xref: /titanic_44/usr/src/uts/common/vm/vm_anon.c (revision ee0eb9f2d12b8a03b5a193cd667735c1962e0c7b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - anonymous pages.
43  *
44  * This layer sits immediately above the vm_swap layer.  It manages
45  * physical pages that have no permanent identity in the file system
46  * name space, using the services of the vm_swap layer to allocate
47  * backing storage for these pages.  Since these pages have no external
48  * identity, they are discarded when the last reference is removed.
49  *
50  * An important function of this layer is to manage low-level sharing
51  * of pages that are logically distinct but that happen to be
52  * physically identical (e.g., the corresponding pages of the processes
53  * resulting from a fork before one process or the other changes their
54  * contents).  This pseudo-sharing is present only as an optimization
55  * and is not to be confused with true sharing in which multiple
56  * address spaces deliberately contain references to the same object;
57  * such sharing is managed at a higher level.
58  *
59  * The key data structure here is the anon struct, which contains a
60  * reference count for its associated physical page and a hint about
61  * the identity of that page.  Anon structs typically live in arrays,
62  * with an instance's position in its array determining where the
63  * corresponding backing storage is allocated; however, the swap_xlate()
64  * routine abstracts away this representation information so that the
65  * rest of the anon layer need not know it.  (See the swap layer for
66  * more details on anon struct layout.)
67  *
68  * In the future versions of the system, the association between an
69  * anon struct and its position on backing store will change so that
70  * we don't require backing store all anonymous pages in the system.
71  * This is important for consideration for large memory systems.
72  * We can also use this technique to delay binding physical locations
73  * to anonymous pages until pageout/swapout time where we can make
74  * smarter allocation decisions to improve anonymous klustering.
75  *
76  * Many of the routines defined here take a (struct anon **) argument,
77  * which allows the code at this level to manage anon pages directly,
78  * so that callers can regard anon structs as opaque objects and not be
79  * concerned with assigning or inspecting their contents.
80  *
81  * Clients of this layer refer to anon pages indirectly.  That is, they
82  * maintain arrays of pointers to anon structs rather than maintaining
83  * anon structs themselves.  The (struct anon **) arguments mentioned
84  * above are pointers to entries in these arrays.  It is these arrays
85  * that capture the mapping between offsets within a given segment and
86  * the corresponding anonymous backing storage address.
87  */
88 
89 #ifdef DEBUG
90 #define	ANON_DEBUG
91 #endif
92 
93 #include <sys/types.h>
94 #include <sys/t_lock.h>
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mman.h>
98 #include <sys/cred.h>
99 #include <sys/thread.h>
100 #include <sys/vnode.h>
101 #include <sys/cpuvar.h>
102 #include <sys/swap.h>
103 #include <sys/cmn_err.h>
104 #include <sys/vtrace.h>
105 #include <sys/kmem.h>
106 #include <sys/sysmacros.h>
107 #include <sys/bitmap.h>
108 #include <sys/vmsystm.h>
109 #include <sys/tuneable.h>
110 #include <sys/debug.h>
111 #include <sys/fs/swapnode.h>
112 #include <sys/tnf_probe.h>
113 #include <sys/lgrp.h>
114 #include <sys/policy.h>
115 #include <sys/condvar_impl.h>
116 #include <sys/mutex_impl.h>
117 #include <sys/rctl.h>
118 
119 #include <vm/as.h>
120 #include <vm/hat.h>
121 #include <vm/anon.h>
122 #include <vm/page.h>
123 #include <vm/vpage.h>
124 #include <vm/seg.h>
125 #include <vm/rm.h>
126 
127 #include <fs/fs_subr.h>
128 
129 struct vnode *anon_vp;
130 
131 int anon_debug;
132 
133 kmutex_t	anoninfo_lock;
134 struct		k_anoninfo k_anoninfo;
135 ani_free_t	ani_free_pool[ANI_MAX_POOL];
136 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
137 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
138 
139 /*
140  * Global hash table for (vp, off) -> anon slot
141  */
142 extern	int swap_maxcontig;
143 size_t	anon_hash_size;
144 struct anon **anon_hash;
145 
146 static struct kmem_cache *anon_cache;
147 static struct kmem_cache *anonmap_cache;
148 
149 #ifdef VM_STATS
150 static struct anonvmstats_str {
151 	ulong_t getpages[30];
152 	ulong_t privatepages[10];
153 	ulong_t demotepages[9];
154 	ulong_t decrefpages[9];
155 	ulong_t	dupfillholes[4];
156 	ulong_t freepages[1];
157 } anonvmstats;
158 #endif /* VM_STATS */
159 
160 /*ARGSUSED*/
161 static int
162 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
163 {
164 	struct anon_map *amp = buf;
165 
166 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
167 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
168 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
169 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
170 	return (0);
171 }
172 
173 /*ARGSUSED1*/
174 static void
175 anonmap_cache_destructor(void *buf, void *cdrarg)
176 {
177 	struct anon_map *amp = buf;
178 
179 	rw_destroy(&amp->a_rwlock);
180 	cv_destroy(&amp->a_purgecv);
181 	mutex_destroy(&amp->a_pmtx);
182 	mutex_destroy(&amp->a_purgemtx);
183 }
184 
185 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
186 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
187 
188 void
189 anon_init(void)
190 {
191 	int i;
192 
193 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
194 
195 	for (i = 0; i < AH_LOCK_SIZE; i++) {
196 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
197 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
198 	}
199 
200 	for (i = 0; i < ANON_LOCKSIZE; i++) {
201 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
202 		    MUTEX_DEFAULT, NULL);
203 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
204 	}
205 
206 	anon_hash = (struct anon **)
207 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
208 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
209 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
210 	anonmap_cache = kmem_cache_create("anonmap_cache",
211 	    sizeof (struct anon_map), 0,
212 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
213 	    NULL, NULL, 0);
214 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
215 
216 	anon_vp = vn_alloc(KM_SLEEP);
217 	vn_setops(anon_vp, swap_vnodeops);
218 	anon_vp->v_type = VREG;
219 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
220 }
221 
222 /*
223  * Global anon slot hash table manipulation.
224  */
225 
226 static void
227 anon_addhash(struct anon *ap)
228 {
229 	int index;
230 
231 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
232 	index = ANON_HASH(ap->an_vp, ap->an_off);
233 	ap->an_hash = anon_hash[index];
234 	anon_hash[index] = ap;
235 }
236 
237 static void
238 anon_rmhash(struct anon *ap)
239 {
240 	struct anon **app;
241 
242 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
243 
244 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
245 	    *app; app = &((*app)->an_hash)) {
246 		if (*app == ap) {
247 			*app = ap->an_hash;
248 			break;
249 		}
250 	}
251 }
252 
253 /*
254  * The anon array interfaces. Functions allocating,
255  * freeing array of pointers, and returning/setting
256  * entries in the array of pointers for a given offset.
257  *
258  * Create the list of pointers
259  */
260 struct anon_hdr *
261 anon_create(pgcnt_t npages, int flags)
262 {
263 	struct anon_hdr *ahp;
264 	ulong_t nchunks;
265 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
266 
267 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
268 		return (NULL);
269 	}
270 
271 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
272 	/*
273 	 * Single level case.
274 	 */
275 	ahp->size = npages;
276 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
277 
278 		if (flags & ANON_ALLOC_FORCE)
279 			ahp->flags |= ANON_ALLOC_FORCE;
280 
281 		ahp->array_chunk = kmem_zalloc(
282 		    ahp->size * sizeof (struct anon *), kmemflags);
283 
284 		if (ahp->array_chunk == NULL) {
285 			kmem_free(ahp, sizeof (struct anon_hdr));
286 			return (NULL);
287 		}
288 	} else {
289 		/*
290 		 * 2 Level case.
291 		 * anon hdr size needs to be rounded off  to be a multiple
292 		 * of ANON_CHUNK_SIZE. This is important as various anon
293 		 * related functions depend on this.
294 		 * NOTE -
295 		 * anon_grow()  makes anon hdr size a multiple of
296 		 * ANON_CHUNK_SIZE.
297 		 * amp size is <= anon hdr size.
298 		 * anon_index + seg_pgs <= anon hdr size.
299 		 */
300 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
301 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
302 
303 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
304 		    kmemflags);
305 
306 		if (ahp->array_chunk == NULL) {
307 			kmem_free(ahp, sizeof (struct anon_hdr));
308 			return (NULL);
309 		}
310 	}
311 	return (ahp);
312 }
313 
314 /*
315  * Free the array of pointers
316  */
317 void
318 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
319 {
320 	ulong_t i;
321 	void **ppp;
322 	ulong_t nchunks;
323 
324 	ASSERT(npages <= ahp->size);
325 
326 	/*
327 	 * Single level case.
328 	 */
329 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
330 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
331 	} else {
332 		/*
333 		 * 2 level case.
334 		 */
335 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
336 		for (i = 0; i < nchunks; i++) {
337 			ppp = &ahp->array_chunk[i];
338 			if (*ppp != NULL)
339 				kmem_free(*ppp, PAGESIZE);
340 		}
341 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
342 	}
343 	mutex_destroy(&ahp->serial_lock);
344 	kmem_free(ahp, sizeof (struct anon_hdr));
345 }
346 
347 /*
348  * Return the pointer from the list for a
349  * specified anon index.
350  */
351 struct anon *
352 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
353 {
354 	struct anon **app;
355 
356 	ASSERT(an_idx < ahp->size);
357 
358 	/*
359 	 * Single level case.
360 	 */
361 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
362 		return ((struct anon *)
363 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
364 	} else {
365 
366 		/*
367 		 * 2 level case.
368 		 */
369 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
370 		if (app) {
371 			return ((struct anon *)
372 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
373 			    ANON_PTRMASK));
374 		} else {
375 			return (NULL);
376 		}
377 	}
378 }
379 
380 /*
381  * Return the anon pointer for the first valid entry in the anon list,
382  * starting from the given index.
383  */
384 struct anon *
385 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
386 {
387 	struct anon *ap;
388 	struct anon **app;
389 	ulong_t chunkoff;
390 	ulong_t i;
391 	ulong_t j;
392 	pgcnt_t size;
393 
394 	i = *index;
395 	size = ahp->size;
396 
397 	ASSERT(i < size);
398 
399 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
400 		/*
401 		 * 1 level case
402 		 */
403 		while (i < size) {
404 			ap = (struct anon *)
405 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
406 			if (ap) {
407 				*index = i;
408 				return (ap);
409 			}
410 			i++;
411 		}
412 	} else {
413 		/*
414 		 * 2 level case
415 		 */
416 		chunkoff = i & ANON_CHUNK_OFF;
417 		while (i < size) {
418 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
419 			if (app)
420 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
421 					ap = (struct anon *)
422 					    ((uintptr_t)app[j] & ANON_PTRMASK);
423 					if (ap) {
424 						*index = i + (j - chunkoff);
425 						return (ap);
426 					}
427 				}
428 			chunkoff = 0;
429 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
430 		}
431 	}
432 	*index = size;
433 	return (NULL);
434 }
435 
436 /*
437  * Set list entry with a given pointer for a specified offset
438  */
439 int
440 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
441 {
442 	void		**ppp;
443 	struct anon	**app;
444 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
445 	uintptr_t	*ap_addr;
446 
447 	ASSERT(an_idx < ahp->size);
448 
449 	/*
450 	 * Single level case.
451 	 */
452 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
453 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
454 	} else {
455 
456 		/*
457 		 * 2 level case.
458 		 */
459 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
460 
461 		ASSERT(ppp != NULL);
462 		if (*ppp == NULL) {
463 			mutex_enter(&ahp->serial_lock);
464 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
465 			if (*ppp == NULL) {
466 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
467 				if (*ppp == NULL) {
468 					mutex_exit(&ahp->serial_lock);
469 					return (ENOMEM);
470 				}
471 			}
472 			mutex_exit(&ahp->serial_lock);
473 		}
474 		app = *ppp;
475 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
476 	}
477 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
478 	return (0);
479 }
480 
481 /*
482  * Copy anon array into a given new anon array
483  */
484 int
485 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
486 	struct anon_hdr *dahp, ulong_t d_idx,
487 	pgcnt_t npages, int flags)
488 {
489 	void **sapp, **dapp;
490 	void *ap;
491 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
492 
493 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
494 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
495 
496 	/*
497 	 * Both arrays are 1 level.
498 	 */
499 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
500 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
501 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
502 	    (dahp->flags & ANON_ALLOC_FORCE))) {
503 
504 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
505 		    npages * sizeof (struct anon *));
506 		return (0);
507 	}
508 
509 	/*
510 	 * Both arrays are 2 levels.
511 	 */
512 	if (sahp->size > ANON_CHUNK_SIZE &&
513 	    dahp->size > ANON_CHUNK_SIZE &&
514 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
515 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
516 
517 		ulong_t sapidx, dapidx;
518 		ulong_t *sap, *dap;
519 		ulong_t chknp;
520 
521 		while (npages != 0) {
522 
523 			sapidx = s_idx & ANON_CHUNK_OFF;
524 			dapidx = d_idx & ANON_CHUNK_OFF;
525 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
526 			if (chknp > npages)
527 				chknp = npages;
528 
529 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
530 			if ((sap = *sapp) != NULL) {
531 				dapp = &dahp->array_chunk[d_idx
532 				    >> ANON_CHUNK_SHIFT];
533 				if ((dap = *dapp) == NULL) {
534 					*dapp = kmem_zalloc(PAGESIZE,
535 					    kmemflags);
536 					if ((dap = *dapp) == NULL)
537 						return (ENOMEM);
538 				}
539 				bcopy((sap + sapidx), (dap + dapidx),
540 				    chknp << ANON_PTRSHIFT);
541 			}
542 			s_idx += chknp;
543 			d_idx += chknp;
544 			npages -= chknp;
545 		}
546 		return (0);
547 	}
548 
549 	/*
550 	 * At least one of the arrays is 2 level.
