xref: /titanic_44/usr/src/uts/common/vm/vm_anon.c (revision 193974072f41a843678abf5f61979c748687e66b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - anonymous pages.
41  *
42  * This layer sits immediately above the vm_swap layer.  It manages
43  * physical pages that have no permanent identity in the file system
44  * name space, using the services of the vm_swap layer to allocate
45  * backing storage for these pages.  Since these pages have no external
46  * identity, they are discarded when the last reference is removed.
47  *
48  * An important function of this layer is to manage low-level sharing
49  * of pages that are logically distinct but that happen to be
50  * physically identical (e.g., the corresponding pages of the processes
51  * resulting from a fork before one process or the other changes their
52  * contents).  This pseudo-sharing is present only as an optimization
53  * and is not to be confused with true sharing in which multiple
54  * address spaces deliberately contain references to the same object;
55  * such sharing is managed at a higher level.
56  *
57  * The key data structure here is the anon struct, which contains a
58  * reference count for its associated physical page and a hint about
59  * the identity of that page.  Anon structs typically live in arrays,
60  * with an instance's position in its array determining where the
61  * corresponding backing storage is allocated; however, the swap_xlate()
62  * routine abstracts away this representation information so that the
63  * rest of the anon layer need not know it.  (See the swap layer for
64  * more details on anon struct layout.)
65  *
66  * In the future versions of the system, the association between an
67  * anon struct and its position on backing store will change so that
68  * we don't require backing store all anonymous pages in the system.
69  * This is important for consideration for large memory systems.
70  * We can also use this technique to delay binding physical locations
71  * to anonymous pages until pageout/swapout time where we can make
72  * smarter allocation decisions to improve anonymous klustering.
73  *
74  * Many of the routines defined here take a (struct anon **) argument,
75  * which allows the code at this level to manage anon pages directly,
76  * so that callers can regard anon structs as opaque objects and not be
77  * concerned with assigning or inspecting their contents.
78  *
79  * Clients of this layer refer to anon pages indirectly.  That is, they
80  * maintain arrays of pointers to anon structs rather than maintaining
81  * anon structs themselves.  The (struct anon **) arguments mentioned
82  * above are pointers to entries in these arrays.  It is these arrays
83  * that capture the mapping between offsets within a given segment and
84  * the corresponding anonymous backing storage address.
85  */
86 
87 #ifdef DEBUG
88 #define	ANON_DEBUG
89 #endif
90 
91 #include <sys/types.h>
92 #include <sys/t_lock.h>
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/mman.h>
96 #include <sys/cred.h>
97 #include <sys/thread.h>
98 #include <sys/vnode.h>
99 #include <sys/cpuvar.h>
100 #include <sys/swap.h>
101 #include <sys/cmn_err.h>
102 #include <sys/vtrace.h>
103 #include <sys/kmem.h>
104 #include <sys/sysmacros.h>
105 #include <sys/bitmap.h>
106 #include <sys/vmsystm.h>
107 #include <sys/tuneable.h>
108 #include <sys/debug.h>
109 #include <sys/fs/swapnode.h>
110 #include <sys/tnf_probe.h>
111 #include <sys/lgrp.h>
112 #include <sys/policy.h>
113 #include <sys/condvar_impl.h>
114 #include <sys/mutex_impl.h>
115 #include <sys/rctl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 struct vnode *anon_vp;
128 
129 int anon_debug;
130 
131 kmutex_t	anoninfo_lock;
132 struct		k_anoninfo k_anoninfo;
133 ani_free_t	ani_free_pool[ANI_MAX_POOL];
134 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
135 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
136 
137 /*
138  * Global hash table for (vp, off) -> anon slot
139  */
140 extern	int swap_maxcontig;
141 size_t	anon_hash_size;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 #ifdef VM_STATS
148 static struct anonvmstats_str {
149 	ulong_t getpages[30];
150 	ulong_t privatepages[10];
151 	ulong_t demotepages[9];
152 	ulong_t decrefpages[9];
153 	ulong_t	dupfillholes[4];
154 	ulong_t freepages[1];
155 } anonvmstats;
156 #endif /* VM_STATS */
157 
158 /*ARGSUSED*/
159 static int
160 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
161 {
162 	struct anon_map *amp = buf;
163 
164 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
165 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
166 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
167 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
168 	return (0);
169 }
170 
171 /*ARGSUSED1*/
172 static void
173 anonmap_cache_destructor(void *buf, void *cdrarg)
174 {
175 	struct anon_map *amp = buf;
176 
177 	rw_destroy(&amp->a_rwlock);
178 	cv_destroy(&amp->a_purgecv);
179 	mutex_destroy(&amp->a_pmtx);
180 	mutex_destroy(&amp->a_purgemtx);
181 }
182 
183 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
184 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
185 
186 void
187 anon_init(void)
188 {
189 	int i;
190 
191 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
192 
193 	for (i = 0; i < AH_LOCK_SIZE; i++) {
194 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
195 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
196 	}
197 
198 	for (i = 0; i < ANON_LOCKSIZE; i++) {
199 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
200 		    MUTEX_DEFAULT, NULL);
201 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
202 	}
203 
204 	anon_hash = (struct anon **)
205 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
206 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
207 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
208 	anonmap_cache = kmem_cache_create("anonmap_cache",
209 	    sizeof (struct anon_map), 0,
210 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
211 	    NULL, NULL, 0);
212 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
213 
214 	anon_vp = vn_alloc(KM_SLEEP);
215 	vn_setops(anon_vp, swap_vnodeops);
216 	anon_vp->v_type = VREG;
217 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
218 }
219 
220 /*
221  * Global anon slot hash table manipulation.
222  */
223 
224 static void
225 anon_addhash(struct anon *ap)
226 {
227 	int index;
228 
229 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
230 	index = ANON_HASH(ap->an_vp, ap->an_off);
231 	ap->an_hash = anon_hash[index];
232 	anon_hash[index] = ap;
233 }
234 
235 static void
236 anon_rmhash(struct anon *ap)
237 {
238 	struct anon **app;
239 
240 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
241 
242 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
243 	    *app; app = &((*app)->an_hash)) {
244 		if (*app == ap) {
245 			*app = ap->an_hash;
246 			break;
247 		}
248 	}
249 }
250 
251 /*
252  * The anon array interfaces. Functions allocating,
253  * freeing array of pointers, and returning/setting
254  * entries in the array of pointers for a given offset.
