t)npages; 1657 npages = 0; 1658 } 1659 1660 if (p->pcf_wait) { 1661 mutex_enter(&new_freemem_lock); 1662 /* 1663 * Check to see if some other thread 1664 * is actually waiting. Another bucket 1665 * may have woken it up by now. If there 1666 * are no waiters, then set our pcf_wait 1667 * count to zero to avoid coming in here 1668 * next time. 1669 */ 1670 if (freemem_wait) { 1671 if (npages > 1) { 1672 cv_broadcast(&freemem_cv); 1673 } else { 1674 cv_signal(&freemem_cv); 1675 } 1676 p->pcf_wait--; 1677 } else { 1678 p->pcf_wait = 0; 1679 } 1680 mutex_exit(&new_freemem_lock); 1681 } 1682 mutex_exit(&p->pcf_lock); 1683 } 1684 ASSERT(npages == 0); 1685 } 1686 1687 /* 1688 * A helper routine for page_create_get_something. 1689 * The indenting got to deep down there. 1690 * Unblock the pcf counters. Any pages freed after 1691 * pcf_block got set are moved to pcf_count and 1692 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1693 */ 1694 static void 1695 pcgs_unblock(void) 1696 { 1697 int i; 1698 struct pcf *p; 1699 1700 /* Update freemem while we're here. */ 1701 freemem = 0; 1702 p = pcf; 1703 for (i = 0; i < pcf_fanout; i++) { 1704 mutex_enter(&p->pcf_lock); 1705 ASSERT(p->pcf_count == 0); 1706 p->pcf_count = p->pcf_reserve; 1707 p->pcf_block = 0; 1708 freemem += p->pcf_count; 1709 if (p->pcf_wait) { 1710 mutex_enter(&new_freemem_lock); 1711 if (freemem_wait) { 1712 if (p->pcf_reserve > 1) { 1713 cv_broadcast(&freemem_cv); 1714 p->pcf_wait = 0; 1715 } else { 1716 cv_signal(&freemem_cv); 1717 p->pcf_wait--; 1718 } 1719 } else { 1720 p->pcf_wait = 0; 1721 } 1722 mutex_exit(&new_freemem_lock); 1723 } 1724 p->pcf_reserve = 0; 1725 mutex_exit(&p->pcf_lock); 1726 p++; 1727 } 1728 } 1729 1730 /* 1731 * Called from page_create_va() when both the cache and free lists 1732 * have been checked once. 1733 * 1734 * Either returns a page or panics since the accounting was done 1735 * way before we got here. 1736 * 1737 * We don't come here often, so leave the accounting on permanently. 1738 */ 1739 1740 #define MAX_PCGS 100 1741 1742 #ifdef DEBUG 1743 #define PCGS_TRIES 100 1744 #else /* DEBUG */ 1745 #define PCGS_TRIES 10 1746 #endif /* DEBUG */ 1747 1748 #ifdef VM_STATS 1749 uint_t pcgs_counts[PCGS_TRIES]; 1750 uint_t pcgs_too_many; 1751 uint_t pcgs_entered; 1752 uint_t pcgs_entered_noreloc; 1753 uint_t pcgs_locked; 1754 uint_t pcgs_cagelocked; 1755 #endif /* VM_STATS */ 1756 1757 static page_t * 1758 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1759 caddr_t vaddr, uint_t flags) 1760 { 1761 uint_t count; 1762 page_t *pp; 1763 uint_t locked, i; 1764 struct pcf *p; 1765 lgrp_t *lgrp; 1766 int cagelocked = 0; 1767 1768 VM_STAT_ADD(pcgs_entered); 1769 1770 /* 1771 * Tap any reserve freelists: if we fail now, we'll die 1772 * since the page(s) we're looking for have already been 1773 * accounted for. 1774 */ 1775 flags |= PG_PANIC; 1776 1777 if ((flags & PG_NORELOC) != 0) { 1778 VM_STAT_ADD(pcgs_entered_noreloc); 1779 /* 1780 * Requests for free pages from critical threads 1781 * such as pageout still won't throttle here, but 1782 * we must try again, to give the cageout thread 1783 * another chance to catch up. Since we already 1784 * accounted for the pages, we had better get them 1785 * this time. 1786 * 1787 * N.B. All non-critical threads acquire the pcgs_cagelock 1788 * to serialize access to the freelists. This implements a 1789 * turnstile-type synchornization to avoid starvation of 1790 * critical requests for PG_NORELOC memory by non-critical 1791 * threads: all non-critical threads must acquire a 'ticket' 1792 * before passing through, which entails making sure 1793 * kcage_freemem won't fall below minfree prior to grabbing 1794 * pages from the freelists. 1795 */ 1796 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1797 mutex_enter(&pcgs_cagelock); 1798 cagelocked = 1; 1799 VM_STAT_ADD(pcgs_cagelocked); 1800 } 1801 } 1802 1803 /* 1804 * Time to get serious. 1805 * We failed to get a `correctly colored' page from both the 1806 * free and cache lists. 1807 * We escalate in stage. 1808 * 1809 * First try both lists without worring about color. 1810 * 1811 * Then, grab all page accounting locks (ie. pcf[]) and 1812 * steal any pages that they have and set the pcf_block flag to 1813 * stop deletions from the lists. This will help because 1814 * a page can get added to the free list while we are looking 1815 * at the cache list, then another page could be added to the cache 1816 * list allowing the page on the free list to be removed as we 1817 * move from looking at the cache list to the free list. This 1818 * could happen over and over. We would never find the page 1819 * we have accounted for. 1820 * 1821 * Noreloc pages are a subset of the global (relocatable) page pool. 1822 * They are not tracked separately in the pcf bins, so it is 1823 * impossible to know when doing pcf accounting if the available 1824 * page(s) are noreloc pages or not. When looking for a noreloc page 1825 * it is quite easy to end up here even if the global (relocatable) 1826 * page pool has plenty of free pages but the noreloc pool is empty. 1827 * 1828 * When the noreloc pool is empty (or low), additional noreloc pages 1829 * are created by converting pages from the global page pool. This 1830 * process will stall during pcf accounting if the pcf bins are 1831 * already locked. Such is the case when a noreloc allocation is 1832 * looping here in page_create_get_something waiting for more noreloc 1833 * pages to appear. 1834 * 1835 * Short of adding a new field to the pcf bins to accurately track 1836 * the number of free noreloc pages, we instead do not grab the 1837 * pcgs_lock, do not set the pcf blocks and do not timeout when 1838 * allocating a noreloc page. This allows noreloc allocations to 1839 * loop without blocking global page pool allocations. 1840 * 1841 * NOTE: the behaviour of page_create_get_something has not changed 1842 * for the case of global page pool allocations. 1843 */ 1844 1845 flags &= ~PG_MATCH_COLOR; 1846 locked = 0; 1847 #if defined(__i386) || defined(__amd64) 1848 flags = page_create_update_flags_x86(flags); 1849 #endif 1850 1851 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1852 1853 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1854 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1855 flags, lgrp); 1856 if (pp == NULL) { 1857 pp = page_get_cachelist(vp, off, seg, vaddr, 1858 flags, lgrp); 1859 } 1860 if (pp == NULL) { 1861 /* 1862 * Serialize. Don't fight with other pcgs(). 1863 */ 1864 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1865 mutex_enter(&pcgs_lock); 1866 VM_STAT_ADD(pcgs_locked); 1867 locked = 1; 1868 p = pcf; 1869 for (i = 0; i < pcf_fanout; i++) { 1870 mutex_enter(&p->pcf_lock); 1871 ASSERT(p->pcf_block == 0); 1872 p->pcf_block = 1; 1873 p->pcf_reserve = p->pcf_count; 1874 p->pcf_count = 0; 1875 mutex_exit(&p->pcf_lock); 1876 p++; 1877 } 1878 freemem = 0; 1879 } 1880 1881 if (count) { 1882 /* 1883 * Since page_free() puts pages on 1884 * a list then accounts for it, we 1885 * just have to wait for page_free() 1886 * to unlock any page it was working 1887 * with. The page_lock()-page_reclaim() 1888 * path falls in the same boat. 1889 * 1890 * We don't need to check on the 1891 * PG_WAIT flag, we have already 1892 * accounted for the page we are 1893 * looking for in page_create_va(). 1894 * 1895 * We just wait a moment to let any 1896 * locked pages on the lists free up, 1897 * then continue around and try again. 1898 * 1899 * Will be awakened by set_freemem(). 1900 */ 1901 mutex_enter(&pcgs_wait_lock); 1902 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1903 mutex_exit(&pcgs_wait_lock); 1904 } 1905 } else { 1906 #ifdef VM_STATS 1907 if (count >= PCGS_TRIES) { 1908 VM_STAT_ADD(pcgs_too_many); 1909 } else { 1910 VM_STAT_ADD(pcgs_counts[count]); 1911 } 1912 #endif 1913 if (locked) { 1914 pcgs_unblock(); 1915 mutex_exit(&pcgs_lock); 1916 } 1917 if (cagelocked) 1918 mutex_exit(&pcgs_cagelock); 1919 return (pp); 1920 } 1921 } 1922 /* 1923 * we go down holding the pcf locks. 1924 */ 1925 panic("no %spage found %d", 1926 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1927 /*NOTREACHED*/ 1928 } 1929 1930 /* 1931 * Create enough pages for "bytes" worth of data starting at 1932 * "off" in "vp". 1933 * 1934 * Where flag must be one of: 1935 * 1936 * PG_EXCL: Exclusive create (fail if any page already 1937 * exists in the page cache) which does not 1938 * wait for memory to become available. 1939 * 1940 * PG_WAIT: Non-exclusive create which can wait for 1941 * memory to become available. 1942 * 1943 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1944 * (Not Supported) 1945 * 1946 * A doubly linked list of pages is returned to the caller. Each page 1947 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1948 * lock. 1949 * 1950 * Unable to change the parameters to page_create() in a minor release, 1951 * we renamed page_create() to page_create_va(), changed all known calls 1952 * from page_create() to page_create_va(), and created this wrapper. 1953 * 1954 * Upon a major release, we should break compatibility by deleting this 1955 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1956 * 1957 * NOTE: There is a copy of this interface as page_create_io() in 1958 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1959 * there. 1960 */ 1961 page_t * 1962 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1963 { 1964 caddr_t random_vaddr; 1965 struct seg kseg; 1966 1967 #ifdef DEBUG 1968 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1969 (void *)caller()); 1970 #endif 1971 1972 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1973 (uintptr_t)(off >> PAGESHIFT)); 1974 kseg.s_as = &kas; 1975 1976 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1977 } 1978 1979 #ifdef DEBUG 1980 uint32_t pg_alloc_pgs_mtbf = 0; 1981 #endif 1982 1983 /* 1984 * Used for large page support. It will attempt to allocate 1985 * a large page(s) off the freelist. 1986 * 1987 * Returns non zero on failure. 1988 */ 1989 int 1990 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 1991 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags) 1992 { 1993 pgcnt_t npgs, curnpgs, totpgs; 1994 size_t pgsz; 1995 page_t *pplist = NULL, *pp; 1996 int err = 0; 1997 lgrp_t *lgrp; 1998 1999 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 2000 ASSERT(pgflags == 0 || pgflags == PG_LOCAL); 2001 2002 /* 2003 * Check if system heavily prefers local large pages over remote 2004 * on systems with multiple lgroups. 2005 */ 2006 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) { 2007 pgflags = PG_LOCAL; 2008 } 2009 2010 VM_STAT_ADD(alloc_pages[0]); 2011 2012 #ifdef DEBUG 2013 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 2014 return (ENOMEM); 2015 } 2016 #endif 2017 2018 /* 2019 * One must be NULL but not both. 2020 * And one must be non NULL but not both. 2021 */ 2022 ASSERT(basepp != NULL || ppa != NULL); 2023 ASSERT(basepp == NULL || ppa == NULL); 2024 2025 #if defined(__i386) || defined(__amd64) 2026 while (page_chk_freelist(szc) == 0) { 2027 VM_STAT_ADD(alloc_pages[8]); 2028 if (anypgsz == 0 || --szc == 0) 2029 return (ENOMEM); 2030 } 2031 #endif 2032 2033 pgsz = page_get_pagesize(szc); 2034 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 2035 2036 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 2037 2038 (void) page_create_wait(npgs, PG_WAIT); 2039 2040 while (npgs && szc) { 2041 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2042 if (pgflags == PG_LOCAL) { 2043 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2044 pgflags, lgrp); 2045 if (pp == NULL) { 2046 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2047 0, lgrp); 2048 } 2049 } else { 2050 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2051 0, lgrp); 2052 } 2053 if (pp != NULL) { 2054 VM_STAT_ADD(alloc_pages[1]); 2055 page_list_concat(&pplist, &pp); 2056 ASSERT(npgs >= curnpgs); 2057 npgs -= curnpgs; 2058 } else if (anypgsz) { 2059 VM_STAT_ADD(alloc_pages[2]); 2060 szc--; 2061 pgsz = page_get_pagesize(szc); 2062 curnpgs = pgsz >> PAGESHIFT; 2063 } else { 2064 VM_STAT_ADD(alloc_pages[3]); 2065 ASSERT(npgs == totpgs); 2066 page_create_putback(npgs); 2067 return (ENOMEM); 2068 } 2069 } 2070 if (szc == 0) { 2071 VM_STAT_ADD(alloc_pages[4]); 2072 ASSERT(npgs != 0); 2073 page_create_putback(npgs); 2074 err = ENOMEM; 2075 } else if (basepp != NULL) { 2076 ASSERT(npgs == 0); 2077 ASSERT(ppa == NULL); 2078 *basepp = pplist; 2079 } 2080 2081 npgs = totpgs - npgs; 2082 pp = pplist; 2083 2084 /* 2085 * Clear the free and age bits. Also if we were passed in a ppa then 2086 * fill it in with all the constituent pages from the large page. But 2087 * if we failed to allocate all the pages just free what we got. 2088 */ 2089 while (npgs != 0) { 2090 ASSERT(PP_ISFREE(pp)); 2091 ASSERT(PP_ISAGED(pp)); 2092 if (ppa != NULL || err != 0) { 2093 if (err == 0) { 2094 VM_STAT_ADD(alloc_pages[5]); 2095 PP_CLRFREE(pp); 2096 PP_CLRAGED(pp); 2097 page_sub(&pplist, pp); 2098 *ppa++ = pp; 2099 npgs--; 2100 } else { 2101 VM_STAT_ADD(alloc_pages[6]); 2102 ASSERT(pp->p_szc != 0); 2103 curnpgs = page_get_pagecnt(pp->p_szc); 2104 page_list_break(&pp, &pplist, curnpgs); 2105 page_list_add_pages(pp, 0); 2106 page_create_putback(curnpgs); 2107 ASSERT(npgs >= curnpgs); 2108 npgs -= curnpgs; 2109 } 2110 pp = pplist; 2111 } else { 2112 VM_STAT_ADD(alloc_pages[7]); 2113 PP_CLRFREE(pp); 2114 PP_CLRAGED(pp); 2115 pp = pp->p_next; 2116 npgs--; 2117 } 2118 } 2119 return (err); 2120 } 2121 2122 /* 2123 * Get a single large page off of the freelists, and set it up for use. 2124 * Number of bytes requested must be a supported page size. 2125 * 2126 * Note that this call may fail even if there is sufficient 2127 * memory available or PG_WAIT is set, so the caller must 2128 * be willing to fallback on page_create_va(), block and retry, 2129 * or fail the requester. 2130 */ 2131 page_t * 2132 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2133 struct seg *seg, caddr_t vaddr, void *arg) 2134 { 2135 pgcnt_t npages; 2136 page_t *pp; 2137 page_t *rootpp; 2138 lgrp_t *lgrp; 2139 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2140 2141 ASSERT(vp != NULL); 2142 2143 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2144 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2145 /* but no others */ 2146 2147 ASSERT((flags & PG_EXCL) == PG_EXCL); 2148 2149 npages = btop(bytes); 2150 2151 if (!kcage_on || panicstr) { 2152 /* 2153 * Cage is OFF, or we are single threaded in 2154 * panic, so make everything a RELOC request. 2155 */ 2156 flags &= ~PG_NORELOC; 2157 } 2158 2159 /* 2160 * Make sure there's adequate physical memory available. 2161 * Note: PG_WAIT is ignored here. 2162 */ 2163 if (freemem <= throttlefree + npages) { 2164 VM_STAT_ADD(page_create_large_cnt[1]); 2165 return (NULL); 2166 } 2167 2168 /* 2169 * If cage is on, dampen draw from cage when available 2170 * cage space is low. 2171 */ 2172 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2173 kcage_freemem < kcage_throttlefree + npages) { 2174 2175 /* 2176 * The cage is on, the caller wants PG_NORELOC 2177 * pages and available cage memory is very low. 2178 * Call kcage_create_throttle() to attempt to 2179 * control demand on the cage. 2180 */ 2181 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2182 VM_STAT_ADD(page_create_large_cnt[2]); 2183 return (NULL); 2184 } 2185 } 2186 2187 if (!pcf_decrement_bucket(npages) && 2188 !pcf_decrement_multiple(NULL, npages, 1)) { 2189 VM_STAT_ADD(page_create_large_cnt[4]); 2190 return (NULL); 2191 } 2192 2193 /* 2194 * This is where this function behaves fundamentally differently 2195 * than page_create_va(); since we're intending to map the page 2196 * with a single TTE, we have to get it as a physically contiguous 2197 * hardware pagesize chunk. If we can't, we fail. 2198 */ 2199 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2200 LGRP_EXISTS(lgrp_table[*lgrpid])) 2201 lgrp = lgrp_table[*lgrpid]; 2202 else 2203 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2204 2205 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2206 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2207 page_create_putback(npages); 2208 VM_STAT_ADD(page_create_large_cnt[5]); 2209 return (NULL); 2210 } 2211 2212 /* 2213 * if we got the page with the wrong mtype give it back this is a 2214 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2215 * inside "if" and the workaround becomes just a nop 2216 */ 2217 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2218 page_list_add_pages(rootpp, 0); 2219 page_create_putback(npages); 2220 VM_STAT_ADD(page_create_large_cnt[6]); 2221 return (NULL); 2222 } 2223 2224 /* 2225 * If satisfying this request has left us with too little 2226 * memory, start the wheels turning to get some back. The 2227 * first clause of the test prevents waking up the pageout 2228 * daemon in situations where it would decide that there's 2229 * nothing to do. 2230 */ 2231 if (nscan < desscan && freemem < minfree) { 2232 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2233 "pageout_cv_signal:freemem %ld", freemem); 2234 cv_signal(&proc_pageout->p_cv); 2235 } 2236 2237 pp = rootpp; 2238 while (npages--) { 2239 ASSERT(PAGE_EXCL(pp)); 2240 ASSERT(pp->p_vnode == NULL); 2241 ASSERT(!hat_page_is_mapped(pp)); 2242 PP_CLRFREE(pp); 2243 PP_CLRAGED(pp); 2244 if (!page_hashin(pp, vp, off, NULL)) 2245 panic("page_create_large: hashin failed: page %p", 2246 (void *)pp); 2247 page_io_lock(pp); 2248 off += PAGESIZE; 2249 pp = pp->p_next; 2250 } 2251 2252 VM_STAT_ADD(page_create_large_cnt[0]); 2253 return (rootpp); 2254 } 2255 2256 page_t * 2257 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2258 struct seg *seg, caddr_t vaddr) 2259 { 2260 page_t *plist = NULL; 2261 pgcnt_t npages; 2262 pgcnt_t found_on_free = 0; 2263 pgcnt_t pages_req; 2264 page_t *npp = NULL; 2265 struct pcf *p; 2266 lgrp_t *lgrp; 2267 2268 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2269 "page_create_start:vp %p off %llx bytes %lu flags %x", 2270 vp, off, bytes, flags); 2271 2272 ASSERT(bytes != 0 && vp != NULL); 2273 2274 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2275 panic("page_create: invalid flags"); 2276 /*NOTREACHED*/ 2277 } 2278 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2279 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2280 /* but no others */ 2281 2282 pages_req = npages = btopr(bytes); 2283 /* 2284 * Try to see whether request is too large to *ever* be 2285 * satisfied, in order to prevent deadlock. We arbitrarily 2286 * decide to limit maximum size requests to max_page_get. 2287 */ 2288 if (npages >= max_page_get) { 2289 if ((flags & PG_WAIT) == 0) { 2290 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2291 "page_create_toobig:vp %p off %llx npages " 2292 "%lu max_page_get %lu", 2293 vp, off, npages, max_page_get); 2294 return (NULL); 2295 } else { 2296 cmn_err(CE_WARN, 2297 "Request for too much kernel memory " 2298 "(%lu bytes), will hang forever", bytes); 2299 for (;;) 2300 delay(1000000000); 2301 } 2302 } 2303 2304 if (!kcage_on || panicstr) { 2305 /* 2306 * Cage is OFF, or we are single threaded in 2307 * panic, so make everything a RELOC request. 2308 */ 2309 flags &= ~PG_NORELOC; 2310 } 2311 2312 if (freemem <= throttlefree + npages) 2313 if (!page_create_throttle(npages, flags)) 2314 return (NULL); 2315 2316 /* 2317 * If cage is on, dampen draw from cage when available 2318 * cage space is low. 2319 */ 2320 if ((flags & PG_NORELOC) && 2321 kcage_freemem < kcage_throttlefree + npages) { 2322 2323 /* 2324 * The cage is on, the caller wants PG_NORELOC 2325 * pages and available cage memory is very low. 2326 * Call kcage_create_throttle() to attempt to 2327 * control demand on the cage. 2328 */ 2329 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2330 return (NULL); 2331 } 2332 2333 VM_STAT_ADD(page_create_cnt[0]); 2334 2335 if (!pcf_decrement_bucket(npages)) { 2336 /* 2337 * Have to look harder. If npages is greater than 2338 * one, then we might have to coalesce the counters. 2339 * 2340 * Go wait. We come back having accounted 2341 * for the memory. 