551 	 */
552 	while (npages--) {
553 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
554 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
555 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
556 					return (ENOMEM);
557 		}
558 		s_idx++;
559 		d_idx++;
560 	}
561 	return (0);
562 }
563 
564 
565 /*
566  * ANON_INITBUF is a convenience macro for anon_grow() below. It
567  * takes a buffer dst, which is at least as large as buffer src. It
568  * does a bcopy from src into dst, and then bzeros the extra bytes
569  * of dst. If tail is set, the data in src is tail aligned within
570  * dst instead of head aligned.
571  */
572 
573 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
574 	if (tail) {							      \
575 		bzero((dst), (dstsize) - (srclen));			      \
576 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
577 	} else {							      \
578 		bcopy((src), (dst), (srclen));				      \
579 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
580 	}
581 
582 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
583 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
584 
585 /*
586  * anon_grow() is used to efficiently extend an existing anon array.
587  * startidx_p points to the index into the anon array of the first page
588  * that is in use. oldseg_pgs is the number of pages in use, starting at
589  * *startidx_p. newpages is the number of additional pages desired.
590  *
591  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
592  *
593  * The growth is done by creating a new top level of the anon array,
594  * and (if the array is 2-level) reusing the existing second level arrays.
595  *
596  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
597  *
598  * Returns the new number of pages in the anon array.
599  */
600 pgcnt_t
601 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
602     pgcnt_t newseg_pgs, int flags)
603 {
604 	ulong_t startidx = startidx_p ? *startidx_p : 0;
605 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
606 	pgcnt_t oelems, nelems, totpages;
607 	void **level1;
608 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
609 	int growdown = (flags & ANON_GROWDOWN);
610 	size_t newarrsz, oldarrsz;
611 	void *level2;
612 
613 	ASSERT(!(startidx_p == NULL && growdown));
614 	ASSERT(startidx + oldseg_pgs <= ahp->size);
615 
616 	/*
617 	 * Determine the total number of pages needed in the new
618 	 * anon array. If growing down, totpages is all pages from
619 	 * startidx through the end of the array, plus <newseg_pgs>
620 	 * pages. If growing up, keep all pages from page 0 through
621 	 * the last page currently in use, plus <newseg_pgs> pages.
622 	 */
623 	if (growdown)
624 		totpages = oldamp_pgs - startidx + newseg_pgs;
625 	else
626 		totpages = startidx + oldseg_pgs + newseg_pgs;
627 
628 	/* If the array is already large enough, just return. */
629 
630 	if (oldamp_pgs >= totpages) {
631 		if (growdown)
632 			*startidx_p = oldamp_pgs - totpages;
633 		return (oldamp_pgs);
634 	}
635 
636 	/*
637 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
638 	 * by the corresponding arrays.
639 	 * oelems/nelems are the number of pointers in the top level arrays
640 	 * which may be either level 1 or level 2.
641 	 * Will the new anon array be one level or two levels?
642 	 */
643 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
644 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
645 		oelems = oldamp_pgs;
646 		nelems = newamp_pgs;
647 	} else {
648 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
649 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
650 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
651 	}
652 
653 	newarrsz = nelems * sizeof (void *);
654 	level1 = kmem_alloc(newarrsz, kmemflags);
655 	if (level1 == NULL)
656 		return (0);
657 
658 	/* Are we converting from a one level to a two level anon array? */
659 
660 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
661 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
662 
663 		/*
664 		 * Yes, we're converting to a two level. Reuse old level 1
665 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
666 		 * alloc a new level 2 and copy the old level 1 data into it.
667 		 */
668 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
669 			level2 = (void *)ahp->array_chunk;
670 		} else {
671 			level2 = kmem_alloc(PAGESIZE, kmemflags);
672 			if (level2 == NULL) {
673 				kmem_free(level1, newarrsz);
674 				return (0);
675 			}
676 			oldarrsz = oldamp_pgs * sizeof (void *);
677 
678 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
679 			    level2, PAGESIZE, growdown);
680 			kmem_free(ahp->array_chunk, oldarrsz);
681 		}
682 		bzero(level1, newarrsz);
683 		if (growdown)
684 			level1[nelems - 1] = level2;
685 		else
686 			level1[0] = level2;
687 	} else {
688 		oldarrsz = oelems * sizeof (void *);
689 
690 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
691 		    level1, newarrsz, growdown);
692 		kmem_free(ahp->array_chunk, oldarrsz);
693 	}
694 
695 	ahp->array_chunk = level1;
696 	ahp->size = newamp_pgs;
697 	if (growdown)
698 		*startidx_p = newamp_pgs - totpages;
699 
700 	return (newamp_pgs);
701 }
702 
703 
704 /*
705  * Called from clock handler to sync ani_free value.
706  */
707 
708 void
709 set_anoninfo(void)
710 {
711 	int	ix;
712 	pgcnt_t	total = 0;
713 
714 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
715 		total += ani_free_pool[ix].ani_count;
716 	}
717 	k_anoninfo.ani_free = total;
718 }
719 
720 /*
721  * Reserve anon space.
722  *
723  * It's no longer simply a matter of incrementing ani_resv to
724  * reserve swap space, we need to check memory-based as well
725  * as disk-backed (physical) swap.  The following algorithm
726  * is used:
727  * 	Check the space on physical swap
728  * 		i.e. amount needed < ani_max - ani_phys_resv
729  * 	If we are swapping on swapfs check
730  *		amount needed < (availrmem - swapfs_minfree)
731  * Since the algorithm to check for the quantity of swap space is
732  * almost the same as that for reserving it, we'll just use anon_resvmem
733  * with a flag to decrement availrmem.
734  *
735  * Return non-zero on success.
736  */
737 int
738 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
739 {
740 	pgcnt_t npages = btopr(size);
741 	pgcnt_t mswap_pages = 0;
742 	pgcnt_t pswap_pages = 0;
743 	proc_t *p = curproc;
744 
745 	if (zone != NULL && takemem) {
746 		/* test zone.max-swap resource control */
747 		mutex_enter(&p->p_lock);
748 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
749 			mutex_exit(&p->p_lock);
750 			return (0);
751 		}
752 		mutex_exit(&p->p_lock);
753 	}
754 	mutex_enter(&anoninfo_lock);
755 
756 	/*
757 	 * pswap_pages is the number of pages we can take from
758 	 * physical (i.e. disk-backed) swap.
759 	 */
760 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
761 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
762 
763 	ANON_PRINT(A_RESV,
764 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
765 	    npages, takemem, pswap_pages, (void *)caller()));
766 
767 	if (npages <= pswap_pages) {
768 		/*
769 		 * we have enough space on a physical swap
770 		 */
771 		if (takemem)
772 			k_anoninfo.ani_phys_resv += npages;
773 		mutex_exit(&anoninfo_lock);
774 		return (1);
775 	} else if (pswap_pages != 0) {
776 		/*
777 		 * we have some space on a physical swap
778 		 */
779 		if (takemem) {
780 			/*
781 			 * use up remainder of phys swap
782 			 */
783 			k_anoninfo.ani_phys_resv += pswap_pages;
784 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
785 		}
786 	}
787 	/*
788 	 * since (npages > pswap_pages) we need mem swap
789 	 * mswap_pages is the number of pages needed from availrmem
790 	 */
791 	ASSERT(npages > pswap_pages);
792 	mswap_pages = npages - pswap_pages;
793 
794 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
795 	    mswap_pages));
796 
797 	/*
798 	 * priv processes can reserve memory as swap as long as availrmem
799 	 * remains greater than swapfs_minfree; in the case of non-priv
800 	 * processes, memory can be reserved as swap only if availrmem
801 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
802 	 * swapfs_reserve amount of memswap is not available to non-priv
803 	 * processes. This protects daemons such as automounter dying
804 	 * as a result of application processes eating away almost entire
805 	 * membased swap. This safeguard becomes useless if apps are run
806 	 * with root access.
807 	 *
808 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
809 	 *
810 	 */
811 	if (tryhard) {
812 		mutex_exit(&anoninfo_lock);
813 		(void) page_reclaim_mem(mswap_pages,
814 		    swapfs_minfree + swapfs_reserve, 0);
815 		mutex_enter(&anoninfo_lock);
816 	}
817 
818 	mutex_enter(&freemem_lock);
819 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
820 	    (availrmem > (swapfs_minfree + mswap_pages) &&
821 	    secpolicy_resource(CRED()) == 0)) {
822 
823 		if (takemem) {
824 			/*
825 			 * Take the memory from the rest of the system.
826 			 */
827 			availrmem -= mswap_pages;
828 			mutex_exit(&freemem_lock);
829 			k_anoninfo.ani_mem_resv += mswap_pages;
830 			ANI_ADD(mswap_pages);
831 			ANON_PRINT((A_RESV | A_MRESV),
832 			    ("anon_resvmem: took %ld pages of availrmem\n",
833 			    mswap_pages));
834 		} else {
835 			mutex_exit(&freemem_lock);
836 		}
837 
838 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
839 		mutex_exit(&anoninfo_lock);
840 		return (1);
841 
842 	} else {
843 		/*
844 		 * Fail if not enough memory
845 		 */
846 
847 		if (takemem) {
848 			k_anoninfo.ani_phys_resv -= pswap_pages;
849 		}
850 
851 		mutex_exit(&freemem_lock);
852 		mutex_exit(&anoninfo_lock);
853 		ANON_PRINT(A_RESV,
854 		    ("anon_resvmem: not enough space from swapfs\n"));
855 		if (zone != NULL && takemem)
856 			rctl_decr_swap(zone, ptob(npages));
857 		return (0);
858 	}
859 }
860 
861 /*
862  * Give back an anon reservation.
863  */
864 void
865 anon_unresvmem(size_t size, zone_t *zone)
866 {
867 	pgcnt_t npages = btopr(size);
868 	spgcnt_t mem_free_pages = 0;
869 	pgcnt_t phys_free_slots;
870 #ifdef	ANON_DEBUG
871 	pgcnt_t mem_resv;
872 #endif
873 	if (zone != NULL)
874 		rctl_decr_swap(zone, ptob(npages));
875 
876 	mutex_enter(&anoninfo_lock);
877 
878 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
879 
880 	/*
881 	 * If some of this reservation belonged to swapfs
882 	 * give it back to availrmem.
883 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
884 	 * but some of that memory could be locked by segspt so we can only
885 	 * return non locked ani_mem_resv back to availrmem
886 	 */
887 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
888 		ANON_PRINT((A_RESV | A_MRESV),
889 		    ("anon_unresv: growing availrmem by %ld pages\n",
890 		    MIN(k_anoninfo.ani_mem_resv, npages)));
891 
892 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
893 		    k_anoninfo.ani_locked_swap), npages);
894 		mutex_enter(&freemem_lock);
895 		availrmem += mem_free_pages;
896 		mutex_exit(&freemem_lock);
897 		k_anoninfo.ani_mem_resv -= mem_free_pages;
898 
899 		ANI_ADD(-mem_free_pages);
900 	}
901 	/*
902 	 * The remainder of the pages is returned to phys swap
903 	 */
904 	ASSERT(npages >= mem_free_pages);
905 	phys_free_slots = npages - mem_free_pages;
906 
907 	if (phys_free_slots) {
908 		k_anoninfo.ani_phys_resv -= phys_free_slots;
909 	}
910 
911 #ifdef	ANON_DEBUG
912 	mem_resv = k_anoninfo.ani_mem_resv;
913 #endif
914 
915 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
916 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
917 
918 	mutex_exit(&anoninfo_lock);
919 
920 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
921 	    npages, mem_resv, (void *)caller()));
922 }
923 
924 /*
925  * Allocate an anon slot and return it with the lock held.
926  */
927 struct anon *
928 anon_alloc(struct vnode *vp, anoff_t off)
929 {
930 	struct anon	*ap;
931 	kmutex_t	*ahm;
932 
933 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
934 	if (vp == NULL) {
935 		swap_alloc(ap);
936 	} else {
937 		ap->an_vp = vp;
938 		ap->an_off = off;
939 	}
940 	ap->an_refcnt = 1;
941 	ap->an_pvp = NULL;
942 	ap->an_poff = 0;
943 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
944 	mutex_enter(ahm);
945 	anon_addhash(ap);
946 	mutex_exit(ahm);
947 	ANI_ADD(-1);
948 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
949 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
950 	return (ap);
951 }
952 
953 /*
954  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
955  * such pages don't consume any physical swap resources needed for swapping
956  * unlocked pages.
957  */
958 void
959 anon_swap_free(struct anon *ap, page_t *pp)
960 {
961 	kmutex_t *ahm;
962 
963 	ASSERT(ap != NULL);
964 	ASSERT(pp != NULL);
965 	ASSERT(PAGE_LOCKED(pp));
966 	ASSERT(pp->p_vnode != NULL);
967 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
968 	ASSERT(ap->an_refcnt != 0);
969 	ASSERT(pp->p_vnode == ap->an_vp);
970 	ASSERT(pp->p_offset == ap->an_off);
971 
972 	if (ap->an_pvp == NULL)
973 		return;
974 
975 	page_io_lock(pp);
976 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
977 	mutex_enter(ahm);
978 
979 	ASSERT(ap->an_refcnt != 0);
980 	ASSERT(pp->p_vnode == ap->an_vp);
981 	ASSERT(pp->p_offset == ap->an_off);
982 
983 	if (ap->an_pvp != NULL) {
984 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
985 		ap->an_pvp = NULL;
986 		ap->an_poff = 0;
987 		mutex_exit(ahm);
988 		hat_setmod(pp);
989 	} else {
990 		mutex_exit(ahm);
991 	}
992 	page_io_unlock(pp);
993 }
994 
995 /*
996  * Decrement the reference count of an anon page.
