xref: /titanic_44/usr/src/uts/common/vm/vm_page.c (revision a60349c89adffc0902b2353230891d8e7f2b24d9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * VM - physical page management.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/time.h>
48 #include <sys/vnode.h>
49 #include <sys/vm.h>
50 #include <sys/vtrace.h>
51 #include <sys/swap.h>
52 #include <sys/cmn_err.h>
53 #include <sys/tuneable.h>
54 #include <sys/sysmacros.h>
55 #include <sys/cpuvar.h>
56 #include <sys/callb.h>
57 #include <sys/debug.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/condvar_impl.h>
60 #include <sys/mem_config.h>
61 #include <sys/mem_cage.h>
62 #include <sys/kmem.h>
63 #include <sys/atomic.h>
64 #include <sys/strlog.h>
65 #include <sys/mman.h>
66 #include <sys/ontrap.h>
67 #include <sys/lgrp.h>
68 #include <sys/vfs.h>
69 
70 #include <vm/hat.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/seg.h>
74 #include <vm/pvn.h>
75 #include <vm/seg_kmem.h>
76 #include <vm/vm_dep.h>
77 #include <sys/vm_usage.h>
78 #include <fs/fs_subr.h>
79 #include <sys/ddi.h>
80 #include <sys/modctl.h>
81 
82 static pgcnt_t max_page_get;	/* max page_get request size in pages */
83 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
84 
85 /*
86  * freemem_lock protects all freemem variables:
87  * availrmem. Also this lock protects the globals which track the
88  * availrmem changes for accurate kernel footprint calculation.
89  * See below for an explanation of these
90  * globals.
91  */
92 kmutex_t freemem_lock;
93 pgcnt_t availrmem;
94 pgcnt_t availrmem_initial;
95 
96 /*
97  * These globals track availrmem changes to get a more accurate
98  * estimate of tke kernel size. Historically pp_kernel is used for
99  * kernel size and is based on availrmem. But availrmem is adjusted for
100  * locked pages in the system not just for kernel locked pages.
101  * These new counters will track the pages locked through segvn and
102  * by explicit user locking.
103  *
104  * pages_locked : How many pages are locked because of user specified
105  * locking through mlock or plock.
106  *
107  * pages_useclaim,pages_claimed : These two variables track the
108  * claim adjustments because of the protection changes on a segvn segment.
109  *
110  * All these globals are protected by the same lock which protects availrmem.
111  */
112 pgcnt_t pages_locked = 0;
113 pgcnt_t pages_useclaim = 0;
114 pgcnt_t pages_claimed = 0;
115 
116 
117 /*
118  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
119  */
120 static kmutex_t	new_freemem_lock;
121 static uint_t	freemem_wait;	/* someone waiting for freemem */
122 static kcondvar_t freemem_cv;
123 
124 /*
125  * The logical page free list is maintained as two lists, the 'free'
126  * and the 'cache' lists.
127  * The free list contains those pages that should be reused first.
128  *
129  * The implementation of the lists is machine dependent.
130  * page_get_freelist(), page_get_cachelist(),
131  * page_list_sub(), and page_list_add()
132  * form the interface to the machine dependent implementation.
133  *
134  * Pages with p_free set are on the cache list.
135  * Pages with p_free and p_age set are on the free list,
136  *
137  * A page may be locked while on either list.
138  */
139 
140 /*
141  * free list accounting stuff.
142  *
143  *
144  * Spread out the value for the number of pages on the
145  * page free and page cache lists.  If there is just one
146  * value, then it must be under just one lock.
147  * The lock contention and cache traffic are a real bother.
148  *
149  * When we acquire and then drop a single pcf lock
150  * we can start in the middle of the array of pcf structures.
151  * If we acquire more than one pcf lock at a time, we need to
152  * start at the front to avoid deadlocking.
153  *
154  * pcf_count holds the number of pages in each pool.
155  *
156  * pcf_block is set when page_create_get_something() has asked the
157  * PSM page freelist and page cachelist routines without specifying
158  * a color and nothing came back.  This is used to block anything
159  * else from moving pages from one list to the other while the
160  * lists are searched again.  If a page is freeed while pcf_block is
161  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
162  * of clearning pcf_block, doing the wakeups, etc.
163  */
164 
165 #define	MAX_PCF_FANOUT NCPU
166 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
167 static uint_t pcf_fanout_mask = 0;
168 
169 struct pcf {
170 	kmutex_t	pcf_lock;	/* protects the structure */
171 	uint_t		pcf_count;	/* page count */
172 	uint_t		pcf_wait;	/* number of waiters */
173 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
174 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
175 	uint_t		pcf_fill[10];	/* to line up on the caches */
176 };
177 
178 /*
179  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
180  * it will hash the cpu to).  This is done to prevent a drain condition
181  * from happening.  This drain condition will occur when pcf_count decrement
182  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
183  * example of this shows up with device interrupts.  The dma buffer is allocated
184  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
185  * When the memory is returned by the interrupt thread, the pcf_count will be
186  * incremented based on the cpu servicing the interrupt.
187  */
188 static struct pcf pcf[MAX_PCF_FANOUT];
189 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
190 	(randtick() >> 24)) & (pcf_fanout_mask))
191 
192 static int pcf_decrement_bucket(pgcnt_t);
193 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
194 
195 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
196 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
197 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
198 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
199 
200 #ifdef VM_STATS
201 
202 /*
203  * No locks, but so what, they are only statistics.
204  */
205 
206 static struct page_tcnt {
207 	int	pc_free_cache;		/* free's into cache list */
208 	int	pc_free_dontneed;	/* free's with dontneed */
209 	int	pc_free_pageout;	/* free's from pageout */
210 	int	pc_free_free;		/* free's into free list */
211 	int	pc_free_pages;		/* free's into large page free list */
212 	int	pc_destroy_pages;	/* large page destroy's */
213 	int	pc_get_cache;		/* get's from cache list */
214 	int	pc_get_free;		/* get's from free list */
215 	int	pc_reclaim;		/* reclaim's */
216 	int	pc_abortfree;		/* abort's of free pages */
217 	int	pc_find_hit;		/* find's that find page */
218 	int	pc_find_miss;		/* find's that don't find page */
219 	int	pc_destroy_free;	/* # of free pages destroyed */
220 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
221 	int	pc_find_hashlen[PC_HASH_CNT+1];
222 	int	pc_addclaim_pages;
223 	int	pc_subclaim_pages;
224 	int	pc_free_replacement_page[2];
225 	int	pc_try_demote_pages[6];
226 	int	pc_demote_pages[2];
227 } pagecnt;
228 
229 uint_t	hashin_count;
230 uint_t	hashin_not_held;
231 uint_t	hashin_already;
232 
233 uint_t	hashout_count;
234 uint_t	hashout_not_held;
235 
236 uint_t	page_create_count;
237 uint_t	page_create_not_enough;
238 uint_t	page_create_not_enough_again;
239 uint_t	page_create_zero;
240 uint_t	page_create_hashout;
241 uint_t	page_create_page_lock_failed;
242 uint_t	page_create_trylock_failed;
243 uint_t	page_create_found_one;
244 uint_t	page_create_hashin_failed;
245 uint_t	page_create_dropped_phm;
246 
247 uint_t	page_create_new;
248 uint_t	page_create_exists;
249 uint_t	page_create_putbacks;
250 uint_t	page_create_overshoot;
251 
252 uint_t	page_reclaim_zero;
253 uint_t	page_reclaim_zero_locked;
254 
255 uint_t	page_rename_exists;
256 uint_t	page_rename_count;
257 
258 uint_t	page_lookup_cnt[20];
259 uint_t	page_lookup_nowait_cnt[10];
260 uint_t	page_find_cnt;
261 uint_t	page_exists_cnt;
262 uint_t	page_exists_forreal_cnt;
263 uint_t	page_lookup_dev_cnt;
264 uint_t	get_cachelist_cnt;
265 uint_t	page_create_cnt[10];
266 uint_t	alloc_pages[9];
267 uint_t	page_exphcontg[19];
268 uint_t  page_create_large_cnt[10];
269 
270 /*
271  * Collects statistics.
272  */
273 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
274 	uint_t	mylen = 0; \
275 			\
276 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
277 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
278 			break; \
279 	} \
280 	if ((pp) != NULL) \
281 		pagecnt.pc_find_hit++; \
282 	else \
283 		pagecnt.pc_find_miss++; \
284 	if (mylen > PC_HASH_CNT) \
285 		mylen = PC_HASH_CNT; \
286 	pagecnt.pc_find_hashlen[mylen]++; \
287 }
288 
289 #else	/* VM_STATS */
290 
291 /*
292  * Don't collect statistics
293  */
294 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
295 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
296 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
297 			break; \
298 	} \
299 }
300 
301 #endif	/* VM_STATS */
302 
303 
304 
305 #ifdef DEBUG
306 #define	MEMSEG_SEARCH_STATS
307 #endif
308 
309 #ifdef MEMSEG_SEARCH_STATS
310 struct memseg_stats {
311     uint_t nsearch;
312     uint_t nlastwon;
313     uint_t nhashwon;
314     uint_t nnotfound;
315 } memseg_stats;
316 
317 #define	MEMSEG_STAT_INCR(v) \
318 	atomic_inc_32(&memseg_stats.v)
319 #else
320 #define	MEMSEG_STAT_INCR(x)
321 #endif
322 
323 struct memseg *memsegs;		/* list of memory segments */
324 
325 /*
326  * /etc/system tunable to control large page allocation hueristic.
327  *
328  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
329  * for large page allocation requests.  If a large page is not readily
330  * avaliable on the local freelists we will go through additional effort
331  * to create a large page, potentially moving smaller pages around to coalesce
332  * larger pages in the local lgroup.
333  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
334  * are not readily available in the local lgroup.
335  */
336 enum lpap {
337 	LPAP_DEFAULT,	/* default large page allocation policy */
338 	LPAP_LOCAL	/* local large page allocation policy */
339 };
340 
341 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
342 
343 static void page_init_mem_config(void);
344 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
345 static void page_do_hashout(page_t *);
346 static void page_capture_init();
347 int page_capture_take_action(page_t *, uint_t, void *);
348 
349 static void page_demote_vp_pages(page_t *);
350 
351 
352 void
353 pcf_init(void)
354 
355 {
356 	if (boot_ncpus != -1) {
357 		pcf_fanout = boot_ncpus;
358 	} else {
359 		pcf_fanout = max_ncpus;
360 	}
361 #ifdef sun4v
362 	/*
363 	 * Force at least 4 buckets if possible for sun4v.
364 	 */
365 	pcf_fanout = MAX(pcf_fanout, 4);
366 #endif /* sun4v */
367 
368 	/*
369 	 * Round up to the nearest power of 2.
370 	 */
371 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
372 	if (!ISP2(pcf_fanout)) {
373 		pcf_fanout = 1 << highbit(pcf_fanout);
374 
375 		if (pcf_fanout > MAX_PCF_FANOUT) {
376 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
377 		}
378 	}
379 	pcf_fanout_mask = pcf_fanout - 1;
380 }
381 
382 /*
383  * vm subsystem related initialization
384  */
385 void
386 vm_init(void)
387 {
388 	boolean_t callb_vm_cpr(void *, int);
389 
390 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
391 	page_init_mem_config();
392 	page_retire_init();
393 	vm_usage_init();
394 	page_capture_init();
395 }
396 
397 /*
398  * This function is called at startup and when memory is added or deleted.
399  */
400 void
401 init_pages_pp_maximum()
402 {
403 	static pgcnt_t p_min;
404 	static pgcnt_t pages_pp_maximum_startup;
405 	static pgcnt_t avrmem_delta;
406 	static int init_done;
407 	static int user_set;	/* true if set in /etc/system */
408 
409 	if (init_done == 0) {
410 
411 		/* If the user specified a value, save it */
412 		if (pages_pp_maximum != 0) {
413 			user_set = 1;
414 			pages_pp_maximum_startup = pages_pp_maximum;
415 		}
416 
417 		/*
418 		 * Setting of pages_pp_maximum is based first time
419 		 * on the value of availrmem just after the start-up
420 		 * allocations. To preserve this relationship at run
421 		 * time, use a delta from availrmem_initial.
422 		 */
423 		ASSERT(availrmem_initial >= availrmem);
424 		avrmem_delta = availrmem_initial - availrmem;
425 
426 		/* The allowable floor of pages_pp_maximum */
427 		p_min = tune.t_minarmem + 100;
428 
429 		/* Make sure we don't come through here again. */
430 		init_done = 1;
431 	}
432 	/*
433 	 * Determine pages_pp_maximum, the number of currently available
434 	 * pages (availrmem) that can't be `locked'. If not set by
435 	 * the user, we set it to 4% of the currently available memory
436 	 * plus 4MB.
437 	 * But we also insist that it be greater than tune.t_minarmem;
438 	 * otherwise a process could lock down a lot of memory, get swapped
439 	 * out, and never have enough to get swapped back in.
440 	 */
441 	if (user_set)
442 		pages_pp_maximum = pages_pp_maximum_startup;
443 	else
444 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
445 		    + btop(4 * 1024 * 1024);
446 
447 	if (pages_pp_maximum <= p_min) {
448 		pages_pp_maximum = p_min;
449 	}
450 }
451 
452 void
453 set_max_page_get(pgcnt_t target_total_pages)
454 {
455 	max_page_get = target_total_pages / 2;
456 }
457 
458 static pgcnt_t pending_delete;
459 
460 /*ARGSUSED*/
461 static void
462 page_mem_config_post_add(
463 	void *arg,
464 	pgcnt_t delta_pages)
465 {
466 	set_max_page_get(total_pages - pending_delete);
467 	init_pages_pp_maximum();
468 }
469 
470 /*ARGSUSED*/
471 static int
472 page_mem_config_pre_del(
473 	void *arg,
474 	pgcnt_t delta_pages)
475 {
476 	pgcnt_t nv;
477 
478 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
479 	set_max_page_get(total_pages - nv);
480 	return (0);
481 }
482 
483 /*ARGSUSED*/
484 static void
485 page_mem_config_post_del(
486 	void *arg,
487 	pgcnt_t delta_pages,
488 	int cancelled)
489 {
490 	pgcnt_t nv;
491 
492 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
493 	set_max_page_get(total_pages - nv);
494 	if (!cancelled)
495 		init_pages_pp_maximum();
496 }
497 
498 static kphysm_setup_vector_t page_mem_config_vec = {
499 	KPHYSM_SETUP_VECTOR_VERSION,
500 	page_mem_config_post_add,
501 	page_mem_config_pre_del,
502 	page_mem_config_post_del,
503 };
504 
505 static void
506 page_init_mem_config(void)
507 {
508 	int ret;
509 
510 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
511 	ASSERT(ret == 0);
512 }
513 
514 /*
515  * Evenly spread out the PCF counters for large free pages
516  */
517 static void
518 page_free_large_ctr(pgcnt_t npages)
519 {
520 	static struct pcf	*p = pcf;
521 	pgcnt_t			lump;
522 
523 	freemem += npages;
524 
525 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
526 
527 	while (npages > 0) {
528 
529 		ASSERT(!p->pcf_block);
530 
531 		if (lump < npages) {
532 			p->pcf_count += (uint_t)lump;
533 			npages -= lump;
534 		} else {
535 			p->pcf_count += (uint_t)npages;
536 			npages = 0;
537 		}
538 
539 		ASSERT(!p->pcf_wait);
540 
541 		if (++p > &pcf[pcf_fanout - 1])
542 			p = pcf;
543 	}
544 
545 	ASSERT(npages == 0);
546 }
547 
548 /*
549  * Add a physical chunk of memory to the system free lists during startup.
550  * Platform specific startup() allocates the memory for the page structs.
551  *
552  * num	- number of page structures
553  * base - page number (pfn) to be associated with the first page.
554  *
555  * Since we are doing this during startup (ie. single threaded), we will
556  * use shortcut routines to avoid any locking overhead while putting all
557  * these pages on the freelists.
558  *
559  * NOTE: Any changes performed to page_free(), must also be performed to
560  *	 add_physmem() since this is how we initialize all page_t's at
561  *	 boot time.
562  */
563 void
564 add_physmem(
565 	page_t	*pp,
566 	pgcnt_t	num,
567 	pfn_t	pnum)
568 {
569 	page_t	*root = NULL;
570 	uint_t	szc = page_num_pagesizes() - 1;
571 	pgcnt_t	large = page_get_pagecnt(szc);
572 	pgcnt_t	cnt = 0;
573 
574 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
575 	    "add_physmem:pp %p num %lu", pp, num);
576 
577 	/*
578 	 * Arbitrarily limit the max page_get request
579 	 * to 1/2 of the page structs we have.
580 	 */
581 	total_pages += num;
582 	set_max_page_get(total_pages);
583 
584 	PLCNT_MODIFY_MAX(pnum, (long)num);
585 
586 	/*
587 	 * The physical space for the pages array
588 	 * representing ram pages has already been
589 	 * allocated.  Here we initialize each lock
590 	 * in the page structure, and put each on
591 	 * the free list
592 	 */
593 	for (; num; pp++, pnum++, num--) {
594 
595 		/*
596 		 * this needs to fill in the page number
597 		 * and do any other arch specific initialization
598 		 */
599 		add_physmem_cb(pp, pnum);
600 
601 		pp->p_lckcnt = 0;
602 		pp->p_cowcnt = 0;
603 		pp->p_slckcnt = 0;
604 
605 		/*
606 		 * Initialize the page lock as unlocked, since nobody
607 		 * can see or access this page yet.
608 		 */
609 		pp->p_selock = 0;
610 
611 		/*
612 		 * Initialize IO lock
613 		 */
614 		page_iolock_init(pp);
615 
616 		/*
617 		 * initialize other fields in the page_t
618 		 */
619 		PP_SETFREE(pp);
620 		page_clr_all_props(pp);
621 		PP_SETAGED(pp);
622 		pp->p_offset = (u_offset_t)-1;
623 		pp->p_next = pp;
624 		pp->p_prev = pp;
625 
626 		/*
627 		 * Simple case: System doesn't support large pages.
628 		 */
629 		if (szc == 0) {
630 			pp->p_szc = 0;
631 			page_free_at_startup(pp);
632 			continue;
633 		}
634 
635 		/*
636 		 * Handle unaligned pages, we collect them up onto
637 		 * the root page until we have a full large page.
638 		 */
639 		if (!IS_P2ALIGNED(pnum, large)) {
640 
641 			/*
642 			 * If not in a large page,
643 			 * just free as small page.
644 			 */
645 			if (root == NULL) {
646 				pp->p_szc = 0;
647 				page_free_at_startup(pp);
648 				continue;
649 			}
650 
651 			/*
652 			 * Link a constituent page into the large page.
653 			 */
654 			pp->p_szc = szc;
655 			page_list_concat(&root, &pp);
656 
657 			/*
658 			 * When large page is fully formed, free it.
659 			 */
660 			if (++cnt == large) {
661 				page_free_large_ctr(cnt);
662 				page_list_add_pages(root, PG_LIST_ISINIT);
663 				root = NULL;
664 				cnt = 0;
665 			}
666 			continue;
667 		}
668 
669 		/*
670 		 * At this point we have a page number which
671 		 * is aligned. We assert that we aren't already
672 		 * in a different large page.
673 		 */
674 		ASSERT(IS_P2ALIGNED(pnum, large));
675 		ASSERT(root == NULL && cnt == 0);
676 
677 		/*
678 		 * If insufficient number of pages left to form
679 		 * a large page, just free the small page.
680 		 */
681 		if (num < large) {
682 			pp->p_szc = 0;
683 			page_free_at_startup(pp);
684 			continue;
685 		}
686 
687 		/*
688 		 * Otherwise start a new large page.
689 		 */
690 		pp->p_szc = szc;
691 		cnt++;
692 		root = pp;
693 	}
694 	ASSERT(root == NULL && cnt == 0);
695 }
696 
697 /*
698  * Find a page representing the specified [vp, offset].
699  * If we find the page but it is intransit coming in,
700  * it will have an "exclusive" lock and we wait for
701  * the i/o to complete.  A page found on the free list
702  * is always reclaimed and then locked.  On success, the page
703  * is locked, its data is valid and it isn't on the free
704  * list, while a NULL is returned if the page doesn't exist.
705  */
706 page_t *
707 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
708 {
709 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
710 }
711 
712 /*
713  * Find a page representing the specified [vp, offset].
714  * We either return the one we found or, if passed in,
715  * create one with identity of [vp, offset] of the
716  * pre-allocated page. If we find existing page but it is
717  * intransit coming in, it will have an "exclusive" lock
718  * and we wait for the i/o to complete.  A page found on
719  * the free list is always reclaimed and then locked.
720  * On success, the page is locked, its data is valid and
721  * it isn't on the free list, while a NULL is returned
722  * if the page doesn't exist and newpp is NULL;
723  */
724 page_t *
725 page_lookup_create(
726 	vnode_t *vp,
727 	u_offset_t off,
728 	se_t se,
729 	page_t *newpp,
730 	spgcnt_t *nrelocp,
731 	int flags)
732 {
733 	page_t		*pp;
734 	kmutex_t	*phm;
735 	ulong_t		index;
736 	uint_t		hash_locked;
737 	uint_t		es;
738 
739 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
740 	VM_STAT_ADD(page_lookup_cnt[0]);
741 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
742 
743 	/*
744 	 * Acquire the appropriate page hash lock since
745 	 * we have to search the hash list.  Pages that
746 	 * hash to this list can't change identity while
747 	 * this lock is held.
748 	 */
749 	hash_locked = 0;
750 	index = PAGE_HASH_FUNC(vp, off);
751 	phm = NULL;
752 top:
753 	PAGE_HASH_SEARCH(index, pp, vp, off);
754 	if (pp != NULL) {
755 		VM_STAT_ADD(page_lookup_cnt[1]);
756 		es = (newpp != NULL) ? 1 : 0;
757 		es |= flags;
758 		if (!hash_locked) {
759 			VM_STAT_ADD(page_lookup_cnt[2]);
760 			if (!page_try_reclaim_lock(pp, se, es)) {
761 				/*
762 				 * On a miss, acquire the phm.  Then
763 				 * next time, page_lock() will be called,
764 				 * causing a wait if the page is busy.
765 				 * just looping with page_trylock() would
766 				 * get pretty boring.
767 				 */
768 				VM_STAT_ADD(page_lookup_cnt[3]);
769 				phm = PAGE_HASH_MUTEX(index);
770 				mutex_enter(phm);
771 				hash_locked = 1;
772 				goto top;
773 			}
774 		} else {
775 			VM_STAT_ADD(page_lookup_cnt[4]);
776 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
777 				VM_STAT_ADD(page_lookup_cnt[5]);
778 				goto top;
779 			}
780 		}
781 
782 		/*
783 		 * Since `pp' is locked it can not change identity now.
784 		 * Reconfirm we locked the correct page.
785 		 *
786 		 * Both the p_vnode and p_offset *must* be cast volatile
787 		 * to force a reload of their values: The PAGE_HASH_SEARCH
788 		 * macro will have stuffed p_vnode and p_offset into
789 		 * registers before calling page_trylock(); another thread,
790 		 * actually holding the hash lock, could have changed the
791 		 * page's identity in memory, but our registers would not
792 		 * be changed, fooling the reconfirmation.  If the hash
793 		 * lock was held during the search, the casting would
794 		 * not be needed.
795 		 */
796 		VM_STAT_ADD(page_lookup_cnt[6]);
797 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
798 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
799 			VM_STAT_ADD(page_lookup_cnt[7]);
800 			if (hash_locked) {
801 				panic("page_lookup_create: lost page %p",
802 				    (void *)pp);
803 				/*NOTREACHED*/
804 			}
805 			page_unlock(pp);
806 			phm = PAGE_HASH_MUTEX(index);
807 			mutex_enter(phm);
808 			hash_locked = 1;
809 			goto top;
810 		}
811 
812 		/*
813 		 * If page_trylock() was called, then pp may still be on
814 		 * the cachelist (can't be on the free list, it would not
815 		 * have been found in the search).  If it is on the
816 		 * cachelist it must be pulled now. To pull the page from
817 		 * the cachelist, it must be exclusively locked.
818 		 *
819 		 * The other big difference between page_trylock() and
820 		 * page_lock(), is that page_lock() will pull the
821 		 * page from whatever free list (the cache list in this
822 		 * case) the page is on.  If page_trylock() was used
823 		 * above, then we have to do the reclaim ourselves.
824 		 */
825 		if ((!hash_locked) && (PP_ISFREE(pp))) {
826 			ASSERT(PP_ISAGED(pp) == 0);
827 			VM_STAT_ADD(page_lookup_cnt[8]);
828 
829 			/*
830 			 * page_relcaim will insure that we
831 			 * have this page exclusively
832 			 */
833 
834 			if (!page_reclaim(pp, NULL)) {
835 				/*
836 				 * Page_reclaim dropped whatever lock
837 				 * we held.
838 				 */
839 				VM_STAT_ADD(page_lookup_cnt[9]);
840 				phm = PAGE_HASH_MUTEX(index);
841 				mutex_enter(phm);
842 				hash_locked = 1;
843 				goto top;
844 			} else if (se == SE_SHARED && newpp == NULL) {
845 				VM_STAT_ADD(page_lookup_cnt[10]);
846 				page_downgrade(pp);
847 			}
848 		}
849 
850 		if (hash_locked) {
851 			mutex_exit(phm);
852 		}
853 
854 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
855 		    PAGE_EXCL(pp) && nrelocp != NULL) {
856 			ASSERT(nrelocp != NULL);
857 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
858 			    NULL);
859 			if (*nrelocp > 0) {
860 				VM_STAT_COND_ADD(*nrelocp == 1,
861 				    page_lookup_cnt[11]);
862 				VM_STAT_COND_ADD(*nrelocp > 1,
863 				    page_lookup_cnt[12]);
864 				pp = newpp;
865 				se = SE_EXCL;
866 			} else {
867 				if (se == SE_SHARED) {
868 					page_downgrade(pp);
869 				}
870 				VM_STAT_ADD(page_lookup_cnt[13]);
871 			}
872 		} else if (newpp != NULL && nrelocp != NULL) {
873 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
874 				page_downgrade(pp);
875 			}
876 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
877 			    page_lookup_cnt[14]);
878 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
879 			    page_lookup_cnt[15]);
880 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
881 			    page_lookup_cnt[16]);
882 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
883 			se = SE_EXCL;
884 		}
885 	} else if (!hash_locked) {
886 		VM_STAT_ADD(page_lookup_cnt[17]);
887 		phm = PAGE_HASH_MUTEX(index);
888 		mutex_enter(phm);
889 		hash_locked = 1;
890 		goto top;
891 	} else if (newpp != NULL) {
892 		/*
893 		 * If we have a preallocated page then
894 		 * insert it now and basically behave like
895 		 * page_create.
896 		 */
897 		VM_STAT_ADD(page_lookup_cnt[18]);
898 		/*
899 		 * Since we hold the page hash mutex and
900 		 * just searched for this page, page_hashin
901 		 * had better not fail.  If it does, that
902 		 * means some thread did not follow the
903 		 * page hash mutex rules.  Panic now and
904 		 * get it over with.  As usual, go down
905 		 * holding all the locks.
906 		 */
907 		ASSERT(MUTEX_HELD(phm));
908 		if (!page_hashin(newpp, vp, off, phm)) {
909 			ASSERT(MUTEX_HELD(phm));
910 			panic("page_lookup_create: hashin failed %p %p %llx %p",
911 			    (void *)newpp, (void *)vp, off, (void *)phm);
912 			/*NOTREACHED*/
913 		}
914 		ASSERT(MUTEX_HELD(phm));
915 		mutex_exit(phm);
916 		phm = NULL;
917 		page_set_props(newpp, P_REF);
918 		page_io_lock(newpp);
919 		pp = newpp;
920 		se = SE_EXCL;
921 	} else {
922 		VM_STAT_ADD(page_lookup_cnt[19]);
923 		mutex_exit(phm);
924 	}
925 
926 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
927 
928 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
929 
930 	return (pp);
931 }
932 
933 /*
934  * Search the hash list for the page representing the
935  * specified [vp, offset] and return it locked.  Skip
936  * free pages and pages that cannot be locked as requested.
937  * Used while attempting to kluster pages.
938  */
939 page_t *
940 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
941 {
942 	page_t		*pp;
943 	kmutex_t	*phm;
944 	ulong_t		index;
945 	uint_t		locked;
946 
947 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
948 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
949 
950 	index = PAGE_HASH_FUNC(vp, off);
951 	PAGE_HASH_SEARCH(index, pp, vp, off);
952 	locked = 0;
953 	if (pp == NULL) {
954 top:
955 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
956 		locked = 1;
957 		phm = PAGE_HASH_MUTEX(index);
958 		mutex_enter(phm);
959 		PAGE_HASH_SEARCH(index, pp, vp, off);
960 	}
961 
962 	if (pp == NULL || PP_ISFREE(pp)) {
963 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
964 		pp = NULL;
965 	} else {
966 		if (!page_trylock(pp, se)) {
967 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
968 			pp = NULL;
969 		} else {
970 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
971 			/*
972 			 * See the comment in page_lookup()
973 			 */
974 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
975 			    ((u_offset_t)(pp->p_offset) != off)) {
976 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
977 				if (locked) {
978 					panic("page_lookup_nowait %p",
979 					    (void *)pp);
980 					/*NOTREACHED*/
981 				}
982 				page_unlock(pp);
983 				goto top;
984 			}
985 			if (PP_ISFREE(pp)) {
986 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
987 				page_unlock(pp);
988 				pp = NULL;
989 			}
990 		}
991 	}
992 	if (locked) {
993 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
994 		mutex_exit(phm);
995 	}
996 
997 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
998 
999 	return (pp);
1000 }
1001 
1002 /*
1003  * Search the hash list for a page with the specified [vp, off]
1004  * that is known to exist and is already locked.  This routine
1005  * is typically used by segment SOFTUNLOCK routines.
