xref: /titanic_44/usr/src/uts/common/vm/vm_anon.c (revision 2a9459bdd821c1cf59590a7a9069ac9c591e8a6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - anonymous pages.
43  *
44  * This layer sits immediately above the vm_swap layer.  It manages
45  * physical pages that have no permanent identity in the file system
46  * name space, using the services of the vm_swap layer to allocate
47  * backing storage for these pages.  Since these pages have no external
48  * identity, they are discarded when the last reference is removed.
49  *
50  * An important function of this layer is to manage low-level sharing
51  * of pages that are logically distinct but that happen to be
52  * physically identical (e.g., the corresponding pages of the processes
53  * resulting from a fork before one process or the other changes their
54  * contents).  This pseudo-sharing is present only as an optimization
55  * and is not to be confused with true sharing in which multiple
56  * address spaces deliberately contain references to the same object;
57  * such sharing is managed at a higher level.
58  *
59  * The key data structure here is the anon struct, which contains a
60  * reference count for its associated physical page and a hint about
61  * the identity of that page.  Anon structs typically live in arrays,
62  * with an instance's position in its array determining where the
63  * corresponding backing storage is allocated; however, the swap_xlate()
64  * routine abstracts away this representation information so that the
65  * rest of the anon layer need not know it.  (See the swap layer for
66  * more details on anon struct layout.)
67  *
68  * In the future versions of the system, the association between an
69  * anon struct and its position on backing store will change so that
70  * we don't require backing store all anonymous pages in the system.
71  * This is important for consideration for large memory systems.
72  * We can also use this technique to delay binding physical locations
73  * to anonymous pages until pageout/swapout time where we can make
74  * smarter allocation decisions to improve anonymous klustering.
75  *
76  * Many of the routines defined here take a (struct anon **) argument,
77  * which allows the code at this level to manage anon pages directly,
78  * so that callers can regard anon structs as opaque objects and not be
79  * concerned with assigning or inspecting their contents.
80  *
81  * Clients of this layer refer to anon pages indirectly.  That is, they
82  * maintain arrays of pointers to anon structs rather than maintaining
83  * anon structs themselves.  The (struct anon **) arguments mentioned
84  * above are pointers to entries in these arrays.  It is these arrays
85  * that capture the mapping between offsets within a given segment and
86  * the corresponding anonymous backing storage address.
87  */
88 
89 #ifdef DEBUG
90 #define	ANON_DEBUG
91 #endif
92 
93 #include <sys/types.h>
94 #include <sys/t_lock.h>
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mman.h>
98 #include <sys/cred.h>
99 #include <sys/thread.h>
100 #include <sys/vnode.h>
101 #include <sys/cpuvar.h>
102 #include <sys/swap.h>
103 #include <sys/cmn_err.h>
104 #include <sys/vtrace.h>
105 #include <sys/kmem.h>
106 #include <sys/sysmacros.h>
107 #include <sys/bitmap.h>
108 #include <sys/vmsystm.h>
109 #include <sys/debug.h>
110 #include <sys/fs/swapnode.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 #include <sys/rctl.h>
117 
118 #include <vm/as.h>
119 #include <vm/hat.h>
120 #include <vm/anon.h>
121 #include <vm/page.h>
122 #include <vm/vpage.h>
123 #include <vm/seg.h>
124 #include <vm/rm.h>
125 
126 #include <fs/fs_subr.h>
127 
128 struct vnode *anon_vp;
129 
130 int anon_debug;
131 
132 kmutex_t	anoninfo_lock;
133 struct		k_anoninfo k_anoninfo;
134 ani_free_t	ani_free_pool[ANI_MAX_POOL];
135 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
136 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
137 
138 /*
139  * Global hash table for (vp, off) -> anon slot
140  */
141 extern	int swap_maxcontig;
142 size_t	anon_hash_size;
143 struct anon **anon_hash;
144 
145 static struct kmem_cache *anon_cache;
146 static struct kmem_cache *anonmap_cache;
147 
148 #ifdef VM_STATS
149 static struct anonvmstats_str {
150 	ulong_t getpages[30];
151 	ulong_t privatepages[10];
152 	ulong_t demotepages[9];
153 	ulong_t decrefpages[9];
154 	ulong_t	dupfillholes[4];
155 	ulong_t freepages[1];
156 } anonvmstats;
157 #endif /* VM_STATS */
158 
159 
160 /*ARGSUSED*/
161 static int
162 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
163 {
164 	struct anon_map *amp = buf;
165 
166 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
167 	return (0);
168 }
169 
170 /*ARGSUSED1*/
171 static void
172 anonmap_cache_destructor(void *buf, void *cdrarg)
173 {
174 	struct anon_map *amp = buf;
175 
176 	rw_destroy(&amp->a_rwlock);
177 }
178 
179 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
180 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
181 
182 void
183 anon_init(void)
184 {
185 	int i;
186 
187 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
188 
189 	for (i = 0; i < AH_LOCK_SIZE; i++) {
190 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
191 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
192 	}
193 
194 	for (i = 0; i < ANON_LOCKSIZE; i++) {
195 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
196 		    MUTEX_DEFAULT, NULL);
197 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
198 	}
199 
200 	anon_hash = (struct anon **)
201 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
202 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
203 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
204 	anonmap_cache = kmem_cache_create("anonmap_cache",
205 	    sizeof (struct anon_map), 0,
206 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
207 	    NULL, NULL, 0);
208 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
209 
210 	anon_vp = vn_alloc(KM_SLEEP);
211 	vn_setops(anon_vp, swap_vnodeops);
212 	anon_vp->v_type = VREG;
213 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
214 }
215 
216 /*
217  * Global anon slot hash table manipulation.
218  */
219 
220 static void
221 anon_addhash(struct anon *ap)
222 {
223 	int index;
224 
225 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
226 	index = ANON_HASH(ap->an_vp, ap->an_off);
227 	ap->an_hash = anon_hash[index];
228 	anon_hash[index] = ap;
229 }
230 
231 static void
232 anon_rmhash(struct anon *ap)
233 {
234 	struct anon **app;
235 
236 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
237 
238 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
239 	    *app; app = &((*app)->an_hash)) {
240 		if (*app == ap) {
241 			*app = ap->an_hash;
242 			break;
243 		}
244 	}
245 }
246 
247 /*
248  * The anon array interfaces. Functions allocating,
249  * freeing array of pointers, and returning/setting
250  * entries in the array of pointers for a given offset.
251  *
252  * Create the list of pointers
253  */
254 struct anon_hdr *
255 anon_create(pgcnt_t npages, int flags)
256 {
257 	struct anon_hdr *ahp;
258 	ulong_t nchunks;
259 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
260 
261 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
262 		return (NULL);
263 	}
264 
265 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
266 	/*
267 	 * Single level case.
268 	 */
269 	ahp->size = npages;
270 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
271 
272 		if (flags & ANON_ALLOC_FORCE)
273 			ahp->flags |= ANON_ALLOC_FORCE;
274 
275 		ahp->array_chunk = kmem_zalloc(
276 		    ahp->size * sizeof (struct anon *), kmemflags);
277 
278 		if (ahp->array_chunk == NULL) {
279 			kmem_free(ahp, sizeof (struct anon_hdr));
280 			return (NULL);
281 		}
282 	} else {
283 		/*
284 		 * 2 Level case.
285 		 * anon hdr size needs to be rounded off  to be a multiple
286 		 * of ANON_CHUNK_SIZE. This is important as various anon
287 		 * related functions depend on this.
288 		 * NOTE -
289 		 * anon_grow()  makes anon hdr size a multiple of
290 		 * ANON_CHUNK_SIZE.
291 		 * amp size is <= anon hdr size.
292 		 * anon_index + seg_pgs <= anon hdr size.
293 		 */
294 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
295 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
296 
297 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
298 		    kmemflags);
299 
300 		if (ahp->array_chunk == NULL) {
301 			kmem_free(ahp, sizeof (struct anon_hdr));
302 			return (NULL);
303 		}
304 	}
305 	return (ahp);
306 }
307 
308 /*
309  * Free the array of pointers
310  */
311 void
312 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
313 {
314 	ulong_t i;
315 	void **ppp;
316 	ulong_t nchunks;
317 
318 	ASSERT(npages <= ahp->size);
319 
320 	/*
321 	 * Single level case.
322 	 */
323 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
324 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
325 	} else {
326 		/*
327 		 * 2 level case.
328 		 */
329 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
330 		for (i = 0; i < nchunks; i++) {
331 			ppp = &ahp->array_chunk[i];
332 			if (*ppp != NULL)
333 				kmem_free(*ppp, PAGESIZE);
334 		}
335 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
336 	}
337 	mutex_destroy(&ahp->serial_lock);
338 	kmem_free(ahp, sizeof (struct anon_hdr));
339 }
340 
341 /*
342  * Return the pointer from the list for a
343  * specified anon index.
344  */
345 struct anon *
346 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
347 {
348 	struct anon **app;
349 
350 	ASSERT(an_idx < ahp->size);
351 
352 	/*
353 	 * Single level case.
354 	 */
355 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
356 		return ((struct anon *)
357 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
358 	} else {
359 
360 		/*
361 		 * 2 level case.
362 		 */
363 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
364 		if (app) {
365 			return ((struct anon *)
366 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
367 			    ANON_PTRMASK));
368 		} else {
369 			return (NULL);
370 		}
371 	}
372 }
373 
374 /*
375  * Return the anon pointer for the first valid entry in the anon list,
376  * starting from the given index.
377  */
378 struct anon *
379 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
380 {
381 	struct anon *ap;
382 	struct anon **app;
383 	ulong_t chunkoff;
384 	ulong_t i;
385 	ulong_t j;
386 	pgcnt_t size;
387 
388 	i = *index;
389 	size = ahp->size;
390 
391 	ASSERT(i < size);
392 
393 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
394 		/*
395 		 * 1 level case
396 		 */
397 		while (i < size) {
398 			ap = (struct anon *)
399 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
400 			if (ap) {
401 				*index = i;
402 				return (ap);
403 			}
404 			i++;
405 		}
406 	} else {
407 		/*
408 		 * 2 level case
409 		 */
410 		chunkoff = i & ANON_CHUNK_OFF;
411 		while (i < size) {
412 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
413 			if (app)
414 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
415 					ap = (struct anon *)
416 					    ((uintptr_t)app[j] & ANON_PTRMASK);
417 					if (ap) {
418 						*index = i + (j - chunkoff);
419 						return (ap);
420 					}
421 				}
422 			chunkoff = 0;
423 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
424 		}
425 	}
426 	*index = size;
427 	return (NULL);
428 }
429 
430 /*
431  * Set list entry with a given pointer for a specified offset
432  */
433 int
434 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
435 {
436 	void		**ppp;
437 	struct anon	**app;
438 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
439 	uintptr_t	*ap_addr;
440 
441 	ASSERT(an_idx < ahp->size);
442 
443 	/*
444 	 * Single level case.
445 	 */
446 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
447 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
448 	} else {
449 
450 		/*
451 		 * 2 level case.
452 		 */
453 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
454 
455 		ASSERT(ppp != NULL);
456 		if (*ppp == NULL) {
457 			mutex_enter(&ahp->serial_lock);
458 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
459 			if (*ppp == NULL) {
460 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
461 				if (*ppp == NULL) {
462 					mutex_exit(&ahp->serial_lock);
463 					return (ENOMEM);
464 				}
465 			}
466 			mutex_exit(&ahp->serial_lock);
467 		}
468 		app = *ppp;
469 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
470 	}
471 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
472 	return (0);
473 }
474 
475 /*
476  * Copy anon array into a given new anon array
477  */
478 int
479 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
480 	struct anon_hdr *dahp, ulong_t d_idx,
481 	pgcnt_t npages, int flags)
482 {
483 	void **sapp, **dapp;
484 	void *ap;
485 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
486 
487 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
488 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
489 
490 	/*
491 	 * Both arrays are 1 level.
492 	 */
493 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
494 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
495 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
496 	    (dahp->flags & ANON_ALLOC_FORCE))) {
497 
498 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
499 		    npages * sizeof (struct anon *));
500 		return (0);
501 	}
502 
503 	/*
504 	 * Both arrays are 2 levels.
505 	 */
506 	if (sahp->size > ANON_CHUNK_SIZE &&
507 	    dahp->size > ANON_CHUNK_SIZE &&
508 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
509 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
510 
511 		ulong_t sapidx, dapidx;
512 		ulong_t *sap, *dap;
513 		ulong_t chknp;
514 
515 		while (npages != 0) {
516 
517 			sapidx = s_idx & ANON_CHUNK_OFF;
518 			dapidx = d_idx & ANON_CHUNK_OFF;
519 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
520 			if (chknp > npages)
521 				chknp = npages;
522 
523 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
524 			if ((sap = *sapp) != NULL) {
525 				dapp = &dahp->array_chunk[d_idx
526 				    >> ANON_CHUNK_SHIFT];
527 				if ((dap = *dapp) == NULL) {
528 					*dapp = kmem_zalloc(PAGESIZE,
529 					    kmemflags);
530 					if ((dap = *dapp) == NULL)
531 						return (ENOMEM);
532 				}
533 				bcopy((sap + sapidx), (dap + dapidx),
534 				    chknp << ANON_PTRSHIFT);
535 			}
536 			s_idx += chknp;
537 			d_idx += chknp;
538 			npages -= chknp;
539 		}
540 		return (0);
541 	}
542 
543 	/*
544 	 * At least one of the arrays is 2 level.