997  * If reference count goes to zero, free it and
998  * its associated page (if any).
999  */
1000 void
1001 anon_decref(struct anon *ap)
1002 {
1003 	page_t *pp;
1004 	struct vnode *vp;
1005 	anoff_t off;
1006 	kmutex_t *ahm;
1007 
1008 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1009 	mutex_enter(ahm);
1010 	ASSERT(ap->an_refcnt != 0);
1011 	if (ap->an_refcnt == 0)
1012 		panic("anon_decref: slot count 0");
1013 	if (--ap->an_refcnt == 0) {
1014 		swap_xlate(ap, &vp, &off);
1015 		anon_rmhash(ap);
1016 		if (ap->an_pvp != NULL)
1017 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1018 		mutex_exit(ahm);
1019 
1020 		/*
1021 		 * If there is a page for this anon slot we will need to
1022 		 * call VN_DISPOSE to get rid of the vp association and
1023 		 * put the page back on the free list as really free.
1024 		 * Acquire the "exclusive" lock to ensure that any
1025 		 * pending i/o always completes before the swap slot
1026 		 * is freed.
1027 		 */
1028 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1029 		if (pp != NULL) {
1030 			/*LINTED: constant in conditional context */
1031 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1032 		}
1033 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1034 		    (void *)ap, (void *)ap->an_vp));
1035 
1036 		kmem_cache_free(anon_cache, ap);
1037 
1038 		ANI_ADD(1);
1039 	} else {
1040 		mutex_exit(ahm);
1041 	}
1042 }
1043 
1044 
1045 /*
1046  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1047  * seg->s_szc level) to determine whether COW processing is required.
1048  * anonpages_hash_lock[] held on the root ap ensures that if root's
1049  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1050  * later since this process can't fork while its AS lock is held).
1051  *
1052  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1053  */
1054 int
1055 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1056 {
1057 	struct anon	*ap;
1058 	kmutex_t	*ahmpages = NULL;
1059 
1060 	ap = anon_get_ptr(ahp, anon_index);
1061 	if (ap == NULL)
1062 		return (0);
1063 
1064 	ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1065 	mutex_enter(ahmpages);
1066 	ASSERT(ap->an_refcnt >= 1);
1067 	if (ap->an_refcnt == 1) {
1068 		mutex_exit(ahmpages);
1069 		return (0);
1070 	}
1071 	mutex_exit(ahmpages);
1072 	return (1);
1073 }
1074 /*
1075  * Check 'nslots' anon slots for refcnt > 1.
1076  *
1077  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1078  * returns 0.
1079  */
1080 static int
1081 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1082 {
1083 	struct anon *ap;
1084 
1085 	while (nslots-- > 0) {
1086 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1087 		    ap->an_refcnt > 1)
1088 			return (1);
1089 		anon_index++;
1090 	}
1091 
1092 	return (0);
1093 }
1094 
1095 static void
1096 anon_decref_pages(
1097 	struct anon_hdr *ahp,
1098 	ulong_t an_idx,
1099 	uint_t szc)
1100 {
1101 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1102 	kmutex_t *ahmpages = NULL;
1103 	page_t *pp;
1104 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1105 	pgcnt_t i;
1106 	struct vnode *vp;
1107 	anoff_t   off;
1108 	kmutex_t *ahm;
1109 #ifdef DEBUG
1110 	int refcnt = 1;
1111 #endif
1112 
1113 	ASSERT(szc != 0);
1114 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1115 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1116 	ASSERT(an_idx < ahp->size);
1117 
1118 	if (ahp->size - an_idx < pgcnt) {
1119 		/*
1120 		 * In case of shared mappings total anon map size may not be
1121 		 * the largest page size aligned.
1122 		 */
1123 		pgcnt = ahp->size - an_idx;
1124 	}
1125 
1126 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1127 
1128 	if (ap != NULL) {
1129 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1130 		mutex_enter(ahmpages);
1131 		ASSERT((refcnt = ap->an_refcnt) != 0);
1132 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1133 		if (ap->an_refcnt == 1) {
1134 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1135 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1136 			mutex_exit(ahmpages);
1137 			ahmpages = NULL;
1138 		}
1139 	}
1140 
1141 	i = 0;
1142 	while (i < pgcnt) {
1143 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1144 			ASSERT(refcnt == 1 && ahmpages == NULL);
1145 			i++;
1146 			continue;
1147 		}
1148 		ASSERT(ap->an_refcnt == refcnt);
1149 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1150 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1151 
1152 		if (ahmpages == NULL) {
1153 			swap_xlate(ap, &vp, &off);
1154 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1155 			if (pp == NULL || pp->p_szc == 0) {
1156 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1157 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1158 				    ap->an_off)];
1159 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1160 				    ANON_SLEEP);
1161 				mutex_enter(ahm);
1162 				ap->an_refcnt--;
1163 				ASSERT(ap->an_refcnt == 0);
1164 				anon_rmhash(ap);
1165 				if (ap->an_pvp)
1166 					swap_phys_free(ap->an_pvp, ap->an_poff,
1167 					    PAGESIZE);
1168 				mutex_exit(ahm);
1169 				if (pp == NULL) {
1170 					pp = page_lookup(vp, (u_offset_t)off,
1171 					    SE_EXCL);
1172 					ASSERT(pp == NULL || pp->p_szc == 0);
1173 				}
1174 				if (pp != NULL) {
1175 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1176 					/*LINTED*/
1177 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1178 				}
1179 				kmem_cache_free(anon_cache, ap);
1180 				ANI_ADD(1);
1181 				i++;
1182 			} else {
1183 				pgcnt_t j;
1184 				pgcnt_t curpgcnt =
1185 				    page_get_pagecnt(pp->p_szc);
1186 				size_t ppasize = curpgcnt * sizeof (page_t *);
1187 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1188 				int dispose = 0;
1189 
1190 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1191 
1192 				ASSERT(pp->p_szc <= szc);
1193 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1194 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1195 				ASSERT(i + curpgcnt <= pgcnt);
1196 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1197 				ppa[0] = pp;
1198 				for (j = i + 1; j < i + curpgcnt; j++) {
1199 					ap = anon_get_ptr(ahp, an_idx + j);
1200 					ASSERT(ap != NULL &&
1201 					    ap->an_refcnt == 1);
1202 					swap_xlate(ap, &vp, &off);
1203 					pp = page_lookup(vp, (u_offset_t)off,
1204 					    SE_EXCL);
1205 					if (pp == NULL)
1206 						panic("anon_decref_pages: "
1207 						    "no page");
1208 
1209 					(void) hat_pageunload(pp,
1210 					    HAT_FORCE_PGUNLOAD);
1211 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1212 					ASSERT(page_pptonum(pp) - 1 ==
1213 					    page_pptonum(ppa[j - i - 1]));
1214 					ppa[j - i] = pp;
1215 					if (ap->an_pvp != NULL &&
1216 					    !vn_matchopval(ap->an_pvp,
1217 					    VOPNAME_DISPOSE,
1218 					    (fs_generic_func_p)fs_dispose))
1219 						dispose = 1;
1220 				}
1221 				for (j = i; j < i + curpgcnt; j++) {
1222 					ap = anon_get_ptr(ahp, an_idx + j);
1223 					ASSERT(ap != NULL &&
1224 					    ap->an_refcnt == 1);
1225 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1226 					    ap->an_off)];
1227 					(void) anon_set_ptr(ahp, an_idx + j,
1228 					    NULL, ANON_SLEEP);
1229 					mutex_enter(ahm);
1230 					ap->an_refcnt--;
1231 					ASSERT(ap->an_refcnt == 0);
1232 					anon_rmhash(ap);
1233 					if (ap->an_pvp)
1234 						swap_phys_free(ap->an_pvp,
1235 						    ap->an_poff, PAGESIZE);
1236 					mutex_exit(ahm);
1237 					kmem_cache_free(anon_cache, ap);
1238 					ANI_ADD(1);
1239 				}
1240 				if (!dispose) {
1241 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1242 					page_destroy_pages(ppa[0]);
1243 				} else {
1244 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1245 					for (j = 0; j < curpgcnt; j++) {
1246 						ASSERT(PAGE_EXCL(ppa[j]));
1247 						ppa[j]->p_szc = 0;
1248 					}
1249 					for (j = 0; j < curpgcnt; j++) {
1250 						ASSERT(!hat_page_is_mapped(
1251 						    ppa[j]));
1252 						/*LINTED*/
1253 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1254 						    kcred);
1255 					}
1256 				}
1257 				kmem_free(ppa, ppasize);
1258 				i += curpgcnt;
1259 			}
1260 		} else {
1261 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1262 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1263 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1264 			mutex_enter(ahm);
1265 			ap->an_refcnt--;
1266 			mutex_exit(ahm);
1267 			i++;
1268 		}
1269 	}
1270 
1271 	if (ahmpages != NULL) {
1272 		mutex_exit(ahmpages);
1273 	}
1274 }
1275 
1276 /*
1277  * Duplicate references to size bytes worth of anon pages.
1278  * Used when duplicating a segment that contains private anon pages.
1279  * This code assumes that procedure calling this one has already used
1280  * hat_chgprot() to disable write access to the range of addresses that
1281  * that *old actually refers to.
1282  */
1283 void
1284 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1285 			ulong_t new_idx, size_t size)
1286 {
1287 	spgcnt_t npages;
1288 	kmutex_t *ahm;
1289 	struct anon *ap;
1290 	ulong_t off;
1291 	ulong_t index;
1292 
1293 	npages = btopr(size);
1294 	while (npages > 0) {
1295 		index = old_idx;
1296 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1297 			break;
1298 
1299 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1300 		off = index - old_idx;
1301 		npages -= off;
1302 		if (npages <= 0)
1303 			break;
1304 
1305 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1306 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1307 
1308 		mutex_enter(ahm);
1309 		ap->an_refcnt++;
1310 		mutex_exit(ahm);
1311 
1312 		off++;
1313 		new_idx += off;
1314 		old_idx += off;
1315 		npages--;
1316 	}
1317 }
1318 
1319 /*
1320  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1321  * slots) within any large page region. That means if a large page region is
1322  * empty in the old array it will skip it. If there are 1 or more valid slots
1323  * in the large page region of the old array it will make sure to fill in any
1324  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1325  * page region should either have no valid anon slots or all slots should be
1326  * valid.
1327  */
1328 void
1329 anon_dup_fill_holes(
1330 	struct anon_hdr *old,
1331 	ulong_t old_idx,
1332 	struct anon_hdr *new,
1333 	ulong_t new_idx,
1334 	size_t size,
1335 	uint_t szc,
1336 	int noalloc)
1337 {
1338 	struct anon	*ap;
1339 	spgcnt_t	npages;
1340 	kmutex_t	*ahm, *ahmpages = NULL;
1341 	pgcnt_t		pgcnt, i;
1342 	ulong_t		index, off;
1343 #ifdef DEBUG
1344 	int		refcnt;
1345 #endif
1346 
1347 	ASSERT(szc != 0);
1348 	pgcnt = page_get_pagecnt(szc);
1349 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1350 	npages = btopr(size);
1351 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1352 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1353 
1354 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1355 
1356 	while (npages > 0) {
1357 		index = old_idx;
1358 
1359 		/*
1360 		 * Find the next valid slot.
1361 		 */
1362 		if (anon_get_next_ptr(old, &index) == NULL)
1363 			break;
1364 
1365 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1366 		/*
1367 		 * Now backup index to the beginning of the
1368 		 * current large page region of the old array.
1369 		 */
1370 		index = P2ALIGN(index, pgcnt);
1371 		off = index - old_idx;
1372 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1373 		npages -= off;
1374 		if (npages <= 0)
1375 			break;
1376 
1377 		/*
1378 		 * Fill and copy a large page regions worth
1379 		 * of anon slots.
1380 		 */
1381 		for (i = 0; i < pgcnt; i++) {
1382 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1383 				if (noalloc) {
1384 					panic("anon_dup_fill_holes: "
1385 					    "empty anon slot\n");
1386 				}
1387 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1388 				ap = anon_alloc(NULL, 0);
1389 				(void) anon_set_ptr(old, index + i, ap,
1390 				    ANON_SLEEP);
1391 			} else if (i == 0) {
1392 				/*
1393 				 * make the increment of all refcnts of all
1394 				 * anon slots of a large page appear atomic by
1395 				 * getting an anonpages_hash_lock for the
1396 				 * first anon slot of a large page.
1397 				 */
1398 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1399 
1400 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1401 
1402 				ahmpages = &anonpages_hash_lock[hash];
1403 				mutex_enter(ahmpages);
1404 				/*LINTED*/
1405 				ASSERT(refcnt = ap->an_refcnt);
1406 
1407 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1408 				    anonvmstats.dupfillholes[3]);
1409 			}
1410 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1411 			    ANON_SLEEP);
1412 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1413 			mutex_enter(ahm);
1414 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1415 			ASSERT(i == 0 || ahmpages == NULL ||
1416 			    refcnt == ap->an_refcnt);
1417 			ap->an_refcnt++;
1418 			mutex_exit(ahm);
1419 		}
1420 		if (ahmpages != NULL) {
1421 			mutex_exit(ahmpages);
1422 			ahmpages = NULL;
1423 		}
1424 		off += pgcnt;
1425 		new_idx += off;
1426 		old_idx += off;
1427 		npages -= pgcnt;
1428 	}
1429 }
1430 
1431 /*
1432  * Used when a segment with a vnode changes szc. similarly to
1433  * anon_dup_fill_holes() makes sure each large page region either has no anon
1434  * slots or all of them. but new slots are created by COWing the file
1435  * pages. on entrance no anon slots should be shared.