1006  */
1007 page_t *
1008 page_find(vnode_t *vp, u_offset_t off)
1009 {
1010 	page_t		*pp;
1011 	kmutex_t	*phm;
1012 	ulong_t		index;
1013 
1014 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1015 	VM_STAT_ADD(page_find_cnt);
1016 
1017 	index = PAGE_HASH_FUNC(vp, off);
1018 	phm = PAGE_HASH_MUTEX(index);
1019 
1020 	mutex_enter(phm);
1021 	PAGE_HASH_SEARCH(index, pp, vp, off);
1022 	mutex_exit(phm);
1023 
1024 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1025 	return (pp);
1026 }
1027 
1028 /*
1029  * Determine whether a page with the specified [vp, off]
1030  * currently exists in the system.  Obviously this should
1031  * only be considered as a hint since nothing prevents the
1032  * page from disappearing or appearing immediately after
1033  * the return from this routine. Subsequently, we don't
1034  * even bother to lock the list.
1035  */
1036 page_t *
1037 page_exists(vnode_t *vp, u_offset_t off)
1038 {
1039 	page_t	*pp;
1040 	ulong_t		index;
1041 
1042 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1043 	VM_STAT_ADD(page_exists_cnt);
1044 
1045 	index = PAGE_HASH_FUNC(vp, off);
1046 	PAGE_HASH_SEARCH(index, pp, vp, off);
1047 
1048 	return (pp);
1049 }
1050 
1051 /*
1052  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1053  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1054  * with these pages locked SHARED. If necessary reclaim pages from
1055  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1056  *
1057  * If we fail to lock pages still return 1 if pages exist and contiguous.
1058  * But in this case return value is just a hint. ppa array won't be filled.
1059  * Caller should initialize ppa[0] as NULL to distinguish return value.
1060  *
1061  * Returns 0 if pages don't exist or not physically contiguous.
1062  *
1063  * This routine doesn't work for anonymous(swapfs) pages.
1064  */
1065 int
1066 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1067 {
1068 	pgcnt_t pages;
1069 	pfn_t pfn;
1070 	page_t *rootpp;
1071 	pgcnt_t i;
1072 	pgcnt_t j;
1073 	u_offset_t save_off = off;
1074 	ulong_t index;
1075 	kmutex_t *phm;
1076 	page_t *pp;
1077 	uint_t pszc;
1078 	int loopcnt = 0;
1079 
1080 	ASSERT(szc != 0);
1081 	ASSERT(vp != NULL);
1082 	ASSERT(!IS_SWAPFSVP(vp));
1083 	ASSERT(!VN_ISKAS(vp));
1084 
1085 again:
1086 	if (++loopcnt > 3) {
1087 		VM_STAT_ADD(page_exphcontg[0]);
1088 		return (0);
1089 	}
1090 
1091 	index = PAGE_HASH_FUNC(vp, off);
1092 	phm = PAGE_HASH_MUTEX(index);
1093 
1094 	mutex_enter(phm);
1095 	PAGE_HASH_SEARCH(index, pp, vp, off);
1096 	mutex_exit(phm);
1097 
1098 	VM_STAT_ADD(page_exphcontg[1]);
1099 
1100 	if (pp == NULL) {
1101 		VM_STAT_ADD(page_exphcontg[2]);
1102 		return (0);
1103 	}
1104 
1105 	pages = page_get_pagecnt(szc);
1106 	rootpp = pp;
1107 	pfn = rootpp->p_pagenum;
1108 
1109 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1110 		VM_STAT_ADD(page_exphcontg[3]);
1111 		if (!page_trylock(pp, SE_SHARED)) {
1112 			VM_STAT_ADD(page_exphcontg[4]);
1113 			return (1);
1114 		}
1115 		/*
1116 		 * Also check whether p_pagenum was modified by DR.
1117 		 */
1118 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1119 		    pp->p_offset != off || pp->p_pagenum != pfn) {
1120 			VM_STAT_ADD(page_exphcontg[5]);
1121 			page_unlock(pp);
1122 			off = save_off;
1123 			goto again;
1124 		}
1125 		/*
1126 		 * szc was non zero and vnode and offset matched after we
1127 		 * locked the page it means it can't become free on us.
1128 		 */
1129 		ASSERT(!PP_ISFREE(pp));
1130 		if (!IS_P2ALIGNED(pfn, pages)) {
1131 			page_unlock(pp);
1132 			return (0);
1133 		}
1134 		ppa[0] = pp;
1135 		pp++;
1136 		off += PAGESIZE;
1137 		pfn++;
1138 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1139 			if (!page_trylock(pp, SE_SHARED)) {
1140 				VM_STAT_ADD(page_exphcontg[6]);
1141 				pp--;
1142 				while (i-- > 0) {
1143 					page_unlock(pp);
1144 					pp--;
1145 				}
1146 				ppa[0] = NULL;
1147 				return (1);
1148 			}
1149 			if (pp->p_szc != pszc) {
1150 				VM_STAT_ADD(page_exphcontg[7]);
1151 				page_unlock(pp);
1152 				pp--;
1153 				while (i-- > 0) {
1154 					page_unlock(pp);
1155 					pp--;
1156 				}
1157 				ppa[0] = NULL;
1158 				off = save_off;
1159 				goto again;
1160 			}
1161 			/*
1162 			 * szc the same as for previous already locked pages
1163 			 * with right identity. Since this page had correct
1164 			 * szc after we locked it can't get freed or destroyed
1165 			 * and therefore must have the expected identity.
1166 			 */
1167 			ASSERT(!PP_ISFREE(pp));
1168 			if (pp->p_vnode != vp ||
1169 			    pp->p_offset != off) {
1170 				panic("page_exists_physcontig: "
1171 				    "large page identity doesn't match");
1172 			}
1173 			ppa[i] = pp;
1174 			ASSERT(pp->p_pagenum == pfn);
1175 		}
1176 		VM_STAT_ADD(page_exphcontg[8]);
1177 		ppa[pages] = NULL;
1178 		return (1);
1179 	} else if (pszc >= szc) {
1180 		VM_STAT_ADD(page_exphcontg[9]);
1181 		if (!IS_P2ALIGNED(pfn, pages)) {
1182 			return (0);
1183 		}
1184 		return (1);
1185 	}
1186 
1187 	if (!IS_P2ALIGNED(pfn, pages)) {
1188 		VM_STAT_ADD(page_exphcontg[10]);
1189 		return (0);
1190 	}
1191 
1192 	if (page_numtomemseg_nolock(pfn) !=
1193 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1194 		VM_STAT_ADD(page_exphcontg[11]);
1195 		return (0);
1196 	}
1197 
1198 	/*
1199 	 * We loop up 4 times across pages to promote page size.
1200 	 * We're extra cautious to promote page size atomically with respect
1201 	 * to everybody else.  But we can probably optimize into 1 loop if
1202 	 * this becomes an issue.
1203 	 */
1204 
1205 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1206 		if (!page_trylock(pp, SE_EXCL)) {
1207 			VM_STAT_ADD(page_exphcontg[12]);
1208 			break;
1209 		}
1210 		/*
1211 		 * Check whether p_pagenum was modified by DR.
1212 		 */
1213 		if (pp->p_pagenum != pfn) {
1214 			page_unlock(pp);
1215 			break;
1216 		}
1217 		if (pp->p_vnode != vp ||
1218 		    pp->p_offset != off) {
1219 			VM_STAT_ADD(page_exphcontg[13]);
1220 			page_unlock(pp);
1221 			break;
1222 		}
1223 		if (pp->p_szc >= szc) {
1224 			ASSERT(i == 0);
1225 			page_unlock(pp);
1226 			off = save_off;
1227 			goto again;
1228 		}
1229 	}
1230 
1231 	if (i != pages) {
1232 		VM_STAT_ADD(page_exphcontg[14]);
1233 		--pp;
1234 		while (i-- > 0) {
1235 			page_unlock(pp);
1236 			--pp;
1237 		}
1238 		return (0);
1239 	}
1240 
1241 	pp = rootpp;
1242 	for (i = 0; i < pages; i++, pp++) {
1243 		if (PP_ISFREE(pp)) {
1244 			VM_STAT_ADD(page_exphcontg[15]);
1245 			ASSERT(!PP_ISAGED(pp));
1246 			ASSERT(pp->p_szc == 0);
1247 			if (!page_reclaim(pp, NULL)) {
1248 				break;
1249 			}
1250 		} else {
1251 			ASSERT(pp->p_szc < szc);
1252 			VM_STAT_ADD(page_exphcontg[16]);
1253 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1254 		}
1255 	}
1256 	if (i < pages) {
1257 		VM_STAT_ADD(page_exphcontg[17]);
1258 		/*
1259 		 * page_reclaim failed because we were out of memory.
1260 		 * drop the rest of the locks and return because this page
1261 		 * must be already reallocated anyway.
1262 		 */
1263 		pp = rootpp;
1264 		for (j = 0; j < pages; j++, pp++) {
1265 			if (j != i) {
1266 				page_unlock(pp);
1267 			}
1268 		}
1269 		return (0);
1270 	}
1271 
1272 	off = save_off;
1273 	pp = rootpp;
1274 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1275 		ASSERT(PAGE_EXCL(pp));
1276 		ASSERT(!PP_ISFREE(pp));
1277 		ASSERT(!hat_page_is_mapped(pp));
1278 		ASSERT(pp->p_vnode == vp);
1279 		ASSERT(pp->p_offset == off);
1280 		pp->p_szc = szc;
1281 	}
1282 	pp = rootpp;
1283 	for (i = 0; i < pages; i++, pp++) {
1284 		if (ppa == NULL) {
1285 			page_unlock(pp);
1286 		} else {
1287 			ppa[i] = pp;
1288 			page_downgrade(ppa[i]);
1289 		}
1290 	}
1291 	if (ppa != NULL) {
1292 		ppa[pages] = NULL;
1293 	}
1294 	VM_STAT_ADD(page_exphcontg[18]);
1295 	ASSERT(vp->v_pages != NULL);
1296 	return (1);
1297 }
1298 
1299 /*
1300  * Determine whether a page with the specified [vp, off]
1301  * currently exists in the system and if so return its
1302  * size code. Obviously this should only be considered as
1303  * a hint since nothing prevents the page from disappearing
1304  * or appearing immediately after the return from this routine.
1305  */
1306 int
1307 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1308 {
1309 	page_t		*pp;
1310 	kmutex_t	*phm;
1311 	ulong_t		index;
1312 	int		rc = 0;
1313 
1314 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1315 	ASSERT(szc != NULL);
1316 	VM_STAT_ADD(page_exists_forreal_cnt);
1317 
1318 	index = PAGE_HASH_FUNC(vp, off);
1319 	phm = PAGE_HASH_MUTEX(index);
1320 
1321 	mutex_enter(phm);
1322 	PAGE_HASH_SEARCH(index, pp, vp, off);
1323 	if (pp != NULL) {
1324 		*szc = pp->p_szc;
1325 		rc = 1;
1326 	}
1327 	mutex_exit(phm);
1328 	return (rc);
1329 }
1330 
1331 /* wakeup threads waiting for pages in page_create_get_something() */
1332 void
1333 wakeup_pcgs(void)
1334 {
1335 	if (!CV_HAS_WAITERS(&pcgs_cv))
1336 		return;
1337 	cv_broadcast(&pcgs_cv);
1338 }
1339 
1340 /*
1341  * 'freemem' is used all over the kernel as an indication of how many
1342  * pages are free (either on the cache list or on the free page list)
1343  * in the system.  In very few places is a really accurate 'freemem'
1344  * needed.  To avoid contention of the lock protecting a the
1345  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1346  * sets freemem to the total of all NCPU buckets.  It is called from
1347  * clock() on each TICK.
1348  */
1349 void
1350 set_freemem()
1351 {
1352 	struct pcf	*p;
1353 	ulong_t		t;
1354 	uint_t		i;
1355 
1356 	t = 0;
1357 	p = pcf;
1358 	for (i = 0;  i < pcf_fanout; i++) {
1359 		t += p->pcf_count;
1360 		p++;
1361 	}
1362 	freemem = t;
1363 
1364 	/*
1365 	 * Don't worry about grabbing mutex.  It's not that
1366 	 * critical if we miss a tick or two.  This is
1367 	 * where we wakeup possible delayers in
1368 	 * page_create_get_something().
1369 	 */
1370 	wakeup_pcgs();
1371 }
1372 
1373 ulong_t
1374 get_freemem()
1375 {
1376 	struct pcf	*p;
1377 	ulong_t		t;
1378 	uint_t		i;
1379 
1380 	t = 0;
1381 	p = pcf;
1382 	for (i = 0; i < pcf_fanout; i++) {
1383 		t += p->pcf_count;
1384 		p++;
1385 	}
1386 	/*
1387 	 * We just calculated it, might as well set it.
1388 	 */
1389 	freemem = t;
1390 	return (t);
1391 }
1392 
1393 /*
1394  * Acquire all of the page cache & free (pcf) locks.
1395  */
1396 void
1397 pcf_acquire_all()
1398 {
1399 	struct pcf	*p;
1400 	uint_t		i;
1401 
1402 	p = pcf;
1403 	for (i = 0; i < pcf_fanout; i++) {
1404 		mutex_enter(&p->pcf_lock);
1405 		p++;
1406 	}
1407 }
1408 
1409 /*
1410  * Release all the pcf_locks.
1411  */
1412 void
1413 pcf_release_all()
1414 {
1415 	struct pcf	*p;
1416 	uint_t		i;
1417 
1418 	p = pcf;
1419 	for (i = 0; i < pcf_fanout; i++) {
1420 		mutex_exit(&p->pcf_lock);
1421 		p++;
1422 	}
1423 }
1424 
1425 /*
1426  * Inform the VM system that we need some pages freed up.
1427  * Calls must be symmetric, e.g.:
1428  *
1429  *	page_needfree(100);
1430  *	wait a bit;
1431  *	page_needfree(-100);
1432  */
1433 void
1434 page_needfree(spgcnt_t npages)
1435 {
1436 	mutex_enter(&new_freemem_lock);
1437 	needfree += npages;
1438 	mutex_exit(&new_freemem_lock);
1439 }
1440 
1441 /*
1442  * Throttle for page_create(): try to prevent freemem from dropping
1443  * below throttlefree.  We can't provide a 100% guarantee because
1444  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1445  * nibble away at the freelist.  However, we can block all PG_WAIT
1446  * allocations until memory becomes available.  The motivation is
1447  * that several things can fall apart when there's no free memory:
1448  *
1449  * (1) If pageout() needs memory to push a page, the system deadlocks.
1450  *
1451  * (2) By (broken) specification, timeout(9F) can neither fail nor
1452  *     block, so it has no choice but to panic the system if it
1453  *     cannot allocate a callout structure.
1454  *
1455  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1456  *     it panics if it cannot allocate a callback structure.
1457  *
1458  * (4) Untold numbers of third-party drivers have not yet been hardened
1459  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1460  *     success and panic the system with a data fault on failure.
1461  *     (The long-term solution to this particular problem is to ship
1462  *     hostile fault-injecting DEBUG kernels with the DDK.)
1463  *
1464  * It is theoretically impossible to guarantee success of non-blocking
1465  * allocations, but in practice, this throttle is very hard to break.
1466  */
1467 static int
1468 page_create_throttle(pgcnt_t npages, int flags)
1469 {
1470 	ulong_t	fm;
1471 	uint_t	i;
1472 	pgcnt_t tf;	/* effective value of throttlefree */
1473 
1474 	/*
1475 	 * Normal priority allocations.
1476 	 */
1477 	if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1478 		ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1479 		return (freemem >= npages + throttlefree);
1480 	}
1481 
1482 	/*
1483 	 * Never deny pages when:
1484 	 * - it's a thread that cannot block [NOMEMWAIT()]
1485 	 * - the allocation cannot block and must not fail
1486 	 * - the allocation cannot block and is pageout dispensated
1487 	 */
1488 	if (NOMEMWAIT() ||
1489 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1490 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1491 		return (1);
1492 
1493 	/*
1494 	 * If the allocation can't block, we look favorably upon it
1495 	 * unless we're below pageout_reserve.  In that case we fail
1496 	 * the allocation because we want to make sure there are a few
1497 	 * pages available for pageout.
1498 	 */
1499 	if ((flags & PG_WAIT) == 0)
1500 		return (freemem >= npages + pageout_reserve);
1501 
1502 	/* Calculate the effective throttlefree value */
1503 	tf = throttlefree -
1504 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1505 
1506 	cv_signal(&proc_pageout->p_cv);
1507 
1508 	for (;;) {
1509 		fm = 0;
1510 		pcf_acquire_all();
1511 		mutex_enter(&new_freemem_lock);
1512 		for (i = 0; i < pcf_fanout; i++) {
1513 			fm += pcf[i].pcf_count;
1514 			pcf[i].pcf_wait++;
1515 			mutex_exit(&pcf[i].pcf_lock);
1516 		}
1517 		freemem = fm;
1518 		if (freemem >= npages + tf) {
1519 			mutex_exit(&new_freemem_lock);
1520 			break;
1521 		}
1522 		needfree += npages;
1523 		freemem_wait++;
1524 		cv_wait(&freemem_cv, &new_freemem_lock);
1525 		freemem_wait--;
1526 		needfree -= npages;
1527 		mutex_exit(&new_freemem_lock);
1528 	}
1529 	return (1);
1530 }
1531 
1532 /*
1533  * page_create_wait() is called to either coalesce pages from the
1534  * different pcf buckets or to wait because there simply are not
1535  * enough pages to satisfy the caller's request.
1536  *
1537  * Sadly, this is called from platform/vm/vm_machdep.c
1538  */
1539 int
1540 page_create_wait(pgcnt_t npages, uint_t flags)
1541 {
1542 	pgcnt_t		total;
1543 	uint_t		i;
1544 	struct pcf	*p;
1545 
1546 	/*
1547 	 * Wait until there are enough free pages to satisfy our
1548 	 * entire request.
1549 	 * We set needfree += npages before prodding pageout, to make sure
1550 	 * it does real work when npages > lotsfree > freemem.
1551 	 */
1552 	VM_STAT_ADD(page_create_not_enough);
1553 
1554 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1555 checkagain:
1556 	if ((flags & PG_NORELOC) &&
1557 	    kcage_freemem < kcage_throttlefree + npages)
1558 		(void) kcage_create_throttle(npages, flags);
1559 
1560 	if (freemem < npages + throttlefree)
1561 		if (!page_create_throttle(npages, flags))
1562 			return (0);
1563 
1564 	if (pcf_decrement_bucket(npages) ||
1565 	    pcf_decrement_multiple(&total, npages, 0))
1566 		return (1);
1567 
1568 	/*
1569 	 * All of the pcf locks are held, there are not enough pages
1570 	 * to satisfy the request (npages < total).
1571 	 * Be sure to acquire the new_freemem_lock before dropping
1572 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1573 	 * The order is always pcf_lock then new_freemem_lock.
1574 	 *
1575 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1576 	 *
1577 	 * If the caller does not want to wait, return now.
1578 	 * Else turn the pageout daemon loose to find something
1579 	 * and wait till it does.
1580 	 *
1581 	 */
1582 	freemem = total;
1583 
1584 	if ((flags & PG_WAIT) == 0) {
1585 		pcf_release_all();
1586 
1587 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1588 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1589 		return (0);
1590 	}
1591 
1592 	ASSERT(proc_pageout != NULL);
1593 	cv_signal(&proc_pageout->p_cv);
1594 
1595 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1596 	    "page_create_sleep_start: freemem %ld needfree %ld",
1597 	    freemem, needfree);
1598 
1599 	/*
1600 	 * We are going to wait.
1601 	 * We currently hold all of the pcf_locks,
1602 	 * get the new_freemem_lock (it protects freemem_wait),
1603 	 * before dropping the pcf_locks.
1604 	 */
1605 	mutex_enter(&new_freemem_lock);
1606 
1607 	p = pcf;
1608 	for (i = 0; i < pcf_fanout; i++) {
1609 		p->pcf_wait++;
1610 		mutex_exit(&p->pcf_lock);
1611 		p++;
1612 	}
1613 
1614 	needfree += npages;
1615 	freemem_wait++;
1616 
1617 	cv_wait(&freemem_cv, &new_freemem_lock);
1618 
1619 	freemem_wait--;
1620 	needfree -= npages;
1621 
1622 	mutex_exit(&new_freemem_lock);
1623 
1624 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1625 	    "page_create_sleep_end: freemem %ld needfree %ld",
1626 	    freemem, needfree);
1627 
1628 	VM_STAT_ADD(page_create_not_enough_again);
1629 	goto checkagain;
1630 }
1631 /*
1632  * A routine to do the opposite of page_create_wait().
1633  */
1634 void
1635 page_create_putback(spgcnt_t npages)
1636 {
1637 	struct pcf	*p;
1638 	pgcnt_t		lump;
1639 	uint_t		*which;
1640 
1641 	/*
1642 	 * When a contiguous lump is broken up, we have to
1643 	 * deal with lots of pages (min 64) so lets spread
1644 	 * the wealth around.
1645 	 */
1646 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1647 	freemem += npages;
1648 
1649 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1650 		which = &p->pcf_count;
1651 
1652 		mutex_enter(&p->pcf_lock);
1653 
1654 		if (p->pcf_block) {
1655 			which = &p->pcf_reserve;
1656 		}
1657 
1658 		if (lump < npages) {
1659 			*which += (uint_t)lump;
1660 			npages -= lump;
1661 		} else {
1662 			*which += (uint_t)npages;
1663 			npages = 0;
1664 		}
1665 
1666 		if (p->pcf_wait) {
1667 			mutex_enter(&new_freemem_lock);
1668 			/*
1669 			 * Check to see if some other thread
1670 			 * is actually waiting.  Another bucket
1671 			 * may have woken it up by now.  If there
1672 			 * are no waiters, then set our pcf_wait
1673 			 * count to zero to avoid coming in here
1674 			 * next time.
1675 			 */
1676 			if (freemem_wait) {
1677 				if (npages > 1) {
1678 					cv_broadcast(&freemem_cv);
1679 				} else {
1680 					cv_signal(&freemem_cv);
1681 				}
1682 				p->pcf_wait--;
1683 			} else {
1684 				p->pcf_wait = 0;
1685 			}
1686 			mutex_exit(&new_freemem_lock);
1687 		}
1688 		mutex_exit(&p->pcf_lock);
1689 	}
1690 	ASSERT(npages == 0);
1691 }
1692 
1693 /*
1694  * A helper routine for page_create_get_something.
1695  * The indenting got to deep down there.
1696  * Unblock the pcf counters.  Any pages freed after
1697  * pcf_block got set are moved to pcf_count and
1698  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1699  */
1700 static void
1701 pcgs_unblock(void)
1702 {
1703 	int		i;
1704 	struct pcf	*p;
1705 
1706 	/* Update freemem while we're here. */
1707 	freemem = 0;
1708 	p = pcf;
1709 	for (i = 0; i < pcf_fanout; i++) {
1710 		mutex_enter(&p->pcf_lock);
1711 		ASSERT(p->pcf_count == 0);
1712 		p->pcf_count = p->pcf_reserve;
1713 		p->pcf_block = 0;
1714 		freemem += p->pcf_count;
1715 		if (p->pcf_wait) {
1716 			mutex_enter(&new_freemem_lock);
1717 			if (freemem_wait) {
1718 				if (p->pcf_reserve > 1) {
1719 					cv_broadcast(&freemem_cv);
1720 					p->pcf_wait = 0;
1721 				} else {
1722 					cv_signal(&freemem_cv);
1723 					p->pcf_wait--;
1724 				}
1725 			} else {
1726 				p->pcf_wait = 0;
1727 			}
1728 			mutex_exit(&new_freemem_lock);
1729 		}
1730 		p->pcf_reserve = 0;
1731 		mutex_exit(&p->pcf_lock);
1732 		p++;
1733 	}
1734 }
1735 
1736 /*
1737  * Called from page_create_va() when both the cache and free lists
1738  * have been checked once.
1739  *
1740  * Either returns a page or panics since the accounting was done
1741  * way before we got here.
1742  *
1743  * We don't come here often, so leave the accounting on permanently.
1744  */
1745 
1746 #define	MAX_PCGS	100
1747 
1748 #ifdef	DEBUG
1749 #define	PCGS_TRIES	100
1750 #else	/* DEBUG */
1751 #define	PCGS_TRIES	10
1752 #endif	/* DEBUG */
1753 
1754 #ifdef	VM_STATS
1755 uint_t	pcgs_counts[PCGS_TRIES];
1756 uint_t	pcgs_too_many;
1757 uint_t	pcgs_entered;
1758 uint_t	pcgs_entered_noreloc;
1759 uint_t	pcgs_locked;
1760 uint_t	pcgs_cagelocked;
1761 #endif	/* VM_STATS */
1762 
1763 static page_t *
1764 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1765     caddr_t vaddr, uint_t flags)
1766 {
1767 	uint_t		count;
1768 	page_t		*pp;
1769 	uint_t		locked, i;
1770 	struct	pcf	*p;
1771 	lgrp_t		*lgrp;
1772 	int		cagelocked = 0;
1773 
1774 	VM_STAT_ADD(pcgs_entered);
1775 
1776 	/*
1777 	 * Tap any reserve freelists: if we fail now, we'll die
1778 	 * since the page(s) we're looking for have already been
1779 	 * accounted for.
1780 	 */
1781 	flags |= PG_PANIC;
1782 
1783 	if ((flags & PG_NORELOC) != 0) {
1784 		VM_STAT_ADD(pcgs_entered_noreloc);
1785 		/*
1786 		 * Requests for free pages from critical threads
1787 		 * such as pageout still won't throttle here, but
1788 		 * we must try again, to give the cageout thread
1789 		 * another chance to catch up. Since we already
1790 		 * accounted for the pages, we had better get them
1791 		 * this time.
1792 		 *
1793 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1794 		 * to serialize access to the freelists. This implements a
1795 		 * turnstile-type synchornization to avoid starvation of
1796 		 * critical requests for PG_NORELOC memory by non-critical
1797 		 * threads: all non-critical threads must acquire a 'ticket'
1798 		 * before passing through, which entails making sure
1799 		 * kcage_freemem won't fall below minfree prior to grabbing
1800 		 * pages from the freelists.
1801 		 */
1802 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1803 			mutex_enter(&pcgs_cagelock);
1804 			cagelocked = 1;
1805 			VM_STAT_ADD(pcgs_cagelocked);
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * Time to get serious.
1811 	 * We failed to get a `correctly colored' page from both the
1812 	 * free and cache lists.
1813 	 * We escalate in stage.
1814 	 *
1815 	 * First try both lists without worring about color.
1816 	 *
1817 	 * Then, grab all page accounting locks (ie. pcf[]) and
1818 	 * steal any pages that they have and set the pcf_block flag to
1819 	 * stop deletions from the lists.  This will help because
1820 	 * a page can get added to the free list while we are looking
1821 	 * at the cache list, then another page could be added to the cache
1822 	 * list allowing the page on the free list to be removed as we
1823 	 * move from looking at the cache list to the free list. This
1824 	 * could happen over and over. We would never find the page
1825 	 * we have accounted for.
1826 	 *
1827 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1828 	 * They are not tracked separately in the pcf bins, so it is
1829 	 * impossible to know when doing pcf accounting if the available
1830 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1831 	 * it is quite easy to end up here even if the global (relocatable)
1832 	 * page pool has plenty of free pages but the noreloc pool is empty.
1833 	 *
1834 	 * When the noreloc pool is empty (or low), additional noreloc pages
1835 	 * are created by converting pages from the global page pool. This
1836 	 * process will stall during pcf accounting if the pcf bins are
1837 	 * already locked. Such is the case when a noreloc allocation is
1838 	 * looping here in page_create_get_something waiting for more noreloc
1839 	 * pages to appear.
1840 	 *
1841 	 * Short of adding a new field to the pcf bins to accurately track
1842 	 * the number of free noreloc pages, we instead do not grab the
1843 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1844 	 * allocating a noreloc page. This allows noreloc allocations to
1845 	 * loop without blocking global page pool allocations.
1846 	 *
1847 	 * NOTE: the behaviour of page_create_get_something has not changed
1848 	 * for the case of global page pool allocations.
1849 	 */
1850 
1851 	flags &= ~PG_MATCH_COLOR;
1852 	locked = 0;
1853 #if defined(__i386) || defined(__amd64)
1854 	flags = page_create_update_flags_x86(flags);
1855 #endif
1856 
1857 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1858 
1859 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1860 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1861 		    flags, lgrp);
1862 		if (pp == NULL) {
1863 			pp = page_get_cachelist(vp, off, seg, vaddr,
1864 			    flags, lgrp);
1865 		}
1866 		if (pp == NULL) {
1867 			/*
1868 			 * Serialize.  Don't fight with other pcgs().
1869 			 */
1870 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1871 				mutex_enter(&pcgs_lock);
1872 				VM_STAT_ADD(pcgs_locked);
1873 				locked = 1;
1874 				p = pcf;
1875 				for (i = 0; i < pcf_fanout; i++) {
1876 					mutex_enter(&p->pcf_lock);
1877 					ASSERT(p->pcf_block == 0);
1878 					p->pcf_block = 1;
1879 					p->pcf_reserve = p->pcf_count;
1880 					p->pcf_count = 0;
1881 					mutex_exit(&p->pcf_lock);
1882 					p++;
1883 				}
1884 				freemem = 0;
1885 			}
1886 
1887 			if (count) {
1888 				/*
1889 				 * Since page_free() puts pages on
1890 				 * a list then accounts for it, we
1891 				 * just have to wait for page_free()
1892 				 * to unlock any page it was working
1893 				 * with. The page_lock()-page_reclaim()
1894 				 * path falls in the same boat.
1895 				 *
1896 				 * We don't need to check on the
1897 				 * PG_WAIT flag, we have already
1898 				 * accounted for the page we are
1899 				 * looking for in page_create_va().
1900 				 *
1901 				 * We just wait a moment to let any
1902 				 * locked pages on the lists free up,
1903 				 * then continue around and try again.
1904 				 *
1905 				 * Will be awakened by set_freemem().
