xref: /titanic_44/usr/src/uts/common/vm/vm_as.c (revision b7f45089ccbe01bab3d7c7377b49d80d2ae18a69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - address spaces.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/errno.h>
50 #include <sys/systm.h>
51 #include <sys/mman.h>
52 #include <sys/sysmacros.h>
53 #include <sys/cpuvar.h>
54 #include <sys/sysinfo.h>
55 #include <sys/kmem.h>
56 #include <sys/vnode.h>
57 #include <sys/vmsystm.h>
58 #include <sys/cmn_err.h>
59 #include <sys/debug.h>
60 #include <sys/tnf_probe.h>
61 #include <sys/vtrace.h>
62 
63 #include <vm/hat.h>
64 #include <vm/xhat.h>
65 #include <vm/as.h>
66 #include <vm/seg.h>
67 #include <vm/seg_vn.h>
68 #include <vm/seg_dev.h>
69 #include <vm/seg_kmem.h>
70 #include <vm/seg_map.h>
71 #include <vm/seg_spt.h>
72 #include <vm/page.h>
73 
74 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
75 
76 static struct kmem_cache *as_cache;
77 
78 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
79 static void as_clearwatchprot(struct as *, caddr_t, size_t);
80 
81 
82 /*
83  * Verifying the segment lists is very time-consuming; it may not be
84  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
85  */
86 #ifdef DEBUG
87 #define	VERIFY_SEGLIST
88 int do_as_verify = 0;
89 #endif
90 
91 /*
92  * Allocate a new callback data structure entry and fill in the events of
93  * interest, the address range of interest, and the callback argument.
94  * Link the entry on the as->a_callbacks list. A callback entry for the
95  * entire address space may be specified with vaddr = 0 and size = -1.
96  *
97  * CALLERS RESPONSIBILITY: If not calling from within the process context for
98  * the specified as, the caller must guarantee persistence of the specified as
99  * for the duration of this function (eg. pages being locked within the as
100  * will guarantee persistence).
101  */
102 int
103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
104 		caddr_t vaddr, size_t size, int sleepflag)
105 {
106 	struct as_callback 	*current_head, *cb;
107 	caddr_t 		saddr;
108 	size_t 			rsize;
109 
110 	/* callback function and an event are mandatory */
111 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
112 		return (EINVAL);
113 
114 	/* Adding a callback after as_free has been called is not allowed */
115 	if (as == &kas)
116 		return (ENOMEM);
117 
118 	/*
119 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
120 	 * is the entire address space so no rounding is done in that case.
121 	 */
122 	if (size != -1) {
123 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
124 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
125 			(size_t)saddr;
126 		/* check for wraparound */
127 		if (saddr + rsize < saddr)
128 			return (ENOMEM);
129 	} else {
130 		if (vaddr != 0)
131 			return (EINVAL);
132 		saddr = vaddr;
133 		rsize = size;
134 	}
135 
136 	/* Allocate and initialize a callback entry */
137 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
138 	if (cb == NULL)
139 		return (EAGAIN);
140 
141 	cb->ascb_func = cb_func;
142 	cb->ascb_arg = arg;
143 	cb->ascb_events = events;
144 	cb->ascb_saddr = saddr;
145 	cb->ascb_len = rsize;
146 
147 	/* Add the entry to the list */
148 	mutex_enter(&as->a_contents);
149 	current_head = as->a_callbacks;
150 	as->a_callbacks = cb;
151 	cb->ascb_next = current_head;
152 
153 	/*
154 	 * The call to this function may lose in a race with
155 	 * a pertinent event - eg. a thread does long term memory locking
156 	 * but before the callback is added another thread executes as_unmap.
157 	 * A broadcast here resolves that.
158 	 */
159 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
160 		AS_CLRUNMAPWAIT(as);
161 		cv_broadcast(&as->a_cv);
162 	}
163 
164 	mutex_exit(&as->a_contents);
165 	return (0);
166 }
167 
168 /*
169  * Search the callback list for an entry which pertains to arg.
170  *
171  * This is called from within the client upon completion of the callback.
172  * RETURN VALUES:
173  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
174  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
175  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
176  *			entry will be made in as_do_callbacks)
177  *
178  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
179  * set, it indicates that as_do_callbacks is processing this entry.  The
180  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
181  * to unblock as_do_callbacks, in case it is blocked.
182  *
183  * CALLERS RESPONSIBILITY: If not calling from within the process context for
184  * the specified as, the caller must guarantee persistence of the specified as
185  * for the duration of this function (eg. pages being locked within the as
186  * will guarantee persistence).
187  */
188 uint_t
189 as_delete_callback(struct as *as, void *arg)
190 {
191 	struct as_callback **prevcb = &as->a_callbacks;
192 	struct as_callback *cb;
193 	uint_t rc = AS_CALLBACK_NOTFOUND;
194 
195 	mutex_enter(&as->a_contents);
196 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
197 		if (cb->ascb_arg != arg)
198 			continue;
199 
200 		/*
201 		 * If the events indicate AS_CALLBACK_CALLED, just clear
202 		 * AS_ALL_EVENT in the events field and wakeup the thread
203 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
204 		 * will take care of removing this entry from the list.  In
205 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
206 		 * (AS_CALLBACK_CALLED not set), just remove it from the
207 		 * list, return the memory and return AS_CALLBACK_DELETED.
208 		 */
209 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
210 			/* leave AS_CALLBACK_CALLED */
211 			cb->ascb_events &= ~AS_ALL_EVENT;
212 			rc = AS_CALLBACK_DELETE_DEFERRED;
213 			cv_broadcast(&as->a_cv);
214 		} else {
215 			*prevcb = cb->ascb_next;
216 			kmem_free(cb, sizeof (struct as_callback));
217 			rc = AS_CALLBACK_DELETED;
218 		}
219 		break;
220 	}
221 	mutex_exit(&as->a_contents);
222 	return (rc);
223 }
224 
225 /*
226  * Searches the as callback list for a matching entry.
227  * Returns a pointer to the first matching callback, or NULL if
228  * nothing is found.
229  * This function never sleeps so it is ok to call it with more
230  * locks held but the (required) a_contents mutex.
231  *
232  * See also comment on as_do_callbacks below.
233  */
234 static struct as_callback *
235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
236 			size_t event_len)
237 {
238 	struct as_callback	*cb;
239 
240 	ASSERT(MUTEX_HELD(&as->a_contents));
241 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
242 		/*
243 		 * If the callback has not already been called, then
244 		 * check if events or address range pertains.  An event_len
245 		 * of zero means do an unconditional callback.
246 		 */
247 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
248 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
249 		    (event_addr + event_len < cb->ascb_saddr) ||
250 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
251 			continue;
252 		}
253 		break;
254 	}
255 	return (cb);
256 }
257 
258 /*
259  * Executes a given callback and removes it from the callback list for
260  * this address space.
261  * This function may sleep so the caller must drop all locks except
262  * a_contents before calling this func.
263  *
264  * See also comments on as_do_callbacks below.
265  */
266 static void
267 as_execute_callback(struct as *as, struct as_callback *cb,
268 				uint_t events)
269 {
270 	struct as_callback **prevcb;
271 	void	*cb_arg;
272 
273 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
274 	cb->ascb_events |= AS_CALLBACK_CALLED;
275 	mutex_exit(&as->a_contents);
276 	(*cb->ascb_func)(as, cb->ascb_arg, events);
277 	mutex_enter(&as->a_contents);
278 	/*
279 	 * the callback function is required to delete the callback
280 	 * when the callback function determines it is OK for
281 	 * this thread to continue. as_delete_callback will clear
282 	 * the AS_ALL_EVENT in the events field when it is deleted.
283 	 * If the callback function called as_delete_callback,
284 	 * events will already be cleared and there will be no blocking.
285 	 */
286 	while ((cb->ascb_events & events) != 0) {
287 		cv_wait(&as->a_cv, &as->a_contents);
288 	}
289 	/*
290 	 * This entry needs to be taken off the list. Normally, the
291 	 * callback func itself does that, but unfortunately the list
292 	 * may have changed while the callback was running because the
293 	 * a_contents mutex was dropped and someone else other than the
294 	 * callback func itself could have called as_delete_callback,
295 	 * so we have to search to find this entry again.  The entry
296 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
297 	 */
298 	cb_arg = cb->ascb_arg;
299 	prevcb = &as->a_callbacks;
300 	for (cb = as->a_callbacks; cb != NULL;
301 	    prevcb = &cb->ascb_next, cb = *prevcb) {
302 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
303 		    (cb_arg != cb->ascb_arg)) {
304 			continue;
305 		}
306 		*prevcb = cb->ascb_next;
307 		kmem_free(cb, sizeof (struct as_callback));
308 		break;
309 	}
310 }
311 
312 /*
313  * Check the callback list for a matching event and intersection of
314  * address range. If there is a match invoke the callback.  Skip an entry if:
315  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
316  *    - not event of interest
317  *    - not address range of interest
318  *
319  * An event_len of zero indicates a request for an unconditional callback
320  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
321  * a_contents lock must be dropped before a callback, so only one callback
322  * can be done before returning. Return -1 (true) if a callback was
323  * executed and removed from the list, else return 0 (false).
324  *
325  * The logically separate parts, i.e. finding a matching callback and
326  * executing a given callback have been separated into two functions
327  * so that they can be called with different sets of locks held beyond
328  * the always-required a_contents. as_find_callback does not sleep so
329  * it is ok to call it if more locks than a_contents (i.e. the a_lock
330  * rwlock) are held. as_execute_callback on the other hand may sleep
331  * so all locks beyond a_contents must be dropped by the caller if one
332  * does not want to end comatose.
333  */
334 static int
335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
336 			size_t event_len)
337 {
338 	struct as_callback *cb;
339 
340 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
341 		as_execute_callback(as, cb, events);
342 		return (-1);
343 	}
344 	return (0);
345 }
346 
347 /*
348  * Search for the segment containing addr. If a segment containing addr
349  * exists, that segment is returned.  If no such segment exists, and
350  * the list spans addresses greater than addr, then the first segment
351  * whose base is greater than addr is returned; otherwise, NULL is
352  * returned unless tail is true, in which case the last element of the
353  * list is returned.
354  *
355  * a_seglast is used to cache the last found segment for repeated
356  * searches to the same addr (which happens frequently).
357  */
358 struct seg *
359 as_findseg(struct as *as, caddr_t addr, int tail)
360 {
361 	struct seg *seg = as->a_seglast;
362 	avl_index_t where;
363 
364 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
365 
366 	if (seg != NULL &&
367 	    seg->s_base <= addr &&
368 	    addr < seg->s_base + seg->s_size)
369 		return (seg);
370 
371 	seg = avl_find(&as->a_segtree, &addr, &where);
372 	if (seg != NULL)
373 		return (as->a_seglast = seg);
374 
375 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
376 	if (seg == NULL && tail)
377 		seg = avl_last(&as->a_segtree);
378 	return (as->a_seglast = seg);
379 }
380 
381 #ifdef VERIFY_SEGLIST
382 /*
383  * verify that the linked list is coherent
384  */
385 static void
386 as_verify(struct as *as)
387 {
388 	struct seg *seg, *seglast, *p, *n;
389 	uint_t nsegs = 0;
390 
391 	if (do_as_verify == 0)
392 		return;
393 
394 	seglast = as->a_seglast;
395 
396 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
397 		ASSERT(seg->s_as == as);
398 		p = AS_SEGPREV(as, seg);
399 		n = AS_SEGNEXT(as, seg);
400 		ASSERT(p == NULL || p->s_as == as);
401 		ASSERT(p == NULL || p->s_base < seg->s_base);
402 		ASSERT(n == NULL || n->s_base > seg->s_base);
403 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
404 		if (seg == seglast)
405 			seglast = NULL;
406 		nsegs++;
407 	}
408 	ASSERT(seglast == NULL);
409 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
410 }
411 #endif /* VERIFY_SEGLIST */
412 
413 /*
414  * Add a new segment to the address space. The avl_find()
415  * may be expensive so we attempt to use last segment accessed
416  * in as_gap() as an insertion point.
