xref: /titanic_44/usr/src/uts/common/vm/vm_as.c (revision ee5416c9d7e449233197d5d20bc6b81e4ff091b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - address spaces.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/sysmacros.h>
52 #include <sys/cpuvar.h>
53 #include <sys/sysinfo.h>
54 #include <sys/kmem.h>
55 #include <sys/vnode.h>
56 #include <sys/vmsystm.h>
57 #include <sys/cmn_err.h>
58 #include <sys/debug.h>
59 #include <sys/tnf_probe.h>
60 #include <sys/vtrace.h>
61 
62 #include <vm/hat.h>
63 #include <vm/xhat.h>
64 #include <vm/as.h>
65 #include <vm/seg.h>
66 #include <vm/seg_vn.h>
67 #include <vm/seg_dev.h>
68 #include <vm/seg_kmem.h>
69 #include <vm/seg_map.h>
70 #include <vm/seg_spt.h>
71 #include <vm/page.h>
72 
73 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
74 
75 static struct kmem_cache *as_cache;
76 
77 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
78 static void as_clearwatchprot(struct as *, caddr_t, size_t);
79 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
80 
81 
82 /*
83  * Verifying the segment lists is very time-consuming; it may not be
84  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
85  */
86 #ifdef DEBUG
87 #define	VERIFY_SEGLIST
88 int do_as_verify = 0;
89 #endif
90 
91 /*
92  * Allocate a new callback data structure entry and fill in the events of
93  * interest, the address range of interest, and the callback argument.
94  * Link the entry on the as->a_callbacks list. A callback entry for the
95  * entire address space may be specified with vaddr = 0 and size = -1.
96  *
97  * CALLERS RESPONSIBILITY: If not calling from within the process context for
98  * the specified as, the caller must guarantee persistence of the specified as
99  * for the duration of this function (eg. pages being locked within the as
100  * will guarantee persistence).
101  */
102 int
103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
104 		caddr_t vaddr, size_t size, int sleepflag)
105 {
106 	struct as_callback 	*current_head, *cb;
107 	caddr_t 		saddr;
108 	size_t 			rsize;
109 
110 	/* callback function and an event are mandatory */
111 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
112 		return (EINVAL);
113 
114 	/* Adding a callback after as_free has been called is not allowed */
115 	if (as == &kas)
116 		return (ENOMEM);
117 
118 	/*
119 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
120 	 * is the entire address space so no rounding is done in that case.
121 	 */
122 	if (size != -1) {
123 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
124 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
125 			(size_t)saddr;
126 		/* check for wraparound */
127 		if (saddr + rsize < saddr)
128 			return (ENOMEM);
129 	} else {
130 		if (vaddr != 0)
131 			return (EINVAL);
132 		saddr = vaddr;
133 		rsize = size;
134 	}
135 
136 	/* Allocate and initialize a callback entry */
137 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
138 	if (cb == NULL)
139 		return (EAGAIN);
140 
141 	cb->ascb_func = cb_func;
142 	cb->ascb_arg = arg;
143 	cb->ascb_events = events;
144 	cb->ascb_saddr = saddr;
145 	cb->ascb_len = rsize;
146 
147 	/* Add the entry to the list */
148 	mutex_enter(&as->a_contents);
149 	current_head = as->a_callbacks;
150 	as->a_callbacks = cb;
151 	cb->ascb_next = current_head;
152 
153 	/*
154 	 * The call to this function may lose in a race with
155 	 * a pertinent event - eg. a thread does long term memory locking
156 	 * but before the callback is added another thread executes as_unmap.
157 	 * A broadcast here resolves that.
158 	 */
159 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
160 		AS_CLRUNMAPWAIT(as);
161 		cv_broadcast(&as->a_cv);
162 	}
163 
164 	mutex_exit(&as->a_contents);
165 	return (0);
166 }
167 
168 /*
169  * Search the callback list for an entry which pertains to arg.
170  *
171  * This is called from within the client upon completion of the callback.
172  * RETURN VALUES:
173  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
174  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
175  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
176  *			entry will be made in as_do_callbacks)
177  *
178  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
179  * set, it indicates that as_do_callbacks is processing this entry.  The
180  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
181  * to unblock as_do_callbacks, in case it is blocked.
182  *
183  * CALLERS RESPONSIBILITY: If not calling from within the process context for
184  * the specified as, the caller must guarantee persistence of the specified as
185  * for the duration of this function (eg. pages being locked within the as
186  * will guarantee persistence).
187  */
188 uint_t
189 as_delete_callback(struct as *as, void *arg)
190 {
191 	struct as_callback **prevcb = &as->a_callbacks;
192 	struct as_callback *cb;
193 	uint_t rc = AS_CALLBACK_NOTFOUND;
194 
195 	mutex_enter(&as->a_contents);
196 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
197 		if (cb->ascb_arg != arg)
198 			continue;
199 
200 		/*
201 		 * If the events indicate AS_CALLBACK_CALLED, just clear
202 		 * AS_ALL_EVENT in the events field and wakeup the thread
203 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
204 		 * will take care of removing this entry from the list.  In
205 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
206 		 * (AS_CALLBACK_CALLED not set), just remove it from the
207 		 * list, return the memory and return AS_CALLBACK_DELETED.
208 		 */
209 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
210 			/* leave AS_CALLBACK_CALLED */
211 			cb->ascb_events &= ~AS_ALL_EVENT;
212 			rc = AS_CALLBACK_DELETE_DEFERRED;
213 			cv_broadcast(&as->a_cv);
214 		} else {
215 			*prevcb = cb->ascb_next;
216 			kmem_free(cb, sizeof (struct as_callback));
217 			rc = AS_CALLBACK_DELETED;
218 		}
219 		break;
220 	}
221 	mutex_exit(&as->a_contents);
222 	return (rc);
223 }
224 
225 /*
226  * Searches the as callback list for a matching entry.
227  * Returns a pointer to the first matching callback, or NULL if
228  * nothing is found.
229  * This function never sleeps so it is ok to call it with more
230  * locks held but the (required) a_contents mutex.
231  *
232  * See also comment on as_do_callbacks below.
233  */
234 static struct as_callback *
235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
236 			size_t event_len)
237 {
238 	struct as_callback	*cb;
239 
240 	ASSERT(MUTEX_HELD(&as->a_contents));
241 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
242 		/*
243 		 * If the callback has not already been called, then
244 		 * check if events or address range pertains.  An event_len
245 		 * of zero means do an unconditional callback.
246 		 */
247 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
248 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
249 		    (event_addr + event_len < cb->ascb_saddr) ||
250 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
251 			continue;
252 		}
253 		break;
254 	}
255 	return (cb);
256 }
257 
258 /*
259  * Executes a given callback and removes it from the callback list for
260  * this address space.
261  * This function may sleep so the caller must drop all locks except
262  * a_contents before calling this func.
263  *
264  * See also comments on as_do_callbacks below.
265  */
266 static void
267 as_execute_callback(struct as *as, struct as_callback *cb,
268 				uint_t events)
269 {
270 	struct as_callback **prevcb;
271 	void	*cb_arg;
272 
273 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
274 	cb->ascb_events |= AS_CALLBACK_CALLED;
275 	mutex_exit(&as->a_contents);
276 	(*cb->ascb_func)(as, cb->ascb_arg, events);
277 	mutex_enter(&as->a_contents);
278 	/*
279 	 * the callback function is required to delete the callback
280 	 * when the callback function determines it is OK for
281 	 * this thread to continue. as_delete_callback will clear
282 	 * the AS_ALL_EVENT in the events field when it is deleted.
283 	 * If the callback function called as_delete_callback,
284 	 * events will already be cleared and there will be no blocking.
285 	 */
286 	while ((cb->ascb_events & events) != 0) {
287 		cv_wait(&as->a_cv, &as->a_contents);
288 	}
289 	/*
290 	 * This entry needs to be taken off the list. Normally, the
291 	 * callback func itself does that, but unfortunately the list
292 	 * may have changed while the callback was running because the
293 	 * a_contents mutex was dropped and someone else other than the
294 	 * callback func itself could have called as_delete_callback,
295 	 * so we have to search to find this entry again.  The entry
296 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
297 	 */
298 	cb_arg = cb->ascb_arg;
299 	prevcb = &as->a_callbacks;
300 	for (cb = as->a_callbacks; cb != NULL;
301 	    prevcb = &cb->ascb_next, cb = *prevcb) {
302 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
303 		    (cb_arg != cb->ascb_arg)) {
304 			continue;
305 		}
306 		*prevcb = cb->ascb_next;
307 		kmem_free(cb, sizeof (struct as_callback));
308 		break;
309 	}
310 }
311 
312 /*
313  * Check the callback list for a matching event and intersection of
314  * address range. If there is a match invoke the callback.  Skip an entry if:
315  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
316  *    - not event of interest
317  *    - not address range of interest
318  *
319  * An event_len of zero indicates a request for an unconditional callback
320  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
321  * a_contents lock must be dropped before a callback, so only one callback
322  * can be done before returning. Return -1 (true) if a callback was
323  * executed and removed from the list, else return 0 (false).
324  *
325  * The logically separate parts, i.e. finding a matching callback and
326  * executing a given callback have been separated into two functions
327  * so that they can be called with different sets of locks held beyond
328  * the always-required a_contents. as_find_callback does not sleep so
329  * it is ok to call it if more locks than a_contents (i.e. the a_lock
330  * rwlock) are held. as_execute_callback on the other hand may sleep
331  * so all locks beyond a_contents must be dropped by the caller if one
332  * does not want to end comatose.
333  */
334 static int
335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
336 			size_t event_len)
337 {
338 	struct as_callback *cb;
339 
340 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
341 		as_execute_callback(as, cb, events);
342 		return (-1);
343 	}
344 	return (0);
345 }
346 
347 /*
348  * Search for the segment containing addr. If a segment containing addr
349  * exists, that segment is returned.  If no such segment exists, and
350  * the list spans addresses greater than addr, then the first segment
351  * whose base is greater than addr is returned; otherwise, NULL is
352  * returned unless tail is true, in which case the last element of the
353  * list is returned.
354  *
355  * a_seglast is used to cache the last found segment for repeated
356  * searches to the same addr (which happens frequently).
357  */
358 struct seg *
359 as_findseg(struct as *as, caddr_t addr, int tail)
360 {
361 	struct seg *seg = as->a_seglast;
362 	avl_index_t where;
363 
364 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
365 
366 	if (seg != NULL &&
367 	    seg->s_base <= addr &&
368 	    addr < seg->s_base + seg->s_size)
369 		return (seg);
370 
371 	seg = avl_find(&as->a_segtree, &addr, &where);
372 	if (seg != NULL)
373 		return (as->a_seglast = seg);
374 
375 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
376 	if (seg == NULL && tail)
377 		seg = avl_last(&as->a_segtree);
378 	return (as->a_seglast = seg);
379 }
380 
381 #ifdef VERIFY_SEGLIST
382 /*
383  * verify that the linked list is coherent
384  */
385 static void
386 as_verify(struct as *as)
387 {
388 	struct seg *seg, *seglast, *p, *n;
389 	uint_t nsegs = 0;
390 
391 	if (do_as_verify == 0)
392 		return;
393 
394 	seglast = as->a_seglast;
395 
396 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
397 		ASSERT(seg->s_as == as);
398 		p = AS_SEGPREV(as, seg);
399 		n = AS_SEGNEXT(as, seg);
400 		ASSERT(p == NULL || p->s_as == as);
401 		ASSERT(p == NULL || p->s_base < seg->s_base);
402 		ASSERT(n == NULL || n->s_base > seg->s_base);
403 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
404 		if (seg == seglast)
405 			seglast = NULL;
406 		nsegs++;
407 	}
408 	ASSERT(seglast == NULL);
409 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
410 }
411 #endif /* VERIFY_SEGLIST */
412 
413 /*
414  * Add a new segment to the address space. The avl_find()
415  * may be expensive so we attempt to use last segment accessed
416  * in as_gap() as an insertion point.
417  */
418 int
419 as_addseg(struct as  *as, struct seg *newseg)
420 {
421 	struct seg *seg;
422 	caddr_t addr;
423 	caddr_t eaddr;
424 	avl_index_t where;
425 
426 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
427 
428 	as->a_updatedir = 1;	/* inform /proc */
429 	gethrestime(&as->a_updatetime);
430 
431 	if (as->a_lastgaphl != NULL) {
432 		struct seg *hseg = NULL;
433 		struct seg *lseg = NULL;
434 
435 		if (as->a_lastgaphl->s_base > newseg->s_base) {
436 			hseg = as->a_lastgaphl;
437 			lseg = AVL_PREV(&as->a_segtree, hseg);
438 		} else {
439 			lseg = as->a_lastgaphl;
440 			hseg = AVL_NEXT(&as->a_segtree, lseg);
441 		}
442 
443 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
444 		    hseg->s_base > newseg->s_base) {
445 			avl_insert_here(&as->a_segtree, newseg, lseg,
446 			    AVL_AFTER);
447 			as->a_lastgaphl = NULL;
448 			as->a_seglast = newseg;
449 			return (0);
450 		}
451 		as->a_lastgaphl = NULL;
452 	}
453 
454 	addr = newseg->s_base;
455 	eaddr = addr + newseg->s_size;
456 again:
457 
458 	seg = avl_find(&as->a_segtree, &addr, &where);
459 
460 	if (seg == NULL)
461 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
462 
463 	if (seg == NULL)
464 		seg = avl_last(&as->a_segtree);
465 
466 	if (seg != NULL) {
467 		caddr_t base = seg->s_base;
468 
469 		/*
470 		 * If top of seg is below the requested address, then
471 		 * the insertion point is at the end of the linked list,
472 		 * and seg points to the tail of the list.  Otherwise,
473 		 * the insertion point is immediately before seg.