1906 				 */
1907 				mutex_enter(&pcgs_wait_lock);
1908 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1909 				mutex_exit(&pcgs_wait_lock);
1910 			}
1911 		} else {
1912 #ifdef VM_STATS
1913 			if (count >= PCGS_TRIES) {
1914 				VM_STAT_ADD(pcgs_too_many);
1915 			} else {
1916 				VM_STAT_ADD(pcgs_counts[count]);
1917 			}
1918 #endif
1919 			if (locked) {
1920 				pcgs_unblock();
1921 				mutex_exit(&pcgs_lock);
1922 			}
1923 			if (cagelocked)
1924 				mutex_exit(&pcgs_cagelock);
1925 			return (pp);
1926 		}
1927 	}
1928 	/*
1929 	 * we go down holding the pcf locks.
1930 	 */
1931 	panic("no %spage found %d",
1932 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1933 	/*NOTREACHED*/
1934 }
1935 
1936 /*
1937  * Create enough pages for "bytes" worth of data starting at
1938  * "off" in "vp".
1939  *
1940  *	Where flag must be one of:
1941  *
1942  *		PG_EXCL:	Exclusive create (fail if any page already
1943  *				exists in the page cache) which does not
1944  *				wait for memory to become available.
1945  *
1946  *		PG_WAIT:	Non-exclusive create which can wait for
1947  *				memory to become available.
1948  *
1949  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1950  *				(Not Supported)
1951  *
1952  * A doubly linked list of pages is returned to the caller.  Each page
1953  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1954  * lock.
1955  *
1956  * Unable to change the parameters to page_create() in a minor release,
1957  * we renamed page_create() to page_create_va(), changed all known calls
1958  * from page_create() to page_create_va(), and created this wrapper.
1959  *
1960  * Upon a major release, we should break compatibility by deleting this
1961  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1962  *
1963  * NOTE: There is a copy of this interface as page_create_io() in
1964  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1965  *	 there.
1966  */
1967 page_t *
1968 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1969 {
1970 	caddr_t random_vaddr;
1971 	struct seg kseg;
1972 
1973 #ifdef DEBUG
1974 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1975 	    (void *)caller());
1976 #endif
1977 
1978 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1979 	    (uintptr_t)(off >> PAGESHIFT));
1980 	kseg.s_as = &kas;
1981 
1982 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1983 }
1984 
1985 #ifdef DEBUG
1986 uint32_t pg_alloc_pgs_mtbf = 0;
1987 #endif
1988 
1989 /*
1990  * Used for large page support. It will attempt to allocate
1991  * a large page(s) off the freelist.
1992  *
1993  * Returns non zero on failure.
1994  */
1995 int
1996 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1997     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
1998 {
1999 	pgcnt_t		npgs, curnpgs, totpgs;
2000 	size_t		pgsz;
2001 	page_t		*pplist = NULL, *pp;
2002 	int		err = 0;
2003 	lgrp_t		*lgrp;
2004 
2005 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2006 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2007 
2008 	/*
2009 	 * Check if system heavily prefers local large pages over remote
2010 	 * on systems with multiple lgroups.
2011 	 */
2012 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2013 		pgflags = PG_LOCAL;
2014 	}
2015 
2016 	VM_STAT_ADD(alloc_pages[0]);
2017 
2018 #ifdef DEBUG
2019 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2020 		return (ENOMEM);
2021 	}
2022 #endif
2023 
2024 	/*
2025 	 * One must be NULL but not both.
2026 	 * And one must be non NULL but not both.
2027 	 */
2028 	ASSERT(basepp != NULL || ppa != NULL);
2029 	ASSERT(basepp == NULL || ppa == NULL);
2030 
2031 #if defined(__i386) || defined(__amd64)
2032 	while (page_chk_freelist(szc) == 0) {
2033 		VM_STAT_ADD(alloc_pages[8]);
2034 		if (anypgsz == 0 || --szc == 0)
2035 			return (ENOMEM);
2036 	}
2037 #endif
2038 
2039 	pgsz = page_get_pagesize(szc);
2040 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2041 
2042 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2043 
2044 	(void) page_create_wait(npgs, PG_WAIT);
2045 
2046 	while (npgs && szc) {
2047 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2048 		if (pgflags == PG_LOCAL) {
2049 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2050 			    pgflags, lgrp);
2051 			if (pp == NULL) {
2052 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2053 				    0, lgrp);
2054 			}
2055 		} else {
2056 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2057 			    0, lgrp);
2058 		}
2059 		if (pp != NULL) {
2060 			VM_STAT_ADD(alloc_pages[1]);
2061 			page_list_concat(&pplist, &pp);
2062 			ASSERT(npgs >= curnpgs);
2063 			npgs -= curnpgs;
2064 		} else if (anypgsz) {
2065 			VM_STAT_ADD(alloc_pages[2]);
2066 			szc--;
2067 			pgsz = page_get_pagesize(szc);
2068 			curnpgs = pgsz >> PAGESHIFT;
2069 		} else {
2070 			VM_STAT_ADD(alloc_pages[3]);
2071 			ASSERT(npgs == totpgs);
2072 			page_create_putback(npgs);
2073 			return (ENOMEM);
2074 		}
2075 	}
2076 	if (szc == 0) {
2077 		VM_STAT_ADD(alloc_pages[4]);
2078 		ASSERT(npgs != 0);
2079 		page_create_putback(npgs);
2080 		err = ENOMEM;
2081 	} else if (basepp != NULL) {
2082 		ASSERT(npgs == 0);
2083 		ASSERT(ppa == NULL);
2084 		*basepp = pplist;
2085 	}
2086 
2087 	npgs = totpgs - npgs;
2088 	pp = pplist;
2089 
2090 	/*
2091 	 * Clear the free and age bits. Also if we were passed in a ppa then
2092 	 * fill it in with all the constituent pages from the large page. But
2093 	 * if we failed to allocate all the pages just free what we got.
2094 	 */
2095 	while (npgs != 0) {
2096 		ASSERT(PP_ISFREE(pp));
2097 		ASSERT(PP_ISAGED(pp));
2098 		if (ppa != NULL || err != 0) {
2099 			if (err == 0) {
2100 				VM_STAT_ADD(alloc_pages[5]);
2101 				PP_CLRFREE(pp);
2102 				PP_CLRAGED(pp);
2103 				page_sub(&pplist, pp);
2104 				*ppa++ = pp;
2105 				npgs--;
2106 			} else {
2107 				VM_STAT_ADD(alloc_pages[6]);
2108 				ASSERT(pp->p_szc != 0);
2109 				curnpgs = page_get_pagecnt(pp->p_szc);
2110 				page_list_break(&pp, &pplist, curnpgs);
2111 				page_list_add_pages(pp, 0);
2112 				page_create_putback(curnpgs);
2113 				ASSERT(npgs >= curnpgs);
2114 				npgs -= curnpgs;
2115 			}
2116 			pp = pplist;
2117 		} else {
2118 			VM_STAT_ADD(alloc_pages[7]);
2119 			PP_CLRFREE(pp);
2120 			PP_CLRAGED(pp);
2121 			pp = pp->p_next;
2122 			npgs--;
2123 		}
2124 	}
2125 	return (err);
2126 }
2127 
2128 /*
2129  * Get a single large page off of the freelists, and set it up for use.
2130  * Number of bytes requested must be a supported page size.
2131  *
2132  * Note that this call may fail even if there is sufficient
2133  * memory available or PG_WAIT is set, so the caller must
2134  * be willing to fallback on page_create_va(), block and retry,
2135  * or fail the requester.
2136  */
2137 page_t *
2138 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2139     struct seg *seg, caddr_t vaddr, void *arg)
2140 {
2141 	pgcnt_t		npages;
2142 	page_t		*pp;
2143 	page_t		*rootpp;
2144 	lgrp_t		*lgrp;
2145 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2146 
2147 	ASSERT(vp != NULL);
2148 
2149 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2150 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2151 	/* but no others */
2152 
2153 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2154 
2155 	npages = btop(bytes);
2156 
2157 	if (!kcage_on || panicstr) {
2158 		/*
2159 		 * Cage is OFF, or we are single threaded in
2160 		 * panic, so make everything a RELOC request.
2161 		 */
2162 		flags &= ~PG_NORELOC;
2163 	}
2164 
2165 	/*
2166 	 * Make sure there's adequate physical memory available.
2167 	 * Note: PG_WAIT is ignored here.
2168 	 */
2169 	if (freemem <= throttlefree + npages) {
2170 		VM_STAT_ADD(page_create_large_cnt[1]);
2171 		return (NULL);
2172 	}
2173 
2174 	/*
2175 	 * If cage is on, dampen draw from cage when available
2176 	 * cage space is low.
2177 	 */
2178 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2179 	    kcage_freemem < kcage_throttlefree + npages) {
2180 
2181 		/*
2182 		 * The cage is on, the caller wants PG_NORELOC
2183 		 * pages and available cage memory is very low.
2184 		 * Call kcage_create_throttle() to attempt to
2185 		 * control demand on the cage.
2186 		 */
2187 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2188 			VM_STAT_ADD(page_create_large_cnt[2]);
2189 			return (NULL);
2190 		}
2191 	}
2192 
2193 	if (!pcf_decrement_bucket(npages) &&
2194 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2195 		VM_STAT_ADD(page_create_large_cnt[4]);
2196 		return (NULL);
2197 	}
2198 
2199 	/*
2200 	 * This is where this function behaves fundamentally differently
2201 	 * than page_create_va(); since we're intending to map the page
2202 	 * with a single TTE, we have to get it as a physically contiguous
2203 	 * hardware pagesize chunk.  If we can't, we fail.
2204 	 */
2205 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2206 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2207 		lgrp = lgrp_table[*lgrpid];
2208 	else
2209 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2210 
2211 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2212 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2213 		page_create_putback(npages);
2214 		VM_STAT_ADD(page_create_large_cnt[5]);
2215 		return (NULL);
2216 	}
2217 
2218 	/*
2219 	 * if we got the page with the wrong mtype give it back this is a
2220 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2221 	 * inside "if" and the workaround becomes just a nop
2222 	 */
2223 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2224 		page_list_add_pages(rootpp, 0);
2225 		page_create_putback(npages);
2226 		VM_STAT_ADD(page_create_large_cnt[6]);
2227 		return (NULL);
2228 	}
2229 
2230 	/*
2231 	 * If satisfying this request has left us with too little
2232 	 * memory, start the wheels turning to get some back.  The
2233 	 * first clause of the test prevents waking up the pageout
2234 	 * daemon in situations where it would decide that there's
2235 	 * nothing to do.
2236 	 */
2237 	if (nscan < desscan && freemem < minfree) {
2238 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2239 		    "pageout_cv_signal:freemem %ld", freemem);
2240 		cv_signal(&proc_pageout->p_cv);
2241 	}
2242 
2243 	pp = rootpp;
2244 	while (npages--) {
2245 		ASSERT(PAGE_EXCL(pp));
2246 		ASSERT(pp->p_vnode == NULL);
2247 		ASSERT(!hat_page_is_mapped(pp));
2248 		PP_CLRFREE(pp);
2249 		PP_CLRAGED(pp);
2250 		if (!page_hashin(pp, vp, off, NULL))
2251 			panic("page_create_large: hashin failed: page %p",
2252 			    (void *)pp);
2253 		page_io_lock(pp);
2254 		off += PAGESIZE;
2255 		pp = pp->p_next;
2256 	}
2257 
2258 	VM_STAT_ADD(page_create_large_cnt[0]);
2259 	return (rootpp);
2260 }
2261 
2262 page_t *
2263 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2264     struct seg *seg, caddr_t vaddr)
2265 {
2266 	page_t		*plist = NULL;
2267 	pgcnt_t		npages;
2268 	pgcnt_t		found_on_free = 0;
2269 	pgcnt_t		pages_req;
2270 	page_t		*npp = NULL;
2271 	struct pcf	*p;
2272 	lgrp_t		*lgrp;
2273 
2274 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2275 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2276 	    vp, off, bytes, flags);
2277 
2278 	ASSERT(bytes != 0 && vp != NULL);
2279 
2280 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2281 		panic("page_create: invalid flags");
2282 		/*NOTREACHED*/
2283 	}
2284 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2285 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2286 	    /* but no others */
2287 
2288 	pages_req = npages = btopr(bytes);
2289 	/*
2290 	 * Try to see whether request is too large to *ever* be
2291 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2292 	 * decide to limit maximum size requests to max_page_get.
2293 	 */
2294 	if (npages >= max_page_get) {
2295 		if ((flags & PG_WAIT) == 0) {
2296 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2297 			    "page_create_toobig:vp %p off %llx npages "
2298 			    "%lu max_page_get %lu",
2299 			    vp, off, npages, max_page_get);
2300 			return (NULL);
2301 		} else {
2302 			cmn_err(CE_WARN,
2303 			    "Request for too much kernel memory "
2304 			    "(%lu bytes), will hang forever", bytes);
2305 			for (;;)
2306 				delay(1000000000);
2307 		}
2308 	}
2309 
2310 	if (!kcage_on || panicstr) {
2311 		/*
2312 		 * Cage is OFF, or we are single threaded in
2313 		 * panic, so make everything a RELOC request.
2314 		 */
2315 		flags &= ~PG_NORELOC;
2316 	}
2317 
2318 	if (freemem <= throttlefree + npages)
2319 		if (!page_create_throttle(npages, flags))
2320 			return (NULL);
2321 
2322 	/*
2323 	 * If cage is on, dampen draw from cage when available
2324 	 * cage space is low.
2325 	 */
2326 	if ((flags & PG_NORELOC) &&
2327 	    kcage_freemem < kcage_throttlefree + npages) {
2328 
2329 		/*
2330 		 * The cage is on, the caller wants PG_NORELOC
2331 		 * pages and available cage memory is very low.
2332 		 * Call kcage_create_throttle() to attempt to
2333 		 * control demand on the cage.
2334 		 */
2335 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2336 			return (NULL);
2337 	}
2338 
2339 	VM_STAT_ADD(page_create_cnt[0]);
2340 
2341 	if (!pcf_decrement_bucket(npages)) {
2342 		/*
2343 		 * Have to look harder.  If npages is greater than
2344 		 * one, then we might have to coalesce the counters.
2345 		 *
2346 		 * Go wait.  We come back having accounted
2347 		 * for the memory.
2348 		 */
2349 		VM_STAT_ADD(page_create_cnt[1]);
2350 		if (!page_create_wait(npages, flags)) {
2351 			VM_STAT_ADD(page_create_cnt[2]);
2352 			return (NULL);
2353 		}
2354 	}
2355 
2356 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2357 	    "page_create_success:vp %p off %llx", vp, off);
2358 
2359 	/*
2360 	 * If satisfying this request has left us with too little
2361 	 * memory, start the wheels turning to get some back.  The
2362 	 * first clause of the test prevents waking up the pageout
2363 	 * daemon in situations where it would decide that there's
2364 	 * nothing to do.
2365 	 */
2366 	if (nscan < desscan && freemem < minfree) {
2367 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2368 		    "pageout_cv_signal:freemem %ld", freemem);
2369 		cv_signal(&proc_pageout->p_cv);
2370 	}
2371 
2372 	/*
2373 	 * Loop around collecting the requested number of pages.
2374 	 * Most of the time, we have to `create' a new page. With
2375 	 * this in mind, pull the page off the free list before
2376 	 * getting the hash lock.  This will minimize the hash
2377 	 * lock hold time, nesting, and the like.  If it turns
2378 	 * out we don't need the page, we put it back at the end.
2379 	 */
2380 	while (npages--) {
2381 		page_t		*pp;
2382 		kmutex_t	*phm = NULL;
2383 		ulong_t		index;
2384 
2385 		index = PAGE_HASH_FUNC(vp, off);
2386 top:
2387 		ASSERT(phm == NULL);
2388 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2389 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2390 
2391 		if (npp == NULL) {
2392 			/*
2393 			 * Try to get a page from the freelist (ie,
2394 			 * a page with no [vp, off] tag).  If that
2395 			 * fails, use the cachelist.
2396 			 *
2397 			 * During the first attempt at both the free
2398 			 * and cache lists we try for the correct color.
2399 			 */
2400 			/*
2401 			 * XXXX-how do we deal with virtual indexed
2402 			 * caches and and colors?
2403 			 */
2404 			VM_STAT_ADD(page_create_cnt[4]);
2405 			/*
2406 			 * Get lgroup to allocate next page of shared memory
2407 			 * from and use it to specify where to allocate
2408 			 * the physical memory
2409 			 */
2410 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2411 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2412 			    flags | PG_MATCH_COLOR, lgrp);
2413 			if (npp == NULL) {
2414 				npp = page_get_cachelist(vp, off, seg,
2415 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2416 				if (npp == NULL) {
2417 					npp = page_create_get_something(vp,
2418 					    off, seg, vaddr,
2419 					    flags & ~PG_MATCH_COLOR);
2420 				}
2421 
2422 				if (PP_ISAGED(npp) == 0) {
2423 					/*
2424 					 * Since this page came from the
2425 					 * cachelist, we must destroy the
2426 					 * old vnode association.
2427 					 */
2428 					page_hashout(npp, NULL);
2429 				}
2430 			}
2431 		}
2432 
2433 		/*
2434 		 * We own this page!
2435 		 */
2436 		ASSERT(PAGE_EXCL(npp));
2437 		ASSERT(npp->p_vnode == NULL);
2438 		ASSERT(!hat_page_is_mapped(npp));
2439 		PP_CLRFREE(npp);
2440 		PP_CLRAGED(npp);
2441 
2442 		/*
2443 		 * Here we have a page in our hot little mits and are
2444 		 * just waiting to stuff it on the appropriate lists.
2445 		 * Get the mutex and check to see if it really does
2446 		 * not exist.
2447 		 */
2448 		phm = PAGE_HASH_MUTEX(index);
2449 		mutex_enter(phm);
2450 		PAGE_HASH_SEARCH(index, pp, vp, off);
2451 		if (pp == NULL) {
2452 			VM_STAT_ADD(page_create_new);
2453 			pp = npp;
2454 			npp = NULL;
2455 			if (!page_hashin(pp, vp, off, phm)) {
2456 				/*
2457 				 * Since we hold the page hash mutex and
2458 				 * just searched for this page, page_hashin
2459 				 * had better not fail.  If it does, that
2460 				 * means somethread did not follow the
2461 				 * page hash mutex rules.  Panic now and
2462 				 * get it over with.  As usual, go down
2463 				 * holding all the locks.
2464 				 */
2465 				ASSERT(MUTEX_HELD(phm));
2466 				panic("page_create: "
2467 				    "hashin failed %p %p %llx %p",
2468 				    (void *)pp, (void *)vp, off, (void *)phm);
2469 				/*NOTREACHED*/
2470 			}
2471 			ASSERT(MUTEX_HELD(phm));
2472 			mutex_exit(phm);
2473 			phm = NULL;
2474 
2475 			/*
2476 			 * Hat layer locking need not be done to set
2477 			 * the following bits since the page is not hashed
2478 			 * and was on the free list (i.e., had no mappings).
2479 			 *
2480 			 * Set the reference bit to protect
2481 			 * against immediate pageout
2482 			 *
2483 			 * XXXmh modify freelist code to set reference
2484 			 * bit so we don't have to do it here.
2485 			 */
2486 			page_set_props(pp, P_REF);
2487 			found_on_free++;
2488 		} else {
2489 			VM_STAT_ADD(page_create_exists);
2490 			if (flags & PG_EXCL) {
2491 				/*
2492 				 * Found an existing page, and the caller
2493 				 * wanted all new pages.  Undo all of the work
2494 				 * we have done.
2495 				 */
2496 				mutex_exit(phm);
2497 				phm = NULL;
2498 				while (plist != NULL) {
2499 					pp = plist;
2500 					page_sub(&plist, pp);
2501 					page_io_unlock(pp);
2502 					/* large pages should not end up here */
2503 					ASSERT(pp->p_szc == 0);
2504 					/*LINTED: constant in conditional ctx*/
2505 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2506 				}
2507 				VM_STAT_ADD(page_create_found_one);
2508 				goto fail;
2509 			}
2510 			ASSERT(flags & PG_WAIT);
2511 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2512 				/*
2513 				 * Start all over again if we blocked trying
2514 				 * to lock the page.
2515 				 */
2516 				mutex_exit(phm);
2517 				VM_STAT_ADD(page_create_page_lock_failed);
2518 				phm = NULL;
2519 				goto top;
2520 			}
2521 			mutex_exit(phm);
2522 			phm = NULL;
2523 
2524 			if (PP_ISFREE(pp)) {
2525 				ASSERT(PP_ISAGED(pp) == 0);
2526 				VM_STAT_ADD(pagecnt.pc_get_cache);
2527 				page_list_sub(pp, PG_CACHE_LIST);
2528 				PP_CLRFREE(pp);
2529 				found_on_free++;
2530 			}
2531 		}
2532 
2533 		/*
2534 		 * Got a page!  It is locked.  Acquire the i/o
2535 		 * lock since we are going to use the p_next and
2536 		 * p_prev fields to link the requested pages together.
2537 		 */
2538 		page_io_lock(pp);
2539 		page_add(&plist, pp);
2540 		plist = plist->p_next;
2541 		off += PAGESIZE;
2542 		vaddr += PAGESIZE;
2543 	}
2544 
2545 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2546 fail:
2547 	if (npp != NULL) {
2548 		/*
2549 		 * Did not need this page after all.
2550 		 * Put it back on the free list.
2551 		 */
2552 		VM_STAT_ADD(page_create_putbacks);
2553 		PP_SETFREE(npp);
2554 		PP_SETAGED(npp);
2555 		npp->p_offset = (u_offset_t)-1;
2556 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2557 		page_unlock(npp);
2558 
2559 	}
2560 
2561 	ASSERT(pages_req >= found_on_free);
2562 
2563 	{
2564 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2565 
2566 		if (overshoot) {
2567 			VM_STAT_ADD(page_create_overshoot);
2568 			p = &pcf[PCF_INDEX()];
2569 			mutex_enter(&p->pcf_lock);
2570 			if (p->pcf_block) {
2571 				p->pcf_reserve += overshoot;
2572 			} else {
2573 				p->pcf_count += overshoot;
2574 				if (p->pcf_wait) {
2575 					mutex_enter(&new_freemem_lock);
2576 					if (freemem_wait) {
2577 						cv_signal(&freemem_cv);
2578 						p->pcf_wait--;
2579 					} else {
2580 						p->pcf_wait = 0;
2581 					}
2582 					mutex_exit(&new_freemem_lock);
2583 				}
2584 			}
2585 			mutex_exit(&p->pcf_lock);
2586 			/* freemem is approximate, so this test OK */
2587 			if (!p->pcf_block)
2588 				freemem += overshoot;
2589 		}
2590 	}
2591 
2592 	return (plist);
2593 }
2594 
2595 /*
2596  * One or more constituent pages of this large page has been marked
2597  * toxic. Simply demote the large page to PAGESIZE pages and let
2598  * page_free() handle it. This routine should only be called by
2599  * large page free routines (page_free_pages() and page_destroy_pages().
2600  * All pages are locked SE_EXCL and have already been marked free.
2601  */
2602 static void
2603 page_free_toxic_pages(page_t *rootpp)
2604 {
2605 	page_t	*tpp;
2606 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2607 	uint_t	szc = rootpp->p_szc;
2608 
2609 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2610 		ASSERT(tpp->p_szc == szc);
2611 		ASSERT((PAGE_EXCL(tpp) &&
2612 		    !page_iolock_assert(tpp)) || panicstr);
2613 		tpp->p_szc = 0;
2614 	}
2615 
2616 	while (rootpp != NULL) {
2617 		tpp = rootpp;
2618 		page_sub(&rootpp, tpp);
2619 		ASSERT(PP_ISFREE(tpp));
2620 		PP_CLRFREE(tpp);
2621 		page_free(tpp, 1);
2622 	}
2623 }
2624 
2625 /*
2626  * Put page on the "free" list.
2627  * The free list is really two lists maintained by
2628  * the PSM of whatever machine we happen to be on.
2629  */
2630 void
2631 page_free(page_t *pp, int dontneed)
2632 {
2633 	struct pcf	*p;
2634 	uint_t		pcf_index;
2635 
2636 	ASSERT((PAGE_EXCL(pp) &&
2637 	    !page_iolock_assert(pp)) || panicstr);
2638 
2639 	if (PP_ISFREE(pp)) {
2640 		panic("page_free: page %p is free", (void *)pp);
2641 	}
2642 
2643 	if (pp->p_szc != 0) {
2644 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2645 		    PP_ISKAS(pp)) {
2646 			panic("page_free: anon or kernel "
2647 			    "or no vnode large page %p", (void *)pp);
2648 		}
2649 		page_demote_vp_pages(pp);
2650 		ASSERT(pp->p_szc == 0);
2651 	}
2652 
2653 	/*
2654 	 * The page_struct_lock need not be acquired to examine these
2655 	 * fields since the page has an "exclusive" lock.
2656 	 */
2657 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2658 	    pp->p_slckcnt != 0) {
2659 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2660 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2661 		    pp->p_cowcnt, pp->p_slckcnt);
2662 		/*NOTREACHED*/
2663 	}
2664 
2665 	ASSERT(!hat_page_getshare(pp));
2666 
2667 	PP_SETFREE(pp);
2668 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2669 	    !hat_ismod(pp));
2670 	page_clr_all_props(pp);
2671 	ASSERT(!hat_page_getshare(pp));
2672 
2673 	/*
2674 	 * Now we add the page to the head of the free list.
2675 	 * But if this page is associated with a paged vnode
2676 	 * then we adjust the head forward so that the page is
2677 	 * effectively at the end of the list.
2678 	 */
2679 	if (pp->p_vnode == NULL) {
2680 		/*
2681 		 * Page has no identity, put it on the free list.
2682 		 */
2683 		PP_SETAGED(pp);
2684 		pp->p_offset = (u_offset_t)-1;
2685 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2686 		VM_STAT_ADD(pagecnt.pc_free_free);
2687 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2688 		    "page_free_free:pp %p", pp);
2689 	} else {
2690 		PP_CLRAGED(pp);
2691 
2692 		if (!dontneed) {
2693 			/* move it to the tail of the list */
2694 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2695 
2696 			VM_STAT_ADD(pagecnt.pc_free_cache);
2697 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2698 			    "page_free_cache_tail:pp %p", pp);
2699 		} else {
2700 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2701 
2702 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2703 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2704 			    "page_free_cache_head:pp %p", pp);
2705 		}
2706 	}
2707 	page_unlock(pp);
2708 
2709 	/*
2710 	 * Now do the `freemem' accounting.
2711 	 */
2712 	pcf_index = PCF_INDEX();
2713 	p = &pcf[pcf_index];
2714 
2715 	mutex_enter(&p->pcf_lock);
2716 	if (p->pcf_block) {
2717 		p->pcf_reserve += 1;
2718 	} else {
2719 		p->pcf_count += 1;
2720 		if (p->pcf_wait) {
2721 			mutex_enter(&new_freemem_lock);
2722 			/*
2723 			 * Check to see if some other thread
2724 			 * is actually waiting.  Another bucket
2725 			 * may have woken it up by now.  If there
2726 			 * are no waiters, then set our pcf_wait
2727 			 * count to zero to avoid coming in here
2728 			 * next time.  Also, since only one page
2729 			 * was put on the free list, just wake
2730 			 * up one waiter.
2731 			 */
2732 			if (freemem_wait) {
2733 				cv_signal(&freemem_cv);
2734 				p->pcf_wait--;
2735 			} else {
2736 				p->pcf_wait = 0;
2737 			}
2738 			mutex_exit(&new_freemem_lock);
2739 		}
2740 	}
2741 	mutex_exit(&p->pcf_lock);
2742 
2743 	/* freemem is approximate, so this test OK */
2744 	if (!p->pcf_block)
2745 		freemem += 1;
2746 }
2747 
2748 /*
2749  * Put page on the "free" list during intial startup.
2750  * This happens during initial single threaded execution.
2751  */
2752 void
2753 page_free_at_startup(page_t *pp)
2754 {
2755 	struct pcf	*p;
2756 	uint_t		pcf_index;
2757 
2758 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2759 	VM_STAT_ADD(pagecnt.pc_free_free);
2760 
2761 	/*
2762 	 * Now do the `freemem' accounting.
2763 	 */
2764 	pcf_index = PCF_INDEX();
2765 	p = &pcf[pcf_index];
2766 
2767 	ASSERT(p->pcf_block == 0);
2768 	ASSERT(p->pcf_wait == 0);
2769 	p->pcf_count += 1;
2770 
2771 	/* freemem is approximate, so this is OK */
2772 	freemem += 1;
2773 }
2774 
2775 void
2776 page_free_pages(page_t *pp)
2777 {
2778 	page_t	*tpp, *rootpp = NULL;
2779 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2780 	pgcnt_t	i;
2781 	uint_t	szc = pp->p_szc;
2782 
2783 	VM_STAT_ADD(pagecnt.pc_free_pages);
2784 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2785 	    "page_free_free:pp %p", pp);
2786 
2787 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2788 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2789 		panic("page_free_pages: not root page %p", (void *)pp);
2790 		/*NOTREACHED*/
2791 	}
2792 
2793 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2794 		ASSERT((PAGE_EXCL(tpp) &&
2795 		    !page_iolock_assert(tpp)) || panicstr);
2796 		if (PP_ISFREE(tpp)) {
2797 			panic("page_free_pages: page %p is free", (void *)tpp);
2798 			/*NOTREACHED*/
2799 		}
2800 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2801 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2802 			panic("page_free_pages %p", (void *)tpp);
2803 			/*NOTREACHED*/
2804 		}
2805 
2806 		ASSERT(!hat_page_getshare(tpp));
2807 		ASSERT(tpp->p_vnode == NULL);
2808 		ASSERT(tpp->p_szc == szc);
2809 
2810 		PP_SETFREE(tpp);
2811 		page_clr_all_props(tpp);
2812 		PP_SETAGED(tpp);
2813 		tpp->p_offset = (u_offset_t)-1;
2814 		ASSERT(tpp->p_next == tpp);
2815 		ASSERT(tpp->p_prev == tpp);
2816 		page_list_concat(&rootpp, &tpp);
2817 	}
2818 	ASSERT(rootpp == pp);
2819 
2820 	page_list_add_pages(rootpp, 0);
2821 	page_create_putback(pgcnt);
2822 }
2823 
2824 int free_pages = 1;
2825 
2826 /*
2827  * This routine attempts to return pages to the cachelist via page_release().