417  */
418 int
419 as_addseg(struct as  *as, struct seg *newseg)
420 {
421 	struct seg *seg;
422 	caddr_t addr;
423 	caddr_t eaddr;
424 	avl_index_t where;
425 
426 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
427 
428 	as->a_updatedir = 1;	/* inform /proc */
429 	gethrestime(&as->a_updatetime);
430 
431 	if (as->a_lastgaphl != NULL) {
432 		struct seg *hseg = NULL;
433 		struct seg *lseg = NULL;
434 
435 		if (as->a_lastgaphl->s_base > newseg->s_base) {
436 			hseg = as->a_lastgaphl;
437 			lseg = AVL_PREV(&as->a_segtree, hseg);
438 		} else {
439 			lseg = as->a_lastgaphl;
440 			hseg = AVL_NEXT(&as->a_segtree, lseg);
441 		}
442 
443 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
444 		    hseg->s_base > newseg->s_base) {
445 			avl_insert_here(&as->a_segtree, newseg, lseg,
446 			    AVL_AFTER);
447 			as->a_lastgaphl = NULL;
448 			as->a_seglast = newseg;
449 			return (0);
450 		}
451 		as->a_lastgaphl = NULL;
452 	}
453 
454 	addr = newseg->s_base;
455 	eaddr = addr + newseg->s_size;
456 again:
457 
458 	seg = avl_find(&as->a_segtree, &addr, &where);
459 
460 	if (seg == NULL)
461 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
462 
463 	if (seg == NULL)
464 		seg = avl_last(&as->a_segtree);
465 
466 	if (seg != NULL) {
467 		caddr_t base = seg->s_base;
468 
469 		/*
470 		 * If top of seg is below the requested address, then
471 		 * the insertion point is at the end of the linked list,
472 		 * and seg points to the tail of the list.  Otherwise,
473 		 * the insertion point is immediately before seg.
474 		 */
475 		if (base + seg->s_size > addr) {
476 			if (addr >= base || eaddr > base) {
477 #ifdef __sparc
478 				extern struct seg_ops segnf_ops;
479 
480 				/*
481 				 * no-fault segs must disappear if overlaid.
482 				 * XXX need new segment type so
483 				 * we don't have to check s_ops
484 				 */
485 				if (seg->s_ops == &segnf_ops) {
486 					seg_unmap(seg);
487 					goto again;
488 				}
489 #endif
490 				return (-1);	/* overlapping segment */
491 			}
492 		}
493 	}
494 	as->a_seglast = newseg;
495 	avl_insert(&as->a_segtree, newseg, where);
496 
497 #ifdef VERIFY_SEGLIST
498 	as_verify(as);
499 #endif
500 	return (0);
501 }
502 
503 struct seg *
504 as_removeseg(struct as *as, struct seg *seg)
505 {
506 	avl_tree_t *t;
507 
508 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
509 
510 	as->a_updatedir = 1;	/* inform /proc */
511 	gethrestime(&as->a_updatetime);
512 
513 	if (seg == NULL)
514 		return (NULL);
515 
516 	t = &as->a_segtree;
517 	if (as->a_seglast == seg)
518 		as->a_seglast = NULL;
519 	as->a_lastgaphl = NULL;
520 
521 	/*
522 	 * if this segment is at an address higher than
523 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
524 	 */
525 	if (as->a_lastgap &&
526 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
527 		as->a_lastgap = AVL_NEXT(t, seg);
528 
529 	/*
530 	 * remove the segment from the seg tree
531 	 */
532 	avl_remove(t, seg);
533 
534 #ifdef VERIFY_SEGLIST
535 	as_verify(as);
536 #endif
537 	return (seg);
538 }
539 
540 /*
541  * Find a segment containing addr.
542  */
543 struct seg *
544 as_segat(struct as *as, caddr_t addr)
545 {
546 	struct seg *seg = as->a_seglast;
547 
548 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
549 
550 	if (seg != NULL && seg->s_base <= addr &&
551 	    addr < seg->s_base + seg->s_size)
552 		return (seg);
553 
554 	seg = avl_find(&as->a_segtree, &addr, NULL);
555 	return (seg);
556 }
557 
558 /*
559  * Serialize all searches for holes in an address space to
560  * prevent two or more threads from allocating the same virtual
561  * address range.  The address space must not be "read/write"
562  * locked by the caller since we may block.
563  */
564 void
565 as_rangelock(struct as *as)
566 {
567 	mutex_enter(&as->a_contents);
568 	while (AS_ISCLAIMGAP(as))
569 		cv_wait(&as->a_cv, &as->a_contents);
570 	AS_SETCLAIMGAP(as);
571 	mutex_exit(&as->a_contents);
572 }
573 
574 /*
575  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
576  */
577 void
578 as_rangeunlock(struct as *as)
579 {
580 	mutex_enter(&as->a_contents);
581 	AS_CLRCLAIMGAP(as);
582 	cv_signal(&as->a_cv);
583 	mutex_exit(&as->a_contents);
584 }
585 
586 /*
587  * compar segments (or just an address) by segment address range
588  */
589 static int
590 as_segcompar(const void *x, const void *y)
591 {
592 	struct seg *a = (struct seg *)x;
593 	struct seg *b = (struct seg *)y;
594 
595 	if (a->s_base < b->s_base)
596 		return (-1);
597 	if (a->s_base >= b->s_base + b->s_size)
598 		return (1);
599 	return (0);
600 }
601 
602 
603 void
604 as_avlinit(struct as *as)
605 {
606 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
607 	    offsetof(struct seg, s_tree));
608 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
609 	    offsetof(struct watched_page, wp_link));
610 }
611 
612 /*ARGSUSED*/
613 static int
614 as_constructor(void *buf, void *cdrarg, int kmflags)
615 {
616 	struct as *as = buf;
617 
618 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
619 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
620 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
621 	as_avlinit(as);
622 	return (0);
623 }
624 
625 /*ARGSUSED1*/
626 static void
627 as_destructor(void *buf, void *cdrarg)
628 {
629 	struct as *as = buf;
630 
631 	avl_destroy(&as->a_segtree);
632 	mutex_destroy(&as->a_contents);
633 	cv_destroy(&as->a_cv);
634 	rw_destroy(&as->a_lock);
635 }
636 
637 void
638 as_init(void)
639 {
640 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
641 		as_constructor, as_destructor, NULL, NULL, NULL, 0);
642 }
643 
644 /*
645  * Allocate and initialize an address space data structure.
646  * We call hat_alloc to allow any machine dependent
647  * information in the hat structure to be initialized.
648  */
649 struct as *
650 as_alloc(void)
651 {
652 	struct as *as;
653 
654 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
655 
656 	as->a_flags		= 0;
657 	as->a_vbits		= 0;
658 	as->a_hrm		= NULL;
659 	as->a_seglast		= NULL;
660 	as->a_size		= 0;
661 	as->a_updatedir		= 0;
662 	gethrestime(&as->a_updatetime);
663 	as->a_objectdir		= NULL;
664 	as->a_sizedir		= 0;
665 	as->a_userlimit		= (caddr_t)USERLIMIT;
666 	as->a_lastgap		= NULL;
667 	as->a_lastgaphl		= NULL;
668 	as->a_callbacks		= NULL;
669 
670 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
671 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
672 	AS_LOCK_EXIT(as, &as->a_lock);
673 
674 	as->a_xhat = NULL;
675 
676 	return (as);
677 }
678 
679 /*
680  * Free an address space data structure.
681  * Need to free the hat first and then
682  * all the segments on this as and finally
683  * the space for the as struct itself.
684  */
685 void
686 as_free(struct as *as)
687 {
688 	struct hat *hat = as->a_hat;
689 	struct seg *seg, *next;
690 	int called = 0;
691 
692 top:
693 	/*
694 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
695 	 * per call, and not return (-1) until the callback has completed.
696 	 * When as_do_callbacks returns zero, all callbacks have completed.
697 	 */
698 	mutex_enter(&as->a_contents);
699 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0));
700 
701 	/* This will prevent new XHATs from attaching to as */
702 	if (!called)
703 		AS_SETBUSY(as);
704 	mutex_exit(&as->a_contents);
705 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
706 
707 	if (!called) {
708 		called = 1;
709 		hat_free_start(hat);
710 		if (as->a_xhat != NULL)
711 			xhat_free_start_all(as);
712 	}
713 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
714 		int err;
715 
716 		next = AS_SEGNEXT(as, seg);
717 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
718 		if (err == EAGAIN) {
719 			mutex_enter(&as->a_contents);
720 			if (as->a_callbacks) {
721 				AS_LOCK_EXIT(as, &as->a_lock);
722 			} else {
723 				/*
724 				 * Memory is currently locked. Wait for a
725 				 * cv_signal that it has been unlocked, then
726 				 * try the operation again.
727 				 */
728 				if (AS_ISUNMAPWAIT(as) == 0)
729 					cv_broadcast(&as->a_cv);
730 				AS_SETUNMAPWAIT(as);
731 				AS_LOCK_EXIT(as, &as->a_lock);
732 				while (AS_ISUNMAPWAIT(as))
733 					cv_wait(&as->a_cv, &as->a_contents);
734 			}
735 			mutex_exit(&as->a_contents);
736 			goto top;
737 		} else {
738 			/*
739 			 * We do not expect any other error return at this
740 			 * time. This is similar to an ASSERT in seg_unmap()
741 			 */
742 			ASSERT(err == 0);
743 		}
744 	}
745 	hat_free_end(hat);
746 	if (as->a_xhat != NULL)
747 		xhat_free_end_all(as);
748 	AS_LOCK_EXIT(as, &as->a_lock);
749 
750 	/* /proc stuff */
751 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
752 	if (as->a_objectdir) {
753 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
754 		as->a_objectdir = NULL;
755 		as->a_sizedir = 0;
756 	}
757 
758 	/*
759 	 * Free the struct as back to kmem.  Assert it has no segments.
760 	 */
761 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
762 	kmem_cache_free(as_cache, as);
763 }
764 
765 int
766 as_dup(struct as *as, struct as **outas)
767 {
768 	struct as *newas;
769 	struct seg *seg, *newseg;
770 	int error;
771 
772 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
773 	as_clearwatch(as);
774 	newas = as_alloc();
775 	newas->a_userlimit = as->a_userlimit;
776 	AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER);
777 
778 	/* This will prevent new XHATs from attaching */
779 	mutex_enter(&as->a_contents);
780 	AS_SETBUSY(as);
781 	mutex_exit(&as->a_contents);
782 	mutex_enter(&newas->a_contents);
783 	AS_SETBUSY(newas);
784 	mutex_exit(&newas->a_contents);
785 
786 
787 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
788 
789 		if (seg->s_flags & S_PURGE)
790 			continue;
791 
792 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
793 		if (newseg == NULL) {
794 			AS_LOCK_EXIT(newas, &newas->a_lock);
795 			as_setwatch(as);
796 			mutex_enter(&as->a_contents);
797 			AS_CLRBUSY(as);
798 			mutex_exit(&as->a_contents);
799 			AS_LOCK_EXIT(as, &as->a_lock);
800 			as_free(newas);
801 			return (-1);
802 		}
803 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
804 			/*
805 			 * We call seg_free() on the new seg
806 			 * because the segment is not set up
807 			 * completely; i.e. it has no ops.