545 	 */
546 	while (npages--) {
547 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
548 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
549 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
550 					return (ENOMEM);
551 		}
552 		s_idx++;
553 		d_idx++;
554 	}
555 	return (0);
556 }
557 
558 
559 /*
560  * ANON_INITBUF is a convenience macro for anon_grow() below. It
561  * takes a buffer dst, which is at least as large as buffer src. It
562  * does a bcopy from src into dst, and then bzeros the extra bytes
563  * of dst. If tail is set, the data in src is tail aligned within
564  * dst instead of head aligned.
565  */
566 
567 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
568 	if (tail) {							      \
569 		bzero((dst), (dstsize) - (srclen));			      \
570 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
571 	} else {							      \
572 		bcopy((src), (dst), (srclen));				      \
573 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
574 	}
575 
576 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
577 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
578 
579 /*
580  * anon_grow() is used to efficiently extend an existing anon array.
581  * startidx_p points to the index into the anon array of the first page
582  * that is in use. oldseg_pgs is the number of pages in use, starting at
583  * *startidx_p. newpages is the number of additional pages desired.
584  *
585  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
586  *
587  * The growth is done by creating a new top level of the anon array,
588  * and (if the array is 2-level) reusing the existing second level arrays.
589  *
590  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
591  *
592  * Returns the new number of pages in the anon array.
593  */
594 pgcnt_t
595 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
596     pgcnt_t newseg_pgs, int flags)
597 {
598 	ulong_t startidx = startidx_p ? *startidx_p : 0;
599 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
600 	pgcnt_t oelems, nelems, totpages;
601 	void **level1;
602 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
603 	int growdown = (flags & ANON_GROWDOWN);
604 	size_t newarrsz, oldarrsz;
605 	void *level2;
606 
607 	ASSERT(!(startidx_p == NULL && growdown));
608 	ASSERT(startidx + oldseg_pgs <= ahp->size);
609 
610 	/*
611 	 * Determine the total number of pages needed in the new
612 	 * anon array. If growing down, totpages is all pages from
613 	 * startidx through the end of the array, plus <newseg_pgs>
614 	 * pages. If growing up, keep all pages from page 0 through
615 	 * the last page currently in use, plus <newseg_pgs> pages.
616 	 */
617 	if (growdown)
618 		totpages = oldamp_pgs - startidx + newseg_pgs;
619 	else
620 		totpages = startidx + oldseg_pgs + newseg_pgs;
621 
622 	/* If the array is already large enough, just return. */
623 
624 	if (oldamp_pgs >= totpages) {
625 		if (growdown)
626 			*startidx_p = oldamp_pgs - totpages;
627 		return (oldamp_pgs);
628 	}
629 
630 	/*
631 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
632 	 * by the corresponding arrays.
633 	 * oelems/nelems are the number of pointers in the top level arrays
634 	 * which may be either level 1 or level 2.
635 	 * Will the new anon array be one level or two levels?
636 	 */
637 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
638 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
639 		oelems = oldamp_pgs;
640 		nelems = newamp_pgs;
641 	} else {
642 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
643 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
644 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
645 	}
646 
647 	newarrsz = nelems * sizeof (void *);
648 	level1 = kmem_alloc(newarrsz, kmemflags);
649 	if (level1 == NULL)
650 		return (0);
651 
652 	/* Are we converting from a one level to a two level anon array? */
653 
654 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
655 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
656 
657 		/*
658 		 * Yes, we're converting to a two level. Reuse old level 1
659 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
660 		 * alloc a new level 2 and copy the old level 1 data into it.
661 		 */
662 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
663 			level2 = (void *)ahp->array_chunk;
664 		} else {
665 			level2 = kmem_alloc(PAGESIZE, kmemflags);
666 			if (level2 == NULL) {
667 				kmem_free(level1, newarrsz);
668 				return (0);
669 			}
670 			oldarrsz = oldamp_pgs * sizeof (void *);
671 
672 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
673 			    level2, PAGESIZE, growdown);
674 			kmem_free(ahp->array_chunk, oldarrsz);
675 		}
676 		bzero(level1, newarrsz);
677 		if (growdown)
678 			level1[nelems - 1] = level2;
679 		else
680 			level1[0] = level2;
681 	} else {
682 		oldarrsz = oelems * sizeof (void *);
683 
684 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
685 		    level1, newarrsz, growdown);
686 		kmem_free(ahp->array_chunk, oldarrsz);
687 	}
688 
689 	ahp->array_chunk = level1;
690 	ahp->size = newamp_pgs;
691 	if (growdown)
692 		*startidx_p = newamp_pgs - totpages;
693 
694 	return (newamp_pgs);
695 }
696 
697 
698 /*
699  * Called from clock handler to sync ani_free value.
700  */
701 
702 void
703 set_anoninfo(void)
704 {
705 	int	ix;
706 	pgcnt_t	total = 0;
707 
708 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
709 		total += ani_free_pool[ix].ani_count;
710 	}
711 	k_anoninfo.ani_free = total;
712 }
713 
714 /*
715  * Reserve anon space.
716  *
717  * It's no longer simply a matter of incrementing ani_resv to
718  * reserve swap space, we need to check memory-based as well
719  * as disk-backed (physical) swap.  The following algorithm
720  * is used:
721  * 	Check the space on physical swap
722  * 		i.e. amount needed < ani_max - ani_phys_resv
723  * 	If we are swapping on swapfs check
724  *		amount needed < (availrmem - swapfs_minfree)
725  * Since the algorithm to check for the quantity of swap space is
726  * almost the same as that for reserving it, we'll just use anon_resvmem
727  * with a flag to decrement availrmem.
728  *
729  * Return non-zero on success.
730  */
731 int
732 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
733 {
734 	pgcnt_t npages = btopr(size);
735 	pgcnt_t mswap_pages = 0;
736 	pgcnt_t pswap_pages = 0;
737 	proc_t *p = curproc;
738 
739 	if (zone != NULL && takemem) {
740 		/* test zone.max-swap resource control */
741 		mutex_enter(&p->p_lock);
742 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
743 			mutex_exit(&p->p_lock);
744 			return (0);
745 		}
746 		mutex_exit(&p->p_lock);
747 	}
748 	mutex_enter(&anoninfo_lock);
749 
750 	/*
751 	 * pswap_pages is the number of pages we can take from
752 	 * physical (i.e. disk-backed) swap.
753 	 */
754 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
755 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
756 
757 	ANON_PRINT(A_RESV,
758 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
759 	    npages, takemem, pswap_pages, (void *)caller()));
760 
761 	if (npages <= pswap_pages) {
762 		/*
763 		 * we have enough space on a physical swap
764 		 */
765 		if (takemem)
766 			k_anoninfo.ani_phys_resv += npages;
767 		mutex_exit(&anoninfo_lock);
768 		return (1);
769 	} else if (pswap_pages != 0) {
770 		/*
771 		 * we have some space on a physical swap
772 		 */
773 		if (takemem) {
774 			/*
775 			 * use up remainder of phys swap
776 			 */
777 			k_anoninfo.ani_phys_resv += pswap_pages;
778 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
779 		}
780 	}
781 	/*
782 	 * since (npages > pswap_pages) we need mem swap
783 	 * mswap_pages is the number of pages needed from availrmem
784 	 */
785 	ASSERT(npages > pswap_pages);
786 	mswap_pages = npages - pswap_pages;
787 
788 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
789 	    mswap_pages));
790 
791 	/*
792 	 * priv processes can reserve memory as swap as long as availrmem
793 	 * remains greater than swapfs_minfree; in the case of non-priv
794 	 * processes, memory can be reserved as swap only if availrmem
795 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
796 	 * swapfs_reserve amount of memswap is not available to non-priv
797 	 * processes. This protects daemons such as automounter dying
798 	 * as a result of application processes eating away almost entire
799 	 * membased swap. This safeguard becomes useless if apps are run
800 	 * with root access.
801 	 *
802 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
803 	 *
804 	 */
805 	if (tryhard) {
806 		mutex_exit(&anoninfo_lock);
807 		(void) page_reclaim_mem(mswap_pages,
808 		    swapfs_minfree + swapfs_reserve, 0);
809 		mutex_enter(&anoninfo_lock);
810 	}
811 
812 	mutex_enter(&freemem_lock);
813 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
814 	    (availrmem > (swapfs_minfree + mswap_pages) &&
815 	    secpolicy_resource(CRED()) == 0)) {
816 
817 		if (takemem) {
818 			/*
819 			 * Take the memory from the rest of the system.
820 			 */
821 			availrmem -= mswap_pages;
822 			mutex_exit(&freemem_lock);
823 			k_anoninfo.ani_mem_resv += mswap_pages;
824 			ANI_ADD(mswap_pages);
825 			ANON_PRINT((A_RESV | A_MRESV),
826 			    ("anon_resvmem: took %ld pages of availrmem\n",
827 			    mswap_pages));
828 		} else {
829 			mutex_exit(&freemem_lock);
830 		}
831 
832 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
833 		mutex_exit(&anoninfo_lock);
834 		return (1);
835 
836 	} else {
837 		/*
838 		 * Fail if not enough memory
839 		 */
840 
841 		if (takemem) {
842 			k_anoninfo.ani_phys_resv -= pswap_pages;
843 		}
844 
845 		mutex_exit(&freemem_lock);
846 		mutex_exit(&anoninfo_lock);
847 		ANON_PRINT(A_RESV,
848 		    ("anon_resvmem: not enough space from swapfs\n"));
849 		if (zone != NULL && takemem)
850 			rctl_decr_swap(zone, ptob(npages));
851 		return (0);
852 	}
853 }
854 
855 /*
856  * Give back an anon reservation.
857  */
858 void
859 anon_unresvmem(size_t size, zone_t *zone)
860 {
861 	pgcnt_t npages = btopr(size);
862 	spgcnt_t mem_free_pages = 0;
863 	pgcnt_t phys_free_slots;
864 #ifdef	ANON_DEBUG
865 	pgcnt_t mem_resv;
866 #endif
867 	if (zone != NULL)
868 		rctl_decr_swap(zone, ptob(npages));
869 
870 	mutex_enter(&anoninfo_lock);
871 
872 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
873 	/*
874 	 * If some of this reservation belonged to swapfs
875 	 * give it back to availrmem.
876 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
877 	 * but some of that memory could be locked by segspt so we can only
878 	 * return non locked ani_mem_resv back to availrmem
879 	 */
880 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
881 		ANON_PRINT((A_RESV | A_MRESV),
882 		    ("anon_unresv: growing availrmem by %ld pages\n",
883 		    MIN(k_anoninfo.ani_mem_resv, npages)));
884 
885 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
886 		    k_anoninfo.ani_locked_swap), npages);
887 		mutex_enter(&freemem_lock);
888 		availrmem += mem_free_pages;
889 		mutex_exit(&freemem_lock);
890 		k_anoninfo.ani_mem_resv -= mem_free_pages;
891 
892 		ANI_ADD(-mem_free_pages);
893 	}
894 	/*
895 	 * The remainder of the pages is returned to phys swap
896 	 */
897 	ASSERT(npages >= mem_free_pages);
898 	phys_free_slots = npages - mem_free_pages;
899 
900 	if (phys_free_slots) {
901 		k_anoninfo.ani_phys_resv -= phys_free_slots;
902 	}
903 
904 #ifdef	ANON_DEBUG
905 	mem_resv = k_anoninfo.ani_mem_resv;
906 #endif
907 
908 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
909 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
910 
911 	mutex_exit(&anoninfo_lock);
912 
913 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
914 	    npages, mem_resv, (void *)caller()));
915 }
916 
917 /*
918  * Allocate an anon slot and return it with the lock held.
919  */
920 struct anon *
921 anon_alloc(struct vnode *vp, anoff_t off)
922 {
923 	struct anon	*ap;
924 	kmutex_t	*ahm;
925 
926 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
927 	if (vp == NULL) {
928 		swap_alloc(ap);
929 	} else {
930 		ap->an_vp = vp;
931 		ap->an_off = off;
932 	}
933 	ap->an_refcnt = 1;
934 	ap->an_pvp = NULL;
935 	ap->an_poff = 0;
936 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
937 	mutex_enter(ahm);
938 	anon_addhash(ap);
939 	mutex_exit(ahm);
940 	ANI_ADD(-1);
941 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
942 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
943 	return (ap);
944 }
945 
946 /*
947  * Decrement the reference count of an anon page.
948  * If reference count goes to zero, free it and
949  * its associated page (if any).
950  */
951 void
952 anon_decref(struct anon *ap)
953 {
954 	page_t *pp;
955 	struct vnode *vp;
956 	anoff_t off;
957 	kmutex_t *ahm;
958 
959 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
960 	mutex_enter(ahm);
961 	ASSERT(ap->an_refcnt != 0);
962 	if (ap->an_refcnt == 0)
963 		panic("anon_decref: slot count 0");
964 	if (--ap->an_refcnt == 0) {
965 		swap_xlate(ap, &vp, &off);
966 		mutex_exit(ahm);
967 
968 		/*
969 		 * If there is a page for this anon slot we will need to
970 		 * call VN_DISPOSE to get rid of the vp association and
971 		 * put the page back on the free list as really free.