2828  * It does not *have* to be successful in all cases, since the pageout scanner
2829  * will catch any pages it misses.  It does need to be fast and not introduce
2830  * too much overhead.
2831  *
2832  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2833  * don't lock and retry.  This is ok, since the page scanner will eventually
2834  * find any page we miss in free_vp_pages().
2835  */
2836 void
2837 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2838 {
2839 	page_t *pp;
2840 	u_offset_t eoff;
2841 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2842 
2843 	eoff = off + len;
2844 
2845 	if (free_pages == 0)
2846 		return;
2847 	if (swap_in_range(vp, off, len))
2848 		return;
2849 
2850 	for (; off < eoff; off += PAGESIZE) {
2851 
2852 		/*
2853 		 * find the page using a fast, but inexact search. It'll be OK
2854 		 * if a few pages slip through the cracks here.
2855 		 */
2856 		pp = page_exists(vp, off);
2857 
2858 		/*
2859 		 * If we didn't find the page (it may not exist), the page
2860 		 * is free, looks still in use (shared), or we can't lock it,
2861 		 * just give up.
2862 		 */
2863 		if (pp == NULL ||
2864 		    PP_ISFREE(pp) ||
2865 		    page_share_cnt(pp) > 0 ||
2866 		    !page_trylock(pp, SE_EXCL))
2867 			continue;
2868 
2869 		/*
2870 		 * Once we have locked pp, verify that it's still the
2871 		 * correct page and not already free
2872 		 */
2873 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2874 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2875 			page_unlock(pp);
2876 			continue;
2877 		}
2878 
2879 		/*
2880 		 * try to release the page...
2881 		 */
2882 		(void) page_release(pp, 1);
2883 	}
2884 }
2885 
2886 /*
2887  * Reclaim the given page from the free list.
2888  * If pp is part of a large pages, only the given constituent page is reclaimed
2889  * and the large page it belonged to will be demoted.  This can only happen
2890  * if the page is not on the cachelist.
2891  *
2892  * Returns 1 on success or 0 on failure.
2893  *
2894  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2895  * If `lock' is non-null, it will be dropped and re-acquired if
2896  * the routine must wait while freemem is 0.
2897  *
2898  * As it turns out, boot_getpages() does this.  It picks a page,
2899  * based on where OBP mapped in some address, gets its pfn, searches
2900  * the memsegs, locks the page, then pulls it off the free list!
2901  */
2902 int
2903 page_reclaim(page_t *pp, kmutex_t *lock)
2904 {
2905 	struct pcf	*p;
2906 	struct cpu	*cpup;
2907 	int		enough;
2908 	uint_t		i;
2909 
2910 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2911 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2912 
2913 	/*
2914 	 * If `freemem' is 0, we cannot reclaim this page from the
2915 	 * freelist, so release every lock we might hold: the page,
2916 	 * and the `lock' before blocking.
2917 	 *
2918 	 * The only way `freemem' can become 0 while there are pages
2919 	 * marked free (have their p->p_free bit set) is when the
2920 	 * system is low on memory and doing a page_create().  In
2921 	 * order to guarantee that once page_create() starts acquiring
2922 	 * pages it will be able to get all that it needs since `freemem'
2923 	 * was decreased by the requested amount.  So, we need to release
2924 	 * this page, and let page_create() have it.
2925 	 *
2926 	 * Since `freemem' being zero is not supposed to happen, just
2927 	 * use the usual hash stuff as a starting point.  If that bucket
2928 	 * is empty, then assume the worst, and start at the beginning
2929 	 * of the pcf array.  If we always start at the beginning
2930 	 * when acquiring more than one pcf lock, there won't be any
2931 	 * deadlock problems.
2932 	 */
2933 
2934 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2935 
2936 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2937 		pcf_acquire_all();
2938 		goto page_reclaim_nomem;
2939 	}
2940 
2941 	enough = pcf_decrement_bucket(1);
2942 
2943 	if (!enough) {
2944 		VM_STAT_ADD(page_reclaim_zero);
2945 		/*
2946 		 * Check again. Its possible that some other thread
2947 		 * could have been right behind us, and added one
2948 		 * to a list somewhere.  Acquire each of the pcf locks
2949 		 * until we find a page.
2950 		 */
2951 		p = pcf;
2952 		for (i = 0; i < pcf_fanout; i++) {
2953 			mutex_enter(&p->pcf_lock);
2954 			if (p->pcf_count >= 1) {
2955 				p->pcf_count -= 1;
2956 				/*
2957 				 * freemem is not protected by any lock. Thus,
2958 				 * we cannot have any assertion containing
2959 				 * freemem here.
2960 				 */
2961 				freemem -= 1;
2962 				enough = 1;
2963 				break;
2964 			}
2965 			p++;
2966 		}
2967 
2968 		if (!enough) {
2969 page_reclaim_nomem:
2970 			/*
2971 			 * We really can't have page `pp'.
2972 			 * Time for the no-memory dance with
2973 			 * page_free().  This is just like
2974 			 * page_create_wait().  Plus the added
2975 			 * attraction of releasing whatever mutex
2976 			 * we held when we were called with in `lock'.
2977 			 * Page_unlock() will wakeup any thread
2978 			 * waiting around for this page.
2979 			 */
2980 			if (lock) {
2981 				VM_STAT_ADD(page_reclaim_zero_locked);
2982 				mutex_exit(lock);
2983 			}
2984 			page_unlock(pp);
2985 
2986 			/*
2987 			 * get this before we drop all the pcf locks.
2988 			 */
2989 			mutex_enter(&new_freemem_lock);
2990 
2991 			p = pcf;
2992 			for (i = 0; i < pcf_fanout; i++) {
2993 				p->pcf_wait++;
2994 				mutex_exit(&p->pcf_lock);
2995 				p++;
2996 			}
2997 
2998 			freemem_wait++;
2999 			cv_wait(&freemem_cv, &new_freemem_lock);
3000 			freemem_wait--;
3001 
3002 			mutex_exit(&new_freemem_lock);
3003 
3004 			if (lock) {
3005 				mutex_enter(lock);
3006 			}
3007 			return (0);
3008 		}
3009 
3010 		/*
3011 		 * The pcf accounting has been done,
3012 		 * though none of the pcf_wait flags have been set,
3013 		 * drop the locks and continue on.
3014 		 */
3015 		while (p >= pcf) {
3016 			mutex_exit(&p->pcf_lock);
3017 			p--;
3018 		}
3019 	}
3020 
3021 
3022 	VM_STAT_ADD(pagecnt.pc_reclaim);
3023 
3024 	/*
3025 	 * page_list_sub will handle the case where pp is a large page.
3026 	 * It's possible that the page was promoted while on the freelist
3027 	 */
3028 	if (PP_ISAGED(pp)) {
3029 		page_list_sub(pp, PG_FREE_LIST);
3030 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3031 		    "page_reclaim_free:pp %p", pp);
3032 	} else {
3033 		page_list_sub(pp, PG_CACHE_LIST);
3034 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3035 		    "page_reclaim_cache:pp %p", pp);
3036 	}
3037 
3038 	/*
3039 	 * clear the p_free & p_age bits since this page is no longer
3040 	 * on the free list.  Notice that there was a brief time where
3041 	 * a page is marked as free, but is not on the list.
3042 	 *
3043 	 * Set the reference bit to protect against immediate pageout.
3044 	 */
3045 	PP_CLRFREE(pp);
3046 	PP_CLRAGED(pp);
3047 	page_set_props(pp, P_REF);
3048 
3049 	CPU_STATS_ENTER_K();
3050 	cpup = CPU;	/* get cpup now that CPU cannot change */
3051 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3052 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3053 	CPU_STATS_EXIT_K();
3054 	ASSERT(pp->p_szc == 0);
3055 
3056 	return (1);
3057 }
3058 
3059 /*
3060  * Destroy identity of the page and put it back on
3061  * the page free list.  Assumes that the caller has
3062  * acquired the "exclusive" lock on the page.
3063  */
3064 void
3065 page_destroy(page_t *pp, int dontfree)
3066 {
3067 	ASSERT((PAGE_EXCL(pp) &&
3068 	    !page_iolock_assert(pp)) || panicstr);
3069 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3070 
3071 	if (pp->p_szc != 0) {
3072 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3073 		    PP_ISKAS(pp)) {
3074 			panic("page_destroy: anon or kernel or no vnode "
3075 			    "large page %p", (void *)pp);
3076 		}
3077 		page_demote_vp_pages(pp);
3078 		ASSERT(pp->p_szc == 0);
3079 	}
3080 
3081 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3082 
3083 	/*
3084 	 * Unload translations, if any, then hash out the
3085 	 * page to erase its identity.
3086 	 */
3087 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3088 	page_hashout(pp, NULL);
3089 
3090 	if (!dontfree) {
3091 		/*
3092 		 * Acquire the "freemem_lock" for availrmem.
3093 		 * The page_struct_lock need not be acquired for lckcnt
3094 		 * and cowcnt since the page has an "exclusive" lock.
3095 		 * We are doing a modified version of page_pp_unlock here.
3096 		 */
3097 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3098 			mutex_enter(&freemem_lock);
3099 			if (pp->p_lckcnt != 0) {
3100 				availrmem++;
3101 				pages_locked--;
3102 				pp->p_lckcnt = 0;
3103 			}
3104 			if (pp->p_cowcnt != 0) {
3105 				availrmem += pp->p_cowcnt;
3106 				pages_locked -= pp->p_cowcnt;
3107 				pp->p_cowcnt = 0;
3108 			}
3109 			mutex_exit(&freemem_lock);
3110 		}
3111 		/*
3112 		 * Put the page on the "free" list.
3113 		 */
3114 		page_free(pp, 0);
3115 	}
3116 }
3117 
3118 void
3119 page_destroy_pages(page_t *pp)
3120 {
3121 
3122 	page_t	*tpp, *rootpp = NULL;
3123 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3124 	pgcnt_t	i, pglcks = 0;
3125 	uint_t	szc = pp->p_szc;
3126 
3127 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3128 
3129 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3130 
3131 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3132 
3133 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3134 		panic("page_destroy_pages: not root page %p", (void *)pp);
3135 		/*NOTREACHED*/
3136 	}
3137 
3138 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3139 		ASSERT((PAGE_EXCL(tpp) &&
3140 		    !page_iolock_assert(tpp)) || panicstr);
3141 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3142 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3143 		page_hashout(tpp, NULL);
3144 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3145 		if (tpp->p_lckcnt != 0) {
3146 			pglcks++;
3147 			tpp->p_lckcnt = 0;
3148 		} else if (tpp->p_cowcnt != 0) {
3149 			pglcks += tpp->p_cowcnt;
3150 			tpp->p_cowcnt = 0;
3151 		}
3152 		ASSERT(!hat_page_getshare(tpp));
3153 		ASSERT(tpp->p_vnode == NULL);
3154 		ASSERT(tpp->p_szc == szc);
3155 
3156 		PP_SETFREE(tpp);
3157 		page_clr_all_props(tpp);
3158 		PP_SETAGED(tpp);
3159 		ASSERT(tpp->p_next == tpp);
3160 		ASSERT(tpp->p_prev == tpp);
3161 		page_list_concat(&rootpp, &tpp);
3162 	}
3163 
3164 	ASSERT(rootpp == pp);
3165 	if (pglcks != 0) {
3166 		mutex_enter(&freemem_lock);
3167 		availrmem += pglcks;
3168 		mutex_exit(&freemem_lock);
3169 	}
3170 
3171 	page_list_add_pages(rootpp, 0);
3172 	page_create_putback(pgcnt);
3173 }
3174 
3175 /*
3176  * Similar to page_destroy(), but destroys pages which are
3177  * locked and known to be on the page free list.  Since
3178  * the page is known to be free and locked, no one can access
3179  * it.
3180  *
3181  * Also, the number of free pages does not change.
3182  */
3183 void
3184 page_destroy_free(page_t *pp)
3185 {
3186 	ASSERT(PAGE_EXCL(pp));
3187 	ASSERT(PP_ISFREE(pp));
3188 	ASSERT(pp->p_vnode);
3189 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3190 	ASSERT(!hat_page_is_mapped(pp));
3191 	ASSERT(PP_ISAGED(pp) == 0);
3192 	ASSERT(pp->p_szc == 0);
3193 
3194 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3195 	page_list_sub(pp, PG_CACHE_LIST);
3196 
3197 	page_hashout(pp, NULL);
3198 	ASSERT(pp->p_vnode == NULL);
3199 	ASSERT(pp->p_offset == (u_offset_t)-1);
3200 	ASSERT(pp->p_hash == NULL);
3201 
3202 	PP_SETAGED(pp);
3203 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3204 	page_unlock(pp);
3205 
3206 	mutex_enter(&new_freemem_lock);
3207 	if (freemem_wait) {
3208 		cv_signal(&freemem_cv);
3209 	}
3210 	mutex_exit(&new_freemem_lock);
3211 }
3212 
3213 /*
3214  * Rename the page "opp" to have an identity specified
3215  * by [vp, off].  If a page already exists with this name
3216  * it is locked and destroyed.  Note that the page's
3217  * translations are not unloaded during the rename.
3218  *
3219  * This routine is used by the anon layer to "steal" the
3220  * original page and is not unlike destroying a page and
3221  * creating a new page using the same page frame.
3222  *
3223  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3224  * caller 2 tries to rename B to A.
3225  */
3226 void
3227 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3228 {
3229 	page_t		*pp;
3230 	int		olckcnt = 0;
3231 	int		ocowcnt = 0;
3232 	kmutex_t	*phm;
3233 	ulong_t		index;
3234 
3235 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3236 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3237 	ASSERT(PP_ISFREE(opp) == 0);
3238 
3239 	VM_STAT_ADD(page_rename_count);
3240 
3241 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3242 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3243 
3244 	/*
3245 	 * CacheFS may call page_rename for a large NFS page
3246 	 * when both CacheFS and NFS mount points are used
3247 	 * by applications. Demote this large page before
3248 	 * renaming it, to ensure that there are no "partial"
3249 	 * large pages left lying around.
3250 	 */
3251 	if (opp->p_szc != 0) {
3252 		vnode_t *ovp = opp->p_vnode;
3253 		ASSERT(ovp != NULL);
3254 		ASSERT(!IS_SWAPFSVP(ovp));
3255 		ASSERT(!VN_ISKAS(ovp));
3256 		page_demote_vp_pages(opp);
3257 		ASSERT(opp->p_szc == 0);
3258 	}
3259 
3260 	page_hashout(opp, NULL);
3261 	PP_CLRAGED(opp);
3262 
3263 	/*
3264 	 * Acquire the appropriate page hash lock, since
3265 	 * we're going to rename the page.
3266 	 */
3267 	index = PAGE_HASH_FUNC(vp, off);
3268 	phm = PAGE_HASH_MUTEX(index);
3269 	mutex_enter(phm);
3270 top:
3271 	/*
3272 	 * Look for an existing page with this name and destroy it if found.
3273 	 * By holding the page hash lock all the way to the page_hashin()
3274 	 * call, we are assured that no page can be created with this
3275 	 * identity.  In the case when the phm lock is dropped to undo any
3276 	 * hat layer mappings, the existing page is held with an "exclusive"
3277 	 * lock, again preventing another page from being created with
3278 	 * this identity.
3279 	 */
3280 	PAGE_HASH_SEARCH(index, pp, vp, off);
3281 	if (pp != NULL) {
3282 		VM_STAT_ADD(page_rename_exists);
3283 
3284 		/*
3285 		 * As it turns out, this is one of only two places where
3286 		 * page_lock() needs to hold the passed in lock in the
3287 		 * successful case.  In all of the others, the lock could
3288 		 * be dropped as soon as the attempt is made to lock
3289 		 * the page.  It is tempting to add yet another arguement,
3290 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3291 		 */
3292 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3293 			/*
3294 			 * Went to sleep because the page could not
3295 			 * be locked.  We were woken up when the page
3296 			 * was unlocked, or when the page was destroyed.
3297 			 * In either case, `phm' was dropped while we
3298 			 * slept.  Hence we should not just roar through
3299 			 * this loop.
3300 			 */
3301 			goto top;
3302 		}
3303 
3304 		/*
3305 		 * If an existing page is a large page, then demote
3306 		 * it to ensure that no "partial" large pages are
3307 		 * "created" after page_rename. An existing page
3308 		 * can be a CacheFS page, and can't belong to swapfs.
3309 		 */
3310 		if (hat_page_is_mapped(pp)) {
3311 			/*
3312 			 * Unload translations.  Since we hold the
3313 			 * exclusive lock on this page, the page
3314 			 * can not be changed while we drop phm.
3315 			 * This is also not a lock protocol violation,
3316 			 * but rather the proper way to do things.
3317 			 */
3318 			mutex_exit(phm);
3319 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3320 			if (pp->p_szc != 0) {
3321 				ASSERT(!IS_SWAPFSVP(vp));
3322 				ASSERT(!VN_ISKAS(vp));
3323 				page_demote_vp_pages(pp);
3324 				ASSERT(pp->p_szc == 0);
3325 			}
3326 			mutex_enter(phm);
3327 		} else if (pp->p_szc != 0) {
3328 			ASSERT(!IS_SWAPFSVP(vp));
3329 			ASSERT(!VN_ISKAS(vp));
3330 			mutex_exit(phm);
3331 			page_demote_vp_pages(pp);
3332 			ASSERT(pp->p_szc == 0);
3333 			mutex_enter(phm);
3334 		}
3335 		page_hashout(pp, phm);
3336 	}
3337 	/*
3338 	 * Hash in the page with the new identity.
3339 	 */
3340 	if (!page_hashin(opp, vp, off, phm)) {
3341 		/*
3342 		 * We were holding phm while we searched for [vp, off]
3343 		 * and only dropped phm if we found and locked a page.
3344 		 * If we can't create this page now, then some thing
3345 		 * is really broken.
3346 		 */
3347 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3348 		/*NOTREACHED*/
3349 	}
3350 
3351 	ASSERT(MUTEX_HELD(phm));
3352 	mutex_exit(phm);
3353 
3354 	/*
3355 	 * Now that we have dropped phm, lets get around to finishing up
3356 	 * with pp.
3357 	 */
3358 	if (pp != NULL) {
3359 		ASSERT(!hat_page_is_mapped(pp));
3360 		/* for now large pages should not end up here */
3361 		ASSERT(pp->p_szc == 0);
3362 		/*
3363 		 * Save the locks for transfer to the new page and then
3364 		 * clear them so page_free doesn't think they're important.
3365 		 * The page_struct_lock need not be acquired for lckcnt and
3366 		 * cowcnt since the page has an "exclusive" lock.
3367 		 */
3368 		olckcnt = pp->p_lckcnt;
3369 		ocowcnt = pp->p_cowcnt;
3370 		pp->p_lckcnt = pp->p_cowcnt = 0;
3371 
3372 		/*
3373 		 * Put the page on the "free" list after we drop
3374 		 * the lock.  The less work under the lock the better.
3375 		 */
3376 		/*LINTED: constant in conditional context*/
3377 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3378 	}
3379 
3380 	/*
3381 	 * Transfer the lock count from the old page (if any).
3382 	 * The page_struct_lock need not be acquired for lckcnt and
3383 	 * cowcnt since the page has an "exclusive" lock.
3384 	 */
3385 	opp->p_lckcnt += olckcnt;
3386 	opp->p_cowcnt += ocowcnt;
3387 }
3388 
3389 /*
3390  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3391  *
3392  * Pages are normally inserted at the start of a vnode's v_pages list.
3393  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3394  * This can happen when a modified page is relocated for DR.
3395  *
3396  * Returns 1 on success and 0 on failure.
3397  */
3398 static int
3399 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3400 {
3401 	page_t		**listp;
3402 	page_t		*tp;
3403 	ulong_t		index;
3404 
3405 	ASSERT(PAGE_EXCL(pp));
3406 	ASSERT(vp != NULL);
3407 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3408 
3409 	/*
3410 	 * Be sure to set these up before the page is inserted on the hash
3411 	 * list.  As soon as the page is placed on the list some other
3412 	 * thread might get confused and wonder how this page could
3413 	 * possibly hash to this list.
3414 	 */
3415 	pp->p_vnode = vp;
3416 	pp->p_offset = offset;
3417 
3418 	/*
3419 	 * record if this page is on a swap vnode
3420 	 */
3421 	if ((vp->v_flag & VISSWAP) != 0)
3422 		PP_SETSWAP(pp);
3423 
3424 	index = PAGE_HASH_FUNC(vp, offset);
3425 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3426 	listp = &page_hash[index];
3427 
3428 	/*
3429 	 * If this page is already hashed in, fail this attempt to add it.
3430 	 */
3431 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3432 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3433 			pp->p_vnode = NULL;
3434 			pp->p_offset = (u_offset_t)(-1);
3435 			return (0);
3436 		}
3437 	}
3438 	pp->p_hash = *listp;
3439 	*listp = pp;
3440 
3441 	/*
3442 	 * Add the page to the vnode's list of pages
3443 	 */
3444 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3445 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3446 	else
3447 		listp = &vp->v_pages;
3448 
3449 	page_vpadd(listp, pp);
3450 
3451 	return (1);
3452 }
3453 
3454 /*
3455  * Add page `pp' to both the hash and vp chains for [vp, offset].
3456  *
3457  * Returns 1 on success and 0 on failure.
3458  * If hold is passed in, it is not dropped.
3459  */
3460 int
3461 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3462 {
3463 	kmutex_t	*phm = NULL;
3464 	kmutex_t	*vphm;
3465 	int		rc;
3466 
3467 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3468 	ASSERT(pp->p_fsdata == 0 || panicstr);
3469 
3470 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3471 	    "page_hashin:pp %p vp %p offset %llx",
3472 	    pp, vp, offset);
3473 
3474 	VM_STAT_ADD(hashin_count);
3475 
3476 	if (hold != NULL)
3477 		phm = hold;
3478 	else {
3479 		VM_STAT_ADD(hashin_not_held);
3480 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3481 		mutex_enter(phm);
3482 	}
3483 
3484 	vphm = page_vnode_mutex(vp);
3485 	mutex_enter(vphm);
3486 	rc = page_do_hashin(pp, vp, offset);
3487 	mutex_exit(vphm);
3488 	if (hold == NULL)
3489 		mutex_exit(phm);
3490 	if (rc == 0)
3491 		VM_STAT_ADD(hashin_already);
3492 	return (rc);
3493 }
3494 
3495 /*
3496  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3497  * All mutexes must be held
3498  */
3499 static void
3500 page_do_hashout(page_t *pp)
3501 {
3502 	page_t	**hpp;
3503 	page_t	*hp;
3504 	vnode_t	*vp = pp->p_vnode;
3505 
3506 	ASSERT(vp != NULL);
3507 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3508 
3509 	/*
3510 	 * First, take pp off of its hash chain.
3511 	 */
3512 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3513 
3514 	for (;;) {
3515 		hp = *hpp;
3516 		if (hp == pp)
3517 			break;
3518 		if (hp == NULL) {
3519 			panic("page_do_hashout");
3520 			/*NOTREACHED*/
3521 		}
3522 		hpp = &hp->p_hash;
3523 	}
3524 	*hpp = pp->p_hash;
3525 
3526 	/*
3527 	 * Now remove it from its associated vnode.
3528 	 */
3529 	if (vp->v_pages)
3530 		page_vpsub(&vp->v_pages, pp);
3531 
3532 	pp->p_hash = NULL;
3533 	page_clr_all_props(pp);
3534 	PP_CLRSWAP(pp);
3535 	pp->p_vnode = NULL;
3536 	pp->p_offset = (u_offset_t)-1;
3537 	pp->p_fsdata = 0;
3538 }
3539 
3540 /*
3541  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3542  *
3543  * When `phm' is non-NULL it contains the address of the mutex protecting the
3544  * hash list pp is on.  It is not dropped.
3545  */
3546 void
3547 page_hashout(page_t *pp, kmutex_t *phm)
3548 {
3549 	vnode_t		*vp;
3550 	ulong_t		index;
3551 	kmutex_t	*nphm;
3552 	kmutex_t	*vphm;
3553 	kmutex_t	*sep;
3554 
3555 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3556 	ASSERT(pp->p_vnode != NULL);
3557 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3558 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3559 
3560 	vp = pp->p_vnode;
3561 
3562 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3563 	    "page_hashout:pp %p vp %p", pp, vp);
3564 
3565 	/* Kernel probe */
3566 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3567 	    tnf_opaque, vnode, vp,
3568 	    tnf_offset, offset, pp->p_offset);
3569 
3570 	/*
3571 	 *
3572 	 */
3573 	VM_STAT_ADD(hashout_count);
3574 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3575 	if (phm == NULL) {
3576 		VM_STAT_ADD(hashout_not_held);
3577 		nphm = PAGE_HASH_MUTEX(index);
3578 		mutex_enter(nphm);
3579 	}
3580 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3581 
3582 
3583 	/*
3584 	 * grab page vnode mutex and remove it...
3585 	 */
3586 	vphm = page_vnode_mutex(vp);
3587 	mutex_enter(vphm);
3588 
3589 	page_do_hashout(pp);
3590 
3591 	mutex_exit(vphm);
3592 	if (phm == NULL)
3593 		mutex_exit(nphm);
3594 
3595 	/*
3596 	 * Wake up processes waiting for this page.  The page's
3597 	 * identity has been changed, and is probably not the
3598 	 * desired page any longer.
3599 	 */
3600 	sep = page_se_mutex(pp);
3601 	mutex_enter(sep);
3602 	pp->p_selock &= ~SE_EWANTED;
3603 	if (CV_HAS_WAITERS(&pp->p_cv))
3604 		cv_broadcast(&pp->p_cv);
3605 	mutex_exit(sep);
3606 }
3607 
3608 /*
3609  * Add the page to the front of a linked list of pages
3610  * using the p_next & p_prev pointers for the list.
3611  * The caller is responsible for protecting the list pointers.
3612  */
3613 void
3614 page_add(page_t **ppp, page_t *pp)
3615 {
3616 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3617 
3618 	page_add_common(ppp, pp);
3619 }
3620 
3621 
3622 
3623 /*
3624  *  Common code for page_add() and mach_page_add()
3625  */
3626 void
3627 page_add_common(page_t **ppp, page_t *pp)
3628 {
3629 	if (*ppp == NULL) {
3630 		pp->p_next = pp->p_prev = pp;
3631 	} else {
3632 		pp->p_next = *ppp;
3633 		pp->p_prev = (*ppp)->p_prev;
3634 		(*ppp)->p_prev = pp;
3635 		pp->p_prev->p_next = pp;
3636 	}
3637 	*ppp = pp;
3638 }
3639 
3640 
3641 /*
3642  * Remove this page from a linked list of pages
3643  * using the p_next & p_prev pointers for the list.
3644  *
3645  * The caller is responsible for protecting the list pointers.
3646  */
3647 void
3648 page_sub(page_t **ppp, page_t *pp)
3649 {
3650 	ASSERT((PP_ISFREE(pp)) ? 1 :
3651 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3652 
3653 	if (*ppp == NULL || pp == NULL) {
3654 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3655 		    (void *)pp, (void *)(*ppp));
3656 		/*NOTREACHED*/
3657 	}
3658 
3659 	page_sub_common(ppp, pp);
3660 }
3661 
3662 
3663 /*
3664  *  Common code for page_sub() and mach_page_sub()
3665  */
3666 void
3667 page_sub_common(page_t **ppp, page_t *pp)
3668 {
3669 	if (*ppp == pp)
3670 		*ppp = pp->p_next;		/* go to next page */
3671 
3672 	if (*ppp == pp)
3673 		*ppp = NULL;			/* page list is gone */
3674 	else {
3675 		pp->p_prev->p_next = pp->p_next;
3676 		pp->p_next->p_prev = pp->p_prev;
3677 	}
3678 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3679 }
3680 
3681 
3682 /*
3683  * Break page list cppp into two lists with npages in the first list.
3684  * The tail is returned in nppp.
3685  */
3686 void
3687 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3688 {
3689 	page_t *s1pp = *oppp;
3690 	page_t *s2pp;
3691 	page_t *e1pp, *e2pp;
3692 	long n = 0;
3693 
3694 	if (s1pp == NULL) {
3695 		*nppp = NULL;
3696 		return;
3697 	}
3698 	if (npages == 0) {
3699 		*nppp = s1pp;
3700 		*oppp = NULL;
3701 		return;
3702 	}
3703 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3704 		s2pp = s2pp->p_next;
3705 	}
3706 	/* Fix head and tail of new lists */
3707 	e1pp = s2pp->p_prev;
3708 	e2pp = s1pp->p_prev;
3709 	s1pp->p_prev = e1pp;
3710 	e1pp->p_next = s1pp;
3711 	s2pp->p_prev = e2pp;
3712 	e2pp->p_next = s2pp;
3713 
3714 	/* second list empty */
3715 	if (s2pp == s1pp) {
3716 		*oppp = s1pp;
3717 		*nppp = NULL;
3718 	} else {
3719 		*oppp = s1pp;
3720 		*nppp = s2pp;
3721 	}
3722 }
3723 
3724 /*
3725  * Concatenate page list nppp onto the end of list ppp.
3726  */
3727 void
3728 page_list_concat(page_t **ppp, page_t **nppp)
3729 {
3730 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3731 
3732 	if (*nppp == NULL) {
3733 		return;
3734 	}
3735 	if (*ppp == NULL) {
3736 		*ppp = *nppp;
3737 		return;
3738 	}
3739 	s1pp = *ppp;
3740 	e1pp =  s1pp->p_prev;
3741 	s2pp = *nppp;
3742 	e2pp = s2pp->p_prev;
3743 	s1pp->p_prev = e2pp;
3744 	e2pp->p_next = s1pp;
3745 	e1pp->p_next = s2pp;
3746 	s2pp->p_prev = e1pp;
3747 }
3748 
3749 /*
3750  * return the next page in the page list
3751  */
3752 page_t *
3753 page_list_next(page_t *pp)
3754 {
3755 	return (pp->p_next);
3756 }
3757 
3758 
3759 /*
3760  * Add the page to the front of the linked list of pages
3761  * using p_vpnext/p_vpprev pointers for the list.