808 			 */
809 			as_setwatch(as);
810 			mutex_enter(&as->a_contents);
811 			AS_CLRBUSY(as);
812 			mutex_exit(&as->a_contents);
813 			AS_LOCK_EXIT(as, &as->a_lock);
814 			seg_free(newseg);
815 			AS_LOCK_EXIT(newas, &newas->a_lock);
816 			as_free(newas);
817 			return (error);
818 		}
819 		newas->a_size += seg->s_size;
820 	}
821 
822 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
823 	if (as->a_xhat != NULL)
824 		error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL);
825 
826 	mutex_enter(&newas->a_contents);
827 	AS_CLRBUSY(newas);
828 	mutex_exit(&newas->a_contents);
829 	AS_LOCK_EXIT(newas, &newas->a_lock);
830 
831 	as_setwatch(as);
832 	mutex_enter(&as->a_contents);
833 	AS_CLRBUSY(as);
834 	mutex_exit(&as->a_contents);
835 	AS_LOCK_EXIT(as, &as->a_lock);
836 	if (error != 0) {
837 		as_free(newas);
838 		return (error);
839 	}
840 	*outas = newas;
841 	return (0);
842 }
843 
844 /*
845  * Handle a ``fault'' at addr for size bytes.
846  */
847 faultcode_t
848 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
849 	enum fault_type type, enum seg_rw rw)
850 {
851 	struct seg *seg;
852 	caddr_t raddr;			/* rounded down addr */
853 	size_t rsize;			/* rounded up size */
854 	size_t ssize;
855 	faultcode_t res = 0;
856 	caddr_t addrsav;
857 	struct seg *segsav;
858 	int as_lock_held;
859 	klwp_t *lwp = ttolwp(curthread);
860 	int is_xhat = 0;
861 	int holding_wpage = 0;
862 	extern struct seg_ops   segdev_ops;
863 
864 
865 
866 	if (as->a_hat != hat) {
867 		/* This must be an XHAT then */
868 		is_xhat = 1;
869 
870 		if ((type != F_INVAL) || (as == &kas))
871 			return (FC_NOSUPPORT);
872 	}
873 
874 retry:
875 	if (!is_xhat) {
876 		/*
877 		 * Indicate that the lwp is not to be stopped while waiting
878 		 * for a pagefault.  This is to avoid deadlock while debugging
879 		 * a process via /proc over NFS (in particular).
880 		 */
881 		if (lwp != NULL)
882 			lwp->lwp_nostop++;
883 
884 		/*
885 		 * same length must be used when we softlock and softunlock.
886 		 * We don't support softunlocking lengths less than
887 		 * the original length when there is largepage support.
888 		 * See seg_dev.c for more comments.
889 		 */
890 		switch (type) {
891 
892 		case F_SOFTLOCK:
893 			CPU_STATS_ADD_K(vm, softlock, 1);
894 			break;
895 
896 		case F_SOFTUNLOCK:
897 			break;
898 
899 		case F_PROT:
900 			CPU_STATS_ADD_K(vm, prot_fault, 1);
901 			break;
902 
903 		case F_INVAL:
904 			CPU_STATS_ENTER_K();
905 			CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
906 			if (as == &kas)
907 				CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
908 			CPU_STATS_EXIT_K();
909 			break;
910 		}
911 	}
912 
913 	/* Kernel probe */
914 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
915 		tnf_opaque,	address,	addr,
916 		tnf_fault_type,	fault_type,	type,
917 		tnf_seg_access,	access,		rw);
918 
919 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
920 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
921 		(size_t)raddr;
922 
923 	/*
924 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
925 	 * correctness, but then we could be stuck holding this lock for
926 	 * a LONG time if the fault needs to be resolved on a slow
927 	 * filesystem, and then no-one will be able to exec new commands,
928 	 * as exec'ing requires the write lock on the as.
929 	 */
930 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
931 	    raddr + size < segkmap->s_base + segkmap->s_size) {
932 		/*
933 		 * if (as==&kas), this can't be XHAT: we've already returned
934 		 * FC_NOSUPPORT.
935 		 */
936 		seg = segkmap;
937 		as_lock_held = 0;
938 	} else {
939 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
940 		if (is_xhat && avl_numnodes(&as->a_wpage) != 0) {
941 			/*
942 			 * Grab and hold the writers' lock on the as
943 			 * if the fault is to a watched page.
944 			 * This will keep CPUs from "peeking" at the
945 			 * address range while we're temporarily boosting
946 			 * the permissions for the XHAT device to
947 			 * resolve the fault in the segment layer.
948 			 *
949 			 * We could check whether faulted address
950 			 * is within a watched page and only then grab
951 			 * the writer lock, but this is simpler.
952 			 */
953 			AS_LOCK_EXIT(as, &as->a_lock);
954 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
955 		}
956 
957 		seg = as_segat(as, raddr);
958 		if (seg == NULL) {
959 			AS_LOCK_EXIT(as, &as->a_lock);
960 			if ((lwp != NULL) && (!is_xhat))
961 				lwp->lwp_nostop--;
962 			return (FC_NOMAP);
963 		}
964 
965 		as_lock_held = 1;
966 	}
967 
968 	addrsav = raddr;
969 	segsav = seg;
970 
971 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
972 		if (raddr >= seg->s_base + seg->s_size) {
973 			seg = AS_SEGNEXT(as, seg);
974 			if (seg == NULL || raddr != seg->s_base) {
975 				res = FC_NOMAP;
976 				break;
977 			}
978 		}
979 		if (raddr + rsize > seg->s_base + seg->s_size)
980 			ssize = seg->s_base + seg->s_size - raddr;
981 		else
982 			ssize = rsize;
983 
984 		if (!is_xhat || (seg->s_ops != &segdev_ops)) {
985 
986 			if (is_xhat && avl_numnodes(&as->a_wpage) != 0 &&
987 			    pr_is_watchpage_as(raddr, rw, as)) {
988 				/*
989 				 * Handle watch pages.  If we're faulting on a
990 				 * watched page from an X-hat, we have to
991 				 * restore the original permissions while we
992 				 * handle the fault.
993 				 */
994 				as_clearwatch(as);
995 				holding_wpage = 1;
996 			}
997 
998 			res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
999 
1000 			/* Restore watchpoints */
1001 			if (holding_wpage) {
1002 				as_setwatch(as);
1003 				holding_wpage = 0;
1004 			}
1005 
1006 			if (res != 0)
1007 				break;
1008 		} else {
1009 			/* XHAT does not support seg_dev */
1010 			res = FC_NOSUPPORT;
1011 			break;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * If we were SOFTLOCKing and encountered a failure,
1017 	 * we must SOFTUNLOCK the range we already did. (Maybe we
1018 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
1019 	 * right here...)
1020 	 */
1021 	if (res != 0 && type == F_SOFTLOCK) {
1022 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
1023 			if (addrsav >= seg->s_base + seg->s_size)
1024 				seg = AS_SEGNEXT(as, seg);
1025 			ASSERT(seg != NULL);
1026 			/*
1027 			 * Now call the fault routine again to perform the
1028 			 * unlock using S_OTHER instead of the rw variable
1029 			 * since we never got a chance to touch the pages.
1030 			 */
1031 			if (raddr > seg->s_base + seg->s_size)
1032 				ssize = seg->s_base + seg->s_size - addrsav;
1033 			else
1034 				ssize = raddr - addrsav;
1035 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
1036 			    F_SOFTUNLOCK, S_OTHER);
1037 		}
1038 	}
1039 	if (as_lock_held)
1040 		AS_LOCK_EXIT(as, &as->a_lock);
1041 	if ((lwp != NULL) && (!is_xhat))
1042 		lwp->lwp_nostop--;
1043 	/*
1044 	 * If the lower levels returned EDEADLK for a fault,
1045 	 * It means that we should retry the fault.  Let's wait
1046 	 * a bit also to let the deadlock causing condition clear.
1047 	 * This is part of a gross hack to work around a design flaw
1048 	 * in the ufs/sds logging code and should go away when the
1049 	 * logging code is re-designed to fix the problem. See bug
1050 	 * 4125102 for details of the problem.
1051 	 */
1052 	if (FC_ERRNO(res) == EDEADLK) {
1053 		delay(deadlk_wait);
1054 		res = 0;
1055 		goto retry;
1056 	}
1057 	return (res);
1058 }
1059 
1060 
1061 
1062 /*
1063  * Asynchronous ``fault'' at addr for size bytes.
1064  */
1065 faultcode_t
1066 as_faulta(struct as *as, caddr_t addr, size_t size)
1067 {
1068 	struct seg *seg;
1069 	caddr_t raddr;			/* rounded down addr */
1070 	size_t rsize;			/* rounded up size */
1071 	faultcode_t res = 0;
1072 	klwp_t *lwp = ttolwp(curthread);
1073 
1074 retry:
1075 	/*
1076 	 * Indicate that the lwp is not to be stopped while waiting
1077 	 * for a pagefault.  This is to avoid deadlock while debugging
1078 	 * a process via /proc over NFS (in particular).
1079 	 */
1080 	if (lwp != NULL)
1081 		lwp->lwp_nostop++;
1082 
1083 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1084 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1085 		(size_t)raddr;
1086 
1087 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1088 	seg = as_segat(as, raddr);
1089 	if (seg == NULL) {
1090 		AS_LOCK_EXIT(as, &as->a_lock);
1091 		if (lwp != NULL)
1092 			lwp->lwp_nostop--;
1093 		return (FC_NOMAP);
1094 	}
1095 
1096 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1097 		if (raddr >= seg->s_base + seg->s_size) {
1098 			seg = AS_SEGNEXT(as, seg);
1099 			if (seg == NULL || raddr != seg->s_base) {
1100 				res = FC_NOMAP;
1101 				break;
1102 			}
1103 		}
1104 		res = SEGOP_FAULTA(seg, raddr);
1105 		if (res != 0)
1106 			break;
1107 	}
1108 	AS_LOCK_EXIT(as, &as->a_lock);
1109 	if (lwp != NULL)
1110 		lwp->lwp_nostop--;
1111 	/*
1112 	 * If the lower levels returned EDEADLK for a fault,
1113 	 * It means that we should retry the fault.  Let's wait
1114 	 * a bit also to let the deadlock causing condition clear.
1115 	 * This is part of a gross hack to work around a design flaw
1116 	 * in the ufs/sds logging code and should go away when the
1117 	 * logging code is re-designed to fix the problem. See bug
1118 	 * 4125102 for details of the problem.
1119 	 */
1120 	if (FC_ERRNO(res) == EDEADLK) {
1121 		delay(deadlk_wait);
1122 		res = 0;
1123 		goto retry;
1124 	}
1125 	return (res);
1126 }
1127 
1128 /*
1129  * Set the virtual mapping for the interval from [addr : addr + size)
1130  * in address space `as' to have the specified protection.