972 		 * Acquire the "exclusive" lock to ensure that any
973 		 * pending i/o always completes before the swap slot
974 		 * is freed.
975 		 */
976 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
977 
978 		/*
979 		 * If there was a page, we've synchronized on it (getting
980 		 * the exclusive lock is as good as gettting the iolock)
981 		 * so now we can free the physical backing store. Also, this
982 		 * is where we would free the name of the anonymous page
983 		 * (swap_free(ap)), a no-op in the current implementation.
984 		 */
985 		mutex_enter(ahm);
986 		ASSERT(ap->an_refcnt == 0);
987 		anon_rmhash(ap);
988 		if (ap->an_pvp)
989 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
990 		mutex_exit(ahm);
991 
992 		if (pp != NULL) {
993 			/*LINTED: constant in conditional context */
994 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
995 		}
996 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
997 		    (void *)ap, (void *)ap->an_vp));
998 		kmem_cache_free(anon_cache, ap);
999 
1000 		ANI_ADD(1);
1001 	} else {
1002 		mutex_exit(ahm);
1003 	}
1004 }
1005 
1006 
1007 /*
1008  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1009  * seg->s_szc level) to determine whether COW processing is required.
1010  * anonpages_hash_lock[] held on the root ap ensures that if root's
1011  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1012  * later since this process can't fork while its AS lock is held).
1013  *
1014  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1015  */
1016 int
1017 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1018 {
1019 	struct anon	*ap;
1020 	kmutex_t	*ahmpages = NULL;
1021 
1022 	ap = anon_get_ptr(ahp, anon_index);
1023 	if (ap == NULL)
1024 		return (0);
1025 
1026 	ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1027 	mutex_enter(ahmpages);
1028 	ASSERT(ap->an_refcnt >= 1);
1029 	if (ap->an_refcnt == 1) {
1030 		mutex_exit(ahmpages);
1031 		return (0);
1032 	}
1033 	mutex_exit(ahmpages);
1034 	return (1);
1035 }
1036 /*
1037  * Check 'nslots' anon slots for refcnt > 1.
1038  *
1039  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1040  * returns 0.
1041  */
1042 static int
1043 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1044 {
1045 	struct anon *ap;
1046 
1047 	while (nslots-- > 0) {
1048 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1049 		    ap->an_refcnt > 1)
1050 			return (1);
1051 		anon_index++;
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 static void
1058 anon_decref_pages(
1059 	struct anon_hdr *ahp,
1060 	ulong_t an_idx,
1061 	uint_t szc)
1062 {
1063 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1064 	kmutex_t *ahmpages = NULL;
1065 	page_t *pp;
1066 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1067 	pgcnt_t i;
1068 	struct vnode *vp;
1069 	anoff_t   off;
1070 	kmutex_t *ahm;
1071 #ifdef DEBUG
1072 	int refcnt = 1;
1073 #endif
1074 
1075 	ASSERT(szc != 0);
1076 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1077 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1078 	ASSERT(an_idx < ahp->size);
1079 
1080 	if (ahp->size - an_idx < pgcnt) {
1081 		/*
1082 		 * In case of shared mappings total anon map size may not be
1083 		 * the largest page size aligned.
1084 		 */
1085 		pgcnt = ahp->size - an_idx;
1086 	}
1087 
1088 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1089 
1090 	if (ap != NULL) {
1091 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1092 		mutex_enter(ahmpages);
1093 		ASSERT((refcnt = ap->an_refcnt) != 0);
1094 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1095 		if (ap->an_refcnt == 1) {
1096 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1097 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1098 			mutex_exit(ahmpages);
1099 			ahmpages = NULL;
1100 		}
1101 	}
1102 
1103 	i = 0;
1104 	while (i < pgcnt) {
1105 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1106 			ASSERT(refcnt == 1 && ahmpages == NULL);
1107 			i++;
1108 			continue;
1109 		}
1110 		ASSERT(ap->an_refcnt == refcnt);
1111 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1112 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1113 
1114 		if (ahmpages == NULL) {
1115 			swap_xlate(ap, &vp, &off);
1116 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1117 			if (pp == NULL || pp->p_szc == 0) {
1118 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1119 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1120 				    ap->an_off)];
1121 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1122 				    ANON_SLEEP);
1123 				mutex_enter(ahm);
1124 				ap->an_refcnt--;
1125 				ASSERT(ap->an_refcnt == 0);
1126 				anon_rmhash(ap);
1127 				if (ap->an_pvp)
1128 					swap_phys_free(ap->an_pvp, ap->an_poff,
1129 					    PAGESIZE);
1130 				mutex_exit(ahm);
1131 				if (pp != NULL) {
1132 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1133 					/*LINTED*/
1134 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1135 				}
1136 				kmem_cache_free(anon_cache, ap);
1137 				ANI_ADD(1);
1138 				i++;
1139 			} else {
1140 				pgcnt_t j;
1141 				pgcnt_t curpgcnt =
1142 				    page_get_pagecnt(pp->p_szc);
1143 				size_t ppasize = curpgcnt * sizeof (page_t *);
1144 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1145 				int dispose = 0;
1146 
1147 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1148 
1149 				ASSERT(pp->p_szc <= szc);
1150 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1151 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1152 				ASSERT(i + curpgcnt <= pgcnt);
1153 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1154 				ppa[0] = pp;
1155 				for (j = i + 1; j < i + curpgcnt; j++) {
1156 					ap = anon_get_ptr(ahp, an_idx + j);
1157 					ASSERT(ap != NULL &&
1158 					    ap->an_refcnt == 1);
1159 					swap_xlate(ap, &vp, &off);
1160 					pp = page_lookup(vp, (u_offset_t)off,
1161 					    SE_EXCL);
1162 					if (pp == NULL)
1163 						panic("anon_decref_pages: "
1164 						    "no page");
1165 
1166 					(void) hat_pageunload(pp,
1167 					    HAT_FORCE_PGUNLOAD);
1168 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1169 					ASSERT(page_pptonum(pp) - 1 ==
1170 					    page_pptonum(ppa[j - i - 1]));
1171 					ppa[j - i] = pp;
1172 					if (ap->an_pvp != NULL &&
1173 					    !vn_matchopval(ap->an_pvp,
1174 					    VOPNAME_DISPOSE,
1175 					    (fs_generic_func_p)fs_dispose))
1176 						dispose = 1;
1177 				}
1178 				if (!dispose) {
1179 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1180 					page_destroy_pages(ppa[0]);
1181 				} else {
1182 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1183 					for (j = 0; j < curpgcnt; j++) {
1184 						ASSERT(PAGE_EXCL(ppa[j]));
1185 						ppa[j]->p_szc = 0;
1186 					}
1187 					for (j = 0; j < curpgcnt; j++) {
1188 						ASSERT(!hat_page_is_mapped(
1189 						    ppa[j]));
1190 						/*LINTED*/
1191 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1192 						    kcred);
1193 					}
1194 				}
1195 				kmem_free(ppa, ppasize);
1196 				for (j = i; j < i + curpgcnt; j++) {
1197 					ap = anon_get_ptr(ahp, an_idx + j);
1198 					ASSERT(ap != NULL &&
1199 					    ap->an_refcnt == 1);
1200 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1201 					    ap->an_off)];
1202 					(void) anon_set_ptr(ahp, an_idx + j,
1203 					    NULL, ANON_SLEEP);
1204 					mutex_enter(ahm);
1205 					ap->an_refcnt--;
1206 					ASSERT(ap->an_refcnt == 0);
1207 					anon_rmhash(ap);
1208 					if (ap->an_pvp)
1209 						swap_phys_free(ap->an_pvp,
1210 						    ap->an_poff, PAGESIZE);
1211 					mutex_exit(ahm);
1212 					kmem_cache_free(anon_cache, ap);
1213 					ANI_ADD(1);
1214 				}
1215 				i += curpgcnt;
1216 			}
1217 		} else {
1218 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1219 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1220 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1221 			mutex_enter(ahm);
1222 			ap->an_refcnt--;
1223 			mutex_exit(ahm);
1224 			i++;
1225 		}
1226 	}
1227 
1228 	if (ahmpages != NULL) {
1229 		mutex_exit(ahmpages);
1230 	}
1231 }
1232 
1233 /*
1234  * Duplicate references to size bytes worth of anon pages.
1235  * Used when duplicating a segment that contains private anon pages.
1236  * This code assumes that procedure calling this one has already used
1237  * hat_chgprot() to disable write access to the range of addresses that
1238  * that *old actually refers to.
1239  */
1240 void
1241 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1242 			ulong_t new_idx, size_t size)
1243 {
1244 	spgcnt_t npages;
1245 	kmutex_t *ahm;
1246 	struct anon *ap;
1247 	ulong_t off;
1248 	ulong_t index;
1249 
1250 	npages = btopr(size);
1251 	while (npages > 0) {
1252 		index = old_idx;
1253 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1254 			break;
1255 
1256 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1257 		off = index - old_idx;
1258 		npages -= off;
1259 		if (npages <= 0)
1260 			break;
1261 
1262 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1263 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1264 
1265 		mutex_enter(ahm);
1266 		ap->an_refcnt++;
1267 		mutex_exit(ahm);
1268 
1269 		off++;
1270 		new_idx += off;
1271 		old_idx += off;
1272 		npages--;
1273 	}
1274 }
1275 
1276 /*
1277  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1278  * slots) within any large page region. That means if a large page region is
1279  * empty in the old array it will skip it. If there are 1 or more valid slots
1280  * in the large page region of the old array it will make sure to fill in any
1281  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1282  * page region should either have no valid anon slots or all slots should be
1283  * valid.
1284  */
1285 void
1286 anon_dup_fill_holes(
1287 	struct anon_hdr *old,
1288 	ulong_t old_idx,
1289 	struct anon_hdr *new,
1290 	ulong_t new_idx,
1291 	size_t size,
1292 	uint_t szc,
1293 	int noalloc)
1294 {
1295 	struct anon	*ap;
1296 	spgcnt_t	npages;
1297 	kmutex_t	*ahm, *ahmpages = NULL;
1298 	pgcnt_t		pgcnt, i;
1299 	ulong_t		index, off;
1300 #ifdef DEBUG
1301 	int		refcnt;
1302 #endif
1303 
1304 	ASSERT(szc != 0);
1305 	pgcnt = page_get_pagecnt(szc);
1306 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1307 	npages = btopr(size);
1308 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1309 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1310 
1311 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1312 
1313 	while (npages > 0) {
1314 		index = old_idx;
1315 
1316 		/*
1317 		 * Find the next valid slot.
1318 		 */
1319 		if (anon_get_next_ptr(old, &index) == NULL)
1320 			break;
1321 
1322 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1323 		/*
1324 		 * Now backup index to the beginning of the
1325 		 * current large page region of the old array.
1326 		 */
1327 		index = P2ALIGN(index, pgcnt);
1328 		off = index - old_idx;
1329 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1330 		npages -= off;
1331 		if (npages <= 0)
1332 			break;
1333 
1334 		/*
1335 		 * Fill and copy a large page regions worth
1336 		 * of anon slots.
1337 		 */
1338 		for (i = 0; i < pgcnt; i++) {
1339 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1340 				if (noalloc) {
1341 					panic("anon_dup_fill_holes: "
1342 					    "empty anon slot\n");
1343 				}
1344 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1345 				ap = anon_alloc(NULL, 0);
1346 				(void) anon_set_ptr(old, index + i, ap,
1347 				    ANON_SLEEP);
1348 			} else if (i == 0) {
1349 				/*
1350 				 * make the increment of all refcnts of all
1351 				 * anon slots of a large page appear atomic by
1352 				 * getting an anonpages_hash_lock for the
1353 				 * first anon slot of a large page.
1354 				 */
1355 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1356 
1357 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1358 
1359 				ahmpages = &anonpages_hash_lock[hash];
1360 				mutex_enter(ahmpages);
1361 				/*LINTED*/
1362 				ASSERT(refcnt = ap->an_refcnt);
1363 
1364 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1365 				    anonvmstats.dupfillholes[3]);
1366 			}
1367 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1368 			    ANON_SLEEP);
1369 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1370 			mutex_enter(ahm);
1371 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1372 			ASSERT(i == 0 || ahmpages == NULL ||
1373 			    refcnt == ap->an_refcnt);
1374 			ap->an_refcnt++;
1375 			mutex_exit(ahm);
1376 		}
1377 		if (ahmpages != NULL) {
1378 			mutex_exit(ahmpages);
1379 			ahmpages = NULL;
1380 		}
1381 		off += pgcnt;
1382 		new_idx += off;
1383 		old_idx += off;
1384 		npages -= pgcnt;
1385 	}
1386 }
1387 
1388 /*
1389  * Used when a segment with a vnode changes szc. similarly to
1390  * anon_dup_fill_holes() makes sure each large page region either has no anon
1391  * slots or all of them. but new slots are created by COWing the file
1392  * pages. on entrance no anon slots should be shared.