3762  *
3763  * The caller is responsible for protecting the lists.
3764  */
3765 void
3766 page_vpadd(page_t **ppp, page_t *pp)
3767 {
3768 	if (*ppp == NULL) {
3769 		pp->p_vpnext = pp->p_vpprev = pp;
3770 	} else {
3771 		pp->p_vpnext = *ppp;
3772 		pp->p_vpprev = (*ppp)->p_vpprev;
3773 		(*ppp)->p_vpprev = pp;
3774 		pp->p_vpprev->p_vpnext = pp;
3775 	}
3776 	*ppp = pp;
3777 }
3778 
3779 /*
3780  * Remove this page from the linked list of pages
3781  * using p_vpnext/p_vpprev pointers for the list.
3782  *
3783  * The caller is responsible for protecting the lists.
3784  */
3785 void
3786 page_vpsub(page_t **ppp, page_t *pp)
3787 {
3788 	if (*ppp == NULL || pp == NULL) {
3789 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3790 		    (void *)pp, (void *)(*ppp));
3791 		/*NOTREACHED*/
3792 	}
3793 
3794 	if (*ppp == pp)
3795 		*ppp = pp->p_vpnext;		/* go to next page */
3796 
3797 	if (*ppp == pp)
3798 		*ppp = NULL;			/* page list is gone */
3799 	else {
3800 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3801 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3802 	}
3803 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3804 }
3805 
3806 /*
3807  * Lock a physical page into memory "long term".  Used to support "lock
3808  * in memory" functions.  Accepts the page to be locked, and a cow variable
3809  * to indicate whether a the lock will travel to the new page during
3810  * a potential copy-on-write.
3811  */
3812 int
3813 page_pp_lock(
3814 	page_t *pp,			/* page to be locked */
3815 	int cow,			/* cow lock */
3816 	int kernel)			/* must succeed -- ignore checking */
3817 {
3818 	int r = 0;			/* result -- assume failure */
3819 
3820 	ASSERT(PAGE_LOCKED(pp));
3821 
3822 	page_struct_lock(pp);
3823 	/*
3824 	 * Acquire the "freemem_lock" for availrmem.
3825 	 */
3826 	if (cow) {
3827 		mutex_enter(&freemem_lock);
3828 		if ((availrmem > pages_pp_maximum) &&
3829 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3830 			availrmem--;
3831 			pages_locked++;
3832 			mutex_exit(&freemem_lock);
3833 			r = 1;
3834 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3835 				cmn_err(CE_WARN,
3836 				    "COW lock limit reached on pfn 0x%lx",
3837 				    page_pptonum(pp));
3838 			}
3839 		} else
3840 			mutex_exit(&freemem_lock);
3841 	} else {
3842 		if (pp->p_lckcnt) {
3843 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3844 				r = 1;
3845 				if (++pp->p_lckcnt ==
3846 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3847 					cmn_err(CE_WARN, "Page lock limit "
3848 					    "reached on pfn 0x%lx",
3849 					    page_pptonum(pp));
3850 				}
3851 			}
3852 		} else {
3853 			if (kernel) {
3854 				/* availrmem accounting done by caller */
3855 				++pp->p_lckcnt;
3856 				r = 1;
3857 			} else {
3858 				mutex_enter(&freemem_lock);
3859 				if (availrmem > pages_pp_maximum) {
3860 					availrmem--;
3861 					pages_locked++;
3862 					++pp->p_lckcnt;
3863 					r = 1;
3864 				}
3865 				mutex_exit(&freemem_lock);
3866 			}
3867 		}
3868 	}
3869 	page_struct_unlock(pp);
3870 	return (r);
3871 }
3872 
3873 /*
3874  * Decommit a lock on a physical page frame.  Account for cow locks if
3875  * appropriate.
3876  */
3877 void
3878 page_pp_unlock(
3879 	page_t *pp,			/* page to be unlocked */
3880 	int cow,			/* expect cow lock */
3881 	int kernel)			/* this was a kernel lock */
3882 {
3883 	ASSERT(PAGE_LOCKED(pp));
3884 
3885 	page_struct_lock(pp);
3886 	/*
3887 	 * Acquire the "freemem_lock" for availrmem.
3888 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3889 	 * could be called to unlock even if nothing is locked. This could
3890 	 * happen if locked file pages were truncated (removing the lock)
3891 	 * and the file was grown again and new pages faulted in; the new
3892 	 * pages are unlocked but the segment still thinks they're locked.
3893 	 */
3894 	if (cow) {
3895 		if (pp->p_cowcnt) {
3896 			mutex_enter(&freemem_lock);
3897 			pp->p_cowcnt--;
3898 			availrmem++;
3899 			pages_locked--;
3900 			mutex_exit(&freemem_lock);
3901 		}
3902 	} else {
3903 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3904 			if (!kernel) {
3905 				mutex_enter(&freemem_lock);
3906 				availrmem++;
3907 				pages_locked--;
3908 				mutex_exit(&freemem_lock);
3909 			}
3910 		}
3911 	}
3912 	page_struct_unlock(pp);
3913 }
3914 
3915 /*
3916  * This routine reserves availrmem for npages;
3917  * 	flags: KM_NOSLEEP or KM_SLEEP
3918  * 	returns 1 on success or 0 on failure
3919  */
3920 int
3921 page_resv(pgcnt_t npages, uint_t flags)
3922 {
3923 	mutex_enter(&freemem_lock);
3924 	while (availrmem < tune.t_minarmem + npages) {
3925 		if (flags & KM_NOSLEEP) {
3926 			mutex_exit(&freemem_lock);
3927 			return (0);
3928 		}
3929 		mutex_exit(&freemem_lock);
3930 		page_needfree(npages);
3931 		kmem_reap();
3932 		delay(hz >> 2);
3933 		page_needfree(-(spgcnt_t)npages);
3934 		mutex_enter(&freemem_lock);
3935 	}
3936 	availrmem -= npages;
3937 	mutex_exit(&freemem_lock);
3938 	return (1);
3939 }
3940 
3941 /*
3942  * This routine unreserves availrmem for npages;
3943  */
3944 void
3945 page_unresv(pgcnt_t npages)
3946 {
3947 	mutex_enter(&freemem_lock);
3948 	availrmem += npages;
3949 	mutex_exit(&freemem_lock);
3950 }
3951 
3952 /*
3953  * See Statement at the beginning of segvn_lockop() regarding
3954  * the way we handle cowcnts and lckcnts.
3955  *
3956  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3957  * that breaks COW has PROT_WRITE.
3958  *
3959  * Note that, we may also break COW in case we are softlocking
3960  * on read access during physio;
3961  * in this softlock case, the vpage may not have PROT_WRITE.
3962  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3963  * if the vpage doesn't have PROT_WRITE.
3964  *
3965  * This routine is never called if we are stealing a page
3966  * in anon_private.
3967  *
3968  * The caller subtracted from availrmem for read only mapping.
3969  * if lckcnt is 1 increment availrmem.
3970  */
3971 void
3972 page_pp_useclaim(
3973 	page_t *opp,		/* original page frame losing lock */
3974 	page_t *npp,		/* new page frame gaining lock */
3975 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
3976 {
3977 	int payback = 0;
3978 	int nidx, oidx;
3979 
3980 	ASSERT(PAGE_LOCKED(opp));
3981 	ASSERT(PAGE_LOCKED(npp));
3982 
3983 	/*
3984 	 * Since we have two pages we probably have two locks.  We need to take
3985 	 * them in a defined order to avoid deadlocks.  It's also possible they
3986 	 * both hash to the same lock in which case this is a non-issue.
3987 	 */
3988 	nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
3989 	oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
3990 	if (nidx < oidx) {
3991 		page_struct_lock(npp);
3992 		page_struct_lock(opp);
3993 	} else if (oidx < nidx) {
3994 		page_struct_lock(opp);
3995 		page_struct_lock(npp);
3996 	} else {	/* The pages hash to the same lock */
3997 		page_struct_lock(npp);
3998 	}
3999 
4000 	ASSERT(npp->p_cowcnt == 0);
4001 	ASSERT(npp->p_lckcnt == 0);
4002 
4003 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4004 	if ((write_perm && opp->p_cowcnt != 0) ||
4005 	    (!write_perm && opp->p_lckcnt != 0)) {
4006 
4007 		if (write_perm) {
4008 			npp->p_cowcnt++;
4009 			ASSERT(opp->p_cowcnt != 0);
4010 			opp->p_cowcnt--;
4011 		} else {
4012 
4013 			ASSERT(opp->p_lckcnt != 0);
4014 
4015 			/*
4016 			 * We didn't need availrmem decremented if p_lckcnt on
4017 			 * original page is 1. Here, we are unlocking
4018 			 * read-only copy belonging to original page and
4019 			 * are locking a copy belonging to new page.
4020 			 */
4021 			if (opp->p_lckcnt == 1)
4022 				payback = 1;
4023 
4024 			npp->p_lckcnt++;
4025 			opp->p_lckcnt--;
4026 		}
4027 	}
4028 	if (payback) {
4029 		mutex_enter(&freemem_lock);
4030 		availrmem++;
4031 		pages_useclaim--;
4032 		mutex_exit(&freemem_lock);
4033 	}
4034 
4035 	if (nidx < oidx) {
4036 		page_struct_unlock(opp);
4037 		page_struct_unlock(npp);
4038 	} else if (oidx < nidx) {
4039 		page_struct_unlock(npp);
4040 		page_struct_unlock(opp);
4041 	} else {	/* The pages hash to the same lock */
4042 		page_struct_unlock(npp);
4043 	}
4044 }
4045 
4046 /*
4047  * Simple claim adjust functions -- used to support changes in
4048  * claims due to changes in access permissions.  Used by segvn_setprot().
4049  */
4050 int
4051 page_addclaim(page_t *pp)
4052 {
4053 	int r = 0;			/* result */
4054 
4055 	ASSERT(PAGE_LOCKED(pp));
4056 
4057 	page_struct_lock(pp);
4058 	ASSERT(pp->p_lckcnt != 0);
4059 
4060 	if (pp->p_lckcnt == 1) {
4061 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4062 			--pp->p_lckcnt;
4063 			r = 1;
4064 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4065 				cmn_err(CE_WARN,
4066 				    "COW lock limit reached on pfn 0x%lx",
4067 				    page_pptonum(pp));
4068 			}
4069 		}
4070 	} else {
4071 		mutex_enter(&freemem_lock);
4072 		if ((availrmem > pages_pp_maximum) &&
4073 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4074 			--availrmem;
4075 			++pages_claimed;
4076 			mutex_exit(&freemem_lock);
4077 			--pp->p_lckcnt;
4078 			r = 1;
4079 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4080 				cmn_err(CE_WARN,
4081 				    "COW lock limit reached on pfn 0x%lx",
4082 				    page_pptonum(pp));
4083 			}
4084 		} else
4085 			mutex_exit(&freemem_lock);
4086 	}
4087 	page_struct_unlock(pp);
4088 	return (r);
4089 }
4090 
4091 int
4092 page_subclaim(page_t *pp)
4093 {
4094 	int r = 0;
4095 
4096 	ASSERT(PAGE_LOCKED(pp));
4097 
4098 	page_struct_lock(pp);
4099 	ASSERT(pp->p_cowcnt != 0);
4100 
4101 	if (pp->p_lckcnt) {
4102 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4103 			r = 1;
4104 			/*
4105 			 * for availrmem
4106 			 */
4107 			mutex_enter(&freemem_lock);
4108 			availrmem++;
4109 			pages_claimed--;
4110 			mutex_exit(&freemem_lock);
4111 
4112 			pp->p_cowcnt--;
4113 
4114 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4115 				cmn_err(CE_WARN,
4116 				    "Page lock limit reached on pfn 0x%lx",
4117 				    page_pptonum(pp));
4118 			}
4119 		}
4120 	} else {
4121 		r = 1;
4122 		pp->p_cowcnt--;
4123 		pp->p_lckcnt++;
4124 	}
4125 	page_struct_unlock(pp);
4126 	return (r);
4127 }
4128 
4129 /*
4130  * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4131  * page.
4132  */
4133 int
4134 page_addclaim_pages(page_t  **ppa)
4135 {
4136 	pgcnt_t	lckpgs = 0, pg_idx;
4137 
4138 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4139 
4140 	/*
4141 	 * Only need to take the page struct lock on the large page root.
4142 	 */
4143 	page_struct_lock(ppa[0]);
4144 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4145 
4146 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4147 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4148 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4149 			page_struct_unlock(ppa[0]);
4150 			return (0);
4151 		}
4152 		if (ppa[pg_idx]->p_lckcnt > 1)
4153 			lckpgs++;
4154 	}
4155 
4156 	if (lckpgs != 0) {
4157 		mutex_enter(&freemem_lock);
4158 		if (availrmem >= pages_pp_maximum + lckpgs) {
4159 			availrmem -= lckpgs;
4160 			pages_claimed += lckpgs;
4161 		} else {
4162 			mutex_exit(&freemem_lock);
4163 			page_struct_unlock(ppa[0]);
4164 			return (0);
4165 		}
4166 		mutex_exit(&freemem_lock);
4167 	}
4168 
4169 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4170 		ppa[pg_idx]->p_lckcnt--;
4171 		ppa[pg_idx]->p_cowcnt++;
4172 	}
4173 	page_struct_unlock(ppa[0]);
4174 	return (1);
4175 }
4176 
4177 /*
4178  * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4179  * page.
4180  */
4181 int
4182 page_subclaim_pages(page_t  **ppa)
4183 {
4184 	pgcnt_t	ulckpgs = 0, pg_idx;
4185 
4186 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4187 
4188 	/*
4189 	 * Only need to take the page struct lock on the large page root.
4190 	 */
4191 	page_struct_lock(ppa[0]);
4192 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4193 
4194 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4195 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4196 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4197 			page_struct_unlock(ppa[0]);
4198 			return (0);
4199 		}
4200 		if (ppa[pg_idx]->p_lckcnt != 0)
4201 			ulckpgs++;
4202 	}
4203 
4204 	if (ulckpgs != 0) {
4205 		mutex_enter(&freemem_lock);
4206 		availrmem += ulckpgs;
4207 		pages_claimed -= ulckpgs;
4208 		mutex_exit(&freemem_lock);
4209 	}
4210 
4211 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4212 		ppa[pg_idx]->p_cowcnt--;
4213 		ppa[pg_idx]->p_lckcnt++;
4214 
4215 	}
4216 	page_struct_unlock(ppa[0]);
4217 	return (1);
4218 }
4219 
4220 page_t *
4221 page_numtopp(pfn_t pfnum, se_t se)
4222 {
4223 	page_t *pp;
4224 
4225 retry:
4226 	pp = page_numtopp_nolock(pfnum);
4227 	if (pp == NULL) {
4228 		return ((page_t *)NULL);
4229 	}
4230 
4231 	/*
4232 	 * Acquire the appropriate lock on the page.
4233 	 */
4234 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4235 		if (page_pptonum(pp) != pfnum)
4236 			goto retry;
4237 		continue;
4238 	}
4239 
4240 	if (page_pptonum(pp) != pfnum) {
4241 		page_unlock(pp);
4242 		goto retry;
4243 	}
4244 
4245 	return (pp);
4246 }
4247 
4248 page_t *
4249 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4250 {
4251 	page_t *pp;
4252 
4253 retry:
4254 	pp = page_numtopp_nolock(pfnum);
4255 	if (pp == NULL) {
4256 		return ((page_t *)NULL);
4257 	}
4258 
4259 	/*
4260 	 * Acquire the appropriate lock on the page.
4261 	 */
4262 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4263 		if (page_pptonum(pp) != pfnum)
4264 			goto retry;
4265 		continue;
4266 	}
4267 
4268 	if (page_pptonum(pp) != pfnum) {
4269 		page_unlock(pp);
4270 		goto retry;
4271 	}
4272 
4273 	return (pp);
4274 }
4275 
4276 /*
4277  * This routine is like page_numtopp, but will only return page structs
4278  * for pages which are ok for loading into hardware using the page struct.
4279  */
4280 page_t *
4281 page_numtopp_nowait(pfn_t pfnum, se_t se)
4282 {
4283 	page_t *pp;
4284 
4285 retry:
4286 	pp = page_numtopp_nolock(pfnum);
4287 	if (pp == NULL) {
4288 		return ((page_t *)NULL);
4289 	}
4290 
4291 	/*
4292 	 * Try to acquire the appropriate lock on the page.
4293 	 */
4294 	if (PP_ISFREE(pp))
4295 		pp = NULL;
4296 	else {
4297 		if (!page_trylock(pp, se))
4298 			pp = NULL;
4299 		else {
4300 			if (page_pptonum(pp) != pfnum) {
4301 				page_unlock(pp);
4302 				goto retry;
4303 			}
4304 			if (PP_ISFREE(pp)) {
4305 				page_unlock(pp);
4306 				pp = NULL;
4307 			}
4308 		}
4309 	}
4310 	return (pp);
4311 }
4312 
4313 #define	SYNC_PROGRESS_NPAGES	1000
4314 
4315 /*
4316  * Returns a count of dirty pages that are in the process
4317  * of being written out.  If 'cleanit' is set, try to push the page.
4318  */
4319 pgcnt_t
4320 page_busy(int cleanit)
4321 {
4322 	page_t *page0 = page_first();
4323 	page_t *pp = page0;
4324 	pgcnt_t nppbusy = 0;
4325 	int counter = 0;
4326 	u_offset_t off;
4327 
4328 	do {
4329 		vnode_t *vp = pp->p_vnode;
4330 
4331 		/*
4332 		 * Reset the sync timeout. The page list is very long
4333 		 * on large memory systems.
4334 		 */
4335 		if (++counter > SYNC_PROGRESS_NPAGES) {
4336 			counter = 0;
4337 			vfs_syncprogress();
4338 		}
4339 
4340 		/*
4341 		 * A page is a candidate for syncing if it is:
4342 		 *
4343 		 * (a)	On neither the freelist nor the cachelist
4344 		 * (b)	Hashed onto a vnode
4345 		 * (c)	Not a kernel page
4346 		 * (d)	Dirty
4347 		 * (e)	Not part of a swapfile
4348 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4349 		 *	v_vfsp pointer.
4350 		 * (g)	Backed by a filesystem which doesn't have a
4351 		 *	stubbed-out sync operation
4352 		 */
4353 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4354 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4355 		    vfs_can_sync(vp->v_vfsp)) {
4356 			nppbusy++;
4357 
4358 			if (!cleanit)
4359 				continue;
4360 			if (!page_trylock(pp, SE_EXCL))
4361 				continue;
4362 
4363 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4364 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4365 			    !(hat_pagesync(pp,
4366 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4367 				page_unlock(pp);
4368 				continue;
4369 			}
4370 			off = pp->p_offset;
4371 			VN_HOLD(vp);
4372 			page_unlock(pp);
4373 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4374 			    B_ASYNC | B_FREE, kcred, NULL);
4375 			VN_RELE(vp);
4376 		}
4377 	} while ((pp = page_next(pp)) != page0);
4378 
4379 	vfs_syncprogress();
4380 	return (nppbusy);
4381 }
4382 
4383 void page_invalidate_pages(void);
4384 
4385 /*
4386  * callback handler to vm sub-system
4387  *
4388  * callers make sure no recursive entries to this func.
4389  */
4390 /*ARGSUSED*/
4391 boolean_t
4392 callb_vm_cpr(void *arg, int code)
4393 {
4394 	if (code == CB_CODE_CPR_CHKPT)
4395 		page_invalidate_pages();
4396 	return (B_TRUE);
4397 }
4398 
4399 /*
4400  * Invalidate all pages of the system.
4401  * It shouldn't be called until all user page activities are all stopped.
4402  */
4403 void
4404 page_invalidate_pages()
4405 {
4406 	page_t *pp;
4407 	page_t *page0;
4408 	pgcnt_t nbusypages;
4409 	int retry = 0;
4410 	const int MAXRETRIES = 4;
4411 top:
4412 	/*
4413 	 * Flush dirty pages and destroy the clean ones.
4414 	 */
4415 	nbusypages = 0;
4416 
4417 	pp = page0 = page_first();
4418 	do {
4419 		struct vnode	*vp;
4420 		u_offset_t	offset;
4421 		int		mod;
4422 
4423 		/*
4424 		 * skip the page if it has no vnode or the page associated
4425 		 * with the kernel vnode or prom allocated kernel mem.
4426 		 */
4427 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4428 			continue;
4429 
4430 		/*
4431 		 * skip the page which is already free invalidated.
4432 		 */
4433 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4434 			continue;
4435 
4436 		/*
4437 		 * skip pages that are already locked or can't be "exclusively"
4438 		 * locked or are already free.  After we lock the page, check
4439 		 * the free and age bits again to be sure it's not destroyed
4440 		 * yet.
4441 		 * To achieve max. parallelization, we use page_trylock instead
4442 		 * of page_lock so that we don't get block on individual pages
4443 		 * while we have thousands of other pages to process.
4444 		 */
4445 		if (!page_trylock(pp, SE_EXCL)) {
4446 			nbusypages++;
4447 			continue;
4448 		} else if (PP_ISFREE(pp)) {
4449 			if (!PP_ISAGED(pp)) {
4450 				page_destroy_free(pp);
4451 			} else {
4452 				page_unlock(pp);
4453 			}
4454 			continue;
4455 		}
4456 		/*
4457 		 * Is this page involved in some I/O? shared?
4458 		 *
4459 		 * The page_struct_lock need not be acquired to
4460 		 * examine these fields since the page has an
4461 		 * "exclusive" lock.
4462 		 */
4463 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4464 			page_unlock(pp);
4465 			continue;
4466 		}
4467 
4468 		if (vp->v_type == VCHR) {
4469 			panic("vp->v_type == VCHR");
4470 			/*NOTREACHED*/
4471 		}
4472 
4473 		if (!page_try_demote_pages(pp)) {
4474 			page_unlock(pp);
4475 			continue;
4476 		}
4477 
4478 		/*
4479 		 * Check the modified bit. Leave the bits alone in hardware
4480 		 * (they will be modified if we do the putpage).
4481 		 */
4482 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4483 		    & P_MOD);
4484 		if (mod) {
4485 			offset = pp->p_offset;
4486 			/*
4487 			 * Hold the vnode before releasing the page lock
4488 			 * to prevent it from being freed and re-used by
4489 			 * some other thread.
4490 			 */
4491 			VN_HOLD(vp);
4492 			page_unlock(pp);
4493 			/*
4494 			 * No error return is checked here. Callers such as
4495 			 * cpr deals with the dirty pages at the dump time
4496 			 * if this putpage fails.
4497 			 */
4498 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4499 			    kcred, NULL);
4500 			VN_RELE(vp);
4501 		} else {
4502 			/*LINTED: constant in conditional context*/
4503 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4504 		}
4505 	} while ((pp = page_next(pp)) != page0);
4506 	if (nbusypages && retry++ < MAXRETRIES) {
4507 		delay(1);
4508 		goto top;
4509 	}
4510 }
4511 
4512 /*
4513  * Replace the page "old" with the page "new" on the page hash and vnode lists
4514  *
4515  * the replacement must be done in place, ie the equivalent sequence:
4516  *
4517  *	vp = old->p_vnode;
4518  *	off = old->p_offset;
4519  *	page_do_hashout(old)
4520  *	page_do_hashin(new, vp, off)
4521  *
4522  * doesn't work, since
4523  *  1) if old is the only page on the vnode, the v_pages list has a window
4524  *     where it looks empty. This will break file system assumptions.
4525  * and
4526  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4527  */
4528 static void
4529 page_do_relocate_hash(page_t *new, page_t *old)
4530 {
4531 	page_t	**hash_list;
4532 	vnode_t	*vp = old->p_vnode;
4533 	kmutex_t *sep;
4534 
4535 	ASSERT(PAGE_EXCL(old));
4536 	ASSERT(PAGE_EXCL(new));
4537 	ASSERT(vp != NULL);
4538 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4539 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4540 
4541 	/*
4542 	 * First find old page on the page hash list
4543 	 */
4544 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4545 
4546 	for (;;) {
4547 		if (*hash_list == old)
4548 			break;
4549 		if (*hash_list == NULL) {
4550 			panic("page_do_hashout");
4551 			/*NOTREACHED*/
4552 		}
4553 		hash_list = &(*hash_list)->p_hash;
4554 	}
4555 
4556 	/*
4557 	 * update new and replace old with new on the page hash list
4558 	 */
4559 	new->p_vnode = old->p_vnode;
4560 	new->p_offset = old->p_offset;
4561 	new->p_hash = old->p_hash;
4562 	*hash_list = new;
4563 
4564 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4565 		PP_SETSWAP(new);
4566 
4567 	/*
4568 	 * replace old with new on the vnode's page list
4569 	 */
4570 	if (old->p_vpnext == old) {
4571 		new->p_vpnext = new;
4572 		new->p_vpprev = new;
4573 	} else {
4574 		new->p_vpnext = old->p_vpnext;
4575 		new->p_vpprev = old->p_vpprev;
4576 		new->p_vpnext->p_vpprev = new;
4577 		new->p_vpprev->p_vpnext = new;
4578 	}
4579 	if (vp->v_pages == old)
4580 		vp->v_pages = new;
4581 
4582 	/*
4583 	 * clear out the old page
4584 	 */
4585 	old->p_hash = NULL;
4586 	old->p_vpnext = NULL;
4587 	old->p_vpprev = NULL;
4588 	old->p_vnode = NULL;
4589 	PP_CLRSWAP(old);
4590 	old->p_offset = (u_offset_t)-1;
4591 	page_clr_all_props(old);
4592 
4593 	/*
4594 	 * Wake up processes waiting for this page.  The page's
4595 	 * identity has been changed, and is probably not the
4596 	 * desired page any longer.
4597 	 */
4598 	sep = page_se_mutex(old);
4599 	mutex_enter(sep);
4600 	old->p_selock &= ~SE_EWANTED;
4601 	if (CV_HAS_WAITERS(&old->p_cv))
4602 		cv_broadcast(&old->p_cv);
4603 	mutex_exit(sep);
4604 }
4605 
4606 /*
4607  * This function moves the identity of page "pp_old" to page "pp_new".
4608  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4609  * and need not be hashed out from anywhere.
4610  */
4611 void
4612 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4613 {
4614 	vnode_t *vp = pp_old->p_vnode;
4615 	u_offset_t off = pp_old->p_offset;
4616 	kmutex_t *phm, *vphm;
4617 
4618 	/*
4619 	 * Rehash two pages
4620 	 */
4621 	ASSERT(PAGE_EXCL(pp_old));
4622 	ASSERT(PAGE_EXCL(pp_new));
4623 	ASSERT(vp != NULL);
4624 	ASSERT(pp_new->p_vnode == NULL);
4625 
4626 	/*
4627 	 * hashout then hashin while holding the mutexes
4628 	 */
4629 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4630 	mutex_enter(phm);
4631 	vphm = page_vnode_mutex(vp);
4632 	mutex_enter(vphm);
4633 
4634 	page_do_relocate_hash(pp_new, pp_old);
4635 
4636 	/* The following comment preserved from page_flip(). */
4637 	pp_new->p_fsdata = pp_old->p_fsdata;
4638 	pp_old->p_fsdata = 0;
4639 	mutex_exit(vphm);
4640 	mutex_exit(phm);
4641 
4642 	/*
4643 	 * The page_struct_lock need not be acquired for lckcnt and
4644 	 * cowcnt since the page has an "exclusive" lock.
4645 	 */
4646 	ASSERT(pp_new->p_lckcnt == 0);
4647 	ASSERT(pp_new->p_cowcnt == 0);
4648 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4649 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4650 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4651 
4652 }
4653 
4654 /*
4655  * Helper routine used to lock all remaining members of a
4656  * large page. The caller is responsible for passing in a locked
4657  * pp. If pp is a large page, then it succeeds in locking all the
4658  * remaining constituent pages or it returns with only the
4659  * original page locked.
4660  *
4661  * Returns 1 on success, 0 on failure.
4662  *
4663  * If success is returned this routine guarantees p_szc for all constituent
4664  * pages of a large page pp belongs to can't change. To achieve this we
4665  * recheck szc of pp after locking all constituent pages and retry if szc
4666  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4667  * lock on one of constituent pages it can't be running after all constituent
4668  * pages are locked.  hat_page_demote() with a lock on a constituent page
4669  * outside of this large page (i.e. pp belonged to a larger large page) is
4670  * already done with all constituent pages of pp since the root's p_szc is
4671  * changed last. Therefore no need to synchronize with hat_page_demote() that
4672  * locked a constituent page outside of pp's current large page.