474 		 */
475 		if (base + seg->s_size > addr) {
476 			if (addr >= base || eaddr > base) {
477 #ifdef __sparc
478 				extern struct seg_ops segnf_ops;
479 
480 				/*
481 				 * no-fault segs must disappear if overlaid.
482 				 * XXX need new segment type so
483 				 * we don't have to check s_ops
484 				 */
485 				if (seg->s_ops == &segnf_ops) {
486 					seg_unmap(seg);
487 					goto again;
488 				}
489 #endif
490 				return (-1);	/* overlapping segment */
491 			}
492 		}
493 	}
494 	as->a_seglast = newseg;
495 	avl_insert(&as->a_segtree, newseg, where);
496 
497 #ifdef VERIFY_SEGLIST
498 	as_verify(as);
499 #endif
500 	return (0);
501 }
502 
503 struct seg *
504 as_removeseg(struct as *as, struct seg *seg)
505 {
506 	avl_tree_t *t;
507 
508 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
509 
510 	as->a_updatedir = 1;	/* inform /proc */
511 	gethrestime(&as->a_updatetime);
512 
513 	if (seg == NULL)
514 		return (NULL);
515 
516 	t = &as->a_segtree;
517 	if (as->a_seglast == seg)
518 		as->a_seglast = NULL;
519 	as->a_lastgaphl = NULL;
520 
521 	/*
522 	 * if this segment is at an address higher than
523 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
524 	 */
525 	if (as->a_lastgap &&
526 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
527 		as->a_lastgap = AVL_NEXT(t, seg);
528 
529 	/*
530 	 * remove the segment from the seg tree
531 	 */
532 	avl_remove(t, seg);
533 
534 #ifdef VERIFY_SEGLIST
535 	as_verify(as);
536 #endif
537 	return (seg);
538 }
539 
540 /*
541  * Find a segment containing addr.
542  */
543 struct seg *
544 as_segat(struct as *as, caddr_t addr)
545 {
546 	struct seg *seg = as->a_seglast;
547 
548 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
549 
550 	if (seg != NULL && seg->s_base <= addr &&
551 	    addr < seg->s_base + seg->s_size)
552 		return (seg);
553 
554 	seg = avl_find(&as->a_segtree, &addr, NULL);
555 	return (seg);
556 }
557 
558 /*
559  * Serialize all searches for holes in an address space to
560  * prevent two or more threads from allocating the same virtual
561  * address range.  The address space must not be "read/write"
562  * locked by the caller since we may block.
563  */
564 void
565 as_rangelock(struct as *as)
566 {
567 	mutex_enter(&as->a_contents);
568 	while (AS_ISCLAIMGAP(as))
569 		cv_wait(&as->a_cv, &as->a_contents);
570 	AS_SETCLAIMGAP(as);
571 	mutex_exit(&as->a_contents);
572 }
573 
574 /*
575  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
576  */
577 void
578 as_rangeunlock(struct as *as)
579 {
580 	mutex_enter(&as->a_contents);
581 	AS_CLRCLAIMGAP(as);
582 	cv_signal(&as->a_cv);
583 	mutex_exit(&as->a_contents);
584 }
585 
586 /*
587  * compar segments (or just an address) by segment address range
588  */
589 static int
590 as_segcompar(const void *x, const void *y)
591 {
592 	struct seg *a = (struct seg *)x;
593 	struct seg *b = (struct seg *)y;
594 
595 	if (a->s_base < b->s_base)
596 		return (-1);
597 	if (a->s_base >= b->s_base + b->s_size)
598 		return (1);
599 	return (0);
600 }
601 
602 
603 void
604 as_avlinit(struct as *as)
605 {
606 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
607 	    offsetof(struct seg, s_tree));
608 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
609 	    offsetof(struct watched_page, wp_link));
610 }
611 
612 /*ARGSUSED*/
613 static int
614 as_constructor(void *buf, void *cdrarg, int kmflags)
615 {
616 	struct as *as = buf;
617 
618 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
619 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
620 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
621 	as_avlinit(as);
622 	return (0);
623 }
624 
625 /*ARGSUSED1*/
626 static void
627 as_destructor(void *buf, void *cdrarg)
628 {
629 	struct as *as = buf;
630 
631 	avl_destroy(&as->a_segtree);
632 	mutex_destroy(&as->a_contents);
633 	cv_destroy(&as->a_cv);
634 	rw_destroy(&as->a_lock);
635 }
636 
637 void
638 as_init(void)
639 {
640 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
641 		as_constructor, as_destructor, NULL, NULL, NULL, 0);
642 }
643 
644 /*
645  * Allocate and initialize an address space data structure.
646  * We call hat_alloc to allow any machine dependent
647  * information in the hat structure to be initialized.
648  */
649 struct as *
650 as_alloc(void)
651 {
652 	struct as *as;
653 
654 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
655 
656 	as->a_flags		= 0;
657 	as->a_vbits		= 0;
658 	as->a_hrm		= NULL;
659 	as->a_seglast		= NULL;
660 	as->a_size		= 0;
661 	as->a_updatedir		= 0;
662 	gethrestime(&as->a_updatetime);
663 	as->a_objectdir		= NULL;
664 	as->a_sizedir		= 0;
665 	as->a_userlimit		= (caddr_t)USERLIMIT;
666 	as->a_lastgap		= NULL;
667 	as->a_lastgaphl		= NULL;
668 	as->a_callbacks		= NULL;
669 
670 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
671 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
672 	AS_LOCK_EXIT(as, &as->a_lock);
673 
674 	as->a_xhat = NULL;
675 
676 	return (as);
677 }
678 
679 /*
680  * Free an address space data structure.
681  * Need to free the hat first and then
682  * all the segments on this as and finally
683  * the space for the as struct itself.
684  */
685 void
686 as_free(struct as *as)
687 {
688 	struct hat *hat = as->a_hat;
689 	struct seg *seg, *next;
690 	int called = 0;
691 
692 top:
693 	/*
694 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
695 	 * per call, and not return (-1) until the callback has completed.
696 	 * When as_do_callbacks returns zero, all callbacks have completed.
697 	 */
698 	mutex_enter(&as->a_contents);
699 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0));
700 
701 	/* This will prevent new XHATs from attaching to as */
702 	if (!called)
703 		AS_SETBUSY(as);
704 	mutex_exit(&as->a_contents);
705 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
706 
707 	if (!called) {
708 		called = 1;
709 		hat_free_start(hat);
710 		if (as->a_xhat != NULL)
711 			xhat_free_start_all(as);
712 	}
713 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
714 		int err;
715 
716 		next = AS_SEGNEXT(as, seg);
717 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
718 		if (err == EAGAIN) {
719 			mutex_enter(&as->a_contents);
720 			if (as->a_callbacks) {
721 				AS_LOCK_EXIT(as, &as->a_lock);
722 			} else {
723 				/*
724 				 * Memory is currently locked. Wait for a
725 				 * cv_signal that it has been unlocked, then
726 				 * try the operation again.
727 				 */
728 				if (AS_ISUNMAPWAIT(as) == 0)
729 					cv_broadcast(&as->a_cv);
730 				AS_SETUNMAPWAIT(as);
731 				AS_LOCK_EXIT(as, &as->a_lock);
732 				while (AS_ISUNMAPWAIT(as))
733 					cv_wait(&as->a_cv, &as->a_contents);
734 			}
735 			mutex_exit(&as->a_contents);
736 			goto top;
737 		} else {
738 			/*
739 			 * We do not expect any other error return at this
740 			 * time. This is similar to an ASSERT in seg_unmap()
741 			 */
742 			ASSERT(err == 0);
743 		}
744 	}
745 	hat_free_end(hat);
746 	if (as->a_xhat != NULL)
747 		xhat_free_end_all(as);
748 	AS_LOCK_EXIT(as, &as->a_lock);
749 
750 	/* /proc stuff */
751 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
752 	if (as->a_objectdir) {
753 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
754 		as->a_objectdir = NULL;
755 		as->a_sizedir = 0;
756 	}
757 
758 	/*
759 	 * Free the struct as back to kmem.  Assert it has no segments.
760 	 */
761 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
762 	kmem_cache_free(as_cache, as);
763 }
764 
765 int
766 as_dup(struct as *as, struct as **outas)
767 {
768 	struct as *newas;
769 	struct seg *seg, *newseg;
770 	int error;
771 
772 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
773 	as_clearwatch(as);
774 	newas = as_alloc();
775 	newas->a_userlimit = as->a_userlimit;
776 	AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER);
777 
778 	/* This will prevent new XHATs from attaching */
779 	mutex_enter(&as->a_contents);
780 	AS_SETBUSY(as);
781 	mutex_exit(&as->a_contents);
782 	mutex_enter(&newas->a_contents);
783 	AS_SETBUSY(newas);
784 	mutex_exit(&newas->a_contents);
785 
786 	(void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD);
787 
788 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
789 
790 		if (seg->s_flags & S_PURGE)
791 			continue;
792 
793 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
794 		if (newseg == NULL) {
795 			AS_LOCK_EXIT(newas, &newas->a_lock);
796 			as_setwatch(as);
797 			mutex_enter(&as->a_contents);
798 			AS_CLRBUSY(as);
799 			mutex_exit(&as->a_contents);
800 			AS_LOCK_EXIT(as, &as->a_lock);
801 			as_free(newas);
802 			return (-1);
803 		}
804 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
805 			/*
806 			 * We call seg_free() on the new seg
807 			 * because the segment is not set up
808 			 * completely; i.e. it has no ops.
809 			 */
810 			as_setwatch(as);
811 			mutex_enter(&as->a_contents);
812 			AS_CLRBUSY(as);
813 			mutex_exit(&as->a_contents);
814 			AS_LOCK_EXIT(as, &as->a_lock);
815 			seg_free(newseg);
816 			AS_LOCK_EXIT(newas, &newas->a_lock);
817 			as_free(newas);
818 			return (error);
819 		}
820 		newas->a_size += seg->s_size;
821 	}
822 
823 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
824 	if (as->a_xhat != NULL)
825 		error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL);
826 
827 	mutex_enter(&newas->a_contents);
828 	AS_CLRBUSY(newas);
829 	mutex_exit(&newas->a_contents);
830 	AS_LOCK_EXIT(newas, &newas->a_lock);
831 
832 	as_setwatch(as);
833 	mutex_enter(&as->a_contents);
834 	AS_CLRBUSY(as);
835 	mutex_exit(&as->a_contents);
836 	AS_LOCK_EXIT(as, &as->a_lock);
837 	if (error != 0) {
838 		as_free(newas);
839 		return (error);
840 	}
841 	*outas = newas;
842 	return (0);
843 }
844 
845 /*
846  * Handle a ``fault'' at addr for size bytes.
847  */
848 faultcode_t
849 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
850 	enum fault_type type, enum seg_rw rw)
851 {
852 	struct seg *seg;
853 	caddr_t raddr;			/* rounded down addr */
854 	size_t rsize;			/* rounded up size */
855 	size_t ssize;
856 	faultcode_t res = 0;
857 	caddr_t addrsav;
858 	struct seg *segsav;
859 	int as_lock_held;
860 	klwp_t *lwp = ttolwp(curthread);
861 	int is_xhat = 0;
862 	int holding_wpage = 0;
863 	extern struct seg_ops   segdev_ops;
864 
865 
866 
867 	if (as->a_hat != hat) {
868 		/* This must be an XHAT then */
869 		is_xhat = 1;
870 
871 		if ((type != F_INVAL) || (as == &kas))
872 			return (FC_NOSUPPORT);
873 	}
874 
875 retry:
876 	if (!is_xhat) {
877 		/*
878 		 * Indicate that the lwp is not to be stopped while waiting
879 		 * for a pagefault.  This is to avoid deadlock while debugging
880 		 * a process via /proc over NFS (in particular).
881 		 */
882 		if (lwp != NULL)
883 			lwp->lwp_nostop++;
884 
885 		/*
886 		 * same length must be used when we softlock and softunlock.
887 		 * We don't support softunlocking lengths less than
888 		 * the original length when there is largepage support.
889 		 * See seg_dev.c for more comments.