1393  */
1394 int
1395 anon_fill_cow_holes(
1396 	struct seg *seg,
1397 	caddr_t addr,
1398 	struct anon_hdr *ahp,
1399 	ulong_t an_idx,
1400 	struct vnode *vp,
1401 	u_offset_t vp_off,
1402 	size_t size,
1403 	uint_t szc,
1404 	uint_t prot,
1405 	struct vpage vpage[],
1406 	struct cred *cred)
1407 {
1408 	struct anon	*ap;
1409 	spgcnt_t	npages;
1410 	pgcnt_t		pgcnt, i;
1411 	ulong_t		index, off;
1412 	int		err = 0;
1413 	int		pageflags = 0;
1414 
1415 	ASSERT(szc != 0);
1416 	pgcnt = page_get_pagecnt(szc);
1417 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1418 	npages = btopr(size);
1419 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1420 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1421 
1422 	while (npages > 0) {
1423 		index = an_idx;
1424 
1425 		/*
1426 		 * Find the next valid slot.
1427 		 */
1428 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1429 			break;
1430 		}
1431 
1432 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1433 		/*
1434 		 * Now backup index to the beginning of the
1435 		 * current large page region of the anon array.
1436 		 */
1437 		index = P2ALIGN(index, pgcnt);
1438 		off = index - an_idx;
1439 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1440 		npages -= off;
1441 		if (npages <= 0)
1442 			break;
1443 		an_idx += off;
1444 		vp_off += ptob(off);
1445 		addr += ptob(off);
1446 		if (vpage != NULL) {
1447 			vpage += off;
1448 		}
1449 
1450 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1451 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1452 				page_t *pl[1 + 1];
1453 				page_t *pp;
1454 
1455 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1456 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1457 				    NULL);
1458 				if (err) {
1459 					break;
1460 				}
1461 				if (vpage != NULL) {
1462 					prot = VPP_PROT(vpage);
1463 					pageflags = VPP_ISPPLOCK(vpage) ?
1464 					    LOCK_PAGE : 0;
1465 				}
1466 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1467 				    pageflags, cred);
1468 				if (pp == NULL) {
1469 					err = ENOMEM;
1470 					break;
1471 				}
1472 				(void) anon_set_ptr(ahp, an_idx, ap,
1473 				    ANON_SLEEP);
1474 				page_unlock(pp);
1475 			}
1476 			ASSERT(ap->an_refcnt == 1);
1477 			addr += PAGESIZE;
1478 			if (vpage != NULL) {
1479 				vpage++;
1480 			}
1481 		}
1482 		npages -= pgcnt;
1483 	}
1484 
1485 	return (err);
1486 }
1487 
1488 /*
1489  * Free a group of "size" anon pages, size in bytes,
1490  * and clear out the pointers to the anon entries.
1491  */
1492 void
1493 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1494 {
1495 	spgcnt_t npages;
1496 	struct anon *ap;
1497 	ulong_t old;
1498 
1499 	npages = btopr(size);
1500 
1501 	while (npages > 0) {
1502 		old = index;
1503 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1504 			break;
1505 
1506 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1507 		npages -= index - old;
1508 		if (npages <= 0)
1509 			break;
1510 
1511 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1512 		anon_decref(ap);
1513 		/*
1514 		 * Bump index and decrement page count
1515 		 */
1516 		index++;
1517 		npages--;
1518 	}
1519 }
1520 
1521 void
1522 anon_free_pages(
1523 	struct anon_hdr *ahp,
1524 	ulong_t an_idx,
1525 	size_t size,
1526 	uint_t szc)
1527 {
1528 	spgcnt_t	npages;
1529 	pgcnt_t		pgcnt;
1530 	ulong_t		index, off;
1531 
1532 	ASSERT(szc != 0);
1533 	pgcnt = page_get_pagecnt(szc);
1534 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1535 	npages = btopr(size);
1536 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1537 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1538 	ASSERT(an_idx < ahp->size);
1539 
1540 	VM_STAT_ADD(anonvmstats.freepages[0]);
1541 
1542 	while (npages > 0) {
1543 		index = an_idx;
1544 
1545 		/*
1546 		 * Find the next valid slot.
1547 		 */
1548 		if (anon_get_next_ptr(ahp, &index) == NULL)
1549 			break;
1550 
1551 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1552 		/*
1553 		 * Now backup index to the beginning of the
1554 		 * current large page region of the old array.
1555 		 */
1556 		index = P2ALIGN(index, pgcnt);
1557 		off = index - an_idx;
1558 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1559 		npages -= off;
1560 		if (npages <= 0)
1561 			break;
1562 
1563 		anon_decref_pages(ahp, index, szc);
1564 
1565 		off += pgcnt;
1566 		an_idx += off;
1567 		npages -= pgcnt;
1568 	}
1569 }
1570 
1571 /*
1572  * Make anonymous pages discardable
1573  */
1574 void
1575 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1576 {
1577 	spgcnt_t npages = btopr(size);
1578 	struct anon *ap;
1579 	struct vnode *vp;
1580 	anoff_t off;
1581 	page_t *pp, *root_pp;
1582 	kmutex_t *ahm;
1583 	pgcnt_t pgcnt;
1584 	ulong_t old_idx, idx, i;
1585 	struct anon_hdr *ahp = amp->ahp;
1586 	anon_sync_obj_t cookie;
1587 
1588 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1589 	pgcnt = 1;
1590 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1591 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1592 
1593 		/*
1594 		 * get anon pointer and index for the first valid entry
1595 		 * in the anon list, starting from "index"
1596 		 */
1597 		old_idx = index;
1598 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1599 			break;
1600 
1601 		/*
1602 		 * decrement npages by number of NULL anon slots we skipped
1603 		 */
1604 		npages -= index - old_idx;
1605 		if (npages <= 0)
1606 			break;
1607 
1608 		anon_array_enter(amp, index, &cookie);
1609 		ap = anon_get_ptr(ahp, index);
1610 		ASSERT(ap != NULL);
1611 
1612 		/*
1613 		 * Get anonymous page and try to lock it SE_EXCL;
1614 		 * if we couldn't grab the lock we skip to next page.
1615 		 */
1616 		swap_xlate(ap, &vp, &off);
1617 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1618 		if (pp == NULL) {
1619 			segadvstat.MADV_FREE_miss.value.ul++;
1620 			pgcnt = 1;
1621 			anon_array_exit(&cookie);
1622 			continue;
1623 		}
1624 		pgcnt = page_get_pagecnt(pp->p_szc);
1625 
1626 		/*
1627 		 * we cannot free a page which is permanently locked.
1628 		 * The page_struct_lock need not be acquired to examine
1629 		 * these fields since the page has an "exclusive" lock.
1630 		 */
1631 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1632 			page_unlock(pp);
1633 			segadvstat.MADV_FREE_miss.value.ul++;
1634 			anon_array_exit(&cookie);
1635 			continue;
1636 		}
1637 
1638 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1639 		mutex_enter(ahm);
1640 		ASSERT(ap->an_refcnt != 0);
1641 		/*
1642 		 * skip this one if copy-on-write is not yet broken.
1643 		 */
1644 		if (ap->an_refcnt > 1) {
1645 			mutex_exit(ahm);
1646 			page_unlock(pp);
1647 			segadvstat.MADV_FREE_miss.value.ul++;
1648 			anon_array_exit(&cookie);
1649 			continue;
1650 		}
1651 
1652 		if (pp->p_szc == 0) {
1653 			pgcnt = 1;
1654 
1655 			/*
1656 			 * free swap slot;
1657 			 */
1658 			if (ap->an_pvp) {
1659 				swap_phys_free(ap->an_pvp, ap->an_poff,
1660 				    PAGESIZE);
1661 				ap->an_pvp = NULL;
1662 				ap->an_poff = 0;
1663 			}
1664 			mutex_exit(ahm);
1665 			segadvstat.MADV_FREE_hit.value.ul++;
1666 
1667 			/*
1668 			 * while we are at it, unload all the translations
1669 			 * and attempt to free the page.
1670 			 */
1671 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1672 			/*LINTED: constant in conditional context */
1673 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1674 			anon_array_exit(&cookie);
1675 			continue;
1676 		}
1677 
1678 		pgcnt = page_get_pagecnt(pp->p_szc);
1679 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1680 			if (!page_try_demote_pages(pp)) {
1681 				mutex_exit(ahm);
1682 				page_unlock(pp);
1683 				segadvstat.MADV_FREE_miss.value.ul++;
1684 				anon_array_exit(&cookie);
1685 				continue;
1686 			} else {
1687 				pgcnt = 1;
1688 				if (ap->an_pvp) {
1689 					swap_phys_free(ap->an_pvp,
1690 					    ap->an_poff, PAGESIZE);
1691 					ap->an_pvp = NULL;
1692 					ap->an_poff = 0;
1693 				}
1694 				mutex_exit(ahm);
1695 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1696 				/*LINTED*/
1697 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1698 				segadvstat.MADV_FREE_hit.value.ul++;
1699 				anon_array_exit(&cookie);
1700 				continue;
1701 			}
1702 		}
1703 		mutex_exit(ahm);
1704 		root_pp = pp;
1705 
1706 		/*
1707 		 * try to lock remaining pages
1708 		 */
1709 		for (idx = 1; idx < pgcnt; idx++) {
1710 			pp++;
1711 			if (!page_trylock(pp, SE_EXCL))
1712 				break;
1713 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1714 				page_unlock(pp);
1715 				break;
1716 			}
1717 		}
1718 
1719 		if (idx == pgcnt) {
1720 			for (i = 0; i < pgcnt; i++) {
1721 				ap = anon_get_ptr(ahp, index + i);
1722 				if (ap == NULL)
1723 					break;
1724 				swap_xlate(ap, &vp, &off);
1725 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1726 				mutex_enter(ahm);
1727 				ASSERT(ap->an_refcnt != 0);
1728 
1729 				/*
1730 				 * skip this one if copy-on-write
1731 				 * is not yet broken.
1732 				 */
1733 				if (ap->an_refcnt > 1) {
1734 					mutex_exit(ahm);
1735 					goto skiplp;
1736 				}
1737 				if (ap->an_pvp) {
1738 					swap_phys_free(ap->an_pvp,
1739 					    ap->an_poff, PAGESIZE);
1740 					ap->an_pvp = NULL;
1741 					ap->an_poff = 0;
1742 				}
1743 				mutex_exit(ahm);
1744 			}
1745 			page_destroy_pages(root_pp);
1746 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1747 			anon_array_exit(&cookie);
1748 			continue;
1749 		}
1750 skiplp:
1751 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1752 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1753 			page_unlock(pp);
1754 		anon_array_exit(&cookie);
1755 	}
1756 }
1757 
1758 /*
1759  * Return the kept page(s) and protections back to the segment driver.
1760  */
1761 int
1762 anon_getpage(
1763 	struct anon **app,
1764 	uint_t *protp,
1765 	page_t *pl[],
1766 	size_t plsz,
1767 	struct seg *seg,
1768 	caddr_t addr,
1769 	enum seg_rw rw,
1770 	struct cred *cred)
1771 {
1772 	page_t *pp;
1773 	struct anon *ap = *app;
1774 	struct vnode *vp;
1775 	anoff_t off;
1776 	int err;
1777 	kmutex_t *ahm;
1778 
1779 	swap_xlate(ap, &vp, &off);
1780 
1781 	/*
1782 	 * Lookup the page. If page is being paged in,
1783 	 * wait for it to finish as we must return a list of
1784 	 * pages since this routine acts like the VOP_GETPAGE
1785 	 * routine does.
1786 	 */
1787 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1788 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1789 		mutex_enter(ahm);
1790 		if (ap->an_refcnt == 1)
1791 			*protp = PROT_ALL;
1792 		else
1793 			*protp = PROT_ALL & ~PROT_WRITE;
1794 		mutex_exit(ahm);
1795 		pl[0] = pp;
1796 		pl[1] = NULL;
1797 		return (0);
1798 	}
1799 
1800 	/*
1801 	 * Simply treat it as a vnode fault on the anon vp.
1802 	 */
1803 
1804 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1805 	    "anon_getpage:seg %x addr %x vp %x",
1806 	    seg, addr, vp);
1807 
1808 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1809 	    seg, addr, rw, cred, NULL);
1810 
1811 	if (err == 0 && pl != NULL) {
1812 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1813 		mutex_enter(ahm);
1814 		if (ap->an_refcnt != 1)
1815 			*protp &= ~PROT_WRITE;	/* make read-only */
1816 		mutex_exit(ahm);
1817 	}
1818 	return (err);
1819 }
1820 
1821 /*
1822  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1823  * page cannot be allocated. returns -2 if some other process has allocated a
1824  * larger page.
1825  *
1826  * For cowfault it will allocate any size pages to fill the requested area to
1827  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1828  * slots within a large page with other processes). This policy greatly
1829  * simplifies large page freeing (which is only freed when all anon slot
1830  * refcnts are 0).