2342 */ 2343 VM_STAT_ADD(page_create_cnt[1]); 2344 if (!page_create_wait(npages, flags)) { 2345 VM_STAT_ADD(page_create_cnt[2]); 2346 return (NULL); 2347 } 2348 } 2349 2350 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2351 "page_create_success:vp %p off %llx", vp, off); 2352 2353 /* 2354 * If satisfying this request has left us with too little 2355 * memory, start the wheels turning to get some back. The 2356 * first clause of the test prevents waking up the pageout 2357 * daemon in situations where it would decide that there's 2358 * nothing to do. 2359 */ 2360 if (nscan < desscan && freemem < minfree) { 2361 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2362 "pageout_cv_signal:freemem %ld", freemem); 2363 cv_signal(&proc_pageout->p_cv); 2364 } 2365 2366 /* 2367 * Loop around collecting the requested number of pages. 2368 * Most of the time, we have to `create' a new page. With 2369 * this in mind, pull the page off the free list before 2370 * getting the hash lock. This will minimize the hash 2371 * lock hold time, nesting, and the like. If it turns 2372 * out we don't need the page, we put it back at the end. 2373 */ 2374 while (npages--) { 2375 page_t *pp; 2376 kmutex_t *phm = NULL; 2377 ulong_t index; 2378 2379 index = PAGE_HASH_FUNC(vp, off); 2380 top: 2381 ASSERT(phm == NULL); 2382 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2383 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2384 2385 if (npp == NULL) { 2386 /* 2387 * Try to get a page from the freelist (ie, 2388 * a page with no [vp, off] tag). If that 2389 * fails, use the cachelist. 2390 * 2391 * During the first attempt at both the free 2392 * and cache lists we try for the correct color. 2393 */ 2394 /* 2395 * XXXX-how do we deal with virtual indexed 2396 * caches and and colors? 2397 */ 2398 VM_STAT_ADD(page_create_cnt[4]); 2399 /* 2400 * Get lgroup to allocate next page of shared memory 2401 * from and use it to specify where to allocate 2402 * the physical memory 2403 */ 2404 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2405 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2406 flags | PG_MATCH_COLOR, lgrp); 2407 if (npp == NULL) { 2408 npp = page_get_cachelist(vp, off, seg, 2409 vaddr, flags | PG_MATCH_COLOR, lgrp); 2410 if (npp == NULL) { 2411 npp = page_create_get_something(vp, 2412 off, seg, vaddr, 2413 flags & ~PG_MATCH_COLOR); 2414 } 2415 2416 if (PP_ISAGED(npp) == 0) { 2417 /* 2418 * Since this page came from the 2419 * cachelist, we must destroy the 2420 * old vnode association. 2421 */ 2422 page_hashout(npp, NULL); 2423 } 2424 } 2425 } 2426 2427 /* 2428 * We own this page! 2429 */ 2430 ASSERT(PAGE_EXCL(npp)); 2431 ASSERT(npp->p_vnode == NULL); 2432 ASSERT(!hat_page_is_mapped(npp)); 2433 PP_CLRFREE(npp); 2434 PP_CLRAGED(npp); 2435 2436 /* 2437 * Here we have a page in our hot little mits and are 2438 * just waiting to stuff it on the appropriate lists. 2439 * Get the mutex and check to see if it really does 2440 * not exist. 2441 */ 2442 phm = PAGE_HASH_MUTEX(index); 2443 mutex_enter(phm); 2444 PAGE_HASH_SEARCH(index, pp, vp, off); 2445 if (pp == NULL) { 2446 VM_STAT_ADD(page_create_new); 2447 pp = npp; 2448 npp = NULL; 2449 if (!page_hashin(pp, vp, off, phm)) { 2450 /* 2451 * Since we hold the page hash mutex and 2452 * just searched for this page, page_hashin 2453 * had better not fail. If it does, that 2454 * means somethread did not follow the 2455 * page hash mutex rules. Panic now and 2456 * get it over with. As usual, go down 2457 * holding all the locks. 2458 */ 2459 ASSERT(MUTEX_HELD(phm)); 2460 panic("page_create: " 2461 "hashin failed %p %p %llx %p", 2462 (void *)pp, (void *)vp, off, (void *)phm); 2463 /*NOTREACHED*/ 2464 } 2465 ASSERT(MUTEX_HELD(phm)); 2466 mutex_exit(phm); 2467 phm = NULL; 2468 2469 /* 2470 * Hat layer locking need not be done to set 2471 * the following bits since the page is not hashed 2472 * and was on the free list (i.e., had no mappings). 2473 * 2474 * Set the reference bit to protect 2475 * against immediate pageout 2476 * 2477 * XXXmh modify freelist code to set reference 2478 * bit so we don't have to do it here. 2479 */ 2480 page_set_props(pp, P_REF); 2481 found_on_free++; 2482 } else { 2483 VM_STAT_ADD(page_create_exists); 2484 if (flags & PG_EXCL) { 2485 /* 2486 * Found an existing page, and the caller 2487 * wanted all new pages. Undo all of the work 2488 * we have done. 2489 */ 2490 mutex_exit(phm); 2491 phm = NULL; 2492 while (plist != NULL) { 2493 pp = plist; 2494 page_sub(&plist, pp); 2495 page_io_unlock(pp); 2496 /* large pages should not end up here */ 2497 ASSERT(pp->p_szc == 0); 2498 /*LINTED: constant in conditional ctx*/ 2499 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2500 } 2501 VM_STAT_ADD(page_create_found_one); 2502 goto fail; 2503 } 2504 ASSERT(flags & PG_WAIT); 2505 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2506 /* 2507 * Start all over again if we blocked trying 2508 * to lock the page. 2509 */ 2510 mutex_exit(phm); 2511 VM_STAT_ADD(page_create_page_lock_failed); 2512 phm = NULL; 2513 goto top; 2514 } 2515 mutex_exit(phm); 2516 phm = NULL; 2517 2518 if (PP_ISFREE(pp)) { 2519 ASSERT(PP_ISAGED(pp) == 0); 2520 VM_STAT_ADD(pagecnt.pc_get_cache); 2521 page_list_sub(pp, PG_CACHE_LIST); 2522 PP_CLRFREE(pp); 2523 found_on_free++; 2524 } 2525 } 2526 2527 /* 2528 * Got a page! It is locked. Acquire the i/o 2529 * lock since we are going to use the p_next and 2530 * p_prev fields to link the requested pages together. 2531 */ 2532 page_io_lock(pp); 2533 page_add(&plist, pp); 2534 plist = plist->p_next; 2535 off += PAGESIZE; 2536 vaddr += PAGESIZE; 2537 } 2538 2539 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2540 fail: 2541 if (npp != NULL) { 2542 /* 2543 * Did not need this page after all. 2544 * Put it back on the free list. 2545 */ 2546 VM_STAT_ADD(page_create_putbacks); 2547 PP_SETFREE(npp); 2548 PP_SETAGED(npp); 2549 npp->p_offset = (u_offset_t)-1; 2550 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2551 page_unlock(npp); 2552 2553 } 2554 2555 ASSERT(pages_req >= found_on_free); 2556 2557 { 2558 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2559 2560 if (overshoot) { 2561 VM_STAT_ADD(page_create_overshoot); 2562 p = &pcf[PCF_INDEX()]; 2563 mutex_enter(&p->pcf_lock); 2564 if (p->pcf_block) { 2565 p->pcf_reserve += overshoot; 2566 } else { 2567 p->pcf_count += overshoot; 2568 if (p->pcf_wait) { 2569 mutex_enter(&new_freemem_lock); 2570 if (freemem_wait) { 2571 cv_signal(&freemem_cv); 2572 p->pcf_wait--; 2573 } else { 2574 p->pcf_wait = 0; 2575 } 2576 mutex_exit(&new_freemem_lock); 2577 } 2578 } 2579 mutex_exit(&p->pcf_lock); 2580 /* freemem is approximate, so this test OK */ 2581 if (!p->pcf_block) 2582 freemem += overshoot; 2583 } 2584 } 2585 2586 return (plist); 2587 } 2588 2589 /* 2590 * One or more constituent pages of this large page has been marked 2591 * toxic. Simply demote the large page to PAGESIZE pages and let 2592 * page_free() handle it. This routine should only be called by 2593 * large page free routines (page_free_pages() and page_destroy_pages(). 2594 * All pages are locked SE_EXCL and have already been marked free. 2595 */ 2596 static void 2597 page_free_toxic_pages(page_t *rootpp) 2598 { 2599 page_t *tpp; 2600 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2601 uint_t szc = rootpp->p_szc; 2602 2603 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2604 ASSERT(tpp->p_szc == szc); 2605 ASSERT((PAGE_EXCL(tpp) && 2606 !page_iolock_assert(tpp)) || panicstr); 2607 tpp->p_szc = 0; 2608 } 2609 2610 while (rootpp != NULL) { 2611 tpp = rootpp; 2612 page_sub(&rootpp, tpp); 2613 ASSERT(PP_ISFREE(tpp)); 2614 PP_CLRFREE(tpp); 2615 page_free(tpp, 1); 2616 } 2617 } 2618 2619 /* 2620 * Put page on the "free" list. 2621 * The free list is really two lists maintained by 2622 * the PSM of whatever machine we happen to be on. 2623 */ 2624 void 2625 page_free(page_t *pp, int dontneed) 2626 { 2627 struct pcf *p; 2628 uint_t pcf_index; 2629 2630 ASSERT((PAGE_EXCL(pp) && 2631 !page_iolock_assert(pp)) || panicstr); 2632 2633 if (PP_ISFREE(pp)) { 2634 panic("page_free: page %p is free", (void *)pp); 2635 } 2636 2637 if (pp->p_szc != 0) { 2638 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2639 PP_ISKAS(pp)) { 2640 panic("page_free: anon or kernel " 2641 "or no vnode large page %p", (void *)pp); 2642 } 2643 page_demote_vp_pages(pp); 2644 ASSERT(pp->p_szc == 0); 2645 } 2646 2647 /* 2648 * The page_struct_lock need not be acquired to examine these 2649 * fields since the page has an "exclusive" lock. 2650 */ 2651 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 2652 pp->p_slckcnt != 0) { 2653 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d " 2654 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt, 2655 pp->p_cowcnt, pp->p_slckcnt); 2656 /*NOTREACHED*/ 2657 } 2658 2659 ASSERT(!hat_page_getshare(pp)); 2660 2661 PP_SETFREE(pp); 2662 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2663 !hat_ismod(pp)); 2664 page_clr_all_props(pp); 2665 ASSERT(!hat_page_getshare(pp)); 2666 2667 /* 2668 * Now we add the page to the head of the free list. 2669 * But if this page is associated with a paged vnode 2670 * then we adjust the head forward so that the page is 2671 * effectively at the end of the list. 2672 */ 2673 if (pp->p_vnode == NULL) { 2674 /* 2675 * Page has no identity, put it on the free list. 2676 */ 2677 PP_SETAGED(pp); 2678 pp->p_offset = (u_offset_t)-1; 2679 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2680 VM_STAT_ADD(pagecnt.pc_free_free); 2681 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2682 "page_free_free:pp %p", pp); 2683 } else { 2684 PP_CLRAGED(pp); 2685 2686 if (!dontneed || nopageage) { 2687 /* move it to the tail of the list */ 2688 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2689 2690 VM_STAT_ADD(pagecnt.pc_free_cache); 2691 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2692 "page_free_cache_tail:pp %p", pp); 2693 } else { 2694 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2695 2696 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2697 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2698 "page_free_cache_head:pp %p", pp); 2699 } 2700 } 2701 page_unlock(pp); 2702 2703 /* 2704 * Now do the `freemem' accounting. 2705 */ 2706 pcf_index = PCF_INDEX(); 2707 p = &pcf[pcf_index]; 2708 2709 mutex_enter(&p->pcf_lock); 2710 if (p->pcf_block) { 2711 p->pcf_reserve += 1; 2712 } else { 2713 p->pcf_count += 1; 2714 if (p->pcf_wait) { 2715 mutex_enter(&new_freemem_lock); 2716 /* 2717 * Check to see if some other thread 2718 * is actually waiting. Another bucket 2719 * may have woken it up by now. If there 2720 * are no waiters, then set our pcf_wait 2721 * count to zero to avoid coming in here 2722 * next time. Also, since only one page 2723 * was put on the free list, just wake 2724 * up one waiter. 2725 */ 2726 if (freemem_wait) { 2727 cv_signal(&freemem_cv); 2728 p->pcf_wait--; 2729 } else { 2730 p->pcf_wait = 0; 2731 } 2732 mutex_exit(&new_freemem_lock); 2733 } 2734 } 2735 mutex_exit(&p->pcf_lock); 2736 2737 /* freemem is approximate, so this test OK */ 2738 if (!p->pcf_block) 2739 freemem += 1; 2740 } 2741 2742 /* 2743 * Put page on the "free" list during intial startup. 2744 * This happens during initial single threaded execution. 2745 */ 2746 void 2747 page_free_at_startup(page_t *pp) 2748 { 2749 struct pcf *p; 2750 uint_t pcf_index; 2751 2752 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2753 VM_STAT_ADD(pagecnt.pc_free_free); 2754 2755 /* 2756 * Now do the `freemem' accounting. 2757 */ 2758 pcf_index = PCF_INDEX(); 2759 p = &pcf[pcf_index]; 2760 2761 ASSERT(p->pcf_block == 0); 2762 ASSERT(p->pcf_wait == 0); 2763 p->pcf_count += 1; 2764 2765 /* freemem is approximate, so this is OK */ 2766 freemem += 1; 2767 } 2768 2769 void 2770 page_free_pages(page_t *pp) 2771 { 2772 page_t *tpp, *rootpp = NULL; 2773 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2774 pgcnt_t i; 2775 uint_t szc = pp->p_szc; 2776 2777 VM_STAT_ADD(pagecnt.pc_free_pages); 2778 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2779 "page_free_free:pp %p", pp); 2780 2781 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2782 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2783 panic("page_free_pages: not root page %p", (void *)pp); 2784 /*NOTREACHED*/ 2785 } 2786 2787 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2788 ASSERT((PAGE_EXCL(tpp) && 2789 !page_iolock_assert(tpp)) || panicstr); 2790 if (PP_ISFREE(tpp)) { 2791 panic("page_free_pages: page %p is free", (void *)tpp); 2792 /*NOTREACHED*/ 2793 } 2794 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2795 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) { 2796 panic("page_free_pages %p", (void *)tpp); 2797 /*NOTREACHED*/ 2798 } 2799 2800 ASSERT(!hat_page_getshare(tpp)); 2801 ASSERT(tpp->p_vnode == NULL); 2802 ASSERT(tpp->p_szc == szc); 2803 2804 PP_SETFREE(tpp); 2805 page_clr_all_props(tpp); 2806 PP_SETAGED(tpp); 2807 tpp->p_offset = (u_offset_t)-1; 2808 ASSERT(tpp->p_next == tpp); 2809 ASSERT(tpp->p_prev == tpp); 2810 page_list_concat(&rootpp, &tpp); 2811 } 2812 ASSERT(rootpp == pp); 2813 2814 page_list_add_pages(rootpp, 0); 2815 page_create_putback(pgcnt); 2816 } 2817 2818 int free_pages = 1; 2819 2820 /* 2821 * This routine attempts to return pages to the cachelist via page_release(). 2822 * It does not *have* to be successful in all cases, since the pageout scanner 2823 * will catch any pages it misses. It does need to be fast and not introduce 2824 * too much overhead. 2825 * 2826 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2827 * don't lock and retry. This is ok, since the page scanner will eventually 2828 * find any page we miss in free_vp_pages(). 2829 */ 2830 void 2831 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2832 { 2833 page_t *pp; 2834 u_offset_t eoff; 2835 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2836 2837 eoff = off + len; 2838 2839 if (free_pages == 0) 2840 return; 2841 if (swap_in_range(vp, off, len)) 2842 return; 2843 2844 for (; off < eoff; off += PAGESIZE) { 2845 2846 /* 2847 * find the page using a fast, but inexact search. It'll be OK 2848 * if a few pages slip through the cracks here. 2849 */ 2850 pp = page_exists(vp, off); 2851 2852 /* 2853 * If we didn't find the page (it may not exist), the page 2854 * is free, looks still in use (shared), or we can't lock it, 2855 * just give up. 2856 */ 2857 if (pp == NULL || 2858 PP_ISFREE(pp) || 2859 page_share_cnt(pp) > 0 || 2860 !page_trylock(pp, SE_EXCL)) 2861 continue; 2862 2863 /* 2864 * Once we have locked pp, verify that it's still the 2865 * correct page and not already free 2866 */ 2867 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2868 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2869 page_unlock(pp); 2870 continue; 2871 } 2872 2873 /* 2874 * try to release the page... 2875 */ 2876 (void) page_release(pp, 1); 2877 } 2878 } 2879 2880 /* 2881 * Reclaim the given page from the free list. 2882 * If pp is part of a large pages, only the given constituent page is reclaimed 2883 * and the large page it belonged to will be demoted. This can only happen 2884 * if the page is not on the cachelist. 2885 * 2886 * Returns 1 on success or 0 on failure. 2887 * 2888 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2889 * If `lock' is non-null, it will be dropped and re-acquired if 2890 * the routine must wait while freemem is 0. 2891 * 2892 * As it turns out, boot_getpages() does this. It picks a page, 2893 * based on where OBP mapped in some address, gets its pfn, searches 2894 * the memsegs, locks the page, then pulls it off the free list! 2895 */ 2896 int 2897 page_reclaim(page_t *pp, kmutex_t *lock) 2898 { 2899 struct pcf *p; 2900 struct cpu *cpup; 2901 int enough; 2902 uint_t i; 2903 2904 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2905 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2906 2907 /* 2908 * If `freemem' is 0, we cannot reclaim this page from the 2909 * freelist, so release every lock we might hold: the page, 2910 * and the `lock' before blocking. 2911 * 2912 * The only way `freemem' can become 0 while there are pages 2913 * marked free (have their p->p_free bit set) is when the 2914 * system is low on memory and doing a page_create(). In 2915 * order to guarantee that once page_create() starts acquiring 2916 * pages it will be able to get all that it needs since `freemem' 2917 * was decreased by the requested amount. So, we need to release 2918 * this page, and let page_create() have it. 2919 * 2920 * Since `freemem' being zero is not supposed to happen, just 2921 * use the usual hash stuff as a starting point. If that bucket 2922 * is empty, then assume the worst, and start at the beginning 2923 * of the pcf array. If we always start at the beginning 2924 * when acquiring more than one pcf lock, there won't be any 2925 * deadlock problems. 2926 */ 2927 2928 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 2929 2930 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) { 2931 pcf_acquire_all(); 2932 goto page_reclaim_nomem; 2933 } 2934 2935 enough = pcf_decrement_bucket(1); 2936 2937 if (!enough) { 2938 VM_STAT_ADD(page_reclaim_zero); 2939 /* 2940 * Check again. Its possible that some other thread 2941 * could have been right behind us, and added one 2942 * to a list somewhere. Acquire each of the pcf locks 2943 * until we find a page. 2944 */ 2945 p = pcf; 2946 for (i = 0; i < pcf_fanout; i++) { 2947 mutex_enter(&p->pcf_lock); 2948 if (p->pcf_count >= 1) { 2949 p->pcf_count -= 1; 2950 /* 2951 * freemem is not protected by any lock. Thus, 2952 * we cannot have any assertion containing 2953 * freemem here. 2954 */ 2955 freemem -= 1; 2956 enough = 1; 2957 break; 2958 } 2959 p++; 2960 } 2961 2962 if (!enough) { 2963 page_reclaim_nomem: 2964 /* 2965 * We really can't have page `pp'. 2966 * Time for the no-memory dance with 2967 * page_free(). This is just like 2968 * page_create_wait(). Plus the added 2969 * attraction of releasing whatever mutex 2970 * we held when we were called with in `lock'. 2971 * Page_unlock() will wakeup any thread 2972 * waiting around for this page. 2973 */ 2974 if (lock) { 2975 VM_STAT_ADD(page_reclaim_zero_locked); 2976 mutex_exit(lock); 2977 } 2978 page_unlock(pp); 2979 2980 /* 2981 * get this before we drop all the pcf locks. 2982 */ 2983 mutex_enter(&new_freemem_lock); 2984 2985 p = pcf; 2986 for (i = 0; i < pcf_fanout; i++) { 2987 p->pcf_wait++; 2988 mutex_exit(&p->pcf_lock); 2989 p++; 2990 } 2991 2992 freemem_wait++; 2993 cv_wait(&freemem_cv, &new_freemem_lock); 2994 freemem_wait--; 2995 2996 mutex_exit(&new_freemem_lock); 2997 2998 if (lock) { 2999 mutex_enter(lock); 3000 } 3001 return (0); 3002 } 3003 3004 /* 3005 * The pcf accounting has been done, 3006 * though none of the pcf_wait flags have been set, 3007 * drop the locks and continue on. 3008 */ 3009 while (p >= pcf) { 3010 mutex_exit(&p->pcf_lock); 3011 p--; 3012 } 3013 } 3014 3015 3016 VM_STAT_ADD(pagecnt.pc_reclaim); 3017 3018 /* 3019 * page_list_sub will handle the case where pp is a large page. 3020 * It's possible that the page was promoted while on the freelist 3021 */ 3022 if (PP_ISAGED(pp)) { 3023 page_list_sub(pp, PG_FREE_LIST); 3024 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3025 "page_reclaim_free:pp %p", pp); 3026 } else { 3027 page_list_sub(pp, PG_CACHE_LIST); 3028 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3029 "page_reclaim_cache:pp %p", pp); 3030 } 3031 3032 /* 3033 * clear the p_free & p_age bits since this page is no longer 3034 * on the free list. Notice that there was a brief time where 3035 * a page is marked as free, but is not on the list. 3036 * 3037 * Set the reference bit to protect against immediate pageout. 3038 */ 3039 PP_CLRFREE(pp); 3040 PP_CLRAGED(pp); 3041 page_set_props(pp, P_REF); 3042 3043 CPU_STATS_ENTER_K(); 3044 cpup = CPU; /* get cpup now that CPU cannot change */ 3045 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3046 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3047 CPU_STATS_EXIT_K(); 3048 ASSERT(pp->p_szc == 0); 3049 3050 return (1); 3051 } 3052 3053 /* 3054 * Destroy identity of the page and put it back on 3055 * the page free list. Assumes that the caller has 3056 * acquired the "exclusive" lock on the page. 3057 */ 3058 void 3059 page_destroy(page_t *pp, int dontfree) 3060 { 3061 ASSERT((PAGE_EXCL(pp) && 3062 !page_iolock_assert(pp)) || panicstr); 3063 ASSERT(pp->p_slckcnt == 0 || panicstr); 3064 3065 if (pp->p_szc != 0) { 3066 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3067 PP_ISKAS(pp)) { 3068 panic("page_destroy: anon or kernel or no vnode " 3069 "large page %p", (void *)pp); 3070 } 3071 page_demote_vp_pages(pp); 3072 ASSERT(pp->p_szc == 0); 3073 } 3074 3075 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3076 3077 /* 3078 * Unload translations, if any, then hash out the 3079 * page to erase its identity. 