1436  */
1437 int
1438 anon_fill_cow_holes(
1439 	struct seg *seg,
1440 	caddr_t addr,
1441 	struct anon_hdr *ahp,
1442 	ulong_t an_idx,
1443 	struct vnode *vp,
1444 	u_offset_t vp_off,
1445 	size_t size,
1446 	uint_t szc,
1447 	uint_t prot,
1448 	struct vpage vpage[],
1449 	struct cred *cred)
1450 {
1451 	struct anon	*ap;
1452 	spgcnt_t	npages;
1453 	pgcnt_t		pgcnt, i;
1454 	ulong_t		index, off;
1455 	int		err = 0;
1456 	int		pageflags = 0;
1457 
1458 	ASSERT(szc != 0);
1459 	pgcnt = page_get_pagecnt(szc);
1460 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1461 	npages = btopr(size);
1462 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1463 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1464 
1465 	while (npages > 0) {
1466 		index = an_idx;
1467 
1468 		/*
1469 		 * Find the next valid slot.
1470 		 */
1471 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1472 			break;
1473 		}
1474 
1475 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1476 		/*
1477 		 * Now backup index to the beginning of the
1478 		 * current large page region of the anon array.
1479 		 */
1480 		index = P2ALIGN(index, pgcnt);
1481 		off = index - an_idx;
1482 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1483 		npages -= off;
1484 		if (npages <= 0)
1485 			break;
1486 		an_idx += off;
1487 		vp_off += ptob(off);
1488 		addr += ptob(off);
1489 		if (vpage != NULL) {
1490 			vpage += off;
1491 		}
1492 
1493 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1494 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1495 				page_t *pl[1 + 1];
1496 				page_t *pp;
1497 
1498 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1499 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1500 				    NULL);
1501 				if (err) {
1502 					break;
1503 				}
1504 				if (vpage != NULL) {
1505 					prot = VPP_PROT(vpage);
1506 					pageflags = VPP_ISPPLOCK(vpage) ?
1507 					    LOCK_PAGE : 0;
1508 				}
1509 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1510 				    pageflags, cred);
1511 				if (pp == NULL) {
1512 					err = ENOMEM;
1513 					break;
1514 				}
1515 				(void) anon_set_ptr(ahp, an_idx, ap,
1516 				    ANON_SLEEP);
1517 				page_unlock(pp);
1518 			}
1519 			ASSERT(ap->an_refcnt == 1);
1520 			addr += PAGESIZE;
1521 			if (vpage != NULL) {
1522 				vpage++;
1523 			}
1524 		}
1525 		npages -= pgcnt;
1526 	}
1527 
1528 	return (err);
1529 }
1530 
1531 /*
1532  * Free a group of "size" anon pages, size in bytes,
1533  * and clear out the pointers to the anon entries.
1534  */
1535 void
1536 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1537 {
1538 	spgcnt_t npages;
1539 	struct anon *ap;
1540 	ulong_t old;
1541 
1542 	npages = btopr(size);
1543 
1544 	while (npages > 0) {
1545 		old = index;
1546 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1547 			break;
1548 
1549 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1550 		npages -= index - old;
1551 		if (npages <= 0)
1552 			break;
1553 
1554 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1555 		anon_decref(ap);
1556 		/*
1557 		 * Bump index and decrement page count
1558 		 */
1559 		index++;
1560 		npages--;
1561 	}
1562 }
1563 
1564 void
1565 anon_free_pages(
1566 	struct anon_hdr *ahp,
1567 	ulong_t an_idx,
1568 	size_t size,
1569 	uint_t szc)
1570 {
1571 	spgcnt_t	npages;
1572 	pgcnt_t		pgcnt;
1573 	ulong_t		index, off;
1574 
1575 	ASSERT(szc != 0);
1576 	pgcnt = page_get_pagecnt(szc);
1577 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1578 	npages = btopr(size);
1579 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1580 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1581 	ASSERT(an_idx < ahp->size);
1582 
1583 	VM_STAT_ADD(anonvmstats.freepages[0]);
1584 
1585 	while (npages > 0) {
1586 		index = an_idx;
1587 
1588 		/*
1589 		 * Find the next valid slot.
1590 		 */
1591 		if (anon_get_next_ptr(ahp, &index) == NULL)
1592 			break;
1593 
1594 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1595 		/*
1596 		 * Now backup index to the beginning of the
1597 		 * current large page region of the old array.
1598 		 */
1599 		index = P2ALIGN(index, pgcnt);
1600 		off = index - an_idx;
1601 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1602 		npages -= off;
1603 		if (npages <= 0)
1604 			break;
1605 
1606 		anon_decref_pages(ahp, index, szc);
1607 
1608 		off += pgcnt;
1609 		an_idx += off;
1610 		npages -= pgcnt;
1611 	}
1612 }
1613 
1614 /*
1615  * Make anonymous pages discardable
1616  */
1617 void
1618 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1619 {
1620 	spgcnt_t npages = btopr(size);
1621 	struct anon *ap;
1622 	struct vnode *vp;
1623 	anoff_t off;
1624 	page_t *pp, *root_pp;
1625 	kmutex_t *ahm;
1626 	pgcnt_t pgcnt;
1627 	ulong_t old_idx, idx, i;
1628 	struct anon_hdr *ahp = amp->ahp;
1629 	anon_sync_obj_t cookie;
1630 
1631 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1632 	pgcnt = 1;
1633 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1634 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1635 
1636 		/*
1637 		 * get anon pointer and index for the first valid entry
1638 		 * in the anon list, starting from "index"
1639 		 */
1640 		old_idx = index;
1641 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1642 			break;
1643 
1644 		/*
1645 		 * decrement npages by number of NULL anon slots we skipped
1646 		 */
1647 		npages -= index - old_idx;
1648 		if (npages <= 0)
1649 			break;
1650 
1651 		anon_array_enter(amp, index, &cookie);
1652 		ap = anon_get_ptr(ahp, index);
1653 		ASSERT(ap != NULL);
1654 
1655 		/*
1656 		 * Get anonymous page and try to lock it SE_EXCL;
1657 		 * if we couldn't grab the lock we skip to next page.
1658 		 */
1659 		swap_xlate(ap, &vp, &off);
1660 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1661 		if (pp == NULL) {
1662 			segadvstat.MADV_FREE_miss.value.ul++;
1663 			pgcnt = 1;
1664 			anon_array_exit(&cookie);
1665 			continue;
1666 		}
1667 		pgcnt = page_get_pagecnt(pp->p_szc);
1668 
1669 		/*
1670 		 * we cannot free a page which is permanently locked.
1671 		 * The page_struct_lock need not be acquired to examine
1672 		 * these fields since the page has an "exclusive" lock.
1673 		 */
1674 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1675 			page_unlock(pp);
1676 			segadvstat.MADV_FREE_miss.value.ul++;
1677 			anon_array_exit(&cookie);
1678 			continue;
1679 		}
1680 
1681 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1682 		mutex_enter(ahm);
1683 		ASSERT(ap->an_refcnt != 0);
1684 		/*
1685 		 * skip this one if copy-on-write is not yet broken.
1686 		 */
1687 		if (ap->an_refcnt > 1) {
1688 			mutex_exit(ahm);
1689 			page_unlock(pp);
1690 			segadvstat.MADV_FREE_miss.value.ul++;
1691 			anon_array_exit(&cookie);
1692 			continue;
1693 		}
1694 
1695 		if (pp->p_szc == 0) {
1696 			pgcnt = 1;
1697 
1698 			/*
1699 			 * free swap slot;
1700 			 */
1701 			if (ap->an_pvp) {
1702 				swap_phys_free(ap->an_pvp, ap->an_poff,
1703 				    PAGESIZE);
1704 				ap->an_pvp = NULL;
1705 				ap->an_poff = 0;
1706 			}
1707 			mutex_exit(ahm);
1708 			segadvstat.MADV_FREE_hit.value.ul++;
1709 
1710 			/*
1711 			 * while we are at it, unload all the translations
1712 			 * and attempt to free the page.
1713 			 */
1714 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1715 			/*LINTED: constant in conditional context */
1716 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1717 			anon_array_exit(&cookie);
1718 			continue;
1719 		}
1720 
1721 		pgcnt = page_get_pagecnt(pp->p_szc);
1722 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1723 			if (!page_try_demote_pages(pp)) {
1724 				mutex_exit(ahm);
1725 				page_unlock(pp);
1726 				segadvstat.MADV_FREE_miss.value.ul++;
1727 				anon_array_exit(&cookie);
1728 				continue;
1729 			} else {
1730 				pgcnt = 1;
1731 				if (ap->an_pvp) {
1732 					swap_phys_free(ap->an_pvp,
1733 					    ap->an_poff, PAGESIZE);
1734 					ap->an_pvp = NULL;
1735 					ap->an_poff = 0;
1736 				}
1737 				mutex_exit(ahm);
1738 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1739 				/*LINTED*/
1740 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1741 				segadvstat.MADV_FREE_hit.value.ul++;
1742 				anon_array_exit(&cookie);
1743 				continue;
1744 			}
1745 		}
1746 		mutex_exit(ahm);
1747 		root_pp = pp;
1748 
1749 		/*
1750 		 * try to lock remaining pages
1751 		 */
1752 		for (idx = 1; idx < pgcnt; idx++) {
1753 			pp++;
1754 			if (!page_trylock(pp, SE_EXCL))
1755 				break;
1756 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1757 				page_unlock(pp);
1758 				break;
1759 			}
1760 		}
1761 
1762 		if (idx == pgcnt) {
1763 			for (i = 0; i < pgcnt; i++) {
1764 				ap = anon_get_ptr(ahp, index + i);
1765 				if (ap == NULL)
1766 					break;
1767 				swap_xlate(ap, &vp, &off);
1768 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1769 				mutex_enter(ahm);
1770 				ASSERT(ap->an_refcnt != 0);
1771 
1772 				/*
1773 				 * skip this one if copy-on-write
1774 				 * is not yet broken.
1775 				 */
1776 				if (ap->an_refcnt > 1) {
1777 					mutex_exit(ahm);
1778 					goto skiplp;
1779 				}
1780 				if (ap->an_pvp) {
1781 					swap_phys_free(ap->an_pvp,
1782 					    ap->an_poff, PAGESIZE);
1783 					ap->an_pvp = NULL;
1784 					ap->an_poff = 0;
1785 				}
1786 				mutex_exit(ahm);
1787 			}
1788 			page_destroy_pages(root_pp);
1789 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1790 			anon_array_exit(&cookie);
1791 			continue;
1792 		}
1793 skiplp:
1794 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1795 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1796 			page_unlock(pp);
1797 		anon_array_exit(&cookie);
1798 	}
1799 }
1800 
1801 /*
1802  * Return the kept page(s) and protections back to the segment driver.
1803  */
1804 int
1805 anon_getpage(
1806 	struct anon **app,
1807 	uint_t *protp,
1808 	page_t *pl[],
1809 	size_t plsz,
1810 	struct seg *seg,
1811 	caddr_t addr,
1812 	enum seg_rw rw,
1813 	struct cred *cred)
1814 {
1815 	page_t *pp;
1816 	struct anon *ap = *app;
1817 	struct vnode *vp;
1818 	anoff_t off;
1819 	int err;
1820 	kmutex_t *ahm;
1821 
1822 	swap_xlate(ap, &vp, &off);
1823 
1824 	/*
1825 	 * Lookup the page. If page is being paged in,
1826 	 * wait for it to finish as we must return a list of
1827 	 * pages since this routine acts like the VOP_GETPAGE
1828 	 * routine does.
1829 	 */
1830 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1831 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1832 		mutex_enter(ahm);
1833 		if (ap->an_refcnt == 1)
1834 			*protp = PROT_ALL;
1835 		else
1836 			*protp = PROT_ALL & ~PROT_WRITE;
1837 		mutex_exit(ahm);
1838 		pl[0] = pp;
1839 		pl[1] = NULL;
1840 		return (0);
1841 	}
1842 
1843 	/*
1844 	 * Simply treat it as a vnode fault on the anon vp.
1845 	 */
1846 
1847 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1848 	    "anon_getpage:seg %x addr %x vp %x",
1849 	    seg, addr, vp);
1850 
1851 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1852 	    seg, addr, rw, cred, NULL);
1853 
1854 	if (err == 0 && pl != NULL) {
1855 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1856 		mutex_enter(ahm);
1857 		if (ap->an_refcnt != 1)
1858 			*protp &= ~PROT_WRITE;	/* make read-only */
1859 		mutex_exit(ahm);
1860 	}
1861 	return (err);
1862 }
1863 
1864 /*
1865  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1866  * page cannot be allocated. returns -2 if some other process has allocated a
1867  * larger page.
1868  *
1869  * For cowfault it will allocate any size pages to fill the requested area to
1870  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1871  * slots within a large page with other processes). This policy greatly
1872  * simplifies large page freeing (which is only freed when all anon slot
1873  * refcnts are 0).