4673  */
4674 #ifdef DEBUG
4675 uint32_t gpg_trylock_mtbf = 0;
4676 #endif
4677 
4678 int
4679 group_page_trylock(page_t *pp, se_t se)
4680 {
4681 	page_t  *tpp;
4682 	pgcnt_t	npgs, i, j;
4683 	uint_t pszc = pp->p_szc;
4684 
4685 #ifdef DEBUG
4686 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4687 		return (0);
4688 	}
4689 #endif
4690 
4691 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4692 		return (0);
4693 	}
4694 
4695 retry:
4696 	ASSERT(PAGE_LOCKED_SE(pp, se));
4697 	ASSERT(!PP_ISFREE(pp));
4698 	if (pszc == 0) {
4699 		return (1);
4700 	}
4701 	npgs = page_get_pagecnt(pszc);
4702 	tpp = pp + 1;
4703 	for (i = 1; i < npgs; i++, tpp++) {
4704 		if (!page_trylock(tpp, se)) {
4705 			tpp = pp + 1;
4706 			for (j = 1; j < i; j++, tpp++) {
4707 				page_unlock(tpp);
4708 			}
4709 			return (0);
4710 		}
4711 	}
4712 	if (pp->p_szc != pszc) {
4713 		ASSERT(pp->p_szc < pszc);
4714 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4715 		    !IS_SWAPFSVP(pp->p_vnode));
4716 		tpp = pp + 1;
4717 		for (i = 1; i < npgs; i++, tpp++) {
4718 			page_unlock(tpp);
4719 		}
4720 		pszc = pp->p_szc;
4721 		goto retry;
4722 	}
4723 	return (1);
4724 }
4725 
4726 void
4727 group_page_unlock(page_t *pp)
4728 {
4729 	page_t *tpp;
4730 	pgcnt_t	npgs, i;
4731 
4732 	ASSERT(PAGE_LOCKED(pp));
4733 	ASSERT(!PP_ISFREE(pp));
4734 	ASSERT(pp == PP_PAGEROOT(pp));
4735 	npgs = page_get_pagecnt(pp->p_szc);
4736 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4737 		page_unlock(tpp);
4738 	}
4739 }
4740 
4741 /*
4742  * returns
4743  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4744  * ERANGE	: this is not a base page
4745  * EBUSY	: failure to get locks on the page/pages
4746  * ENOMEM	: failure to obtain replacement pages
4747  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4748  * EIO		: An error occurred while trying to copy the page data
4749  *
4750  * Return with all constituent members of target and replacement
4751  * SE_EXCL locked. It is the callers responsibility to drop the
4752  * locks.
4753  */
4754 int
4755 do_page_relocate(
4756 	page_t **target,
4757 	page_t **replacement,
4758 	int grouplock,
4759 	spgcnt_t *nrelocp,
4760 	lgrp_t *lgrp)
4761 {
4762 	page_t *first_repl;
4763 	page_t *repl;
4764 	page_t *targ;
4765 	page_t *pl = NULL;
4766 	uint_t ppattr;
4767 	pfn_t   pfn, repl_pfn;
4768 	uint_t	szc;
4769 	spgcnt_t npgs, i;
4770 	int repl_contig = 0;
4771 	uint_t flags = 0;
4772 	spgcnt_t dofree = 0;
4773 
4774 	*nrelocp = 0;
4775 
4776 #if defined(__sparc)
4777 	/*
4778 	 * We need to wait till OBP has completed
4779 	 * its boot-time handoff of its resources to the kernel
4780 	 * before we allow page relocation
4781 	 */
4782 	if (page_relocate_ready == 0) {
4783 		return (EAGAIN);
4784 	}
4785 #endif
4786 
4787 	/*
4788 	 * If this is not a base page,
4789 	 * just return with 0x0 pages relocated.
4790 	 */
4791 	targ = *target;
4792 	ASSERT(PAGE_EXCL(targ));
4793 	ASSERT(!PP_ISFREE(targ));
4794 	szc = targ->p_szc;
4795 	ASSERT(szc < mmu_page_sizes);
4796 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4797 	pfn = targ->p_pagenum;
4798 	if (pfn != PFN_BASE(pfn, szc)) {
4799 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4800 		return (ERANGE);
4801 	}
4802 
4803 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4804 		repl_pfn = repl->p_pagenum;
4805 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4806 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4807 			return (ERANGE);
4808 		}
4809 		repl_contig = 1;
4810 	}
4811 
4812 	/*
4813 	 * We must lock all members of this large page or we cannot
4814 	 * relocate any part of it.
4815 	 */
4816 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4817 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4818 		return (EBUSY);
4819 	}
4820 
4821 	/*
4822 	 * reread szc it could have been decreased before
4823 	 * group_page_trylock() was done.
4824 	 */
4825 	szc = targ->p_szc;
4826 	ASSERT(szc < mmu_page_sizes);
4827 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4828 	ASSERT(pfn == PFN_BASE(pfn, szc));
4829 
4830 	npgs = page_get_pagecnt(targ->p_szc);
4831 
4832 	if (repl == NULL) {
4833 		dofree = npgs;		/* Size of target page in MMU pages */
4834 		if (!page_create_wait(dofree, 0)) {
4835 			if (grouplock != 0) {
4836 				group_page_unlock(targ);
4837 			}
4838 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4839 			return (ENOMEM);
4840 		}
4841 
4842 		/*
4843 		 * seg kmem pages require that the target and replacement
4844 		 * page be the same pagesize.
4845 		 */
4846 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4847 		repl = page_get_replacement_page(targ, lgrp, flags);
4848 		if (repl == NULL) {
4849 			if (grouplock != 0) {
4850 				group_page_unlock(targ);
4851 			}
4852 			page_create_putback(dofree);
4853 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4854 			return (ENOMEM);
4855 		}
4856 	}
4857 #ifdef DEBUG
4858 	else {
4859 		ASSERT(PAGE_LOCKED(repl));
4860 	}
4861 #endif /* DEBUG */
4862 
4863 #if defined(__sparc)
4864 	/*
4865 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4866 	 */
4867 	if (VN_ISKAS(targ->p_vnode)) {
4868 		*replacement = repl;
4869 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4870 			if (grouplock != 0) {
4871 				group_page_unlock(targ);
4872 			}
4873 			if (dofree) {
4874 				*replacement = NULL;
4875 				page_free_replacement_page(repl);
4876 				page_create_putback(dofree);
4877 			}
4878 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4879 			return (EAGAIN);
4880 		}
4881 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4882 		return (0);
4883 	}
4884 #else
4885 #if defined(lint)
4886 	dofree = dofree;
4887 #endif
4888 #endif
4889 
4890 	first_repl = repl;
4891 
4892 	for (i = 0; i < npgs; i++) {
4893 		ASSERT(PAGE_EXCL(targ));
4894 		ASSERT(targ->p_slckcnt == 0);
4895 		ASSERT(repl->p_slckcnt == 0);
4896 
4897 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4898 
4899 		ASSERT(hat_page_getshare(targ) == 0);
4900 		ASSERT(!PP_ISFREE(targ));
4901 		ASSERT(targ->p_pagenum == (pfn + i));
4902 		ASSERT(repl_contig == 0 ||
4903 		    repl->p_pagenum == (repl_pfn + i));
4904 
4905 		/*
4906 		 * Copy the page contents and attributes then
4907 		 * relocate the page in the page hash.
4908 		 */
4909 		if (ppcopy(targ, repl) == 0) {
4910 			targ = *target;
4911 			repl = first_repl;
4912 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4913 			if (grouplock != 0) {
4914 				group_page_unlock(targ);
4915 			}
4916 			if (dofree) {
4917 				*replacement = NULL;
4918 				page_free_replacement_page(repl);
4919 				page_create_putback(dofree);
4920 			}
4921 			return (EIO);
4922 		}
4923 
4924 		targ++;
4925 		if (repl_contig != 0) {
4926 			repl++;
4927 		} else {
4928 			repl = repl->p_next;
4929 		}
4930 	}
4931 
4932 	repl = first_repl;
4933 	targ = *target;
4934 
4935 	for (i = 0; i < npgs; i++) {
4936 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4937 		page_clr_all_props(repl);
4938 		page_set_props(repl, ppattr);
4939 		page_relocate_hash(repl, targ);
4940 
4941 		ASSERT(hat_page_getshare(targ) == 0);
4942 		ASSERT(hat_page_getshare(repl) == 0);
4943 		/*
4944 		 * Now clear the props on targ, after the
4945 		 * page_relocate_hash(), they no longer
4946 		 * have any meaning.
4947 		 */
4948 		page_clr_all_props(targ);
4949 		ASSERT(targ->p_next == targ);
4950 		ASSERT(targ->p_prev == targ);
4951 		page_list_concat(&pl, &targ);
4952 
4953 		targ++;
4954 		if (repl_contig != 0) {
4955 			repl++;
4956 		} else {
4957 			repl = repl->p_next;
4958 		}
4959 	}
4960 	/* assert that we have come full circle with repl */
4961 	ASSERT(repl_contig == 1 || first_repl == repl);
4962 
4963 	*target = pl;
4964 	if (*replacement == NULL) {
4965 		ASSERT(first_repl == repl);
4966 		*replacement = repl;
4967 	}
4968 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4969 	*nrelocp = npgs;
4970 	return (0);
4971 }
4972 /*
4973  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4974  */
4975 int
4976 page_relocate(
4977 	page_t **target,
4978 	page_t **replacement,
4979 	int grouplock,
4980 	int freetarget,
4981 	spgcnt_t *nrelocp,
4982 	lgrp_t *lgrp)
4983 {
4984 	spgcnt_t ret;
4985 
4986 	/* do_page_relocate returns 0 on success or errno value */
4987 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4988 
4989 	if (ret != 0 || freetarget == 0) {
4990 		return (ret);
4991 	}
4992 	if (*nrelocp == 1) {
4993 		ASSERT(*target != NULL);
4994 		page_free(*target, 1);
4995 	} else {
4996 		page_t *tpp = *target;
4997 		uint_t szc = tpp->p_szc;
4998 		pgcnt_t npgs = page_get_pagecnt(szc);
4999 		ASSERT(npgs > 1);
5000 		ASSERT(szc != 0);
5001 		do {
5002 			ASSERT(PAGE_EXCL(tpp));
5003 			ASSERT(!hat_page_is_mapped(tpp));
5004 			ASSERT(tpp->p_szc == szc);
5005 			PP_SETFREE(tpp);
5006 			PP_SETAGED(tpp);
5007 			npgs--;
5008 		} while ((tpp = tpp->p_next) != *target);
5009 		ASSERT(npgs == 0);
5010 		page_list_add_pages(*target, 0);
5011 		npgs = page_get_pagecnt(szc);
5012 		page_create_putback(npgs);
5013 	}
5014 	return (ret);
5015 }
5016 
5017 /*
5018  * it is up to the caller to deal with pcf accounting.
5019  */
5020 void
5021 page_free_replacement_page(page_t *pplist)
5022 {
5023 	page_t *pp;
5024 
5025 	while (pplist != NULL) {
5026 		/*
5027 		 * pp_targ is a linked list.
5028 		 */
5029 		pp = pplist;
5030 		if (pp->p_szc == 0) {
5031 			page_sub(&pplist, pp);
5032 			page_clr_all_props(pp);
5033 			PP_SETFREE(pp);
5034 			PP_SETAGED(pp);
5035 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5036 			page_unlock(pp);
5037 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5038 		} else {
5039 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5040 			page_t *tpp;
5041 			page_list_break(&pp, &pplist, curnpgs);
5042 			tpp = pp;
5043 			do {
5044 				ASSERT(PAGE_EXCL(tpp));
5045 				ASSERT(!hat_page_is_mapped(tpp));
5046 				page_clr_all_props(tpp);
5047 				PP_SETFREE(tpp);
5048 				PP_SETAGED(tpp);
5049 			} while ((tpp = tpp->p_next) != pp);
5050 			page_list_add_pages(pp, 0);
5051 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5052 		}
5053 	}
5054 }
5055 
5056 /*
5057  * Relocate target to non-relocatable replacement page.
5058  */
5059 int
5060 page_relocate_cage(page_t **target, page_t **replacement)
5061 {
5062 	page_t *tpp, *rpp;
5063 	spgcnt_t pgcnt, npgs;
5064 	int result;
5065 
5066 	tpp = *target;
5067 
5068 	ASSERT(PAGE_EXCL(tpp));
5069 	ASSERT(tpp->p_szc == 0);
5070 
5071 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5072 
5073 	do {
5074 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5075 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5076 		if (rpp == NULL) {
5077 			page_create_putback(pgcnt);
5078 			kcage_cageout_wakeup();
5079 		}
5080 	} while (rpp == NULL);
5081 
5082 	ASSERT(PP_ISNORELOC(rpp));
5083 
5084 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5085 
5086 	if (result == 0) {
5087 		*replacement = rpp;
5088 		if (pgcnt != npgs)
5089 			panic("page_relocate_cage: partial relocation");
5090 	}
5091 
5092 	return (result);
5093 }
5094 
5095 /*
5096  * Release the page lock on a page, place on cachelist
5097  * tail if no longer mapped. Caller can let us know if
5098  * the page is known to be clean.
5099  */
5100 int
5101 page_release(page_t *pp, int checkmod)
5102 {
5103 	int status;
5104 
5105 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5106 	    (pp->p_vnode != NULL));
5107 
5108 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5109 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5110 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5111 	    !hat_page_is_mapped(pp)) {
5112 
5113 		/*
5114 		 * If page is modified, unlock it
5115 		 *
5116 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5117 		 * (1) We found that this page doesn't have any mappings
5118 		 *	_after_ holding SE_EXCL and
5119 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5120 		 */
5121 		if (checkmod && hat_ismod(pp)) {
5122 			page_unlock(pp);
5123 			status = PGREL_MOD;
5124 		} else {
5125 			/*LINTED: constant in conditional context*/
5126 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5127 			status = PGREL_CLEAN;
5128 		}
5129 	} else {
5130 		page_unlock(pp);
5131 		status = PGREL_NOTREL;
5132 	}
5133 	return (status);
5134 }
5135 
5136 /*
5137  * Given a constituent page, try to demote the large page on the freelist.
5138  *
5139  * Returns nonzero if the page could be demoted successfully. Returns with
5140  * the constituent page still locked.
5141  */
5142 int
5143 page_try_demote_free_pages(page_t *pp)
5144 {
5145 	page_t *rootpp = pp;
5146 	pfn_t	pfn = page_pptonum(pp);
5147 	spgcnt_t npgs;
5148 	uint_t	szc = pp->p_szc;
5149 
5150 	ASSERT(PP_ISFREE(pp));
5151 	ASSERT(PAGE_EXCL(pp));
5152 
5153 	/*
5154 	 * Adjust rootpp and lock it, if `pp' is not the base
5155 	 * constituent page.
5156 	 */
5157 	npgs = page_get_pagecnt(pp->p_szc);
5158 	if (npgs == 1) {
5159 		return (0);
5160 	}
5161 
5162 	if (!IS_P2ALIGNED(pfn, npgs)) {
5163 		pfn = P2ALIGN(pfn, npgs);
5164 		rootpp = page_numtopp_nolock(pfn);
5165 	}
5166 
5167 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5168 		return (0);
5169 	}
5170 
5171 	if (rootpp->p_szc != szc) {
5172 		if (pp != rootpp)
5173 			page_unlock(rootpp);
5174 		return (0);
5175 	}
5176 
5177 	page_demote_free_pages(rootpp);
5178 
5179 	if (pp != rootpp)
5180 		page_unlock(rootpp);
5181 
5182 	ASSERT(PP_ISFREE(pp));
5183 	ASSERT(PAGE_EXCL(pp));
5184 	return (1);
5185 }
5186 
5187 /*
5188  * Given a constituent page, try to demote the large page.
5189  *
5190  * Returns nonzero if the page could be demoted successfully. Returns with
5191  * the constituent page still locked.
5192  */
5193 int
5194 page_try_demote_pages(page_t *pp)
5195 {
5196 	page_t *tpp, *rootpp = pp;
5197 	pfn_t	pfn = page_pptonum(pp);
5198 	spgcnt_t i, npgs;
5199 	uint_t	szc = pp->p_szc;
5200 	vnode_t *vp = pp->p_vnode;
5201 
5202 	ASSERT(PAGE_EXCL(pp));
5203 
5204 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5205 
5206 	if (pp->p_szc == 0) {
5207 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5208 		return (1);
5209 	}
5210 
5211 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5212 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5213 		page_demote_vp_pages(pp);
5214 		ASSERT(pp->p_szc == 0);
5215 		return (1);
5216 	}
5217 
5218 	/*
5219 	 * Adjust rootpp if passed in is not the base
5220 	 * constituent page.
5221 	 */
5222 	npgs = page_get_pagecnt(pp->p_szc);
5223 	ASSERT(npgs > 1);
5224 	if (!IS_P2ALIGNED(pfn, npgs)) {
5225 		pfn = P2ALIGN(pfn, npgs);
5226 		rootpp = page_numtopp_nolock(pfn);
5227 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5228 		ASSERT(rootpp->p_vnode != NULL);
5229 		ASSERT(rootpp->p_szc == szc);
5230 	}
5231 
5232 	/*
5233 	 * We can't demote kernel pages since we can't hat_unload()
5234 	 * the mappings.
5235 	 */
5236 	if (VN_ISKAS(rootpp->p_vnode))
5237 		return (0);
5238 
5239 	/*
5240 	 * Attempt to lock all constituent pages except the page passed
5241 	 * in since it's already locked.
5242 	 */
5243 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5244 		ASSERT(!PP_ISFREE(tpp));
5245 		ASSERT(tpp->p_vnode != NULL);
5246 
5247 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5248 			break;
5249 		ASSERT(tpp->p_szc == rootpp->p_szc);
5250 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5251 	}
5252 
5253 	/*
5254 	 * If we failed to lock them all then unlock what we have
5255 	 * locked so far and bail.
5256 	 */
5257 	if (i < npgs) {
5258 		tpp = rootpp;
5259 		while (i-- > 0) {
5260 			if (tpp != pp)
5261 				page_unlock(tpp);
5262 			tpp++;
5263 		}
5264 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5265 		return (0);
5266 	}
5267 
5268 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5269 		ASSERT(PAGE_EXCL(tpp));
5270 		ASSERT(tpp->p_slckcnt == 0);
5271 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5272 		tpp->p_szc = 0;
5273 	}
5274 
5275 	/*
5276 	 * Unlock all pages except the page passed in.
5277 	 */
5278 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5279 		ASSERT(!hat_page_is_mapped(tpp));
5280 		if (tpp != pp)
5281 			page_unlock(tpp);
5282 	}
5283 
5284 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5285 	return (1);
5286 }
5287 
5288 /*
5289  * Called by page_free() and page_destroy() to demote the page size code
5290  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5291  * p_szc on free list, neither can we just clear p_szc of a single page_t
5292  * within a large page since it will break other code that relies on p_szc
5293  * being the same for all page_t's of a large page). Anonymous pages should
5294  * never end up here because anon_map_getpages() cannot deal with p_szc
5295  * changes after a single constituent page is locked.  While anonymous or
5296  * kernel large pages are demoted or freed the entire large page at a time
5297  * with all constituent pages locked EXCL for the file system pages we
5298  * have to be able to demote a large page (i.e. decrease all constituent pages
5299  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5300  * we can easily deal with anonymous page demotion the entire large page at a
5301  * time is that those operation originate at address space level and concern
5302  * the entire large page region with actual demotion only done when pages are
5303  * not shared with any other processes (therefore we can always get EXCL lock
5304  * on all anonymous constituent pages after clearing segment page
5305  * cache). However file system pages can be truncated or invalidated at a
5306  * PAGESIZE level from the file system side and end up in page_free() or
5307  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5308  * and therefore pageout should be able to demote a large page by EXCL locking
5309  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5310  * rely on being able to lock EXCL all constituent pages.
5311  *
5312  * To prevent szc changes on file system pages one has to lock all constituent
5313  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5314  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5315  * prevent szc changes is hat layer that uses its own page level mlist
5316  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5317  * taken. Therefore we need to change szc under hat level locks if we only
5318  * have an EXCL lock on a single constituent page and hat still references any
5319  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5320  * hat_pageunload() all constituent pages without having EXCL locks on all of
5321  * constituent pages). We use hat_page_demote() call to safely demote szc of
5322  * all constituent pages under hat locks when we only have an EXCL lock on one
5323  * of constituent pages.
5324  *
5325  * This routine calls page_szc_lock() before calling hat_page_demote() to
5326  * allow segvn in one special case not to lock all constituent pages SHARED
5327  * before calling hat_memload_array() that relies on p_szc not changing even
5328  * before hat level mlist lock is taken.  In that case segvn uses
5329  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5330  *
5331  * Anonymous or kernel page demotion still has to lock all pages exclusively
5332  * and do hat_pageunload() on all constituent pages before demoting the page
5333  * therefore there's no need for anonymous or kernel page demotion to use
5334  * hat_page_demote() mechanism.
5335  *
5336  * hat_page_demote() removes all large mappings that map pp and then decreases
5337  * p_szc starting from the last constituent page of the large page. By working
5338  * from the tail of a large page in pfn decreasing order allows one looking at
5339  * the root page to know that hat_page_demote() is done for root's szc area.
5340  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5341  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5342  * that started on this page when it had szc > 1 is done for this szc 1 area.
5343  *
5344  * We are guaranteed that all constituent pages of pp's large page belong to
5345  * the same vnode with the consecutive offsets increasing in the direction of
5346  * the pfn i.e. the identity of constituent pages can't change until their
5347  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5348  * large mappings to pp even though we don't lock any constituent page except
5349  * pp (i.e. we won't unload e.g. kernel locked page).
5350  */
5351 static void
5352 page_demote_vp_pages(page_t *pp)
5353 {
5354 	kmutex_t *mtx;
5355 
5356 	ASSERT(PAGE_EXCL(pp));
5357 	ASSERT(!PP_ISFREE(pp));
5358 	ASSERT(pp->p_vnode != NULL);
5359 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5360 	ASSERT(!PP_ISKAS(pp));
5361 
5362 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5363 
5364 	mtx = page_szc_lock(pp);
5365 	if (mtx != NULL) {
5366 		hat_page_demote(pp);
5367 		mutex_exit(mtx);
5368 	}
5369 	ASSERT(pp->p_szc == 0);
5370 }
5371 
5372 /*
5373  * Mark any existing pages for migration in the given range
5374  */
5375 void
5376 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5377     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5378     u_offset_t vnoff, int rflag)
5379 {
5380 	struct anon	*ap;
5381 	vnode_t		*curvp;
5382 	lgrp_t		*from;
5383 	pgcnt_t		nlocked;
5384 	u_offset_t	off;
5385 	pfn_t		pfn;
5386 	size_t		pgsz;
5387 	size_t		segpgsz;
5388 	pgcnt_t		pages;
5389 	uint_t		pszc;
5390 	page_t		*pp0, *pp;
5391 	caddr_t		va;
5392 	ulong_t		an_idx;
5393 	anon_sync_obj_t	cookie;
5394 
5395 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5396 
5397 	/*
5398 	 * Don't do anything if don't need to do lgroup optimizations
5399 	 * on this system
5400 	 */
5401 	if (!lgrp_optimizations())
5402 		return;
5403 
5404 	/*
5405 	 * Align address and length to (potentially large) page boundary
5406 	 */
5407 	segpgsz = page_get_pagesize(seg->s_szc);
5408 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5409 	if (rflag)
5410 		len = P2ROUNDUP(len, segpgsz);
5411 
5412 	/*
5413 	 * Do one (large) page at a time
5414 	 */
5415 	va = addr;
5416 	while (va < addr + len) {
5417 		/*
5418 		 * Lookup (root) page for vnode and offset corresponding to
5419 		 * this virtual address
5420 		 * Try anonmap first since there may be copy-on-write
5421 		 * pages, but initialize vnode pointer and offset using
5422 		 * vnode arguments just in case there isn't an amp.
5423 		 */
5424 		curvp = vp;
5425 		off = vnoff + va - seg->s_base;
5426 		if (amp) {
5427 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5428 			an_idx = anon_index + seg_page(seg, va);
5429 			anon_array_enter(amp, an_idx, &cookie);
5430 			ap = anon_get_ptr(amp->ahp, an_idx);
5431 			if (ap)
5432 				swap_xlate(ap, &curvp, &off);
5433 			anon_array_exit(&cookie);
5434 			ANON_LOCK_EXIT(&amp->a_rwlock);
5435 		}
5436 
5437 		pp = NULL;
5438 		if (curvp)
5439 			pp = page_lookup(curvp, off, SE_SHARED);
5440 
5441 		/*
5442 		 * If there isn't a page at this virtual address,
5443 		 * skip to next page
5444 		 */
5445 		if (pp == NULL) {
5446 			va += PAGESIZE;
5447 			continue;
5448 		}
5449 
5450 		/*
5451 		 * Figure out which lgroup this page is in for kstats
5452 		 */
5453 		pfn = page_pptonum(pp);
5454 		from = lgrp_pfn_to_lgrp(pfn);
5455 
5456 		/*
5457 		 * Get page size, and round up and skip to next page boundary
5458 		 * if unaligned address
5459 		 */
5460 		pszc = pp->p_szc;
5461 		pgsz = page_get_pagesize(pszc);
5462 		pages = btop(pgsz);
5463 		if (!IS_P2ALIGNED(va, pgsz) ||
5464 		    !IS_P2ALIGNED(pfn, pages) ||
5465 		    pgsz > segpgsz) {
5466 			pgsz = MIN(pgsz, segpgsz);
5467 			page_unlock(pp);
5468 			pages = btop(P2END((uintptr_t)va, pgsz) -
5469 			    (uintptr_t)va);
5470 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5471 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5472 			continue;
5473 		}
5474 
5475 		/*
5476 		 * Upgrade to exclusive lock on page
5477 		 */
5478 		if (!page_tryupgrade(pp)) {
5479 			page_unlock(pp);
5480 			va += pgsz;
5481 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5482 			    btop(pgsz));
5483 			continue;
5484 		}
5485 
5486 		pp0 = pp++;
5487 		nlocked = 1;
5488 
5489 		/*
5490 		 * Lock constituent pages if this is large page
5491 		 */
5492 		if (pages > 1) {
5493 			/*
5494 			 * Lock all constituents except root page, since it
5495 			 * should be locked already.
5496 			 */
5497 			for (; nlocked < pages; nlocked++) {
5498 				if (!page_trylock(pp, SE_EXCL)) {
5499 					break;
5500 				}
5501 				if (PP_ISFREE(pp) ||
5502 				    pp->p_szc != pszc) {
5503 					/*
5504 					 * hat_page_demote() raced in with us.
5505 					 */
5506 					ASSERT(!IS_SWAPFSVP(curvp));
5507 					page_unlock(pp);
5508 					break;
5509 				}
5510 				pp++;
5511 			}
5512 		}
5513 
5514 		/*
5515 		 * If all constituent pages couldn't be locked,
5516 		 * unlock pages locked so far and skip to next page.
5517 		 */
5518 		if (nlocked < pages) {
5519 			while (pp0 < pp) {
5520 				page_unlock(pp0++);
5521 			}
5522 			va += pgsz;
5523 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5524 			    btop(pgsz));
5525 			continue;
5526 		}
5527 
5528 		/*
5529 		 * hat_page_demote() can no longer happen
5530 		 * since last cons page had the right p_szc after
5531 		 * all cons pages were locked. all cons pages
5532 		 * should now have the same p_szc.
5533 		 */
5534 
5535 		/*
5536 		 * All constituent pages locked successfully, so mark
5537 		 * large page for migration and unload the mappings of
5538 		 * constituent pages, so a fault will occur on any part of the
5539 		 * large page
5540 		 */
5541 		PP_SETMIGRATE(pp0);
5542 		while (pp0 < pp) {
5543 			(void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5544 			ASSERT(hat_page_getshare(pp0) == 0);
5545 			page_unlock(pp0++);
5546 		}
5547 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5548 
5549 		va += pgsz;
5550 	}
5551 }
5552 
5553 /*
5554  * Migrate any pages that have been marked for migration in the given range
5555  */
5556 void
5557 page_migrate(
5558 	struct seg	*seg,
5559 	caddr_t		addr,
5560 	page_t		**ppa,
5561 	pgcnt_t		npages)
5562 {
5563 	lgrp_t		*from;
5564 	lgrp_t		*to;
5565 	page_t		*newpp;
5566 	page_t		*pp;
5567 	pfn_t		pfn;
5568 	size_t		pgsz;
5569 	spgcnt_t	page_cnt;
5570 	spgcnt_t	i;
5571 	uint_t		pszc;
5572 
5573 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5574 
5575 	while (npages > 0) {
5576 		pp = *ppa;
5577 		pszc = pp->p_szc;
5578 		pgsz = page_get_pagesize(pszc);
5579 		page_cnt = btop(pgsz);
5580 
5581 		/*
5582 		 * Check to see whether this page is marked for migration
5583 		 *
5584 		 * Assume that root page of large page is marked for
5585 		 * migration and none of the other constituent pages
5586 		 * are marked.  This really simplifies clearing the
5587 		 * migrate bit by not having to clear it from each
5588 		 * constituent page.
5589 		 *
5590 		 * note we don't want to relocate an entire large page if
5591 		 * someone is only using one subpage.
5592 		 */
5593 		if (npages < page_cnt)
5594 			break;
5595 
5596 		/*
5597 		 * Is it marked for migration?
5598 		 */
5599 		if (!PP_ISMIGRATE(pp))
5600 			goto next;
5601 
5602 		/*
5603 		 * Determine lgroups that page is being migrated between
5604 		 */
5605 		pfn = page_pptonum(pp);
5606 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5607 			break;
5608 		}
5609 		from = lgrp_pfn_to_lgrp(pfn);
5610 		to = lgrp_mem_choose(seg, addr, pgsz);
5611 
5612 		/*
5613 		 * Need to get exclusive lock's to migrate
5614 		 */
5615 		for (i = 0; i < page_cnt; i++) {
5616 			ASSERT(PAGE_LOCKED(ppa[i]));
5617 			if (page_pptonum(ppa[i]) != pfn + i ||
5618 			    ppa[i]->p_szc != pszc) {
5619 				break;
5620 			}
5621 			if (!page_tryupgrade(ppa[i])) {
5622 				lgrp_stat_add(from->lgrp_id,
5623 				    LGRP_PM_FAIL_LOCK_PGS,
5624 				    page_cnt);
5625 				break;
5626 			}
5627 
5628 			/*
5629 			 * Check to see whether we are trying to migrate
5630 			 * page to lgroup where it is allocated already.
5631 			 * If so, clear the migrate bit and skip to next
5632 			 * page.
5633 			 */
5634 			if (i == 0 && to == from) {
5635 				PP_CLRMIGRATE(ppa[0]);
5636 				page_downgrade(ppa[0]);
5637 				goto next;
5638 			}
5639 		}
5640 
5641 		/*
5642 		 * If all constituent pages couldn't be locked,
5643 		 * unlock pages locked so far and skip to next page.