3080 */ 3081 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3082 page_hashout(pp, NULL); 3083 3084 if (!dontfree) { 3085 /* 3086 * Acquire the "freemem_lock" for availrmem. 3087 * The page_struct_lock need not be acquired for lckcnt 3088 * and cowcnt since the page has an "exclusive" lock. 3089 * We are doing a modified version of page_pp_unlock here. 3090 */ 3091 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3092 mutex_enter(&freemem_lock); 3093 if (pp->p_lckcnt != 0) { 3094 availrmem++; 3095 pages_locked--; 3096 pp->p_lckcnt = 0; 3097 } 3098 if (pp->p_cowcnt != 0) { 3099 availrmem += pp->p_cowcnt; 3100 pages_locked -= pp->p_cowcnt; 3101 pp->p_cowcnt = 0; 3102 } 3103 mutex_exit(&freemem_lock); 3104 } 3105 /* 3106 * Put the page on the "free" list. 3107 */ 3108 page_free(pp, 0); 3109 } 3110 } 3111 3112 void 3113 page_destroy_pages(page_t *pp) 3114 { 3115 3116 page_t *tpp, *rootpp = NULL; 3117 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3118 pgcnt_t i, pglcks = 0; 3119 uint_t szc = pp->p_szc; 3120 3121 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3122 3123 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3124 3125 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3126 3127 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3128 panic("page_destroy_pages: not root page %p", (void *)pp); 3129 /*NOTREACHED*/ 3130 } 3131 3132 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3133 ASSERT((PAGE_EXCL(tpp) && 3134 !page_iolock_assert(tpp)) || panicstr); 3135 ASSERT(tpp->p_slckcnt == 0 || panicstr); 3136 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3137 page_hashout(tpp, NULL); 3138 ASSERT(tpp->p_offset == (u_offset_t)-1); 3139 if (tpp->p_lckcnt != 0) { 3140 pglcks++; 3141 tpp->p_lckcnt = 0; 3142 } else if (tpp->p_cowcnt != 0) { 3143 pglcks += tpp->p_cowcnt; 3144 tpp->p_cowcnt = 0; 3145 } 3146 ASSERT(!hat_page_getshare(tpp)); 3147 ASSERT(tpp->p_vnode == NULL); 3148 ASSERT(tpp->p_szc == szc); 3149 3150 PP_SETFREE(tpp); 3151 page_clr_all_props(tpp); 3152 PP_SETAGED(tpp); 3153 ASSERT(tpp->p_next == tpp); 3154 ASSERT(tpp->p_prev == tpp); 3155 page_list_concat(&rootpp, &tpp); 3156 } 3157 3158 ASSERT(rootpp == pp); 3159 if (pglcks != 0) { 3160 mutex_enter(&freemem_lock); 3161 availrmem += pglcks; 3162 mutex_exit(&freemem_lock); 3163 } 3164 3165 page_list_add_pages(rootpp, 0); 3166 page_create_putback(pgcnt); 3167 } 3168 3169 /* 3170 * Similar to page_destroy(), but destroys pages which are 3171 * locked and known to be on the page free list. Since 3172 * the page is known to be free and locked, no one can access 3173 * it. 3174 * 3175 * Also, the number of free pages does not change. 3176 */ 3177 void 3178 page_destroy_free(page_t *pp) 3179 { 3180 ASSERT(PAGE_EXCL(pp)); 3181 ASSERT(PP_ISFREE(pp)); 3182 ASSERT(pp->p_vnode); 3183 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3184 ASSERT(!hat_page_is_mapped(pp)); 3185 ASSERT(PP_ISAGED(pp) == 0); 3186 ASSERT(pp->p_szc == 0); 3187 3188 VM_STAT_ADD(pagecnt.pc_destroy_free); 3189 page_list_sub(pp, PG_CACHE_LIST); 3190 3191 page_hashout(pp, NULL); 3192 ASSERT(pp->p_vnode == NULL); 3193 ASSERT(pp->p_offset == (u_offset_t)-1); 3194 ASSERT(pp->p_hash == NULL); 3195 3196 PP_SETAGED(pp); 3197 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3198 page_unlock(pp); 3199 3200 mutex_enter(&new_freemem_lock); 3201 if (freemem_wait) { 3202 cv_signal(&freemem_cv); 3203 } 3204 mutex_exit(&new_freemem_lock); 3205 } 3206 3207 /* 3208 * Rename the page "opp" to have an identity specified 3209 * by [vp, off]. If a page already exists with this name 3210 * it is locked and destroyed. Note that the page's 3211 * translations are not unloaded during the rename. 3212 * 3213 * This routine is used by the anon layer to "steal" the 3214 * original page and is not unlike destroying a page and 3215 * creating a new page using the same page frame. 3216 * 3217 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3218 * caller 2 tries to rename B to A. 3219 */ 3220 void 3221 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3222 { 3223 page_t *pp; 3224 int olckcnt = 0; 3225 int ocowcnt = 0; 3226 kmutex_t *phm; 3227 ulong_t index; 3228 3229 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3230 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3231 ASSERT(PP_ISFREE(opp) == 0); 3232 3233 VM_STAT_ADD(page_rename_count); 3234 3235 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3236 "page rename:pp %p vp %p off %llx", opp, vp, off); 3237 3238 /* 3239 * CacheFS may call page_rename for a large NFS page 3240 * when both CacheFS and NFS mount points are used 3241 * by applications. Demote this large page before 3242 * renaming it, to ensure that there are no "partial" 3243 * large pages left lying around. 3244 */ 3245 if (opp->p_szc != 0) { 3246 vnode_t *ovp = opp->p_vnode; 3247 ASSERT(ovp != NULL); 3248 ASSERT(!IS_SWAPFSVP(ovp)); 3249 ASSERT(!VN_ISKAS(ovp)); 3250 page_demote_vp_pages(opp); 3251 ASSERT(opp->p_szc == 0); 3252 } 3253 3254 page_hashout(opp, NULL); 3255 PP_CLRAGED(opp); 3256 3257 /* 3258 * Acquire the appropriate page hash lock, since 3259 * we're going to rename the page. 3260 */ 3261 index = PAGE_HASH_FUNC(vp, off); 3262 phm = PAGE_HASH_MUTEX(index); 3263 mutex_enter(phm); 3264 top: 3265 /* 3266 * Look for an existing page with this name and destroy it if found. 3267 * By holding the page hash lock all the way to the page_hashin() 3268 * call, we are assured that no page can be created with this 3269 * identity. In the case when the phm lock is dropped to undo any 3270 * hat layer mappings, the existing page is held with an "exclusive" 3271 * lock, again preventing another page from being created with 3272 * this identity. 3273 */ 3274 PAGE_HASH_SEARCH(index, pp, vp, off); 3275 if (pp != NULL) { 3276 VM_STAT_ADD(page_rename_exists); 3277 3278 /* 3279 * As it turns out, this is one of only two places where 3280 * page_lock() needs to hold the passed in lock in the 3281 * successful case. In all of the others, the lock could 3282 * be dropped as soon as the attempt is made to lock 3283 * the page. It is tempting to add yet another arguement, 3284 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3285 */ 3286 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3287 /* 3288 * Went to sleep because the page could not 3289 * be locked. We were woken up when the page 3290 * was unlocked, or when the page was destroyed. 3291 * In either case, `phm' was dropped while we 3292 * slept. Hence we should not just roar through 3293 * this loop. 3294 */ 3295 goto top; 3296 } 3297 3298 /* 3299 * If an existing page is a large page, then demote 3300 * it to ensure that no "partial" large pages are 3301 * "created" after page_rename. An existing page 3302 * can be a CacheFS page, and can't belong to swapfs. 3303 */ 3304 if (hat_page_is_mapped(pp)) { 3305 /* 3306 * Unload translations. Since we hold the 3307 * exclusive lock on this page, the page 3308 * can not be changed while we drop phm. 3309 * This is also not a lock protocol violation, 3310 * but rather the proper way to do things. 3311 */ 3312 mutex_exit(phm); 3313 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3314 if (pp->p_szc != 0) { 3315 ASSERT(!IS_SWAPFSVP(vp)); 3316 ASSERT(!VN_ISKAS(vp)); 3317 page_demote_vp_pages(pp); 3318 ASSERT(pp->p_szc == 0); 3319 } 3320 mutex_enter(phm); 3321 } else if (pp->p_szc != 0) { 3322 ASSERT(!IS_SWAPFSVP(vp)); 3323 ASSERT(!VN_ISKAS(vp)); 3324 mutex_exit(phm); 3325 page_demote_vp_pages(pp); 3326 ASSERT(pp->p_szc == 0); 3327 mutex_enter(phm); 3328 } 3329 page_hashout(pp, phm); 3330 } 3331 /* 3332 * Hash in the page with the new identity. 3333 */ 3334 if (!page_hashin(opp, vp, off, phm)) { 3335 /* 3336 * We were holding phm while we searched for [vp, off] 3337 * and only dropped phm if we found and locked a page. 3338 * If we can't create this page now, then some thing 3339 * is really broken. 3340 */ 3341 panic("page_rename: Can't hash in page: %p", (void *)pp); 3342 /*NOTREACHED*/ 3343 } 3344 3345 ASSERT(MUTEX_HELD(phm)); 3346 mutex_exit(phm); 3347 3348 /* 3349 * Now that we have dropped phm, lets get around to finishing up 3350 * with pp. 3351 */ 3352 if (pp != NULL) { 3353 ASSERT(!hat_page_is_mapped(pp)); 3354 /* for now large pages should not end up here */ 3355 ASSERT(pp->p_szc == 0); 3356 /* 3357 * Save the locks for transfer to the new page and then 3358 * clear them so page_free doesn't think they're important. 3359 * The page_struct_lock need not be acquired for lckcnt and 3360 * cowcnt since the page has an "exclusive" lock. 3361 */ 3362 olckcnt = pp->p_lckcnt; 3363 ocowcnt = pp->p_cowcnt; 3364 pp->p_lckcnt = pp->p_cowcnt = 0; 3365 3366 /* 3367 * Put the page on the "free" list after we drop 3368 * the lock. The less work under the lock the better. 3369 */ 3370 /*LINTED: constant in conditional context*/ 3371 VN_DISPOSE(pp, B_FREE, 0, kcred); 3372 } 3373 3374 /* 3375 * Transfer the lock count from the old page (if any). 3376 * The page_struct_lock need not be acquired for lckcnt and 3377 * cowcnt since the page has an "exclusive" lock. 3378 */ 3379 opp->p_lckcnt += olckcnt; 3380 opp->p_cowcnt += ocowcnt; 3381 } 3382 3383 /* 3384 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3385 * 3386 * Pages are normally inserted at the start of a vnode's v_pages list. 3387 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3388 * This can happen when a modified page is relocated for DR. 3389 * 3390 * Returns 1 on success and 0 on failure. 3391 */ 3392 static int 3393 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3394 { 3395 page_t **listp; 3396 page_t *tp; 3397 ulong_t index; 3398 3399 ASSERT(PAGE_EXCL(pp)); 3400 ASSERT(vp != NULL); 3401 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3402 3403 /* 3404 * Be sure to set these up before the page is inserted on the hash 3405 * list. As soon as the page is placed on the list some other 3406 * thread might get confused and wonder how this page could 3407 * possibly hash to this list. 3408 */ 3409 pp->p_vnode = vp; 3410 pp->p_offset = offset; 3411 3412 /* 3413 * record if this page is on a swap vnode 3414 */ 3415 if ((vp->v_flag & VISSWAP) != 0) 3416 PP_SETSWAP(pp); 3417 3418 index = PAGE_HASH_FUNC(vp, offset); 3419 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3420 listp = &page_hash[index]; 3421 3422 /* 3423 * If this page is already hashed in, fail this attempt to add it. 3424 */ 3425 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3426 if (tp->p_vnode == vp && tp->p_offset == offset) { 3427 pp->p_vnode = NULL; 3428 pp->p_offset = (u_offset_t)(-1); 3429 return (0); 3430 } 3431 } 3432 pp->p_hash = *listp; 3433 *listp = pp; 3434 3435 /* 3436 * Add the page to the vnode's list of pages 3437 */ 3438 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3439 listp = &vp->v_pages->p_vpprev->p_vpnext; 3440 else 3441 listp = &vp->v_pages; 3442 3443 page_vpadd(listp, pp); 3444 3445 return (1); 3446 } 3447 3448 /* 3449 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3450 * 3451 * Returns 1 on success and 0 on failure. 3452 * If hold is passed in, it is not dropped. 3453 */ 3454 int 3455 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3456 { 3457 kmutex_t *phm = NULL; 3458 kmutex_t *vphm; 3459 int rc; 3460 3461 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3462 ASSERT(pp->p_fsdata == 0 || panicstr); 3463 3464 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3465 "page_hashin:pp %p vp %p offset %llx", 3466 pp, vp, offset); 3467 3468 VM_STAT_ADD(hashin_count); 3469 3470 if (hold != NULL) 3471 phm = hold; 3472 else { 3473 VM_STAT_ADD(hashin_not_held); 3474 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3475 mutex_enter(phm); 3476 } 3477 3478 vphm = page_vnode_mutex(vp); 3479 mutex_enter(vphm); 3480 rc = page_do_hashin(pp, vp, offset); 3481 mutex_exit(vphm); 3482 if (hold == NULL) 3483 mutex_exit(phm); 3484 if (rc == 0) 3485 VM_STAT_ADD(hashin_already); 3486 return (rc); 3487 } 3488 3489 /* 3490 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3491 * All mutexes must be held 3492 */ 3493 static void 3494 page_do_hashout(page_t *pp) 3495 { 3496 page_t **hpp; 3497 page_t *hp; 3498 vnode_t *vp = pp->p_vnode; 3499 3500 ASSERT(vp != NULL); 3501 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3502 3503 /* 3504 * First, take pp off of its hash chain. 3505 */ 3506 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3507 3508 for (;;) { 3509 hp = *hpp; 3510 if (hp == pp) 3511 break; 3512 if (hp == NULL) { 3513 panic("page_do_hashout"); 3514 /*NOTREACHED*/ 3515 } 3516 hpp = &hp->p_hash; 3517 } 3518 *hpp = pp->p_hash; 3519 3520 /* 3521 * Now remove it from its associated vnode. 3522 */ 3523 if (vp->v_pages) 3524 page_vpsub(&vp->v_pages, pp); 3525 3526 pp->p_hash = NULL; 3527 page_clr_all_props(pp); 3528 PP_CLRSWAP(pp); 3529 pp->p_vnode = NULL; 3530 pp->p_offset = (u_offset_t)-1; 3531 pp->p_fsdata = 0; 3532 } 3533 3534 /* 3535 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3536 * 3537 * When `phm' is non-NULL it contains the address of the mutex protecting the 3538 * hash list pp is on. It is not dropped. 3539 */ 3540 void 3541 page_hashout(page_t *pp, kmutex_t *phm) 3542 { 3543 vnode_t *vp; 3544 ulong_t index; 3545 kmutex_t *nphm; 3546 kmutex_t *vphm; 3547 kmutex_t *sep; 3548 3549 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3550 ASSERT(pp->p_vnode != NULL); 3551 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3552 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3553 3554 vp = pp->p_vnode; 3555 3556 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3557 "page_hashout:pp %p vp %p", pp, vp); 3558 3559 /* Kernel probe */ 3560 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */, 3561 tnf_opaque, vnode, vp, 3562 tnf_offset, offset, pp->p_offset); 3563 3564 /* 3565 * 3566 */ 3567 VM_STAT_ADD(hashout_count); 3568 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3569 if (phm == NULL) { 3570 VM_STAT_ADD(hashout_not_held); 3571 nphm = PAGE_HASH_MUTEX(index); 3572 mutex_enter(nphm); 3573 } 3574 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3575 3576 3577 /* 3578 * grab page vnode mutex and remove it... 3579 */ 3580 vphm = page_vnode_mutex(vp); 3581 mutex_enter(vphm); 3582 3583 page_do_hashout(pp); 3584 3585 mutex_exit(vphm); 3586 if (phm == NULL) 3587 mutex_exit(nphm); 3588 3589 /* 3590 * Wake up processes waiting for this page. The page's 3591 * identity has been changed, and is probably not the 3592 * desired page any longer. 3593 */ 3594 sep = page_se_mutex(pp); 3595 mutex_enter(sep); 3596 pp->p_selock &= ~SE_EWANTED; 3597 if (CV_HAS_WAITERS(&pp->p_cv)) 3598 cv_broadcast(&pp->p_cv); 3599 mutex_exit(sep); 3600 } 3601 3602 /* 3603 * Add the page to the front of a linked list of pages 3604 * using the p_next & p_prev pointers for the list. 3605 * The caller is responsible for protecting the list pointers. 3606 */ 3607 void 3608 page_add(page_t **ppp, page_t *pp) 3609 { 3610 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3611 3612 page_add_common(ppp, pp); 3613 } 3614 3615 3616 3617 /* 3618 * Common code for page_add() and mach_page_add() 3619 */ 3620 void 3621 page_add_common(page_t **ppp, page_t *pp) 3622 { 3623 if (*ppp == NULL) { 3624 pp->p_next = pp->p_prev = pp; 3625 } else { 3626 pp->p_next = *ppp; 3627 pp->p_prev = (*ppp)->p_prev; 3628 (*ppp)->p_prev = pp; 3629 pp->p_prev->p_next = pp; 3630 } 3631 *ppp = pp; 3632 } 3633 3634 3635 /* 3636 * Remove this page from a linked list of pages 3637 * using the p_next & p_prev pointers for the list. 3638 * 3639 * The caller is responsible for protecting the list pointers. 3640 */ 3641 void 3642 page_sub(page_t **ppp, page_t *pp) 3643 { 3644 ASSERT((PP_ISFREE(pp)) ? 1 : 3645 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3646 3647 if (*ppp == NULL || pp == NULL) { 3648 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3649 (void *)pp, (void *)(*ppp)); 3650 /*NOTREACHED*/ 3651 } 3652 3653 page_sub_common(ppp, pp); 3654 } 3655 3656 3657 /* 3658 * Common code for page_sub() and mach_page_sub() 3659 */ 3660 void 3661 page_sub_common(page_t **ppp, page_t *pp) 3662 { 3663 if (*ppp == pp) 3664 *ppp = pp->p_next; /* go to next page */ 3665 3666 if (*ppp == pp) 3667 *ppp = NULL; /* page list is gone */ 3668 else { 3669 pp->p_prev->p_next = pp->p_next; 3670 pp->p_next->p_prev = pp->p_prev; 3671 } 3672 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3673 } 3674 3675 3676 /* 3677 * Break page list cppp into two lists with npages in the first list. 3678 * The tail is returned in nppp. 3679 */ 3680 void 3681 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3682 { 3683 page_t *s1pp = *oppp; 3684 page_t *s2pp; 3685 page_t *e1pp, *e2pp; 3686 long n = 0; 3687 3688 if (s1pp == NULL) { 3689 *nppp = NULL; 3690 return; 3691 } 3692 if (npages == 0) { 3693 *nppp = s1pp; 3694 *oppp = NULL; 3695 return; 3696 } 3697 for (n = 0, s2pp = *oppp; n < npages; n++) { 3698 s2pp = s2pp->p_next; 3699 } 3700 /* Fix head and tail of new lists */ 3701 e1pp = s2pp->p_prev; 3702 e2pp = s1pp->p_prev; 3703 s1pp->p_prev = e1pp; 3704 e1pp->p_next = s1pp; 3705 s2pp->p_prev = e2pp; 3706 e2pp->p_next = s2pp; 3707 3708 /* second list empty */ 3709 if (s2pp == s1pp) { 3710 *oppp = s1pp; 3711 *nppp = NULL; 3712 } else { 3713 *oppp = s1pp; 3714 *nppp = s2pp; 3715 } 3716 } 3717 3718 /* 3719 * Concatenate page list nppp onto the end of list ppp. 3720 */ 3721 void 3722 page_list_concat(page_t **ppp, page_t **nppp) 3723 { 3724 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3725 3726 if (*nppp == NULL) { 3727 return; 3728 } 3729 if (*ppp == NULL) { 3730 *ppp = *nppp; 3731 return; 3732 } 3733 s1pp = *ppp; 3734 e1pp = s1pp->p_prev; 3735 s2pp = *nppp; 3736 e2pp = s2pp->p_prev; 3737 s1pp->p_prev = e2pp; 3738 e2pp->p_next = s1pp; 3739 e1pp->p_next = s2pp; 3740 s2pp->p_prev = e1pp; 3741 } 3742 3743 /* 3744 * return the next page in the page list 3745 */ 3746 page_t * 3747 page_list_next(page_t *pp) 3748 { 3749 return (pp->p_next); 3750 } 3751 3752 3753 /* 3754 * Add the page to the front of the linked list of pages 3755 * using p_vpnext/p_vpprev pointers for the list. 3756 * 3757 * The caller is responsible for protecting the lists. 3758 */ 3759 void 3760 page_vpadd(page_t **ppp, page_t *pp) 3761 { 3762 if (*ppp == NULL) { 3763 pp->p_vpnext = pp->p_vpprev = pp; 3764 } else { 3765 pp->p_vpnext = *ppp; 3766 pp->p_vpprev = (*ppp)->p_vpprev; 3767 (*ppp)->p_vpprev = pp; 3768 pp->p_vpprev->p_vpnext = pp; 3769 } 3770 *ppp = pp; 3771 } 3772 3773 /* 3774 * Remove this page from the linked list of pages 3775 * using p_vpnext/p_vpprev pointers for the list. 3776 * 3777 * The caller is responsible for protecting the lists. 3778 */ 3779 void 3780 page_vpsub(page_t **ppp, page_t *pp) 3781 { 3782 if (*ppp == NULL || pp == NULL) { 3783 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3784 (void *)pp, (void *)(*ppp)); 3785 /*NOTREACHED*/ 3786 } 3787 3788 if (*ppp == pp) 3789 *ppp = pp->p_vpnext; /* go to next page */ 3790 3791 if (*ppp == pp) 3792 *ppp = NULL; /* page list is gone */ 3793 else { 3794 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3795 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3796 } 3797 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3798 } 3799 3800 /* 3801 * Lock a physical page into memory "long term". Used to support "lock 3802 * in memory" functions. Accepts the page to be locked, and a cow variable 3803 * to indicate whether a the lock will travel to the new page during 3804 * a potential copy-on-write. 3805 */ 3806 int 3807 page_pp_lock( 3808 page_t *pp, /* page to be locked */ 3809 int cow, /* cow lock */ 3810 int kernel) /* must succeed -- ignore checking */ 3811 { 3812 int r = 0; /* result -- assume failure */ 3813 3814 ASSERT(PAGE_LOCKED(pp)); 3815 3816 page_struct_lock(pp); 3817 /* 3818 * Acquire the "freemem_lock" for availrmem. 3819 */ 3820 if (cow) { 3821 mutex_enter(&freemem_lock); 3822 if ((availrmem > pages_pp_maximum) && 3823 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3824 availrmem--; 3825 pages_locked++; 3826 mutex_exit(&freemem_lock); 3827 r = 1; 3828 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3829 cmn_err(CE_WARN, 3830 "COW lock limit reached on pfn 0x%lx", 3831 page_pptonum(pp)); 3832 } 3833 } else 3834 mutex_exit(&freemem_lock); 3835 } else { 3836 if (pp->p_lckcnt) { 3837 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3838 r = 1; 3839 if (++pp->p_lckcnt == 3840 (ushort_t)PAGE_LOCK_MAXIMUM) { 3841 cmn_err(CE_WARN, "Page lock limit " 3842 "reached on pfn 0x%lx", 3843 page_pptonum(pp)); 3844 } 3845 } 3846 } else { 3847 if (kernel) { 3848 /* availrmem accounting done by caller */ 3849 ++pp->p_lckcnt; 3850 r = 1; 3851 } else { 3852 mutex_enter(&freemem_lock); 3853 if (availrmem > pages_pp_maximum) { 3854 availrmem--; 3855 pages_locked++; 3856 ++pp->p_lckcnt; 3857 r = 1; 3858 } 3859 mutex_exit(&freemem_lock); 3860 } 3861 } 3862 } 3863 page_struct_unlock(pp); 3864 return (r); 3865 } 3866 3867 /* 3868 * Decommit a lock on a physical page frame. Account for cow locks if 3869 * appropriate. 