1131  * It is ok for the range to cross over several segments,
1132  * as long as they are contiguous.
1133  */
1134 int
1135 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1136 {
1137 	struct seg *seg;
1138 	struct as_callback *cb;
1139 	size_t ssize;
1140 	caddr_t raddr;			/* rounded down addr */
1141 	size_t rsize;			/* rounded up size */
1142 	int error = 0, writer = 0;
1143 	caddr_t saveraddr;
1144 	size_t saversize;
1145 
1146 setprot_top:
1147 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1148 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1149 		(size_t)raddr;
1150 
1151 	if (raddr + rsize < raddr)		/* check for wraparound */
1152 		return (ENOMEM);
1153 
1154 	saveraddr = raddr;
1155 	saversize = rsize;
1156 
1157 	/*
1158 	 * Normally we only lock the as as a reader. But
1159 	 * if due to setprot the segment driver needs to split
1160 	 * a segment it will return IE_RETRY. Therefore we re-aquire
1161 	 * the as lock as a writer so the segment driver can change
1162 	 * the seg list. Also the segment driver will return IE_RETRY
1163 	 * after it has changed the segment list so we therefore keep
1164 	 * locking as a writer. Since these opeartions should be rare
1165 	 * want to only lock as a writer when necessary.
1166 	 */
1167 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1168 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1169 	} else {
1170 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1171 	}
1172 
1173 	as_clearwatchprot(as, raddr, rsize);
1174 	seg = as_segat(as, raddr);
1175 	if (seg == NULL) {
1176 		as_setwatch(as);
1177 		AS_LOCK_EXIT(as, &as->a_lock);
1178 		return (ENOMEM);
1179 	}
1180 
1181 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1182 		if (raddr >= seg->s_base + seg->s_size) {
1183 			seg = AS_SEGNEXT(as, seg);
1184 			if (seg == NULL || raddr != seg->s_base) {
1185 				error = ENOMEM;
1186 				break;
1187 			}
1188 		}
1189 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1190 			ssize = seg->s_base + seg->s_size - raddr;
1191 		else
1192 			ssize = rsize;
1193 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1194 
1195 		if (error == IE_NOMEM) {
1196 			error = EAGAIN;
1197 			break;
1198 		}
1199 
1200 		if (error == IE_RETRY) {
1201 			AS_LOCK_EXIT(as, &as->a_lock);
1202 			writer = 1;
1203 			goto setprot_top;
1204 		}
1205 
1206 		if (error == EAGAIN) {
1207 			/*
1208 			 * Make sure we have a_lock as writer.
1209 			 */
1210 			if (writer == 0) {
1211 				AS_LOCK_EXIT(as, &as->a_lock);
1212 				writer = 1;
1213 				goto setprot_top;
1214 			}
1215 
1216 			/*
1217 			 * Memory is currently locked.  It must be unlocked
1218 			 * before this operation can succeed through a retry.
1219 			 * The possible reasons for locked memory and
1220 			 * corresponding strategies for unlocking are:
1221 			 * (1) Normal I/O
1222 			 *	wait for a signal that the I/O operation
1223 			 *	has completed and the memory is unlocked.
1224 			 * (2) Asynchronous I/O
1225 			 *	The aio subsystem does not unlock pages when
1226 			 *	the I/O is completed. Those pages are unlocked
1227 			 *	when the application calls aiowait/aioerror.
1228 			 *	So, to prevent blocking forever, cv_broadcast()
1229 			 *	is done to wake up aio_cleanup_thread.
1230 			 *	Subsequently, segvn_reclaim will be called, and
1231 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1232 			 * (3) Long term page locking:
1233 			 *	Drivers intending to have pages locked for a
1234 			 *	period considerably longer than for normal I/O
1235 			 *	(essentially forever) may have registered for a
1236 			 *	callback so they may unlock these pages on
1237 			 *	request. This is needed to allow this operation
1238 			 *	to succeed. Each entry on the callback list is
1239 			 *	examined. If the event or address range pertains
1240 			 *	the callback is invoked (unless it already is in
1241 			 *	progress). The a_contents lock must be dropped
1242 			 *	before the callback, so only one callback can
1243 			 *	be done at a time. Go to the top and do more
1244 			 *	until zero is returned. If zero is returned,
1245 			 *	either there were no callbacks for this event
1246 			 *	or they were already in progress.
1247 			 */
1248 			mutex_enter(&as->a_contents);
1249 			if (as->a_callbacks &&
1250 				(cb = as_find_callback(as, AS_SETPROT_EVENT,
1251 						seg->s_base, seg->s_size))) {
1252 				AS_LOCK_EXIT(as, &as->a_lock);
1253 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1254 			} else {
1255 				if (AS_ISUNMAPWAIT(as) == 0)
1256 					cv_broadcast(&as->a_cv);
1257 				AS_SETUNMAPWAIT(as);
1258 				AS_LOCK_EXIT(as, &as->a_lock);
1259 				while (AS_ISUNMAPWAIT(as))
1260 					cv_wait(&as->a_cv, &as->a_contents);
1261 			}
1262 			mutex_exit(&as->a_contents);
1263 			goto setprot_top;
1264 		} else if (error != 0)
1265 			break;
1266 	}
1267 	if (error != 0) {
1268 		as_setwatch(as);
1269 	} else {
1270 		as_setwatchprot(as, saveraddr, saversize, prot);
1271 	}
1272 	AS_LOCK_EXIT(as, &as->a_lock);
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Check to make sure that the interval [addr, addr + size)
1278  * in address space `as' has at least the specified protection.
1279  * It is ok for the range to cross over several segments, as long
1280  * as they are contiguous.
1281  */
1282 int
1283 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1284 {
1285 	struct seg *seg;
1286 	size_t ssize;
1287 	caddr_t raddr;			/* rounded down addr */
1288 	size_t rsize;			/* rounded up size */
1289 	int error = 0;
1290 
1291 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1292 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1293 		(size_t)raddr;
1294 
1295 	if (raddr + rsize < raddr)		/* check for wraparound */
1296 		return (ENOMEM);
1297 
1298 	/*
1299 	 * This is ugly as sin...
1300 	 * Normally, we only acquire the address space readers lock.
1301 	 * However, if the address space has watchpoints present,
1302 	 * we must acquire the writer lock on the address space for
1303 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1304 	 */
1305 	if (avl_numnodes(&as->a_wpage) != 0)
1306 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1307 	else
1308 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1309 	as_clearwatchprot(as, raddr, rsize);
1310 	seg = as_segat(as, raddr);
1311 	if (seg == NULL) {
1312 		as_setwatch(as);
1313 		AS_LOCK_EXIT(as, &as->a_lock);
1314 		return (ENOMEM);
1315 	}
1316 
1317 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1318 		if (raddr >= seg->s_base + seg->s_size) {
1319 			seg = AS_SEGNEXT(as, seg);
1320 			if (seg == NULL || raddr != seg->s_base) {
1321 				error = ENOMEM;
1322 				break;
1323 			}
1324 		}
1325 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1326 			ssize = seg->s_base + seg->s_size - raddr;
1327 		else
1328 			ssize = rsize;
1329 
1330 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1331 		if (error != 0)
1332 			break;
1333 	}
1334 	as_setwatch(as);
1335 	AS_LOCK_EXIT(as, &as->a_lock);
1336 	return (error);
1337 }
1338 
1339 int
1340 as_unmap(struct as *as, caddr_t addr, size_t size)
1341 {
1342 	struct seg *seg, *seg_next;
1343 	struct as_callback *cb;
1344 	caddr_t raddr, eaddr;
1345 	size_t ssize;
1346 	int err;
1347 
1348 top:
1349 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1350 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1351 	    (uintptr_t)PAGEMASK);
1352 
1353 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1354 
1355 	as->a_updatedir = 1;	/* inform /proc */
1356 	gethrestime(&as->a_updatetime);
1357 
1358 	/*
1359 	 * Use as_findseg to find the first segment in the range, then
1360 	 * step through the segments in order, following s_next.
1361 	 */
1362 	as_clearwatchprot(as, raddr, eaddr - raddr);
1363 
1364 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1365 		if (eaddr <= seg->s_base)
1366 			break;		/* eaddr was in a gap; all done */
1367 
1368 		/* this is implied by the test above */
1369 		ASSERT(raddr < eaddr);
1370 
1371 		if (raddr < seg->s_base)
1372 			raddr = seg->s_base; 	/* raddr was in a gap */
1373 
1374 		if (eaddr > (seg->s_base + seg->s_size))
1375 			ssize = seg->s_base + seg->s_size - raddr;
1376 		else
1377 			ssize = eaddr - raddr;
1378 
1379 		/*
1380 		 * Save next segment pointer since seg can be
1381 		 * destroyed during the segment unmap operation.
1382 		 */
1383 		seg_next = AS_SEGNEXT(as, seg);
1384 
1385 		err = SEGOP_UNMAP(seg, raddr, ssize);
1386 		if (err == EAGAIN) {
1387 			/*
1388 			 * Memory is currently locked.  It must be unlocked
1389 			 * before this operation can succeed through a retry.
1390 			 * The possible reasons for locked memory and
1391 			 * corresponding strategies for unlocking are:
1392 			 * (1) Normal I/O
1393 			 *	wait for a signal that the I/O operation
1394 			 *	has completed and the memory is unlocked.
1395 			 * (2) Asynchronous I/O
1396 			 *	The aio subsystem does not unlock pages when
1397 			 *	the I/O is completed. Those pages are unlocked
1398 			 *	when the application calls aiowait/aioerror.
1399 			 *	So, to prevent blocking forever, cv_broadcast()
1400 			 *	is done to wake up aio_cleanup_thread.
1401 			 *	Subsequently, segvn_reclaim will be called, and
1402 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1403 			 * (3) Long term page locking:
1404 			 *	Drivers intending to have pages locked for a
1405 			 *	period considerably longer than for normal I/O
1406 			 *	(essentially forever) may have registered for a
1407 			 *	callback so they may unlock these pages on
1408 			 *	request. This is needed to allow this operation
1409 			 *	to succeed. Each entry on the callback list is
1410 			 *	examined. If the event or address range pertains
1411 			 *	the callback is invoked (unless it already is in
1412 			 *	progress). The a_contents lock must be dropped
1413 			 *	before the callback, so only one callback can
1414 			 *	be done at a time. Go to the top and do more
1415 			 *	until zero is returned. If zero is returned,
1416 			 *	either there were no callbacks for this event
1417 			 *	or they were already in progress.