5644 		 */
5645 		if (i != page_cnt) {
5646 			while (--i != -1) {
5647 				page_downgrade(ppa[i]);
5648 			}
5649 			goto next;
5650 		}
5651 
5652 		(void) page_create_wait(page_cnt, PG_WAIT);
5653 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5654 		if (newpp == NULL) {
5655 			page_create_putback(page_cnt);
5656 			for (i = 0; i < page_cnt; i++) {
5657 				page_downgrade(ppa[i]);
5658 			}
5659 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5660 			    page_cnt);
5661 			goto next;
5662 		}
5663 		ASSERT(newpp->p_szc == pszc);
5664 		/*
5665 		 * Clear migrate bit and relocate page
5666 		 */
5667 		PP_CLRMIGRATE(pp);
5668 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5669 			panic("page_migrate: page_relocate failed");
5670 		}
5671 		ASSERT(page_cnt * PAGESIZE == pgsz);
5672 
5673 		/*
5674 		 * Keep stats for number of pages migrated from and to
5675 		 * each lgroup
5676 		 */
5677 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5678 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5679 		/*
5680 		 * update the page_t array we were passed in and
5681 		 * unlink constituent pages of a large page.
5682 		 */
5683 		for (i = 0; i < page_cnt; ++i, ++pp) {
5684 			ASSERT(PAGE_EXCL(newpp));
5685 			ASSERT(newpp->p_szc == pszc);
5686 			ppa[i] = newpp;
5687 			pp = newpp;
5688 			page_sub(&newpp, pp);
5689 			page_downgrade(pp);
5690 		}
5691 		ASSERT(newpp == NULL);
5692 next:
5693 		addr += pgsz;
5694 		ppa += page_cnt;
5695 		npages -= page_cnt;
5696 	}
5697 }
5698 
5699 #define	MAX_CNT	60	/* max num of iterations */
5700 /*
5701  * Reclaim/reserve availrmem for npages.
5702  * If there is not enough memory start reaping seg, kmem caches.
5703  * Start pageout scanner (via page_needfree()).
5704  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5705  * Note: There is no guarantee that any availrmem will be freed as
5706  * this memory typically is locked (kernel heap) or reserved for swap.
5707  * Also due to memory fragmentation kmem allocator may not be able
5708  * to free any memory (single user allocated buffer will prevent
5709  * freeing slab or a page).
5710  */
5711 int
5712 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5713 {
5714 	int	i = 0;
5715 	int	ret = 0;
5716 	pgcnt_t	deficit;
5717 	pgcnt_t old_availrmem;
5718 
5719 	mutex_enter(&freemem_lock);
5720 	old_availrmem = availrmem - 1;
5721 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5722 	    (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5723 		old_availrmem = availrmem;
5724 		deficit = tune.t_minarmem + npages + epages - availrmem;
5725 		mutex_exit(&freemem_lock);
5726 		page_needfree(deficit);
5727 		kmem_reap();
5728 		delay(hz);
5729 		page_needfree(-(spgcnt_t)deficit);
5730 		mutex_enter(&freemem_lock);
5731 	}
5732 
5733 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5734 		availrmem -= npages;
5735 		ret = 1;
5736 	}
5737 
5738 	mutex_exit(&freemem_lock);
5739 
5740 	return (ret);
5741 }
5742 
5743 /*
5744  * Search the memory segments to locate the desired page.  Within a
5745  * segment, pages increase linearly with one page structure per
5746  * physical page frame (size PAGESIZE).  The search begins
5747  * with the segment that was accessed last, to take advantage of locality.
5748  * If the hint misses, we start from the beginning of the sorted memseg list
5749  */
5750 
5751 
5752 /*
5753  * Some data structures for pfn to pp lookup.
5754  */
5755 ulong_t mhash_per_slot;
5756 struct memseg *memseg_hash[N_MEM_SLOTS];
5757 
5758 page_t *
5759 page_numtopp_nolock(pfn_t pfnum)
5760 {
5761 	struct memseg *seg;
5762 	page_t *pp;
5763 	vm_cpu_data_t *vc;
5764 
5765 	/*
5766 	 * We need to disable kernel preemption while referencing the
5767 	 * cpu_vm_data field in order to prevent us from being switched to
5768 	 * another cpu and trying to reference it after it has been freed.
5769 	 * This will keep us on cpu and prevent it from being removed while
5770 	 * we are still on it.
5771 	 *
5772 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5773 	 * which is being resued by DR who will flush those references
5774 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5775 	 */
5776 	kpreempt_disable();
5777 	vc = CPU->cpu_vm_data;
5778 	ASSERT(vc != NULL);
5779 
5780 	MEMSEG_STAT_INCR(nsearch);
5781 
5782 	/* Try last winner first */
5783 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5784 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5785 		MEMSEG_STAT_INCR(nlastwon);
5786 		pp = seg->pages + (pfnum - seg->pages_base);
5787 		if (pp->p_pagenum == pfnum) {
5788 			kpreempt_enable();
5789 			return ((page_t *)pp);
5790 		}
5791 	}
5792 
5793 	/* Else Try hash */
5794 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5795 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5796 		MEMSEG_STAT_INCR(nhashwon);
5797 		vc->vc_pnum_memseg = seg;
5798 		pp = seg->pages + (pfnum - seg->pages_base);
5799 		if (pp->p_pagenum == pfnum) {
5800 			kpreempt_enable();
5801 			return ((page_t *)pp);
5802 		}
5803 	}
5804 
5805 	/* Else Brute force */
5806 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5807 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5808 			vc->vc_pnum_memseg = seg;
5809 			pp = seg->pages + (pfnum - seg->pages_base);
5810 			if (pp->p_pagenum == pfnum) {
5811 				kpreempt_enable();
5812 				return ((page_t *)pp);
5813 			}
5814 		}
5815 	}
5816 	vc->vc_pnum_memseg = NULL;
5817 	kpreempt_enable();
5818 	MEMSEG_STAT_INCR(nnotfound);
5819 	return ((page_t *)NULL);
5820 
5821 }
5822 
5823 struct memseg *
5824 page_numtomemseg_nolock(pfn_t pfnum)
5825 {
5826 	struct memseg *seg;
5827 	page_t *pp;
5828 
5829 	/*
5830 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5831 	 * which is being resued by DR who will flush those references
5832 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5833 	 */
5834 	kpreempt_disable();
5835 	/* Try hash */
5836 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5837 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5838 		pp = seg->pages + (pfnum - seg->pages_base);
5839 		if (pp->p_pagenum == pfnum) {
5840 			kpreempt_enable();
5841 			return (seg);
5842 		}
5843 	}
5844 
5845 	/* Else Brute force */
5846 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5847 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5848 			pp = seg->pages + (pfnum - seg->pages_base);
5849 			if (pp->p_pagenum == pfnum) {
5850 				kpreempt_enable();
5851 				return (seg);
5852 			}
5853 		}
5854 	}
5855 	kpreempt_enable();
5856 	return ((struct memseg *)NULL);
5857 }
5858 
5859 /*
5860  * Given a page and a count return the page struct that is
5861  * n structs away from the current one in the global page
5862  * list.
5863  *
5864  * This function wraps to the first page upon
5865  * reaching the end of the memseg list.
5866  */
5867 page_t *
5868 page_nextn(page_t *pp, ulong_t n)
5869 {
5870 	struct memseg *seg;
5871 	page_t *ppn;
5872 	vm_cpu_data_t *vc;
5873 
5874 	/*
5875 	 * We need to disable kernel preemption while referencing the
5876 	 * cpu_vm_data field in order to prevent us from being switched to
5877 	 * another cpu and trying to reference it after it has been freed.
5878 	 * This will keep us on cpu and prevent it from being removed while
5879 	 * we are still on it.
5880 	 *
5881 	 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5882 	 * which is being resued by DR who will flush those references
5883 	 * before modifying the reused memseg.  See memseg_cpu_vm_flush().
5884 	 */
5885 	kpreempt_disable();
5886 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5887 
5888 	ASSERT(vc != NULL);
5889 
5890 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5891 	    (seg->pages_base == seg->pages_end) ||
5892 	    !(pp >= seg->pages && pp < seg->epages)) {
5893 
5894 		for (seg = memsegs; seg; seg = seg->next) {
5895 			if (pp >= seg->pages && pp < seg->epages)
5896 				break;
5897 		}
5898 
5899 		if (seg == NULL) {
5900 			/* Memory delete got in, return something valid. */
5901 			/* TODO: fix me. */
5902 			seg = memsegs;
5903 			pp = seg->pages;
5904 		}
5905 	}
5906 
5907 	/* check for wraparound - possible if n is large */
5908 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5909 		n -= seg->epages - pp;
5910 		seg = seg->next;
5911 		if (seg == NULL)
5912 			seg = memsegs;
5913 		pp = seg->pages;
5914 	}
5915 	vc->vc_pnext_memseg = seg;
5916 	kpreempt_enable();
5917 	return (ppn);
5918 }
5919 
5920 /*
5921  * Initialize for a loop using page_next_scan_large().
5922  */
5923 page_t *
5924 page_next_scan_init(void **cookie)
5925 {
5926 	ASSERT(cookie != NULL);
5927 	*cookie = (void *)memsegs;
5928 	return ((page_t *)memsegs->pages);
5929 }
5930 
5931 /*
5932  * Return the next page in a scan of page_t's, assuming we want
5933  * to skip over sub-pages within larger page sizes.
5934  *
5935  * The cookie is used to keep track of the current memseg.
5936  */
5937 page_t *
5938 page_next_scan_large(
5939 	page_t		*pp,
5940 	ulong_t		*n,
5941 	void		**cookie)
5942 {
5943 	struct memseg	*seg = (struct memseg *)*cookie;
5944 	page_t		*new_pp;
5945 	ulong_t		cnt;
5946 	pfn_t		pfn;
5947 
5948 
5949 	/*
5950 	 * get the count of page_t's to skip based on the page size
5951 	 */
5952 	ASSERT(pp != NULL);
5953 	if (pp->p_szc == 0) {
5954 		cnt = 1;
5955 	} else {
5956 		pfn = page_pptonum(pp);
5957 		cnt = page_get_pagecnt(pp->p_szc);
5958 		cnt -= pfn & (cnt - 1);
5959 	}
5960 	*n += cnt;
5961 	new_pp = pp + cnt;
5962 
5963 	/*
5964 	 * Catch if we went past the end of the current memory segment. If so,
5965 	 * just move to the next segment with pages.
5966 	 */
5967 	if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
5968 		do {
5969 			seg = seg->next;
5970 			if (seg == NULL)
5971 				seg = memsegs;
5972 		} while (seg->pages_base == seg->pages_end);
5973 		new_pp = seg->pages;
5974 		*cookie = (void *)seg;
5975 	}
5976 
5977 	return (new_pp);
5978 }
5979 
5980 
5981 /*
5982  * Returns next page in list. Note: this function wraps
5983  * to the first page in the list upon reaching the end
5984  * of the list. Callers should be aware of this fact.
5985  */
5986 
5987 /* We should change this be a #define */
5988 
5989 page_t *
5990 page_next(page_t *pp)
5991 {
5992 	return (page_nextn(pp, 1));
5993 }
5994 
5995 page_t *
5996 page_first()
5997 {
5998 	return ((page_t *)memsegs->pages);
5999 }
6000 
6001 
6002 /*
6003  * This routine is called at boot with the initial memory configuration
6004  * and when memory is added or removed.
6005  */
6006 void
6007 build_pfn_hash()
6008 {
6009 	pfn_t cur;
6010 	pgcnt_t index;
6011 	struct memseg *pseg;
6012 	int	i;
6013 
6014 	/*
6015 	 * Clear memseg_hash array.
6016 	 * Since memory add/delete is designed to operate concurrently
6017 	 * with normal operation, the hash rebuild must be able to run
6018 	 * concurrently with page_numtopp_nolock(). To support this
6019 	 * functionality, assignments to memseg_hash array members must
6020 	 * be done atomically.
6021 	 *
6022 	 * NOTE: bzero() does not currently guarantee this for kernel
6023 	 * threads, and cannot be used here.
6024 	 */
6025 	for (i = 0; i < N_MEM_SLOTS; i++)
6026 		memseg_hash[i] = NULL;
6027 
6028 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6029 
6030 	/*
6031 	 * Physmax is the last valid pfn.
6032 	 */
6033 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6034 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6035 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6036 		cur = pseg->pages_base;
6037 		do {
6038 			if (index >= N_MEM_SLOTS)
6039 				index = MEMSEG_PFN_HASH(cur);
6040 
6041 			if (memseg_hash[index] == NULL ||
6042 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6043 				memseg_hash[index] = pseg;
6044 				hat_kpm_mseghash_update(index, pseg);
6045 			}
6046 			cur += mhash_per_slot;
6047 			index++;
6048 		} while (cur < pseg->pages_end);
6049 	}
6050 }
6051 
6052 /*
6053  * Return the pagenum for the pp
6054  */
6055 pfn_t
6056 page_pptonum(page_t *pp)
6057 {
6058 	return (pp->p_pagenum);
6059 }
6060 
6061 /*
6062  * interface to the referenced and modified etc bits
6063  * in the PSM part of the page struct
6064  * when no locking is desired.
6065  */
6066 void
6067 page_set_props(page_t *pp, uint_t flags)
6068 {
6069 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6070 	pp->p_nrm |= (uchar_t)flags;
6071 }
6072 
6073 void
6074 page_clr_all_props(page_t *pp)
6075 {
6076 	pp->p_nrm = 0;
6077 }
6078 
6079 /*
6080  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6081  */
6082 int
6083 page_clear_lck_cow(page_t *pp, int adjust)
6084 {
6085 	int	f_amount;
6086 
6087 	ASSERT(PAGE_EXCL(pp));
6088 
6089 	/*
6090 	 * The page_struct_lock need not be acquired here since
6091 	 * we require the caller hold the page exclusively locked.
6092 	 */
6093 	f_amount = 0;
6094 	if (pp->p_lckcnt) {
6095 		f_amount = 1;
6096 		pp->p_lckcnt = 0;
6097 	}
6098 	if (pp->p_cowcnt) {
6099 		f_amount += pp->p_cowcnt;
6100 		pp->p_cowcnt = 0;
6101 	}
6102 
6103 	if (adjust && f_amount) {
6104 		mutex_enter(&freemem_lock);
6105 		availrmem += f_amount;
6106 		mutex_exit(&freemem_lock);
6107 	}
6108 
6109 	return (f_amount);
6110 }
6111 
6112 /*
6113  * The following functions is called from free_vp_pages()
6114  * for an inexact estimate of a newly free'd page...
6115  */
6116 ulong_t
6117 page_share_cnt(page_t *pp)
6118 {
6119 	return (hat_page_getshare(pp));
6120 }
6121 
6122 int
6123 page_isshared(page_t *pp)
6124 {
6125 	return (hat_page_checkshare(pp, 1));
6126 }
6127 
6128 int
6129 page_isfree(page_t *pp)
6130 {
6131 	return (PP_ISFREE(pp));
6132 }
6133 
6134 int
6135 page_isref(page_t *pp)
6136 {
6137 	return (hat_page_getattr(pp, P_REF));
6138 }
6139 
6140 int
6141 page_ismod(page_t *pp)
6142 {
6143 	return (hat_page_getattr(pp, P_MOD));
6144 }
6145 
6146 /*
6147  * The following code all currently relates to the page capture logic:
6148  *
6149  * This logic is used for cases where there is a desire to claim a certain
6150  * physical page in the system for the caller.  As it may not be possible
6151  * to capture the page immediately, the p_toxic bits are used in the page
6152  * structure to indicate that someone wants to capture this page.  When the
6153  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6154  * the page will be made.  If it is successful, the original callers callback
6155  * will be called with the page to do with it what they please.
6156  *
6157  * There is also an async thread which wakes up to attempt to capture
6158  * pages occasionally which have the capture bit set.  All of the pages which
6159  * need to be captured asynchronously have been inserted into the
6160  * page_capture_hash and thus this thread walks that hash list.  Items in the
6161  * hash have an expiration time so this thread handles that as well by removing
6162  * the item from the hash if it has expired.
6163  *
6164  * Some important things to note are:
6165  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6166  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6167  *   to set and clear this bit, and while the lock is held is the only time
6168  *   you can add or remove an entry from the hash.
6169  * - the PR_CAPTURE bit can only be set and cleared while holding the
6170  *   page_capture_hash_head.pchh_mutex
6171  * - the t_flag field of the thread struct is used with the T_CAPTURING
6172  *   flag to prevent recursion while dealing with large pages.
6173  * - pages which need to be retired never expire on the page_capture_hash.
6174  */
6175 
6176 static void page_capture_thread(void);
6177 static kthread_t *pc_thread_id;
6178 kcondvar_t pc_cv;
6179 static kmutex_t pc_thread_mutex;
6180 static clock_t pc_thread_shortwait;
6181 static clock_t pc_thread_longwait;
6182 static int pc_thread_retry;
6183 
6184 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6185 
6186 /* Note that this is a circular linked list */
6187 typedef struct page_capture_hash_bucket {
6188 	page_t *pp;
6189 	uchar_t szc;
6190 	uchar_t pri;
6191 	uint_t flags;
6192 	clock_t expires;	/* lbolt at which this request expires. */
6193 	void *datap;		/* Cached data passed in for callback */
6194 	struct page_capture_hash_bucket *next;
6195 	struct page_capture_hash_bucket *prev;
6196 } page_capture_hash_bucket_t;
6197 
6198 #define	PC_PRI_HI	0	/* capture now */
6199 #define	PC_PRI_LO	1	/* capture later */
6200 #define	PC_NUM_PRI	2
6201 
6202 #define	PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6203 
6204 
6205 /*
6206  * Each hash bucket will have it's own mutex and two lists which are:
6207  * active (0):	represents requests which have not been processed by
6208  *		the page_capture async thread yet.
6209  * walked (1):	represents requests which have been processed by the
6210  *		page_capture async thread within it's given walk of this bucket.
6211  *
6212  * These are all needed so that we can synchronize all async page_capture
6213  * events.  When the async thread moves to a new bucket, it will append the
6214  * walked list to the active list and walk each item one at a time, moving it
6215  * from the active list to the walked list.  Thus if there is an async request
6216  * outstanding for a given page, it will always be in one of the two lists.
6217  * New requests will always be added to the active list.
6218  * If we were not able to capture a page before the request expired, we'd free
6219  * up the request structure which would indicate to page_capture that there is
6220  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6221  * possible.
6222  */
6223 typedef struct page_capture_hash_head {
6224 	kmutex_t pchh_mutex;
6225 	uint_t num_pages[PC_NUM_PRI];
6226 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6227 } page_capture_hash_head_t;
6228 
6229 #ifdef DEBUG
6230 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6231 #else
6232 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6233 #endif
6234 
6235 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6236 
6237 /* for now use a very simple hash based upon the size of a page struct */
6238 #define	PAGE_CAPTURE_HASH(pp)	\
6239 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6240 
6241 extern pgcnt_t swapfs_minfree;
6242 
6243 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6244 
6245 /*
6246  * a callback function is required for page capture requests.
6247  */
6248 void
6249 page_capture_register_callback(uint_t index, clock_t duration,
6250     int (*cb_func)(page_t *, void *, uint_t))
6251 {
6252 	ASSERT(pc_cb[index].cb_active == 0);
6253 	ASSERT(cb_func != NULL);
6254 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6255 	pc_cb[index].duration = duration;
6256 	pc_cb[index].cb_func = cb_func;
6257 	pc_cb[index].cb_active = 1;
6258 	rw_exit(&pc_cb[index].cb_rwlock);
6259 }
6260 
6261 void
6262 page_capture_unregister_callback(uint_t index)
6263 {
6264 	int i, j;
6265 	struct page_capture_hash_bucket *bp1;
6266 	struct page_capture_hash_bucket *bp2;
6267 	struct page_capture_hash_bucket *head = NULL;
6268 	uint_t flags = (1 << index);
6269 
6270 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6271 	ASSERT(pc_cb[index].cb_active == 1);
6272 	pc_cb[index].duration = 0;	/* Paranoia */
6273 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6274 	pc_cb[index].cb_active = 0;
6275 	rw_exit(&pc_cb[index].cb_rwlock);
6276 
6277 	/*
6278 	 * Just move all the entries to a private list which we can walk
6279 	 * through without the need to hold any locks.
6280 	 * No more requests can get added to the hash lists for this consumer
6281 	 * as the cb_active field for the callback has been cleared.
6282 	 */
6283 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6284 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6285 		for (j = 0; j < 2; j++) {
6286 			bp1 = page_capture_hash[i].lists[j].next;
6287 			/* walk through all but first (sentinel) element */
6288 			while (bp1 != &page_capture_hash[i].lists[j]) {
6289 				bp2 = bp1;
6290 				if (bp2->flags & flags) {
6291 					bp1 = bp2->next;
6292 					bp1->prev = bp2->prev;
6293 					bp2->prev->next = bp1;
6294 					bp2->next = head;
6295 					head = bp2;
6296 					/*
6297 					 * Clear the PR_CAPTURE bit as we
6298 					 * hold appropriate locks here.
6299 					 */
6300 					page_clrtoxic(head->pp, PR_CAPTURE);
6301 					page_capture_hash[i].
6302 					    num_pages[bp2->pri]--;
6303 					continue;
6304 				}
6305 				bp1 = bp1->next;
6306 			}
6307 		}
6308 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6309 	}
6310 
6311 	while (head != NULL) {
6312 		bp1 = head;
6313 		head = head->next;
6314 		kmem_free(bp1, sizeof (*bp1));
6315 	}
6316 }
6317 
6318 
6319 /*
6320  * Find pp in the active list and move it to the walked list if it
6321  * exists.
6322  * Note that most often pp should be at the front of the active list
6323  * as it is currently used and thus there is no other sort of optimization
6324  * being done here as this is a linked list data structure.
6325  * Returns 1 on successful move or 0 if page could not be found.
6326  */
6327 static int
6328 page_capture_move_to_walked(page_t *pp)
6329 {
6330 	page_capture_hash_bucket_t *bp;
6331 	int index;
6332 
6333 	index = PAGE_CAPTURE_HASH(pp);
6334 
6335 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6336 	bp = page_capture_hash[index].lists[0].next;
6337 	while (bp != &page_capture_hash[index].lists[0]) {
6338 		if (bp->pp == pp) {
6339 			/* Remove from old list */
6340 			bp->next->prev = bp->prev;
6341 			bp->prev->next = bp->next;
6342 
6343 			/* Add to new list */
6344 			bp->next = page_capture_hash[index].lists[1].next;
6345 			bp->prev = &page_capture_hash[index].lists[1];
6346 			page_capture_hash[index].lists[1].next = bp;
6347 			bp->next->prev = bp;
6348 
6349 			/*
6350 			 * There is a small probability of page on a free
6351 			 * list being retired while being allocated
6352 			 * and before P_RAF is set on it. The page may
6353 			 * end up marked as high priority request instead
6354 			 * of low priority request.
6355 			 * If P_RAF page is not marked as low priority request
6356 			 * change it to low priority request.
6357 			 */
6358 			page_capture_hash[index].num_pages[bp->pri]--;
6359 			bp->pri = PAGE_CAPTURE_PRIO(pp);
6360 			page_capture_hash[index].num_pages[bp->pri]++;
6361 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6362 			return (1);
6363 		}
6364 		bp = bp->next;
6365 	}
6366 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6367 	return (0);
6368 }
6369 
6370 /*
6371  * Add a new entry to the page capture hash.  The only case where a new
6372  * entry is not added is when the page capture consumer is no longer registered.
6373  * In this case, we'll silently not add the page to the hash.  We know that
6374  * page retire will always be registered for the case where we are currently
6375  * unretiring a page and thus there are no conflicts.
6376  */
6377 static void
6378 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6379 {
6380 	page_capture_hash_bucket_t *bp1;
6381 	page_capture_hash_bucket_t *bp2;
6382 	int index;
6383 	int cb_index;
6384 	int i;
6385 	uchar_t pri;
6386 #ifdef DEBUG
6387 	page_capture_hash_bucket_t *tp1;
6388 	int l;
6389 #endif
6390 
6391 	ASSERT(!(flags & CAPTURE_ASYNC));
6392 
6393 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6394 
6395 	bp1->pp = pp;
6396 	bp1->szc = szc;
6397 	bp1->flags = flags;
6398 	bp1->datap = datap;
6399 
6400 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6401 		if ((flags >> cb_index) & 1) {
6402 			break;
6403 		}
6404 	}
6405 
6406 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6407 
6408 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6409 	if (pc_cb[cb_index].cb_active) {
6410 		if (pc_cb[cb_index].duration == -1) {
6411 			bp1->expires = (clock_t)-1;
6412 		} else {
6413 			bp1->expires = ddi_get_lbolt() +
6414 			    pc_cb[cb_index].duration;
6415 		}
6416 	} else {
6417 		/* There's no callback registered so don't add to the hash */
6418 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6419 		kmem_free(bp1, sizeof (*bp1));
6420 		return;
6421 	}
6422 
6423 	index = PAGE_CAPTURE_HASH(pp);
6424 
6425 	/*
6426 	 * Only allow capture flag to be modified under this mutex.
6427 	 * Prevents multiple entries for same page getting added.
6428 	 */
6429 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6430 
6431 	/*
6432 	 * if not already on the hash, set capture bit and add to the hash
6433 	 */
6434 	if (!(pp->p_toxic & PR_CAPTURE)) {
6435 #ifdef DEBUG
6436 		/* Check for duplicate entries */
6437 		for (l = 0; l < 2; l++) {
6438 			tp1 = page_capture_hash[index].lists[l].next;
6439 			while (tp1 != &page_capture_hash[index].lists[l]) {
6440 				if (tp1->pp == pp) {
6441 					panic("page pp 0x%p already on hash "
6442 					    "at 0x%p\n",
6443 					    (void *)pp, (void *)tp1);
6444 				}
6445 				tp1 = tp1->next;
6446 			}
6447 		}
6448 
6449 #endif
6450 		page_settoxic(pp, PR_CAPTURE);
6451 		pri = PAGE_CAPTURE_PRIO(pp);
6452 		bp1->pri = pri;
6453 		bp1->next = page_capture_hash[index].lists[0].next;
6454 		bp1->prev = &page_capture_hash[index].lists[0];
6455 		bp1->next->prev = bp1;
6456 		page_capture_hash[index].lists[0].next = bp1;
6457 		page_capture_hash[index].num_pages[pri]++;
6458 		if (flags & CAPTURE_RETIRE) {
6459 			page_retire_incr_pend_count(datap);
6460 		}
6461 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6462 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6463 		cv_signal(&pc_cv);
6464 		return;
6465 	}
6466 
6467 	/*
6468 	 * A page retire request will replace any other request.
6469 	 * A second physmem request which is for a different process than
6470 	 * the currently registered one will be dropped as there is
6471 	 * no way to hold the private data for both calls.
6472 	 * In the future, once there are more callers, this will have to
6473 	 * be worked out better as there needs to be private storage for
6474 	 * at least each type of caller (maybe have datap be an array of
6475 	 * *void's so that we can index based upon callers index).
6476 	 */
6477 
6478 	/* walk hash list to update expire time */
6479 	for (i = 0; i < 2; i++) {
6480 		bp2 = page_capture_hash[index].lists[i].next;
6481 		while (bp2 != &page_capture_hash[index].lists[i]) {
6482 			if (bp2->pp == pp) {
6483 				if (flags & CAPTURE_RETIRE) {
6484 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6485 						page_retire_incr_pend_count(
6486 						    datap);
6487 						bp2->flags = flags;
6488 						bp2->expires = bp1->expires;
6489 						bp2->datap = datap;
6490 					}
6491 				} else {
6492 					ASSERT(flags & CAPTURE_PHYSMEM);
6493 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6494 					    (datap == bp2->datap)) {
6495 						bp2->expires = bp1->expires;
6496 					}
6497 				}
6498 				mutex_exit(&page_capture_hash[index].
6499 				    pchh_mutex);
6500 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6501 				kmem_free(bp1, sizeof (*bp1));
6502 				return;
6503 			}
6504 			bp2 = bp2->next;
6505 		}
6506 	}
6507 
6508 	/*
6509 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6510 	 * and thus it either has to be set or not set and can't change
6511 	 * while holding the mutex above.
6512 	 */
6513 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6514 	    (void *)pp);
6515 }
6516 
6517 /*
6518  * We have a page in our hands, lets try and make it ours by turning
6519  * it into a clean page like it had just come off the freelists.
6520  *
6521  * Returns 0 on success, with the page still EXCL locked.
6522  * On failure, the page will be unlocked, and returns EAGAIN
6523  */
6524 static int
6525 page_capture_clean_page(page_t *pp)
6526 {
6527 	page_t *newpp;
6528 	int skip_unlock = 0;
6529 	spgcnt_t count;
6530 	page_t *tpp;
6531 	int ret = 0;
6532 	int extra;
6533 
6534 	ASSERT(PAGE_EXCL(pp));
6535 	ASSERT(!PP_RETIRED(pp));
6536 	ASSERT(curthread->t_flag & T_CAPTURING);
6537 
6538 	if (PP_ISFREE(pp)) {
6539 		if (!page_reclaim(pp, NULL)) {
6540 			skip_unlock = 1;
6541 			ret = EAGAIN;
6542 			goto cleanup;
6543 		}
6544 		ASSERT(pp->p_szc == 0);
6545 		if (pp->p_vnode != NULL) {
6546 			/*
6547 			 * Since this page came from the
6548 			 * cachelist, we must destroy the
6549 			 * old vnode association.
6550 			 */
6551 			page_hashout(pp, NULL);
6552 		}
6553 		goto cleanup;
6554 	}
6555 
6556 	/*
6557 	 * If we know page_relocate will fail, skip it
6558 	 * It could still fail due to a UE on another page but we
6559 	 * can't do anything about that.
6560 	 */
6561 	if (pp->p_toxic & PR_UE) {
6562 		goto skip_relocate;
6563 	}
6564 
6565 	/*
6566 	 * It's possible that pages can not have a vnode as fsflush comes
6567 	 * through and cleans up these pages.  It's ugly but that's how it is.