3870 */ 3871 void 3872 page_pp_unlock( 3873 page_t *pp, /* page to be unlocked */ 3874 int cow, /* expect cow lock */ 3875 int kernel) /* this was a kernel lock */ 3876 { 3877 ASSERT(PAGE_LOCKED(pp)); 3878 3879 page_struct_lock(pp); 3880 /* 3881 * Acquire the "freemem_lock" for availrmem. 3882 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3883 * could be called to unlock even if nothing is locked. This could 3884 * happen if locked file pages were truncated (removing the lock) 3885 * and the file was grown again and new pages faulted in; the new 3886 * pages are unlocked but the segment still thinks they're locked. 3887 */ 3888 if (cow) { 3889 if (pp->p_cowcnt) { 3890 mutex_enter(&freemem_lock); 3891 pp->p_cowcnt--; 3892 availrmem++; 3893 pages_locked--; 3894 mutex_exit(&freemem_lock); 3895 } 3896 } else { 3897 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3898 if (!kernel) { 3899 mutex_enter(&freemem_lock); 3900 availrmem++; 3901 pages_locked--; 3902 mutex_exit(&freemem_lock); 3903 } 3904 } 3905 } 3906 page_struct_unlock(pp); 3907 } 3908 3909 /* 3910 * This routine reserves availrmem for npages; 3911 * flags: KM_NOSLEEP or KM_SLEEP 3912 * returns 1 on success or 0 on failure 3913 */ 3914 int 3915 page_resv(pgcnt_t npages, uint_t flags) 3916 { 3917 mutex_enter(&freemem_lock); 3918 while (availrmem < tune.t_minarmem + npages) { 3919 if (flags & KM_NOSLEEP) { 3920 mutex_exit(&freemem_lock); 3921 return (0); 3922 } 3923 mutex_exit(&freemem_lock); 3924 page_needfree(npages); 3925 kmem_reap(); 3926 delay(hz >> 2); 3927 page_needfree(-(spgcnt_t)npages); 3928 mutex_enter(&freemem_lock); 3929 } 3930 availrmem -= npages; 3931 mutex_exit(&freemem_lock); 3932 return (1); 3933 } 3934 3935 /* 3936 * This routine unreserves availrmem for npages; 3937 */ 3938 void 3939 page_unresv(pgcnt_t npages) 3940 { 3941 mutex_enter(&freemem_lock); 3942 availrmem += npages; 3943 mutex_exit(&freemem_lock); 3944 } 3945 3946 /* 3947 * See Statement at the beginning of segvn_lockop() regarding 3948 * the way we handle cowcnts and lckcnts. 3949 * 3950 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 3951 * that breaks COW has PROT_WRITE. 3952 * 3953 * Note that, we may also break COW in case we are softlocking 3954 * on read access during physio; 3955 * in this softlock case, the vpage may not have PROT_WRITE. 3956 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 3957 * if the vpage doesn't have PROT_WRITE. 3958 * 3959 * This routine is never called if we are stealing a page 3960 * in anon_private. 3961 * 3962 * The caller subtracted from availrmem for read only mapping. 3963 * if lckcnt is 1 increment availrmem. 3964 */ 3965 void 3966 page_pp_useclaim( 3967 page_t *opp, /* original page frame losing lock */ 3968 page_t *npp, /* new page frame gaining lock */ 3969 uint_t write_perm) /* set if vpage has PROT_WRITE */ 3970 { 3971 int payback = 0; 3972 3973 ASSERT(PAGE_LOCKED(opp)); 3974 ASSERT(PAGE_LOCKED(npp)); 3975 3976 page_struct_lock(opp); 3977 3978 ASSERT(npp->p_cowcnt == 0); 3979 ASSERT(npp->p_lckcnt == 0); 3980 3981 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 3982 if ((write_perm && opp->p_cowcnt != 0) || 3983 (!write_perm && opp->p_lckcnt != 0)) { 3984 3985 if (write_perm) { 3986 npp->p_cowcnt++; 3987 ASSERT(opp->p_cowcnt != 0); 3988 opp->p_cowcnt--; 3989 } else { 3990 3991 ASSERT(opp->p_lckcnt != 0); 3992 3993 /* 3994 * We didn't need availrmem decremented if p_lckcnt on 3995 * original page is 1. Here, we are unlocking 3996 * read-only copy belonging to original page and 3997 * are locking a copy belonging to new page. 3998 */ 3999 if (opp->p_lckcnt == 1) 4000 payback = 1; 4001 4002 npp->p_lckcnt++; 4003 opp->p_lckcnt--; 4004 } 4005 } 4006 if (payback) { 4007 mutex_enter(&freemem_lock); 4008 availrmem++; 4009 pages_useclaim--; 4010 mutex_exit(&freemem_lock); 4011 } 4012 page_struct_unlock(opp); 4013 } 4014 4015 /* 4016 * Simple claim adjust functions -- used to support changes in 4017 * claims due to changes in access permissions. Used by segvn_setprot(). 4018 */ 4019 int 4020 page_addclaim(page_t *pp) 4021 { 4022 int r = 0; /* result */ 4023 4024 ASSERT(PAGE_LOCKED(pp)); 4025 4026 page_struct_lock(pp); 4027 ASSERT(pp->p_lckcnt != 0); 4028 4029 if (pp->p_lckcnt == 1) { 4030 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4031 --pp->p_lckcnt; 4032 r = 1; 4033 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4034 cmn_err(CE_WARN, 4035 "COW lock limit reached on pfn 0x%lx", 4036 page_pptonum(pp)); 4037 } 4038 } 4039 } else { 4040 mutex_enter(&freemem_lock); 4041 if ((availrmem > pages_pp_maximum) && 4042 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4043 --availrmem; 4044 ++pages_claimed; 4045 mutex_exit(&freemem_lock); 4046 --pp->p_lckcnt; 4047 r = 1; 4048 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4049 cmn_err(CE_WARN, 4050 "COW lock limit reached on pfn 0x%lx", 4051 page_pptonum(pp)); 4052 } 4053 } else 4054 mutex_exit(&freemem_lock); 4055 } 4056 page_struct_unlock(pp); 4057 return (r); 4058 } 4059 4060 int 4061 page_subclaim(page_t *pp) 4062 { 4063 int r = 0; 4064 4065 ASSERT(PAGE_LOCKED(pp)); 4066 4067 page_struct_lock(pp); 4068 ASSERT(pp->p_cowcnt != 0); 4069 4070 if (pp->p_lckcnt) { 4071 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4072 r = 1; 4073 /* 4074 * for availrmem 4075 */ 4076 mutex_enter(&freemem_lock); 4077 availrmem++; 4078 pages_claimed--; 4079 mutex_exit(&freemem_lock); 4080 4081 pp->p_cowcnt--; 4082 4083 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4084 cmn_err(CE_WARN, 4085 "Page lock limit reached on pfn 0x%lx", 4086 page_pptonum(pp)); 4087 } 4088 } 4089 } else { 4090 r = 1; 4091 pp->p_cowcnt--; 4092 pp->p_lckcnt++; 4093 } 4094 page_struct_unlock(pp); 4095 return (r); 4096 } 4097 4098 int 4099 page_addclaim_pages(page_t **ppa) 4100 { 4101 4102 pgcnt_t lckpgs = 0, pg_idx; 4103 4104 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4105 4106 mutex_enter(&page_llock); 4107 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4108 4109 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4110 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4111 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4112 mutex_exit(&page_llock); 4113 return (0); 4114 } 4115 if (ppa[pg_idx]->p_lckcnt > 1) 4116 lckpgs++; 4117 } 4118 4119 if (lckpgs != 0) { 4120 mutex_enter(&freemem_lock); 4121 if (availrmem >= pages_pp_maximum + lckpgs) { 4122 availrmem -= lckpgs; 4123 pages_claimed += lckpgs; 4124 } else { 4125 mutex_exit(&freemem_lock); 4126 mutex_exit(&page_llock); 4127 return (0); 4128 } 4129 mutex_exit(&freemem_lock); 4130 } 4131 4132 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4133 ppa[pg_idx]->p_lckcnt--; 4134 ppa[pg_idx]->p_cowcnt++; 4135 } 4136 mutex_exit(&page_llock); 4137 return (1); 4138 } 4139 4140 int 4141 page_subclaim_pages(page_t **ppa) 4142 { 4143 pgcnt_t ulckpgs = 0, pg_idx; 4144 4145 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4146 4147 mutex_enter(&page_llock); 4148 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4149 4150 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4151 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4152 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4153 mutex_exit(&page_llock); 4154 return (0); 4155 } 4156 if (ppa[pg_idx]->p_lckcnt != 0) 4157 ulckpgs++; 4158 } 4159 4160 if (ulckpgs != 0) { 4161 mutex_enter(&freemem_lock); 4162 availrmem += ulckpgs; 4163 pages_claimed -= ulckpgs; 4164 mutex_exit(&freemem_lock); 4165 } 4166 4167 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4168 ppa[pg_idx]->p_cowcnt--; 4169 ppa[pg_idx]->p_lckcnt++; 4170 4171 } 4172 mutex_exit(&page_llock); 4173 return (1); 4174 } 4175 4176 page_t * 4177 page_numtopp(pfn_t pfnum, se_t se) 4178 { 4179 page_t *pp; 4180 4181 retry: 4182 pp = page_numtopp_nolock(pfnum); 4183 if (pp == NULL) { 4184 return ((page_t *)NULL); 4185 } 4186 4187 /* 4188 * Acquire the appropriate lock on the page. 4189 */ 4190 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4191 if (page_pptonum(pp) != pfnum) 4192 goto retry; 4193 continue; 4194 } 4195 4196 if (page_pptonum(pp) != pfnum) { 4197 page_unlock(pp); 4198 goto retry; 4199 } 4200 4201 return (pp); 4202 } 4203 4204 page_t * 4205 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4206 { 4207 page_t *pp; 4208 4209 retry: 4210 pp = page_numtopp_nolock(pfnum); 4211 if (pp == NULL) { 4212 return ((page_t *)NULL); 4213 } 4214 4215 /* 4216 * Acquire the appropriate lock on the page. 4217 */ 4218 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4219 if (page_pptonum(pp) != pfnum) 4220 goto retry; 4221 continue; 4222 } 4223 4224 if (page_pptonum(pp) != pfnum) { 4225 page_unlock(pp); 4226 goto retry; 4227 } 4228 4229 return (pp); 4230 } 4231 4232 /* 4233 * This routine is like page_numtopp, but will only return page structs 4234 * for pages which are ok for loading into hardware using the page struct. 4235 */ 4236 page_t * 4237 page_numtopp_nowait(pfn_t pfnum, se_t se) 4238 { 4239 page_t *pp; 4240 4241 retry: 4242 pp = page_numtopp_nolock(pfnum); 4243 if (pp == NULL) { 4244 return ((page_t *)NULL); 4245 } 4246 4247 /* 4248 * Try to acquire the appropriate lock on the page. 4249 */ 4250 if (PP_ISFREE(pp)) 4251 pp = NULL; 4252 else { 4253 if (!page_trylock(pp, se)) 4254 pp = NULL; 4255 else { 4256 if (page_pptonum(pp) != pfnum) { 4257 page_unlock(pp); 4258 goto retry; 4259 } 4260 if (PP_ISFREE(pp)) { 4261 page_unlock(pp); 4262 pp = NULL; 4263 } 4264 } 4265 } 4266 return (pp); 4267 } 4268 4269 #define SYNC_PROGRESS_NPAGES 1000 4270 4271 /* 4272 * Returns a count of dirty pages that are in the process 4273 * of being written out. If 'cleanit' is set, try to push the page. 4274 */ 4275 pgcnt_t 4276 page_busy(int cleanit) 4277 { 4278 page_t *page0 = page_first(); 4279 page_t *pp = page0; 4280 pgcnt_t nppbusy = 0; 4281 int counter = 0; 4282 u_offset_t off; 4283 4284 do { 4285 vnode_t *vp = pp->p_vnode; 4286 4287 /* 4288 * Reset the sync timeout. The page list is very long 4289 * on large memory systems. 4290 */ 4291 if (++counter > SYNC_PROGRESS_NPAGES) { 4292 counter = 0; 4293 vfs_syncprogress(); 4294 } 4295 4296 /* 4297 * A page is a candidate for syncing if it is: 4298 * 4299 * (a) On neither the freelist nor the cachelist 4300 * (b) Hashed onto a vnode 4301 * (c) Not a kernel page 4302 * (d) Dirty 4303 * (e) Not part of a swapfile 4304 * (f) a page which belongs to a real vnode; eg has a non-null 4305 * v_vfsp pointer. 4306 * (g) Backed by a filesystem which doesn't have a 4307 * stubbed-out sync operation 4308 */ 4309 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) && 4310 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4311 vfs_can_sync(vp->v_vfsp)) { 4312 nppbusy++; 4313 4314 if (!cleanit) 4315 continue; 4316 if (!page_trylock(pp, SE_EXCL)) 4317 continue; 4318 4319 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4320 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4321 !(hat_pagesync(pp, 4322 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4323 page_unlock(pp); 4324 continue; 4325 } 4326 off = pp->p_offset; 4327 VN_HOLD(vp); 4328 page_unlock(pp); 4329 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4330 B_ASYNC | B_FREE, kcred, NULL); 4331 VN_RELE(vp); 4332 } 4333 } while ((pp = page_next(pp)) != page0); 4334 4335 vfs_syncprogress(); 4336 return (nppbusy); 4337 } 4338 4339 void page_invalidate_pages(void); 4340 4341 /* 4342 * callback handler to vm sub-system 4343 * 4344 * callers make sure no recursive entries to this func. 4345 */ 4346 /*ARGSUSED*/ 4347 boolean_t 4348 callb_vm_cpr(void *arg, int code) 4349 { 4350 if (code == CB_CODE_CPR_CHKPT) 4351 page_invalidate_pages(); 4352 return (B_TRUE); 4353 } 4354 4355 /* 4356 * Invalidate all pages of the system. 4357 * It shouldn't be called until all user page activities are all stopped. 4358 */ 4359 void 4360 page_invalidate_pages() 4361 { 4362 page_t *pp; 4363 page_t *page0; 4364 pgcnt_t nbusypages; 4365 int retry = 0; 4366 const int MAXRETRIES = 4; 4367 top: 4368 /* 4369 * Flush dirty pages and destroy the clean ones. 4370 */ 4371 nbusypages = 0; 4372 4373 pp = page0 = page_first(); 4374 do { 4375 struct vnode *vp; 4376 u_offset_t offset; 4377 int mod; 4378 4379 /* 4380 * skip the page if it has no vnode or the page associated 4381 * with the kernel vnode or prom allocated kernel mem. 4382 */ 4383 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp)) 4384 continue; 4385 4386 /* 4387 * skip the page which is already free invalidated. 4388 */ 4389 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4390 continue; 4391 4392 /* 4393 * skip pages that are already locked or can't be "exclusively" 4394 * locked or are already free. After we lock the page, check 4395 * the free and age bits again to be sure it's not destroyed 4396 * yet. 4397 * To achieve max. parallelization, we use page_trylock instead 4398 * of page_lock so that we don't get block on individual pages 4399 * while we have thousands of other pages to process. 4400 */ 4401 if (!page_trylock(pp, SE_EXCL)) { 4402 nbusypages++; 4403 continue; 4404 } else if (PP_ISFREE(pp)) { 4405 if (!PP_ISAGED(pp)) { 4406 page_destroy_free(pp); 4407 } else { 4408 page_unlock(pp); 4409 } 4410 continue; 4411 } 4412 /* 4413 * Is this page involved in some I/O? shared? 4414 * 4415 * The page_struct_lock need not be acquired to 4416 * examine these fields since the page has an 4417 * "exclusive" lock. 4418 */ 4419 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4420 page_unlock(pp); 4421 continue; 4422 } 4423 4424 if (vp->v_type == VCHR) { 4425 panic("vp->v_type == VCHR"); 4426 /*NOTREACHED*/ 4427 } 4428 4429 if (!page_try_demote_pages(pp)) { 4430 page_unlock(pp); 4431 continue; 4432 } 4433 4434 /* 4435 * Check the modified bit. Leave the bits alone in hardware 4436 * (they will be modified if we do the putpage). 4437 */ 4438 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4439 & P_MOD); 4440 if (mod) { 4441 offset = pp->p_offset; 4442 /* 4443 * Hold the vnode before releasing the page lock 4444 * to prevent it from being freed and re-used by 4445 * some other thread. 4446 */ 4447 VN_HOLD(vp); 4448 page_unlock(pp); 4449 /* 4450 * No error return is checked here. Callers such as 4451 * cpr deals with the dirty pages at the dump time 4452 * if this putpage fails. 4453 */ 4454 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4455 kcred, NULL); 4456 VN_RELE(vp); 4457 } else { 4458 /*LINTED: constant in conditional context*/ 4459 VN_DISPOSE(pp, B_INVAL, 0, kcred); 4460 } 4461 } while ((pp = page_next(pp)) != page0); 4462 if (nbusypages && retry++ < MAXRETRIES) { 4463 delay(1); 4464 goto top; 4465 } 4466 } 4467 4468 /* 4469 * Replace the page "old" with the page "new" on the page hash and vnode lists 4470 * 4471 * the replacement must be done in place, ie the equivalent sequence: 4472 * 4473 * vp = old->p_vnode; 4474 * off = old->p_offset; 4475 * page_do_hashout(old) 4476 * page_do_hashin(new, vp, off) 4477 * 4478 * doesn't work, since 4479 * 1) if old is the only page on the vnode, the v_pages list has a window 4480 * where it looks empty. This will break file system assumptions. 4481 * and 4482 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4483 */ 4484 static void 4485 page_do_relocate_hash(page_t *new, page_t *old) 4486 { 4487 page_t **hash_list; 4488 vnode_t *vp = old->p_vnode; 4489 kmutex_t *sep; 4490 4491 ASSERT(PAGE_EXCL(old)); 4492 ASSERT(PAGE_EXCL(new)); 4493 ASSERT(vp != NULL); 4494 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4495 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4496 4497 /* 4498 * First find old page on the page hash list 4499 */ 4500 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4501 4502 for (;;) { 4503 if (*hash_list == old) 4504 break; 4505 if (*hash_list == NULL) { 4506 panic("page_do_hashout"); 4507 /*NOTREACHED*/ 4508 } 4509 hash_list = &(*hash_list)->p_hash; 4510 } 4511 4512 /* 4513 * update new and replace old with new on the page hash list 4514 */ 4515 new->p_vnode = old->p_vnode; 4516 new->p_offset = old->p_offset; 4517 new->p_hash = old->p_hash; 4518 *hash_list = new; 4519 4520 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4521 PP_SETSWAP(new); 4522 4523 /* 4524 * replace old with new on the vnode's page list 4525 */ 4526 if (old->p_vpnext == old) { 4527 new->p_vpnext = new; 4528 new->p_vpprev = new; 4529 } else { 4530 new->p_vpnext = old->p_vpnext; 4531 new->p_vpprev = old->p_vpprev; 4532 new->p_vpnext->p_vpprev = new; 4533 new->p_vpprev->p_vpnext = new; 4534 } 4535 if (vp->v_pages == old) 4536 vp->v_pages = new; 4537 4538 /* 4539 * clear out the old page 4540 */ 4541 old->p_hash = NULL; 4542 old->p_vpnext = NULL; 4543 old->p_vpprev = NULL; 4544 old->p_vnode = NULL; 4545 PP_CLRSWAP(old); 4546 old->p_offset = (u_offset_t)-1; 4547 page_clr_all_props(old); 4548 4549 /* 4550 * Wake up processes waiting for this page. The page's 4551 * identity has been changed, and is probably not the 4552 * desired page any longer. 4553 */ 4554 sep = page_se_mutex(old); 4555 mutex_enter(sep); 4556 old->p_selock &= ~SE_EWANTED; 4557 if (CV_HAS_WAITERS(&old->p_cv)) 4558 cv_broadcast(&old->p_cv); 4559 mutex_exit(sep); 4560 } 4561 4562 /* 4563 * This function moves the identity of page "pp_old" to page "pp_new". 4564 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4565 * and need not be hashed out from anywhere. 4566 */ 4567 void 4568 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4569 { 4570 vnode_t *vp = pp_old->p_vnode; 4571 u_offset_t off = pp_old->p_offset; 4572 kmutex_t *phm, *vphm; 4573 4574 /* 4575 * Rehash two pages 4576 */ 4577 ASSERT(PAGE_EXCL(pp_old)); 4578 ASSERT(PAGE_EXCL(pp_new)); 4579 ASSERT(vp != NULL); 4580 ASSERT(pp_new->p_vnode == NULL); 4581 4582 /* 4583 * hashout then hashin while holding the mutexes 4584 */ 4585 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4586 mutex_enter(phm); 4587 vphm = page_vnode_mutex(vp); 4588 mutex_enter(vphm); 4589 4590 page_do_relocate_hash(pp_new, pp_old); 4591 4592 /* The following comment preserved from page_flip(). */ 4593 pp_new->p_fsdata = pp_old->p_fsdata; 4594 pp_old->p_fsdata = 0; 4595 mutex_exit(vphm); 4596 mutex_exit(phm); 4597 4598 /* 4599 * The page_struct_lock need not be acquired for lckcnt and 4600 * cowcnt since the page has an "exclusive" lock. 4601 */ 4602 ASSERT(pp_new->p_lckcnt == 0); 4603 ASSERT(pp_new->p_cowcnt == 0); 4604 pp_new->p_lckcnt = pp_old->p_lckcnt; 4605 pp_new->p_cowcnt = pp_old->p_cowcnt; 4606 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4607 4608 } 4609 4610 /* 4611 * Helper routine used to lock all remaining members of a 4612 * large page. The caller is responsible for passing in a locked 4613 * pp. If pp is a large page, then it succeeds in locking all the 4614 * remaining constituent pages or it returns with only the 4615 * original page locked. 4616 * 4617 * Returns 1 on success, 0 on failure. 