1831  */
1832 int
1833 anon_map_getpages(
1834 	struct anon_map *amp,
1835 	ulong_t	start_idx,
1836 	uint_t	szc,
1837 	struct seg *seg,
1838 	caddr_t	addr,
1839 	uint_t prot,
1840 	uint_t *protp,
1841 	page_t	*ppa[],
1842 	uint_t	*ppa_szc,
1843 	struct vpage vpage[],
1844 	enum seg_rw rw,
1845 	int brkcow,
1846 	int anypgsz,
1847 	int pgflags,
1848 	struct cred *cred)
1849 {
1850 	pgcnt_t		pgcnt;
1851 	struct anon	*ap;
1852 	struct vnode	*vp;
1853 	anoff_t		off;
1854 	page_t		*pp, *pl[2], *conpp = NULL;
1855 	caddr_t		vaddr;
1856 	ulong_t		pg_idx, an_idx, i;
1857 	spgcnt_t	nreloc = 0;
1858 	int		prealloc = 1;
1859 	int		err, slotcreate;
1860 	uint_t		vpprot;
1861 	int		upsize = (szc < seg->s_szc);
1862 
1863 #if !defined(__i386) && !defined(__amd64)
1864 	ASSERT(seg->s_szc != 0);
1865 #endif
1866 	ASSERT(szc <= seg->s_szc);
1867 	ASSERT(ppa_szc != NULL);
1868 	ASSERT(rw != S_CREATE);
1869 
1870 	*protp = PROT_ALL;
1871 
1872 	VM_STAT_ADD(anonvmstats.getpages[0]);
1873 
1874 	if (szc == 0) {
1875 		VM_STAT_ADD(anonvmstats.getpages[1]);
1876 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1877 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1878 			    addr, rw, cred);
1879 			if (err)
1880 				return (err);
1881 			ppa[0] = pl[0];
1882 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1883 				VM_STAT_ADD(anonvmstats.getpages[2]);
1884 				if (ppa[0]->p_szc != 0 && upsize) {
1885 					VM_STAT_ADD(anonvmstats.getpages[3]);
1886 					*ppa_szc = MIN(ppa[0]->p_szc,
1887 					    seg->s_szc);
1888 					page_unlock(ppa[0]);
1889 					return (-2);
1890 				}
1891 				return (0);
1892 			}
1893 			panic("anon_map_getpages: cowfault for szc 0");
1894 		} else {
1895 			VM_STAT_ADD(anonvmstats.getpages[4]);
1896 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1897 			if (ppa[0] == NULL)
1898 				return (ENOMEM);
1899 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1900 			    ANON_SLEEP);
1901 			return (0);
1902 		}
1903 	}
1904 
1905 	pgcnt = page_get_pagecnt(szc);
1906 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1907 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1908 
1909 	/*
1910 	 * First we check for the case that the requtested large
1911 	 * page or larger page already exists in the system.
1912 	 * Actually we only check if the first constituent page
1913 	 * exists and only preallocate if it's not found.
1914 	 */
1915 	ap = anon_get_ptr(amp->ahp, start_idx);
1916 	if (ap) {
1917 		uint_t pszc;
1918 		swap_xlate(ap, &vp, &off);
1919 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1920 			if (pszc > szc && upsize) {
1921 				*ppa_szc = MIN(pszc, seg->s_szc);
1922 				return (-2);
1923 			}
1924 			if (pszc >= szc) {
1925 				prealloc = 0;
1926 			}
1927 		}
1928 	}
1929 
1930 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1931 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1932 
1933 top:
1934 	/*
1935 	 * If a smaller page or no page at all was found,
1936 	 * grab a large page off the freelist.
1937 	 */
1938 	if (prealloc) {
1939 		ASSERT(conpp == NULL);
1940 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1941 		    szc, 0, pgflags) != 0) {
1942 			VM_STAT_ADD(anonvmstats.getpages[7]);
1943 			if (brkcow == 0 || szc < seg->s_szc ||
1944 			    !anon_szcshare(amp->ahp, start_idx)) {
1945 				/*
1946 				 * If the refcnt's of all anon slots are <= 1
1947 				 * they can't increase since we are holding
1948 				 * the address space's lock. So segvn can
1949 				 * safely decrease szc without risking to
1950 				 * generate a cow fault for the region smaller
1951 				 * than the segment's largest page size.
1952 				 */
1953 				VM_STAT_ADD(anonvmstats.getpages[8]);
1954 				return (-1);
1955 			}
1956 		docow:
1957 			/*
1958 			 * This is a cow fault. Copy away the entire 1 large
1959 			 * page region of this segment.
1960 			 */
1961 			if (szc != seg->s_szc)
1962 				panic("anon_map_getpages: cowfault for szc %d",
1963 				    szc);
1964 			vaddr = addr;
1965 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1966 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1967 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1968 				    NULL) {
1969 					err = anon_getpage(&ap, &vpprot, pl,
1970 					    PAGESIZE, seg, vaddr, rw, cred);
1971 					if (err) {
1972 						for (i = 0; i < pg_idx; i++) {
1973 							if ((pp = ppa[i]) !=
1974 							    NULL)
1975 								page_unlock(pp);
1976 						}
1977 						return (err);
1978 					}
1979 					ppa[pg_idx] = pl[0];
1980 				} else {
1981 					/*
1982 					 * Since this is a cowfault we know
1983 					 * that this address space has a
1984 					 * parent or children which means
1985 					 * anon_dup_fill_holes() has initialized
1986 					 * all anon slots within a large page
1987 					 * region that had at least one anon
1988 					 * slot at the time of fork().
1989 					 */
1990 					panic("anon_map_getpages: "
1991 					    "cowfault but anon slot is empty");
1992 				}
1993 			}
1994 			VM_STAT_ADD(anonvmstats.getpages[9]);
1995 			*protp = PROT_ALL;
1996 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1997 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
1998 		}
1999 	}
2000 
2001 	VM_STAT_ADD(anonvmstats.getpages[10]);
2002 
2003 	an_idx = start_idx;
2004 	pg_idx = 0;
2005 	vaddr = addr;
2006 	while (pg_idx < pgcnt) {
2007 		slotcreate = 0;
2008 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2009 			VM_STAT_ADD(anonvmstats.getpages[11]);
2010 			/*
2011 			 * For us to have decided not to preallocate
2012 			 * would have meant that a large page
2013 			 * was found. Which also means that all of the
2014 			 * anon slots for that page would have been
2015 			 * already created for us.
2016 			 */
2017 			if (prealloc == 0)
2018 				panic("anon_map_getpages: prealloc = 0");
2019 
2020 			slotcreate = 1;
2021 			ap = anon_alloc(NULL, 0);
2022 		}
2023 		swap_xlate(ap, &vp, &off);
2024 
2025 		/*
2026 		 * Now setup our preallocated page to pass down
2027 		 * to swap_getpage().
2028 		 */
2029 		if (prealloc) {
2030 			ASSERT(ppa[pg_idx]->p_szc == szc);
2031 			conpp = ppa[pg_idx];
2032 		}
2033 		ASSERT(prealloc || conpp == NULL);
2034 
2035 		/*
2036 		 * If we just created this anon slot then call
2037 		 * with S_CREATE to prevent doing IO on the page.
2038 		 * Similar to the anon_zero case.
2039 		 */
2040 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2041 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2042 		    slotcreate == 1 ? S_CREATE : rw, cred);
2043 
2044 		if (err) {
2045 			ASSERT(err != -2 || upsize);
2046 			VM_STAT_ADD(anonvmstats.getpages[12]);
2047 			ASSERT(slotcreate == 0);
2048 			goto io_err;
2049 		}
2050 
2051 		pp = pl[0];
2052 
2053 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2054 			VM_STAT_ADD(anonvmstats.getpages[13]);
2055 			ASSERT(slotcreate == 0);
2056 			ASSERT(prealloc == 0);
2057 			ASSERT(pg_idx == 0);
2058 			if (pp->p_szc > szc) {
2059 				ASSERT(upsize);
2060 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2061 				page_unlock(pp);
2062 				VM_STAT_ADD(anonvmstats.getpages[14]);
2063 				return (-2);
2064 			}
2065 			page_unlock(pp);
2066 			prealloc = 1;
2067 			goto top;
2068 		}
2069 
2070 		/*
2071 		 * If we decided to preallocate but VOP_GETPAGE
2072 		 * found a page in the system that satisfies our
2073 		 * request then free up our preallocated large page
2074 		 * and continue looping accross the existing large
2075 		 * page via VOP_GETPAGE.
2076 		 */
2077 		if (prealloc && pp != ppa[pg_idx]) {
2078 			VM_STAT_ADD(anonvmstats.getpages[15]);
2079 			ASSERT(slotcreate == 0);
2080 			ASSERT(pg_idx == 0);
2081 			conpp = NULL;
2082 			prealloc = 0;
2083 			page_free_pages(ppa[0]);
2084 		}
2085 
2086 		if (prealloc && nreloc > 1) {
2087 			/*
2088 			 * we have relocated out of a smaller large page.
2089 			 * skip npgs - 1 iterations and continue which will
2090 			 * increment by one the loop indices.
2091 			 */
2092 			spgcnt_t npgs = nreloc;
2093 
2094 			VM_STAT_ADD(anonvmstats.getpages[16]);
2095 
2096 			ASSERT(pp == ppa[pg_idx]);
2097 			ASSERT(slotcreate == 0);
2098 			ASSERT(pg_idx + npgs <= pgcnt);
2099 			if ((*protp & PROT_WRITE) &&
2100 			    anon_share(amp->ahp, an_idx, npgs)) {
2101 				*protp &= ~PROT_WRITE;
2102 			}
2103 			pg_idx += npgs;
2104 			an_idx += npgs;
2105 			vaddr += PAGESIZE * npgs;
2106 			continue;
2107 		}
2108 
2109 		VM_STAT_ADD(anonvmstats.getpages[17]);
2110 
2111 		/*
2112 		 * Anon_zero case.
2113 		 */
2114 		if (slotcreate) {
2115 			ASSERT(prealloc);
2116 			pagezero(pp, 0, PAGESIZE);
2117 			CPU_STATS_ADD_K(vm, zfod, 1);
2118 			hat_setrefmod(pp);
2119 		}
2120 
2121 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2122 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2123 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2124 
2125 		if (pg_idx > 0 &&
2126 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2127 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2128 			panic("anon_map_getpages: unexpected page");
2129 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2130 			panic("anon_map_getpages: unaligned page");
2131 		}
2132 
2133 		if (prealloc == 0) {
2134 			ppa[pg_idx] = pp;
2135 		}
2136 
2137 		if (ap->an_refcnt > 1) {
2138 			VM_STAT_ADD(anonvmstats.getpages[18]);
2139 			*protp &= ~PROT_WRITE;
2140 		}
2141 
2142 		/*
2143 		 * If this is a new anon slot then initialize
2144 		 * the anon array entry.
2145 		 */
2146 		if (slotcreate) {
2147 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2148 		}
2149 		pg_idx++;
2150 		an_idx++;
2151 		vaddr += PAGESIZE;
2152 	}
2153 
2154 	/*
2155 	 * Since preallocated pages come off the freelist
2156 	 * they are locked SE_EXCL. Simply downgrade and return.
2157 	 */
2158 	if (prealloc) {
2159 		VM_STAT_ADD(anonvmstats.getpages[19]);
2160 		conpp = NULL;
2161 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2162 			page_downgrade(ppa[pg_idx]);
2163 		}
2164 	}
2165 	ASSERT(conpp == NULL);
2166 
2167 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2168 		VM_STAT_ADD(anonvmstats.getpages[20]);
2169 		return (0);
2170 	}
2171 
2172 	if (szc < seg->s_szc)
2173 		panic("anon_map_getpages: cowfault for szc %d", szc);
2174 
2175 	VM_STAT_ADD(anonvmstats.getpages[21]);
2176 
2177 	*protp = PROT_ALL;
2178 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2179 	    ppa, vpage, anypgsz, pgflags, cred));
2180 io_err:
2181 	/*
2182 	 * We got an IO error somewhere in our large page.
2183 	 * If we were using a preallocated page then just demote
2184 	 * all the constituent pages that we've succeeded with sofar
2185 	 * to PAGESIZE pages and leave them in the system
2186 	 * unlocked.
2187 	 */
2188 
2189 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2190 
2191 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2192 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2193 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2194 
2195 	if (prealloc) {
2196 		conpp = NULL;
2197 		if (pg_idx > 0) {
2198 			VM_STAT_ADD(anonvmstats.getpages[25]);
2199 			for (i = 0; i < pgcnt; i++) {
2200 				pp = ppa[i];
2201 				ASSERT(PAGE_EXCL(pp));
2202 				ASSERT(pp->p_szc == szc);
2203 				pp->p_szc = 0;
2204 			}
2205 			for (i = 0; i < pg_idx; i++) {
2206 				ASSERT(!hat_page_is_mapped(ppa[i]));
2207 				page_unlock(ppa[i]);
2208 			}
2209 			/*
2210 			 * Now free up the remaining unused constituent
2211 			 * pages.
2212 			 */
2213 			while (pg_idx < pgcnt) {
2214 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2215 				page_free(ppa[pg_idx], 0);
2216 				pg_idx++;
2217 			}
2218 		} else {
2219 			VM_STAT_ADD(anonvmstats.getpages[26]);
2220 			page_free_pages(ppa[0]);
2221 		}
2222 	} else {
2223 		VM_STAT_ADD(anonvmstats.getpages[27]);
2224 		ASSERT(err > 0);
2225 		for (i = 0; i < pg_idx; i++)
2226 			page_unlock(ppa[i]);
2227 	}
2228 	ASSERT(conpp == NULL);
2229 	if (err != -1)
2230 		return (err);
2231 	/*
2232 	 * we are here because we failed to relocate.