6568 	 */
6569 	if (pp->p_vnode == NULL) {
6570 		goto skip_relocate;
6571 	}
6572 
6573 	/*
6574 	 * Page was not free, so lets try to relocate it.
6575 	 * page_relocate only works with root pages, so if this is not a root
6576 	 * page, we need to demote it to try and relocate it.
6577 	 * Unfortunately this is the best we can do right now.
6578 	 */
6579 	newpp = NULL;
6580 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6581 		if (page_try_demote_pages(pp) == 0) {
6582 			ret = EAGAIN;
6583 			goto cleanup;
6584 		}
6585 	}
6586 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6587 	if (ret == 0) {
6588 		page_t *npp;
6589 		/* unlock the new page(s) */
6590 		while (count-- > 0) {
6591 			ASSERT(newpp != NULL);
6592 			npp = newpp;
6593 			page_sub(&newpp, npp);
6594 			page_unlock(npp);
6595 		}
6596 		ASSERT(newpp == NULL);
6597 		/*
6598 		 * Check to see if the page we have is too large.
6599 		 * If so, demote it freeing up the extra pages.
6600 		 */
6601 		if (pp->p_szc > 0) {
6602 			/* For now demote extra pages to szc == 0 */
6603 			extra = page_get_pagecnt(pp->p_szc) - 1;
6604 			while (extra > 0) {
6605 				tpp = pp->p_next;
6606 				page_sub(&pp, tpp);
6607 				tpp->p_szc = 0;
6608 				page_free(tpp, 1);
6609 				extra--;
6610 			}
6611 			/* Make sure to set our page to szc 0 as well */
6612 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6613 			pp->p_szc = 0;
6614 		}
6615 		goto cleanup;
6616 	} else if (ret == EIO) {
6617 		ret = EAGAIN;
6618 		goto cleanup;
6619 	} else {
6620 		/*
6621 		 * Need to reset return type as we failed to relocate the page
6622 		 * but that does not mean that some of the next steps will not
6623 		 * work.
6624 		 */
6625 		ret = 0;
6626 	}
6627 
6628 skip_relocate:
6629 
6630 	if (pp->p_szc > 0) {
6631 		if (page_try_demote_pages(pp) == 0) {
6632 			ret = EAGAIN;
6633 			goto cleanup;
6634 		}
6635 	}
6636 
6637 	ASSERT(pp->p_szc == 0);
6638 
6639 	if (hat_ismod(pp)) {
6640 		ret = EAGAIN;
6641 		goto cleanup;
6642 	}
6643 	if (PP_ISKAS(pp)) {
6644 		ret = EAGAIN;
6645 		goto cleanup;
6646 	}
6647 	if (pp->p_lckcnt || pp->p_cowcnt) {
6648 		ret = EAGAIN;
6649 		goto cleanup;
6650 	}
6651 
6652 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6653 	ASSERT(!hat_page_is_mapped(pp));
6654 
6655 	if (hat_ismod(pp)) {
6656 		/*
6657 		 * This is a semi-odd case as the page is now modified but not
6658 		 * mapped as we just unloaded the mappings above.
6659 		 */
6660 		ret = EAGAIN;
6661 		goto cleanup;
6662 	}
6663 	if (pp->p_vnode != NULL) {
6664 		page_hashout(pp, NULL);
6665 	}
6666 
6667 	/*
6668 	 * At this point, the page should be in a clean state and
6669 	 * we can do whatever we want with it.
6670 	 */
6671 
6672 cleanup:
6673 	if (ret != 0) {
6674 		if (!skip_unlock) {
6675 			page_unlock(pp);
6676 		}
6677 	} else {
6678 		ASSERT(pp->p_szc == 0);
6679 		ASSERT(PAGE_EXCL(pp));
6680 
6681 		pp->p_next = pp;
6682 		pp->p_prev = pp;
6683 	}
6684 	return (ret);
6685 }
6686 
6687 /*
6688  * Various callers of page_trycapture() can have different restrictions upon
6689  * what memory they have access to.
6690  * Returns 0 on success, with the following error codes on failure:
6691  *      EPERM - The requested page is long term locked, and thus repeated
6692  *              requests to capture this page will likely fail.
6693  *      ENOMEM - There was not enough free memory in the system to safely
6694  *              map the requested page.
6695  *      ENOENT - The requested page was inside the kernel cage, and the
6696  *              PHYSMEM_CAGE flag was not set.
6697  */
6698 int
6699 page_capture_pre_checks(page_t *pp, uint_t flags)
6700 {
6701 	ASSERT(pp != NULL);
6702 
6703 #if defined(__sparc)
6704 	if (pp->p_vnode == &promvp) {
6705 		return (EPERM);
6706 	}
6707 
6708 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6709 	    (flags & CAPTURE_PHYSMEM)) {
6710 		return (ENOENT);
6711 	}
6712 
6713 	if (PP_ISNORELOCKERNEL(pp)) {
6714 		return (EPERM);
6715 	}
6716 #else
6717 	if (PP_ISKAS(pp)) {
6718 		return (EPERM);
6719 	}
6720 #endif /* __sparc */
6721 
6722 	/* only physmem currently has the restrictions checked below */
6723 	if (!(flags & CAPTURE_PHYSMEM)) {
6724 		return (0);
6725 	}
6726 
6727 	if (availrmem < swapfs_minfree) {
6728 		/*
6729 		 * We won't try to capture this page as we are
6730 		 * running low on memory.
6731 		 */
6732 		return (ENOMEM);
6733 	}
6734 	return (0);
6735 }
6736 
6737 /*
6738  * Once we have a page in our mits, go ahead and complete the capture
6739  * operation.
6740  * Returns 1 on failure where page is no longer needed
6741  * Returns 0 on success
6742  * Returns -1 if there was a transient failure.
6743  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6744  */
6745 int
6746 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6747 {
6748 	int cb_index;
6749 	int ret = 0;
6750 	page_capture_hash_bucket_t *bp1;
6751 	page_capture_hash_bucket_t *bp2;
6752 	int index;
6753 	int found = 0;
6754 	int i;
6755 
6756 	ASSERT(PAGE_EXCL(pp));
6757 	ASSERT(curthread->t_flag & T_CAPTURING);
6758 
6759 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6760 		if ((flags >> cb_index) & 1) {
6761 			break;
6762 		}
6763 	}
6764 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6765 
6766 	/*
6767 	 * Remove the entry from the page_capture hash, but don't free it yet
6768 	 * as we may need to put it back.
6769 	 * Since we own the page at this point in time, we should find it
6770 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6771 	 * that the page_capture_async() thread decided that this request
6772 	 * had expired, in which case we just continue on.
6773 	 */
6774 	if (flags & CAPTURE_ASYNC) {
6775 
6776 		index = PAGE_CAPTURE_HASH(pp);
6777 
6778 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6779 		for (i = 0; i < 2 && !found; i++) {
6780 			bp1 = page_capture_hash[index].lists[i].next;
6781 			while (bp1 != &page_capture_hash[index].lists[i]) {
6782 				if (bp1->pp == pp) {
6783 					bp1->next->prev = bp1->prev;
6784 					bp1->prev->next = bp1->next;
6785 					page_capture_hash[index].
6786 					    num_pages[bp1->pri]--;
6787 					page_clrtoxic(pp, PR_CAPTURE);
6788 					found = 1;
6789 					break;
6790 				}
6791 				bp1 = bp1->next;
6792 			}
6793 		}
6794 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6795 	}
6796 
6797 	/* Synchronize with the unregister func. */
6798 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6799 	if (!pc_cb[cb_index].cb_active) {
6800 		page_free(pp, 1);
6801 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6802 		if (found) {
6803 			kmem_free(bp1, sizeof (*bp1));
6804 		}
6805 		return (1);
6806 	}
6807 
6808 	/*
6809 	 * We need to remove the entry from the page capture hash and turn off
6810 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6811 	 * the entry here, and then based upon the return value, cleanup
6812 	 * appropriately or re-add it to the hash, making sure that someone else
6813 	 * hasn't already done so.
6814 	 * It should be rare for the callback to fail and thus it's ok for
6815 	 * the failure path to be a bit complicated as the success path is
6816 	 * cleaner and the locking rules are easier to follow.
6817 	 */
6818 
6819 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6820 
6821 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6822 
6823 	/*
6824 	 * If this was an ASYNC request, we need to cleanup the hash if the
6825 	 * callback was successful or if the request was no longer valid.
6826 	 * For non-ASYNC requests, we return failure to map and the caller
6827 	 * will take care of adding the request to the hash.
6828 	 * Note also that the callback itself is responsible for the page
6829 	 * at this point in time in terms of locking ...  The most common
6830 	 * case for the failure path should just be a page_free.
6831 	 */
6832 	if (ret >= 0) {
6833 		if (found) {
6834 			if (bp1->flags & CAPTURE_RETIRE) {
6835 				page_retire_decr_pend_count(datap);
6836 			}
6837 			kmem_free(bp1, sizeof (*bp1));
6838 		}
6839 		return (ret);
6840 	}
6841 	if (!found) {
6842 		return (ret);
6843 	}
6844 
6845 	ASSERT(flags & CAPTURE_ASYNC);
6846 
6847 	/*
6848 	 * Check for expiration time first as we can just free it up if it's
6849 	 * expired.
6850 	 */
6851 	if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6852 		kmem_free(bp1, sizeof (*bp1));
6853 		return (ret);
6854 	}
6855 
6856 	/*
6857 	 * The callback failed and there used to be an entry in the hash for
6858 	 * this page, so we need to add it back to the hash.
6859 	 */
6860 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6861 	if (!(pp->p_toxic & PR_CAPTURE)) {
6862 		/* just add bp1 back to head of walked list */
6863 		page_settoxic(pp, PR_CAPTURE);
6864 		bp1->next = page_capture_hash[index].lists[1].next;
6865 		bp1->prev = &page_capture_hash[index].lists[1];
6866 		bp1->next->prev = bp1;
6867 		bp1->pri = PAGE_CAPTURE_PRIO(pp);
6868 		page_capture_hash[index].lists[1].next = bp1;
6869 		page_capture_hash[index].num_pages[bp1->pri]++;
6870 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6871 		return (ret);
6872 	}
6873 
6874 	/*
6875 	 * Otherwise there was a new capture request added to list
6876 	 * Need to make sure that our original data is represented if
6877 	 * appropriate.
6878 	 */
6879 	for (i = 0; i < 2; i++) {
6880 		bp2 = page_capture_hash[index].lists[i].next;
6881 		while (bp2 != &page_capture_hash[index].lists[i]) {
6882 			if (bp2->pp == pp) {
6883 				if (bp1->flags & CAPTURE_RETIRE) {
6884 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6885 						bp2->szc = bp1->szc;
6886 						bp2->flags = bp1->flags;
6887 						bp2->expires = bp1->expires;
6888 						bp2->datap = bp1->datap;
6889 					}
6890 				} else {
6891 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6892 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6893 						bp2->szc = bp1->szc;
6894 						bp2->flags = bp1->flags;
6895 						bp2->expires = bp1->expires;
6896 						bp2->datap = bp1->datap;
6897 					}
6898 				}
6899 				page_capture_hash[index].num_pages[bp2->pri]--;
6900 				bp2->pri = PAGE_CAPTURE_PRIO(pp);
6901 				page_capture_hash[index].num_pages[bp2->pri]++;
6902 				mutex_exit(&page_capture_hash[index].
6903 				    pchh_mutex);
6904 				kmem_free(bp1, sizeof (*bp1));
6905 				return (ret);
6906 			}
6907 			bp2 = bp2->next;
6908 		}
6909 	}
6910 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6911 	/*NOTREACHED*/
6912 }
6913 
6914 /*
6915  * Try to capture the given page for the caller specified in the flags
6916  * parameter.  The page will either be captured and handed over to the
6917  * appropriate callback, or will be queued up in the page capture hash
6918  * to be captured asynchronously.
6919  * If the current request is due to an async capture, the page must be
6920  * exclusively locked before calling this function.
6921  * Currently szc must be 0 but in the future this should be expandable to
6922  * other page sizes.
6923  * Returns 0 on success, with the following error codes on failure:
6924  *      EPERM - The requested page is long term locked, and thus repeated
6925  *              requests to capture this page will likely fail.
6926  *      ENOMEM - There was not enough free memory in the system to safely
6927  *              map the requested page.
6928  *      ENOENT - The requested page was inside the kernel cage, and the
6929  *              CAPTURE_GET_CAGE flag was not set.
6930  *	EAGAIN - The requested page could not be capturead at this point in
6931  *		time but future requests will likely work.
6932  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6933  *		was not set.
6934  */
6935 int
6936 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6937 {
6938 	int ret;
6939 	int cb_index;
6940 
6941 	if (flags & CAPTURE_ASYNC) {
6942 		ASSERT(PAGE_EXCL(pp));
6943 		goto async;
6944 	}
6945 
6946 	/* Make sure there's enough availrmem ... */
6947 	ret = page_capture_pre_checks(pp, flags);
6948 	if (ret != 0) {
6949 		return (ret);
6950 	}
6951 
6952 	if (!page_trylock(pp, SE_EXCL)) {
6953 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6954 			if ((flags >> cb_index) & 1) {
6955 				break;
6956 			}
6957 		}
6958 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6959 		ret = EAGAIN;
6960 		/* Special case for retired pages */
6961 		if (PP_RETIRED(pp)) {
6962 			if (flags & CAPTURE_GET_RETIRED) {
6963 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6964 					/*
6965 					 * Need to set capture bit and add to
6966 					 * hash so that the page will be
6967 					 * retired when freed.
6968 					 */
6969 					page_capture_add_hash(pp, szc,
6970 					    CAPTURE_RETIRE, NULL);
6971 					ret = 0;
6972 					goto own_page;
6973 				}
6974 			} else {
6975 				return (EBUSY);
6976 			}
6977 		}
6978 		page_capture_add_hash(pp, szc, flags, datap);
6979 		return (ret);
6980 	}
6981 
6982 async:
6983 	ASSERT(PAGE_EXCL(pp));
6984 
6985 	/* Need to check for physmem async requests that availrmem is sane */
6986 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6987 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6988 	    (availrmem < swapfs_minfree)) {
6989 		page_unlock(pp);
6990 		return (ENOMEM);
6991 	}
6992 
6993 	ret = page_capture_clean_page(pp);
6994 
6995 	if (ret != 0) {
6996 		/* We failed to get the page, so lets add it to the hash */
6997 		if (!(flags & CAPTURE_ASYNC)) {
6998 			page_capture_add_hash(pp, szc, flags, datap);
6999 		}
7000 		return (ret);
7001 	}
7002 
7003 own_page:
7004 	ASSERT(PAGE_EXCL(pp));
7005 	ASSERT(pp->p_szc == 0);
7006 
7007 	/* Call the callback */
7008 	ret = page_capture_take_action(pp, flags, datap);
7009 
7010 	if (ret == 0) {
7011 		return (0);
7012 	}
7013 
7014 	/*
7015 	 * Note that in the failure cases from page_capture_take_action, the
7016 	 * EXCL lock will have already been dropped.
7017 	 */
7018 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7019 		page_capture_add_hash(pp, szc, flags, datap);
7020 	}
7021 	return (EAGAIN);
7022 }
7023 
7024 int
7025 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7026 {
7027 	int ret;
7028 
7029 	curthread->t_flag |= T_CAPTURING;
7030 	ret = page_itrycapture(pp, szc, flags, datap);
7031 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7032 	return (ret);
7033 }
7034 
7035 /*
7036  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7037  * gets called to try and capture the page.
7038  */
7039 void
7040 page_unlock_capture(page_t *pp)
7041 {
7042 	page_capture_hash_bucket_t *bp;
7043 	int index;
7044 	int i;
7045 	uint_t szc;
7046 	uint_t flags = 0;
7047 	void *datap;
7048 	kmutex_t *mp;
7049 	extern vnode_t retired_pages;
7050 
7051 	/*
7052 	 * We need to protect against a possible deadlock here where we own
7053 	 * the vnode page hash mutex and want to acquire it again as there
7054 	 * are locations in the code, where we unlock a page while holding
7055 	 * the mutex which can lead to the page being captured and eventually
7056 	 * end up here.  As we may be hashing out the old page and hashing into
7057 	 * the retire vnode, we need to make sure we don't own them.
7058 	 * Other callbacks who do hash operations also need to make sure that
7059 	 * before they hashin to a vnode that they do not currently own the
7060 	 * vphm mutex otherwise there will be a panic.
7061 	 */
7062 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7063 		page_unlock_nocapture(pp);
7064 		return;
7065 	}
7066 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7067 		page_unlock_nocapture(pp);
7068 		return;
7069 	}
7070 
7071 	index = PAGE_CAPTURE_HASH(pp);
7072 
7073 	mp = &page_capture_hash[index].pchh_mutex;
7074 	mutex_enter(mp);
7075 	for (i = 0; i < 2; i++) {
7076 		bp = page_capture_hash[index].lists[i].next;
7077 		while (bp != &page_capture_hash[index].lists[i]) {
7078 			if (bp->pp == pp) {
7079 				szc = bp->szc;
7080 				flags = bp->flags | CAPTURE_ASYNC;
7081 				datap = bp->datap;
7082 				mutex_exit(mp);
7083 				(void) page_trycapture(pp, szc, flags, datap);
7084 				return;
7085 			}
7086 			bp = bp->next;
7087 		}
7088 	}
7089 
7090 	/* Failed to find page in hash so clear flags and unlock it. */
7091 	page_clrtoxic(pp, PR_CAPTURE);
7092 	page_unlock(pp);
7093 
7094 	mutex_exit(mp);
7095 }
7096 
7097 void
7098 page_capture_init()
7099 {
7100 	int i;
7101 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7102 		page_capture_hash[i].lists[0].next =
7103 		    &page_capture_hash[i].lists[0];
7104 		page_capture_hash[i].lists[0].prev =
7105 		    &page_capture_hash[i].lists[0];
7106 		page_capture_hash[i].lists[1].next =
7107 		    &page_capture_hash[i].lists[1];
7108 		page_capture_hash[i].lists[1].prev =
7109 		    &page_capture_hash[i].lists[1];
7110 	}
7111 
7112 	pc_thread_shortwait = 23 * hz;
7113 	pc_thread_longwait = 1201 * hz;
7114 	pc_thread_retry = 3;
7115 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7116 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7117 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7118 	    TS_RUN, minclsyspri);
7119 }
7120 
7121 /*
7122  * It is necessary to scrub any failing pages prior to reboot in order to
7123  * prevent a latent error trap from occurring on the next boot.
7124  */
7125 void
7126 page_retire_mdboot()
7127 {
7128 	page_t *pp;
7129 	int i, j;
7130 	page_capture_hash_bucket_t *bp;
7131 	uchar_t pri;
7132 
7133 	/* walk lists looking for pages to scrub */
7134 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7135 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7136 			if (page_capture_hash[i].num_pages[pri] != 0) {
7137 				break;
7138 			}
7139 		}
7140 		if (pri == PC_NUM_PRI)
7141 			continue;
7142 
7143 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7144 
7145 		for (j = 0; j < 2; j++) {
7146 			bp = page_capture_hash[i].lists[j].next;
7147 			while (bp != &page_capture_hash[i].lists[j]) {
7148 				pp = bp->pp;
7149 				if (PP_TOXIC(pp)) {
7150 					if (page_trylock(pp, SE_EXCL)) {
7151 						PP_CLRFREE(pp);
7152 						pagescrub(pp, 0, PAGESIZE);
7153 						page_unlock(pp);
7154 					}
7155 				}
7156 				bp = bp->next;
7157 			}
7158 		}
7159 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7160 	}
7161 }
7162 
7163 /*
7164  * Walk the page_capture_hash trying to capture pages and also cleanup old
7165  * entries which have expired.
7166  */
7167 void
7168 page_capture_async()
7169 {
7170 	page_t *pp;
7171 	int i;
7172 	int ret;
7173 	page_capture_hash_bucket_t *bp1, *bp2;
7174 	uint_t szc;
7175 	uint_t flags;
7176 	void *datap;
7177 	uchar_t pri;
7178 
7179 	/* If there are outstanding pages to be captured, get to work */
7180 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7181 		for (pri = 0; pri < PC_NUM_PRI; pri++) {
7182 			if (page_capture_hash[i].num_pages[pri] != 0)
7183 				break;
7184 		}
7185 		if (pri == PC_NUM_PRI)
7186 			continue;
7187 
7188 		/* Append list 1 to list 0 and then walk through list 0 */
7189 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7190 		bp1 = &page_capture_hash[i].lists[1];
7191 		bp2 = bp1->next;
7192 		if (bp1 != bp2) {
7193 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7194 			bp2->prev = &page_capture_hash[i].lists[0];
7195 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7196 			page_capture_hash[i].lists[0].next = bp2;
7197 			bp1->next = bp1;
7198 			bp1->prev = bp1;
7199 		}
7200 
7201 		/* list[1] will be empty now */
7202 
7203 		bp1 = page_capture_hash[i].lists[0].next;
7204 		while (bp1 != &page_capture_hash[i].lists[0]) {
7205 			/* Check expiration time */
7206 			if ((ddi_get_lbolt() > bp1->expires &&
7207 			    bp1->expires != -1) ||
7208 			    page_deleted(bp1->pp)) {
7209 				page_capture_hash[i].lists[0].next = bp1->next;
7210 				bp1->next->prev =
7211 				    &page_capture_hash[i].lists[0];
7212 				page_capture_hash[i].num_pages[bp1->pri]--;
7213 
7214 				/*
7215 				 * We can safely remove the PR_CAPTURE bit
7216 				 * without holding the EXCL lock on the page
7217 				 * as the PR_CAPTURE bit requres that the
7218 				 * page_capture_hash[].pchh_mutex be held
7219 				 * to modify it.
7220 				 */
7221 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7222 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7223 				kmem_free(bp1, sizeof (*bp1));
7224 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7225 				bp1 = page_capture_hash[i].lists[0].next;
7226 				continue;
7227 			}
7228 			pp = bp1->pp;
7229 			szc = bp1->szc;
7230 			flags = bp1->flags;
7231 			datap = bp1->datap;
7232 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7233 			if (page_trylock(pp, SE_EXCL)) {
7234 				ret = page_trycapture(pp, szc,
7235 				    flags | CAPTURE_ASYNC, datap);
7236 			} else {
7237 				ret = 1;	/* move to walked hash */
7238 			}
7239 
7240 			if (ret != 0) {
7241 				/* Move to walked hash */
7242 				(void) page_capture_move_to_walked(pp);
7243 			}
7244 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7245 			bp1 = page_capture_hash[i].lists[0].next;
7246 		}
7247 
7248 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7249 	}
7250 }
7251 
7252 /*
7253  * This function is called by the page_capture_thread, and is needed in
7254  * in order to initiate aio cleanup, so that pages used in aio
7255  * will be unlocked and subsequently retired by page_capture_thread.
7256  */
7257 static int
7258 do_aio_cleanup(void)
7259 {
7260 	proc_t *procp;
7261 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7262 	int cleaned = 0;
7263 
7264 	if (modload("sys", "kaio") == -1) {
7265 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7266 		return (0);
7267 	}
7268 	/*
7269 	 * We use the aio_cleanup_dr_delete_memory function to
7270 	 * initiate the actual clean up; this function will wake
7271 	 * up the per-process aio_cleanup_thread.
7272 	 */
7273 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7274 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7275 	if (aio_cleanup_dr_delete_memory == NULL) {
7276 		cmn_err(CE_WARN,
7277 	    "aio_cleanup_dr_delete_memory not found in kaio");
7278 		return (0);
7279 	}
7280 	mutex_enter(&pidlock);
7281 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7282 		mutex_enter(&procp->p_lock);
7283 		if (procp->p_aio != NULL) {
7284 			/* cleanup proc's outstanding kaio */
7285 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7286 		}
7287 		mutex_exit(&procp->p_lock);
7288 	}
7289 	mutex_exit(&pidlock);
7290 	return (cleaned);
7291 }
7292 
7293 /*
7294  * helper function for page_capture_thread
7295  */
7296 static void
7297 page_capture_handle_outstanding(void)
7298 {
7299 	int ntry;
7300 
7301 	/* Reap pages before attempting capture pages */
7302 	kmem_reap();
7303 
7304 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7305 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7306 		/*
7307 		 * Note: Purging only for platforms that support
7308 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7309 		 * platforms ISM pages SE_SHARED locked until destroyed.
7310 		 */
7311 
7312 		/* disable and purge seg_pcache */
7313 		(void) seg_p_disable();
7314 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7315 			if (!page_retire_pend_count())
7316 				break;
7317 			if (do_aio_cleanup()) {
7318 				/*
7319 				 * allow the apps cleanup threads
7320 				 * to run
7321 				 */
7322 				delay(pc_thread_shortwait);
7323 			}
7324 			page_capture_async();
7325 		}
7326 		/* reenable seg_pcache */
7327 		seg_p_enable();
7328 
7329 		/* completed what can be done.  break out */
7330 		return;
7331 	}
7332 
7333 	/*
7334 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7335 	 * and then attempt to capture.
7336 	 */
7337 	seg_preap();
7338 	page_capture_async();
7339 }
7340 
7341 /*
7342  * The page_capture_thread loops forever, looking to see if there are
7343  * pages still waiting to be captured.
7344  */
7345 static void
7346 page_capture_thread(void)
7347 {
7348 	callb_cpr_t c;
7349 	int i;
7350 	int high_pri_pages;
7351 	int low_pri_pages;
7352 	clock_t timeout;
7353 
7354 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7355 
7356 	mutex_enter(&pc_thread_mutex);
7357 	for (;;) {
7358 		high_pri_pages = 0;
7359 		low_pri_pages = 0;
7360 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7361 			high_pri_pages +=
7362 			    page_capture_hash[i].num_pages[PC_PRI_HI];
7363 			low_pri_pages +=
7364 			    page_capture_hash[i].num_pages[PC_PRI_LO];
7365 		}
7366 
7367 		timeout = pc_thread_longwait;
7368 		if (high_pri_pages != 0) {
7369 			timeout = pc_thread_shortwait;
7370 			page_capture_handle_outstanding();
7371 		} else if (low_pri_pages != 0) {
7372 			page_capture_async();
7373 		}
7374 		CALLB_CPR_SAFE_BEGIN(&c);
7375 		(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7376 		    timeout, TR_CLOCK_TICK);
7377 		CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7378 	}
7379 	/*NOTREACHED*/
7380 }
7381 /*
7382  * Attempt to locate a bucket that has enough pages to satisfy the request.
7383  * The initial check is done without the lock to avoid unneeded contention.
7384  * The function returns 1 if enough pages were found, else 0 if it could not
7385  * find enough pages in a bucket.
7386  */
7387 static int
7388 pcf_decrement_bucket(pgcnt_t npages)
7389 {
7390 	struct pcf	*p;
7391 	struct pcf	*q;
7392 	int i;
7393 
7394 	p = &pcf[PCF_INDEX()];
7395 	q = &pcf[pcf_fanout];
7396 	for (i = 0; i < pcf_fanout; i++) {
7397 		if (p->pcf_count > npages) {
7398 			/*
7399 			 * a good one to try.
7400 			 */
7401 			mutex_enter(&p->pcf_lock);
7402 			if (p->pcf_count > npages) {
7403 				p->pcf_count -= (uint_t)npages;
7404 				/*
7405 				 * freemem is not protected by any lock.
7406 				 * Thus, we cannot have any assertion
7407 				 * containing freemem here.
7408 				 */
7409 				freemem -= npages;
7410 				mutex_exit(&p->pcf_lock);
7411 				return (1);
7412 			}
7413 			mutex_exit(&p->pcf_lock);
7414 		}
7415 		p++;
7416 		if (p >= q) {
7417 			p = pcf;
7418 		}
7419 	}
7420 	return (0);
7421 }
7422 
7423 /*
7424  * Arguments:
7425  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7426  *			buckets but did not find enough pages then it will
7427  *			be set to the total number of pages in all the pcf
7428  *			buckets.
7429  *	npages:		Is the number of pages we have been requested to
7430  *			find.
7431  *	unlock:		If set to 0 we will leave the buckets locked if the
7432  *			requested number of pages are not found.
7433  *
7434  * Go and try to satisfy the page request  from any number of buckets.
7435  * This can be a very expensive operation as we have to lock the buckets
7436  * we are checking (and keep them locked), starting at bucket 0.
7437  *
7438  * The function returns 1 if enough pages were found, else 0 if it could not
7439  * find enough pages in the buckets.
7440  *
7441  */
7442 static int
7443 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7444 {
7445 	struct pcf	*p;
7446 	pgcnt_t pcftotal;
7447 	int i;
7448 
7449 	p = pcf;
7450 	/* try to collect pages from several pcf bins */
7451 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7452 		mutex_enter(&p->pcf_lock);
7453 		pcftotal += p->pcf_count;
7454 		if (pcftotal >= npages) {
7455 			/*
7456 			 * Wow!  There are enough pages laying around
7457 			 * to satisfy the request.  Do the accounting,
7458 			 * drop the locks we acquired, and go back.
7459 			 *
7460 			 * freemem is not protected by any lock. So,
7461 			 * we cannot have any assertion containing
7462 			 * freemem.
7463 			 */
7464 			freemem -= npages;
7465 			while (p >= pcf) {
7466 				if (p->pcf_count <= npages) {
7467 					npages -= p->pcf_count;
7468 					p->pcf_count = 0;
7469 				} else {
7470 					p->pcf_count -= (uint_t)npages;
7471 					npages = 0;
7472 				}
7473 				mutex_exit(&p->pcf_lock);
7474 				p--;
7475 			}
7476 			ASSERT(npages == 0);
7477 			return (1);
7478 		}
7479 		p++;
7480 	}
7481 	if (unlock) {
7482 		/* failed to collect pages - release the locks */
7483 		while (--p >= pcf) {
7484 			mutex_exit(&p->pcf_lock);
7485 		}
7486 	}
7487 	if (pcftotal_ret != NULL)
7488 		*pcftotal_ret = pcftotal;
7489 	return (0);
7490 }
7491