4618 * 4619 * If success is returned this routine guarantees p_szc for all constituent 4620 * pages of a large page pp belongs to can't change. To achieve this we 4621 * recheck szc of pp after locking all constituent pages and retry if szc 4622 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4623 * lock on one of constituent pages it can't be running after all constituent 4624 * pages are locked. hat_page_demote() with a lock on a constituent page 4625 * outside of this large page (i.e. pp belonged to a larger large page) is 4626 * already done with all constituent pages of pp since the root's p_szc is 4627 * changed last. Therefore no need to synchronize with hat_page_demote() that 4628 * locked a constituent page outside of pp's current large page. 4629 */ 4630 #ifdef DEBUG 4631 uint32_t gpg_trylock_mtbf = 0; 4632 #endif 4633 4634 int 4635 group_page_trylock(page_t *pp, se_t se) 4636 { 4637 page_t *tpp; 4638 pgcnt_t npgs, i, j; 4639 uint_t pszc = pp->p_szc; 4640 4641 #ifdef DEBUG 4642 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4643 return (0); 4644 } 4645 #endif 4646 4647 if (pp != PP_GROUPLEADER(pp, pszc)) { 4648 return (0); 4649 } 4650 4651 retry: 4652 ASSERT(PAGE_LOCKED_SE(pp, se)); 4653 ASSERT(!PP_ISFREE(pp)); 4654 if (pszc == 0) { 4655 return (1); 4656 } 4657 npgs = page_get_pagecnt(pszc); 4658 tpp = pp + 1; 4659 for (i = 1; i < npgs; i++, tpp++) { 4660 if (!page_trylock(tpp, se)) { 4661 tpp = pp + 1; 4662 for (j = 1; j < i; j++, tpp++) { 4663 page_unlock(tpp); 4664 } 4665 return (0); 4666 } 4667 } 4668 if (pp->p_szc != pszc) { 4669 ASSERT(pp->p_szc < pszc); 4670 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) && 4671 !IS_SWAPFSVP(pp->p_vnode)); 4672 tpp = pp + 1; 4673 for (i = 1; i < npgs; i++, tpp++) { 4674 page_unlock(tpp); 4675 } 4676 pszc = pp->p_szc; 4677 goto retry; 4678 } 4679 return (1); 4680 } 4681 4682 void 4683 group_page_unlock(page_t *pp) 4684 { 4685 page_t *tpp; 4686 pgcnt_t npgs, i; 4687 4688 ASSERT(PAGE_LOCKED(pp)); 4689 ASSERT(!PP_ISFREE(pp)); 4690 ASSERT(pp == PP_PAGEROOT(pp)); 4691 npgs = page_get_pagecnt(pp->p_szc); 4692 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4693 page_unlock(tpp); 4694 } 4695 } 4696 4697 /* 4698 * returns 4699 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4700 * ERANGE : this is not a base page 4701 * EBUSY : failure to get locks on the page/pages 4702 * ENOMEM : failure to obtain replacement pages 4703 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4704 * EIO : An error occurred while trying to copy the page data 4705 * 4706 * Return with all constituent members of target and replacement 4707 * SE_EXCL locked. It is the callers responsibility to drop the 4708 * locks. 4709 */ 4710 int 4711 do_page_relocate( 4712 page_t **target, 4713 page_t **replacement, 4714 int grouplock, 4715 spgcnt_t *nrelocp, 4716 lgrp_t *lgrp) 4717 { 4718 page_t *first_repl; 4719 page_t *repl; 4720 page_t *targ; 4721 page_t *pl = NULL; 4722 uint_t ppattr; 4723 pfn_t pfn, repl_pfn; 4724 uint_t szc; 4725 spgcnt_t npgs, i; 4726 int repl_contig = 0; 4727 uint_t flags = 0; 4728 spgcnt_t dofree = 0; 4729 4730 *nrelocp = 0; 4731 4732 #if defined(__sparc) 4733 /* 4734 * We need to wait till OBP has completed 4735 * its boot-time handoff of its resources to the kernel 4736 * before we allow page relocation 4737 */ 4738 if (page_relocate_ready == 0) { 4739 return (EAGAIN); 4740 } 4741 #endif 4742 4743 /* 4744 * If this is not a base page, 4745 * just return with 0x0 pages relocated. 4746 */ 4747 targ = *target; 4748 ASSERT(PAGE_EXCL(targ)); 4749 ASSERT(!PP_ISFREE(targ)); 4750 szc = targ->p_szc; 4751 ASSERT(szc < mmu_page_sizes); 4752 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4753 pfn = targ->p_pagenum; 4754 if (pfn != PFN_BASE(pfn, szc)) { 4755 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4756 return (ERANGE); 4757 } 4758 4759 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4760 repl_pfn = repl->p_pagenum; 4761 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4762 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4763 return (ERANGE); 4764 } 4765 repl_contig = 1; 4766 } 4767 4768 /* 4769 * We must lock all members of this large page or we cannot 4770 * relocate any part of it. 4771 */ 4772 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4773 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4774 return (EBUSY); 4775 } 4776 4777 /* 4778 * reread szc it could have been decreased before 4779 * group_page_trylock() was done. 4780 */ 4781 szc = targ->p_szc; 4782 ASSERT(szc < mmu_page_sizes); 4783 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4784 ASSERT(pfn == PFN_BASE(pfn, szc)); 4785 4786 npgs = page_get_pagecnt(targ->p_szc); 4787 4788 if (repl == NULL) { 4789 dofree = npgs; /* Size of target page in MMU pages */ 4790 if (!page_create_wait(dofree, 0)) { 4791 if (grouplock != 0) { 4792 group_page_unlock(targ); 4793 } 4794 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4795 return (ENOMEM); 4796 } 4797 4798 /* 4799 * seg kmem pages require that the target and replacement 4800 * page be the same pagesize. 4801 */ 4802 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0; 4803 repl = page_get_replacement_page(targ, lgrp, flags); 4804 if (repl == NULL) { 4805 if (grouplock != 0) { 4806 group_page_unlock(targ); 4807 } 4808 page_create_putback(dofree); 4809 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4810 return (ENOMEM); 4811 } 4812 } 4813 #ifdef DEBUG 4814 else { 4815 ASSERT(PAGE_LOCKED(repl)); 4816 } 4817 #endif /* DEBUG */ 4818 4819 #if defined(__sparc) 4820 /* 4821 * Let hat_page_relocate() complete the relocation if it's kernel page 4822 */ 4823 if (VN_ISKAS(targ->p_vnode)) { 4824 *replacement = repl; 4825 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4826 if (grouplock != 0) { 4827 group_page_unlock(targ); 4828 } 4829 if (dofree) { 4830 *replacement = NULL; 4831 page_free_replacement_page(repl); 4832 page_create_putback(dofree); 4833 } 4834 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4835 return (EAGAIN); 4836 } 4837 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4838 return (0); 4839 } 4840 #else 4841 #if defined(lint) 4842 dofree = dofree; 4843 #endif 4844 #endif 4845 4846 first_repl = repl; 4847 4848 for (i = 0; i < npgs; i++) { 4849 ASSERT(PAGE_EXCL(targ)); 4850 ASSERT(targ->p_slckcnt == 0); 4851 ASSERT(repl->p_slckcnt == 0); 4852 4853 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4854 4855 ASSERT(hat_page_getshare(targ) == 0); 4856 ASSERT(!PP_ISFREE(targ)); 4857 ASSERT(targ->p_pagenum == (pfn + i)); 4858 ASSERT(repl_contig == 0 || 4859 repl->p_pagenum == (repl_pfn + i)); 4860 4861 /* 4862 * Copy the page contents and attributes then 4863 * relocate the page in the page hash. 4864 */ 4865 if (ppcopy(targ, repl) == 0) { 4866 targ = *target; 4867 repl = first_repl; 4868 VM_STAT_ADD(vmm_vmstats.ppr_copyfail); 4869 if (grouplock != 0) { 4870 group_page_unlock(targ); 4871 } 4872 if (dofree) { 4873 *replacement = NULL; 4874 page_free_replacement_page(repl); 4875 page_create_putback(dofree); 4876 } 4877 return (EIO); 4878 } 4879 4880 targ++; 4881 if (repl_contig != 0) { 4882 repl++; 4883 } else { 4884 repl = repl->p_next; 4885 } 4886 } 4887 4888 repl = first_repl; 4889 targ = *target; 4890 4891 for (i = 0; i < npgs; i++) { 4892 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4893 page_clr_all_props(repl); 4894 page_set_props(repl, ppattr); 4895 page_relocate_hash(repl, targ); 4896 4897 ASSERT(hat_page_getshare(targ) == 0); 4898 ASSERT(hat_page_getshare(repl) == 0); 4899 /* 4900 * Now clear the props on targ, after the 4901 * page_relocate_hash(), they no longer 4902 * have any meaning. 4903 */ 4904 page_clr_all_props(targ); 4905 ASSERT(targ->p_next == targ); 4906 ASSERT(targ->p_prev == targ); 4907 page_list_concat(&pl, &targ); 4908 4909 targ++; 4910 if (repl_contig != 0) { 4911 repl++; 4912 } else { 4913 repl = repl->p_next; 4914 } 4915 } 4916 /* assert that we have come full circle with repl */ 4917 ASSERT(repl_contig == 1 || first_repl == repl); 4918 4919 *target = pl; 4920 if (*replacement == NULL) { 4921 ASSERT(first_repl == repl); 4922 *replacement = repl; 4923 } 4924 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4925 *nrelocp = npgs; 4926 return (0); 4927 } 4928 /* 4929 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 4930 */ 4931 int 4932 page_relocate( 4933 page_t **target, 4934 page_t **replacement, 4935 int grouplock, 4936 int freetarget, 4937 spgcnt_t *nrelocp, 4938 lgrp_t *lgrp) 4939 { 4940 spgcnt_t ret; 4941 4942 /* do_page_relocate returns 0 on success or errno value */ 4943 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 4944 4945 if (ret != 0 || freetarget == 0) { 4946 return (ret); 4947 } 4948 if (*nrelocp == 1) { 4949 ASSERT(*target != NULL); 4950 page_free(*target, 1); 4951 } else { 4952 page_t *tpp = *target; 4953 uint_t szc = tpp->p_szc; 4954 pgcnt_t npgs = page_get_pagecnt(szc); 4955 ASSERT(npgs > 1); 4956 ASSERT(szc != 0); 4957 do { 4958 ASSERT(PAGE_EXCL(tpp)); 4959 ASSERT(!hat_page_is_mapped(tpp)); 4960 ASSERT(tpp->p_szc == szc); 4961 PP_SETFREE(tpp); 4962 PP_SETAGED(tpp); 4963 npgs--; 4964 } while ((tpp = tpp->p_next) != *target); 4965 ASSERT(npgs == 0); 4966 page_list_add_pages(*target, 0); 4967 npgs = page_get_pagecnt(szc); 4968 page_create_putback(npgs); 4969 } 4970 return (ret); 4971 } 4972 4973 /* 4974 * it is up to the caller to deal with pcf accounting. 4975 */ 4976 void 4977 page_free_replacement_page(page_t *pplist) 4978 { 4979 page_t *pp; 4980 4981 while (pplist != NULL) { 4982 /* 4983 * pp_targ is a linked list. 4984 */ 4985 pp = pplist; 4986 if (pp->p_szc == 0) { 4987 page_sub(&pplist, pp); 4988 page_clr_all_props(pp); 4989 PP_SETFREE(pp); 4990 PP_SETAGED(pp); 4991 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 4992 page_unlock(pp); 4993 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 4994 } else { 4995 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 4996 page_t *tpp; 4997 page_list_break(&pp, &pplist, curnpgs); 4998 tpp = pp; 4999 do { 5000 ASSERT(PAGE_EXCL(tpp)); 5001 ASSERT(!hat_page_is_mapped(tpp)); 5002 page_clr_all_props(tpp); 5003 PP_SETFREE(tpp); 5004 PP_SETAGED(tpp); 5005 } while ((tpp = tpp->p_next) != pp); 5006 page_list_add_pages(pp, 0); 5007 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5008 } 5009 } 5010 } 5011 5012 /* 5013 * Relocate target to non-relocatable replacement page. 5014 */ 5015 int 5016 page_relocate_cage(page_t **target, page_t **replacement) 5017 { 5018 page_t *tpp, *rpp; 5019 spgcnt_t pgcnt, npgs; 5020 int result; 5021 5022 tpp = *target; 5023 5024 ASSERT(PAGE_EXCL(tpp)); 5025 ASSERT(tpp->p_szc == 0); 5026 5027 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5028 5029 do { 5030 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5031 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5032 if (rpp == NULL) { 5033 page_create_putback(pgcnt); 5034 kcage_cageout_wakeup(); 5035 } 5036 } while (rpp == NULL); 5037 5038 ASSERT(PP_ISNORELOC(rpp)); 5039 5040 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5041 5042 if (result == 0) { 5043 *replacement = rpp; 5044 if (pgcnt != npgs) 5045 panic("page_relocate_cage: partial relocation"); 5046 } 5047 5048 return (result); 5049 } 5050 5051 /* 5052 * Release the page lock on a page, place on cachelist 5053 * tail if no longer mapped. Caller can let us know if 5054 * the page is known to be clean. 5055 */ 5056 int 5057 page_release(page_t *pp, int checkmod) 5058 { 5059 int status; 5060 5061 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5062 (pp->p_vnode != NULL)); 5063 5064 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5065 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5066 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5067 !hat_page_is_mapped(pp)) { 5068 5069 /* 5070 * If page is modified, unlock it 5071 * 5072 * (p_nrm & P_MOD) bit has the latest stuff because: 5073 * (1) We found that this page doesn't have any mappings 5074 * _after_ holding SE_EXCL and 5075 * (2) We didn't drop SE_EXCL lock after the check in (1) 5076 */ 5077 if (checkmod && hat_ismod(pp)) { 5078 page_unlock(pp); 5079 status = PGREL_MOD; 5080 } else { 5081 /*LINTED: constant in conditional context*/ 5082 VN_DISPOSE(pp, B_FREE, 0, kcred); 5083 status = PGREL_CLEAN; 5084 } 5085 } else { 5086 page_unlock(pp); 5087 status = PGREL_NOTREL; 5088 } 5089 return (status); 5090 } 5091 5092 /* 5093 * Given a constituent page, try to demote the large page on the freelist. 5094 * 5095 * Returns nonzero if the page could be demoted successfully. Returns with 5096 * the constituent page still locked. 5097 */ 5098 int 5099 page_try_demote_free_pages(page_t *pp) 5100 { 5101 page_t *rootpp = pp; 5102 pfn_t pfn = page_pptonum(pp); 5103 spgcnt_t npgs; 5104 uint_t szc = pp->p_szc; 5105 5106 ASSERT(PP_ISFREE(pp)); 5107 ASSERT(PAGE_EXCL(pp)); 5108 5109 /* 5110 * Adjust rootpp and lock it, if `pp' is not the base 5111 * constituent page. 5112 */ 5113 npgs = page_get_pagecnt(pp->p_szc); 5114 if (npgs == 1) { 5115 return (0); 5116 } 5117 5118 if (!IS_P2ALIGNED(pfn, npgs)) { 5119 pfn = P2ALIGN(pfn, npgs); 5120 rootpp = page_numtopp_nolock(pfn); 5121 } 5122 5123 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5124 return (0); 5125 } 5126 5127 if (rootpp->p_szc != szc) { 5128 if (pp != rootpp) 5129 page_unlock(rootpp); 5130 return (0); 5131 } 5132 5133 page_demote_free_pages(rootpp); 5134 5135 if (pp != rootpp) 5136 page_unlock(rootpp); 5137 5138 ASSERT(PP_ISFREE(pp)); 5139 ASSERT(PAGE_EXCL(pp)); 5140 return (1); 5141 } 5142 5143 /* 5144 * Given a constituent page, try to demote the large page. 5145 * 5146 * Returns nonzero if the page could be demoted successfully. Returns with 5147 * the constituent page still locked. 5148 */ 5149 int 5150 page_try_demote_pages(page_t *pp) 5151 { 5152 page_t *tpp, *rootpp = pp; 5153 pfn_t pfn = page_pptonum(pp); 5154 spgcnt_t i, npgs; 5155 uint_t szc = pp->p_szc; 5156 vnode_t *vp = pp->p_vnode; 5157 5158 ASSERT(PAGE_EXCL(pp)); 5159 5160 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5161 5162 if (pp->p_szc == 0) { 5163 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5164 return (1); 5165 } 5166 5167 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) { 5168 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5169 page_demote_vp_pages(pp); 5170 ASSERT(pp->p_szc == 0); 5171 return (1); 5172 } 5173 5174 /* 5175 * Adjust rootpp if passed in is not the base 5176 * constituent page. 5177 */ 5178 npgs = page_get_pagecnt(pp->p_szc); 5179 ASSERT(npgs > 1); 5180 if (!IS_P2ALIGNED(pfn, npgs)) { 5181 pfn = P2ALIGN(pfn, npgs); 5182 rootpp = page_numtopp_nolock(pfn); 5183 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5184 ASSERT(rootpp->p_vnode != NULL); 5185 ASSERT(rootpp->p_szc == szc); 5186 } 5187 5188 /* 5189 * We can't demote kernel pages since we can't hat_unload() 5190 * the mappings. 5191 */ 5192 if (VN_ISKAS(rootpp->p_vnode)) 5193 return (0); 5194 5195 /* 5196 * Attempt to lock all constituent pages except the page passed 5197 * in since it's already locked. 5198 */ 5199 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5200 ASSERT(!PP_ISFREE(tpp)); 5201 ASSERT(tpp->p_vnode != NULL); 5202 5203 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5204 break; 5205 ASSERT(tpp->p_szc == rootpp->p_szc); 5206 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5207 } 5208 5209 /* 5210 * If we failed to lock them all then unlock what we have 5211 * locked so far and bail. 5212 */ 5213 if (i < npgs) { 5214 tpp = rootpp; 5215 while (i-- > 0) { 5216 if (tpp != pp) 5217 page_unlock(tpp); 5218 tpp++; 5219 } 5220 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5221 return (0); 5222 } 5223 5224 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5225 ASSERT(PAGE_EXCL(tpp)); 5226 ASSERT(tpp->p_slckcnt == 0); 5227 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5228 tpp->p_szc = 0; 5229 } 5230 5231 /* 5232 * Unlock all pages except the page passed in. 5233 */ 5234 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5235 ASSERT(!hat_page_is_mapped(tpp)); 5236 if (tpp != pp) 5237 page_unlock(tpp); 5238 } 5239 5240 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5241 return (1); 5242 } 5243 5244 /* 5245 * Called by page_free() and page_destroy() to demote the page size code 5246 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5247 * p_szc on free list, neither can we just clear p_szc of a single page_t 5248 * within a large page since it will break other code that relies on p_szc 5249 * being the same for all page_t's of a large page). Anonymous pages should 5250 * never end up here because anon_map_getpages() cannot deal with p_szc 5251 * changes after a single constituent page is locked. While anonymous or 5252 * kernel large pages are demoted or freed the entire large page at a time 5253 * with all constituent pages locked EXCL for the file system pages we 5254 * have to be able to demote a large page (i.e. decrease all constituent pages 5255 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5256 * we can easily deal with anonymous page demotion the entire large page at a 5257 * time is that those operation originate at address space level and concern 5258 * the entire large page region with actual demotion only done when pages are 5259 * not shared with any other processes (therefore we can always get EXCL lock 5260 * on all anonymous constituent pages after clearing segment page 5261 * cache). However file system pages can be truncated or invalidated at a 5262 * PAGESIZE level from the file system side and end up in page_free() or 5263 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5264 * and therefore pageout should be able to demote a large page by EXCL locking 5265 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5266 * rely on being able to lock EXCL all constituent pages. 5267 * 5268 * To prevent szc changes on file system pages one has to lock all constituent 5269 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5270 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5271 * prevent szc changes is hat layer that uses its own page level mlist 5272 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5273 * taken. Therefore we need to change szc under hat level locks if we only 5274 * have an EXCL lock on a single constituent page and hat still references any 5275 * of constituent pages. (Note we can't "ignore" hat layer by simply 5276 * hat_pageunload() all constituent pages without having EXCL locks on all of 5277 * constituent pages). We use hat_page_demote() call to safely demote szc of 5278 * all constituent pages under hat locks when we only have an EXCL lock on one 5279 * of constituent pages. 5280 * 5281 * This routine calls page_szc_lock() before calling hat_page_demote() to 5282 * allow segvn in one special case not to lock all constituent pages SHARED 5283 * before calling hat_memload_array() that relies on p_szc not changing even 5284 * before hat level mlist lock is taken. In that case segvn uses 5285 * page_szc_lock() to prevent hat_page_demote() changing p_szc values. 5286 * 5287 * Anonymous or kernel page demotion still has to lock all pages exclusively 5288 * and do hat_pageunload() on all constituent pages before demoting the page 5289 * therefore there's no need for anonymous or kernel page demotion to use 5290 * hat_page_demote() mechanism. 5291 * 5292 * hat_page_demote() removes all large mappings that map pp and then decreases 5293 * p_szc starting from the last constituent page of the large page. By working 5294 * from the tail of a large page in pfn decreasing order allows one looking at 5295 * the root page to know that hat_page_demote() is done for root's szc area. 5296 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5297 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5298 * that started on this page when it had szc > 1 is done for this szc 1 area. 5299 * 5300 * We are guaranteed that all constituent pages of pp's large page belong to 5301 * the same vnode with the consecutive offsets increasing in the direction of 5302 * the pfn i.e. the identity of constituent pages can't change until their 5303 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5304 * large mappings to pp even though we don't lock any constituent page except 5305 * pp (i.e. we won't unload e.g. kernel locked page). 