2233 	 */
2234 	ASSERT(prealloc);
2235 	if (brkcow == 0 || szc < seg->s_szc ||
2236 	    !anon_szcshare(amp->ahp, start_idx)) {
2237 		VM_STAT_ADD(anonvmstats.getpages[28]);
2238 		return (-1);
2239 	}
2240 	VM_STAT_ADD(anonvmstats.getpages[29]);
2241 	goto docow;
2242 }
2243 
2244 
2245 /*
2246  * Turn a reference to an object or shared anon page
2247  * into a private page with a copy of the data from the
2248  * original page which is always locked by the caller.
2249  * This routine unloads the translation and unlocks the
2250  * original page, if it isn't being stolen, before returning
2251  * to the caller.
2252  *
2253  * NOTE:  The original anon slot is not freed by this routine
2254  *	  It must be freed by the caller while holding the
2255  *	  "anon_map" lock to prevent races which can occur if
2256  *	  a process has multiple lwps in its address space.
2257  */
2258 page_t *
2259 anon_private(
2260 	struct anon **app,
2261 	struct seg *seg,
2262 	caddr_t addr,
2263 	uint_t	prot,
2264 	page_t *opp,
2265 	int oppflags,
2266 	struct cred *cred)
2267 {
2268 	struct anon *old = *app;
2269 	struct anon *new;
2270 	page_t *pp = NULL;
2271 	struct vnode *vp;
2272 	anoff_t off;
2273 	page_t *anon_pl[1 + 1];
2274 	int err;
2275 
2276 	if (oppflags & STEAL_PAGE)
2277 		ASSERT(PAGE_EXCL(opp));
2278 	else
2279 		ASSERT(PAGE_LOCKED(opp));
2280 
2281 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2282 
2283 	/* Kernel probe */
2284 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2285 		tnf_opaque,	address,	addr);
2286 
2287 	*app = new = anon_alloc(NULL, 0);
2288 	swap_xlate(new, &vp, &off);
2289 
2290 	if (oppflags & STEAL_PAGE) {
2291 		page_rename(opp, vp, (u_offset_t)off);
2292 		pp = opp;
2293 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2294 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2295 		    seg, addr, pp, vp, off);
2296 		hat_setmod(pp);
2297 
2298 		/* bug 4026339 */
2299 		page_downgrade(pp);
2300 		return (pp);
2301 	}
2302 
2303 	/*
2304 	 * Call the VOP_GETPAGE routine to create the page, thereby
2305 	 * enabling the vnode driver to allocate any filesystem
2306 	 * space (e.g., disk block allocation for UFS).  This also
2307 	 * prevents more than one page from being added to the
2308 	 * vnode at the same time.
2309 	 */
2310 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2311 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2312 	if (err)
2313 		goto out;
2314 
2315 	pp = anon_pl[0];
2316 
2317 	/*
2318 	 * If the original page was locked, we need to move the lock
2319 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2320 	 * page to 'cowcnt/lckcnt' of the new page.
2321 	 *
2322 	 * See Statement at the beginning of segvn_lockop() and
2323 	 * comments in page_pp_useclaim() regarding the way
2324 	 * cowcnts/lckcnts are handled.
2325 	 *
2326 	 * Also availrmem must be decremented up front for read only mapping
2327 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2328 	 * if availrmem did not need to be decremented after all.
2329 	 */
2330 	if (oppflags & LOCK_PAGE) {
2331 		if ((prot & PROT_WRITE) == 0) {
2332 			mutex_enter(&freemem_lock);
2333 			if (availrmem > pages_pp_maximum) {
2334 				availrmem--;
2335 				pages_useclaim++;
2336 			} else {
2337 				mutex_exit(&freemem_lock);
2338 				goto out;
2339 			}
2340 			mutex_exit(&freemem_lock);
2341 		}
2342 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2343 	}
2344 
2345 	/*
2346 	 * Now copy the contents from the original page,
2347 	 * which is locked and loaded in the MMU by
2348 	 * the caller to prevent yet another page fault.
2349 	 */
2350 	/* XXX - should set mod bit in here */
2351 	if (ppcopy(opp, pp) == 0) {
2352 		/*
2353 		 * Before ppcopy could hanlde UE or other faults, we
2354 		 * would have panicked here, and still have no option
2355 		 * but to do so now.
2356 		 */
2357 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2358 		    opp, pp);
2359 	}
2360 
2361 	hat_setrefmod(pp);		/* mark as modified */
2362 
2363 	/*
2364 	 * Unload the old translation.
2365 	 */
2366 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2367 
2368 	/*
2369 	 * Free unmapped, unmodified original page.
2370 	 * or release the lock on the original page,
2371 	 * otherwise the process will sleep forever in
2372 	 * anon_decref() waiting for the "exclusive" lock
2373 	 * on the page.
2374 	 */
2375 	(void) page_release(opp, 1);
2376 
2377 	/*
2378 	 * we are done with page creation so downgrade the new
2379 	 * page's selock to shared, this helps when multiple
2380 	 * as_fault(...SOFTLOCK...) are done to the same
2381 	 * page(aio)
2382 	 */
2383 	page_downgrade(pp);
2384 
2385 	/*
2386 	 * NOTE:  The original anon slot must be freed by the
2387 	 * caller while holding the "anon_map" lock, if we
2388 	 * copied away from an anonymous page.
2389 	 */
2390 	return (pp);
2391 
2392 out:
2393 	*app = old;
2394 	if (pp)
2395 		page_unlock(pp);
2396 	anon_decref(new);
2397 	page_unlock(opp);
2398 	return ((page_t *)NULL);
2399 }
2400 
2401 int
2402 anon_map_privatepages(
2403 	struct anon_map *amp,
2404 	ulong_t	start_idx,
2405 	uint_t	szc,
2406 	struct seg *seg,
2407 	caddr_t addr,
2408 	uint_t	prot,
2409 	page_t	*ppa[],
2410 	struct vpage vpage[],
2411 	int anypgsz,
2412 	int pgflags,
2413 	struct cred *cred)
2414 {
2415 	pgcnt_t		pgcnt;
2416 	struct vnode	*vp;
2417 	anoff_t		off;
2418 	page_t		*pl[2], *conpp = NULL;
2419 	int		err;
2420 	int		prealloc = 1;
2421 	struct anon	*ap, *oldap;
2422 	caddr_t		vaddr;
2423 	page_t		*pplist, *pp;
2424 	ulong_t		pg_idx, an_idx;
2425 	spgcnt_t	nreloc = 0;
2426 	int		pagelock = 0;
2427 	kmutex_t	*ahmpages = NULL;
2428 #ifdef DEBUG
2429 	int		refcnt;
2430 #endif
2431 
2432 	ASSERT(szc != 0);
2433 	ASSERT(szc == seg->s_szc);
2434 
2435 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2436 
2437 	pgcnt = page_get_pagecnt(szc);
2438 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2439 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2440 
2441 	ASSERT(amp != NULL);
2442 	ap = anon_get_ptr(amp->ahp, start_idx);
2443 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2444 
2445 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2446 
2447 	/*
2448 	 * Now try and allocate the large page. If we fail then just
2449 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2450 	 * the caller make this decision but to avoid added complexity
2451 	 * it's simplier to handle that case here.
2452 	 */
2453 	if (anypgsz == -1) {
2454 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2455 		prealloc = 0;
2456 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2457 	    anypgsz, pgflags) != 0) {
2458 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2459 		prealloc = 0;
2460 	}
2461 
2462 	/*
2463 	 * make the decrement of all refcnts of all
2464 	 * anon slots of a large page appear atomic by
2465 	 * getting an anonpages_hash_lock for the
2466 	 * first anon slot of a large page.
2467 	 */
2468 	if (ap != NULL) {
2469 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2470 		    ap->an_off)];
2471 		mutex_enter(ahmpages);
2472 		if (ap->an_refcnt == 1) {
2473 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2474 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2475 			mutex_exit(ahmpages);
2476 
2477 			if (prealloc) {
2478 				page_free_replacement_page(pplist);
2479 				page_create_putback(pgcnt);
2480 			}
2481 			ASSERT(ppa[0]->p_szc <= szc);
2482 			if (ppa[0]->p_szc == szc) {
2483 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2484 				return (0);
2485 			}
2486 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2487 				ASSERT(ppa[pg_idx] != NULL);
2488 				page_unlock(ppa[pg_idx]);
2489 			}
2490 			return (-1);
2491 		}
2492 	}
2493 
2494 	/*
2495 	 * If we are passed in the vpage array and this is
2496 	 * not PROT_WRITE then we need to decrement availrmem
2497 	 * up front before we try anything. If we need to and
2498 	 * can't decrement availrmem then its better to fail now
2499 	 * than in the middle of processing the new large page.
2500 	 * page_pp_usclaim() on behalf of each constituent page
2501 	 * below will adjust availrmem back for the cases not needed.
2502 	 */
2503 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2504 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2505 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2506 				pagelock = 1;
2507 				break;
2508 			}
2509 		}
2510 		if (pagelock) {
2511 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2512 			mutex_enter(&freemem_lock);
2513 			if (availrmem >= pages_pp_maximum + pgcnt) {
2514 				availrmem -= pgcnt;
2515 				pages_useclaim += pgcnt;
2516 			} else {
2517 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2518 				mutex_exit(&freemem_lock);
2519 				if (ahmpages != NULL) {
2520 					mutex_exit(ahmpages);
2521 				}
2522 				if (prealloc) {
2523 					page_free_replacement_page(pplist);
2524 					page_create_putback(pgcnt);
2525 				}
2526 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2527 					if (ppa[pg_idx] != NULL)
2528 						page_unlock(ppa[pg_idx]);
2529 				return (ENOMEM);
2530 			}
2531 			mutex_exit(&freemem_lock);
2532 		}
2533 	}
2534 
2535 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2536 
2537 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2538 
2539 	an_idx = start_idx;
2540 	pg_idx = 0;
2541 	vaddr = addr;
2542 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2543 		ASSERT(ppa[pg_idx] != NULL);
2544 		oldap = anon_get_ptr(amp->ahp, an_idx);
2545 		ASSERT(ahmpages != NULL || oldap == NULL);
2546 		ASSERT(ahmpages == NULL || oldap != NULL);
2547 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2548 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2549 		    (refcnt = oldap->an_refcnt));
2550 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2551 		    refcnt == oldap->an_refcnt);
2552 
2553 		ap = anon_alloc(NULL, 0);
2554 
2555 		swap_xlate(ap, &vp, &off);
2556 
2557 		/*
2558 		 * Now setup our preallocated page to pass down to
2559 		 * swap_getpage().
2560 		 */
2561 		if (prealloc) {
2562 			pp = pplist;
2563 			page_sub(&pplist, pp);
2564 			conpp = pp;
2565 		}
2566 
2567 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2568 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2569 		    S_CREATE, cred);
2570 
2571 		/*
2572 		 * Impossible to fail this is S_CREATE.
2573 		 */
2574 		if (err)
2575 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2576 
2577 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2578 		ASSERT(prealloc == 0 || nreloc == 1);
2579 
2580 		pp = pl[0];
2581 
2582 		/*
2583 		 * If the original page was locked, we need to move
2584 		 * the lock to the new page by transfering
2585 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2586 		 * of the new page. pg_idx can be used to index
2587 		 * into the vpage array since the caller will guarentee
2588 		 * that vpage struct passed in corresponds to addr
2589 		 * and forward.
2590 		 */
2591 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2592 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2593 		} else if (pagelock) {
2594 			mutex_enter(&freemem_lock);
2595 			availrmem++;
2596 			pages_useclaim--;
2597 			mutex_exit(&freemem_lock);
2598 		}
2599 
2600 		/*
2601 		 * Now copy the contents from the original page.
2602 		 */
2603 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2604 			/*
2605 			 * Before ppcopy could hanlde UE or other faults, we
2606 			 * would have panicked here, and still have no option
2607 			 * but to do so now.
2608 			 */
2609 			panic("anon_map_privatepages, ppcopy failed");
2610 		}
2611 
2612 		hat_setrefmod(pp);		/* mark as modified */
2613 
2614 		/*
2615 		 * Release the lock on the original page,
2616 		 * derement the old slot, and down grade the lock
2617 		 * on the new copy.
2618 		 */
2619 		page_unlock(ppa[pg_idx]);
2620 
2621 		if (!prealloc)
2622 			page_downgrade(pp);
2623 
2624 		ppa[pg_idx] = pp;
2625 
2626 		/*
2627 		 * Now reflect the copy in the new anon array.
2628 		 */
2629 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2630 		if (oldap != NULL)
2631 			anon_decref(oldap);
2632 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2633 	}
2634 	if (ahmpages != NULL) {
2635 		mutex_exit(ahmpages);
2636 	}
2637 	ASSERT(prealloc == 0 || pplist == NULL);
2638 	if (prealloc) {
2639 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2640 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2641 			page_downgrade(ppa[pg_idx]);
2642 		}
2643 	}
2644 
2645 	/*
2646 	 * Unload the old large page translation.