1874  */
1875 int
1876 anon_map_getpages(
1877 	struct anon_map *amp,
1878 	ulong_t	start_idx,
1879 	uint_t	szc,
1880 	struct seg *seg,
1881 	caddr_t	addr,
1882 	uint_t prot,
1883 	uint_t *protp,
1884 	page_t	*ppa[],
1885 	uint_t	*ppa_szc,
1886 	struct vpage vpage[],
1887 	enum seg_rw rw,
1888 	int brkcow,
1889 	int anypgsz,
1890 	int pgflags,
1891 	struct cred *cred)
1892 {
1893 	pgcnt_t		pgcnt;
1894 	struct anon	*ap;
1895 	struct vnode	*vp;
1896 	anoff_t		off;
1897 	page_t		*pp, *pl[2], *conpp = NULL;
1898 	caddr_t		vaddr;
1899 	ulong_t		pg_idx, an_idx, i;
1900 	spgcnt_t	nreloc = 0;
1901 	int		prealloc = 1;
1902 	int		err, slotcreate;
1903 	uint_t		vpprot;
1904 	int		upsize = (szc < seg->s_szc);
1905 
1906 #if !defined(__i386) && !defined(__amd64)
1907 	ASSERT(seg->s_szc != 0);
1908 #endif
1909 	ASSERT(szc <= seg->s_szc);
1910 	ASSERT(ppa_szc != NULL);
1911 	ASSERT(rw != S_CREATE);
1912 
1913 	*protp = PROT_ALL;
1914 
1915 	VM_STAT_ADD(anonvmstats.getpages[0]);
1916 
1917 	if (szc == 0) {
1918 		VM_STAT_ADD(anonvmstats.getpages[1]);
1919 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1920 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1921 			    addr, rw, cred);
1922 			if (err)
1923 				return (err);
1924 			ppa[0] = pl[0];
1925 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1926 				VM_STAT_ADD(anonvmstats.getpages[2]);
1927 				if (ppa[0]->p_szc != 0 && upsize) {
1928 					VM_STAT_ADD(anonvmstats.getpages[3]);
1929 					*ppa_szc = MIN(ppa[0]->p_szc,
1930 					    seg->s_szc);
1931 					page_unlock(ppa[0]);
1932 					return (-2);
1933 				}
1934 				return (0);
1935 			}
1936 			panic("anon_map_getpages: cowfault for szc 0");
1937 		} else {
1938 			VM_STAT_ADD(anonvmstats.getpages[4]);
1939 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1940 			if (ppa[0] == NULL)
1941 				return (ENOMEM);
1942 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1943 			    ANON_SLEEP);
1944 			return (0);
1945 		}
1946 	}
1947 
1948 	pgcnt = page_get_pagecnt(szc);
1949 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1950 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1951 
1952 	/*
1953 	 * First we check for the case that the requtested large
1954 	 * page or larger page already exists in the system.
1955 	 * Actually we only check if the first constituent page
1956 	 * exists and only preallocate if it's not found.
1957 	 */
1958 	ap = anon_get_ptr(amp->ahp, start_idx);
1959 	if (ap) {
1960 		uint_t pszc;
1961 		swap_xlate(ap, &vp, &off);
1962 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1963 			if (pszc > szc && upsize) {
1964 				*ppa_szc = MIN(pszc, seg->s_szc);
1965 				return (-2);
1966 			}
1967 			if (pszc >= szc) {
1968 				prealloc = 0;
1969 			}
1970 		}
1971 	}
1972 
1973 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1974 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1975 
1976 top:
1977 	/*
1978 	 * If a smaller page or no page at all was found,
1979 	 * grab a large page off the freelist.
1980 	 */
1981 	if (prealloc) {
1982 		ASSERT(conpp == NULL);
1983 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1984 		    szc, 0, pgflags) != 0) {
1985 			VM_STAT_ADD(anonvmstats.getpages[7]);
1986 			if (brkcow == 0 || szc < seg->s_szc ||
1987 			    !anon_szcshare(amp->ahp, start_idx)) {
1988 				/*
1989 				 * If the refcnt's of all anon slots are <= 1
1990 				 * they can't increase since we are holding
1991 				 * the address space's lock. So segvn can
1992 				 * safely decrease szc without risking to
1993 				 * generate a cow fault for the region smaller
1994 				 * than the segment's largest page size.
1995 				 */
1996 				VM_STAT_ADD(anonvmstats.getpages[8]);
1997 				return (-1);
1998 			}
1999 		docow:
2000 			/*
2001 			 * This is a cow fault. Copy away the entire 1 large
2002 			 * page region of this segment.
2003 			 */
2004 			if (szc != seg->s_szc)
2005 				panic("anon_map_getpages: cowfault for szc %d",
2006 				    szc);
2007 			vaddr = addr;
2008 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2009 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2010 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2011 				    NULL) {
2012 					err = anon_getpage(&ap, &vpprot, pl,
2013 					    PAGESIZE, seg, vaddr, rw, cred);
2014 					if (err) {
2015 						for (i = 0; i < pg_idx; i++) {
2016 							if ((pp = ppa[i]) !=
2017 							    NULL)
2018 								page_unlock(pp);
2019 						}
2020 						return (err);
2021 					}
2022 					ppa[pg_idx] = pl[0];
2023 				} else {
2024 					/*
2025 					 * Since this is a cowfault we know
2026 					 * that this address space has a
2027 					 * parent or children which means
2028 					 * anon_dup_fill_holes() has initialized
2029 					 * all anon slots within a large page
2030 					 * region that had at least one anon
2031 					 * slot at the time of fork().
2032 					 */
2033 					panic("anon_map_getpages: "
2034 					    "cowfault but anon slot is empty");
2035 				}
2036 			}
2037 			VM_STAT_ADD(anonvmstats.getpages[9]);
2038 			*protp = PROT_ALL;
2039 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2040 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2041 		}
2042 	}
2043 
2044 	VM_STAT_ADD(anonvmstats.getpages[10]);
2045 
2046 	an_idx = start_idx;
2047 	pg_idx = 0;
2048 	vaddr = addr;
2049 	while (pg_idx < pgcnt) {
2050 		slotcreate = 0;
2051 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2052 			VM_STAT_ADD(anonvmstats.getpages[11]);
2053 			/*
2054 			 * For us to have decided not to preallocate
2055 			 * would have meant that a large page
2056 			 * was found. Which also means that all of the
2057 			 * anon slots for that page would have been
2058 			 * already created for us.
2059 			 */
2060 			if (prealloc == 0)
2061 				panic("anon_map_getpages: prealloc = 0");
2062 
2063 			slotcreate = 1;
2064 			ap = anon_alloc(NULL, 0);
2065 		}
2066 		swap_xlate(ap, &vp, &off);
2067 
2068 		/*
2069 		 * Now setup our preallocated page to pass down
2070 		 * to swap_getpage().
2071 		 */
2072 		if (prealloc) {
2073 			ASSERT(ppa[pg_idx]->p_szc == szc);
2074 			conpp = ppa[pg_idx];
2075 		}
2076 		ASSERT(prealloc || conpp == NULL);
2077 
2078 		/*
2079 		 * If we just created this anon slot then call
2080 		 * with S_CREATE to prevent doing IO on the page.
2081 		 * Similar to the anon_zero case.
2082 		 */
2083 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2084 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2085 		    slotcreate == 1 ? S_CREATE : rw, cred);
2086 
2087 		if (err) {
2088 			ASSERT(err != -2 || upsize);
2089 			VM_STAT_ADD(anonvmstats.getpages[12]);
2090 			ASSERT(slotcreate == 0);
2091 			goto io_err;
2092 		}
2093 
2094 		pp = pl[0];
2095 
2096 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2097 			VM_STAT_ADD(anonvmstats.getpages[13]);
2098 			ASSERT(slotcreate == 0);
2099 			ASSERT(prealloc == 0);
2100 			ASSERT(pg_idx == 0);
2101 			if (pp->p_szc > szc) {
2102 				ASSERT(upsize);
2103 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2104 				page_unlock(pp);
2105 				VM_STAT_ADD(anonvmstats.getpages[14]);
2106 				return (-2);
2107 			}
2108 			page_unlock(pp);
2109 			prealloc = 1;
2110 			goto top;
2111 		}
2112 
2113 		/*
2114 		 * If we decided to preallocate but VOP_GETPAGE
2115 		 * found a page in the system that satisfies our
2116 		 * request then free up our preallocated large page
2117 		 * and continue looping accross the existing large
2118 		 * page via VOP_GETPAGE.
2119 		 */
2120 		if (prealloc && pp != ppa[pg_idx]) {
2121 			VM_STAT_ADD(anonvmstats.getpages[15]);
2122 			ASSERT(slotcreate == 0);
2123 			ASSERT(pg_idx == 0);
2124 			conpp = NULL;
2125 			prealloc = 0;
2126 			page_free_pages(ppa[0]);
2127 		}
2128 
2129 		if (prealloc && nreloc > 1) {
2130 			/*
2131 			 * we have relocated out of a smaller large page.
2132 			 * skip npgs - 1 iterations and continue which will
2133 			 * increment by one the loop indices.
2134 			 */
2135 			spgcnt_t npgs = nreloc;
2136 
2137 			VM_STAT_ADD(anonvmstats.getpages[16]);
2138 
2139 			ASSERT(pp == ppa[pg_idx]);
2140 			ASSERT(slotcreate == 0);
2141 			ASSERT(pg_idx + npgs <= pgcnt);
2142 			if ((*protp & PROT_WRITE) &&
2143 			    anon_share(amp->ahp, an_idx, npgs)) {
2144 				*protp &= ~PROT_WRITE;
2145 			}
2146 			pg_idx += npgs;
2147 			an_idx += npgs;
2148 			vaddr += PAGESIZE * npgs;
2149 			continue;
2150 		}
2151 
2152 		VM_STAT_ADD(anonvmstats.getpages[17]);
2153 
2154 		/*
2155 		 * Anon_zero case.
2156 		 */
2157 		if (slotcreate) {
2158 			ASSERT(prealloc);
2159 			pagezero(pp, 0, PAGESIZE);
2160 			CPU_STATS_ADD_K(vm, zfod, 1);
2161 			hat_setrefmod(pp);
2162 		}
2163 
2164 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2165 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2166 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2167 
2168 		if (pg_idx > 0 &&
2169 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2170 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2171 			panic("anon_map_getpages: unexpected page");
2172 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2173 			panic("anon_map_getpages: unaligned page");
2174 		}
2175 
2176 		if (prealloc == 0) {
2177 			ppa[pg_idx] = pp;
2178 		}
2179 
2180 		if (ap->an_refcnt > 1) {
2181 			VM_STAT_ADD(anonvmstats.getpages[18]);
2182 			*protp &= ~PROT_WRITE;
2183 		}
2184 
2185 		/*
2186 		 * If this is a new anon slot then initialize
2187 		 * the anon array entry.
2188 		 */
2189 		if (slotcreate) {
2190 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2191 		}
2192 		pg_idx++;
2193 		an_idx++;
2194 		vaddr += PAGESIZE;
2195 	}
2196 
2197 	/*
2198 	 * Since preallocated pages come off the freelist
2199 	 * they are locked SE_EXCL. Simply downgrade and return.
2200 	 */
2201 	if (prealloc) {
2202 		VM_STAT_ADD(anonvmstats.getpages[19]);
2203 		conpp = NULL;
2204 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2205 			page_downgrade(ppa[pg_idx]);
2206 		}
2207 	}
2208 	ASSERT(conpp == NULL);
2209 
2210 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2211 		VM_STAT_ADD(anonvmstats.getpages[20]);
2212 		return (0);
2213 	}
2214 
2215 	if (szc < seg->s_szc)
2216 		panic("anon_map_getpages: cowfault for szc %d", szc);
2217 
2218 	VM_STAT_ADD(anonvmstats.getpages[21]);
2219 
2220 	*protp = PROT_ALL;
2221 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2222 	    ppa, vpage, anypgsz, pgflags, cred));
2223 io_err:
2224 	/*
2225 	 * We got an IO error somewhere in our large page.
2226 	 * If we were using a preallocated page then just demote
2227 	 * all the constituent pages that we've succeeded with sofar
2228 	 * to PAGESIZE pages and leave them in the system
2229 	 * unlocked.
2230 	 */
2231 
2232 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2233 
2234 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2235 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2236 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2237 
2238 	if (prealloc) {
2239 		conpp = NULL;
2240 		if (pg_idx > 0) {
2241 			VM_STAT_ADD(anonvmstats.getpages[25]);
2242 			for (i = 0; i < pgcnt; i++) {
2243 				pp = ppa[i];
2244 				ASSERT(PAGE_EXCL(pp));
2245 				ASSERT(pp->p_szc == szc);
2246 				pp->p_szc = 0;
2247 			}
2248 			for (i = 0; i < pg_idx; i++) {
2249 				ASSERT(!hat_page_is_mapped(ppa[i]));
2250 				page_unlock(ppa[i]);
2251 			}
2252 			/*
2253 			 * Now free up the remaining unused constituent
2254 			 * pages.
2255 			 */
2256 			while (pg_idx < pgcnt) {
2257 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2258 				page_free(ppa[pg_idx], 0);
2259 				pg_idx++;
2260 			}
2261 		} else {
2262 			VM_STAT_ADD(anonvmstats.getpages[26]);
2263 			page_free_pages(ppa[0]);
2264 		}
2265 	} else {
2266 		VM_STAT_ADD(anonvmstats.getpages[27]);
2267 		ASSERT(err > 0);
2268 		for (i = 0; i < pg_idx; i++)
2269 			page_unlock(ppa[i]);
2270 	}
2271 	ASSERT(conpp == NULL);
2272 	if (err != -1)
2273 		return (err);
2274 	/*
2275 	 * we are here because we failed to relocate.