890 		 */
891 		switch (type) {
892 
893 		case F_SOFTLOCK:
894 			CPU_STATS_ADD_K(vm, softlock, 1);
895 			break;
896 
897 		case F_SOFTUNLOCK:
898 			break;
899 
900 		case F_PROT:
901 			CPU_STATS_ADD_K(vm, prot_fault, 1);
902 			break;
903 
904 		case F_INVAL:
905 			CPU_STATS_ENTER_K();
906 			CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
907 			if (as == &kas)
908 				CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
909 			CPU_STATS_EXIT_K();
910 			break;
911 		}
912 	}
913 
914 	/* Kernel probe */
915 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
916 		tnf_opaque,	address,	addr,
917 		tnf_fault_type,	fault_type,	type,
918 		tnf_seg_access,	access,		rw);
919 
920 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
921 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
922 		(size_t)raddr;
923 
924 	/*
925 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
926 	 * correctness, but then we could be stuck holding this lock for
927 	 * a LONG time if the fault needs to be resolved on a slow
928 	 * filesystem, and then no-one will be able to exec new commands,
929 	 * as exec'ing requires the write lock on the as.
930 	 */
931 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
932 	    raddr + size < segkmap->s_base + segkmap->s_size) {
933 		/*
934 		 * if (as==&kas), this can't be XHAT: we've already returned
935 		 * FC_NOSUPPORT.
936 		 */
937 		seg = segkmap;
938 		as_lock_held = 0;
939 	} else {
940 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
941 		if (is_xhat && avl_numnodes(&as->a_wpage) != 0) {
942 			/*
943 			 * Grab and hold the writers' lock on the as
944 			 * if the fault is to a watched page.
945 			 * This will keep CPUs from "peeking" at the
946 			 * address range while we're temporarily boosting
947 			 * the permissions for the XHAT device to
948 			 * resolve the fault in the segment layer.
949 			 *
950 			 * We could check whether faulted address
951 			 * is within a watched page and only then grab
952 			 * the writer lock, but this is simpler.
953 			 */
954 			AS_LOCK_EXIT(as, &as->a_lock);
955 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
956 		}
957 
958 		seg = as_segat(as, raddr);
959 		if (seg == NULL) {
960 			AS_LOCK_EXIT(as, &as->a_lock);
961 			if ((lwp != NULL) && (!is_xhat))
962 				lwp->lwp_nostop--;
963 			return (FC_NOMAP);
964 		}
965 
966 		as_lock_held = 1;
967 	}
968 
969 	addrsav = raddr;
970 	segsav = seg;
971 
972 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
973 		if (raddr >= seg->s_base + seg->s_size) {
974 			seg = AS_SEGNEXT(as, seg);
975 			if (seg == NULL || raddr != seg->s_base) {
976 				res = FC_NOMAP;
977 				break;
978 			}
979 		}
980 		if (raddr + rsize > seg->s_base + seg->s_size)
981 			ssize = seg->s_base + seg->s_size - raddr;
982 		else
983 			ssize = rsize;
984 
985 		if (!is_xhat || (seg->s_ops != &segdev_ops)) {
986 
987 			if (is_xhat && avl_numnodes(&as->a_wpage) != 0 &&
988 			    pr_is_watchpage_as(raddr, rw, as)) {
989 				/*
990 				 * Handle watch pages.  If we're faulting on a
991 				 * watched page from an X-hat, we have to
992 				 * restore the original permissions while we
993 				 * handle the fault.
994 				 */
995 				as_clearwatch(as);
996 				holding_wpage = 1;
997 			}
998 
999 			res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
1000 
1001 			/* Restore watchpoints */
1002 			if (holding_wpage) {
1003 				as_setwatch(as);
1004 				holding_wpage = 0;
1005 			}
1006 
1007 			if (res != 0)
1008 				break;
1009 		} else {
1010 			/* XHAT does not support seg_dev */
1011 			res = FC_NOSUPPORT;
1012 			break;
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * If we were SOFTLOCKing and encountered a failure,
1018 	 * we must SOFTUNLOCK the range we already did. (Maybe we
1019 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
1020 	 * right here...)
1021 	 */
1022 	if (res != 0 && type == F_SOFTLOCK) {
1023 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
1024 			if (addrsav >= seg->s_base + seg->s_size)
1025 				seg = AS_SEGNEXT(as, seg);
1026 			ASSERT(seg != NULL);
1027 			/*
1028 			 * Now call the fault routine again to perform the
1029 			 * unlock using S_OTHER instead of the rw variable
1030 			 * since we never got a chance to touch the pages.
1031 			 */
1032 			if (raddr > seg->s_base + seg->s_size)
1033 				ssize = seg->s_base + seg->s_size - addrsav;
1034 			else
1035 				ssize = raddr - addrsav;
1036 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
1037 			    F_SOFTUNLOCK, S_OTHER);
1038 		}
1039 	}
1040 	if (as_lock_held)
1041 		AS_LOCK_EXIT(as, &as->a_lock);
1042 	if ((lwp != NULL) && (!is_xhat))
1043 		lwp->lwp_nostop--;
1044 
1045 	/*
1046 	 * If the lower levels returned EDEADLK for a fault,
1047 	 * It means that we should retry the fault.  Let's wait
1048 	 * a bit also to let the deadlock causing condition clear.
1049 	 * This is part of a gross hack to work around a design flaw
1050 	 * in the ufs/sds logging code and should go away when the
1051 	 * logging code is re-designed to fix the problem. See bug
1052 	 * 4125102 for details of the problem.
1053 	 */
1054 	if (FC_ERRNO(res) == EDEADLK) {
1055 		delay(deadlk_wait);
1056 		res = 0;
1057 		goto retry;
1058 	}
1059 	return (res);
1060 }
1061 
1062 
1063 
1064 /*
1065  * Asynchronous ``fault'' at addr for size bytes.
1066  */
1067 faultcode_t
1068 as_faulta(struct as *as, caddr_t addr, size_t size)
1069 {
1070 	struct seg *seg;
1071 	caddr_t raddr;			/* rounded down addr */
1072 	size_t rsize;			/* rounded up size */
1073 	faultcode_t res = 0;
1074 	klwp_t *lwp = ttolwp(curthread);
1075 
1076 retry:
1077 	/*
1078 	 * Indicate that the lwp is not to be stopped while waiting
1079 	 * for a pagefault.  This is to avoid deadlock while debugging
1080 	 * a process via /proc over NFS (in particular).
1081 	 */
1082 	if (lwp != NULL)
1083 		lwp->lwp_nostop++;
1084 
1085 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1086 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1087 		(size_t)raddr;
1088 
1089 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1090 	seg = as_segat(as, raddr);
1091 	if (seg == NULL) {
1092 		AS_LOCK_EXIT(as, &as->a_lock);
1093 		if (lwp != NULL)
1094 			lwp->lwp_nostop--;
1095 		return (FC_NOMAP);
1096 	}
1097 
1098 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1099 		if (raddr >= seg->s_base + seg->s_size) {
1100 			seg = AS_SEGNEXT(as, seg);
1101 			if (seg == NULL || raddr != seg->s_base) {
1102 				res = FC_NOMAP;
1103 				break;
1104 			}
1105 		}
1106 		res = SEGOP_FAULTA(seg, raddr);
1107 		if (res != 0)
1108 			break;
1109 	}
1110 	AS_LOCK_EXIT(as, &as->a_lock);
1111 	if (lwp != NULL)
1112 		lwp->lwp_nostop--;
1113 	/*
1114 	 * If the lower levels returned EDEADLK for a fault,
1115 	 * It means that we should retry the fault.  Let's wait
1116 	 * a bit also to let the deadlock causing condition clear.
1117 	 * This is part of a gross hack to work around a design flaw
1118 	 * in the ufs/sds logging code and should go away when the
1119 	 * logging code is re-designed to fix the problem. See bug
1120 	 * 4125102 for details of the problem.
1121 	 */
1122 	if (FC_ERRNO(res) == EDEADLK) {
1123 		delay(deadlk_wait);
1124 		res = 0;
1125 		goto retry;
1126 	}
1127 	return (res);
1128 }
1129 
1130 /*
1131  * Set the virtual mapping for the interval from [addr : addr + size)
1132  * in address space `as' to have the specified protection.
1133  * It is ok for the range to cross over several segments,
1134  * as long as they are contiguous.
1135  */
1136 int
1137 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1138 {
1139 	struct seg *seg;
1140 	struct as_callback *cb;
1141 	size_t ssize;
1142 	caddr_t raddr;			/* rounded down addr */
1143 	size_t rsize;			/* rounded up size */
1144 	int error = 0, writer = 0;
1145 	caddr_t saveraddr;
1146 	size_t saversize;
1147 
1148 setprot_top:
1149 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1150 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1151 		(size_t)raddr;
1152 
1153 	if (raddr + rsize < raddr)		/* check for wraparound */
1154 		return (ENOMEM);
1155 
1156 	saveraddr = raddr;
1157 	saversize = rsize;
1158 
1159 	/*
1160 	 * Normally we only lock the as as a reader. But
1161 	 * if due to setprot the segment driver needs to split
1162 	 * a segment it will return IE_RETRY. Therefore we re-aquire
1163 	 * the as lock as a writer so the segment driver can change
1164 	 * the seg list. Also the segment driver will return IE_RETRY
1165 	 * after it has changed the segment list so we therefore keep
1166 	 * locking as a writer. Since these opeartions should be rare
1167 	 * want to only lock as a writer when necessary.
1168 	 */
1169 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1170 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1171 	} else {
1172 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1173 	}
1174 
1175 	as_clearwatchprot(as, raddr, rsize);
1176 	seg = as_segat(as, raddr);
1177 	if (seg == NULL) {
1178 		as_setwatch(as);
1179 		AS_LOCK_EXIT(as, &as->a_lock);
1180 		return (ENOMEM);
1181 	}
1182 
1183 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1184 		if (raddr >= seg->s_base + seg->s_size) {
1185 			seg = AS_SEGNEXT(as, seg);
1186 			if (seg == NULL || raddr != seg->s_base) {
1187 				error = ENOMEM;
1188 				break;
1189 			}
1190 		}
1191 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1192 			ssize = seg->s_base + seg->s_size - raddr;
1193 		else
1194 			ssize = rsize;
1195 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1196 
1197 		if (error == IE_NOMEM) {
1198 			error = EAGAIN;
1199 			break;
1200 		}
1201 
1202 		if (error == IE_RETRY) {
1203 			AS_LOCK_EXIT(as, &as->a_lock);
1204 			writer = 1;
1205 			goto setprot_top;
1206 		}
1207 
1208 		if (error == EAGAIN) {
1209 			/*
1210 			 * Make sure we have a_lock as writer.
1211 			 */
1212 			if (writer == 0) {
1213 				AS_LOCK_EXIT(as, &as->a_lock);
1214 				writer = 1;
1215 				goto setprot_top;
1216 			}
1217 
1218 			/*
1219 			 * Memory is currently locked.  It must be unlocked
1220 			 * before this operation can succeed through a retry.
1221 			 * The possible reasons for locked memory and
1222 			 * corresponding strategies for unlocking are:
1223 			 * (1) Normal I/O
1224 			 *	wait for a signal that the I/O operation
1225 			 *	has completed and the memory is unlocked.
1226 			 * (2) Asynchronous I/O
1227 			 *	The aio subsystem does not unlock pages when
1228 			 *	the I/O is completed. Those pages are unlocked
1229 			 *	when the application calls aiowait/aioerror.
1230 			 *	So, to prevent blocking forever, cv_broadcast()
1231 			 *	is done to wake up aio_cleanup_thread.
1232 			 *	Subsequently, segvn_reclaim will be called, and
1233 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1234 			 * (3) Long term page locking:
1235 			 *	Drivers intending to have pages locked for a
1236 			 *	period considerably longer than for normal I/O
1237 			 *	(essentially forever) may have registered for a
1238 			 *	callback so they may unlock these pages on
1239 			 *	request. This is needed to allow this operation
1240 			 *	to succeed. Each entry on the callback list is
1241 			 *	examined. If the event or address range pertains
1242 			 *	the callback is invoked (unless it already is in
1243 			 *	progress). The a_contents lock must be dropped
1244 			 *	before the callback, so only one callback can
1245 			 *	be done at a time. Go to the top and do more
1246 			 *	until zero is returned. If zero is returned,
1247 			 *	either there were no callbacks for this event
1248 			 *	or they were already in progress.
1249 			 */
1250 			mutex_enter(&as->a_contents);
1251 			if (as->a_callbacks &&
1252 				(cb = as_find_callback(as, AS_SETPROT_EVENT,
1253 						seg->s_base, seg->s_size))) {
1254 				AS_LOCK_EXIT(as, &as->a_lock);
1255 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1256 			} else {
1257 				if (AS_ISUNMAPWAIT(as) == 0)
1258 					cv_broadcast(&as->a_cv);
1259 				AS_SETUNMAPWAIT(as);
1260 				AS_LOCK_EXIT(as, &as->a_lock);
1261 				while (AS_ISUNMAPWAIT(as))
1262 					cv_wait(&as->a_cv, &as->a_contents);
1263 			}
1264 			mutex_exit(&as->a_contents);
1265 			goto setprot_top;
1266 		} else if (error != 0)
1267 			break;
1268 	}
1269 	if (error != 0) {
1270 		as_setwatch(as);
1271 	} else {
1272 		as_setwatchprot(as, saveraddr, saversize, prot);
1273 	}
1274 	AS_LOCK_EXIT(as, &as->a_lock);
1275 	return (error);
1276 }
1277 
1278 /*
1279  * Check to make sure that the interval [addr, addr + size)
1280  * in address space `as' has at least the specified protection.