255  *
256  * Create the list of pointers
257  */
258 struct anon_hdr *
259 anon_create(pgcnt_t npages, int flags)
260 {
261 	struct anon_hdr *ahp;
262 	ulong_t nchunks;
263 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
264 
265 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
266 		return (NULL);
267 	}
268 
269 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
270 	/*
271 	 * Single level case.
272 	 */
273 	ahp->size = npages;
274 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
275 
276 		if (flags & ANON_ALLOC_FORCE)
277 			ahp->flags |= ANON_ALLOC_FORCE;
278 
279 		ahp->array_chunk = kmem_zalloc(
280 		    ahp->size * sizeof (struct anon *), kmemflags);
281 
282 		if (ahp->array_chunk == NULL) {
283 			kmem_free(ahp, sizeof (struct anon_hdr));
284 			return (NULL);
285 		}
286 	} else {
287 		/*
288 		 * 2 Level case.
289 		 * anon hdr size needs to be rounded off  to be a multiple
290 		 * of ANON_CHUNK_SIZE. This is important as various anon
291 		 * related functions depend on this.
292 		 * NOTE -
293 		 * anon_grow()  makes anon hdr size a multiple of
294 		 * ANON_CHUNK_SIZE.
295 		 * amp size is <= anon hdr size.
296 		 * anon_index + seg_pgs <= anon hdr size.
297 		 */
298 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
299 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
300 
301 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
302 		    kmemflags);
303 
304 		if (ahp->array_chunk == NULL) {
305 			kmem_free(ahp, sizeof (struct anon_hdr));
306 			return (NULL);
307 		}
308 	}
309 	return (ahp);
310 }
311 
312 /*
313  * Free the array of pointers
314  */
315 void
316 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
317 {
318 	ulong_t i;
319 	void **ppp;
320 	ulong_t nchunks;
321 
322 	ASSERT(npages <= ahp->size);
323 
324 	/*
325 	 * Single level case.
326 	 */
327 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
328 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
329 	} else {
330 		/*
331 		 * 2 level case.
332 		 */
333 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
334 		for (i = 0; i < nchunks; i++) {
335 			ppp = &ahp->array_chunk[i];
336 			if (*ppp != NULL)
337 				kmem_free(*ppp, PAGESIZE);
338 		}
339 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
340 	}
341 	mutex_destroy(&ahp->serial_lock);
342 	kmem_free(ahp, sizeof (struct anon_hdr));
343 }
344 
345 /*
346  * Return the pointer from the list for a
347  * specified anon index.
348  */
349 struct anon *
350 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
351 {
352 	struct anon **app;
353 
354 	ASSERT(an_idx < ahp->size);
355 
356 	/*
357 	 * Single level case.
358 	 */
359 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
360 		return ((struct anon *)
361 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
362 	} else {
363 
364 		/*
365 		 * 2 level case.
366 		 */
367 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
368 		if (app) {
369 			return ((struct anon *)
370 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
371 			    ANON_PTRMASK));
372 		} else {
373 			return (NULL);
374 		}
375 	}
376 }
377 
378 /*
379  * Return the anon pointer for the first valid entry in the anon list,
380  * starting from the given index.
381  */
382 struct anon *
383 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
384 {
385 	struct anon *ap;
386 	struct anon **app;
387 	ulong_t chunkoff;
388 	ulong_t i;
389 	ulong_t j;
390 	pgcnt_t size;
391 
392 	i = *index;
393 	size = ahp->size;
394 
395 	ASSERT(i < size);
396 
397 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
398 		/*
399 		 * 1 level case
400 		 */
401 		while (i < size) {
402 			ap = (struct anon *)
403 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
404 			if (ap) {
405 				*index = i;
406 				return (ap);
407 			}
408 			i++;
409 		}
410 	} else {
411 		/*
412 		 * 2 level case
413 		 */
414 		chunkoff = i & ANON_CHUNK_OFF;
415 		while (i < size) {
416 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
417 			if (app)
418 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
419 					ap = (struct anon *)
420 					    ((uintptr_t)app[j] & ANON_PTRMASK);
421 					if (ap) {
422 						*index = i + (j - chunkoff);
423 						return (ap);
424 					}
425 				}
426 			chunkoff = 0;
427 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
428 		}
429 	}
430 	*index = size;
431 	return (NULL);
432 }
433 
434 /*
435  * Set list entry with a given pointer for a specified offset
436  */
437 int
438 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
439 {
440 	void		**ppp;
441 	struct anon	**app;
442 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
443 	uintptr_t	*ap_addr;
444 
445 	ASSERT(an_idx < ahp->size);
446 
447 	/*
448 	 * Single level case.
449 	 */
450 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
451 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
452 	} else {
453 
454 		/*
455 		 * 2 level case.
456 		 */
457 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
458 
459 		ASSERT(ppp != NULL);
460 		if (*ppp == NULL) {
461 			mutex_enter(&ahp->serial_lock);
462 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
463 			if (*ppp == NULL) {
464 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
465 				if (*ppp == NULL) {
466 					mutex_exit(&ahp->serial_lock);
467 					return (ENOMEM);
468 				}
469 			}
470 			mutex_exit(&ahp->serial_lock);
471 		}
472 		app = *ppp;
473 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
474 	}
475 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
476 	return (0);
477 }
478 
479 /*
480  * Copy anon array into a given new anon array
481  */
482 int
483 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
484 	struct anon_hdr *dahp, ulong_t d_idx,
485 	pgcnt_t npages, int flags)
486 {
487 	void **sapp, **dapp;
488 	void *ap;
489 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
490 
491 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
492 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
493 
494 	/*
495 	 * Both arrays are 1 level.
496 	 */
497 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
498 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
499 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
500 	    (dahp->flags & ANON_ALLOC_FORCE))) {
501 
502 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
503 		    npages * sizeof (struct anon *));
504 		return (0);
505 	}
506 
507 	/*
508 	 * Both arrays are 2 levels.