5306 */ 5307 static void 5308 page_demote_vp_pages(page_t *pp) 5309 { 5310 kmutex_t *mtx; 5311 5312 ASSERT(PAGE_EXCL(pp)); 5313 ASSERT(!PP_ISFREE(pp)); 5314 ASSERT(pp->p_vnode != NULL); 5315 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5316 ASSERT(!PP_ISKAS(pp)); 5317 5318 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5319 5320 mtx = page_szc_lock(pp); 5321 if (mtx != NULL) { 5322 hat_page_demote(pp); 5323 mutex_exit(mtx); 5324 } 5325 ASSERT(pp->p_szc == 0); 5326 } 5327 5328 /* 5329 * Mark any existing pages for migration in the given range 5330 */ 5331 void 5332 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5333 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5334 u_offset_t vnoff, int rflag) 5335 { 5336 struct anon *ap; 5337 vnode_t *curvp; 5338 lgrp_t *from; 5339 pgcnt_t nlocked; 5340 u_offset_t off; 5341 pfn_t pfn; 5342 size_t pgsz; 5343 size_t segpgsz; 5344 pgcnt_t pages; 5345 uint_t pszc; 5346 page_t *pp0, *pp; 5347 caddr_t va; 5348 ulong_t an_idx; 5349 anon_sync_obj_t cookie; 5350 5351 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5352 5353 /* 5354 * Don't do anything if don't need to do lgroup optimizations 5355 * on this system 5356 */ 5357 if (!lgrp_optimizations()) 5358 return; 5359 5360 /* 5361 * Align address and length to (potentially large) page boundary 5362 */ 5363 segpgsz = page_get_pagesize(seg->s_szc); 5364 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5365 if (rflag) 5366 len = P2ROUNDUP(len, segpgsz); 5367 5368 /* 5369 * Do one (large) page at a time 5370 */ 5371 va = addr; 5372 while (va < addr + len) { 5373 /* 5374 * Lookup (root) page for vnode and offset corresponding to 5375 * this virtual address 5376 * Try anonmap first since there may be copy-on-write 5377 * pages, but initialize vnode pointer and offset using 5378 * vnode arguments just in case there isn't an amp. 5379 */ 5380 curvp = vp; 5381 off = vnoff + va - seg->s_base; 5382 if (amp) { 5383 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5384 an_idx = anon_index + seg_page(seg, va); 5385 anon_array_enter(amp, an_idx, &cookie); 5386 ap = anon_get_ptr(amp->ahp, an_idx); 5387 if (ap) 5388 swap_xlate(ap, &curvp, &off); 5389 anon_array_exit(&cookie); 5390 ANON_LOCK_EXIT(&->a_rwlock); 5391 } 5392 5393 pp = NULL; 5394 if (curvp) 5395 pp = page_lookup(curvp, off, SE_SHARED); 5396 5397 /* 5398 * If there isn't a page at this virtual address, 5399 * skip to next page 5400 */ 5401 if (pp == NULL) { 5402 va += PAGESIZE; 5403 continue; 5404 } 5405 5406 /* 5407 * Figure out which lgroup this page is in for kstats 5408 */ 5409 pfn = page_pptonum(pp); 5410 from = lgrp_pfn_to_lgrp(pfn); 5411 5412 /* 5413 * Get page size, and round up and skip to next page boundary 5414 * if unaligned address 5415 */ 5416 pszc = pp->p_szc; 5417 pgsz = page_get_pagesize(pszc); 5418 pages = btop(pgsz); 5419 if (!IS_P2ALIGNED(va, pgsz) || 5420 !IS_P2ALIGNED(pfn, pages) || 5421 pgsz > segpgsz) { 5422 pgsz = MIN(pgsz, segpgsz); 5423 page_unlock(pp); 5424 pages = btop(P2END((uintptr_t)va, pgsz) - 5425 (uintptr_t)va); 5426 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5427 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages); 5428 continue; 5429 } 5430 5431 /* 5432 * Upgrade to exclusive lock on page 5433 */ 5434 if (!page_tryupgrade(pp)) { 5435 page_unlock(pp); 5436 va += pgsz; 5437 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5438 btop(pgsz)); 5439 continue; 5440 } 5441 5442 pp0 = pp++; 5443 nlocked = 1; 5444 5445 /* 5446 * Lock constituent pages if this is large page 5447 */ 5448 if (pages > 1) { 5449 /* 5450 * Lock all constituents except root page, since it 5451 * should be locked already. 5452 */ 5453 for (; nlocked < pages; nlocked++) { 5454 if (!page_trylock(pp, SE_EXCL)) { 5455 break; 5456 } 5457 if (PP_ISFREE(pp) || 5458 pp->p_szc != pszc) { 5459 /* 5460 * hat_page_demote() raced in with us. 5461 */ 5462 ASSERT(!IS_SWAPFSVP(curvp)); 5463 page_unlock(pp); 5464 break; 5465 } 5466 pp++; 5467 } 5468 } 5469 5470 /* 5471 * If all constituent pages couldn't be locked, 5472 * unlock pages locked so far and skip to next page. 5473 */ 5474 if (nlocked < pages) { 5475 while (pp0 < pp) { 5476 page_unlock(pp0++); 5477 } 5478 va += pgsz; 5479 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5480 btop(pgsz)); 5481 continue; 5482 } 5483 5484 /* 5485 * hat_page_demote() can no longer happen 5486 * since last cons page had the right p_szc after 5487 * all cons pages were locked. all cons pages 5488 * should now have the same p_szc. 5489 */ 5490 5491 /* 5492 * All constituent pages locked successfully, so mark 5493 * large page for migration and unload the mappings of 5494 * constituent pages, so a fault will occur on any part of the 5495 * large page 5496 */ 5497 PP_SETMIGRATE(pp0); 5498 while (pp0 < pp) { 5499 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD); 5500 ASSERT(hat_page_getshare(pp0) == 0); 5501 page_unlock(pp0++); 5502 } 5503 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5504 5505 va += pgsz; 5506 } 5507 } 5508 5509 /* 5510 * Migrate any pages that have been marked for migration in the given range 5511 */ 5512 void 5513 page_migrate( 5514 struct seg *seg, 5515 caddr_t addr, 5516 page_t **ppa, 5517 pgcnt_t npages) 5518 { 5519 lgrp_t *from; 5520 lgrp_t *to; 5521 page_t *newpp; 5522 page_t *pp; 5523 pfn_t pfn; 5524 size_t pgsz; 5525 spgcnt_t page_cnt; 5526 spgcnt_t i; 5527 uint_t pszc; 5528 5529 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5530 5531 while (npages > 0) { 5532 pp = *ppa; 5533 pszc = pp->p_szc; 5534 pgsz = page_get_pagesize(pszc); 5535 page_cnt = btop(pgsz); 5536 5537 /* 5538 * Check to see whether this page is marked for migration 5539 * 5540 * Assume that root page of large page is marked for 5541 * migration and none of the other constituent pages 5542 * are marked. This really simplifies clearing the 5543 * migrate bit by not having to clear it from each 5544 * constituent page. 5545 * 5546 * note we don't want to relocate an entire large page if 5547 * someone is only using one subpage. 5548 */ 5549 if (npages < page_cnt) 5550 break; 5551 5552 /* 5553 * Is it marked for migration? 5554 */ 5555 if (!PP_ISMIGRATE(pp)) 5556 goto next; 5557 5558 /* 5559 * Determine lgroups that page is being migrated between 5560 */ 5561 pfn = page_pptonum(pp); 5562 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5563 break; 5564 } 5565 from = lgrp_pfn_to_lgrp(pfn); 5566 to = lgrp_mem_choose(seg, addr, pgsz); 5567 5568 /* 5569 * Need to get exclusive lock's to migrate 5570 */ 5571 for (i = 0; i < page_cnt; i++) { 5572 ASSERT(PAGE_LOCKED(ppa[i])); 5573 if (page_pptonum(ppa[i]) != pfn + i || 5574 ppa[i]->p_szc != pszc) { 5575 break; 5576 } 5577 if (!page_tryupgrade(ppa[i])) { 5578 lgrp_stat_add(from->lgrp_id, 5579 LGRP_PM_FAIL_LOCK_PGS, 5580 page_cnt); 5581 break; 5582 } 5583 5584 /* 5585 * Check to see whether we are trying to migrate 5586 * page to lgroup where it is allocated already. 5587 * If so, clear the migrate bit and skip to next 5588 * page. 5589 */ 5590 if (i == 0 && to == from) { 5591 PP_CLRMIGRATE(ppa[0]); 5592 page_downgrade(ppa[0]); 5593 goto next; 5594 } 5595 } 5596 5597 /* 5598 * If all constituent pages couldn't be locked, 5599 * unlock pages locked so far and skip to next page. 5600 */ 5601 if (i != page_cnt) { 5602 while (--i != -1) { 5603 page_downgrade(ppa[i]); 5604 } 5605 goto next; 5606 } 5607 5608 (void) page_create_wait(page_cnt, PG_WAIT); 5609 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5610 if (newpp == NULL) { 5611 page_create_putback(page_cnt); 5612 for (i = 0; i < page_cnt; i++) { 5613 page_downgrade(ppa[i]); 5614 } 5615 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5616 page_cnt); 5617 goto next; 5618 } 5619 ASSERT(newpp->p_szc == pszc); 5620 /* 5621 * Clear migrate bit and relocate page 5622 */ 5623 PP_CLRMIGRATE(pp); 5624 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5625 panic("page_migrate: page_relocate failed"); 5626 } 5627 ASSERT(page_cnt * PAGESIZE == pgsz); 5628 5629 /* 5630 * Keep stats for number of pages migrated from and to 5631 * each lgroup 5632 */ 5633 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5634 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5635 /* 5636 * update the page_t array we were passed in and 5637 * unlink constituent pages of a large page. 5638 */ 5639 for (i = 0; i < page_cnt; ++i, ++pp) { 5640 ASSERT(PAGE_EXCL(newpp)); 5641 ASSERT(newpp->p_szc == pszc); 5642 ppa[i] = newpp; 5643 pp = newpp; 5644 page_sub(&newpp, pp); 5645 page_downgrade(pp); 5646 } 5647 ASSERT(newpp == NULL); 5648 next: 5649 addr += pgsz; 5650 ppa += page_cnt; 5651 npages -= page_cnt; 5652 } 5653 } 5654 5655 ulong_t mem_waiters = 0; 5656 ulong_t max_count = 20; 5657 #define MAX_DELAY 0x1ff 5658 5659 /* 5660 * Check if enough memory is available to proceed. 5661 * Depending on system configuration and how much memory is 5662 * reserved for swap we need to check against two variables. 5663 * e.g. on systems with little physical swap availrmem can be 5664 * more reliable indicator of how much memory is available. 5665 * On systems with large phys swap freemem can be better indicator. 5666 * If freemem drops below threshold level don't return an error 5667 * immediately but wake up pageout to free memory and block. 5668 * This is done number of times. If pageout is not able to free 5669 * memory within certain time return an error. 5670 * The same applies for availrmem but kmem_reap is used to 5671 * free memory. 5672 */ 5673 int 5674 page_mem_avail(pgcnt_t npages) 5675 { 5676 ulong_t count; 5677 5678 #if defined(__i386) 5679 if (freemem > desfree + npages && 5680 availrmem > swapfs_reserve + npages && 5681 btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem + 5682 npages) 5683 return (1); 5684 #else 5685 if (freemem > desfree + npages && 5686 availrmem > swapfs_reserve + npages) 5687 return (1); 5688 #endif 5689 5690 count = max_count; 5691 atomic_add_long(&mem_waiters, 1); 5692 5693 while (freemem < desfree + npages && --count) { 5694 cv_signal(&proc_pageout->p_cv); 5695 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5696 atomic_add_long(&mem_waiters, -1); 5697 return (0); 5698 } 5699 } 5700 if (count == 0) { 5701 atomic_add_long(&mem_waiters, -1); 5702 return (0); 5703 } 5704 5705 count = max_count; 5706 while (availrmem < swapfs_reserve + npages && --count) { 5707 kmem_reap(); 5708 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5709 atomic_add_long(&mem_waiters, -1); 5710 return (0); 5711 } 5712 } 5713 atomic_add_long(&mem_waiters, -1); 5714 if (count == 0) 5715 return (0); 5716 5717 #if defined(__i386) 5718 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 5719 tune.t_minarmem + npages) 5720 return (0); 5721 #endif 5722 return (1); 5723 } 5724 5725 #define MAX_CNT 60 /* max num of iterations */ 5726 /* 5727 * Reclaim/reserve availrmem for npages. 5728 * If there is not enough memory start reaping seg, kmem caches. 5729 * Start pageout scanner (via page_needfree()). 5730 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5731 * Note: There is no guarantee that any availrmem will be freed as 5732 * this memory typically is locked (kernel heap) or reserved for swap. 5733 * Also due to memory fragmentation kmem allocator may not be able 5734 * to free any memory (single user allocated buffer will prevent 5735 * freeing slab or a page). 5736 */ 5737 int 5738 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5739 { 5740 int i = 0; 5741 int ret = 0; 5742 pgcnt_t deficit; 5743 pgcnt_t old_availrmem; 5744 5745 mutex_enter(&freemem_lock); 5746 old_availrmem = availrmem - 1; 5747 while ((availrmem < tune.t_minarmem + npages + epages) && 5748 (old_availrmem < availrmem) && (i++ < MAX_CNT)) { 5749 old_availrmem = availrmem; 5750 deficit = tune.t_minarmem + npages + epages - availrmem; 5751 mutex_exit(&freemem_lock); 5752 page_needfree(deficit); 5753 kmem_reap(); 5754 delay(hz); 5755 page_needfree(-(spgcnt_t)deficit); 5756 mutex_enter(&freemem_lock); 5757 } 5758 5759 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5760 availrmem -= npages; 5761 ret = 1; 5762 } 5763 5764 mutex_exit(&freemem_lock); 5765 5766 return (ret); 5767 } 5768 5769 /* 5770 * Search the memory segments to locate the desired page. Within a 5771 * segment, pages increase linearly with one page structure per 5772 * physical page frame (size PAGESIZE). The search begins 5773 * with the segment that was accessed last, to take advantage of locality. 5774 * If the hint misses, we start from the beginning of the sorted memseg list 5775 */ 5776 5777 5778 /* 5779 * Some data structures for pfn to pp lookup. 5780 */ 5781 ulong_t mhash_per_slot; 5782 struct memseg *memseg_hash[N_MEM_SLOTS]; 5783 5784 page_t * 5785 page_numtopp_nolock(pfn_t pfnum) 5786 { 5787 struct memseg *seg; 5788 page_t *pp; 5789 vm_cpu_data_t *vc; 5790 5791 /* 5792 * We need to disable kernel preemption while referencing the 5793 * cpu_vm_data field in order to prevent us from being switched to 5794 * another cpu and trying to reference it after it has been freed. 5795 * This will keep us on cpu and prevent it from being removed while 5796 * we are still on it. 5797 * 5798 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5799 * which is being resued by DR who will flush those references 5800 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5801 */ 5802 kpreempt_disable(); 5803 vc = CPU->cpu_vm_data; 5804 ASSERT(vc != NULL); 5805 5806 MEMSEG_STAT_INCR(nsearch); 5807 5808 /* Try last winner first */ 5809 if (((seg = vc->vc_pnum_memseg) != NULL) && 5810 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5811 MEMSEG_STAT_INCR(nlastwon); 5812 pp = seg->pages + (pfnum - seg->pages_base); 5813 if (pp->p_pagenum == pfnum) { 5814 kpreempt_enable(); 5815 return ((page_t *)pp); 5816 } 5817 } 5818 5819 /* Else Try hash */ 5820 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5821 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5822 MEMSEG_STAT_INCR(nhashwon); 5823 vc->vc_pnum_memseg = seg; 5824 pp = seg->pages + (pfnum - seg->pages_base); 5825 if (pp->p_pagenum == pfnum) { 5826 kpreempt_enable(); 5827 return ((page_t *)pp); 5828 } 5829 } 5830 5831 /* Else Brute force */ 5832 for (seg = memsegs; seg != NULL; seg = seg->next) { 5833 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5834 vc->vc_pnum_memseg = seg; 5835 pp = seg->pages + (pfnum - seg->pages_base); 5836 if (pp->p_pagenum == pfnum) { 5837 kpreempt_enable(); 5838 return ((page_t *)pp); 5839 } 5840 } 5841 } 5842 vc->vc_pnum_memseg = NULL; 5843 kpreempt_enable(); 5844 MEMSEG_STAT_INCR(nnotfound); 5845 return ((page_t *)NULL); 5846 5847 } 5848 5849 struct memseg * 5850 page_numtomemseg_nolock(pfn_t pfnum) 5851 { 5852 struct memseg *seg; 5853 page_t *pp; 5854 5855 /* 5856 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5857 * which is being resued by DR who will flush those references 5858 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5859 */ 5860 kpreempt_disable(); 5861 /* Try hash */ 5862 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5863 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5864 pp = seg->pages + (pfnum - seg->pages_base); 5865 if (pp->p_pagenum == pfnum) { 5866 kpreempt_enable(); 5867 return (seg); 5868 } 5869 } 5870 5871 /* Else Brute force */ 5872 for (seg = memsegs; seg != NULL; seg = seg->next) { 5873 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5874 pp = seg->pages + (pfnum - seg->pages_base); 5875 if (pp->p_pagenum == pfnum) { 5876 kpreempt_enable(); 5877 return (seg); 5878 } 5879 } 5880 } 5881 kpreempt_enable(); 5882 return ((struct memseg *)NULL); 5883 } 5884 5885 /* 5886 * Given a page and a count return the page struct that is 5887 * n structs away from the current one in the global page 5888 * list. 5889 * 5890 * This function wraps to the first page upon 5891 * reaching the end of the memseg list. 5892 */ 5893 page_t * 5894 page_nextn(page_t *pp, ulong_t n) 5895 { 5896 struct memseg *seg; 5897 page_t *ppn; 5898 vm_cpu_data_t *vc; 5899 5900 /* 5901 * We need to disable kernel preemption while referencing the 5902 * cpu_vm_data field in order to prevent us from being switched to 5903 * another cpu and trying to reference it after it has been freed. 5904 * This will keep us on cpu and prevent it from being removed while 5905 * we are still on it. 5906 * 5907 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg 5908 * which is being resued by DR who will flush those references 5909 * before modifying the reused memseg. See memseg_cpu_vm_flush(). 5910 */ 5911 kpreempt_disable(); 5912 vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5913 5914 ASSERT(vc != NULL); 5915 5916 if (((seg = vc->vc_pnext_memseg) == NULL) || 5917 (seg->pages_base == seg->pages_end) || 5918 !(pp >= seg->pages && pp < seg->epages)) { 5919 5920 for (seg = memsegs; seg; seg = seg->next) { 5921 if (pp >= seg->pages && pp < seg->epages) 5922 break; 5923 } 5924 5925 if (seg == NULL) { 5926 /* Memory delete got in, return something valid. */ 5927 /* TODO: fix me. */ 5928 seg = memsegs; 5929 pp = seg->pages; 5930 } 5931 } 5932 5933 /* check for wraparound - possible if n is large */ 5934 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5935 n -= seg->epages - pp; 5936 seg = seg->next; 5937 if (seg == NULL) 5938 seg = memsegs; 5939 pp = seg->pages; 5940 } 5941 vc->vc_pnext_memseg = seg; 5942 kpreempt_enable(); 5943 return (ppn); 5944 } 5945 5946 /* 5947 * Initialize for a loop using page_next_scan_large(). 5948 */ 5949 page_t * 5950 page_next_scan_init(void **cookie) 5951 { 5952 ASSERT(cookie != NULL); 5953 *cookie = (void *)memsegs; 5954 return ((page_t *)memsegs->pages); 5955 } 5956 5957 /* 5958 * Return the next page in a scan of page_t's, assuming we want 5959 * to skip over sub-pages within larger page sizes. 5960 * 5961 * The cookie is used to keep track of the current memseg. 5962 */ 5963 page_t * 5964 page_next_scan_large( 5965 page_t *pp, 5966 ulong_t *n, 5967 void **cookie) 5968 { 5969 struct memseg *seg = (struct memseg *)*cookie; 5970 page_t *new_pp; 5971 ulong_t cnt; 5972 pfn_t pfn; 5973 5974 5975 /* 5976 * get the count of page_t's to skip based on the page size 5977 */ 5978 ASSERT(pp != NULL); 5979 if (pp->p_szc == 0) { 5980 cnt = 1; 5981 } else { 5982 pfn = page_pptonum(pp); 5983 cnt = page_get_pagecnt(pp->p_szc); 5984 cnt -= pfn & (cnt - 1); 5985 } 5986 *n += cnt; 5987 new_pp = pp + cnt; 5988 5989 /* 5990 * Catch if we went past the end of the current memory segment. If so, 5991 * just move to the next segment with pages. 5992 */ 5993 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) { 5994 do { 5995 seg = seg->next; 5996 if (seg == NULL) 5997 seg = memsegs; 5998 } while (seg->pages_base == seg->pages_end); 5999 new_pp = seg->pages; 6000 *cookie = (void *)seg; 6001 } 6002 6003 return (new_pp); 6004 } 6005 6006 6007 /* 6008 * Returns next page in list. Note: this function wraps 6009 * to the first page in the list upon reaching the end 6010 * of the list. Callers should be aware of this fact. 6011 */ 6012 6013 /* We should change this be a #define */ 6014 6015 page_t * 6016 page_next(page_t *pp) 6017 { 6018 return (page_nextn(pp, 1)); 6019 } 6020 6021 page_t * 6022 page_first() 6023 { 6024 return ((page_t *)memsegs->pages); 6025 } 6026 6027 6028 /* 6029 * This routine is called at boot with the initial memory configuration 6030 * and when memory is added or removed. 6031 */ 6032 void 6033 build_pfn_hash() 6034 { 6035 pfn_t cur; 6036 pgcnt_t index; 6037 struct memseg *pseg; 6038 int i; 6039 6040 /* 6041 * Clear memseg_hash array. 6042 * Since memory add/delete is designed to operate concurrently 6043 * with normal operation, the hash rebuild must be able to run 6044 * concurrently with page_numtopp_nolock(). To support this 6045 * functionality, assignments to memseg_hash array members must 6046 * be done atomically. 6047 * 6048 * NOTE: bzero() does not currently guarantee this for kernel 6049 * threads, and cannot be used here. 6050 */ 6051 for (i = 0; i < N_MEM_SLOTS; i++) 6052 memseg_hash[i] = NULL; 6053 6054 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6055 6056 /* 6057 * Physmax is the last valid pfn. 6058 */ 6059 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6060 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6061 index = MEMSEG_PFN_HASH(pseg->pages_base); 6062 cur = pseg->pages_base; 6063 do { 6064 if (index >= N_MEM_SLOTS) 6065 index = MEMSEG_PFN_HASH(cur); 6066 6067 if (memseg_hash[index] == NULL || 6068 memseg_hash[index]->pages_base > pseg->pages_base) { 6069 memseg_hash[index] = pseg; 6070 hat_kpm_mseghash_update(index, pseg); 6071 } 6072 cur += mhash_per_slot; 6073 index++; 6074 } while (cur < pseg->pages_end); 6075 } 6076 } 6077 6078 /* 6079 * Return the pagenum for the pp 6080 */ 6081 pfn_t 6082 page_pptonum(page_t *pp) 6083 { 6084 return (pp->p_pagenum); 6085 } 6086 6087 /* 6088 * interface to the referenced and modified etc bits 6089 * in the PSM part of the page struct 6090 * when no locking is desired. 6091 */ 6092 void 6093 page_set_props(page_t *pp, uint_t flags) 6094 { 6095 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6096 pp->p_nrm |= (uchar_t)flags; 6097 } 6098 6099 void 6100 page_clr_all_props(page_t *pp) 6101 { 6102 pp->p_nrm = 0; 6103 } 6104 6105 /* 6106 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6107 */ 6108 int 6109 page_clear_lck_cow(page_t *pp, int adjust) 6110 { 6111 int f_amount; 6112 6113 ASSERT(PAGE_EXCL(pp)); 6114 6115 /* 6116 * The page_struct_lock need not be acquired here since 6117 * we require the caller hold the page exclusively locked. 