1281  * It is ok for the range to cross over several segments, as long
1282  * as they are contiguous.
1283  */
1284 int
1285 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1286 {
1287 	struct seg *seg;
1288 	size_t ssize;
1289 	caddr_t raddr;			/* rounded down addr */
1290 	size_t rsize;			/* rounded up size */
1291 	int error = 0;
1292 
1293 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1294 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1295 		(size_t)raddr;
1296 
1297 	if (raddr + rsize < raddr)		/* check for wraparound */
1298 		return (ENOMEM);
1299 
1300 	/*
1301 	 * This is ugly as sin...
1302 	 * Normally, we only acquire the address space readers lock.
1303 	 * However, if the address space has watchpoints present,
1304 	 * we must acquire the writer lock on the address space for
1305 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1306 	 */
1307 	if (avl_numnodes(&as->a_wpage) != 0)
1308 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1309 	else
1310 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1311 	as_clearwatchprot(as, raddr, rsize);
1312 	seg = as_segat(as, raddr);
1313 	if (seg == NULL) {
1314 		as_setwatch(as);
1315 		AS_LOCK_EXIT(as, &as->a_lock);
1316 		return (ENOMEM);
1317 	}
1318 
1319 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1320 		if (raddr >= seg->s_base + seg->s_size) {
1321 			seg = AS_SEGNEXT(as, seg);
1322 			if (seg == NULL || raddr != seg->s_base) {
1323 				error = ENOMEM;
1324 				break;
1325 			}
1326 		}
1327 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1328 			ssize = seg->s_base + seg->s_size - raddr;
1329 		else
1330 			ssize = rsize;
1331 
1332 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1333 		if (error != 0)
1334 			break;
1335 	}
1336 	as_setwatch(as);
1337 	AS_LOCK_EXIT(as, &as->a_lock);
1338 	return (error);
1339 }
1340 
1341 int
1342 as_unmap(struct as *as, caddr_t addr, size_t size)
1343 {
1344 	struct seg *seg, *seg_next;
1345 	struct as_callback *cb;
1346 	caddr_t raddr, eaddr;
1347 	size_t ssize;
1348 	int err;
1349 
1350 top:
1351 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1352 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1353 	    (uintptr_t)PAGEMASK);
1354 
1355 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1356 
1357 	as->a_updatedir = 1;	/* inform /proc */
1358 	gethrestime(&as->a_updatetime);
1359 
1360 	/*
1361 	 * Use as_findseg to find the first segment in the range, then
1362 	 * step through the segments in order, following s_next.
1363 	 */
1364 	as_clearwatchprot(as, raddr, eaddr - raddr);
1365 
1366 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1367 		if (eaddr <= seg->s_base)
1368 			break;		/* eaddr was in a gap; all done */
1369 
1370 		/* this is implied by the test above */
1371 		ASSERT(raddr < eaddr);
1372 
1373 		if (raddr < seg->s_base)
1374 			raddr = seg->s_base; 	/* raddr was in a gap */
1375 
1376 		if (eaddr > (seg->s_base + seg->s_size))
1377 			ssize = seg->s_base + seg->s_size - raddr;
1378 		else
1379 			ssize = eaddr - raddr;
1380 
1381 		/*
1382 		 * Save next segment pointer since seg can be
1383 		 * destroyed during the segment unmap operation.
1384 		 */
1385 		seg_next = AS_SEGNEXT(as, seg);
1386 
1387 		err = SEGOP_UNMAP(seg, raddr, ssize);
1388 		if (err == EAGAIN) {
1389 			/*
1390 			 * Memory is currently locked.  It must be unlocked
1391 			 * before this operation can succeed through a retry.
1392 			 * The possible reasons for locked memory and
1393 			 * corresponding strategies for unlocking are:
1394 			 * (1) Normal I/O
1395 			 *	wait for a signal that the I/O operation
1396 			 *	has completed and the memory is unlocked.
1397 			 * (2) Asynchronous I/O
1398 			 *	The aio subsystem does not unlock pages when
1399 			 *	the I/O is completed. Those pages are unlocked
1400 			 *	when the application calls aiowait/aioerror.
1401 			 *	So, to prevent blocking forever, cv_broadcast()
1402 			 *	is done to wake up aio_cleanup_thread.
1403 			 *	Subsequently, segvn_reclaim will be called, and
1404 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1405 			 * (3) Long term page locking:
1406 			 *	Drivers intending to have pages locked for a
1407 			 *	period considerably longer than for normal I/O
1408 			 *	(essentially forever) may have registered for a
1409 			 *	callback so they may unlock these pages on
1410 			 *	request. This is needed to allow this operation
1411 			 *	to succeed. Each entry on the callback list is
1412 			 *	examined. If the event or address range pertains
1413 			 *	the callback is invoked (unless it already is in
1414 			 *	progress). The a_contents lock must be dropped
1415 			 *	before the callback, so only one callback can
1416 			 *	be done at a time. Go to the top and do more
1417 			 *	until zero is returned. If zero is returned,
1418 			 *	either there were no callbacks for this event
1419 			 *	or they were already in progress.
1420 			 */
1421 			as_setwatch(as);
1422 			mutex_enter(&as->a_contents);
1423 			if (as->a_callbacks &&
1424 				(cb = as_find_callback(as, AS_UNMAP_EVENT,
1425 						seg->s_base, seg->s_size))) {
1426 				AS_LOCK_EXIT(as, &as->a_lock);
1427 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1428 			} else {
1429 				if (AS_ISUNMAPWAIT(as) == 0)
1430 					cv_broadcast(&as->a_cv);
1431 				AS_SETUNMAPWAIT(as);
1432 				AS_LOCK_EXIT(as, &as->a_lock);
1433 				while (AS_ISUNMAPWAIT(as))
1434 					cv_wait(&as->a_cv, &as->a_contents);
1435 			}
1436 			mutex_exit(&as->a_contents);
1437 			goto top;
1438 		} else if (err == IE_RETRY) {
1439 			as_setwatch(as);
1440 			AS_LOCK_EXIT(as, &as->a_lock);
1441 			goto top;
1442 		} else if (err) {
1443 			as_setwatch(as);
1444 			AS_LOCK_EXIT(as, &as->a_lock);
1445 			return (-1);
1446 		}
1447 
1448 		as->a_size -= ssize;
1449 		raddr += ssize;
1450 	}
1451 	AS_LOCK_EXIT(as, &as->a_lock);
1452 	return (0);
1453 }
1454 
1455 static int
1456 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec,
1457     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1458 {
1459 	uint_t szc;
1460 	uint_t nszc;
1461 	int error;
1462 	caddr_t a;
1463 	caddr_t eaddr;
1464 	size_t segsize;
1465 	struct seg *seg;
1466 	size_t pgsz;
1467 	int do_off = (vn_a->vp != NULL || vn_a->amp != NULL);
1468 	uint_t save_szcvec;
1469 
1470 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1471 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1472 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1473 	ASSERT(vn_a->vp == NULL || vn_a->amp == NULL);
1474 	if (!do_off) {
1475 		vn_a->offset = 0;
1476 	}
1477 
1478 	if (szcvec <= 1) {
1479 		seg = seg_alloc(as, addr, size);
1480 		if (seg == NULL) {
1481 			return (ENOMEM);
1482 		}
1483 		vn_a->szc = 0;
1484 		error = (*crfp)(seg, vn_a);
1485 		if (error != 0) {
1486 			seg_free(seg);
1487 		} else {
1488 			as->a_size += size;
1489 		}
1490 		return (error);
1491 	}
1492 
1493 	eaddr = addr + size;
1494 	save_szcvec = szcvec;
1495 	szcvec >>= 1;
1496 	szc = 0;
1497 	nszc = 0;
1498 	while (szcvec) {
1499 		if ((szcvec & 0x1) == 0) {
1500 			nszc++;
1501 			szcvec >>= 1;
1502 			continue;
1503 		}
1504 		nszc++;
1505 		pgsz = page_get_pagesize(nszc);
1506 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1507 		if (a != addr) {
1508 			ASSERT(a < eaddr);
1509 			segsize = a - addr;
1510 			seg = seg_alloc(as, addr, segsize);
1511 			if (seg == NULL) {
1512 				return (ENOMEM);
1513 			}
1514 			vn_a->szc = szc;
1515 			error = (*crfp)(seg, vn_a);
1516 			if (error != 0) {
1517 				seg_free(seg);
1518 				return (error);
1519 			}
1520 			as->a_size += segsize;
1521 			*segcreated = 1;
1522 			if (do_off) {
1523 				vn_a->offset += segsize;
1524 			}
1525 			addr = a;
1526 		}
1527 		szc = nszc;
1528 		szcvec >>= 1;
1529 	}
1530 
1531 	ASSERT(addr < eaddr);
1532 	szcvec = save_szcvec | 1; /* add 8K pages */
1533 	while (szcvec) {
1534 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1535 		ASSERT(a >= addr);
1536 		if (a != addr) {
1537 			segsize = a - addr;
1538 			seg = seg_alloc(as, addr, segsize);
1539 			if (seg == NULL) {
1540 				return (ENOMEM);
1541 			}
1542 			vn_a->szc = szc;
1543 			error = (*crfp)(seg, vn_a);
1544 			if (error != 0) {
1545 				seg_free(seg);
1546 				return (error);
1547 			}
1548 			as->a_size += segsize;
1549 			*segcreated = 1;
1550 			if (do_off) {
1551 				vn_a->offset += segsize;
1552 			}
1553 			addr = a;
1554 		}
1555 		szcvec &= ~(1 << szc);
1556 		if (szcvec) {
1557 			szc = highbit(szcvec) - 1;
1558 			pgsz = page_get_pagesize(szc);
1559 		}
1560 	}
1561 	ASSERT(addr == eaddr);
1562 
1563 	return (0);
1564 }
1565 
1566 static int
1567 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1568     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1569 {
1570 	uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA);
1571 	int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
1572 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1573 	    type, 0);
1574 	int error;
1575 	struct seg *seg;
1576 	struct vattr va;
1577 	u_offset_t eoff;
1578 	size_t save_size = 0;
1579 	extern size_t textrepl_size_thresh;
1580 
1581 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1582 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1583 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1584 	ASSERT(vn_a->vp != NULL);
1585 	ASSERT(vn_a->amp == NULL);
1586 
1587 again:
1588 	if (szcvec <= 1) {
1589 		seg = seg_alloc(as, addr, size);
1590 		if (seg == NULL) {
1591 			return (ENOMEM);
1592 		}
1593 		vn_a->szc = 0;
1594 		error = (*crfp)(seg, vn_a);
1595 		if (error != 0) {
1596 			seg_free(seg);
1597 		} else {
1598 			as->a_size += size;
1599 		}
1600 		return (error);
1601 	}
1602 
1603 	va.va_mask = AT_SIZE;
1604 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) {
1605 		szcvec = 0;
1606 		goto again;
1607 	}
1608 	eoff = vn_a->offset & PAGEMASK;
1609 	if (eoff >= va.va_size) {
1610 		szcvec = 0;
1611 		goto again;
1612 	}
1613 	eoff += size;
1614 	if (btopr(va.va_size) < btopr(eoff)) {
1615 		save_size = size;
1616 		size = va.va_size - (vn_a->offset & PAGEMASK);
1617 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1618 		szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1619 		    type, 0);
1620 		if (szcvec <= 1) {
1621 			size = save_size;
1622 			goto again;
1623 		}
1624 	}
1625 
1626 	if (size > textrepl_size_thresh) {
1627 		vn_a->flags |= _MAP_TEXTREPL;
1628 	}
1629 	error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a,
1630 	    segcreated);
1631 	if (error != 0) {
1632 		return (error);
1633 	}
1634 	if (save_size) {
1635 		addr += size;
1636 		size = save_size - size;
1637 		szcvec = 0;
1638 		goto again;
1639 	}
1640 	return (0);
1641 }
1642 
1643 /*
1644  * as_map_ansegs: shared or private anonymous memory.  Note that the flags
1645  * passed to map_pgszvec cannot be MAP_INITDATA, for anon.
1646  */
1647 static int
1648 as_map_ansegs(struct as *as, caddr_t addr, size_t size,
1649     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1650 {
1651 	uint_t szcvec;
1652 	uchar_t type;
1653 
1654 	ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE);
1655 	if (vn_a->type == MAP_SHARED) {
1656 		type = MAPPGSZC_SHM;
1657 	} else if (vn_a->type == MAP_PRIVATE) {
1658 		if (vn_a->szc == AS_MAP_HEAP) {
1659 			type = MAPPGSZC_HEAP;
1660 		} else if (vn_a->szc == AS_MAP_STACK) {
1661 			type = MAPPGSZC_STACK;
1662 		} else {
1663 			type = MAPPGSZC_PRIVM;
1664 		}
1665 	}
1666 	szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ?