509 	 */
510 	if (sahp->size > ANON_CHUNK_SIZE &&
511 	    dahp->size > ANON_CHUNK_SIZE &&
512 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
513 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
514 
515 		ulong_t sapidx, dapidx;
516 		ulong_t *sap, *dap;
517 		ulong_t chknp;
518 
519 		while (npages != 0) {
520 
521 			sapidx = s_idx & ANON_CHUNK_OFF;
522 			dapidx = d_idx & ANON_CHUNK_OFF;
523 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
524 			if (chknp > npages)
525 				chknp = npages;
526 
527 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
528 			if ((sap = *sapp) != NULL) {
529 				dapp = &dahp->array_chunk[d_idx
530 				    >> ANON_CHUNK_SHIFT];
531 				if ((dap = *dapp) == NULL) {
532 					*dapp = kmem_zalloc(PAGESIZE,
533 					    kmemflags);
534 					if ((dap = *dapp) == NULL)
535 						return (ENOMEM);
536 				}
537 				bcopy((sap + sapidx), (dap + dapidx),
538 				    chknp << ANON_PTRSHIFT);
539 			}
540 			s_idx += chknp;
541 			d_idx += chknp;
542 			npages -= chknp;
543 		}
544 		return (0);
545 	}
546 
547 	/*
548 	 * At least one of the arrays is 2 level.
549 	 */
550 	while (npages--) {
551 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
552 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
553 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
554 					return (ENOMEM);
555 		}
556 		s_idx++;
557 		d_idx++;
558 	}
559 	return (0);
560 }
561 
562 
563 /*
564  * ANON_INITBUF is a convenience macro for anon_grow() below. It
565  * takes a buffer dst, which is at least as large as buffer src. It
566  * does a bcopy from src into dst, and then bzeros the extra bytes
567  * of dst. If tail is set, the data in src is tail aligned within
568  * dst instead of head aligned.
569  */
570 
571 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
572 	if (tail) {							      \
573 		bzero((dst), (dstsize) - (srclen));			      \
574 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
575 	} else {							      \
576 		bcopy((src), (dst), (srclen));				      \
577 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
578 	}
579 
580 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
581 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
582 
583 /*
584  * anon_grow() is used to efficiently extend an existing anon array.
585  * startidx_p points to the index into the anon array of the first page
586  * that is in use. oldseg_pgs is the number of pages in use, starting at
587  * *startidx_p. newpages is the number of additional pages desired.
588  *
589  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
590  *
591  * The growth is done by creating a new top level of the anon array,
592  * and (if the array is 2-level) reusing the existing second level arrays.
593  *
594  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
595  *
596  * Returns the new number of pages in the anon array.
597  */
598 pgcnt_t
599 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
600     pgcnt_t newseg_pgs, int flags)
601 {
602 	ulong_t startidx = startidx_p ? *startidx_p : 0;
603 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
604 	pgcnt_t oelems, nelems, totpages;
605 	void **level1;
606 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
607 	int growdown = (flags & ANON_GROWDOWN);
608 	size_t newarrsz, oldarrsz;
609 	void *level2;
610 
611 	ASSERT(!(startidx_p == NULL && growdown));
612 	ASSERT(startidx + oldseg_pgs <= ahp->size);
613 
614 	/*
615 	 * Determine the total number of pages needed in the new
616 	 * anon array. If growing down, totpages is all pages from
617 	 * startidx through the end of the array, plus <newseg_pgs>
618 	 * pages. If growing up, keep all pages from page 0 through
619 	 * the last page currently in use, plus <newseg_pgs> pages.
620 	 */
621 	if (growdown)
622 		totpages = oldamp_pgs - startidx + newseg_pgs;
623 	else
624 		totpages = startidx + oldseg_pgs + newseg_pgs;
625 
626 	/* If the array is already large enough, just return. */
627 
628 	if (oldamp_pgs >= totpages) {
629 		if (growdown)
630 			*startidx_p = oldamp_pgs - totpages;
631 		return (oldamp_pgs);
632 	}
633 
634 	/*
635 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
636 	 * by the corresponding arrays.
637 	 * oelems/nelems are the number of pointers in the top level arrays
638 	 * which may be either level 1 or level 2.
639 	 * Will the new anon array be one level or two levels?
640 	 */
641 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
642 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
643 		oelems = oldamp_pgs;
644 		nelems = newamp_pgs;
645 	} else {
646 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
647 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
648 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
649 	}
650 
651 	newarrsz = nelems * sizeof (void *);
652 	level1 = kmem_alloc(newarrsz, kmemflags);
653 	if (level1 == NULL)
654 		return (0);
655 
656 	/* Are we converting from a one level to a two level anon array? */
657 
658 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
659 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
660 
661 		/*
662 		 * Yes, we're converting to a two level. Reuse old level 1
663 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
664 		 * alloc a new level 2 and copy the old level 1 data into it.
665 		 */
666 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
667 			level2 = (void *)ahp->array_chunk;
668 		} else {
669 			level2 = kmem_alloc(PAGESIZE, kmemflags);
670 			if (level2 == NULL) {
671 				kmem_free(level1, newarrsz);
672 				return (0);
673 			}
674 			oldarrsz = oldamp_pgs * sizeof (void *);
675 
676 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
677 			    level2, PAGESIZE, growdown);
678 			kmem_free(ahp->array_chunk, oldarrsz);
679 		}
680 		bzero(level1, newarrsz);
681 		if (growdown)
682 			level1[nelems - 1] = level2;
683 		else
684 			level1[0] = level2;
685 	} else {
686 		oldarrsz = oelems * sizeof (void *);
687 
688 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
689 		    level1, newarrsz, growdown);
690 		kmem_free(ahp->array_chunk, oldarrsz);
691 	}
692 
693 	ahp->array_chunk = level1;
694 	ahp->size = newamp_pgs;
695 	if (growdown)
696 		*startidx_p = newamp_pgs - totpages;
697 
698 	return (newamp_pgs);
699 }
700 
701 
702 /*
703  * Called from clock handler to sync ani_free value.
704  */
705 
706 void
707 set_anoninfo(void)
708 {
709 	int	ix;
710 	pgcnt_t	total = 0;
711 
712 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
713 		total += ani_free_pool[ix].ani_count;
714 	}
715 	k_anoninfo.ani_free = total;
716 }
717 
718 /*
719  * Reserve anon space.
720  *
721  * It's no longer simply a matter of incrementing ani_resv to
722  * reserve swap space, we need to check memory-based as well
723  * as disk-backed (physical) swap.  The following algorithm
724  * is used:
725  * 	Check the space on physical swap
726  * 		i.e. amount needed < ani_max - ani_phys_resv
727  * 	If we are swapping on swapfs check
728  *		amount needed < (availrmem - swapfs_minfree)
729  * Since the algorithm to check for the quantity of swap space is
730  * almost the same as that for reserving it, we'll just use anon_resvmem
731  * with a flag to decrement availrmem.