2276 	 */
2277 	ASSERT(prealloc);
2278 	if (brkcow == 0 || szc < seg->s_szc ||
2279 	    !anon_szcshare(amp->ahp, start_idx)) {
2280 		VM_STAT_ADD(anonvmstats.getpages[28]);
2281 		return (-1);
2282 	}
2283 	VM_STAT_ADD(anonvmstats.getpages[29]);
2284 	goto docow;
2285 }
2286 
2287 
2288 /*
2289  * Turn a reference to an object or shared anon page
2290  * into a private page with a copy of the data from the
2291  * original page which is always locked by the caller.
2292  * This routine unloads the translation and unlocks the
2293  * original page, if it isn't being stolen, before returning
2294  * to the caller.
2295  *
2296  * NOTE:  The original anon slot is not freed by this routine
2297  *	  It must be freed by the caller while holding the
2298  *	  "anon_map" lock to prevent races which can occur if
2299  *	  a process has multiple lwps in its address space.
2300  */
2301 page_t *
2302 anon_private(
2303 	struct anon **app,
2304 	struct seg *seg,
2305 	caddr_t addr,
2306 	uint_t	prot,
2307 	page_t *opp,
2308 	int oppflags,
2309 	struct cred *cred)
2310 {
2311 	struct anon *old = *app;
2312 	struct anon *new;
2313 	page_t *pp = NULL;
2314 	struct vnode *vp;
2315 	anoff_t off;
2316 	page_t *anon_pl[1 + 1];
2317 	int err;
2318 
2319 	if (oppflags & STEAL_PAGE)
2320 		ASSERT(PAGE_EXCL(opp));
2321 	else
2322 		ASSERT(PAGE_LOCKED(opp));
2323 
2324 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2325 
2326 	/* Kernel probe */
2327 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2328 		tnf_opaque,	address,	addr);
2329 
2330 	*app = new = anon_alloc(NULL, 0);
2331 	swap_xlate(new, &vp, &off);
2332 
2333 	if (oppflags & STEAL_PAGE) {
2334 		page_rename(opp, vp, (u_offset_t)off);
2335 		pp = opp;
2336 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2337 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2338 		    seg, addr, pp, vp, off);
2339 		hat_setmod(pp);
2340 
2341 		/* bug 4026339 */
2342 		page_downgrade(pp);
2343 		return (pp);
2344 	}
2345 
2346 	/*
2347 	 * Call the VOP_GETPAGE routine to create the page, thereby
2348 	 * enabling the vnode driver to allocate any filesystem
2349 	 * space (e.g., disk block allocation for UFS).  This also
2350 	 * prevents more than one page from being added to the
2351 	 * vnode at the same time.
2352 	 */
2353 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2354 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2355 	if (err)
2356 		goto out;
2357 
2358 	pp = anon_pl[0];
2359 
2360 	/*
2361 	 * If the original page was locked, we need to move the lock
2362 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2363 	 * page to 'cowcnt/lckcnt' of the new page.
2364 	 *
2365 	 * See Statement at the beginning of segvn_lockop() and
2366 	 * comments in page_pp_useclaim() regarding the way
2367 	 * cowcnts/lckcnts are handled.
2368 	 *
2369 	 * Also availrmem must be decremented up front for read only mapping
2370 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2371 	 * if availrmem did not need to be decremented after all.
2372 	 */
2373 	if (oppflags & LOCK_PAGE) {
2374 		if ((prot & PROT_WRITE) == 0) {
2375 			mutex_enter(&freemem_lock);
2376 			if (availrmem > pages_pp_maximum) {
2377 				availrmem--;
2378 				pages_useclaim++;
2379 			} else {
2380 				mutex_exit(&freemem_lock);
2381 				goto out;
2382 			}
2383 			mutex_exit(&freemem_lock);
2384 		}
2385 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2386 	}
2387 
2388 	/*
2389 	 * Now copy the contents from the original page,
2390 	 * which is locked and loaded in the MMU by
2391 	 * the caller to prevent yet another page fault.
2392 	 */
2393 	/* XXX - should set mod bit in here */
2394 	if (ppcopy(opp, pp) == 0) {
2395 		/*
2396 		 * Before ppcopy could hanlde UE or other faults, we
2397 		 * would have panicked here, and still have no option
2398 		 * but to do so now.
2399 		 */
2400 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2401 		    opp, pp);
2402 	}
2403 
2404 	hat_setrefmod(pp);		/* mark as modified */
2405 
2406 	/*
2407 	 * Unload the old translation.
2408 	 */
2409 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2410 
2411 	/*
2412 	 * Free unmapped, unmodified original page.
2413 	 * or release the lock on the original page,
2414 	 * otherwise the process will sleep forever in
2415 	 * anon_decref() waiting for the "exclusive" lock
2416 	 * on the page.
2417 	 */
2418 	(void) page_release(opp, 1);
2419 
2420 	/*
2421 	 * we are done with page creation so downgrade the new
2422 	 * page's selock to shared, this helps when multiple
2423 	 * as_fault(...SOFTLOCK...) are done to the same
2424 	 * page(aio)
2425 	 */
2426 	page_downgrade(pp);
2427 
2428 	/*
2429 	 * NOTE:  The original anon slot must be freed by the
2430 	 * caller while holding the "anon_map" lock, if we
2431 	 * copied away from an anonymous page.
2432 	 */
2433 	return (pp);
2434 
2435 out:
2436 	*app = old;
2437 	if (pp)
2438 		page_unlock(pp);
2439 	anon_decref(new);
2440 	page_unlock(opp);
2441 	return ((page_t *)NULL);
2442 }
2443 
2444 int
2445 anon_map_privatepages(
2446 	struct anon_map *amp,
2447 	ulong_t	start_idx,
2448 	uint_t	szc,
2449 	struct seg *seg,
2450 	caddr_t addr,
2451 	uint_t	prot,
2452 	page_t	*ppa[],
2453 	struct vpage vpage[],
2454 	int anypgsz,
2455 	int pgflags,
2456 	struct cred *cred)
2457 {
2458 	pgcnt_t		pgcnt;
2459 	struct vnode	*vp;
2460 	anoff_t		off;
2461 	page_t		*pl[2], *conpp = NULL;
2462 	int		err;
2463 	int		prealloc = 1;
2464 	struct anon	*ap, *oldap;
2465 	caddr_t		vaddr;
2466 	page_t		*pplist, *pp;
2467 	ulong_t		pg_idx, an_idx;
2468 	spgcnt_t	nreloc = 0;
2469 	int		pagelock = 0;
2470 	kmutex_t	*ahmpages = NULL;
2471 #ifdef DEBUG
2472 	int		refcnt;
2473 #endif
2474 
2475 	ASSERT(szc != 0);
2476 	ASSERT(szc == seg->s_szc);
2477 
2478 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2479 
2480 	pgcnt = page_get_pagecnt(szc);
2481 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2482 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2483 
2484 	ASSERT(amp != NULL);
2485 	ap = anon_get_ptr(amp->ahp, start_idx);
2486 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2487 
2488 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2489 
2490 	/*
2491 	 * Now try and allocate the large page. If we fail then just
2492 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2493 	 * the caller make this decision but to avoid added complexity
2494 	 * it's simplier to handle that case here.
2495 	 */
2496 	if (anypgsz == -1) {
2497 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2498 		prealloc = 0;
2499 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2500 	    anypgsz, pgflags) != 0) {
2501 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2502 		prealloc = 0;
2503 	}
2504 
2505 	/*
2506 	 * make the decrement of all refcnts of all
2507 	 * anon slots of a large page appear atomic by
2508 	 * getting an anonpages_hash_lock for the
2509 	 * first anon slot of a large page.
2510 	 */
2511 	if (ap != NULL) {
2512 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2513 		    ap->an_off)];
2514 		mutex_enter(ahmpages);
2515 		if (ap->an_refcnt == 1) {
2516 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2517 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2518 			mutex_exit(ahmpages);
2519 
2520 			if (prealloc) {
2521 				page_free_replacement_page(pplist);
2522 				page_create_putback(pgcnt);
2523 			}
2524 			ASSERT(ppa[0]->p_szc <= szc);
2525 			if (ppa[0]->p_szc == szc) {
2526 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2527 				return (0);
2528 			}
2529 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2530 				ASSERT(ppa[pg_idx] != NULL);
2531 				page_unlock(ppa[pg_idx]);
2532 			}
2533 			return (-1);
2534 		}
2535 	}
2536 
2537 	/*
2538 	 * If we are passed in the vpage array and this is
2539 	 * not PROT_WRITE then we need to decrement availrmem
2540 	 * up front before we try anything. If we need to and
2541 	 * can't decrement availrmem then its better to fail now
2542 	 * than in the middle of processing the new large page.
2543 	 * page_pp_usclaim() on behalf of each constituent page
2544 	 * below will adjust availrmem back for the cases not needed.
2545 	 */
2546 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2547 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2548 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2549 				pagelock = 1;
2550 				break;
2551 			}
2552 		}
2553 		if (pagelock) {
2554 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2555 			mutex_enter(&freemem_lock);
2556 			if (availrmem >= pages_pp_maximum + pgcnt) {
2557 				availrmem -= pgcnt;
2558 				pages_useclaim += pgcnt;
2559 			} else {
2560 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2561 				mutex_exit(&freemem_lock);
2562 				if (ahmpages != NULL) {
2563 					mutex_exit(ahmpages);
2564 				}
2565 				if (prealloc) {
2566 					page_free_replacement_page(pplist);
2567 					page_create_putback(pgcnt);
2568 				}
2569 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2570 					if (ppa[pg_idx] != NULL)
2571 						page_unlock(ppa[pg_idx]);
2572 				return (ENOMEM);
2573 			}
2574 			mutex_exit(&freemem_lock);
2575 		}
2576 	}
2577 
2578 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2579 
2580 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2581 
2582 	an_idx = start_idx;
2583 	pg_idx = 0;
2584 	vaddr = addr;
2585 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2586 		ASSERT(ppa[pg_idx] != NULL);
2587 		oldap = anon_get_ptr(amp->ahp, an_idx);
2588 		ASSERT(ahmpages != NULL || oldap == NULL);
2589 		ASSERT(ahmpages == NULL || oldap != NULL);
2590 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2591 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2592 		    (refcnt = oldap->an_refcnt));
2593 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2594 		    refcnt == oldap->an_refcnt);
2595 
2596 		ap = anon_alloc(NULL, 0);
2597 
2598 		swap_xlate(ap, &vp, &off);
2599 
2600 		/*
2601 		 * Now setup our preallocated page to pass down to
2602 		 * swap_getpage().
2603 		 */
2604 		if (prealloc) {
2605 			pp = pplist;
2606 			page_sub(&pplist, pp);
2607 			conpp = pp;
2608 		}
2609 
2610 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2611 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2612 		    S_CREATE, cred);
2613 
2614 		/*
2615 		 * Impossible to fail this is S_CREATE.
2616 		 */
2617 		if (err)
2618 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2619 
2620 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2621 		ASSERT(prealloc == 0 || nreloc == 1);
2622 
2623 		pp = pl[0];
2624 
2625 		/*
2626 		 * If the original page was locked, we need to move
2627 		 * the lock to the new page by transfering
2628 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2629 		 * of the new page. pg_idx can be used to index
2630 		 * into the vpage array since the caller will guarentee
2631 		 * that vpage struct passed in corresponds to addr
2632 		 * and forward.
2633 		 */
2634 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2635 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2636 		} else if (pagelock) {
2637 			mutex_enter(&freemem_lock);
2638 			availrmem++;
2639 			pages_useclaim--;
2640 			mutex_exit(&freemem_lock);
2641 		}
2642 
2643 		/*
2644 		 * Now copy the contents from the original page.
2645 		 */
2646 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2647 			/*
2648 			 * Before ppcopy could hanlde UE or other faults, we
2649 			 * would have panicked here, and still have no option
2650 			 * but to do so now.
2651 			 */
2652 			panic("anon_map_privatepages, ppcopy failed");
2653 		}
2654 
2655 		hat_setrefmod(pp);		/* mark as modified */
2656 
2657 		/*
2658 		 * Release the lock on the original page,
2659 		 * derement the old slot, and down grade the lock
2660 		 * on the new copy.
2661 		 */
2662 		page_unlock(ppa[pg_idx]);
2663 
2664 		if (!prealloc)
2665 			page_downgrade(pp);
2666 
2667 		ppa[pg_idx] = pp;
2668 
2669 		/*
2670 		 * Now reflect the copy in the new anon array.
2671 		 */
2672 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2673 		if (oldap != NULL)
2674 			anon_decref(oldap);
2675 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2676 	}
2677 
2678 	/*
2679 	 * Unload the old large page translation.
2680 	 */
2681 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2682 
2683 	if (ahmpages != NULL) {
2684 		mutex_exit(ahmpages);
2685 	}
2686 	ASSERT(prealloc == 0 || pplist == NULL);
2687 	if (prealloc) {
2688 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2689 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2690 			page_downgrade(ppa[pg_idx]);
2691 		}
2692 	}
2693 
2694 	return (0);
2695 }
2696 
2697 /*
2698  * Allocate a private zero-filled anon page.
2699  */
2700 page_t *
2701 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2702 {
2703 	struct anon *ap;
2704 	page_t *pp;
2705 	struct vnode *vp;
2706 	anoff_t off;
2707 	page_t *anon_pl[1 + 1];
2708 	int err;
2709 
2710 	/* Kernel probe */
2711 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2712 		tnf_opaque,	address,	addr);
2713 
2714 	*app = ap = anon_alloc(NULL, 0);
2715 	swap_xlate(ap, &vp, &off);
2716 
2717 	/*
2718 	 * Call the VOP_GETPAGE routine to create the page, thereby
2719 	 * enabling the vnode driver to allocate any filesystem
2720 	 * dependent structures (e.g., disk block allocation for UFS).