1667 	    (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE),
1668 	    (vn_a->flags & MAP_TEXT), type, 0);
1669 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1670 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1671 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1672 	ASSERT(vn_a->vp == NULL);
1673 
1674 	return (as_map_segvn_segs(as, addr, size, szcvec,
1675 	    crfp, vn_a, segcreated));
1676 }
1677 
1678 int
1679 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1680 {
1681 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1682 	return (as_map_locked(as, addr, size, crfp, argsp));
1683 }
1684 
1685 int
1686 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(),
1687 		void *argsp)
1688 {
1689 	struct seg *seg = NULL;
1690 	caddr_t raddr;			/* rounded down addr */
1691 	size_t rsize;			/* rounded up size */
1692 	int error;
1693 	int unmap = 0;
1694 	struct proc *p = curproc;
1695 	struct segvn_crargs crargs;
1696 
1697 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1698 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1699 		(size_t)raddr;
1700 
1701 	/*
1702 	 * check for wrap around
1703 	 */
1704 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1705 		AS_LOCK_EXIT(as, &as->a_lock);
1706 		return (ENOMEM);
1707 	}
1708 
1709 	as->a_updatedir = 1;	/* inform /proc */
1710 	gethrestime(&as->a_updatetime);
1711 
1712 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1713 		AS_LOCK_EXIT(as, &as->a_lock);
1714 
1715 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1716 		    RCA_UNSAFE_ALL);
1717 
1718 		return (ENOMEM);
1719 	}
1720 
1721 	if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) {
1722 		crargs = *(struct segvn_crargs *)argsp;
1723 		error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap);
1724 		if (error != 0) {
1725 			AS_LOCK_EXIT(as, &as->a_lock);
1726 			if (unmap) {
1727 				(void) as_unmap(as, addr, size);
1728 			}
1729 			return (error);
1730 		}
1731 	} else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) {
1732 		crargs = *(struct segvn_crargs *)argsp;
1733 		error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap);
1734 		if (error != 0) {
1735 			AS_LOCK_EXIT(as, &as->a_lock);
1736 			if (unmap) {
1737 				(void) as_unmap(as, addr, size);
1738 			}
1739 			return (error);
1740 		}
1741 	} else {
1742 		seg = seg_alloc(as, addr, size);
1743 		if (seg == NULL) {
1744 			AS_LOCK_EXIT(as, &as->a_lock);
1745 			return (ENOMEM);
1746 		}
1747 
1748 		error = (*crfp)(seg, argsp);
1749 		if (error != 0) {
1750 			seg_free(seg);
1751 			AS_LOCK_EXIT(as, &as->a_lock);
1752 			return (error);
1753 		}
1754 		/*
1755 		 * Add size now so as_unmap will work if as_ctl fails.
1756 		 */
1757 		as->a_size += rsize;
1758 	}
1759 
1760 	as_setwatch(as);
1761 
1762 	/*
1763 	 * If the address space is locked,
1764 	 * establish memory locks for the new segment.
1765 	 */
1766 	mutex_enter(&as->a_contents);
1767 	if (AS_ISPGLCK(as)) {
1768 		mutex_exit(&as->a_contents);
1769 		AS_LOCK_EXIT(as, &as->a_lock);
1770 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1771 		if (error != 0)
1772 			(void) as_unmap(as, addr, size);
1773 	} else {
1774 		mutex_exit(&as->a_contents);
1775 		AS_LOCK_EXIT(as, &as->a_lock);
1776 	}
1777 	return (error);
1778 }
1779 
1780 
1781 /*
1782  * Delete all segments in the address space marked with S_PURGE.
1783  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1784  * These segments are deleted as a first step before calls to as_gap(), so
1785  * that they don't affect mmap() or shmat().
1786  */
1787 void
1788 as_purge(struct as *as)
1789 {
1790 	struct seg *seg;
1791 	struct seg *next_seg;
1792 
1793 	/*
1794 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1795 	 * no need to grab a_contents mutex for this check
1796 	 */
1797 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1798 		return;
1799 
1800 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1801 	next_seg = NULL;
1802 	seg = AS_SEGFIRST(as);
1803 	while (seg != NULL) {
1804 		next_seg = AS_SEGNEXT(as, seg);
1805 		if (seg->s_flags & S_PURGE)
1806 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1807 		seg = next_seg;
1808 	}
1809 	AS_LOCK_EXIT(as, &as->a_lock);
1810 
1811 	mutex_enter(&as->a_contents);
1812 	as->a_flags &= ~AS_NEEDSPURGE;
1813 	mutex_exit(&as->a_contents);
1814 }
1815 
1816 /*
1817  * Find a hole of at least size minlen within [base, base + len).
1818  *
1819  * If flags specifies AH_HI, the hole will have the highest possible address
1820  * in the range.  We use the as->a_lastgap field to figure out where to
1821  * start looking for a gap.
1822  *
1823  * Otherwise, the gap will have the lowest possible address.
1824  *
1825  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1826  *
1827  * If an adequate hole is found, base and len are set to reflect the part of
1828  * the hole that is within range, and 0 is returned, otherwise,
1829  * -1 is returned.
1830  *
1831  * NOTE: This routine is not correct when base+len overflows caddr_t.
1832  */
1833 int
1834 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
1835     caddr_t addr)
1836 {
1837 	caddr_t lobound = *basep;
1838 	caddr_t hibound = lobound + *lenp;
1839 	struct seg *lseg, *hseg;
1840 	caddr_t lo, hi;
1841 	int forward;
1842 	caddr_t save_base;
1843 	size_t save_len;
1844 
1845 	save_base = *basep;
1846 	save_len = *lenp;
1847 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1848 	if (AS_SEGFIRST(as) == NULL) {
1849 		if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) {
1850 			AS_LOCK_EXIT(as, &as->a_lock);
1851 			return (0);
1852 		} else {
1853 			AS_LOCK_EXIT(as, &as->a_lock);
1854 			*basep = save_base;
1855 			*lenp = save_len;
1856 			return (-1);
1857 		}
1858 	}
1859 
1860 	/*
1861 	 * Set up to iterate over all the inter-segment holes in the given
1862 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1863 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1864 	 * sseg to denote the highest-addressed segment.
1865 	 */
1866 	forward = (flags & AH_DIR) == AH_LO;
1867 	if (forward) {
1868 		hseg = as_findseg(as, lobound, 1);
1869 		lseg = AS_SEGPREV(as, hseg);
1870 	} else {
1871 
1872 		/*
1873 		 * If allocating at least as much as the last allocation,
1874 		 * use a_lastgap's base as a better estimate of hibound.
1875 		 */
1876 		if (as->a_lastgap &&
1877 		    minlen >= as->a_lastgap->s_size &&
1878 		    hibound >= as->a_lastgap->s_base)
1879 			hibound = as->a_lastgap->s_base;
1880 
1881 		hseg = as_findseg(as, hibound, 1);
1882 		if (hseg->s_base + hseg->s_size < hibound) {
1883 			lseg = hseg;
1884 			hseg = NULL;
1885 		} else {
1886 			lseg = AS_SEGPREV(as, hseg);
1887 		}
1888 	}
1889 
1890 	for (;;) {
1891 		/*
1892 		 * Set lo and hi to the hole's boundaries.  (We should really
1893 		 * use MAXADDR in place of hibound in the expression below,
1894 		 * but can't express it easily; using hibound in its place is
1895 		 * harmless.)
1896 		 */
1897 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1898 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1899 		/*
1900 		 * If the iteration has moved past the interval from lobound
1901 		 * to hibound it's pointless to continue.
1902 		 */
1903 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1904 			break;
1905 		else if (lo > hibound || hi < lobound)
1906 			goto cont;
1907 		/*
1908 		 * Candidate hole lies at least partially within the allowable
1909 		 * range.  Restrict it to fall completely within that range,
1910 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
1911 		 */
1912 		if (lo < lobound)
1913 			lo = lobound;
1914 		if (hi > hibound)
1915 			hi = hibound;
1916 		/*
1917 		 * Verify that the candidate hole is big enough and meets
1918 		 * hardware constraints.
1919 		 */
1920 		*basep = lo;
1921 		*lenp = hi - lo;
1922 		if (valid_va_range(basep, lenp, minlen,
1923 		    forward ? AH_LO : AH_HI) &&
1924 		    ((flags & AH_CONTAIN) == 0 ||
1925 		    (*basep <= addr && *basep + *lenp > addr))) {
1926 			if (!forward)
1927 				as->a_lastgap = hseg;
1928 			if (hseg != NULL)
1929 				as->a_lastgaphl = hseg;
1930 			else
1931 				as->a_lastgaphl = lseg;
1932 			AS_LOCK_EXIT(as, &as->a_lock);
1933 			return (0);
1934 		}
1935 	cont:
1936 		/*
1937 		 * Move to the next hole.
1938 		 */
1939 		if (forward) {
1940 			lseg = hseg;
1941 			if (lseg == NULL)
1942 				break;
1943 			hseg = AS_SEGNEXT(as, hseg);
1944 		} else {
1945 			hseg = lseg;
1946 			if (hseg == NULL)
1947 				break;
1948 			lseg = AS_SEGPREV(as, lseg);
1949 		}
1950 	}
1951 	*basep = save_base;
1952 	*lenp = save_len;
1953 	AS_LOCK_EXIT(as, &as->a_lock);
1954 	return (-1);
1955 }
1956 
1957 /*
1958  * Return the next range within [base, base + len) that is backed
1959  * with "real memory".  Skip holes and non-seg_vn segments.
1960  * We're lazy and only return one segment at a time.
1961  */
1962 int
1963 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
1964 {
1965 	extern struct seg_ops segspt_shmops;	/* needs a header file */
1966 	struct seg *seg;
1967 	caddr_t addr, eaddr;
1968 	caddr_t segend;
1969 
1970 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1971 
1972 	addr = *basep;
1973 	eaddr = addr + *lenp;
1974 
1975 	seg = as_findseg(as, addr, 0);
1976 	if (seg != NULL)
1977 		addr = MAX(seg->s_base, addr);
1978 
1979 	for (;;) {
1980 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
1981 			AS_LOCK_EXIT(as, &as->a_lock);
1982 			return (EINVAL);
1983 		}
1984 
1985 		if (seg->s_ops == &segvn_ops) {
1986 			segend = seg->s_base + seg->s_size;
1987 			break;
1988 		}
1989 
1990 		/*
1991 		 * We do ISM by looking into the private data
1992 		 * to determine the real size of the segment.
1993 		 */
1994 		if (seg->s_ops == &segspt_shmops) {
1995 			segend = seg->s_base + spt_realsize(seg);
1996 			if (addr < segend)
1997 				break;
1998 		}
1999 
2000 		seg = AS_SEGNEXT(as, seg);
2001 
2002 		if (seg != NULL)
2003 			addr = seg->s_base;
2004 	}
2005 
2006 	*basep = addr;
2007 
2008 	if (segend > eaddr)
2009 		*lenp = eaddr - addr;
2010 	else
2011 		*lenp = segend - addr;
2012 
2013 	AS_LOCK_EXIT(as, &as->a_lock);
2014 	return (0);
2015 }
2016 
2017 /*
2018  * Swap the pages associated with the address space as out to
2019  * secondary storage, returning the number of bytes actually
2020  * swapped.
2021  *
2022  * The value returned is intended to correlate well with the process's
2023  * memory requirements.  Its usefulness for this purpose depends on
2024  * how well the segment-level routines do at returning accurate
2025  * information.
2026  */
2027 size_t
2028 as_swapout(struct as *as)
2029 {
2030 	struct seg *seg;
2031 	size_t swpcnt = 0;
2032 
2033 	/*
2034 	 * Kernel-only processes have given up their address
2035 	 * spaces.  Of course, we shouldn't be attempting to
2036 	 * swap out such processes in the first place...
2037 	 */
2038 	if (as == NULL)
2039 		return (0);
2040 
2041 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2042 
2043 	/* Prevent XHATs from attaching */
2044 	mutex_enter(&as->a_contents);
2045 	AS_SETBUSY(as);
2046 	mutex_exit(&as->a_contents);
2047 
2048 
2049 	/*
2050 	 * Free all mapping resources associated with the address
2051 	 * space.  The segment-level swapout routines capitalize
2052 	 * on this unmapping by scavanging pages that have become
2053 	 * unmapped here.
2054 	 */
2055 	hat_swapout(as->a_hat);
2056 	if (as->a_xhat != NULL)
2057 		xhat_swapout_all(as);
2058 
2059 	mutex_enter(&as->a_contents);
2060 	AS_CLRBUSY(as);
2061 	mutex_exit(&as->a_contents);
2062 
2063 	/*
2064 	 * Call the swapout routines of all segments in the address
2065 	 * space to do the actual work, accumulating the amount of
2066 	 * space reclaimed.
2067 	 */
2068 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2069 		struct seg_ops *ov = seg->s_ops;
2070 
2071 		/*
2072 		 * We have to check to see if the seg has
2073 		 * an ops vector because the seg may have
2074 		 * been in the middle of being set up when
2075 		 * the process was picked for swapout.
2076 		 */
2077 		if ((ov != NULL) && (ov->swapout != NULL))
2078 			swpcnt += SEGOP_SWAPOUT(seg);
2079 	}
2080 	AS_LOCK_EXIT(as, &as->a_lock);
2081 	return (swpcnt);
2082 }
2083 
2084 /*
2085  * Determine whether data from the mappings in interval [addr, addr + size)
2086  * are in the primary memory (core) cache.