732  *
733  * Return non-zero on success.
734  */
735 int
736 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
737 {
738 	pgcnt_t npages = btopr(size);
739 	pgcnt_t mswap_pages = 0;
740 	pgcnt_t pswap_pages = 0;
741 	proc_t *p = curproc;
742 
743 	if (zone != NULL && takemem) {
744 		/* test zone.max-swap resource control */
745 		mutex_enter(&p->p_lock);
746 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
747 			mutex_exit(&p->p_lock);
748 			return (0);
749 		}
750 		mutex_exit(&p->p_lock);
751 	}
752 	mutex_enter(&anoninfo_lock);
753 
754 	/*
755 	 * pswap_pages is the number of pages we can take from
756 	 * physical (i.e. disk-backed) swap.
757 	 */
758 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
759 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
760 
761 	ANON_PRINT(A_RESV,
762 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
763 	    npages, takemem, pswap_pages, (void *)caller()));
764 
765 	if (npages <= pswap_pages) {
766 		/*
767 		 * we have enough space on a physical swap
768 		 */
769 		if (takemem)
770 			k_anoninfo.ani_phys_resv += npages;
771 		mutex_exit(&anoninfo_lock);
772 		return (1);
773 	} else if (pswap_pages != 0) {
774 		/*
775 		 * we have some space on a physical swap
776 		 */
777 		if (takemem) {
778 			/*
779 			 * use up remainder of phys swap
780 			 */
781 			k_anoninfo.ani_phys_resv += pswap_pages;
782 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
783 		}
784 	}
785 	/*
786 	 * since (npages > pswap_pages) we need mem swap
787 	 * mswap_pages is the number of pages needed from availrmem
788 	 */
789 	ASSERT(npages > pswap_pages);
790 	mswap_pages = npages - pswap_pages;
791 
792 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
793 	    mswap_pages));
794 
795 	/*
796 	 * priv processes can reserve memory as swap as long as availrmem
797 	 * remains greater than swapfs_minfree; in the case of non-priv
798 	 * processes, memory can be reserved as swap only if availrmem
799 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
800 	 * swapfs_reserve amount of memswap is not available to non-priv
801 	 * processes. This protects daemons such as automounter dying
802 	 * as a result of application processes eating away almost entire
803 	 * membased swap. This safeguard becomes useless if apps are run
804 	 * with root access.
805 	 *
806 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
807 	 *
808 	 */
809 	if (tryhard) {
810 		mutex_exit(&anoninfo_lock);
811 		(void) page_reclaim_mem(mswap_pages,
812 		    swapfs_minfree + swapfs_reserve, 0);
813 		mutex_enter(&anoninfo_lock);
814 	}
815 
816 	mutex_enter(&freemem_lock);
817 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
818 	    (availrmem > (swapfs_minfree + mswap_pages) &&
819 	    secpolicy_resource(CRED()) == 0)) {
820 
821 		if (takemem) {
822 			/*
823 			 * Take the memory from the rest of the system.
824 			 */
825 			availrmem -= mswap_pages;
826 			mutex_exit(&freemem_lock);
827 			k_anoninfo.ani_mem_resv += mswap_pages;
828 			ANI_ADD(mswap_pages);
829 			ANON_PRINT((A_RESV | A_MRESV),
830 			    ("anon_resvmem: took %ld pages of availrmem\n",
831 			    mswap_pages));
832 		} else {
833 			mutex_exit(&freemem_lock);
834 		}
835 
836 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
837 		mutex_exit(&anoninfo_lock);
838 		return (1);
839 
840 	} else {
841 		/*
842 		 * Fail if not enough memory
843 		 */
844 
845 		if (takemem) {
846 			k_anoninfo.ani_phys_resv -= pswap_pages;
847 		}
848 
849 		mutex_exit(&freemem_lock);
850 		mutex_exit(&anoninfo_lock);
851 		ANON_PRINT(A_RESV,
852 		    ("anon_resvmem: not enough space from swapfs\n"));
853 		if (zone != NULL && takemem)
854 			rctl_decr_swap(zone, ptob(npages));
855 		return (0);
856 	}
857 }
858 
859 /*
860  * Give back an anon reservation.
861  */
862 void
863 anon_unresvmem(size_t size, zone_t *zone)
864 {
865 	pgcnt_t npages = btopr(size);
866 	spgcnt_t mem_free_pages = 0;
867 	pgcnt_t phys_free_slots;
868 #ifdef	ANON_DEBUG
869 	pgcnt_t mem_resv;
870 #endif
871 	if (zone != NULL)
872 		rctl_decr_swap(zone, ptob(npages));
873 
874 	mutex_enter(&anoninfo_lock);
875 
876 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
877 
878 	/*
879 	 * If some of this reservation belonged to swapfs
880 	 * give it back to availrmem.
881 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
882 	 * but some of that memory could be locked by segspt so we can only
883 	 * return non locked ani_mem_resv back to availrmem
884 	 */
885 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
886 		ANON_PRINT((A_RESV | A_MRESV),
887 		    ("anon_unresv: growing availrmem by %ld pages\n",
888 		    MIN(k_anoninfo.ani_mem_resv, npages)));
889 
890 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
891 		    k_anoninfo.ani_locked_swap), npages);
892 		mutex_enter(&freemem_lock);
893 		availrmem += mem_free_pages;
894 		mutex_exit(&freemem_lock);
895 		k_anoninfo.ani_mem_resv -= mem_free_pages;
896 
897 		ANI_ADD(-mem_free_pages);
898 	}
899 	/*
900 	 * The remainder of the pages is returned to phys swap
901 	 */
902 	ASSERT(npages >= mem_free_pages);
903 	phys_free_slots = npages - mem_free_pages;
904 
905 	if (phys_free_slots) {
906 		k_anoninfo.ani_phys_resv -= phys_free_slots;
907 	}
908 
909 #ifdef	ANON_DEBUG
910 	mem_resv = k_anoninfo.ani_mem_resv;
911 #endif
912 
913 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
914 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
915 
916 	mutex_exit(&anoninfo_lock);
917 
918 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
919 	    npages, mem_resv, (void *)caller()));
920 }
921 
922 /*
923  * Allocate an anon slot and return it with the lock held.