2721 	 * This also prevents more than on page from being added to
2722 	 * the vnode at the same time since it is locked.
2723 	 */
2724 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2725 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2726 	if (err) {
2727 		*app = NULL;
2728 		anon_decref(ap);
2729 		return (NULL);
2730 	}
2731 	pp = anon_pl[0];
2732 
2733 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2734 	page_downgrade(pp);
2735 	CPU_STATS_ADD_K(vm, zfod, 1);
2736 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2737 	return (pp);
2738 }
2739 
2740 
2741 /*
2742  * Allocate array of private zero-filled anon pages for empty slots
2743  * and kept pages for non empty slots within given range.
2744  *
2745  * NOTE: This rontine will try and use large pages
2746  *	if available and supported by underlying platform.
2747  */
2748 int
2749 anon_map_createpages(
2750 	struct anon_map *amp,
2751 	ulong_t start_index,
2752 	size_t len,
2753 	page_t *ppa[],
2754 	struct seg *seg,
2755 	caddr_t addr,
2756 	enum seg_rw rw,
2757 	struct cred *cred)
2758 {
2759 
2760 	struct anon	*ap;
2761 	struct vnode	*ap_vp;
2762 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2763 	int		err = 0;
2764 	ulong_t		p_index, index;
2765 	pgcnt_t		npgs, pg_cnt;
2766 	spgcnt_t	nreloc = 0;
2767 	uint_t		l_szc, szc, prot;
2768 	anoff_t		ap_off;
2769 	size_t		pgsz;
2770 	lgrp_t		*lgrp;
2771 	kmutex_t	*ahm;
2772 
2773 	/*
2774 	 * XXX For now only handle S_CREATE.
2775 	 */
2776 	ASSERT(rw == S_CREATE);
2777 
2778 	index	= start_index;
2779 	p_index	= 0;
2780 	npgs = btopr(len);
2781 
2782 	/*
2783 	 * If this platform supports multiple page sizes
2784 	 * then try and allocate directly from the free
2785 	 * list for pages larger than PAGESIZE.
2786 	 *
2787 	 * NOTE:When we have page_create_ru we can stop
2788 	 *	directly allocating from the freelist.
2789 	 */
2790 	l_szc  = seg->s_szc;
2791 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2792 	while (npgs) {
2793 
2794 		/*
2795 		 * if anon slot already exists
2796 		 *   (means page has been created)
2797 		 * so 1) look up the page
2798 		 *    2) if the page is still in memory, get it.
2799 		 *    3) if not, create a page and
2800 		 *	  page in from physical swap device.
2801 		 * These are done in anon_getpage().
2802 		 */
2803 		ap = anon_get_ptr(amp->ahp, index);
2804 		if (ap) {
2805 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2806 			    seg, addr, S_READ, cred);
2807 			if (err) {
2808 				ANON_LOCK_EXIT(&amp->a_rwlock);
2809 				panic("anon_map_createpages: anon_getpage");
2810 			}
2811 			pp = anon_pl[0];
2812 			ppa[p_index++] = pp;
2813 
2814 			/*
2815 			 * an_pvp can become non-NULL after SysV's page was
2816 			 * paged out before ISM was attached to this SysV
2817 			 * shared memory segment. So free swap slot if needed.
2818 			 */
2819 			if (ap->an_pvp != NULL) {
2820 				page_io_lock(pp);
2821 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
2822 				    ap->an_off)];
2823 				mutex_enter(ahm);
2824 				if (ap->an_pvp != NULL) {
2825 					swap_phys_free(ap->an_pvp,
2826 					    ap->an_poff, PAGESIZE);
2827 					ap->an_pvp = NULL;
2828 					ap->an_poff = 0;
2829 					mutex_exit(ahm);
2830 					hat_setmod(pp);
2831 				} else {
2832 					mutex_exit(ahm);
2833 				}
2834 				page_io_unlock(pp);
2835 			}
2836 
2837 			addr += PAGESIZE;
2838 			index++;
2839 			npgs--;
2840 			continue;
2841 		}
2842 		/*
2843 		 * Now try and allocate the largest page possible
2844 		 * for the current address and range.
2845 		 * Keep dropping down in page size until:
2846 		 *
2847 		 *	1) Properly aligned
2848 		 *	2) Does not overlap existing anon pages
2849 		 *	3) Fits in remaining range.
2850 		 *	4) able to allocate one.
2851 		 *
2852 		 * NOTE: XXX When page_create_ru is completed this code
2853 		 *	 will change.
2854 		 */
2855 		szc    = l_szc;
2856 		pplist = NULL;
2857 		pg_cnt = 0;
2858 		while (szc) {
2859 			pgsz	= page_get_pagesize(szc);
2860 			pg_cnt	= pgsz >> PAGESHIFT;
2861 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2862 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2863 				/*
2864 				 * XXX
2865 				 * Since we are faking page_create()
2866 				 * we also need to do the freemem and
2867 				 * pcf accounting.
2868 				 */
2869 				(void) page_create_wait(pg_cnt, PG_WAIT);
2870 
2871 				/*
2872 				 * Get lgroup to allocate next page of shared
2873 				 * memory from and use it to specify where to
2874 				 * allocate the physical memory
2875 				 */
2876 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2877 
2878 				pplist = page_get_freelist(
2879 				    anon_vp, (u_offset_t)0, seg,
2880 				    addr, pgsz, 0, lgrp);
2881 
2882 				if (pplist == NULL) {
2883 					page_create_putback(pg_cnt);
2884 				}
2885 
2886 				/*
2887 				 * If a request for a page of size
2888 				 * larger than PAGESIZE failed
2889 				 * then don't try that size anymore.
2890 				 */
2891 				if (pplist == NULL) {
2892 					l_szc = szc - 1;
2893 				} else {
2894 					break;
2895 				}
2896 			}
2897 			szc--;
2898 		}
2899 
2900 		/*
2901 		 * If just using PAGESIZE pages then don't
2902 		 * directly allocate from the free list.
2903 		 */
2904 		if (pplist == NULL) {
2905 			ASSERT(szc == 0);
2906 			pp = anon_zero(seg, addr, &ap, cred);
2907 			if (pp == NULL) {
2908 				ANON_LOCK_EXIT(&amp->a_rwlock);
2909 				panic("anon_map_createpages: anon_zero");
2910 			}
2911 			ppa[p_index++] = pp;
2912 
2913 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2914 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2915 
2916 			addr += PAGESIZE;
2917 			index++;
2918 			npgs--;
2919 			continue;
2920 		}
2921 
2922 		/*
2923 		 * pplist is a list of pg_cnt PAGESIZE pages.
2924 		 * These pages are locked SE_EXCL since they
2925 		 * came directly off the free list.
2926 		 */
2927 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2928 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2929 		ASSERT(conpp == NULL);
2930 		while (pg_cnt--) {
2931 
2932 			ap = anon_alloc(NULL, 0);
2933 			swap_xlate(ap, &ap_vp, &ap_off);
2934 
2935 			ASSERT(pplist != NULL);
2936 			pp = pplist;
2937 			page_sub(&pplist, pp);
2938 			PP_CLRFREE(pp);
2939 			PP_CLRAGED(pp);
2940 			conpp = pp;
2941 
2942 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2943 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2944 			    &nreloc, seg, addr, S_CREATE, cred);
2945 
2946 			if (err) {
2947 				ANON_LOCK_EXIT(&amp->a_rwlock);
2948 				panic("anon_map_createpages: S_CREATE");
2949 			}
2950 
2951 			ASSERT(anon_pl[0] == pp);
2952 			ASSERT(nreloc == 1);
2953 			pagezero(pp, 0, PAGESIZE);
2954 			CPU_STATS_ADD_K(vm, zfod, 1);
2955 			hat_setrefmod(pp);
2956 
2957 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2958 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2959 
2960 			ppa[p_index++] = pp;
2961 
2962 			addr += PAGESIZE;
2963 			index++;
2964 			npgs--;
2965 		}
2966 		conpp = NULL;
2967 		pg_cnt	= pgsz >> PAGESHIFT;
2968 		p_index = p_index - pg_cnt;
2969 		while (pg_cnt--) {
2970 			page_downgrade(ppa[p_index++]);
2971 		}
2972 	}
2973 	ANON_LOCK_EXIT(&amp->a_rwlock);
2974 	return (0);
2975 }
2976 
2977 static int
2978 anon_try_demote_pages(
2979 	struct anon_hdr *ahp,
2980 	ulong_t sidx,
2981 	uint_t szc,
2982 	page_t **ppa,
2983 	int private)
2984 {
2985 	struct anon	*ap;
2986 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2987 	page_t		*pp;
2988 	pgcnt_t		i;
2989 	kmutex_t	*ahmpages = NULL;
2990 	int		root = 0;
2991 	pgcnt_t		npgs;
2992 	pgcnt_t		curnpgs = 0;
2993 	size_t		ppasize = 0;
2994 
2995 	ASSERT(szc != 0);
2996 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2997 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
2998 	ASSERT(sidx < ahp->size);
2999 
3000 	if (ppa == NULL) {
3001 		ppasize = pgcnt * sizeof (page_t *);
3002 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3003 	}
3004 
3005 	ap = anon_get_ptr(ahp, sidx);
3006 	if (ap != NULL && private) {
3007 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3008 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
3009 		mutex_enter(ahmpages);
3010 	}
3011 
3012 	if (ap != NULL && ap->an_refcnt > 1) {
3013 		if (ahmpages != NULL) {
3014 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3015 			mutex_exit(ahmpages);
3016 		}
3017 		if (ppasize != 0) {
3018 			kmem_free(ppa, ppasize);
3019 		}
3020 		return (0);
3021 	}
3022 	if (ahmpages != NULL) {
3023 		mutex_exit(ahmpages);
3024 	}
3025 	if (ahp->size - sidx < pgcnt) {
3026 		ASSERT(private == 0);
3027 		pgcnt = ahp->size - sidx;
3028 	}
3029 	for (i = 0; i < pgcnt; i++, sidx++) {
3030 		ap = anon_get_ptr(ahp, sidx);
3031 		if (ap != NULL) {
3032 			if (ap->an_refcnt != 1) {
3033 				panic("anon_try_demote_pages: an_refcnt != 1");
3034 			}
3035 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3036 			    SE_EXCL);
3037 			if (pp != NULL) {
3038 				(void) hat_pageunload(pp,
3039 				    HAT_FORCE_PGUNLOAD);
3040 			}
3041 		} else {
3042 			ppa[i] = NULL;
3043 		}
3044 	}
3045 	for (i = 0; i < pgcnt; i++) {
3046 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3047 			ASSERT(pp->p_szc <= szc);
3048 			if (!root) {
3049 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3050 				if (curnpgs != 0)
3051 					panic("anon_try_demote_pages: "
3052 					    "bad large page");
3053 
3054 				root = 1;
3055 				curnpgs = npgs =
3056 				    page_get_pagecnt(pp->p_szc);
3057 
3058 				ASSERT(npgs <= pgcnt);
3059 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3060 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3061 			} else {
3062 				ASSERT(i > 0);
3063 				ASSERT(page_pptonum(pp) - 1 ==
3064 				    page_pptonum(ppa[i - 1]));
3065 				if ((page_pptonum(pp) & (npgs - 1)) ==
3066 				    npgs - 1)
3067 					root = 0;
3068 			}
3069 			ASSERT(PAGE_EXCL(pp));
3070 			pp->p_szc = 0;
3071 			ASSERT(curnpgs > 0);
3072 			curnpgs--;
3073 		}
3074 	}
3075 	if (root != 0 || curnpgs != 0)
3076 		panic("anon_try_demote_pages: bad large page");
3077 
3078 	for (i = 0; i < pgcnt; i++) {
3079 		if ((pp = ppa[i]) != NULL) {
3080 			ASSERT(!hat_page_is_mapped(pp));
3081 			ASSERT(pp->p_szc == 0);
3082 			page_unlock(pp);
3083 		}
3084 	}
3085 	if (ppasize != 0) {
3086 		kmem_free(ppa, ppasize);
3087 	}
3088 	return (1);
3089 }
3090 
3091 /*
3092  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3093  */
3094 int
3095 anon_map_demotepages(
3096 	struct anon_map *amp,
3097 	ulong_t	start_idx,
3098 	struct seg *seg,
3099 	caddr_t addr,
3100 	uint_t prot,
3101 	struct vpage vpage[],
3102 	struct cred *cred)
3103 {
3104 	struct anon	*ap;
3105 	uint_t		szc = seg->s_szc;
3106 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3107 	size_t		ppasize = pgcnt * sizeof (page_t *);
3108 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3109 	page_t		*pp;
3110 	page_t		*pl[2];
3111 	pgcnt_t		i, pg_idx;
3112 	ulong_t		an_idx;
3113 	caddr_t		vaddr;
3114 	int 		err;
3115 	int		retry = 0;
3116 	uint_t		vpprot;
3117 
3118 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3119 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3120 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3121 	ASSERT(ppa != NULL);
3122 	ASSERT(szc != 0);
3123 	ASSERT(szc == amp->a_szc);
3124 
3125 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3126 
3127 top:
3128 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3129 		kmem_free(ppa, ppasize);
3130 		return (0);
3131 	}
3132 
3133 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3134 
3135 	ASSERT(retry == 0); /* we can be here only once */
3136 
3137 	vaddr = addr;
3138 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3139 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3140 		ap = anon_get_ptr(amp->ahp, an_idx);
3141 		if (ap == NULL)
3142 			panic("anon_map_demotepages: no anon slot");
3143 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3144 		    S_READ, cred);
3145 		if (err) {
3146 			for (i = 0; i < pg_idx; i++) {
3147 				if ((pp = ppa[i]) != NULL)
3148 					page_unlock(pp);
3149 			}
3150 			kmem_free(ppa, ppasize);
3151 			return (err);
3152 		}
3153 		ppa[pg_idx] = pl[0];
3154 	}
3155 
3156 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3157 	    vpage, -1, 0, cred);
3158 	if (err > 0) {
3159 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3160 		kmem_free(ppa, ppasize);
3161 		return (err);
3162 	}
3163 	ASSERT(err == 0 || err == -1);
3164 	if (err == -1) {
3165 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3166 		retry = 1;
3167 		goto top;
3168 	}
3169 	for (i = 0; i < pgcnt; i++) {
3170 		ASSERT(ppa[i] != NULL);
3171 		if (ppa[i]->p_szc != 0)
3172 			retry = 1;
3173 		page_unlock(ppa[i]);
3174 	}
3175 	if (retry) {
3176 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3177 		goto top;
3178 	}
3179 
3180 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3181 
3182 	kmem_free(ppa, ppasize);
3183 
3184 	return (0);
3185 }
3186 
3187 /*
3188  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3189  * structures with private anon maps. Therefore all anon structures should
3190  * have at most one reference at this point. This means underlying pages can
3191  * be exclusively locked and demoted or freed.  If not freeing the entire
3192  * large pages demote the ends of the region we free to be able to free
3193  * subpages. Page roots correspond to aligned index positions in anon map.