2087  */
2088 int
2089 as_incore(struct as *as, caddr_t addr,
2090     size_t size, char *vec, size_t *sizep)
2091 {
2092 	struct seg *seg;
2093 	size_t ssize;
2094 	caddr_t raddr;		/* rounded down addr */
2095 	size_t rsize;		/* rounded up size */
2096 	size_t isize;			/* iteration size */
2097 	int error = 0;		/* result, assume success */
2098 
2099 	*sizep = 0;
2100 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2101 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
2102 		(size_t)raddr;
2103 
2104 	if (raddr + rsize < raddr)		/* check for wraparound */
2105 		return (ENOMEM);
2106 
2107 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2108 	seg = as_segat(as, raddr);
2109 	if (seg == NULL) {
2110 		AS_LOCK_EXIT(as, &as->a_lock);
2111 		return (-1);
2112 	}
2113 
2114 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2115 		if (raddr >= seg->s_base + seg->s_size) {
2116 			seg = AS_SEGNEXT(as, seg);
2117 			if (seg == NULL || raddr != seg->s_base) {
2118 				error = -1;
2119 				break;
2120 			}
2121 		}
2122 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2123 			ssize = seg->s_base + seg->s_size - raddr;
2124 		else
2125 			ssize = rsize;
2126 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2127 		if (isize != ssize) {
2128 			error = -1;
2129 			break;
2130 		}
2131 		vec += btopr(ssize);
2132 	}
2133 	AS_LOCK_EXIT(as, &as->a_lock);
2134 	return (error);
2135 }
2136 
2137 static void
2138 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2139 	ulong_t *bitmap, size_t position, size_t npages)
2140 {
2141 	caddr_t	range_start;
2142 	size_t	pos1 = position;
2143 	size_t	pos2;
2144 	size_t	size;
2145 	size_t  end_pos = npages + position;
2146 
2147 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2148 		size = ptob((pos2 - pos1));
2149 		range_start = (caddr_t)((uintptr_t)addr +
2150 			ptob(pos1 - position));
2151 
2152 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2153 			(ulong_t *)NULL, (size_t)NULL);
2154 		pos1 = pos2;
2155 	}
2156 }
2157 
2158 static void
2159 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2160 	caddr_t raddr, size_t rsize)
2161 {
2162 	struct seg *seg = as_segat(as, raddr);
2163 	size_t ssize;
2164 
2165 	while (rsize != 0) {
2166 		if (raddr >= seg->s_base + seg->s_size)
2167 			seg = AS_SEGNEXT(as, seg);
2168 
2169 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2170 			ssize = seg->s_base + seg->s_size - raddr;
2171 		else
2172 			ssize = rsize;
2173 
2174 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2175 
2176 		rsize -= ssize;
2177 		raddr += ssize;
2178 	}
2179 }
2180 
2181 /*
2182  * Cache control operations over the interval [addr, addr + size) in
2183  * address space "as".
2184  */
2185 /*ARGSUSED*/
2186 int
2187 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2188     uintptr_t arg, ulong_t *lock_map, size_t pos)
2189 {
2190 	struct seg *seg;	/* working segment */
2191 	caddr_t raddr;		/* rounded down addr */
2192 	caddr_t initraddr;	/* saved initial rounded down addr */
2193 	size_t rsize;		/* rounded up size */
2194 	size_t initrsize;	/* saved initial rounded up size */
2195 	size_t ssize;		/* size of seg */
2196 	int error = 0;			/* result */
2197 	size_t mlock_size;	/* size of bitmap */
2198 	ulong_t *mlock_map;	/* pointer to bitmap used */
2199 				/* to represent the locked */
2200 				/* pages. */
2201 retry:
2202 	if (error == IE_RETRY)
2203 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2204 	else
2205 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2206 
2207 	/*
2208 	 * If these are address space lock/unlock operations, loop over
2209 	 * all segments in the address space, as appropriate.
2210 	 */
2211 	if (func == MC_LOCKAS) {
2212 		size_t npages, idx;
2213 		size_t rlen = 0;	/* rounded as length */
2214 
2215 		idx = pos;
2216 
2217 		if (arg & MCL_FUTURE) {
2218 			mutex_enter(&as->a_contents);
2219 			AS_SETPGLCK(as);
2220 			mutex_exit(&as->a_contents);
2221 		}
2222 		if ((arg & MCL_CURRENT) == 0) {
2223 			AS_LOCK_EXIT(as, &as->a_lock);
2224 			return (0);
2225 		}
2226 
2227 		seg = AS_SEGFIRST(as);
2228 		if (seg == NULL) {
2229 			AS_LOCK_EXIT(as, &as->a_lock);
2230 			return (0);
2231 		}
2232 
2233 		do {
2234 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2235 			    (uintptr_t)PAGEMASK);
2236 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2237 				PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2238 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2239 
2240 		mlock_size = BT_BITOUL(btopr(rlen));
2241 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2242 			sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2243 				AS_LOCK_EXIT(as, &as->a_lock);
2244 				return (EAGAIN);
2245 		}
2246 
2247 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2248 			error = SEGOP_LOCKOP(seg, seg->s_base,
2249 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2250 			if (error != 0)
2251 				break;
2252 			pos += seg_pages(seg);
2253 		}
2254 
2255 		if (error) {
2256 			for (seg = AS_SEGFIRST(as); seg != NULL;
2257 				seg = AS_SEGNEXT(as, seg)) {
2258 
2259 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2260 					(uintptr_t)PAGEMASK);
2261 				npages = seg_pages(seg);
2262 				as_segunlock(seg, raddr, attr, mlock_map,
2263 					idx, npages);
2264 				idx += npages;
2265 			}
2266 		}
2267 
2268 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2269 		AS_LOCK_EXIT(as, &as->a_lock);
2270 		goto lockerr;
2271 	} else if (func == MC_UNLOCKAS) {
2272 		mutex_enter(&as->a_contents);
2273 		AS_CLRPGLCK(as);
2274 		mutex_exit(&as->a_contents);
2275 
2276 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2277 			error = SEGOP_LOCKOP(seg, seg->s_base,
2278 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2279 			if (error != 0)
2280 				break;
2281 		}
2282 
2283 		AS_LOCK_EXIT(as, &as->a_lock);
2284 		goto lockerr;
2285 	}
2286 
2287 	/*
2288 	 * Normalize addresses and sizes.
2289 	 */
2290 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2291 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2292 		(size_t)raddr;
2293 
2294 	if (raddr + rsize < raddr) {		/* check for wraparound */
2295 		AS_LOCK_EXIT(as, &as->a_lock);
2296 		return (ENOMEM);
2297 	}
2298 
2299 	/*
2300 	 * Get initial segment.
2301 	 */
2302 	if ((seg = as_segat(as, raddr)) == NULL) {
2303 		AS_LOCK_EXIT(as, &as->a_lock);
2304 		return (ENOMEM);
2305 	}
2306 
2307 	if (func == MC_LOCK) {
2308 		mlock_size = BT_BITOUL(btopr(rsize));
2309 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2310 			sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2311 				AS_LOCK_EXIT(as, &as->a_lock);
2312 				return (EAGAIN);
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * Loop over all segments.  If a hole in the address range is
2318 	 * discovered, then fail.  For each segment, perform the appropriate
2319 	 * control operation.
2320 	 */
2321 	while (rsize != 0) {
2322 
2323 		/*
2324 		 * Make sure there's no hole, calculate the portion
2325 		 * of the next segment to be operated over.
2326 		 */
2327 		if (raddr >= seg->s_base + seg->s_size) {
2328 			seg = AS_SEGNEXT(as, seg);
2329 			if (seg == NULL || raddr != seg->s_base) {
2330 				if (func == MC_LOCK) {
2331 					as_unlockerr(as, attr, mlock_map,
2332 						initraddr, initrsize - rsize);
2333 					kmem_free(mlock_map,
2334 						mlock_size * sizeof (ulong_t));
2335 				}
2336 				AS_LOCK_EXIT(as, &as->a_lock);
2337 				return (ENOMEM);
2338 			}
2339 		}
2340 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2341 			ssize = seg->s_base + seg->s_size - raddr;
2342 		else
2343 			ssize = rsize;
2344 
2345 		/*
2346 		 * Dispatch on specific function.
2347 		 */
2348 		switch (func) {
2349 
2350 		/*
2351 		 * Synchronize cached data from mappings with backing
2352 		 * objects.
2353 		 */
2354 		case MC_SYNC:
2355 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2356 			    attr, (uint_t)arg)) {
2357 				AS_LOCK_EXIT(as, &as->a_lock);
2358 				return (error);
2359 			}
2360 			break;
2361 
2362 		/*
2363 		 * Lock pages in memory.
2364 		 */
2365 		case MC_LOCK:
2366 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2367 				attr, func, mlock_map, pos)) {
2368 				as_unlockerr(as, attr, mlock_map, initraddr,
2369 					initrsize - rsize + ssize);
2370 				kmem_free(mlock_map, mlock_size *
2371 					sizeof (ulong_t));
2372 				AS_LOCK_EXIT(as, &as->a_lock);
2373 				goto lockerr;
2374 			}
2375 			break;
2376 
2377 		/*
2378 		 * Unlock mapped pages.
2379 		 */
2380 		case MC_UNLOCK:
2381 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2382 				(ulong_t *)NULL, (size_t)NULL);
2383 			break;
2384 
2385 		/*
2386 		 * Store VM advise for mapped pages in segment layer.
2387 		 */
2388 		case MC_ADVISE:
2389 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2390 
2391 			/*
2392 			 * Check for regular errors and special retry error
2393 			 */
2394 			if (error) {
2395 				if (error == IE_RETRY) {
2396 					/*
2397 					 * Need to acquire writers lock, so
2398 					 * have to drop readers lock and start
2399 					 * all over again
2400 					 */
2401 					AS_LOCK_EXIT(as, &as->a_lock);
2402 					goto retry;
2403 				} else if (error == IE_REATTACH) {
2404 					/*
2405 					 * Find segment for current address
2406 					 * because current segment just got
2407 					 * split or concatenated
2408 					 */
2409 					seg = as_segat(as, raddr);
2410 					if (seg == NULL) {
2411 						AS_LOCK_EXIT(as, &as->a_lock);
2412 						return (ENOMEM);
2413 					}
2414 				} else {
2415 					/*
2416 					 * Regular error
2417 					 */
2418 					AS_LOCK_EXIT(as, &as->a_lock);
2419 					return (error);
2420 				}
2421 			}
2422 			break;
2423 
2424 		/*
2425 		 * Can't happen.
2426 		 */
2427 		default:
2428 			panic("as_ctl: bad operation %d", func);
2429 			/*NOTREACHED*/
2430 		}
2431 
2432 		rsize -= ssize;
2433 		raddr += ssize;
2434 	}
2435 
2436 	if (func == MC_LOCK)
2437 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2438 	AS_LOCK_EXIT(as, &as->a_lock);
2439 	return (0);
2440 lockerr:
2441 
2442 	/*
2443 	 * If the lower levels returned EDEADLK for a segment lockop,
2444 	 * it means that we should retry the operation.  Let's wait
2445 	 * a bit also to let the deadlock causing condition clear.
2446 	 * This is part of a gross hack to work around a design flaw
2447 	 * in the ufs/sds logging code and should go away when the
2448 	 * logging code is re-designed to fix the problem. See bug
2449 	 * 4125102 for details of the problem.
2450 	 */
2451 	if (error == EDEADLK) {
2452 		delay(deadlk_wait);
2453 		error = 0;
2454 		goto retry;
2455 	}
2456 	return (error);
2457 }
2458 
2459 /*
2460  * Special code for exec to move the stack segment from its interim
2461  * place in the old address to the right place in the new address space.
2462  */
2463 /*ARGSUSED*/
2464 int
2465 as_exec(struct as *oas, caddr_t ostka, size_t stksz,
2466     struct as *nas, caddr_t nstka, uint_t hatflag)
2467 {
2468 	struct seg *stkseg;
2469 
2470 	AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER);
2471 	stkseg = as_segat(oas, ostka);
2472 	stkseg = as_removeseg(oas, stkseg);
2473 	ASSERT(stkseg != NULL);
2474 	ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz);
2475 	stkseg->s_as = nas;
2476 	stkseg->s_base = nstka;
2477 
2478 	/*
2479 	 * It's ok to lock the address space we are about to exec to.
2480 	 */
2481 	AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER);
2482 	ASSERT(avl_numnodes(&nas->a_wpage) == 0);
2483 	nas->a_size += stkseg->s_size;
2484 	oas->a_size -= stkseg->s_size;
2485 	(void) as_addseg(nas, stkseg);
2486 	AS_LOCK_EXIT(nas, &nas->a_lock);
2487 	AS_LOCK_EXIT(oas, &oas->a_lock);
2488 	return (0);
2489 }
2490 
2491 static int
2492 f_decode(faultcode_t fault_err)
2493 {
2494 	int error = 0;
2495 
2496 	switch (FC_CODE(fault_err)) {
2497 	case FC_OBJERR:
2498 		error = FC_ERRNO(fault_err);
2499 		break;
2500 	case FC_PROT:
2501 		error = EACCES;
2502 		break;
2503 	default:
2504 		error = EFAULT;
2505 		break;
2506 	}
2507 	return (error);
2508 }
2509 
2510 /*
2511  * lock pages in a given address space. Return shadow list. If
2512  * the list is NULL, the MMU mapping is also locked.