1418 			 */
1419 			as_setwatch(as);
1420 			mutex_enter(&as->a_contents);
1421 			if (as->a_callbacks &&
1422 				(cb = as_find_callback(as, AS_UNMAP_EVENT,
1423 						seg->s_base, seg->s_size))) {
1424 				AS_LOCK_EXIT(as, &as->a_lock);
1425 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1426 			} else {
1427 				if (AS_ISUNMAPWAIT(as) == 0)
1428 					cv_broadcast(&as->a_cv);
1429 				AS_SETUNMAPWAIT(as);
1430 				AS_LOCK_EXIT(as, &as->a_lock);
1431 				while (AS_ISUNMAPWAIT(as))
1432 					cv_wait(&as->a_cv, &as->a_contents);
1433 			}
1434 			mutex_exit(&as->a_contents);
1435 			goto top;
1436 		} else if (err == IE_RETRY) {
1437 			as_setwatch(as);
1438 			AS_LOCK_EXIT(as, &as->a_lock);
1439 			goto top;
1440 		} else if (err) {
1441 			as_setwatch(as);
1442 			AS_LOCK_EXIT(as, &as->a_lock);
1443 			return (-1);
1444 		}
1445 
1446 		as->a_size -= ssize;
1447 		raddr += ssize;
1448 	}
1449 	AS_LOCK_EXIT(as, &as->a_lock);
1450 	return (0);
1451 }
1452 
1453 static int
1454 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1455     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1456 {
1457 	int text = vn_a->flags & MAP_TEXT;
1458 	uint_t szcvec = map_execseg_pgszcvec(text, addr, size);
1459 	uint_t szc;
1460 	uint_t nszc;
1461 	int error;
1462 	caddr_t a;
1463 	caddr_t eaddr;
1464 	size_t segsize;
1465 	struct seg *seg;
1466 	uint_t save_szcvec;
1467 	size_t pgsz;
1468 	struct vattr va;
1469 	u_offset_t eoff;
1470 	size_t save_size = 0;
1471 
1472 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1473 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1474 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1475 	ASSERT(vn_a->vp != NULL);
1476 	ASSERT(vn_a->amp == NULL);
1477 
1478 again:
1479 	if (szcvec <= 1) {
1480 		seg = seg_alloc(as, addr, size);
1481 		if (seg == NULL) {
1482 			return (ENOMEM);
1483 		}
1484 		vn_a->szc = 0;
1485 		error = (*crfp)(seg, vn_a);
1486 		if (error != 0) {
1487 			seg_free(seg);
1488 		}
1489 		return (error);
1490 	}
1491 
1492 	va.va_mask = AT_SIZE;
1493 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) {
1494 		szcvec = 0;
1495 		goto again;
1496 	}
1497 	eoff = vn_a->offset & PAGEMASK;
1498 	if (eoff >= va.va_size) {
1499 		szcvec = 0;
1500 		goto again;
1501 	}
1502 	eoff += size;
1503 	if (btopr(va.va_size) < btopr(eoff)) {
1504 		save_size = size;
1505 		size = va.va_size - (vn_a->offset & PAGEMASK);
1506 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1507 		szcvec = map_execseg_pgszcvec(text, addr, size);
1508 		if (szcvec <= 1) {
1509 			size = save_size;
1510 			goto again;
1511 		}
1512 	}
1513 
1514 	eaddr = addr + size;
1515 	save_szcvec = szcvec;
1516 	szcvec >>= 1;
1517 	szc = 0;
1518 	nszc = 0;
1519 	while (szcvec) {
1520 		if ((szcvec & 0x1) == 0) {
1521 			nszc++;
1522 			szcvec >>= 1;
1523 			continue;
1524 		}
1525 		nszc++;
1526 		pgsz = page_get_pagesize(nszc);
1527 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1528 		if (a != addr) {
1529 			ASSERT(a < eaddr);
1530 			segsize = a - addr;
1531 			seg = seg_alloc(as, addr, segsize);
1532 			if (seg == NULL) {
1533 				return (ENOMEM);
1534 			}
1535 			vn_a->szc = szc;
1536 			error = (*crfp)(seg, vn_a);
1537 			if (error != 0) {
1538 				seg_free(seg);
1539 				return (error);
1540 			}
1541 			*segcreated = 1;
1542 			vn_a->offset += segsize;
1543 			addr = a;
1544 		}
1545 		szc = nszc;
1546 		szcvec >>= 1;
1547 	}
1548 
1549 	ASSERT(addr < eaddr);
1550 	szcvec = save_szcvec | 1; /* add 8K pages */
1551 	while (szcvec) {
1552 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1553 		ASSERT(a >= addr);
1554 		if (a != addr) {
1555 			segsize = a - addr;
1556 			seg = seg_alloc(as, addr, segsize);
1557 			if (seg == NULL) {
1558 				return (ENOMEM);
1559 			}
1560 			vn_a->szc = szc;
1561 			error = (*crfp)(seg, vn_a);
1562 			if (error != 0) {
1563 				seg_free(seg);
1564 				return (error);
1565 			}
1566 			*segcreated = 1;
1567 			vn_a->offset += segsize;
1568 			addr = a;
1569 		}
1570 		szcvec &= ~(1 << szc);
1571 		if (szcvec) {
1572 			szc = highbit(szcvec) - 1;
1573 			pgsz = page_get_pagesize(szc);
1574 		}
1575 	}
1576 	ASSERT(addr == eaddr);
1577 
1578 	if (save_size) {
1579 		size = save_size - size;
1580 		goto again;
1581 	}
1582 
1583 	return (0);
1584 }
1585 
1586 int
1587 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1588 {
1589 	struct seg *seg = NULL;
1590 	caddr_t raddr;			/* rounded down addr */
1591 	size_t rsize;			/* rounded up size */
1592 	int error;
1593 	struct proc *p = curproc;
1594 
1595 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1596 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1597 		(size_t)raddr;
1598 
1599 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1600 
1601 	/*
1602 	 * check for wrap around
1603 	 */
1604 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1605 		AS_LOCK_EXIT(as, &as->a_lock);
1606 		return (ENOMEM);
1607 	}
1608 
1609 	as->a_updatedir = 1;	/* inform /proc */
1610 	gethrestime(&as->a_updatetime);
1611 
1612 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1613 		AS_LOCK_EXIT(as, &as->a_lock);
1614 
1615 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1616 		    RCA_UNSAFE_ALL);
1617 
1618 		return (ENOMEM);
1619 	}
1620 
1621 	if (AS_MAP_VNSEGS_USELPGS(crfp, argsp)) {
1622 		int unmap = 0;
1623 		error = as_map_vnsegs(as, raddr, rsize, crfp,
1624 		    (struct segvn_crargs *)argsp, &unmap);
1625 		if (error != 0) {
1626 			AS_LOCK_EXIT(as, &as->a_lock);
1627 			if (unmap) {
1628 				(void) as_unmap(as, addr, size);
1629 			}
1630 			return (error);
1631 		}
1632 	} else {
1633 		seg = seg_alloc(as, addr, size);
1634 		if (seg == NULL) {
1635 			AS_LOCK_EXIT(as, &as->a_lock);
1636 			return (ENOMEM);
1637 		}
1638 
1639 		error = (*crfp)(seg, argsp);
1640 		if (error != 0) {
1641 			seg_free(seg);
1642 			AS_LOCK_EXIT(as, &as->a_lock);
1643 			return (error);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Add size now so as_unmap will work if as_ctl fails.
1649 	 */
1650 	as->a_size += rsize;
1651 
1652 	as_setwatch(as);
1653 
1654 	/*
1655 	 * If the address space is locked,
1656 	 * establish memory locks for the new segment.
1657 	 */
1658 	mutex_enter(&as->a_contents);
1659 	if (AS_ISPGLCK(as)) {
1660 		mutex_exit(&as->a_contents);
1661 		AS_LOCK_EXIT(as, &as->a_lock);
1662 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1663 		if (error != 0)
1664 			(void) as_unmap(as, addr, size);
1665 	} else {
1666 		mutex_exit(&as->a_contents);
1667 		AS_LOCK_EXIT(as, &as->a_lock);
1668 	}
1669 	return (error);
1670 }
1671 
1672 
1673 /*
1674  * Delete all segments in the address space marked with S_PURGE.
1675  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1676  * These segments are deleted as a first step before calls to as_gap(), so
1677  * that they don't affect mmap() or shmat().
1678  */
1679 void
1680 as_purge(struct as *as)
1681 {
1682 	struct seg *seg;
1683 	struct seg *next_seg;
1684 
1685 	/*
1686 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1687 	 * no need to grab a_contents mutex for this check
1688 	 */
1689 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1690 		return;
1691 
1692 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1693 	next_seg = NULL;
1694 	seg = AS_SEGFIRST(as);
1695 	while (seg != NULL) {
1696 		next_seg = AS_SEGNEXT(as, seg);
1697 		if (seg->s_flags & S_PURGE)
1698 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1699 		seg = next_seg;
1700 	}
1701 	AS_LOCK_EXIT(as, &as->a_lock);
1702 
1703 	mutex_enter(&as->a_contents);
1704 	as->a_flags &= ~AS_NEEDSPURGE;
1705 	mutex_exit(&as->a_contents);
1706 }
1707 
1708 /*
1709  * Find a hole of at least size minlen within [base, base + len).
1710  *
1711  * If flags specifies AH_HI, the hole will have the highest possible address
1712  * in the range.  We use the as->a_lastgap field to figure out where to
1713  * start looking for a gap.
1714  *
1715  * Otherwise, the gap will have the lowest possible address.
1716  *
1717  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1718  *
1719  * If an adequate hole is found, base and len are set to reflect the part of
1720  * the hole that is within range, and 0 is returned, otherwise,
1721  * -1 is returned.
1722  *
1723  * NOTE: This routine is not correct when base+len overflows caddr_t.
1724  */
1725 int
1726 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
1727     caddr_t addr)
1728 {
1729 	caddr_t lobound = *basep;
1730 	caddr_t hibound = lobound + *lenp;
1731 	struct seg *lseg, *hseg;
1732 	caddr_t lo, hi;
1733 	int forward;
1734 	caddr_t save_base;
1735 	size_t save_len;
1736 
1737 	save_base = *basep;
1738 	save_len = *lenp;
1739 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1740 	if (AS_SEGFIRST(as) == NULL) {
1741 		if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) {
1742 			AS_LOCK_EXIT(as, &as->a_lock);
1743 			return (0);
1744 		} else {
1745 			AS_LOCK_EXIT(as, &as->a_lock);
1746 			*basep = save_base;
1747 			*lenp = save_len;
1748 			return (-1);
1749 		}
1750 	}
1751 
1752 	/*
1753 	 * Set up to iterate over all the inter-segment holes in the given
1754 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1755 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1756 	 * sseg to denote the highest-addressed segment.
1757 	 */
1758 	forward = (flags & AH_DIR) == AH_LO;
1759 	if (forward) {
1760 		hseg = as_findseg(as, lobound, 1);
1761 		lseg = AS_SEGPREV(as, hseg);
1762 	} else {
1763 
1764 		/*
1765 		 * If allocating at least as much as the last allocation,
1766 		 * use a_lastgap's base as a better estimate of hibound.
1767 		 */
1768 		if (as->a_lastgap &&
1769 		    minlen >= as->a_lastgap->s_size &&
1770 		    hibound >= as->a_lastgap->s_base)
1771 			hibound = as->a_lastgap->s_base;
1772 
1773 		hseg = as_findseg(as, hibound, 1);
1774 		if (hseg->s_base + hseg->s_size < hibound) {
1775 			lseg = hseg;
1776 			hseg = NULL;
1777 		} else {
1778 			lseg = AS_SEGPREV(as, hseg);
1779 		}
1780 	}
1781 
1782 	for (;;) {
1783 		/*
1784 		 * Set lo and hi to the hole's boundaries.  (We should really
1785 		 * use MAXADDR in place of hibound in the expression below,
1786 		 * but can't express it easily; using hibound in its place is
1787 		 * harmless.)
1788 		 */
1789 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1790 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1791 		/*
1792 		 * If the iteration has moved past the interval from lobound
1793 		 * to hibound it's pointless to continue.