924  */
925 struct anon *
926 anon_alloc(struct vnode *vp, anoff_t off)
927 {
928 	struct anon	*ap;
929 	kmutex_t	*ahm;
930 
931 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
932 	if (vp == NULL) {
933 		swap_alloc(ap);
934 	} else {
935 		ap->an_vp = vp;
936 		ap->an_off = off;
937 	}
938 	ap->an_refcnt = 1;
939 	ap->an_pvp = NULL;
940 	ap->an_poff = 0;
941 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
942 	mutex_enter(ahm);
943 	anon_addhash(ap);
944 	mutex_exit(ahm);
945 	ANI_ADD(-1);
946 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
947 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
948 	return (ap);
949 }
950 
951 /*
952  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
953  * such pages don't consume any physical swap resources needed for swapping
954  * unlocked pages.
955  */
956 void
957 anon_swap_free(struct anon *ap, page_t *pp)
958 {
959 	kmutex_t *ahm;
960 
961 	ASSERT(ap != NULL);
962 	ASSERT(pp != NULL);
963 	ASSERT(PAGE_LOCKED(pp));
964 	ASSERT(pp->p_vnode != NULL);
965 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
966 	ASSERT(ap->an_refcnt != 0);
967 	ASSERT(pp->p_vnode == ap->an_vp);
968 	ASSERT(pp->p_offset == ap->an_off);
969 
970 	if (ap->an_pvp == NULL)
971 		return;
972 
973 	page_io_lock(pp);
974 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
975 	mutex_enter(ahm);
976 
977 	ASSERT(ap->an_refcnt != 0);
978 	ASSERT(pp->p_vnode == ap->an_vp);
979 	ASSERT(pp->p_offset == ap->an_off);
980 
981 	if (ap->an_pvp != NULL) {
982 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
983 		ap->an_pvp = NULL;
984 		ap->an_poff = 0;
985 		mutex_exit(ahm);
986 		hat_setmod(pp);
987 	} else {
988 		mutex_exit(ahm);
989 	}
990 	page_io_unlock(pp);
991 }
992 
993 /*
994  * Decrement the reference count of an anon page.
995  * If reference count goes to zero, free it and
996  * its associated page (if any).
997  */
998 void
999 anon_decref(struct anon *ap)
1000 {
1001 	page_t *pp;
1002 	struct vnode *vp;
1003 	anoff_t off;
1004 	kmutex_t *ahm;
1005 
1006 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1007 	mutex_enter(ahm);
1008 	ASSERT(ap->an_refcnt != 0);
1009 	if (ap->an_refcnt == 0)
1010 		panic("anon_decref: slot count 0");
1011 	if (--ap->an_refcnt == 0) {
1012 		swap_xlate(ap, &vp, &off);
1013 		anon_rmhash(ap);
1014 		if (ap->an_pvp != NULL)
1015 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1016 		mutex_exit(ahm);
1017 
1018 		/*
1019 		 * If there is a page for this anon slot we will need to
1020 		 * call VN_DISPOSE to get rid of the vp association and
1021 		 * put the page back on the free list as really free.
1022 		 * Acquire the "exclusive" lock to ensure that any
1023 		 * pending i/o always completes before the swap slot
1024 		 * is freed.
1025 		 */
1026 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1027 		if (pp != NULL) {
1028 			/*LINTED: constant in conditional context */
1029 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1030 		}
1031 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1032 		    (void *)ap, (void *)ap->an_vp));
1033 
1034 		kmem_cache_free(anon_cache, ap);
1035 
1036 		ANI_ADD(1);
1037 	} else {
1038 		mutex_exit(ahm);
1039 	}
1040 }
1041 
1042 
1043 /*
1044  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1045  * seg->s_szc level) to determine whether COW processing is required.
1046  * anonpages_hash_lock[] held on the root ap ensures that if root's
1047  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1048  * later since this process can't fork while its AS lock is held).
1049  *
1050  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1051  */
1052 int
1053 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1054 {
1055 	struct anon	*ap;
1056 	kmutex_t	*ahmpages = NULL;
1057 
1058 	ap = anon_get_ptr(ahp, anon_index);
1059 	if (ap == NULL)
1060 		return (0);
1061 
1062 	ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1063 	mutex_enter(ahmpages);
1064 	ASSERT(ap->an_refcnt >= 1);
1065 	if (ap->an_refcnt == 1) {
1066 		mutex_exit(ahmpages);
1067 		return (0);
1068 	}
1069 	mutex_exit(ahmpages);
1070 	return (1);
1071 }
1072 /*
1073  * Check 'nslots' anon slots for refcnt > 1.
1074  *
1075  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1076  * returns 0.
1077  */
1078 static int
1079 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1080 {
1081 	struct anon *ap;
1082 
1083 	while (nslots-- > 0) {
1084 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1085 		    ap->an_refcnt > 1)
1086 			return (1);
1087 		anon_index++;
1088 	}
1089 
1090 	return (0);
1091 }
1092 
1093 static void
1094 anon_decref_pages(
1095 	struct anon_hdr *ahp,
1096 	ulong_t an_idx,
1097 	uint_t szc)
1098 {
1099 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1100 	kmutex_t *ahmpages = NULL;
1101 	page_t *pp;
1102 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1103 	pgcnt_t i;
1104 	struct vnode *vp;
1105 	anoff_t   off;
1106 	kmutex_t *ahm;
1107 #ifdef DEBUG
1108 	int refcnt = 1;
1109 #endif
1110 
1111 	ASSERT(szc != 0);
1112 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1113 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1114 	ASSERT(an_idx < ahp->size);
1115 
1116 	if (ahp->size - an_idx < pgcnt) {
1117 		/*
1118 		 * In case of shared mappings total anon map size may not be
1119 		 * the largest page size aligned.