2647 	 */
2648 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2649 	return (0);
2650 }
2651 
2652 /*
2653  * Allocate a private zero-filled anon page.
2654  */
2655 page_t *
2656 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2657 {
2658 	struct anon *ap;
2659 	page_t *pp;
2660 	struct vnode *vp;
2661 	anoff_t off;
2662 	page_t *anon_pl[1 + 1];
2663 	int err;
2664 
2665 	/* Kernel probe */
2666 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2667 		tnf_opaque,	address,	addr);
2668 
2669 	*app = ap = anon_alloc(NULL, 0);
2670 	swap_xlate(ap, &vp, &off);
2671 
2672 	/*
2673 	 * Call the VOP_GETPAGE routine to create the page, thereby
2674 	 * enabling the vnode driver to allocate any filesystem
2675 	 * dependent structures (e.g., disk block allocation for UFS).
2676 	 * This also prevents more than on page from being added to
2677 	 * the vnode at the same time since it is locked.
2678 	 */
2679 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2680 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2681 	if (err) {
2682 		*app = NULL;
2683 		anon_decref(ap);
2684 		return (NULL);
2685 	}
2686 	pp = anon_pl[0];
2687 
2688 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2689 	page_downgrade(pp);
2690 	CPU_STATS_ADD_K(vm, zfod, 1);
2691 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2692 	return (pp);
2693 }
2694 
2695 
2696 /*
2697  * Allocate array of private zero-filled anon pages for empty slots
2698  * and kept pages for non empty slots within given range.
2699  *
2700  * NOTE: This rontine will try and use large pages
2701  *	if available and supported by underlying platform.
2702  */
2703 int
2704 anon_map_createpages(
2705 	struct anon_map *amp,
2706 	ulong_t start_index,
2707 	size_t len,
2708 	page_t *ppa[],
2709 	struct seg *seg,
2710 	caddr_t addr,
2711 	enum seg_rw rw,
2712 	struct cred *cred)
2713 {
2714 
2715 	struct anon	*ap;
2716 	struct vnode	*ap_vp;
2717 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2718 	int		err = 0;
2719 	ulong_t		p_index, index;
2720 	pgcnt_t		npgs, pg_cnt;
2721 	spgcnt_t	nreloc = 0;
2722 	uint_t		l_szc, szc, prot;
2723 	anoff_t		ap_off;
2724 	size_t		pgsz;
2725 	lgrp_t		*lgrp;
2726 	kmutex_t	*ahm;
2727 
2728 	/*
2729 	 * XXX For now only handle S_CREATE.
2730 	 */
2731 	ASSERT(rw == S_CREATE);
2732 
2733 	index	= start_index;
2734 	p_index	= 0;
2735 	npgs = btopr(len);
2736 
2737 	/*
2738 	 * If this platform supports multiple page sizes
2739 	 * then try and allocate directly from the free
2740 	 * list for pages larger than PAGESIZE.
2741 	 *
2742 	 * NOTE:When we have page_create_ru we can stop
2743 	 *	directly allocating from the freelist.
2744 	 */
2745 	l_szc  = seg->s_szc;
2746 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2747 	while (npgs) {
2748 
2749 		/*
2750 		 * if anon slot already exists
2751 		 *   (means page has been created)
2752 		 * so 1) look up the page
2753 		 *    2) if the page is still in memory, get it.
2754 		 *    3) if not, create a page and
2755 		 *	  page in from physical swap device.
2756 		 * These are done in anon_getpage().
2757 		 */
2758 		ap = anon_get_ptr(amp->ahp, index);
2759 		if (ap) {
2760 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2761 			    seg, addr, S_READ, cred);
2762 			if (err) {
2763 				ANON_LOCK_EXIT(&amp->a_rwlock);
2764 				panic("anon_map_createpages: anon_getpage");
2765 			}
2766 			pp = anon_pl[0];
2767 			ppa[p_index++] = pp;
2768 
2769 			/*
2770 			 * an_pvp can become non-NULL after SysV's page was
2771 			 * paged out before ISM was attached to this SysV
2772 			 * shared memory segment. So free swap slot if needed.
2773 			 */
2774 			if (ap->an_pvp != NULL) {
2775 				page_io_lock(pp);
2776 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
2777 				    ap->an_off)];
2778 				mutex_enter(ahm);
2779 				if (ap->an_pvp != NULL) {
2780 					swap_phys_free(ap->an_pvp,
2781 					    ap->an_poff, PAGESIZE);
2782 					ap->an_pvp = NULL;
2783 					ap->an_poff = 0;
2784 					mutex_exit(ahm);
2785 					hat_setmod(pp);
2786 				} else {
2787 					mutex_exit(ahm);
2788 				}
2789 				page_io_unlock(pp);
2790 			}
2791 
2792 			addr += PAGESIZE;
2793 			index++;
2794 			npgs--;
2795 			continue;
2796 		}
2797 		/*
2798 		 * Now try and allocate the largest page possible
2799 		 * for the current address and range.
2800 		 * Keep dropping down in page size until:
2801 		 *
2802 		 *	1) Properly aligned
2803 		 *	2) Does not overlap existing anon pages
2804 		 *	3) Fits in remaining range.
2805 		 *	4) able to allocate one.
2806 		 *
2807 		 * NOTE: XXX When page_create_ru is completed this code
2808 		 *	 will change.
2809 		 */
2810 		szc    = l_szc;
2811 		pplist = NULL;
2812 		pg_cnt = 0;
2813 		while (szc) {
2814 			pgsz	= page_get_pagesize(szc);
2815 			pg_cnt	= pgsz >> PAGESHIFT;
2816 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2817 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2818 				/*
2819 				 * XXX
2820 				 * Since we are faking page_create()
2821 				 * we also need to do the freemem and
2822 				 * pcf accounting.
2823 				 */
2824 				(void) page_create_wait(pg_cnt, PG_WAIT);
2825 
2826 				/*
2827 				 * Get lgroup to allocate next page of shared
2828 				 * memory from and use it to specify where to
2829 				 * allocate the physical memory
2830 				 */
2831 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2832 
2833 				pplist = page_get_freelist(
2834 				    anon_vp, (u_offset_t)0, seg,
2835 				    addr, pgsz, 0, lgrp);
2836 
2837 				if (pplist == NULL) {
2838 					page_create_putback(pg_cnt);
2839 				}
2840 
2841 				/*
2842 				 * If a request for a page of size
2843 				 * larger than PAGESIZE failed
2844 				 * then don't try that size anymore.
2845 				 */
2846 				if (pplist == NULL) {
2847 					l_szc = szc - 1;
2848 				} else {
2849 					break;
2850 				}
2851 			}
2852 			szc--;
2853 		}
2854 
2855 		/*
2856 		 * If just using PAGESIZE pages then don't
2857 		 * directly allocate from the free list.
2858 		 */
2859 		if (pplist == NULL) {
2860 			ASSERT(szc == 0);
2861 			pp = anon_zero(seg, addr, &ap, cred);
2862 			if (pp == NULL) {
2863 				ANON_LOCK_EXIT(&amp->a_rwlock);
2864 				panic("anon_map_createpages: anon_zero");
2865 			}
2866 			ppa[p_index++] = pp;
2867 
2868 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2869 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2870 
2871 			addr += PAGESIZE;
2872 			index++;
2873 			npgs--;
2874 			continue;
2875 		}
2876 
2877 		/*
2878 		 * pplist is a list of pg_cnt PAGESIZE pages.
2879 		 * These pages are locked SE_EXCL since they
2880 		 * came directly off the free list.
2881 		 */
2882 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2883 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2884 		ASSERT(conpp == NULL);
2885 		while (pg_cnt--) {
2886 
2887 			ap = anon_alloc(NULL, 0);
2888 			swap_xlate(ap, &ap_vp, &ap_off);
2889 
2890 			ASSERT(pplist != NULL);
2891 			pp = pplist;
2892 			page_sub(&pplist, pp);
2893 			PP_CLRFREE(pp);
2894 			PP_CLRAGED(pp);
2895 			conpp = pp;
2896 
2897 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2898 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2899 			    &nreloc, seg, addr, S_CREATE, cred);
2900 
2901 			if (err) {
2902 				ANON_LOCK_EXIT(&amp->a_rwlock);
2903 				panic("anon_map_createpages: S_CREATE");
2904 			}
2905 
2906 			ASSERT(anon_pl[0] == pp);
2907 			ASSERT(nreloc == 1);
2908 			pagezero(pp, 0, PAGESIZE);
2909 			CPU_STATS_ADD_K(vm, zfod, 1);
2910 			hat_setrefmod(pp);
2911 
2912 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2913 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2914 
2915 			ppa[p_index++] = pp;
2916 
2917 			addr += PAGESIZE;
2918 			index++;
2919 			npgs--;
2920 		}
2921 		conpp = NULL;
2922 		pg_cnt	= pgsz >> PAGESHIFT;
2923 		p_index = p_index - pg_cnt;
2924 		while (pg_cnt--) {
2925 			page_downgrade(ppa[p_index++]);
2926 		}
2927 	}
2928 	ANON_LOCK_EXIT(&amp->a_rwlock);
2929 	return (0);
2930 }
2931 
2932 static int
2933 anon_try_demote_pages(
2934 	struct anon_hdr *ahp,
2935 	ulong_t sidx,
2936 	uint_t szc,
2937 	page_t **ppa,
2938 	int private)
2939 {
2940 	struct anon	*ap;
2941 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2942 	page_t		*pp;
2943 	pgcnt_t		i;
2944 	kmutex_t	*ahmpages = NULL;
2945 	int		root = 0;
2946 	pgcnt_t		npgs;
2947 	pgcnt_t		curnpgs = 0;
2948 	size_t		ppasize = 0;
2949 
2950 	ASSERT(szc != 0);
2951 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2952 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
2953 	ASSERT(sidx < ahp->size);
2954 
2955 	if (ppa == NULL) {
2956 		ppasize = pgcnt * sizeof (page_t *);
2957 		ppa = kmem_alloc(ppasize, KM_SLEEP);
2958 	}
2959 
2960 	ap = anon_get_ptr(ahp, sidx);
2961 	if (ap != NULL && private) {
2962 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2963 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2964 		mutex_enter(ahmpages);
2965 	}
2966 
2967 	if (ap != NULL && ap->an_refcnt > 1) {
2968 		if (ahmpages != NULL) {
2969 			VM_STAT_ADD(anonvmstats.demotepages[2]);
2970 			mutex_exit(ahmpages);
2971 		}
2972 		if (ppasize != 0) {
2973 			kmem_free(ppa, ppasize);
2974 		}
2975 		return (0);
2976 	}
2977 	if (ahmpages != NULL) {
2978 		mutex_exit(ahmpages);
2979 	}
2980 	if (ahp->size - sidx < pgcnt) {
2981 		ASSERT(private == 0);
2982 		pgcnt = ahp->size - sidx;
2983 	}
2984 	for (i = 0; i < pgcnt; i++, sidx++) {
2985 		ap = anon_get_ptr(ahp, sidx);
2986 		if (ap != NULL) {
2987 			if (ap->an_refcnt != 1) {
2988 				panic("anon_try_demote_pages: an_refcnt != 1");
2989 			}
2990 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2991 			    SE_EXCL);
2992 			if (pp != NULL) {
2993 				(void) hat_pageunload(pp,
2994 				    HAT_FORCE_PGUNLOAD);
2995 			}
2996 		} else {
2997 			ppa[i] = NULL;
2998 		}
2999 	}
3000 	for (i = 0; i < pgcnt; i++) {
3001 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3002 			ASSERT(pp->p_szc <= szc);
3003 			if (!root) {
3004 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3005 				if (curnpgs != 0)
3006 					panic("anon_try_demote_pages: "
3007 					    "bad large page");
3008 
3009 				root = 1;
3010 				curnpgs = npgs =
3011 				    page_get_pagecnt(pp->p_szc);
3012 
3013 				ASSERT(npgs <= pgcnt);
3014 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3015 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3016 			} else {
3017 				ASSERT(i > 0);
3018 				ASSERT(page_pptonum(pp) - 1 ==
3019 				    page_pptonum(ppa[i - 1]));
3020 				if ((page_pptonum(pp) & (npgs - 1)) ==
3021 				    npgs - 1)
3022 					root = 0;
3023 			}
3024 			ASSERT(PAGE_EXCL(pp));
3025 			pp->p_szc = 0;
3026 			ASSERT(curnpgs > 0);
3027 			curnpgs--;
3028 		}
3029 	}
3030 	if (root != 0 || curnpgs != 0)
3031 		panic("anon_try_demote_pages: bad large page");
3032 
3033 	for (i = 0; i < pgcnt; i++) {
3034 		if ((pp = ppa[i]) != NULL) {
3035 			ASSERT(!hat_page_is_mapped(pp));
3036 			ASSERT(pp->p_szc == 0);
3037 			page_unlock(pp);
3038 		}
3039 	}
3040 	if (ppasize != 0) {
3041 		kmem_free(ppa, ppasize);
3042 	}
3043 	return (1);
3044 }
3045 
3046 /*
3047  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3048  */
3049 int
3050 anon_map_demotepages(
3051 	struct anon_map *amp,
3052 	ulong_t	start_idx,
3053 	struct seg *seg,
3054 	caddr_t addr,
3055 	uint_t prot,
3056 	struct vpage vpage[],
3057 	struct cred *cred)
3058 {
3059 	struct anon	*ap;
3060 	uint_t		szc = seg->s_szc;
3061 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3062 	size_t		ppasize = pgcnt * sizeof (page_t *);
3063 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3064 	page_t		*pp;
3065 	page_t		*pl[2];
3066 	pgcnt_t		i, pg_idx;
3067 	ulong_t		an_idx;
3068 	caddr_t		vaddr;
3069 	int 		err;
3070 	int		retry = 0;
3071 	uint_t		vpprot;
3072 
3073 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3074 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3075 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3076 	ASSERT(ppa != NULL);
3077 	ASSERT(szc != 0);
3078 	ASSERT(szc == amp->a_szc);
3079 
3080 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3081 
3082 top:
3083 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3084 		kmem_free(ppa, ppasize);
3085 		return (0);
3086 	}
3087 
3088 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3089 
3090 	ASSERT(retry == 0); /* we can be here only once */
3091 
3092 	vaddr = addr;
3093 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3094 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3095 		ap = anon_get_ptr(amp->ahp, an_idx);
3096 		if (ap == NULL)
3097 			panic("anon_map_demotepages: no anon slot");
3098 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3099 		    S_READ, cred);
3100 		if (err) {
3101 			for (i = 0; i < pg_idx; i++) {
3102 				if ((pp = ppa[i]) != NULL)
3103 					page_unlock(pp);
3104 			}
3105 			kmem_free(ppa, ppasize);
3106 			return (err);
3107 		}
3108 		ppa[pg_idx] = pl[0];
3109 	}
3110 
3111 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3112 	    vpage, -1, 0, cred);
3113 	if (err > 0) {
3114 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3115 		kmem_free(ppa, ppasize);
3116 		return (err);
3117 	}
3118 	ASSERT(err == 0 || err == -1);
3119 	if (err == -1) {
3120 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3121 		retry = 1;
3122 		goto top;
3123 	}
3124 	for (i = 0; i < pgcnt; i++) {
3125 		ASSERT(ppa[i] != NULL);
3126 		if (ppa[i]->p_szc != 0)
3127 			retry = 1;
3128 		page_unlock(ppa[i]);
3129 	}
3130 	if (retry) {
3131 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3132 		goto top;
3133 	}
3134 
3135 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3136 
3137 	kmem_free(ppa, ppasize);
3138 
3139 	return (0);
3140 }
3141 
3142 /*
3143  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3144  * structures with private anon maps. Therefore all anon structures should
3145  * have at most one reference at this point. This means underlying pages can
3146  * be exclusively locked and demoted or freed.  If not freeing the entire
3147  * large pages demote the ends of the region we free to be able to free
3148  * subpages. Page roots correspond to aligned index positions in anon map.