1794 		 */
1795 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1796 			break;
1797 		else if (lo > hibound || hi < lobound)
1798 			goto cont;
1799 		/*
1800 		 * Candidate hole lies at least partially within the allowable
1801 		 * range.  Restrict it to fall completely within that range,
1802 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
1803 		 */
1804 		if (lo < lobound)
1805 			lo = lobound;
1806 		if (hi > hibound)
1807 			hi = hibound;
1808 		/*
1809 		 * Verify that the candidate hole is big enough and meets
1810 		 * hardware constraints.
1811 		 */
1812 		*basep = lo;
1813 		*lenp = hi - lo;
1814 		if (valid_va_range(basep, lenp, minlen,
1815 		    forward ? AH_LO : AH_HI) &&
1816 		    ((flags & AH_CONTAIN) == 0 ||
1817 		    (*basep <= addr && *basep + *lenp > addr))) {
1818 			if (!forward)
1819 				as->a_lastgap = hseg;
1820 			if (hseg != NULL)
1821 				as->a_lastgaphl = hseg;
1822 			else
1823 				as->a_lastgaphl = lseg;
1824 			AS_LOCK_EXIT(as, &as->a_lock);
1825 			return (0);
1826 		}
1827 	cont:
1828 		/*
1829 		 * Move to the next hole.
1830 		 */
1831 		if (forward) {
1832 			lseg = hseg;
1833 			if (lseg == NULL)
1834 				break;
1835 			hseg = AS_SEGNEXT(as, hseg);
1836 		} else {
1837 			hseg = lseg;
1838 			if (hseg == NULL)
1839 				break;
1840 			lseg = AS_SEGPREV(as, lseg);
1841 		}
1842 	}
1843 	*basep = save_base;
1844 	*lenp = save_len;
1845 	AS_LOCK_EXIT(as, &as->a_lock);
1846 	return (-1);
1847 }
1848 
1849 /*
1850  * Return the next range within [base, base + len) that is backed
1851  * with "real memory".  Skip holes and non-seg_vn segments.
1852  * We're lazy and only return one segment at a time.
1853  */
1854 int
1855 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
1856 {
1857 	extern struct seg_ops segspt_shmops;	/* needs a header file */
1858 	struct seg *seg;
1859 	caddr_t addr, eaddr;
1860 	caddr_t segend;
1861 
1862 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1863 
1864 	addr = *basep;
1865 	eaddr = addr + *lenp;
1866 
1867 	seg = as_findseg(as, addr, 0);
1868 	if (seg != NULL)
1869 		addr = MAX(seg->s_base, addr);
1870 
1871 	for (;;) {
1872 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
1873 			AS_LOCK_EXIT(as, &as->a_lock);
1874 			return (EINVAL);
1875 		}
1876 
1877 		if (seg->s_ops == &segvn_ops) {
1878 			segend = seg->s_base + seg->s_size;
1879 			break;
1880 		}
1881 
1882 		/*
1883 		 * We do ISM by looking into the private data
1884 		 * to determine the real size of the segment.
1885 		 */
1886 		if (seg->s_ops == &segspt_shmops) {
1887 			segend = seg->s_base + spt_realsize(seg);
1888 			if (addr < segend)
1889 				break;
1890 		}
1891 
1892 		seg = AS_SEGNEXT(as, seg);
1893 
1894 		if (seg != NULL)
1895 			addr = seg->s_base;
1896 	}
1897 
1898 	*basep = addr;
1899 
1900 	if (segend > eaddr)
1901 		*lenp = eaddr - addr;
1902 	else
1903 		*lenp = segend - addr;
1904 
1905 	AS_LOCK_EXIT(as, &as->a_lock);
1906 	return (0);
1907 }
1908 
1909 /*
1910  * Swap the pages associated with the address space as out to
1911  * secondary storage, returning the number of bytes actually
1912  * swapped.
1913  *
1914  * The value returned is intended to correlate well with the process's
1915  * memory requirements.  Its usefulness for this purpose depends on
1916  * how well the segment-level routines do at returning accurate
1917  * information.
1918  */
1919 size_t
1920 as_swapout(struct as *as)
1921 {
1922 	struct seg *seg;
1923 	size_t swpcnt = 0;
1924 
1925 	/*
1926 	 * Kernel-only processes have given up their address
1927 	 * spaces.  Of course, we shouldn't be attempting to
1928 	 * swap out such processes in the first place...
1929 	 */
1930 	if (as == NULL)
1931 		return (0);
1932 
1933 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1934 
1935 	/* Prevent XHATs from attaching */
1936 	mutex_enter(&as->a_contents);
1937 	AS_SETBUSY(as);
1938 	mutex_exit(&as->a_contents);
1939 
1940 
1941 	/*
1942 	 * Free all mapping resources associated with the address
1943 	 * space.  The segment-level swapout routines capitalize
1944 	 * on this unmapping by scavanging pages that have become
1945 	 * unmapped here.
1946 	 */
1947 	hat_swapout(as->a_hat);
1948 	if (as->a_xhat != NULL)
1949 		xhat_swapout_all(as);
1950 
1951 	mutex_enter(&as->a_contents);
1952 	AS_CLRBUSY(as);
1953 	mutex_exit(&as->a_contents);
1954 
1955 	/*
1956 	 * Call the swapout routines of all segments in the address
1957 	 * space to do the actual work, accumulating the amount of
1958 	 * space reclaimed.
1959 	 */
1960 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1961 		struct seg_ops *ov = seg->s_ops;
1962 
1963 		/*
1964 		 * We have to check to see if the seg has
1965 		 * an ops vector because the seg may have
1966 		 * been in the middle of being set up when
1967 		 * the process was picked for swapout.
1968 		 */
1969 		if ((ov != NULL) && (ov->swapout != NULL))
1970 			swpcnt += SEGOP_SWAPOUT(seg);
1971 	}
1972 	AS_LOCK_EXIT(as, &as->a_lock);
1973 	return (swpcnt);
1974 }
1975 
1976 /*
1977  * Determine whether data from the mappings in interval [addr, addr + size)
1978  * are in the primary memory (core) cache.
1979  */
1980 int
1981 as_incore(struct as *as, caddr_t addr,
1982     size_t size, char *vec, size_t *sizep)
1983 {
1984 	struct seg *seg;
1985 	size_t ssize;
1986 	caddr_t raddr;		/* rounded down addr */
1987 	size_t rsize;		/* rounded up size */
1988 	size_t isize;			/* iteration size */
1989 	int error = 0;		/* result, assume success */
1990 
1991 	*sizep = 0;
1992 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1993 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
1994 		(size_t)raddr;
1995 
1996 	if (raddr + rsize < raddr)		/* check for wraparound */
1997 		return (ENOMEM);
1998 
1999 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2000 	seg = as_segat(as, raddr);
2001 	if (seg == NULL) {
2002 		AS_LOCK_EXIT(as, &as->a_lock);
2003 		return (-1);
2004 	}
2005 
2006 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2007 		if (raddr >= seg->s_base + seg->s_size) {
2008 			seg = AS_SEGNEXT(as, seg);
2009 			if (seg == NULL || raddr != seg->s_base) {
2010 				error = -1;
2011 				break;
2012 			}
2013 		}
2014 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2015 			ssize = seg->s_base + seg->s_size - raddr;
2016 		else
2017 			ssize = rsize;
2018 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2019 		if (isize != ssize) {
2020 			error = -1;
2021 			break;
2022 		}
2023 		vec += btopr(ssize);
2024 	}
2025 	AS_LOCK_EXIT(as, &as->a_lock);
2026 	return (error);
2027 }
2028 
2029 static void
2030 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2031 	ulong_t *bitmap, size_t position, size_t npages)
2032 {
2033 	caddr_t	range_start;
2034 	size_t	pos1 = position;
2035 	size_t	pos2;
2036 	size_t	size;
2037 	size_t  end_pos = npages + position;
2038 
2039 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2040 		size = ptob((pos2 - pos1));
2041 		range_start = (caddr_t)((uintptr_t)addr +
2042 			ptob(pos1 - position));
2043 
2044 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2045 			(ulong_t *)NULL, (size_t)NULL);
2046 		pos1 = pos2;
2047 	}
2048 }
2049 
2050 static void
2051 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2052 	caddr_t raddr, size_t rsize)
2053 {
2054 	struct seg *seg = as_segat(as, raddr);
2055 	size_t ssize;
2056 
2057 	while (rsize != 0) {
2058 		if (raddr >= seg->s_base + seg->s_size)
2059 			seg = AS_SEGNEXT(as, seg);
2060 
2061 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2062 			ssize = seg->s_base + seg->s_size - raddr;
2063 		else
2064 			ssize = rsize;
2065 
2066 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2067 
2068 		rsize -= ssize;
2069 		raddr += ssize;
2070 	}
2071 }
2072 
2073 /*
2074  * Cache control operations over the interval [addr, addr + size) in
2075  * address space "as".
2076  */
2077 /*ARGSUSED*/
2078 int
2079 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2080     uintptr_t arg, ulong_t *lock_map, size_t pos)
2081 {
2082 	struct seg *seg;	/* working segment */
2083 	caddr_t raddr;		/* rounded down addr */
2084 	caddr_t initraddr;	/* saved initial rounded down addr */
2085 	size_t rsize;		/* rounded up size */
2086 	size_t initrsize;	/* saved initial rounded up size */
2087 	size_t ssize;		/* size of seg */
2088 	int error = 0;			/* result */
2089 	size_t mlock_size;	/* size of bitmap */
2090 	ulong_t *mlock_map;	/* pointer to bitmap used */
2091 				/* to represent the locked */
2092 				/* pages. */
2093 retry:
2094 	if (error == IE_RETRY)
2095 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2096 	else
2097 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2098 
2099 	/*
2100 	 * If these are address space lock/unlock operations, loop over
2101 	 * all segments in the address space, as appropriate.
2102 	 */
2103 	if (func == MC_LOCKAS) {
2104 		size_t npages, idx;
2105 		size_t rlen = 0;	/* rounded as length */
2106 
2107 		idx = pos;
2108 
2109 		if (arg & MCL_FUTURE) {
2110 			mutex_enter(&as->a_contents);
2111 			AS_SETPGLCK(as);
2112 			mutex_exit(&as->a_contents);
2113 		}
2114 		if ((arg & MCL_CURRENT) == 0) {
2115 			AS_LOCK_EXIT(as, &as->a_lock);
2116 			return (0);
2117 		}
2118 
2119 		seg = AS_SEGFIRST(as);
2120 		if (seg == NULL) {
2121 			AS_LOCK_EXIT(as, &as->a_lock);
2122 			return (0);
2123 		}
2124 
2125 		do {
2126 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2127 			    (uintptr_t)PAGEMASK);
2128 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2129 				PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2130 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2131 
2132 		mlock_size = BT_BITOUL(btopr(rlen));
2133 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2134 			sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2135 				AS_LOCK_EXIT(as, &as->a_lock);
2136 				return (EAGAIN);
2137 		}
2138 
2139 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2140 			error = SEGOP_LOCKOP(seg, seg->s_base,
2141 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2142 			if (error != 0)
2143 				break;
2144 			pos += seg_pages(seg);
2145 		}
2146 
2147 		if (error) {
2148 			for (seg = AS_SEGFIRST(as); seg != NULL;
2149 				seg = AS_SEGNEXT(as, seg)) {
2150 
2151 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2152 					(uintptr_t)PAGEMASK);
2153 				npages = seg_pages(seg);
2154 				as_segunlock(seg, raddr, attr, mlock_map,
2155 					idx, npages);
2156 				idx += npages;
2157 			}
2158 		}
2159 
2160 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2161 		AS_LOCK_EXIT(as, &as->a_lock);
2162 		goto lockerr;
2163 	} else if (func == MC_UNLOCKAS) {
2164 		mutex_enter(&as->a_contents);
2165 		AS_CLRPGLCK(as);
2166 		mutex_exit(&as->a_contents);
2167 
2168 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2169 			error = SEGOP_LOCKOP(seg, seg->s_base,
2170 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2171 			if (error != 0)
2172 				break;
2173 		}
2174 
2175 		AS_LOCK_EXIT(as, &as->a_lock);
2176 		goto lockerr;
2177 	}
2178 
2179 	/*
2180 	 * Normalize addresses and sizes.