1120 		 */
1121 		pgcnt = ahp->size - an_idx;
1122 	}
1123 
1124 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1125 
1126 	if (ap != NULL) {
1127 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1128 		mutex_enter(ahmpages);
1129 		ASSERT((refcnt = ap->an_refcnt) != 0);
1130 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1131 		if (ap->an_refcnt == 1) {
1132 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1133 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1134 			mutex_exit(ahmpages);
1135 			ahmpages = NULL;
1136 		}
1137 	}
1138 
1139 	i = 0;
1140 	while (i < pgcnt) {
1141 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1142 			ASSERT(refcnt == 1 && ahmpages == NULL);
1143 			i++;
1144 			continue;
1145 		}
1146 		ASSERT(ap->an_refcnt == refcnt);
1147 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1148 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1149 
1150 		if (ahmpages == NULL) {
1151 			swap_xlate(ap, &vp, &off);
1152 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1153 			if (pp == NULL || pp->p_szc == 0) {
1154 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1155 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1156 				    ap->an_off)];
1157 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1158 				    ANON_SLEEP);
1159 				mutex_enter(ahm);
1160 				ap->an_refcnt--;
1161 				ASSERT(ap->an_refcnt == 0);
1162 				anon_rmhash(ap);
1163 				if (ap->an_pvp)
1164 					swap_phys_free(ap->an_pvp, ap->an_poff,
1165 					    PAGESIZE);
1166 				mutex_exit(ahm);
1167 				if (pp == NULL) {
1168 					pp = page_lookup(vp, (u_offset_t)off,
1169 					    SE_EXCL);
1170 					ASSERT(pp == NULL || pp->p_szc == 0);
1171 				}
1172 				if (pp != NULL) {
1173 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1174 					/*LINTED*/
1175 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1176 				}
1177 				kmem_cache_free(anon_cache, ap);
1178 				ANI_ADD(1);
1179 				i++;
1180 			} else {
1181 				pgcnt_t j;
1182 				pgcnt_t curpgcnt =
1183 				    page_get_pagecnt(pp->p_szc);
1184 				size_t ppasize = curpgcnt * sizeof (page_t *);
1185 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1186 				int dispose = 0;
1187 
1188 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1189 
1190 				ASSERT(pp->p_szc <= szc);
1191 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1192 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1193 				ASSERT(i + curpgcnt <= pgcnt);
1194 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1195 				ppa[0] = pp;
1196 				for (j = i + 1; j < i + curpgcnt; j++) {
1197 					ap = anon_get_ptr(ahp, an_idx + j);
1198 					ASSERT(ap != NULL &&
1199 					    ap->an_refcnt == 1);
1200 					swap_xlate(ap, &vp, &off);
1201 					pp = page_lookup(vp, (u_offset_t)off,
1202 					    SE_EXCL);
1203 					if (pp == NULL)
1204 						panic("anon_decref_pages: "
1205 						    "no page");
1206 
1207 					(void) hat_pageunload(pp,
1208 					    HAT_FORCE_PGUNLOAD);
1209 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1210 					ASSERT(page_pptonum(pp) - 1 ==
1211 					    page_pptonum(ppa[j - i - 1]));
1212 					ppa[j - i] = pp;
1213 					if (ap->an_pvp != NULL &&
1214 					    !vn_matchopval(ap->an_pvp,
1215 					    VOPNAME_DISPOSE,
1216 					    (fs_generic_func_p)fs_dispose))
1217 						dispose = 1;
1218 				}
1219 				for (j = i; j < i + curpgcnt; j++) {
1220 					ap = anon_get_ptr(ahp, an_idx + j);
1221 					ASSERT(ap != NULL &&
1222 					    ap->an_refcnt == 1);
1223 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1224 					    ap->an_off)];
1225 					(void) anon_set_ptr(ahp, an_idx + j,
1226 					    NULL, ANON_SLEEP);
1227 					mutex_enter(ahm);
1228 					ap->an_refcnt--;
1229 					ASSERT(ap->an_refcnt == 0);
1230 					anon_rmhash(ap);
1231 					if (ap->an_pvp)
1232 						swap_phys_free(ap->an_pvp,
1233 						    ap->an_poff, PAGESIZE);
1234 					mutex_exit(ahm);
1235 					kmem_cache_free(anon_cache, ap);
1236 					ANI_ADD(1);
1237 				}
1238 				if (!dispose) {
1239 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1240 					page_destroy_pages(ppa[0]);
1241 				} else {
1242 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1243 					for (j = 0; j < curpgcnt; j++) {
1244 						ASSERT(PAGE_EXCL(ppa[j]));
1245 						ppa[j]->p_szc = 0;
1246 					}
1247 					for (j = 0; j < curpgcnt; j++) {
1248 						ASSERT(!hat_page_is_mapped(
1249 						    ppa[j]));
1250 						/*LINTED*/
1251 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1252 						    kcred);
1253 					}
1254 				}
1255 				kmem_free(ppa, ppasize);
1256 				i += curpgcnt;
1257 			}
1258 		} else {
1259 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1260 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1261 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1262 			mutex_enter(ahm);
1263 			ap->an_refcnt--;
1264 			mutex_exit(ahm);
1265 			i++;
1266 		}
1267 	}
1268 
1269 	if (ahmpages != NULL) {
1270 		mutex_exit(ahmpages);
1271 	}
1272 }
1273 
1274 /*
1275  * Duplicate references to size bytes worth of anon pages.
1276  * Used when duplicating a segment that contains private anon pages.
1277  * This code assumes that procedure calling this one has already used
1278  * hat_chgprot() to disable write access to the range of addresses that
1279  * that *old actually refers to.
1280  */
1281 void
1282 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1283 			ulong_t new_idx, size_t size)
1284 {
1285 	spgcnt_t npages;
1286 	kmutex_t *ahm;
1287 	struct anon *ap;
1288 	ulong_t off;
1289 	ulong_t index;
1290 
1291 	npages = btopr(size);
1292 	while (npages > 0) {
1293 		index = old_idx;
1294 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1295 			break;
1296 
1297 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1298 		off = index - old_idx;
1299 		npages -= off;
1300 		if (npages <= 0)
1301 			break;
1302 
1303 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1304 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1305 
1306 		mutex_enter(ahm);
1307 		ap->an_refcnt++;
1308 		mutex_exit(ahm);
1309 
1310 		off++;
1311 		new_idx += off;
1312 		old_idx += off;
1313 		npages--;
1314 	}
1315 }
1316 
1317 /*
1318  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1319  * slots) within any large page region. That means if a large page region is
1320  * empty in the old array it will skip it. If there are 1 or more valid slots
1321  * in the large page region of the old array it will make sure to fill in any
1322  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1323  * page region should either have no valid anon slots or all slots should be
1324  * valid.
1325  */
1326 void
1327 anon_dup_fill_holes(
1328 	struct anon_hdr *old,
1329 	ulong_t old_idx,
1330 	struct anon_hdr *new,
1331 	ulong_t new_idx,
1332 	size_t size,
1333 	uint_t szc,
1334 	int noalloc)
1335 {
1336 	struct anon	*ap;
1337 	spgcnt_t	npages;
1338 	kmutex_t	*ahm, *ahmpages = NULL;
1339 	pgcnt_t		pgcnt, i;
1340 	ulong_t		index, off;
1341 #ifdef DEBUG
1342 	int		refcnt;
1343 #endif
1344 
1345 	ASSERT(szc != 0);
1346 	pgcnt = page_get_pagecnt(szc);
1347 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1348 	npages = btopr(size);
1349 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1350 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1351 
1352 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1353 
1354 	while (npages > 0) {
1355 		index = old_idx;
1356 
1357 		/*
1358 		 * Find the next valid slot.