2513  */
2514 int
2515 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2516     size_t size, enum seg_rw rw)
2517 {
2518 	size_t rsize;
2519 	caddr_t base;
2520 	caddr_t raddr;
2521 	faultcode_t fault_err;
2522 	struct seg *seg;
2523 	int res;
2524 	int prefaulted = 0;
2525 
2526 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2527 	    "as_pagelock_start: addr %p size %ld", addr, size);
2528 
2529 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2530 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2531 		(size_t)raddr;
2532 top:
2533 	/*
2534 	 * if the request crosses two segments let
2535 	 * as_fault handle it.
2536 	 */
2537 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2538 	seg = as_findseg(as, addr, 0);
2539 	if ((seg == NULL) || ((base = seg->s_base) > addr) ||
2540 	    (addr + size) > base + seg->s_size) {
2541 		AS_LOCK_EXIT(as, &as->a_lock);
2542 		goto slow;
2543 	}
2544 
2545 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2546 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2547 
2548 	/*
2549 	 * try to lock pages and pass back shadow list
2550 	 */
2551 	res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2552 
2553 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2554 	AS_LOCK_EXIT(as, &as->a_lock);
2555 	if (res == 0) {
2556 		return (0);
2557 	} else if (res == ENOTSUP || prefaulted) {
2558 		/*
2559 		 * (1) segment driver doesn't support PAGELOCK fastpath, or
2560 		 * (2) we've already tried fast path unsuccessfully after
2561 		 *    faulting in the addr range below; system might be
2562 		 *    thrashing or there may not be enough availrmem.
2563 		 */
2564 		goto slow;
2565 	}
2566 
2567 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START,
2568 	    "as_fault_start: addr %p size %ld", addr, size);
2569 
2570 	/*
2571 	 * we might get here because of some COW fault or non
2572 	 * existing page. Let as_fault deal with it. Just load
2573 	 * the page, don't lock the MMU mapping.
2574 	 */
2575 	fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw);
2576 	if (fault_err != 0) {
2577 		return (f_decode(fault_err));
2578 	}
2579 
2580 	prefaulted = 1;
2581 
2582 	/*
2583 	 * try fast path again; since we've dropped a_lock,
2584 	 * we need to try the dance from the start to see if
2585 	 * the addr range is still valid.
2586 	 */
2587 	goto top;
2588 slow:
2589 	/*
2590 	 * load the page and lock the MMU mapping.
2591 	 */
2592 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2593 	if (fault_err != 0) {
2594 		return (f_decode(fault_err));
2595 	}
2596 	*ppp = NULL;
2597 
2598 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2599 	return (0);
2600 }
2601 
2602 /*
2603  * unlock pages in a given address range
2604  */
2605 void
2606 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2607     enum seg_rw rw)
2608 {
2609 	struct seg *seg;
2610 	size_t rsize;
2611 	caddr_t raddr;
2612 
2613 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2614 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2615 
2616 	/*
2617 	 * if the shadow list is NULL, as_pagelock was
2618 	 * falling back to as_fault
2619 	 */
2620 	if (pp == NULL) {
2621 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2622 		return;
2623 	}
2624 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2625 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2626 		(size_t)raddr;
2627 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2628 	seg = as_findseg(as, addr, 0);
2629 	ASSERT(seg);
2630 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2631 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2632 	SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2633 	AS_LOCK_EXIT(as, &as->a_lock);
2634 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2635 }
2636 
2637 /*
2638  * reclaim cached pages in a given address range
2639  */
2640 void
2641 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr,
2642     size_t size, enum seg_rw rw)
2643 {
2644 	struct seg *seg;
2645 	size_t rsize;
2646 	caddr_t raddr;
2647 
2648 	ASSERT(AS_READ_HELD(as, &as->a_lock));
2649 	ASSERT(pp != NULL);
2650 
2651 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2652 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2653 		(size_t)raddr;
2654 	seg = as_findseg(as, addr, 0);
2655 	ASSERT(seg);
2656 	SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw);
2657 }
2658 
2659 #define	MAXPAGEFLIP	4
2660 #define	MAXPAGEFLIPSIZ	MAXPAGEFLIP*PAGESIZE
2661 
2662 int
2663 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2664     boolean_t wait)
2665 {
2666 	struct seg *seg;
2667 	size_t ssize;
2668 	caddr_t raddr;			/* rounded down addr */
2669 	size_t rsize;			/* rounded up size */
2670 	int error = 0;
2671 	size_t pgsz = page_get_pagesize(szc);
2672 
2673 setpgsz_top:
2674 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2675 		return (EINVAL);
2676 	}
2677 
2678 	raddr = addr;
2679 	rsize = size;
2680 
2681 	if (raddr + rsize < raddr)		/* check for wraparound */
2682 		return (ENOMEM);
2683 
2684 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2685 	as_clearwatchprot(as, raddr, rsize);
2686 	seg = as_segat(as, raddr);
2687 	if (seg == NULL) {
2688 		as_setwatch(as);
2689 		AS_LOCK_EXIT(as, &as->a_lock);
2690 		return (ENOMEM);
2691 	}
2692 
2693 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2694 		if (raddr >= seg->s_base + seg->s_size) {
2695 			seg = AS_SEGNEXT(as, seg);
2696 			if (seg == NULL || raddr != seg->s_base) {
2697 				error = ENOMEM;
2698 				break;
2699 			}
2700 		}
2701 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2702 			ssize = seg->s_base + seg->s_size - raddr;
2703 		} else {
2704 			ssize = rsize;
2705 		}
2706 
2707 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2708 
2709 		if (error == IE_NOMEM) {
2710 			error = EAGAIN;
2711 			break;
2712 		}
2713 
2714 		if (error == IE_RETRY) {
2715 			AS_LOCK_EXIT(as, &as->a_lock);
2716 			goto setpgsz_top;
2717 		}
2718 
2719 		if (error == ENOTSUP) {
2720 			error = EINVAL;
2721 			break;
2722 		}
2723 
2724 		if (wait && (error == EAGAIN)) {
2725 			/*
2726 			 * Memory is currently locked.  It must be unlocked
2727 			 * before this operation can succeed through a retry.
2728 			 * The possible reasons for locked memory and
2729 			 * corresponding strategies for unlocking are:
2730 			 * (1) Normal I/O
2731 			 *	wait for a signal that the I/O operation
2732 			 *	has completed and the memory is unlocked.
2733 			 * (2) Asynchronous I/O
2734 			 *	The aio subsystem does not unlock pages when
2735 			 *	the I/O is completed. Those pages are unlocked
2736 			 *	when the application calls aiowait/aioerror.
2737 			 *	So, to prevent blocking forever, cv_broadcast()
2738 			 *	is done to wake up aio_cleanup_thread.
2739 			 *	Subsequently, segvn_reclaim will be called, and
2740 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
2741 			 * (3) Long term page locking:
2742 			 *	This is not relevant for as_setpagesize()
2743 			 *	because we cannot change the page size for
2744 			 *	driver memory. The attempt to do so will
2745 			 *	fail with a different error than EAGAIN so
2746 			 *	there's no need to trigger as callbacks like
2747 			 *	as_unmap, as_setprot or as_free would do.
2748 			 */
2749 			mutex_enter(&as->a_contents);
2750 			if (AS_ISUNMAPWAIT(as) == 0) {
2751 				cv_broadcast(&as->a_cv);
2752 			}
2753 			AS_SETUNMAPWAIT(as);
2754 			AS_LOCK_EXIT(as, &as->a_lock);
2755 			while (AS_ISUNMAPWAIT(as)) {
2756 				cv_wait(&as->a_cv, &as->a_contents);
2757 			}
2758 			mutex_exit(&as->a_contents);
2759 			goto setpgsz_top;
2760 		} else if (error != 0) {
2761 			break;
2762 		}
2763 	}
2764 	as_setwatch(as);
2765 	AS_LOCK_EXIT(as, &as->a_lock);
2766 	return (error);
2767 }
2768 
2769 /*
2770  * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments
2771  * in its chunk where s_szc is less than the szc we want to set.
2772  */
2773 static int
2774 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
2775     int *retry)
2776 {
2777 	struct seg *seg;
2778 	size_t ssize;
2779 	int error;
2780 
2781 	seg = as_segat(as, raddr);
2782 	if (seg == NULL) {
2783 		panic("as_iset3_default_lpsize: no seg");
2784 	}
2785 
2786 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2787 		if (raddr >= seg->s_base + seg->s_size) {
2788 			seg = AS_SEGNEXT(as, seg);
2789 			if (seg == NULL || raddr != seg->s_base) {
2790 				panic("as_iset3_default_lpsize: as changed");
2791 			}
2792 		}
2793 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2794 			ssize = seg->s_base + seg->s_size - raddr;
2795 		} else {
2796 			ssize = rsize;
2797 		}
2798 
2799 		if (szc > seg->s_szc) {
2800 			error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2801 			/* Only retry on EINVAL segments that have no vnode. */
2802 			if (error == EINVAL) {
2803 				vnode_t *vp = NULL;
2804 				if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) &&
2805 				    (SEGOP_GETVP(seg, raddr, &vp) != 0 ||
2806 				    vp == NULL)) {
2807 					*retry = 1;
2808 				} else {
2809 					*retry = 0;
2810 				}
2811 			}
2812 			if (error) {
2813 				return (error);
2814 			}
2815 		}
2816 	}
2817 	return (0);
2818 }
2819 
2820 /*
2821  * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the
2822  * pagesize on each segment in its range, but if any fails with EINVAL,
2823  * then it reduces the pagesizes to the next size in the bitmap and
2824  * retries as_iset3_default_lpsize(). The reason why the code retries
2825  * smaller allowed sizes on EINVAL is because (a) the anon offset may not
2826  * match the bigger sizes, and (b) it's hard to get this offset (to begin
2827  * with) to pass to map_pgszcvec().
2828  */
2829 static int
2830 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2831     uint_t szcvec)
2832 {
2833 	int error;
2834 	int retry;
2835 
2836 	for (;;) {
2837 		error = as_iset3_default_lpsize(as, addr, size, szc, &retry);
2838 		if (error == EINVAL && retry) {
2839 			szcvec &= ~(1 << szc);
2840 			if (szcvec <= 1) {
2841 				return (EINVAL);
2842 			}
2843 			szc = highbit(szcvec) - 1;
2844 		} else {
2845 			return (error);
2846 		}
2847 	}
2848 }
2849 
2850 /*
2851  * as_iset1_default_lpsize() breaks its chunk into areas where existing
2852  * segments have a smaller szc than we want to set. For each such area,
2853  * it calls as_iset2_default_lpsize()
2854  */
2855 static int
2856 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
2857     uint_t szcvec)
2858 {
2859 	struct seg *seg;
2860 	size_t ssize;
2861 	caddr_t setaddr = raddr;
2862 	size_t setsize = 0;
2863 	int set;
2864 	int error;
2865 
2866 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2867 
2868 	seg = as_segat(as, raddr);
2869 	if (seg == NULL) {
2870 		panic("as_iset1_default_lpsize: no seg");
2871 	}
2872 	if (seg->s_szc < szc) {
2873 		set = 1;
2874 	} else {
2875 		set = 0;
2876 	}
2877 
2878 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
2879 		if (raddr >= seg->s_base + seg->s_size) {
2880 			seg = AS_SEGNEXT(as, seg);
2881 			if (seg == NULL || raddr != seg->s_base) {
2882 				panic("as_iset1_default_lpsize: as changed");
2883 			}
2884 			if (seg->s_szc >= szc && set) {
2885 				ASSERT(setsize != 0);
2886 				error = as_iset2_default_lpsize(as,
2887 				    setaddr, setsize, szc, szcvec);
2888 				if (error) {
2889 					return (error);
2890 				}
2891 				set = 0;
2892 			} else if (seg->s_szc < szc && !set) {
2893 				setaddr = raddr;
2894 				setsize = 0;
2895 				set = 1;
2896 			}
2897 		}
2898 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2899 			ssize = seg->s_base + seg->s_size - raddr;
2900 		} else {
2901 			ssize = rsize;
2902 		}
2903 	}
2904 	error = 0;
2905 	if (set) {
2906 		ASSERT(setsize != 0);
2907 		error = as_iset2_default_lpsize(as, setaddr, setsize,
2908 		    szc, szcvec);
2909 	}
2910 	return (error);
2911 }
2912 
2913 /*
2914  * as_iset_default_lpsize() breaks its chunk according to the size code bitmap
2915  * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each
2916  * chunk to as_iset1_default_lpsize().