2181 	 */
2182 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2183 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2184 		(size_t)raddr;
2185 
2186 	if (raddr + rsize < raddr) {		/* check for wraparound */
2187 		AS_LOCK_EXIT(as, &as->a_lock);
2188 		return (ENOMEM);
2189 	}
2190 
2191 	/*
2192 	 * Get initial segment.
2193 	 */
2194 	if ((seg = as_segat(as, raddr)) == NULL) {
2195 		AS_LOCK_EXIT(as, &as->a_lock);
2196 		return (ENOMEM);
2197 	}
2198 
2199 	if (func == MC_LOCK) {
2200 		mlock_size = BT_BITOUL(btopr(rsize));
2201 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2202 			sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2203 				AS_LOCK_EXIT(as, &as->a_lock);
2204 				return (EAGAIN);
2205 		}
2206 	}
2207 
2208 	/*
2209 	 * Loop over all segments.  If a hole in the address range is
2210 	 * discovered, then fail.  For each segment, perform the appropriate
2211 	 * control operation.
2212 	 */
2213 	while (rsize != 0) {
2214 
2215 		/*
2216 		 * Make sure there's no hole, calculate the portion
2217 		 * of the next segment to be operated over.
2218 		 */
2219 		if (raddr >= seg->s_base + seg->s_size) {
2220 			seg = AS_SEGNEXT(as, seg);
2221 			if (seg == NULL || raddr != seg->s_base) {
2222 				if (func == MC_LOCK) {
2223 					as_unlockerr(as, attr, mlock_map,
2224 						initraddr, initrsize - rsize);
2225 					kmem_free(mlock_map,
2226 						mlock_size * sizeof (ulong_t));
2227 				}
2228 				AS_LOCK_EXIT(as, &as->a_lock);
2229 				return (ENOMEM);
2230 			}
2231 		}
2232 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2233 			ssize = seg->s_base + seg->s_size - raddr;
2234 		else
2235 			ssize = rsize;
2236 
2237 		/*
2238 		 * Dispatch on specific function.
2239 		 */
2240 		switch (func) {
2241 
2242 		/*
2243 		 * Synchronize cached data from mappings with backing
2244 		 * objects.
2245 		 */
2246 		case MC_SYNC:
2247 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2248 			    attr, (uint_t)arg)) {
2249 				AS_LOCK_EXIT(as, &as->a_lock);
2250 				return (error);
2251 			}
2252 			break;
2253 
2254 		/*
2255 		 * Lock pages in memory.
2256 		 */
2257 		case MC_LOCK:
2258 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2259 				attr, func, mlock_map, pos)) {
2260 				as_unlockerr(as, attr, mlock_map, initraddr,
2261 					initrsize - rsize + ssize);
2262 				kmem_free(mlock_map, mlock_size *
2263 					sizeof (ulong_t));
2264 				AS_LOCK_EXIT(as, &as->a_lock);
2265 				goto lockerr;
2266 			}
2267 			break;
2268 
2269 		/*
2270 		 * Unlock mapped pages.
2271 		 */
2272 		case MC_UNLOCK:
2273 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2274 				(ulong_t *)NULL, (size_t)NULL);
2275 			break;
2276 
2277 		/*
2278 		 * Store VM advise for mapped pages in segment layer.
2279 		 */
2280 		case MC_ADVISE:
2281 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2282 
2283 			/*
2284 			 * Check for regular errors and special retry error
2285 			 */
2286 			if (error) {
2287 				if (error == IE_RETRY) {
2288 					/*
2289 					 * Need to acquire writers lock, so
2290 					 * have to drop readers lock and start
2291 					 * all over again
2292 					 */
2293 					AS_LOCK_EXIT(as, &as->a_lock);
2294 					goto retry;
2295 				} else if (error == IE_REATTACH) {
2296 					/*
2297 					 * Find segment for current address
2298 					 * because current segment just got
2299 					 * split or concatenated
2300 					 */
2301 					seg = as_segat(as, raddr);
2302 					if (seg == NULL) {
2303 						AS_LOCK_EXIT(as, &as->a_lock);
2304 						return (ENOMEM);
2305 					}
2306 				} else {
2307 					/*
2308 					 * Regular error
2309 					 */
2310 					AS_LOCK_EXIT(as, &as->a_lock);
2311 					return (error);
2312 				}
2313 			}
2314 			break;
2315 
2316 		/*
2317 		 * Can't happen.
2318 		 */
2319 		default:
2320 			panic("as_ctl: bad operation %d", func);
2321 			/*NOTREACHED*/
2322 		}
2323 
2324 		rsize -= ssize;
2325 		raddr += ssize;
2326 	}
2327 
2328 	if (func == MC_LOCK)
2329 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2330 	AS_LOCK_EXIT(as, &as->a_lock);
2331 	return (0);
2332 lockerr:
2333 
2334 	/*
2335 	 * If the lower levels returned EDEADLK for a segment lockop,
2336 	 * it means that we should retry the operation.  Let's wait
2337 	 * a bit also to let the deadlock causing condition clear.
2338 	 * This is part of a gross hack to work around a design flaw
2339 	 * in the ufs/sds logging code and should go away when the
2340 	 * logging code is re-designed to fix the problem. See bug
2341 	 * 4125102 for details of the problem.
2342 	 */
2343 	if (error == EDEADLK) {
2344 		delay(deadlk_wait);
2345 		error = 0;
2346 		goto retry;
2347 	}
2348 	return (error);
2349 }
2350 
2351 /*
2352  * Special code for exec to move the stack segment from its interim
2353  * place in the old address to the right place in the new address space.
2354  */
2355 /*ARGSUSED*/
2356 int
2357 as_exec(struct as *oas, caddr_t ostka, size_t stksz,
2358     struct as *nas, caddr_t nstka, uint_t hatflag)
2359 {
2360 	struct seg *stkseg;
2361 
2362 	AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER);
2363 	stkseg = as_segat(oas, ostka);
2364 	stkseg = as_removeseg(oas, stkseg);
2365 	ASSERT(stkseg != NULL);
2366 	ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz);
2367 	stkseg->s_as = nas;
2368 	stkseg->s_base = nstka;
2369 
2370 	/*
2371 	 * It's ok to lock the address space we are about to exec to.
2372 	 */
2373 	AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER);
2374 	ASSERT(avl_numnodes(&nas->a_wpage) == 0);
2375 	nas->a_size += stkseg->s_size;
2376 	oas->a_size -= stkseg->s_size;
2377 	(void) as_addseg(nas, stkseg);
2378 	AS_LOCK_EXIT(nas, &nas->a_lock);
2379 	AS_LOCK_EXIT(oas, &oas->a_lock);
2380 	return (0);
2381 }
2382 
2383 static int
2384 f_decode(faultcode_t fault_err)
2385 {
2386 	int error = 0;
2387 
2388 	switch (FC_CODE(fault_err)) {
2389 	case FC_OBJERR:
2390 		error = FC_ERRNO(fault_err);
2391 		break;
2392 	case FC_PROT:
2393 		error = EACCES;
2394 		break;
2395 	default:
2396 		error = EFAULT;
2397 		break;
2398 	}
2399 	return (error);
2400 }
2401 
2402 /*
2403  * lock pages in a given address space. Return shadow list. If
2404  * the list is NULL, the MMU mapping is also locked.
2405  */
2406 int
2407 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2408     size_t size, enum seg_rw rw)
2409 {
2410 	size_t rsize;
2411 	caddr_t base;
2412 	caddr_t raddr;
2413 	faultcode_t fault_err;
2414 	struct seg *seg;
2415 	int res;
2416 	int prefaulted = 0;
2417 
2418 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2419 	    "as_pagelock_start: addr %p size %ld", addr, size);
2420 
2421 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2422 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2423 		(size_t)raddr;
2424 top:
2425 	/*
2426 	 * if the request crosses two segments let
2427 	 * as_fault handle it.
2428 	 */
2429 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2430 	seg = as_findseg(as, addr, 0);
2431 	if ((seg == NULL) || ((base = seg->s_base) > addr) ||
2432 	    (addr + size) > base + seg->s_size) {
2433 		AS_LOCK_EXIT(as, &as->a_lock);
2434 		goto slow;
2435 	}
2436 
2437 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2438 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2439 
2440 	/*
2441 	 * try to lock pages and pass back shadow list
2442 	 */
2443 	res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2444 
2445 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2446 	AS_LOCK_EXIT(as, &as->a_lock);
2447 	if (res == 0) {
2448 		return (0);
2449 	} else if (res == ENOTSUP || prefaulted) {
2450 		/*
2451 		 * (1) segment driver doesn't support PAGELOCK fastpath, or
2452 		 * (2) we've already tried fast path unsuccessfully after
2453 		 *    faulting in the addr range below; system might be
2454 		 *    thrashing or there may not be enough availrmem.
2455 		 */
2456 		goto slow;
2457 	}
2458 
2459 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START,
2460 	    "as_fault_start: addr %p size %ld", addr, size);
2461 
2462 	/*
2463 	 * we might get here because of some COW fault or non
2464 	 * existing page. Let as_fault deal with it. Just load
2465 	 * the page, don't lock the MMU mapping.
2466 	 */
2467 	fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw);
2468 	if (fault_err != 0) {
2469 		return (f_decode(fault_err));
2470 	}
2471 
2472 	prefaulted = 1;
2473 
2474 	/*
2475 	 * try fast path again; since we've dropped a_lock,
2476 	 * we need to try the dance from the start to see if
2477 	 * the addr range is still valid.
2478 	 */
2479 	goto top;
2480 slow:
2481 	/*
2482 	 * load the page and lock the MMU mapping.