1359 		 */
1360 		if (anon_get_next_ptr(old, &index) == NULL)
1361 			break;
1362 
1363 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1364 		/*
1365 		 * Now backup index to the beginning of the
1366 		 * current large page region of the old array.
1367 		 */
1368 		index = P2ALIGN(index, pgcnt);
1369 		off = index - old_idx;
1370 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1371 		npages -= off;
1372 		if (npages <= 0)
1373 			break;
1374 
1375 		/*
1376 		 * Fill and copy a large page regions worth
1377 		 * of anon slots.
1378 		 */
1379 		for (i = 0; i < pgcnt; i++) {
1380 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1381 				if (noalloc) {
1382 					panic("anon_dup_fill_holes: "
1383 					    "empty anon slot\n");
1384 				}
1385 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1386 				ap = anon_alloc(NULL, 0);
1387 				(void) anon_set_ptr(old, index + i, ap,
1388 				    ANON_SLEEP);
1389 			} else if (i == 0) {
1390 				/*
1391 				 * make the increment of all refcnts of all
1392 				 * anon slots of a large page appear atomic by
1393 				 * getting an anonpages_hash_lock for the
1394 				 * first anon slot of a large page.
1395 				 */
1396 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1397 
1398 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1399 
1400 				ahmpages = &anonpages_hash_lock[hash];
1401 				mutex_enter(ahmpages);
1402 				/*LINTED*/
1403 				ASSERT(refcnt = ap->an_refcnt);
1404 
1405 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1406 				    anonvmstats.dupfillholes[3]);
1407 			}
1408 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1409 			    ANON_SLEEP);
1410 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1411 			mutex_enter(ahm);
1412 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1413 			ASSERT(i == 0 || ahmpages == NULL ||
1414 			    refcnt == ap->an_refcnt);
1415 			ap->an_refcnt++;
1416 			mutex_exit(ahm);
1417 		}
1418 		if (ahmpages != NULL) {
1419 			mutex_exit(ahmpages);
1420 			ahmpages = NULL;
1421 		}
1422 		off += pgcnt;
1423 		new_idx += off;
1424 		old_idx += off;
1425 		npages -= pgcnt;
1426 	}
1427 }
1428 
1429 /*
1430  * Used when a segment with a vnode changes szc. similarly to
1431  * anon_dup_fill_holes() makes sure each large page region either has no anon
1432  * slots or all of them. but new slots are created by COWing the file
1433  * pages. on entrance no anon slots should be shared.
1434  */
1435 int
1436 anon_fill_cow_holes(
1437 	struct seg *seg,
1438 	caddr_t addr,
1439 	struct anon_hdr *ahp,
1440 	ulong_t an_idx,
1441 	struct vnode *vp,
1442 	u_offset_t vp_off,
1443 	size_t size,
1444 	uint_t szc,
1445 	uint_t prot,
1446 	struct vpage vpage[],
1447 	struct cred *cred)
1448 {
1449 	struct anon	*ap;
1450 	spgcnt_t	npages;
1451 	pgcnt_t		pgcnt, i;
1452 	ulong_t		index, off;
1453 	int		err = 0;
1454 	int		pageflags = 0;
1455 
1456 	ASSERT(szc != 0);
1457 	pgcnt = page_get_pagecnt(szc);
1458 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1459 	npages = btopr(size);
1460 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1461 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1462 
1463 	while (npages > 0) {
1464 		index = an_idx;
1465 
1466 		/*
1467 		 * Find the next valid slot.
1468 		 */
1469 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1470 			break;
1471 		}
1472 
1473 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1474 		/*
1475 		 * Now backup index to the beginning of the
1476 		 * current large page region of the anon array.
1477 		 */
1478 		index = P2ALIGN(index, pgcnt);
1479 		off = index - an_idx;
1480 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1481 		npages -= off;
1482 		if (npages <= 0)
1483 			break;
1484 		an_idx += off;
1485 		vp_off += ptob(off);
1486 		addr += ptob(off);
1487 		if (vpage != NULL) {
1488 			vpage += off;
1489 		}
1490 
1491 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1492 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1493 				page_t *pl[1 + 1];
1494 				page_t *pp;
1495 
1496 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1497 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1498 				    NULL);
1499 				if (err) {
1500 					break;
1501 				}
1502 				if (vpage != NULL) {
1503 					prot = VPP_PROT(vpage);
1504 					pageflags = VPP_ISPPLOCK(vpage) ?
1505 					    LOCK_PAGE : 0;
1506 				}
1507 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1508 				    pageflags, cred);
1509 				if (pp == NULL) {
1510 					err = ENOMEM;
1511 					break;
1512 				}
1513 				(void) anon_set_ptr(ahp, an_idx, ap,
1514 				    ANON_SLEEP);
1515 				page_unlock(pp);
1516 			}
1517 			ASSERT(ap->an_refcnt == 1);
1518 			addr += PAGESIZE;
1519 			if (vpage != NULL) {
1520 				vpage++;
1521 			}
1522 		}
1523 		npages -= pgcnt;
1524 	}
1525 
1526 	return (err);
1527 }
1528 
1529 /*
1530  * Free a group of "size" anon pages, size in bytes,
1531  * and clear out the pointers to the anon entries.
1532  */
1533 void
1534 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1535 {
1536 	spgcnt_t npages;
1537 	struct anon *ap;
1538 	ulong_t old;
1539 
1540 	npages = btopr(size);
1541 
1542 	while (npages > 0) {
1543 		old = index;
1544 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1545 			break;
1546 
1547 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1548 		npages -= index - old;
1549 		if (npages <= 0)
1550 			break;
1551 
1552 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1553 		anon_decref(ap);
1554 		/*
1555 		 * Bump index and decrement page count
1556 		 */
1557 		index++;
1558 		npages--;
1559 	}
1560 }
1561 
1562 void
1563 anon_free_pages(
1564 	struct anon_hdr *ahp,
1565 	ulong_t an_idx,
1566 	size_t size,
1567 	uint_t szc)
1568 {
1569 	spgcnt_t	npages;
1570 	pgcnt_t		pgcnt;
1571 	ulong_t		index, off;
1572 
1573 	ASSERT(szc != 0);
1574 	pgcnt = page_get_pagecnt(szc);
1575 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1576 	npages = btopr(size);
1577 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1578 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1579 	ASSERT(an_idx < ahp->size);
1580 
1581 	VM_STAT_ADD(anonvmstats.freepages[0]);
1582 
1583 	while (npages > 0) {
1584 		index = an_idx;
1585 
1586 		/*
1587 		 * Find the next valid slot.