6118 */ 6119 f_amount = 0; 6120 if (pp->p_lckcnt) { 6121 f_amount = 1; 6122 pp->p_lckcnt = 0; 6123 } 6124 if (pp->p_cowcnt) { 6125 f_amount += pp->p_cowcnt; 6126 pp->p_cowcnt = 0; 6127 } 6128 6129 if (adjust && f_amount) { 6130 mutex_enter(&freemem_lock); 6131 availrmem += f_amount; 6132 mutex_exit(&freemem_lock); 6133 } 6134 6135 return (f_amount); 6136 } 6137 6138 /* 6139 * The following functions is called from free_vp_pages() 6140 * for an inexact estimate of a newly free'd page... 6141 */ 6142 ulong_t 6143 page_share_cnt(page_t *pp) 6144 { 6145 return (hat_page_getshare(pp)); 6146 } 6147 6148 int 6149 page_isshared(page_t *pp) 6150 { 6151 return (hat_page_checkshare(pp, 1)); 6152 } 6153 6154 int 6155 page_isfree(page_t *pp) 6156 { 6157 return (PP_ISFREE(pp)); 6158 } 6159 6160 int 6161 page_isref(page_t *pp) 6162 { 6163 return (hat_page_getattr(pp, P_REF)); 6164 } 6165 6166 int 6167 page_ismod(page_t *pp) 6168 { 6169 return (hat_page_getattr(pp, P_MOD)); 6170 } 6171 6172 /* 6173 * The following code all currently relates to the page capture logic: 6174 * 6175 * This logic is used for cases where there is a desire to claim a certain 6176 * physical page in the system for the caller. As it may not be possible 6177 * to capture the page immediately, the p_toxic bits are used in the page 6178 * structure to indicate that someone wants to capture this page. When the 6179 * page gets unlocked, the toxic flag will be noted and an attempt to capture 6180 * the page will be made. If it is successful, the original callers callback 6181 * will be called with the page to do with it what they please. 6182 * 6183 * There is also an async thread which wakes up to attempt to capture 6184 * pages occasionally which have the capture bit set. All of the pages which 6185 * need to be captured asynchronously have been inserted into the 6186 * page_capture_hash and thus this thread walks that hash list. Items in the 6187 * hash have an expiration time so this thread handles that as well by removing 6188 * the item from the hash if it has expired. 6189 * 6190 * Some important things to note are: 6191 * - if the PR_CAPTURE bit is set on a page, then the page is in the 6192 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed 6193 * to set and clear this bit, and while the lock is held is the only time 6194 * you can add or remove an entry from the hash. 6195 * - the PR_CAPTURE bit can only be set and cleared while holding the 6196 * page_capture_hash_head.pchh_mutex 6197 * - the t_flag field of the thread struct is used with the T_CAPTURING 6198 * flag to prevent recursion while dealing with large pages. 6199 * - pages which need to be retired never expire on the page_capture_hash. 6200 */ 6201 6202 static void page_capture_thread(void); 6203 static kthread_t *pc_thread_id; 6204 kcondvar_t pc_cv; 6205 static kmutex_t pc_thread_mutex; 6206 static clock_t pc_thread_shortwait; 6207 static clock_t pc_thread_longwait; 6208 static int pc_thread_retry; 6209 6210 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS]; 6211 6212 /* Note that this is a circular linked list */ 6213 typedef struct page_capture_hash_bucket { 6214 page_t *pp; 6215 uchar_t szc; 6216 uchar_t pri; 6217 uint_t flags; 6218 clock_t expires; /* lbolt at which this request expires. */ 6219 void *datap; /* Cached data passed in for callback */ 6220 struct page_capture_hash_bucket *next; 6221 struct page_capture_hash_bucket *prev; 6222 } page_capture_hash_bucket_t; 6223 6224 #define PC_PRI_HI 0 /* capture now */ 6225 #define PC_PRI_LO 1 /* capture later */ 6226 #define PC_NUM_PRI 2 6227 6228 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI) 6229 6230 6231 /* 6232 * Each hash bucket will have it's own mutex and two lists which are: 6233 * active (0): represents requests which have not been processed by 6234 * the page_capture async thread yet. 6235 * walked (1): represents requests which have been processed by the 6236 * page_capture async thread within it's given walk of this bucket. 6237 * 6238 * These are all needed so that we can synchronize all async page_capture 6239 * events. When the async thread moves to a new bucket, it will append the 6240 * walked list to the active list and walk each item one at a time, moving it 6241 * from the active list to the walked list. Thus if there is an async request 6242 * outstanding for a given page, it will always be in one of the two lists. 6243 * New requests will always be added to the active list. 6244 * If we were not able to capture a page before the request expired, we'd free 6245 * up the request structure which would indicate to page_capture that there is 6246 * no longer a need for the given page, and clear the PR_CAPTURE flag if 6247 * possible. 6248 */ 6249 typedef struct page_capture_hash_head { 6250 kmutex_t pchh_mutex; 6251 uint_t num_pages[PC_NUM_PRI]; 6252 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */ 6253 } page_capture_hash_head_t; 6254 6255 #ifdef DEBUG 6256 #define NUM_PAGE_CAPTURE_BUCKETS 4 6257 #else 6258 #define NUM_PAGE_CAPTURE_BUCKETS 64 6259 #endif 6260 6261 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS]; 6262 6263 /* for now use a very simple hash based upon the size of a page struct */ 6264 #define PAGE_CAPTURE_HASH(pp) \ 6265 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1))) 6266 6267 extern pgcnt_t swapfs_minfree; 6268 6269 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 6270 6271 /* 6272 * a callback function is required for page capture requests. 6273 */ 6274 void 6275 page_capture_register_callback(uint_t index, clock_t duration, 6276 int (*cb_func)(page_t *, void *, uint_t)) 6277 { 6278 ASSERT(pc_cb[index].cb_active == 0); 6279 ASSERT(cb_func != NULL); 6280 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6281 pc_cb[index].duration = duration; 6282 pc_cb[index].cb_func = cb_func; 6283 pc_cb[index].cb_active = 1; 6284 rw_exit(&pc_cb[index].cb_rwlock); 6285 } 6286 6287 void 6288 page_capture_unregister_callback(uint_t index) 6289 { 6290 int i, j; 6291 struct page_capture_hash_bucket *bp1; 6292 struct page_capture_hash_bucket *bp2; 6293 struct page_capture_hash_bucket *head = NULL; 6294 uint_t flags = (1 << index); 6295 6296 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6297 ASSERT(pc_cb[index].cb_active == 1); 6298 pc_cb[index].duration = 0; /* Paranoia */ 6299 pc_cb[index].cb_func = NULL; /* Paranoia */ 6300 pc_cb[index].cb_active = 0; 6301 rw_exit(&pc_cb[index].cb_rwlock); 6302 6303 /* 6304 * Just move all the entries to a private list which we can walk 6305 * through without the need to hold any locks. 6306 * No more requests can get added to the hash lists for this consumer 6307 * as the cb_active field for the callback has been cleared. 6308 */ 6309 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 6310 mutex_enter(&page_capture_hash[i].pchh_mutex); 6311 for (j = 0; j < 2; j++) { 6312 bp1 = page_capture_hash[i].lists[j].next; 6313 /* walk through all but first (sentinel) element */ 6314 while (bp1 != &page_capture_hash[i].lists[j]) { 6315 bp2 = bp1; 6316 if (bp2->flags & flags) { 6317 bp1 = bp2->next; 6318 bp1->prev = bp2->prev; 6319 bp2->prev->next = bp1; 6320 bp2->next = head; 6321 head = bp2; 6322 /* 6323 * Clear the PR_CAPTURE bit as we 6324 * hold appropriate locks here. 6325 */ 6326 page_clrtoxic(head->pp, PR_CAPTURE); 6327 page_capture_hash[i]. 6328 num_pages[bp2->pri]--; 6329 continue; 6330 } 6331 bp1 = bp1->next; 6332 } 6333 } 6334 mutex_exit(&page_capture_hash[i].pchh_mutex); 6335 } 6336 6337 while (head != NULL) { 6338 bp1 = head; 6339 head = head->next; 6340 kmem_free(bp1, sizeof (*bp1)); 6341 } 6342 } 6343 6344 6345 /* 6346 * Find pp in the active list and move it to the walked list if it 6347 * exists. 6348 * Note that most often pp should be at the front of the active list 6349 * as it is currently used and thus there is no other sort of optimization 6350 * being done here as this is a linked list data structure. 6351 * Returns 1 on successful move or 0 if page could not be found. 6352 */ 6353 static int 6354 page_capture_move_to_walked(page_t *pp) 6355 { 6356 page_capture_hash_bucket_t *bp; 6357 int index; 6358 6359 index = PAGE_CAPTURE_HASH(pp); 6360 6361 mutex_enter(&page_capture_hash[index].pchh_mutex); 6362 bp = page_capture_hash[index].lists[0].next; 6363 while (bp != &page_capture_hash[index].lists[0]) { 6364 if (bp->pp == pp) { 6365 /* Remove from old list */ 6366 bp->next->prev = bp->prev; 6367 bp->prev->next = bp->next; 6368 6369 /* Add to new list */ 6370 bp->next = page_capture_hash[index].lists[1].next; 6371 bp->prev = &page_capture_hash[index].lists[1]; 6372 page_capture_hash[index].lists[1].next = bp; 6373 bp->next->prev = bp; 6374 6375 /* 6376 * There is a small probability of page on a free 6377 * list being retired while being allocated 6378 * and before P_RAF is set on it. The page may 6379 * end up marked as high priority request instead 6380 * of low priority request. 6381 * If P_RAF page is not marked as low priority request 6382 * change it to low priority request. 6383 */ 6384 page_capture_hash[index].num_pages[bp->pri]--; 6385 bp->pri = PAGE_CAPTURE_PRIO(pp); 6386 page_capture_hash[index].num_pages[bp->pri]++; 6387 mutex_exit(&page_capture_hash[index].pchh_mutex); 6388 return (1); 6389 } 6390 bp = bp->next; 6391 } 6392 mutex_exit(&page_capture_hash[index].pchh_mutex); 6393 return (0); 6394 } 6395 6396 /* 6397 * Add a new entry to the page capture hash. The only case where a new 6398 * entry is not added is when the page capture consumer is no longer registered. 6399 * In this case, we'll silently not add the page to the hash. We know that 6400 * page retire will always be registered for the case where we are currently 6401 * unretiring a page and thus there are no conflicts. 6402 */ 6403 static void 6404 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap) 6405 { 6406 page_capture_hash_bucket_t *bp1; 6407 page_capture_hash_bucket_t *bp2; 6408 int index; 6409 int cb_index; 6410 int i; 6411 uchar_t pri; 6412 #ifdef DEBUG 6413 page_capture_hash_bucket_t *tp1; 6414 int l; 6415 #endif 6416 6417 ASSERT(!(flags & CAPTURE_ASYNC)); 6418 6419 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP); 6420 6421 bp1->pp = pp; 6422 bp1->szc = szc; 6423 bp1->flags = flags; 6424 bp1->datap = datap; 6425 6426 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6427 if ((flags >> cb_index) & 1) { 6428 break; 6429 } 6430 } 6431 6432 ASSERT(cb_index != PC_NUM_CALLBACKS); 6433 6434 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6435 if (pc_cb[cb_index].cb_active) { 6436 if (pc_cb[cb_index].duration == -1) { 6437 bp1->expires = (clock_t)-1; 6438 } else { 6439 bp1->expires = ddi_get_lbolt() + 6440 pc_cb[cb_index].duration; 6441 } 6442 } else { 6443 /* There's no callback registered so don't add to the hash */ 6444 rw_exit(&pc_cb[cb_index].cb_rwlock); 6445 kmem_free(bp1, sizeof (*bp1)); 6446 return; 6447 } 6448 6449 index = PAGE_CAPTURE_HASH(pp); 6450 6451 /* 6452 * Only allow capture flag to be modified under this mutex. 6453 * Prevents multiple entries for same page getting added. 6454 */ 6455 mutex_enter(&page_capture_hash[index].pchh_mutex); 6456 6457 /* 6458 * if not already on the hash, set capture bit and add to the hash 6459 */ 6460 if (!(pp->p_toxic & PR_CAPTURE)) { 6461 #ifdef DEBUG 6462 /* Check for duplicate entries */ 6463 for (l = 0; l < 2; l++) { 6464 tp1 = page_capture_hash[index].lists[l].next; 6465 while (tp1 != &page_capture_hash[index].lists[l]) { 6466 if (tp1->pp == pp) { 6467 panic("page pp 0x%p already on hash " 6468 "at 0x%p\n", 6469 (void *)pp, (void *)tp1); 6470 } 6471 tp1 = tp1->next; 6472 } 6473 } 6474 6475 #endif 6476 page_settoxic(pp, PR_CAPTURE); 6477 pri = PAGE_CAPTURE_PRIO(pp); 6478 bp1->pri = pri; 6479 bp1->next = page_capture_hash[index].lists[0].next; 6480 bp1->prev = &page_capture_hash[index].lists[0]; 6481 bp1->next->prev = bp1; 6482 page_capture_hash[index].lists[0].next = bp1; 6483 page_capture_hash[index].num_pages[pri]++; 6484 if (flags & CAPTURE_RETIRE) { 6485 page_retire_incr_pend_count(datap); 6486 } 6487 mutex_exit(&page_capture_hash[index].pchh_mutex); 6488 rw_exit(&pc_cb[cb_index].cb_rwlock); 6489 cv_signal(&pc_cv); 6490 return; 6491 } 6492 6493 /* 6494 * A page retire request will replace any other request. 6495 * A second physmem request which is for a different process than 6496 * the currently registered one will be dropped as there is 6497 * no way to hold the private data for both calls. 6498 * In the future, once there are more callers, this will have to 6499 * be worked out better as there needs to be private storage for 6500 * at least each type of caller (maybe have datap be an array of 6501 * *void's so that we can index based upon callers index). 6502 */ 6503 6504 /* walk hash list to update expire time */ 6505 for (i = 0; i < 2; i++) { 6506 bp2 = page_capture_hash[index].lists[i].next; 6507 while (bp2 != &page_capture_hash[index].lists[i]) { 6508 if (bp2->pp == pp) { 6509 if (flags & CAPTURE_RETIRE) { 6510 if (!(bp2->flags & CAPTURE_RETIRE)) { 6511 page_retire_incr_pend_count( 6512 datap); 6513 bp2->flags = flags; 6514 bp2->expires = bp1->expires; 6515 bp2->datap = datap; 6516 } 6517 } else { 6518 ASSERT(flags & CAPTURE_PHYSMEM); 6519 if (!(bp2->flags & CAPTURE_RETIRE) && 6520 (datap == bp2->datap)) { 6521 bp2->expires = bp1->expires; 6522 } 6523 } 6524 mutex_exit(&page_capture_hash[index]. 6525 pchh_mutex); 6526 rw_exit(&pc_cb[cb_index].cb_rwlock); 6527 kmem_free(bp1, sizeof (*bp1)); 6528 return; 6529 } 6530 bp2 = bp2->next; 6531 } 6532 } 6533 6534 /* 6535 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes 6536 * and thus it either has to be set or not set and can't change 6537 * while holding the mutex above. 6538 */ 6539 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", 6540 (void *)pp); 6541 } 6542 6543 /* 6544 * We have a page in our hands, lets try and make it ours by turning 6545 * it into a clean page like it had just come off the freelists. 6546 * 6547 * Returns 0 on success, with the page still EXCL locked. 6548 * On failure, the page will be unlocked, and returns EAGAIN 6549 */ 6550 static int 6551 page_capture_clean_page(page_t *pp) 6552 { 6553 page_t *newpp; 6554 int skip_unlock = 0; 6555 spgcnt_t count; 6556 page_t *tpp; 6557 int ret = 0; 6558 int extra; 6559 6560 ASSERT(PAGE_EXCL(pp)); 6561 ASSERT(!PP_RETIRED(pp)); 6562 ASSERT(curthread->t_flag & T_CAPTURING); 6563 6564 if (PP_ISFREE(pp)) { 6565 if (!page_reclaim(pp, NULL)) { 6566 skip_unlock = 1; 6567 ret = EAGAIN; 6568 goto cleanup; 6569 } 6570 ASSERT(pp->p_szc == 0); 6571 if (pp->p_vnode != NULL) { 6572 /* 6573 * Since this page came from the 6574 * cachelist, we must destroy the 6575 * old vnode association. 6576 */ 6577 page_hashout(pp, NULL); 6578 } 6579 goto cleanup; 6580 } 6581 6582 /* 6583 * If we know page_relocate will fail, skip it 6584 * It could still fail due to a UE on another page but we 6585 * can't do anything about that. 6586 */ 6587 if (pp->p_toxic & PR_UE) { 6588 goto skip_relocate; 6589 } 6590 6591 /* 6592 * It's possible that pages can not have a vnode as fsflush comes 6593 * through and cleans up these pages. It's ugly but that's how it is. 6594 */ 6595 if (pp->p_vnode == NULL) { 6596 goto skip_relocate; 6597 } 6598 6599 /* 6600 * Page was not free, so lets try to relocate it. 6601 * page_relocate only works with root pages, so if this is not a root 6602 * page, we need to demote it to try and relocate it. 6603 * Unfortunately this is the best we can do right now. 6604 */ 6605 newpp = NULL; 6606 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) { 6607 if (page_try_demote_pages(pp) == 0) { 6608 ret = EAGAIN; 6609 goto cleanup; 6610 } 6611 } 6612 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL); 6613 if (ret == 0) { 6614 page_t *npp; 6615 /* unlock the new page(s) */ 6616 while (count-- > 0) { 6617 ASSERT(newpp != NULL); 6618 npp = newpp; 6619 page_sub(&newpp, npp); 6620 page_unlock(npp); 6621 } 6622 ASSERT(newpp == NULL); 6623 /* 6624 * Check to see if the page we have is too large. 6625 * If so, demote it freeing up the extra pages. 6626 */ 6627 if (pp->p_szc > 0) { 6628 /* For now demote extra pages to szc == 0 */ 6629 extra = page_get_pagecnt(pp->p_szc) - 1; 6630 while (extra > 0) { 6631 tpp = pp->p_next; 6632 page_sub(&pp, tpp); 6633 tpp->p_szc = 0; 6634 page_free(tpp, 1); 6635 extra--; 6636 } 6637 /* Make sure to set our page to szc 0 as well */ 6638 ASSERT(pp->p_next == pp && pp->p_prev == pp); 6639 pp->p_szc = 0; 6640 } 6641 goto cleanup; 6642 } else if (ret == EIO) { 6643 ret = EAGAIN; 6644 goto cleanup; 6645 } else { 6646 /* 6647 * Need to reset return type as we failed to relocate the page 6648 * but that does not mean that some of the next steps will not 6649 * work. 6650 */ 6651 ret = 0; 6652 } 6653 6654 skip_relocate: 6655 6656 if (pp->p_szc > 0) { 6657 if (page_try_demote_pages(pp) == 0) { 6658 ret = EAGAIN; 6659 goto cleanup; 6660 } 6661 } 6662 6663 ASSERT(pp->p_szc == 0); 6664 6665 if (hat_ismod(pp)) { 6666 ret = EAGAIN; 6667 goto cleanup; 6668 } 6669 if (PP_ISKAS(pp)) { 6670 ret = EAGAIN; 6671 goto cleanup; 6672 } 6673 if (pp->p_lckcnt || pp->p_cowcnt) { 6674 ret = EAGAIN; 6675 goto cleanup; 6676 } 6677 6678 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 6679 ASSERT(!hat_page_is_mapped(pp)); 6680 6681 if (hat_ismod(pp)) { 6682 /* 6683 * This is a semi-odd case as the page is now modified but not 6684 * mapped as we just unloaded the mappings above. 6685 */ 6686 ret = EAGAIN; 6687 goto cleanup; 6688 } 6689 if (pp->p_vnode != NULL) { 6690 page_hashout(pp, NULL); 6691 } 6692 6693 /* 6694 * At this point, the page should be in a clean state and 6695 * we can do whatever we want with it. 6696 */ 6697 6698 cleanup: 6699 if (ret != 0) { 6700 if (!skip_unlock) { 6701 page_unlock(pp); 6702 } 6703 } else { 6704 ASSERT(pp->p_szc == 0); 6705 ASSERT(PAGE_EXCL(pp)); 6706 6707 pp->p_next = pp; 6708 pp->p_prev = pp; 6709 } 6710 return (ret); 6711 } 6712 6713 /* 6714 * Various callers of page_trycapture() can have different restrictions upon 6715 * what memory they have access to. 6716 * Returns 0 on success, with the following error codes on failure: 6717 * EPERM - The requested page is long term locked, and thus repeated 6718 * requests to capture this page will likely fail. 6719 * ENOMEM - There was not enough free memory in the system to safely 6720 * map the requested page. 6721 * ENOENT - The requested page was inside the kernel cage, and the 6722 * PHYSMEM_CAGE flag was not set. 6723 */ 6724 int 6725 page_capture_pre_checks(page_t *pp, uint_t flags) 6726 { 6727 ASSERT(pp != NULL); 6728 6729 #if defined(__sparc) 6730 if (pp->p_vnode == &promvp) { 6731 return (EPERM); 6732 } 6733 6734 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) && 6735 (flags & CAPTURE_PHYSMEM)) { 6736 return (ENOENT); 6737 } 6738 6739 if (PP_ISNORELOCKERNEL(pp)) { 6740 return (EPERM); 6741 } 6742 #else 6743 if (PP_ISKAS(pp)) { 6744 return (EPERM); 6745 } 6746 #endif /* __sparc */ 6747 6748 /* only physmem currently has the restrictions checked below */ 6749 if (!(flags & CAPTURE_PHYSMEM)) { 6750 return (0); 6751 } 6752 6753 if (availrmem < swapfs_minfree) { 6754 /* 6755 * We won't try to capture this page as we are 6756 * running low on memory. 6757 */ 6758 return (ENOMEM); 6759 } 6760 return (0); 6761 } 6762 6763 /* 6764 * Once we have a page in our mits, go ahead and complete the capture 6765 * operation. 6766 * Returns 1 on failure where page is no longer needed 6767 * Returns 0 on success 6768 * Returns -1 if there was a transient failure. 6769 * Failure cases must release the SE_EXCL lock on pp (usually via page_free). 6770 */ 6771 int 6772 page_capture_take_action(page_t *pp, uint_t flags, void *datap) 6773 { 6774 int cb_index; 6775 int ret = 0; 6776 page_capture_hash_bucket_t *bp1; 6777 page_capture_hash_bucket_t *bp2; 6778 int index; 6779 int found = 0; 6780 int i; 6781 6782 ASSERT(PAGE_EXCL(pp)); 6783 ASSERT(curthread->t_flag & T_CAPTURING); 6784 6785 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6786 if ((flags >> cb_index) & 1) { 6787 break; 6788 } 6789 } 6790 ASSERT(cb_index < PC_NUM_CALLBACKS); 6791 6792 /* 6793 * Remove the entry from the page_capture hash, but don't free it yet 6794 * as we may need to put it back. 6795 * Since we own the page at this point in time, we should find it 6796 * in the hash if this is an ASYNC call. If we don't it's likely 6797 * that the page_capture_async() thread decided that this request 6798 * had expired, in which case we just continue on. 6799 */ 6800 if (flags & CAPTURE_ASYNC) { 6801 6802 index = PAGE_CAPTURE_HASH(pp); 6803 6804 mutex_enter(&page_capture_hash[index].pchh_mutex); 6805 for (i = 0; i < 2 && !found; i++) { 6806 bp1 = page_capture_hash[index].lists[i].next; 6807 while (bp1 != &page_capture_hash[index].lists[i]) { 6808 if (bp1->pp == pp) { 6809 bp1->next->prev = bp1->prev; 6810 bp1->prev->next = bp1->next; 6811 page_capture_hash[index]. 