2483 	 */
2484 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2485 	if (fault_err != 0) {
2486 		return (f_decode(fault_err));
2487 	}
2488 	*ppp = NULL;
2489 
2490 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2491 	return (0);
2492 }
2493 
2494 /*
2495  * unlock pages in a given address range
2496  */
2497 void
2498 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2499     enum seg_rw rw)
2500 {
2501 	struct seg *seg;
2502 	size_t rsize;
2503 	caddr_t raddr;
2504 
2505 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2506 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2507 
2508 	/*
2509 	 * if the shadow list is NULL, as_pagelock was
2510 	 * falling back to as_fault
2511 	 */
2512 	if (pp == NULL) {
2513 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2514 		return;
2515 	}
2516 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2517 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2518 		(size_t)raddr;
2519 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2520 	seg = as_findseg(as, addr, 0);
2521 	ASSERT(seg);
2522 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2523 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2524 	SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2525 	AS_LOCK_EXIT(as, &as->a_lock);
2526 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2527 }
2528 
2529 /*
2530  * reclaim cached pages in a given address range
2531  */
2532 void
2533 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr,
2534     size_t size, enum seg_rw rw)
2535 {
2536 	struct seg *seg;
2537 	size_t rsize;
2538 	caddr_t raddr;
2539 
2540 	ASSERT(AS_READ_HELD(as, &as->a_lock));
2541 	ASSERT(pp != NULL);
2542 
2543 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2544 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2545 		(size_t)raddr;
2546 	seg = as_findseg(as, addr, 0);
2547 	ASSERT(seg);
2548 	SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw);
2549 }
2550 
2551 #define	MAXPAGEFLIP	4
2552 #define	MAXPAGEFLIPSIZ	MAXPAGEFLIP*PAGESIZE
2553 
2554 int
2555 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2556     boolean_t wait)
2557 {
2558 	struct seg *seg;
2559 	size_t ssize;
2560 	caddr_t raddr;			/* rounded down addr */
2561 	size_t rsize;			/* rounded up size */
2562 	int error = 0;
2563 	size_t pgsz = page_get_pagesize(szc);
2564 
2565 setpgsz_top:
2566 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2567 		return (EINVAL);
2568 	}
2569 
2570 	raddr = addr;
2571 	rsize = size;
2572 
2573 	if (raddr + rsize < raddr)		/* check for wraparound */
2574 		return (ENOMEM);
2575 
2576 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2577 	as_clearwatchprot(as, raddr, rsize);
2578 	seg = as_segat(as, raddr);
2579 	if (seg == NULL) {
2580 		as_setwatch(as);
2581 		AS_LOCK_EXIT(as, &as->a_lock);
2582 		return (ENOMEM);
2583 	}
2584 
2585 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2586 		if (raddr >= seg->s_base + seg->s_size) {
2587 			seg = AS_SEGNEXT(as, seg);
2588 			if (seg == NULL || raddr != seg->s_base) {
2589 				error = ENOMEM;
2590 				break;
2591 			}
2592 		}
2593 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2594 			ssize = seg->s_base + seg->s_size - raddr;
2595 		} else {
2596 			ssize = rsize;
2597 		}
2598 
2599 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2600 
2601 		if (error == IE_NOMEM) {
2602 			error = EAGAIN;
2603 			break;
2604 		}
2605 
2606 		if (error == IE_RETRY) {
2607 			AS_LOCK_EXIT(as, &as->a_lock);
2608 			goto setpgsz_top;
2609 		}
2610 
2611 		if (error == ENOTSUP) {
2612 			error = EINVAL;
2613 			break;
2614 		}
2615 
2616 		if (wait && (error == EAGAIN)) {
2617 			/*
2618 			 * Memory is currently locked.  It must be unlocked
2619 			 * before this operation can succeed through a retry.
2620 			 * The possible reasons for locked memory and
2621 			 * corresponding strategies for unlocking are:
2622 			 * (1) Normal I/O
2623 			 *	wait for a signal that the I/O operation
2624 			 *	has completed and the memory is unlocked.
2625 			 * (2) Asynchronous I/O
2626 			 *	The aio subsystem does not unlock pages when
2627 			 *	the I/O is completed. Those pages are unlocked
2628 			 *	when the application calls aiowait/aioerror.
2629 			 *	So, to prevent blocking forever, cv_broadcast()
2630 			 *	is done to wake up aio_cleanup_thread.
2631 			 *	Subsequently, segvn_reclaim will be called, and
2632 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
2633 			 * (3) Long term page locking:
2634 			 *	This is not relevant for as_setpagesize()
2635 			 *	because we cannot change the page size for
2636 			 *	driver memory. The attempt to do so will
2637 			 *	fail with a different error than EAGAIN so
2638 			 *	there's no need to trigger as callbacks like
2639 			 *	as_unmap, as_setprot or as_free would do.
2640 			 */
2641 			mutex_enter(&as->a_contents);
2642 			if (AS_ISUNMAPWAIT(as) == 0) {
2643 				cv_broadcast(&as->a_cv);
2644 			}
2645 			AS_SETUNMAPWAIT(as);
2646 			AS_LOCK_EXIT(as, &as->a_lock);
2647 			while (AS_ISUNMAPWAIT(as)) {
2648 				cv_wait(&as->a_cv, &as->a_contents);
2649 			}
2650 			mutex_exit(&as->a_contents);
2651 			goto setpgsz_top;
2652 		} else if (error != 0) {
2653 			break;
2654 		}
2655 	}
2656 	as_setwatch(as);
2657 	AS_LOCK_EXIT(as, &as->a_lock);
2658 	return (error);
2659 }
2660 
2661 /*
2662  * Setup all of the uninitialized watched pages that we can.
2663  */
2664 void
2665 as_setwatch(struct as *as)
2666 {
2667 	struct watched_page *pwp;
2668 	struct seg *seg;
2669 	caddr_t vaddr;
2670 	uint_t prot;
2671 	int  err, retrycnt;
2672 
2673 	if (avl_numnodes(&as->a_wpage) == 0)
2674 		return;
2675 
2676 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2677 
2678 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
2679 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
2680 		retrycnt = 0;
2681 	retry:
2682 		vaddr = pwp->wp_vaddr;
2683 		if (pwp->wp_oprot != 0 ||	/* already set up */
2684 		    (seg = as_segat(as, vaddr)) == NULL ||
2685 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
2686 			continue;
2687 
2688 		pwp->wp_oprot = prot;
2689 		if (pwp->wp_read)
2690 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
2691 		if (pwp->wp_write)
2692 			prot &= ~PROT_WRITE;
2693 		if (pwp->wp_exec)
2694 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
2695 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
2696 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
2697 			if (err == IE_RETRY) {
2698 				pwp->wp_oprot = 0;
2699 				ASSERT(retrycnt == 0);
2700 				retrycnt++;
2701 				goto retry;
2702 			}
2703 		}
2704 		pwp->wp_prot = prot;
2705 	}
2706 }
2707 
2708 /*
2709  * Clear all of the watched pages in the address space.
2710  */
2711 void
2712 as_clearwatch(struct as *as)
2713 {
2714 	struct watched_page *pwp;
2715 	struct seg *seg;
2716 	caddr_t vaddr;
2717 	uint_t prot;
2718 	int err, retrycnt;
2719 
2720 	if (avl_numnodes(&as->a_wpage) == 0)
2721 		return;
2722 
2723 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2724 
2725 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
2726 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
2727 		retrycnt = 0;
2728 	retry:
2729 		vaddr = pwp->wp_vaddr;
2730 		if (pwp->wp_oprot == 0 ||	/* not set up */
2731 		    (seg = as_segat(as, vaddr)) == NULL)
2732 			continue;
2733 
2734 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
2735 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
2736 			if (err == IE_RETRY) {
2737 				ASSERT(retrycnt == 0);
2738 				retrycnt++;
2739 				goto retry;
2740 			}
2741 		}
2742 		pwp->wp_oprot = 0;
2743 		pwp->wp_prot = 0;
2744 	}
2745 }
2746 
2747 /*
2748  * Force a new setup for all the watched pages in the range.
2749  */
2750 static void
2751 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
2752 {
2753 	struct watched_page *pwp;
2754 	struct watched_page tpw;
2755 	caddr_t eaddr = addr + size;
2756 	caddr_t vaddr;
2757 	struct seg *seg;
2758 	int err, retrycnt;
2759 	uint_t	wprot;
2760 	avl_index_t where;
2761 
2762 	if (avl_numnodes(&as->a_wpage) == 0)
2763 		return;
2764 
2765 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2766 
2767 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2768 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
2769 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
2770 
2771 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
2772 		retrycnt = 0;
2773 		vaddr = pwp->wp_vaddr;
2774 
2775 		wprot = prot;
2776 		if (pwp->wp_read)
2777 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
2778 		if (pwp->wp_write)
2779 			wprot &= ~PROT_WRITE;
2780 		if (pwp->wp_exec)
2781 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
2782 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
2783 		retry:
2784 			seg = as_segat(as, vaddr);
2785 			if (seg == NULL) {
2786 				panic("as_setwatchprot: no seg");
2787 				/*NOTREACHED*/
2788 			}
2789 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
2790 			if (err == IE_RETRY) {
2791 				ASSERT(retrycnt == 0);
2792 				retrycnt++;
2793 				goto retry;
2794 			}
2795 		}
2796 		pwp->wp_oprot = prot;
2797 		pwp->wp_prot = wprot;
2798 
2799 		pwp = AVL_NEXT(&as->a_wpage, pwp);
2800 	}
2801 }
2802 
2803 /*
2804  * Clear all of the watched pages in the range.
2805  */
2806 static void
2807 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
2808 {
2809 	caddr_t eaddr = addr + size;
2810 	struct watched_page *pwp;
2811 	struct watched_page tpw;
2812 	uint_t prot;
2813 	struct seg *seg;
2814 	int err, retrycnt;
2815 	avl_index_t where;
2816 
2817 	if (avl_numnodes(&as->a_wpage) == 0)
2818 		return;
2819 
2820 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2821 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
2822 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
2823 
2824 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
2825 
2826 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
2827 		ASSERT(addr >= pwp->wp_vaddr);
2828 
2829 		if ((prot = pwp->wp_oprot) != 0) {
2830 			retrycnt = 0;
2831 
2832 			if (prot != pwp->wp_prot) {
2833 			retry:
2834 				seg = as_segat(as, pwp->wp_vaddr);
2835 				if (seg == NULL)
2836 					continue;
2837 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
2838 				    PAGESIZE, prot);
2839 				if (err == IE_RETRY) {
2840 					ASSERT(retrycnt == 0);
2841 					retrycnt++;
2842 					goto retry;
2843 
2844 				}
2845 			}
2846 			pwp->wp_oprot = 0;
2847 			pwp->wp_prot = 0;
2848 		}
2849 
2850 		pwp = AVL_NEXT(&as->a_wpage, pwp);
2851 	}
2852 }
2853 
2854 void
2855 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
2856 {
2857 	struct proc *p;
2858 
2859 	mutex_enter(&pidlock);
2860 	for (p = practive; p; p = p->p_next) {
2861 		if (p->p_as == as) {
2862 			mutex_enter(&p->p_lock);
2863 			if (p->p_as == as)
2864 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
2865 			mutex_exit(&p->p_lock);
2866 		}
2867 	}
2868 	mutex_exit(&pidlock);
2869 }
2870 
2871 /*
2872  * return memory object ID
2873  */
2874 int
2875 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
2876 {
2877 	struct seg	*seg;
2878 	int		sts;
2879 
2880 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2881 	seg = as_segat(as, addr);
2882 	if (seg == NULL) {
2883 		AS_LOCK_EXIT(as, &as->a_lock);
2884 		return (EFAULT);
2885 	}
2886 	/*
2887 	 * catch old drivers which may not support getmemid
2888 	 */
2889 	if (seg->s_ops->getmemid == NULL) {
2890 		AS_LOCK_EXIT(as, &as->a_lock);
2891 		return (ENODEV);
2892 	}
2893 
2894 	sts = SEGOP_GETMEMID(seg, addr, memidp);
2895 
2896 	AS_LOCK_EXIT(as, &as->a_lock);
2897 	return (sts);
2898 }
2899