3149  */
3150 void
3151 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3152 {
3153 	ulong_t eidx = sidx + btopr(len);
3154 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3155 	struct anon_hdr *ahp = amp->ahp;
3156 	ulong_t tidx;
3157 	size_t size;
3158 	ulong_t sidx_aligned;
3159 	ulong_t eidx_aligned;
3160 
3161 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3162 	ASSERT(amp->refcnt <= 1);
3163 	ASSERT(amp->a_szc > 0);
3164 	ASSERT(eidx <= ahp->size);
3165 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3166 
3167 	if (len == 0) {	/* XXX */
3168 		return;
3169 	}
3170 
3171 	sidx_aligned = P2ALIGN(sidx, pages);
3172 	if (sidx_aligned != sidx ||
3173 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3174 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3175 		    amp->a_szc, NULL, 0)) {
3176 			panic("anon_shmap_free_pages: demote failed");
3177 		}
3178 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3179 		    P2NPHASE(sidx, pages);
3180 		size <<= PAGESHIFT;
3181 		anon_free(ahp, sidx, size);
3182 		sidx = sidx_aligned + pages;
3183 		if (eidx <= sidx) {
3184 			return;
3185 		}
3186 	}
3187 	eidx_aligned = P2ALIGN(eidx, pages);
3188 	if (sidx < eidx_aligned) {
3189 		anon_free_pages(ahp, sidx,
3190 		    (eidx_aligned - sidx) << PAGESHIFT,
3191 		    amp->a_szc);
3192 		sidx = eidx_aligned;
3193 	}
3194 	ASSERT(sidx == eidx_aligned);
3195 	if (eidx == eidx_aligned) {
3196 		return;
3197 	}
3198 	tidx = eidx;
3199 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3200 	    tidx - sidx < pages) {
3201 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3202 			panic("anon_shmap_free_pages: demote failed");
3203 		}
3204 		size = (eidx - sidx) << PAGESHIFT;
3205 		anon_free(ahp, sidx, size);
3206 	} else {
3207 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3208 	}
3209 }
3210 
3211 /*
3212  * Allocate and initialize an anon_map structure for seg
3213  * associating the given swap reservation with the new anon_map.
3214  */
3215 struct anon_map *
3216 anonmap_alloc(size_t size, size_t swresv, int flags)
3217 {
3218 	struct anon_map *amp;
3219 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3220 
3221 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3222 	if (amp == NULL) {
3223 		ASSERT(kmflags == KM_NOSLEEP);
3224 		return (NULL);
3225 	}
3226 
3227 	amp->ahp = anon_create(btopr(size), flags);
3228 	if (amp->ahp == NULL) {
3229 		ASSERT(flags == ANON_NOSLEEP);
3230 		kmem_cache_free(anonmap_cache, amp);
3231 		return (NULL);
3232 	}
3233 	amp->refcnt = 1;
3234 	amp->size = size;
3235 	amp->swresv = swresv;
3236 	amp->locality = 0;
3237 	amp->a_szc = 0;
3238 	amp->a_sp = NULL;
3239 	return (amp);
3240 }
3241 
3242 void
3243 anonmap_free(struct anon_map *amp)
3244 {
3245 	ASSERT(amp->ahp);
3246 	ASSERT(amp->refcnt == 0);
3247 
3248 	lgrp_shm_policy_fini(amp, NULL);
3249 	anon_release(amp->ahp, btopr(amp->size));
3250 	kmem_cache_free(anonmap_cache, amp);
3251 }
3252 
3253 /*
3254  * Returns true if the app array has some empty slots.
3255  * The offp and lenp parameters are in/out parameters.  On entry
3256  * these values represent the starting offset and length of the
3257  * mapping.  When true is returned, these values may be modified
3258  * to be the largest range which includes empty slots.
3259  */
3260 int
3261 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3262 				size_t *lenp)
3263 {
3264 	ulong_t i, el;
3265 	ssize_t low, high;
3266 	struct anon *ap;
3267 
3268 	low = -1;
3269 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3270 		ap = anon_get_ptr(ahp, anon_idx);
3271 		if (ap == NULL) {
3272 			if (low == -1)
3273 				low = i;
3274 			high = i;
3275 		}
3276 	}
3277 	if (low != -1) {
3278 		/*
3279 		 * Found at least one non-anon page.
3280 		 * Set up the off and len return values.
3281 		 */
3282 		if (low != 0)
3283 			*offp += low;
3284 		*lenp = high - low + PAGESIZE;
3285 		return (1);
3286 	}
3287 	return (0);
3288 }
3289 
3290 /*
3291  * Return a count of the number of existing anon pages in the anon array
3292  * app in the range (off, off+len). The array and slots must be guaranteed
3293  * stable by the caller.
3294  */
3295 pgcnt_t
3296 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3297 {
3298 	pgcnt_t cnt = 0;
3299 
3300 	while (nslots-- > 0) {
3301 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3302 			cnt++;
3303 		anon_index++;
3304 	}
3305 	return (cnt);
3306 }
3307 
3308 /*
3309  * Move reserved phys swap into memory swap (unreserve phys swap
3310  * and reserve mem swap by the same amount).
3311  * Used by segspt when it needs to lock reserved swap npages in memory
3312  */
3313 int
3314 anon_swap_adjust(pgcnt_t npages)
3315 {
3316 	pgcnt_t unlocked_mem_swap;
3317 
3318 	mutex_enter(&anoninfo_lock);
3319 
3320 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3321 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3322 
3323 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3324 	    - k_anoninfo.ani_locked_swap;
3325 	if (npages > unlocked_mem_swap) {
3326 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3327 
3328 		/*
3329 		 * if there is not enough unlocked mem swap we take missing
3330 		 * amount from phys swap and give it to mem swap
3331 		 */
3332 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3333 			mutex_exit(&anoninfo_lock);
3334 			return (ENOMEM);
3335 		}
3336 
3337 		k_anoninfo.ani_mem_resv += adjusted_swap;
3338 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3339 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3340 
3341 		ANI_ADD(adjusted_swap);
3342 	}
3343 	k_anoninfo.ani_locked_swap += npages;
3344 
3345 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3346 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3347 
3348 	mutex_exit(&anoninfo_lock);
3349 
3350 	return (0);
3351 }
3352 
3353 /*
3354  * 'unlocked' reserved mem swap so when it is unreserved it
3355  * can be moved back phys (disk) swap
3356  */
3357 void
3358 anon_swap_restore(pgcnt_t npages)
3359 {
3360 	mutex_enter(&anoninfo_lock);
3361 
3362 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3363 
3364 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3365 	k_anoninfo.ani_locked_swap -= npages;
3366 
3367 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3368 
3369 	mutex_exit(&anoninfo_lock);
3370 }
3371 
3372 /*
3373  * Return the pointer from the list for a
3374  * specified anon index.
3375  */
3376 ulong_t *
3377 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3378 {
3379 	struct anon	**app;
3380 	void 		**ppp;
3381 
3382 	ASSERT(an_idx < ahp->size);
3383 
3384 	/*
3385 	 * Single level case.
3386 	 */
3387 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3388 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3389 	} else {
3390 
3391 		/*
3392 		 * 2 level case.
3393 		 */
3394 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3395 		if (*ppp == NULL) {
3396 			mutex_enter(&ahp->serial_lock);
3397 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3398 			if (*ppp == NULL)
3399 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3400 			mutex_exit(&ahp->serial_lock);
3401 		}
3402 		app = *ppp;
3403 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3404 	}
3405 }
3406 
3407 void
3408 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3409 {
3410 	ulong_t		*ap_slot;
3411 	kmutex_t	*mtx;
3412 	kcondvar_t	*cv;
3413 	int		hash;
3414 
3415 	/*
3416 	 * Use szc to determine anon slot(s) to appear atomic.
3417 	 * If szc = 0, then lock the anon slot and mark it busy.
3418 	 * If szc > 0, then lock the range of slots by getting the
3419 	 * anon_array_lock for the first anon slot, and mark only the
3420 	 * first anon slot busy to represent whole range being busy.
3421 	 */
3422 
3423 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3424 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3425 	hash = ANON_ARRAY_HASH(amp, an_idx);
3426 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3427 	sobj->sync_cv = cv = &anon_array_cv[hash];
3428 	mutex_enter(mtx);
3429 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3430 	while (ANON_ISBUSY(ap_slot))
3431 		cv_wait(cv, mtx);
3432 	ANON_SETBUSY(ap_slot);
3433 	sobj->sync_data = ap_slot;
3434 	mutex_exit(mtx);
3435 }
3436 
3437 int
3438 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3439 			anon_sync_obj_t *sobj)
3440 {
3441 	ulong_t		*ap_slot;
3442 	kmutex_t	*mtx;
3443 	int		hash;
3444 
3445 	/*
3446 	 * Try to lock a range of anon slots.
3447 	 * Use szc to determine anon slot(s) to appear atomic.
3448 	 * If szc = 0, then lock the anon slot and mark it busy.
3449 	 * If szc > 0, then lock the range of slots by getting the
3450 	 * anon_array_lock for the first anon slot, and mark only the
3451 	 * first anon slot busy to represent whole range being busy.
3452 	 * Fail if the mutex or the anon_array are busy.
3453 	 */
3454 
3455 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3456 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3457 	hash = ANON_ARRAY_HASH(amp, an_idx);
3458 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3459 	sobj->sync_cv = &anon_array_cv[hash];
3460 	if (!mutex_tryenter(mtx)) {
3461 		return (EWOULDBLOCK);
3462 	}
3463 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3464 	if (ANON_ISBUSY(ap_slot)) {
3465 		mutex_exit(mtx);
3466 		return (EWOULDBLOCK);
3467 	}
3468 	ANON_SETBUSY(ap_slot);
3469 	sobj->sync_data = ap_slot;
3470 	mutex_exit(mtx);
3471 	return (0);
3472 }
3473 
3474 void
3475 anon_array_exit(anon_sync_obj_t *sobj)
3476 {
3477 	mutex_enter(sobj->sync_mutex);
3478 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3479 	ANON_CLRBUSY(sobj->sync_data);
3480 	if (CV_HAS_WAITERS(sobj->sync_cv))
3481 		cv_broadcast(sobj->sync_cv);
3482 	mutex_exit(sobj->sync_mutex);
3483 }
3484