6812 num_pages[bp1->pri]--; 6813 page_clrtoxic(pp, PR_CAPTURE); 6814 found = 1; 6815 break; 6816 } 6817 bp1 = bp1->next; 6818 } 6819 } 6820 mutex_exit(&page_capture_hash[index].pchh_mutex); 6821 } 6822 6823 /* Synchronize with the unregister func. */ 6824 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6825 if (!pc_cb[cb_index].cb_active) { 6826 page_free(pp, 1); 6827 rw_exit(&pc_cb[cb_index].cb_rwlock); 6828 if (found) { 6829 kmem_free(bp1, sizeof (*bp1)); 6830 } 6831 return (1); 6832 } 6833 6834 /* 6835 * We need to remove the entry from the page capture hash and turn off 6836 * the PR_CAPTURE bit before calling the callback. We'll need to cache 6837 * the entry here, and then based upon the return value, cleanup 6838 * appropriately or re-add it to the hash, making sure that someone else 6839 * hasn't already done so. 6840 * It should be rare for the callback to fail and thus it's ok for 6841 * the failure path to be a bit complicated as the success path is 6842 * cleaner and the locking rules are easier to follow. 6843 */ 6844 6845 ret = pc_cb[cb_index].cb_func(pp, datap, flags); 6846 6847 rw_exit(&pc_cb[cb_index].cb_rwlock); 6848 6849 /* 6850 * If this was an ASYNC request, we need to cleanup the hash if the 6851 * callback was successful or if the request was no longer valid. 6852 * For non-ASYNC requests, we return failure to map and the caller 6853 * will take care of adding the request to the hash. 6854 * Note also that the callback itself is responsible for the page 6855 * at this point in time in terms of locking ... The most common 6856 * case for the failure path should just be a page_free. 6857 */ 6858 if (ret >= 0) { 6859 if (found) { 6860 if (bp1->flags & CAPTURE_RETIRE) { 6861 page_retire_decr_pend_count(datap); 6862 } 6863 kmem_free(bp1, sizeof (*bp1)); 6864 } 6865 return (ret); 6866 } 6867 if (!found) { 6868 return (ret); 6869 } 6870 6871 ASSERT(flags & CAPTURE_ASYNC); 6872 6873 /* 6874 * Check for expiration time first as we can just free it up if it's 6875 * expired. 6876 */ 6877 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) { 6878 kmem_free(bp1, sizeof (*bp1)); 6879 return (ret); 6880 } 6881 6882 /* 6883 * The callback failed and there used to be an entry in the hash for 6884 * this page, so we need to add it back to the hash. 6885 */ 6886 mutex_enter(&page_capture_hash[index].pchh_mutex); 6887 if (!(pp->p_toxic & PR_CAPTURE)) { 6888 /* just add bp1 back to head of walked list */ 6889 page_settoxic(pp, PR_CAPTURE); 6890 bp1->next = page_capture_hash[index].lists[1].next; 6891 bp1->prev = &page_capture_hash[index].lists[1]; 6892 bp1->next->prev = bp1; 6893 bp1->pri = PAGE_CAPTURE_PRIO(pp); 6894 page_capture_hash[index].lists[1].next = bp1; 6895 page_capture_hash[index].num_pages[bp1->pri]++; 6896 mutex_exit(&page_capture_hash[index].pchh_mutex); 6897 return (ret); 6898 } 6899 6900 /* 6901 * Otherwise there was a new capture request added to list 6902 * Need to make sure that our original data is represented if 6903 * appropriate. 6904 */ 6905 for (i = 0; i < 2; i++) { 6906 bp2 = page_capture_hash[index].lists[i].next; 6907 while (bp2 != &page_capture_hash[index].lists[i]) { 6908 if (bp2->pp == pp) { 6909 if (bp1->flags & CAPTURE_RETIRE) { 6910 if (!(bp2->flags & CAPTURE_RETIRE)) { 6911 bp2->szc = bp1->szc; 6912 bp2->flags = bp1->flags; 6913 bp2->expires = bp1->expires; 6914 bp2->datap = bp1->datap; 6915 } 6916 } else { 6917 ASSERT(bp1->flags & CAPTURE_PHYSMEM); 6918 if (!(bp2->flags & CAPTURE_RETIRE)) { 6919 bp2->szc = bp1->szc; 6920 bp2->flags = bp1->flags; 6921 bp2->expires = bp1->expires; 6922 bp2->datap = bp1->datap; 6923 } 6924 } 6925 page_capture_hash[index].num_pages[bp2->pri]--; 6926 bp2->pri = PAGE_CAPTURE_PRIO(pp); 6927 page_capture_hash[index].num_pages[bp2->pri]++; 6928 mutex_exit(&page_capture_hash[index]. 6929 pchh_mutex); 6930 kmem_free(bp1, sizeof (*bp1)); 6931 return (ret); 6932 } 6933 bp2 = bp2->next; 6934 } 6935 } 6936 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp); 6937 /*NOTREACHED*/ 6938 } 6939 6940 /* 6941 * Try to capture the given page for the caller specified in the flags 6942 * parameter. The page will either be captured and handed over to the 6943 * appropriate callback, or will be queued up in the page capture hash 6944 * to be captured asynchronously. 6945 * If the current request is due to an async capture, the page must be 6946 * exclusively locked before calling this function. 6947 * Currently szc must be 0 but in the future this should be expandable to 6948 * other page sizes. 6949 * Returns 0 on success, with the following error codes on failure: 6950 * EPERM - The requested page is long term locked, and thus repeated 6951 * requests to capture this page will likely fail. 6952 * ENOMEM - There was not enough free memory in the system to safely 6953 * map the requested page. 6954 * ENOENT - The requested page was inside the kernel cage, and the 6955 * CAPTURE_GET_CAGE flag was not set. 6956 * EAGAIN - The requested page could not be capturead at this point in 6957 * time but future requests will likely work. 6958 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag 6959 * was not set. 6960 */ 6961 int 6962 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 6963 { 6964 int ret; 6965 int cb_index; 6966 6967 if (flags & CAPTURE_ASYNC) { 6968 ASSERT(PAGE_EXCL(pp)); 6969 goto async; 6970 } 6971 6972 /* Make sure there's enough availrmem ... */ 6973 ret = page_capture_pre_checks(pp, flags); 6974 if (ret != 0) { 6975 return (ret); 6976 } 6977 6978 if (!page_trylock(pp, SE_EXCL)) { 6979 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6980 if ((flags >> cb_index) & 1) { 6981 break; 6982 } 6983 } 6984 ASSERT(cb_index < PC_NUM_CALLBACKS); 6985 ret = EAGAIN; 6986 /* Special case for retired pages */ 6987 if (PP_RETIRED(pp)) { 6988 if (flags & CAPTURE_GET_RETIRED) { 6989 if (!page_unretire_pp(pp, PR_UNR_TEMP)) { 6990 /* 6991 * Need to set capture bit and add to 6992 * hash so that the page will be 6993 * retired when freed. 6994 */ 6995 page_capture_add_hash(pp, szc, 6996 CAPTURE_RETIRE, NULL); 6997 ret = 0; 6998 goto own_page; 6999 } 7000 } else { 7001 return (EBUSY); 7002 } 7003 } 7004 page_capture_add_hash(pp, szc, flags, datap); 7005 return (ret); 7006 } 7007 7008 async: 7009 ASSERT(PAGE_EXCL(pp)); 7010 7011 /* Need to check for physmem async requests that availrmem is sane */ 7012 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) == 7013 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) && 7014 (availrmem < swapfs_minfree)) { 7015 page_unlock(pp); 7016 return (ENOMEM); 7017 } 7018 7019 ret = page_capture_clean_page(pp); 7020 7021 if (ret != 0) { 7022 /* We failed to get the page, so lets add it to the hash */ 7023 if (!(flags & CAPTURE_ASYNC)) { 7024 page_capture_add_hash(pp, szc, flags, datap); 7025 } 7026 return (ret); 7027 } 7028 7029 own_page: 7030 ASSERT(PAGE_EXCL(pp)); 7031 ASSERT(pp->p_szc == 0); 7032 7033 /* Call the callback */ 7034 ret = page_capture_take_action(pp, flags, datap); 7035 7036 if (ret == 0) { 7037 return (0); 7038 } 7039 7040 /* 7041 * Note that in the failure cases from page_capture_take_action, the 7042 * EXCL lock will have already been dropped. 7043 */ 7044 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) { 7045 page_capture_add_hash(pp, szc, flags, datap); 7046 } 7047 return (EAGAIN); 7048 } 7049 7050 int 7051 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 7052 { 7053 int ret; 7054 7055 curthread->t_flag |= T_CAPTURING; 7056 ret = page_itrycapture(pp, szc, flags, datap); 7057 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */ 7058 return (ret); 7059 } 7060 7061 /* 7062 * When unlocking a page which has the PR_CAPTURE bit set, this routine 7063 * gets called to try and capture the page. 7064 */ 7065 void 7066 page_unlock_capture(page_t *pp) 7067 { 7068 page_capture_hash_bucket_t *bp; 7069 int index; 7070 int i; 7071 uint_t szc; 7072 uint_t flags = 0; 7073 void *datap; 7074 kmutex_t *mp; 7075 extern vnode_t retired_pages; 7076 7077 /* 7078 * We need to protect against a possible deadlock here where we own 7079 * the vnode page hash mutex and want to acquire it again as there 7080 * are locations in the code, where we unlock a page while holding 7081 * the mutex which can lead to the page being captured and eventually 7082 * end up here. As we may be hashing out the old page and hashing into 7083 * the retire vnode, we need to make sure we don't own them. 7084 * Other callbacks who do hash operations also need to make sure that 7085 * before they hashin to a vnode that they do not currently own the 7086 * vphm mutex otherwise there will be a panic. 7087 */ 7088 if (mutex_owned(page_vnode_mutex(&retired_pages))) { 7089 page_unlock_nocapture(pp); 7090 return; 7091 } 7092 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) { 7093 page_unlock_nocapture(pp); 7094 return; 7095 } 7096 7097 index = PAGE_CAPTURE_HASH(pp); 7098 7099 mp = &page_capture_hash[index].pchh_mutex; 7100 mutex_enter(mp); 7101 for (i = 0; i < 2; i++) { 7102 bp = page_capture_hash[index].lists[i].next; 7103 while (bp != &page_capture_hash[index].lists[i]) { 7104 if (bp->pp == pp) { 7105 szc = bp->szc; 7106 flags = bp->flags | CAPTURE_ASYNC; 7107 datap = bp->datap; 7108 mutex_exit(mp); 7109 (void) page_trycapture(pp, szc, flags, datap); 7110 return; 7111 } 7112 bp = bp->next; 7113 } 7114 } 7115 7116 /* Failed to find page in hash so clear flags and unlock it. */ 7117 page_clrtoxic(pp, PR_CAPTURE); 7118 page_unlock(pp); 7119 7120 mutex_exit(mp); 7121 } 7122 7123 void 7124 page_capture_init() 7125 { 7126 int i; 7127 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7128 page_capture_hash[i].lists[0].next = 7129 &page_capture_hash[i].lists[0]; 7130 page_capture_hash[i].lists[0].prev = 7131 &page_capture_hash[i].lists[0]; 7132 page_capture_hash[i].lists[1].next = 7133 &page_capture_hash[i].lists[1]; 7134 page_capture_hash[i].lists[1].prev = 7135 &page_capture_hash[i].lists[1]; 7136 } 7137 7138 pc_thread_shortwait = 23 * hz; 7139 pc_thread_longwait = 1201 * hz; 7140 pc_thread_retry = 3; 7141 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 7142 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL); 7143 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0, 7144 TS_RUN, minclsyspri); 7145 } 7146 7147 /* 7148 * It is necessary to scrub any failing pages prior to reboot in order to 7149 * prevent a latent error trap from occurring on the next boot. 7150 */ 7151 void 7152 page_retire_mdboot() 7153 { 7154 page_t *pp; 7155 int i, j; 7156 page_capture_hash_bucket_t *bp; 7157 uchar_t pri; 7158 7159 /* walk lists looking for pages to scrub */ 7160 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7161 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7162 if (page_capture_hash[i].num_pages[pri] != 0) { 7163 break; 7164 } 7165 } 7166 if (pri == PC_NUM_PRI) 7167 continue; 7168 7169 mutex_enter(&page_capture_hash[i].pchh_mutex); 7170 7171 for (j = 0; j < 2; j++) { 7172 bp = page_capture_hash[i].lists[j].next; 7173 while (bp != &page_capture_hash[i].lists[j]) { 7174 pp = bp->pp; 7175 if (PP_TOXIC(pp)) { 7176 if (page_trylock(pp, SE_EXCL)) { 7177 PP_CLRFREE(pp); 7178 pagescrub(pp, 0, PAGESIZE); 7179 page_unlock(pp); 7180 } 7181 } 7182 bp = bp->next; 7183 } 7184 } 7185 mutex_exit(&page_capture_hash[i].pchh_mutex); 7186 } 7187 } 7188 7189 /* 7190 * Walk the page_capture_hash trying to capture pages and also cleanup old 7191 * entries which have expired. 7192 */ 7193 void 7194 page_capture_async() 7195 { 7196 page_t *pp; 7197 int i; 7198 int ret; 7199 page_capture_hash_bucket_t *bp1, *bp2; 7200 uint_t szc; 7201 uint_t flags; 7202 void *datap; 7203 uchar_t pri; 7204 7205 /* If there are outstanding pages to be captured, get to work */ 7206 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7207 for (pri = 0; pri < PC_NUM_PRI; pri++) { 7208 if (page_capture_hash[i].num_pages[pri] != 0) 7209 break; 7210 } 7211 if (pri == PC_NUM_PRI) 7212 continue; 7213 7214 /* Append list 1 to list 0 and then walk through list 0 */ 7215 mutex_enter(&page_capture_hash[i].pchh_mutex); 7216 bp1 = &page_capture_hash[i].lists[1]; 7217 bp2 = bp1->next; 7218 if (bp1 != bp2) { 7219 bp1->prev->next = page_capture_hash[i].lists[0].next; 7220 bp2->prev = &page_capture_hash[i].lists[0]; 7221 page_capture_hash[i].lists[0].next->prev = bp1->prev; 7222 page_capture_hash[i].lists[0].next = bp2; 7223 bp1->next = bp1; 7224 bp1->prev = bp1; 7225 } 7226 7227 /* list[1] will be empty now */ 7228 7229 bp1 = page_capture_hash[i].lists[0].next; 7230 while (bp1 != &page_capture_hash[i].lists[0]) { 7231 /* Check expiration time */ 7232 if ((ddi_get_lbolt() > bp1->expires && 7233 bp1->expires != -1) || 7234 page_deleted(bp1->pp)) { 7235 page_capture_hash[i].lists[0].next = bp1->next; 7236 bp1->next->prev = 7237 &page_capture_hash[i].lists[0]; 7238 page_capture_hash[i].num_pages[bp1->pri]--; 7239 7240 /* 7241 * We can safely remove the PR_CAPTURE bit 7242 * without holding the EXCL lock on the page 7243 * as the PR_CAPTURE bit requres that the 7244 * page_capture_hash[].pchh_mutex be held 7245 * to modify it. 7246 */ 7247 page_clrtoxic(bp1->pp, PR_CAPTURE); 7248 mutex_exit(&page_capture_hash[i].pchh_mutex); 7249 kmem_free(bp1, sizeof (*bp1)); 7250 mutex_enter(&page_capture_hash[i].pchh_mutex); 7251 bp1 = page_capture_hash[i].lists[0].next; 7252 continue; 7253 } 7254 pp = bp1->pp; 7255 szc = bp1->szc; 7256 flags = bp1->flags; 7257 datap = bp1->datap; 7258 mutex_exit(&page_capture_hash[i].pchh_mutex); 7259 if (page_trylock(pp, SE_EXCL)) { 7260 ret = page_trycapture(pp, szc, 7261 flags | CAPTURE_ASYNC, datap); 7262 } else { 7263 ret = 1; /* move to walked hash */ 7264 } 7265 7266 if (ret != 0) { 7267 /* Move to walked hash */ 7268 (void) page_capture_move_to_walked(pp); 7269 } 7270 mutex_enter(&page_capture_hash[i].pchh_mutex); 7271 bp1 = page_capture_hash[i].lists[0].next; 7272 } 7273 7274 mutex_exit(&page_capture_hash[i].pchh_mutex); 7275 } 7276 } 7277 7278 /* 7279 * This function is called by the page_capture_thread, and is needed in 7280 * in order to initiate aio cleanup, so that pages used in aio 7281 * will be unlocked and subsequently retired by page_capture_thread. 7282 */ 7283 static int 7284 do_aio_cleanup(void) 7285 { 7286 proc_t *procp; 7287 int (*aio_cleanup_dr_delete_memory)(proc_t *); 7288 int cleaned = 0; 7289 7290 if (modload("sys", "kaio") == -1) { 7291 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio"); 7292 return (0); 7293 } 7294 /* 7295 * We use the aio_cleanup_dr_delete_memory function to 7296 * initiate the actual clean up; this function will wake 7297 * up the per-process aio_cleanup_thread. 7298 */ 7299 aio_cleanup_dr_delete_memory = (int (*)(proc_t *)) 7300 modgetsymvalue("aio_cleanup_dr_delete_memory", 0); 7301 if (aio_cleanup_dr_delete_memory == NULL) { 7302 cmn_err(CE_WARN, 7303 "aio_cleanup_dr_delete_memory not found in kaio"); 7304 return (0); 7305 } 7306 mutex_enter(&pidlock); 7307 for (procp = practive; (procp != NULL); procp = procp->p_next) { 7308 mutex_enter(&procp->p_lock); 7309 if (procp->p_aio != NULL) { 7310 /* cleanup proc's outstanding kaio */ 7311 cleaned += (*aio_cleanup_dr_delete_memory)(procp); 7312 } 7313 mutex_exit(&procp->p_lock); 7314 } 7315 mutex_exit(&pidlock); 7316 return (cleaned); 7317 } 7318 7319 /* 7320 * helper function for page_capture_thread 7321 */ 7322 static void 7323 page_capture_handle_outstanding(void) 7324 { 7325 int ntry; 7326 7327 /* Reap pages before attempting capture pages */ 7328 kmem_reap(); 7329 7330 if ((page_retire_pend_count() > page_retire_pend_kas_count()) && 7331 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) { 7332 /* 7333 * Note: Purging only for platforms that support 7334 * ISM hat_pageunload() - mainly SPARC. On x86/x64 7335 * platforms ISM pages SE_SHARED locked until destroyed. 7336 */ 7337 7338 /* disable and purge seg_pcache */ 7339 (void) seg_p_disable(); 7340 for (ntry = 0; ntry < pc_thread_retry; ntry++) { 7341 if (!page_retire_pend_count()) 7342 break; 7343 if (do_aio_cleanup()) { 7344 /* 7345 * allow the apps cleanup threads 7346 * to run 7347 */ 7348 delay(pc_thread_shortwait); 7349 } 7350 page_capture_async(); 7351 } 7352 /* reenable seg_pcache */ 7353 seg_p_enable(); 7354 7355 /* completed what can be done. break out */ 7356 return; 7357 } 7358 7359 /* 7360 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap 7361 * and then attempt to capture. 7362 */ 7363 seg_preap(); 7364 page_capture_async(); 7365 } 7366 7367 /* 7368 * The page_capture_thread loops forever, looking to see if there are 7369 * pages still waiting to be captured. 7370 */ 7371 static void 7372 page_capture_thread(void) 7373 { 7374 callb_cpr_t c; 7375 int i; 7376 int high_pri_pages; 7377 int low_pri_pages; 7378 clock_t timeout; 7379 7380 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture"); 7381 7382 mutex_enter(&pc_thread_mutex); 7383 for (;;) { 7384 high_pri_pages = 0; 7385 low_pri_pages = 0; 7386 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7387 high_pri_pages += 7388 page_capture_hash[i].num_pages[PC_PRI_HI]; 7389 low_pri_pages += 7390 page_capture_hash[i].num_pages[PC_PRI_LO]; 7391 } 7392 7393 timeout = pc_thread_longwait; 7394 if (high_pri_pages != 0) { 7395 timeout = pc_thread_shortwait; 7396 page_capture_handle_outstanding(); 7397 } else if (low_pri_pages != 0) { 7398 page_capture_async(); 7399 } 7400 CALLB_CPR_SAFE_BEGIN(&c); 7401 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex, 7402 timeout, TR_CLOCK_TICK); 7403 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7404 } 7405 /*NOTREACHED*/ 7406 } 7407 /* 7408 * Attempt to locate a bucket that has enough pages to satisfy the request. 7409 * The initial check is done without the lock to avoid unneeded contention. 7410 * The function returns 1 if enough pages were found, else 0 if it could not 7411 * find enough pages in a bucket. 7412 */ 7413 static int 7414 pcf_decrement_bucket(pgcnt_t npages) 7415 { 7416 struct pcf *p; 7417 struct pcf *q; 7418 int i; 7419 7420 p = &pcf[PCF_INDEX()]; 7421 q = &pcf[pcf_fanout]; 7422 for (i = 0; i < pcf_fanout; i++) { 7423 if (p->pcf_count > npages) { 7424 /* 7425 * a good one to try. 7426 */ 7427 mutex_enter(&p->pcf_lock); 7428 if (p->pcf_count > npages) { 7429 p->pcf_count -= (uint_t)npages; 7430 /* 7431 * freemem is not protected by any lock. 7432 * Thus, we cannot have any assertion 7433 * containing freemem here. 7434 */ 7435 freemem -= npages; 7436 mutex_exit(&p->pcf_lock); 7437 return (1); 7438 } 7439 mutex_exit(&p->pcf_lock); 7440 } 7441 p++; 7442 if (p >= q) { 7443 p = pcf; 7444 } 7445 } 7446 return (0); 7447 } 7448 7449 /* 7450 * Arguments: 7451 * pcftotal_ret: If the value is not NULL and we have walked all the 7452 * buckets but did not find enough pages then it will 7453 * be set to the total number of pages in all the pcf 7454 * buckets. 7455 * npages: Is the number of pages we have been requested to 7456 * find. 7457 * unlock: If set to 0 we will leave the buckets locked if the 7458 * requested number of pages are not found. 7459 * 7460 * Go and try to satisfy the page request from any number of buckets. 7461 * This can be a very expensive operation as we have to lock the buckets 7462 * we are checking (and keep them locked), starting at bucket 0. 7463 * 7464 * The function returns 1 if enough pages were found, else 0 if it could not 7465 * find enough pages in the buckets. 7466 * 7467 */ 7468 static int 7469 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock) 7470 { 7471 struct pcf *p; 7472 pgcnt_t pcftotal; 7473 int i; 7474 7475 p = pcf; 7476 /* try to collect pages from several pcf bins */ 7477 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) { 7478 mutex_enter(&p->pcf_lock); 7479 pcftotal += p->pcf_count; 7480 if (pcftotal >= npages) { 7481 /* 7482 * Wow! There are enough pages laying around 7483 * to satisfy the request. Do the accounting, 7484 * drop the locks we acquired, and go back. 7485 * 7486 * freemem is not protected by any lock. So, 7487 * we cannot have any assertion containing 7488 * freemem. 7489 */ 7490 freemem -= npages; 7491 while (p >= pcf) { 7492 if (p->pcf_count <= npages) { 7493 npages -= p->pcf_count; 7494 p->pcf_count = 0; 7495 } else { 7496 p->pcf_count -= (uint_t)npages; 7497 npages = 0; 7498 } 7499 mutex_exit(&p->pcf_lock); 7500 p--; 7501 } 7502 ASSERT(npages == 0); 7503 return (1); 7504 } 7505 p++; 7506 } 7507 if (unlock) { 7508 /* failed to collect pages - release the locks */ 7509 while (--p >= pcf) { 7510 mutex_exit(&p->pcf_lock); 7511 } 7512 } 7513 if (pcftotal_ret != NULL) 7514 *pcftotal_ret = pcftotal; 7515 return (0); 7516 } 7517