3194  */
3195 void
3196 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3197 {
3198 	ulong_t eidx = sidx + btopr(len);
3199 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3200 	struct anon_hdr *ahp = amp->ahp;
3201 	ulong_t tidx;
3202 	size_t size;
3203 	ulong_t sidx_aligned;
3204 	ulong_t eidx_aligned;
3205 
3206 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3207 	ASSERT(amp->refcnt <= 1);
3208 	ASSERT(amp->a_szc > 0);
3209 	ASSERT(eidx <= ahp->size);
3210 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3211 
3212 	if (len == 0) {	/* XXX */
3213 		return;
3214 	}
3215 
3216 	sidx_aligned = P2ALIGN(sidx, pages);
3217 	if (sidx_aligned != sidx ||
3218 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3219 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3220 		    amp->a_szc, NULL, 0)) {
3221 			panic("anon_shmap_free_pages: demote failed");
3222 		}
3223 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3224 		    P2NPHASE(sidx, pages);
3225 		size <<= PAGESHIFT;
3226 		anon_free(ahp, sidx, size);
3227 		sidx = sidx_aligned + pages;
3228 		if (eidx <= sidx) {
3229 			return;
3230 		}
3231 	}
3232 	eidx_aligned = P2ALIGN(eidx, pages);
3233 	if (sidx < eidx_aligned) {
3234 		anon_free_pages(ahp, sidx,
3235 		    (eidx_aligned - sidx) << PAGESHIFT,
3236 		    amp->a_szc);
3237 		sidx = eidx_aligned;
3238 	}
3239 	ASSERT(sidx == eidx_aligned);
3240 	if (eidx == eidx_aligned) {
3241 		return;
3242 	}
3243 	tidx = eidx;
3244 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3245 	    tidx - sidx < pages) {
3246 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3247 			panic("anon_shmap_free_pages: demote failed");
3248 		}
3249 		size = (eidx - sidx) << PAGESHIFT;
3250 		anon_free(ahp, sidx, size);
3251 	} else {
3252 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3253 	}
3254 }
3255 
3256 /*
3257  * This routine should be called with amp's writer lock when there're no other
3258  * users of amp.  All pcache entries of this amp must have been already
3259  * inactivated. We must not drop a_rwlock here to prevent new users from
3260  * attaching to this amp.
3261  */
3262 void
3263 anonmap_purge(struct anon_map *amp)
3264 {
3265 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3266 	ASSERT(amp->refcnt <= 1);
3267 
3268 	if (amp->a_softlockcnt != 0) {
3269 		seg_ppurge(NULL, amp, 0);
3270 	}
3271 
3272 	/*
3273 	 * Since all pcache entries were already inactive before this routine
3274 	 * was called seg_ppurge() couldn't return while there're still
3275 	 * entries that can be found via the list anchored at a_phead. So we
3276 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3277 	 * if asynchronous thread that manages pcache already removed pcache
3278 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3279 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3280 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3281 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3282 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3283 	 * barrier that prevents anonmap_purge() to complete while
3284 	 * shamp_reclaim() may still be referencing this amp.
3285 	 */
3286 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3287 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3288 
3289 	mutex_enter(&amp->a_purgemtx);
3290 	while (amp->a_softlockcnt != 0) {
3291 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3292 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3293 		amp->a_purgewait = 1;
3294 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3295 	}
3296 	mutex_exit(&amp->a_purgemtx);
3297 
3298 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3299 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3300 	ASSERT(amp->a_softlockcnt == 0);
3301 }
3302 
3303 /*
3304  * Allocate and initialize an anon_map structure for seg
3305  * associating the given swap reservation with the new anon_map.
3306  */
3307 struct anon_map *
3308 anonmap_alloc(size_t size, size_t swresv, int flags)
3309 {
3310 	struct anon_map *amp;
3311 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3312 
3313 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3314 	if (amp == NULL) {
3315 		ASSERT(kmflags == KM_NOSLEEP);
3316 		return (NULL);
3317 	}
3318 
3319 	amp->ahp = anon_create(btopr(size), flags);
3320 	if (amp->ahp == NULL) {
3321 		ASSERT(flags == ANON_NOSLEEP);
3322 		kmem_cache_free(anonmap_cache, amp);
3323 		return (NULL);
3324 	}
3325 	amp->refcnt = 1;
3326 	amp->size = size;
3327 	amp->swresv = swresv;
3328 	amp->locality = 0;
3329 	amp->a_szc = 0;
3330 	amp->a_sp = NULL;
3331 	amp->a_softlockcnt = 0;
3332 	amp->a_purgewait = 0;
3333 	amp->a_phead.p_lnext = &amp->a_phead;
3334 	amp->a_phead.p_lprev = &amp->a_phead;
3335 
3336 	return (amp);
3337 }
3338 
3339 void
3340 anonmap_free(struct anon_map *amp)
3341 {
3342 	ASSERT(amp->ahp != NULL);
3343 	ASSERT(amp->refcnt == 0);
3344 	ASSERT(amp->a_softlockcnt == 0);
3345 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3346 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3347 
3348 	lgrp_shm_policy_fini(amp, NULL);
3349 	anon_release(amp->ahp, btopr(amp->size));
3350 	kmem_cache_free(anonmap_cache, amp);
3351 }
3352 
3353 /*
3354  * Returns true if the app array has some empty slots.
3355  * The offp and lenp parameters are in/out parameters.  On entry
3356  * these values represent the starting offset and length of the
3357  * mapping.  When true is returned, these values may be modified
3358  * to be the largest range which includes empty slots.
3359  */
3360 int
3361 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3362 				size_t *lenp)
3363 {
3364 	ulong_t i, el;
3365 	ssize_t low, high;
3366 	struct anon *ap;
3367 
3368 	low = -1;
3369 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3370 		ap = anon_get_ptr(ahp, anon_idx);
3371 		if (ap == NULL) {
3372 			if (low == -1)
3373 				low = i;
3374 			high = i;
3375 		}
3376 	}
3377 	if (low != -1) {
3378 		/*
3379 		 * Found at least one non-anon page.
3380 		 * Set up the off and len return values.
3381 		 */
3382 		if (low != 0)
3383 			*offp += low;
3384 		*lenp = high - low + PAGESIZE;
3385 		return (1);
3386 	}
3387 	return (0);
3388 }
3389 
3390 /*
3391  * Return a count of the number of existing anon pages in the anon array
3392  * app in the range (off, off+len). The array and slots must be guaranteed
3393  * stable by the caller.
3394  */
3395 pgcnt_t
3396 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3397 {
3398 	pgcnt_t cnt = 0;
3399 
3400 	while (nslots-- > 0) {
3401 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3402 			cnt++;
3403 		anon_index++;
3404 	}
3405 	return (cnt);
3406 }
3407 
3408 /*
3409  * Move reserved phys swap into memory swap (unreserve phys swap
3410  * and reserve mem swap by the same amount).
3411  * Used by segspt when it needs to lock reserved swap npages in memory
3412  */
3413 int
3414 anon_swap_adjust(pgcnt_t npages)
3415 {
3416 	pgcnt_t unlocked_mem_swap;
3417 
3418 	mutex_enter(&anoninfo_lock);
3419 
3420 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3421 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3422 
3423 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3424 	    - k_anoninfo.ani_locked_swap;
3425 	if (npages > unlocked_mem_swap) {
3426 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3427 
3428 		/*
3429 		 * if there is not enough unlocked mem swap we take missing
3430 		 * amount from phys swap and give it to mem swap
3431 		 */
3432 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3433 			mutex_exit(&anoninfo_lock);
3434 			return (ENOMEM);
3435 		}
3436 
3437 		k_anoninfo.ani_mem_resv += adjusted_swap;
3438 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3439 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3440 
3441 		ANI_ADD(adjusted_swap);
3442 	}
3443 	k_anoninfo.ani_locked_swap += npages;
3444 
3445 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3446 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3447 
3448 	mutex_exit(&anoninfo_lock);
3449 
3450 	return (0);
3451 }
3452 
3453 /*
3454  * 'unlocked' reserved mem swap so when it is unreserved it
3455  * can be moved back phys (disk) swap
3456  */
3457 void
3458 anon_swap_restore(pgcnt_t npages)
3459 {
3460 	mutex_enter(&anoninfo_lock);
3461 
3462 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3463 
3464 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3465 	k_anoninfo.ani_locked_swap -= npages;
3466 
3467 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3468 
3469 	mutex_exit(&anoninfo_lock);
3470 }
3471 
3472 /*
3473  * Return the pointer from the list for a
3474  * specified anon index.
3475  */
3476 ulong_t *
3477 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3478 {
3479 	struct anon	**app;
3480 	void 		**ppp;
3481 
3482 	ASSERT(an_idx < ahp->size);
3483 
3484 	/*
3485 	 * Single level case.
3486 	 */
3487 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3488 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3489 	} else {
3490 
3491 		/*
3492 		 * 2 level case.
3493 		 */
3494 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3495 		if (*ppp == NULL) {
3496 			mutex_enter(&ahp->serial_lock);
3497 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3498 			if (*ppp == NULL)
3499 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3500 			mutex_exit(&ahp->serial_lock);
3501 		}
3502 		app = *ppp;
3503 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3504 	}
3505 }
3506 
3507 void
3508 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3509 {
3510 	ulong_t		*ap_slot;
3511 	kmutex_t	*mtx;
3512 	kcondvar_t	*cv;
3513 	int		hash;
3514 
3515 	/*
3516 	 * Use szc to determine anon slot(s) to appear atomic.
3517 	 * If szc = 0, then lock the anon slot and mark it busy.
3518 	 * If szc > 0, then lock the range of slots by getting the
3519 	 * anon_array_lock for the first anon slot, and mark only the
3520 	 * first anon slot busy to represent whole range being busy.
3521 	 */
3522 
3523 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3524 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3525 	hash = ANON_ARRAY_HASH(amp, an_idx);
3526 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3527 	sobj->sync_cv = cv = &anon_array_cv[hash];
3528 	mutex_enter(mtx);
3529 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3530 	while (ANON_ISBUSY(ap_slot))
3531 		cv_wait(cv, mtx);
3532 	ANON_SETBUSY(ap_slot);
3533 	sobj->sync_data = ap_slot;
3534 	mutex_exit(mtx);
3535 }
3536 
3537 int
3538 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3539 			anon_sync_obj_t *sobj)
3540 {
3541 	ulong_t		*ap_slot;
3542 	kmutex_t	*mtx;
3543 	int		hash;
3544 
3545 	/*
3546 	 * Try to lock a range of anon slots.
3547 	 * Use szc to determine anon slot(s) to appear atomic.
3548 	 * If szc = 0, then lock the anon slot and mark it busy.
3549 	 * If szc > 0, then lock the range of slots by getting the
3550 	 * anon_array_lock for the first anon slot, and mark only the
3551 	 * first anon slot busy to represent whole range being busy.
3552 	 * Fail if the mutex or the anon_array are busy.
3553 	 */
3554 
3555 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3556 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3557 	hash = ANON_ARRAY_HASH(amp, an_idx);
3558 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3559 	sobj->sync_cv = &anon_array_cv[hash];
3560 	if (!mutex_tryenter(mtx)) {
3561 		return (EWOULDBLOCK);
3562 	}
3563 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3564 	if (ANON_ISBUSY(ap_slot)) {
3565 		mutex_exit(mtx);
3566 		return (EWOULDBLOCK);
3567 	}
3568 	ANON_SETBUSY(ap_slot);
3569 	sobj->sync_data = ap_slot;
3570 	mutex_exit(mtx);
3571 	return (0);
3572 }
3573 
3574 void
3575 anon_array_exit(anon_sync_obj_t *sobj)
3576 {
3577 	mutex_enter(sobj->sync_mutex);
3578 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3579 	ANON_CLRBUSY(sobj->sync_data);
3580 	if (CV_HAS_WAITERS(sobj->sync_cv))
3581 		cv_broadcast(sobj->sync_cv);
3582 	mutex_exit(sobj->sync_mutex);
3583 }
3584