2917  */
2918 static int
2919 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags,
2920     int type)
2921 {
2922 	int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
2923 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr,
2924 					flags, rtype, 1);
2925 	uint_t szc;
2926 	uint_t nszc;
2927 	int error;
2928 	caddr_t a;
2929 	caddr_t eaddr;
2930 	size_t segsize;
2931 	size_t pgsz;
2932 	uint_t save_szcvec;
2933 
2934 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2935 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2936 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2937 
2938 	szcvec &= ~1;
2939 	if (szcvec <= 1) {	/* skip if base page size */
2940 		return (0);
2941 	}
2942 
2943 	/* Get the pagesize of the first larger page size. */
2944 	szc = lowbit(szcvec) - 1;
2945 	pgsz = page_get_pagesize(szc);
2946 	eaddr = addr + size;
2947 	addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
2948 	eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
2949 
2950 	save_szcvec = szcvec;
2951 	szcvec >>= (szc + 1);
2952 	nszc = szc;
2953 	while (szcvec) {
2954 		if ((szcvec & 0x1) == 0) {
2955 			nszc++;
2956 			szcvec >>= 1;
2957 			continue;
2958 		}
2959 		nszc++;
2960 		pgsz = page_get_pagesize(nszc);
2961 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
2962 		if (a != addr) {
2963 			ASSERT(szc > 0);
2964 			ASSERT(a < eaddr);
2965 			segsize = a - addr;
2966 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
2967 			    save_szcvec);
2968 			if (error) {
2969 				return (error);
2970 			}
2971 			addr = a;
2972 		}
2973 		szc = nszc;
2974 		szcvec >>= 1;
2975 	}
2976 
2977 	ASSERT(addr < eaddr);
2978 	szcvec = save_szcvec;
2979 	while (szcvec) {
2980 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
2981 		ASSERT(a >= addr);
2982 		if (a != addr) {
2983 			ASSERT(szc > 0);
2984 			segsize = a - addr;
2985 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
2986 			    save_szcvec);
2987 			if (error) {
2988 				return (error);
2989 			}
2990 			addr = a;
2991 		}
2992 		szcvec &= ~(1 << szc);
2993 		if (szcvec) {
2994 			szc = highbit(szcvec) - 1;
2995 			pgsz = page_get_pagesize(szc);
2996 		}
2997 	}
2998 	ASSERT(addr == eaddr);
2999 
3000 	return (0);
3001 }
3002 
3003 /*
3004  * Set the default large page size for the range. Called via memcntl with
3005  * page size set to 0. as_set_default_lpsize breaks the range down into
3006  * chunks with the same type/flags, ignores-non segvn segments, and passes
3007  * each chunk to as_iset_default_lpsize().
3008  */
3009 int
3010 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size)
3011 {
3012 	struct seg *seg;
3013 	caddr_t raddr;
3014 	size_t rsize;
3015 	size_t ssize;
3016 	int rtype, rflags;
3017 	int stype, sflags;
3018 	int error;
3019 	caddr_t	setaddr;
3020 	size_t setsize;
3021 	int segvn;
3022 
3023 	if (size == 0)
3024 		return (0);
3025 
3026 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3027 again:
3028 	error = 0;
3029 
3030 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3031 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
3032 	    (size_t)raddr;
3033 
3034 	if (raddr + rsize < raddr) {		/* check for wraparound */
3035 		AS_LOCK_EXIT(as, &as->a_lock);
3036 		return (ENOMEM);
3037 	}
3038 	as_clearwatchprot(as, raddr, rsize);
3039 	seg = as_segat(as, raddr);
3040 	if (seg == NULL) {
3041 		as_setwatch(as);
3042 		AS_LOCK_EXIT(as, &as->a_lock);
3043 		return (ENOMEM);
3044 	}
3045 	if (seg->s_ops == &segvn_ops) {
3046 		rtype = SEGOP_GETTYPE(seg, addr);
3047 		rflags = rtype & (MAP_TEXT | MAP_INITDATA);
3048 		rtype = rtype & (MAP_SHARED | MAP_PRIVATE);
3049 		segvn = 1;
3050 	} else {
3051 		segvn = 0;
3052 	}
3053 	setaddr = raddr;
3054 	setsize = 0;
3055 
3056 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3057 		if (raddr >= (seg->s_base + seg->s_size)) {
3058 			seg = AS_SEGNEXT(as, seg);
3059 			if (seg == NULL || raddr != seg->s_base) {
3060 				error = ENOMEM;
3061 				break;
3062 			}
3063 			if (seg->s_ops == &segvn_ops) {
3064 				stype = SEGOP_GETTYPE(seg, raddr);
3065 				sflags = stype & (MAP_TEXT | MAP_INITDATA);
3066 				stype &= (MAP_SHARED | MAP_PRIVATE);
3067 				if (segvn && (rflags != sflags ||
3068 				    rtype != stype)) {
3069 					/*
3070 					 * The next segment is also segvn but
3071 					 * has different flags and/or type.
3072 					 */
3073 					ASSERT(setsize != 0);
3074 					error = as_iset_default_lpsize(as,
3075 					    setaddr, setsize, rflags, rtype);
3076 					if (error) {
3077 						break;
3078 					}
3079 					rflags = sflags;
3080 					rtype = stype;
3081 					setaddr = raddr;
3082 					setsize = 0;
3083 				} else if (!segvn) {
3084 					rflags = sflags;
3085 					rtype = stype;
3086 					setaddr = raddr;
3087 					setsize = 0;
3088 					segvn = 1;
3089 				}
3090 			} else if (segvn) {
3091 				/* The next segment is not segvn. */
3092 				ASSERT(setsize != 0);
3093 				error = as_iset_default_lpsize(as,
3094 				    setaddr, setsize, rflags, rtype);
3095 				if (error) {
3096 					break;
3097 				}
3098 				segvn = 0;
3099 			}
3100 		}
3101 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3102 			ssize = seg->s_base + seg->s_size - raddr;
3103 		} else {
3104 			ssize = rsize;
3105 		}
3106 	}
3107 	if (error == 0 && segvn) {
3108 		/* The last chunk when rsize == 0. */
3109 		ASSERT(setsize != 0);
3110 		error = as_iset_default_lpsize(as, setaddr, setsize,
3111 		    rflags, rtype);
3112 	}
3113 
3114 	if (error == IE_RETRY) {
3115 		goto again;
3116 	} else if (error == IE_NOMEM) {
3117 		error = EAGAIN;
3118 	} else if (error == ENOTSUP) {
3119 		error = EINVAL;
3120 	} else if (error == EAGAIN) {
3121 		mutex_enter(&as->a_contents);
3122 		if (AS_ISUNMAPWAIT(as) == 0) {
3123 			cv_broadcast(&as->a_cv);
3124 		}
3125 		AS_SETUNMAPWAIT(as);
3126 		AS_LOCK_EXIT(as, &as->a_lock);
3127 		while (AS_ISUNMAPWAIT(as)) {
3128 			cv_wait(&as->a_cv, &as->a_contents);
3129 		}
3130 		mutex_exit(&as->a_contents);
3131 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3132 		goto again;
3133 	}
3134 
3135 	as_setwatch(as);
3136 	AS_LOCK_EXIT(as, &as->a_lock);
3137 	return (error);
3138 }
3139 
3140 /*
3141  * Setup all of the uninitialized watched pages that we can.
3142  */
3143 void
3144 as_setwatch(struct as *as)
3145 {
3146 	struct watched_page *pwp;
3147 	struct seg *seg;
3148 	caddr_t vaddr;
3149 	uint_t prot;
3150 	int  err, retrycnt;
3151 
3152 	if (avl_numnodes(&as->a_wpage) == 0)
3153 		return;
3154 
3155 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3156 
3157 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3158 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3159 		retrycnt = 0;
3160 	retry:
3161 		vaddr = pwp->wp_vaddr;
3162 		if (pwp->wp_oprot != 0 ||	/* already set up */
3163 		    (seg = as_segat(as, vaddr)) == NULL ||
3164 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
3165 			continue;
3166 
3167 		pwp->wp_oprot = prot;
3168 		if (pwp->wp_read)
3169 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3170 		if (pwp->wp_write)
3171 			prot &= ~PROT_WRITE;
3172 		if (pwp->wp_exec)
3173 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3174 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
3175 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3176 			if (err == IE_RETRY) {
3177 				pwp->wp_oprot = 0;
3178 				ASSERT(retrycnt == 0);
3179 				retrycnt++;
3180 				goto retry;
3181 			}
3182 		}
3183 		pwp->wp_prot = prot;
3184 	}
3185 }
3186 
3187 /*
3188  * Clear all of the watched pages in the address space.
3189  */
3190 void
3191 as_clearwatch(struct as *as)
3192 {
3193 	struct watched_page *pwp;
3194 	struct seg *seg;
3195 	caddr_t vaddr;
3196 	uint_t prot;
3197 	int err, retrycnt;
3198 
3199 	if (avl_numnodes(&as->a_wpage) == 0)
3200 		return;
3201 
3202 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3203 
3204 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3205 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3206 		retrycnt = 0;
3207 	retry:
3208 		vaddr = pwp->wp_vaddr;
3209 		if (pwp->wp_oprot == 0 ||	/* not set up */
3210 		    (seg = as_segat(as, vaddr)) == NULL)
3211 			continue;
3212 
3213 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
3214 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3215 			if (err == IE_RETRY) {
3216 				ASSERT(retrycnt == 0);
3217 				retrycnt++;
3218 				goto retry;
3219 			}
3220 		}
3221 		pwp->wp_oprot = 0;
3222 		pwp->wp_prot = 0;
3223 	}
3224 }
3225 
3226 /*
3227  * Force a new setup for all the watched pages in the range.
3228  */
3229 static void
3230 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
3231 {
3232 	struct watched_page *pwp;
3233 	struct watched_page tpw;
3234 	caddr_t eaddr = addr + size;
3235 	caddr_t vaddr;
3236 	struct seg *seg;
3237 	int err, retrycnt;
3238 	uint_t	wprot;
3239 	avl_index_t where;
3240 
3241 	if (avl_numnodes(&as->a_wpage) == 0)
3242 		return;
3243 
3244 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3245 
3246 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3247 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3248 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3249 
3250 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3251 		retrycnt = 0;
3252 		vaddr = pwp->wp_vaddr;
3253 
3254 		wprot = prot;
3255 		if (pwp->wp_read)
3256 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3257 		if (pwp->wp_write)
3258 			wprot &= ~PROT_WRITE;
3259 		if (pwp->wp_exec)
3260 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3261 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
3262 		retry:
3263 			seg = as_segat(as, vaddr);
3264 			if (seg == NULL) {
3265 				panic("as_setwatchprot: no seg");
3266 				/*NOTREACHED*/
3267 			}
3268 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
3269 			if (err == IE_RETRY) {
3270 				ASSERT(retrycnt == 0);
3271 				retrycnt++;
3272 				goto retry;
3273 			}
3274 		}
3275 		pwp->wp_oprot = prot;
3276 		pwp->wp_prot = wprot;
3277 
3278 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3279 	}
3280 }
3281 
3282 /*
3283  * Clear all of the watched pages in the range.
3284  */
3285 static void
3286 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
3287 {
3288 	caddr_t eaddr = addr + size;
3289 	struct watched_page *pwp;
3290 	struct watched_page tpw;
3291 	uint_t prot;
3292 	struct seg *seg;
3293 	int err, retrycnt;
3294 	avl_index_t where;
3295 
3296 	if (avl_numnodes(&as->a_wpage) == 0)
3297 		return;
3298 
3299 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3300 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3301 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3302 
3303 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3304 
3305 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3306 
3307 		if ((prot = pwp->wp_oprot) != 0) {
3308 			retrycnt = 0;
3309 
3310 			if (prot != pwp->wp_prot) {
3311 			retry:
3312 				seg = as_segat(as, pwp->wp_vaddr);
3313 				if (seg == NULL)
3314 					continue;
3315 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
3316 				    PAGESIZE, prot);
3317 				if (err == IE_RETRY) {
3318 					ASSERT(retrycnt == 0);
3319 					retrycnt++;
3320 					goto retry;
3321 
3322 				}
3323 			}
3324 			pwp->wp_oprot = 0;
3325 			pwp->wp_prot = 0;
3326 		}
3327 
3328 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3329 	}
3330 }
3331 
3332 void
3333 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
3334 {
3335 	struct proc *p;
3336 
3337 	mutex_enter(&pidlock);
3338 	for (p = practive; p; p = p->p_next) {
3339 		if (p->p_as == as) {
3340 			mutex_enter(&p->p_lock);
3341 			if (p->p_as == as)
3342 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
3343 			mutex_exit(&p->p_lock);
3344 		}
3345 	}
3346 	mutex_exit(&pidlock);
3347 }
3348 
3349 /*
3350  * return memory object ID
3351  */
3352 int
3353 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
3354 {
3355 	struct seg	*seg;
3356 	int		sts;
3357 
3358 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
3359 	seg = as_segat(as, addr);
3360 	if (seg == NULL) {
3361 		AS_LOCK_EXIT(as, &as->a_lock);
3362 		return (EFAULT);
3363 	}
3364 	/*
3365 	 * catch old drivers which may not support getmemid
3366 	 */
3367 	if (seg->s_ops->getmemid == NULL) {
3368 		AS_LOCK_EXIT(as, &as->a_lock);
3369 		return (ENODEV);
3370 	}
3371 
3372 	sts = SEGOP_GETMEMID(seg, addr, memidp);
3373 
3374 	AS_LOCK_EXIT(as, &as->a_lock);
3375 	return (sts);
3376 }
3377