1588 		 */
1589 		if (anon_get_next_ptr(ahp, &index) == NULL)
1590 			break;
1591 
1592 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1593 		/*
1594 		 * Now backup index to the beginning of the
1595 		 * current large page region of the old array.
1596 		 */
1597 		index = P2ALIGN(index, pgcnt);
1598 		off = index - an_idx;
1599 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1600 		npages -= off;
1601 		if (npages <= 0)
1602 			break;
1603 
1604 		anon_decref_pages(ahp, index, szc);
1605 
1606 		off += pgcnt;
1607 		an_idx += off;
1608 		npages -= pgcnt;
1609 	}
1610 }
1611 
1612 /*
1613  * Make anonymous pages discardable
1614  */
1615 void
1616 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1617 {
1618 	spgcnt_t npages = btopr(size);
1619 	struct anon *ap;
1620 	struct vnode *vp;
1621 	anoff_t off;
1622 	page_t *pp, *root_pp;
1623 	kmutex_t *ahm;
1624 	pgcnt_t pgcnt;
1625 	ulong_t old_idx, idx, i;
1626 	struct anon_hdr *ahp = amp->ahp;
1627 	anon_sync_obj_t cookie;
1628 
1629 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1630 	pgcnt = 1;
1631 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1632 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1633 
1634 		/*
1635 		 * get anon pointer and index for the first valid entry
1636 		 * in the anon list, starting from "index"
1637 		 */
1638 		old_idx = index;
1639 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1640 			break;
1641 
1642 		/*
1643 		 * decrement npages by number of NULL anon slots we skipped
1644 		 */
1645 		npages -= index - old_idx;
1646 		if (npages <= 0)
1647 			break;
1648 
1649 		anon_array_enter(amp, index, &cookie);
1650 		ap = anon_get_ptr(ahp, index);
1651 		ASSERT(ap != NULL);
1652 
1653 		/*
1654 		 * Get anonymous page and try to lock it SE_EXCL;
1655 		 * if we couldn't grab the lock we skip to next page.
1656 		 */
1657 		swap_xlate(ap, &vp, &off);
1658 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1659 		if (pp == NULL) {
1660 			segadvstat.MADV_FREE_miss.value.ul++;
1661 			pgcnt = 1;
1662 			anon_array_exit(&cookie);
1663 			continue;
1664 		}
1665 		pgcnt = page_get_pagecnt(pp->p_szc);
1666 
1667 		/*
1668 		 * we cannot free a page which is permanently locked.
1669 		 * The page_struct_lock need not be acquired to examine
1670 		 * these fields since the page has an "exclusive" lock.
1671 		 */
1672 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1673 			page_unlock(pp);
1674 			segadvstat.MADV_FREE_miss.value.ul++;
1675 			anon_array_exit(&cookie);
1676 			continue;
1677 		}
1678 
1679 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1680 		mutex_enter(ahm);
1681 		ASSERT(ap->an_refcnt != 0);
1682 		/*
1683 		 * skip this one if copy-on-write is not yet broken.
1684 		 */
1685 		if (ap->an_refcnt > 1) {
1686 			mutex_exit(ahm);
1687 			page_unlock(pp);
1688 			segadvstat.MADV_FREE_miss.value.ul++;
1689 			anon_array_exit(&cookie);
1690 			continue;
1691 		}
1692 
1693 		if (pp->p_szc == 0) {
1694 			pgcnt = 1;
1695 
1696 			/*
1697 			 * free swap slot;
1698 			 */
1699 			if (ap->an_pvp) {
1700 				swap_phys_free(ap->an_pvp, ap->an_poff,
1701 				    PAGESIZE);
1702 				ap->an_pvp = NULL;
1703 				ap->an_poff = 0;
1704 			}
1705 			mutex_exit(ahm);
1706 			segadvstat.MADV_FREE_hit.value.ul++;
1707 
1708 			/*
1709 			 * while we are at it, unload all the translations
1710 			 * and attempt to free the page.
1711 			 */
1712 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1713 			/*LINTED: constant in conditional context */
1714 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1715 			anon_array_exit(&cookie);
1716 			continue;
1717 		}
1718 
1719 		pgcnt = page_get_pagecnt(pp->p_szc);
1720 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1721 			if (!page_try_demote_pages(pp)) {
1722 				mutex_exit(ahm);
1723 				page_unlock(pp);
1724 				segadvstat.MADV_FREE_miss.value.ul++;
1725 				anon_array_exit(&cookie);
1726 				continue;
1727 			} else {
1728 				pgcnt = 1;
1729 				if (ap->an_pvp) {
1730 					swap_phys_free(ap->an_pvp,
1731 					    ap->an_poff, PAGESIZE);
1732 					ap->an_pvp = NULL;
1733 					ap->an_poff = 0;
1734 				}
1735 				mutex_exit(ahm);
1736 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1737 				/*LINTED*/
1738 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1739 				segadvstat.MADV_FREE_hit.value.ul++;
1740 				anon_array_exit(&cookie);
1741 				continue;
1742 			}
1743 		}
1744 		mutex_exit(ahm);
1745 		root_pp = pp;
1746 
1747 		/*
1748 		 * try to lock remaining pages
1749 		 */
1750 		for (idx = 1; idx < pgcnt; idx++) {
1751 			pp++;
1752 			if (!page_trylock(pp, SE_EXCL))
1753 				break;
1754 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1755 				page_unlock(pp);
1756 				break;
1757 			}
1758 		}
1759 
1760 		if (idx == pgcnt) {
1761 			for (i = 0; i < pgcnt; i++) {
1762 				ap = anon_get_ptr(ahp, index + i);
1763 				if (ap == NULL)
1764 					break;
1765 				swap_xlate(ap, &vp, &off);
1766 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1767 				mutex_enter(ahm);
1768 				ASSERT(ap->an_refcnt != 0);
1769 
1770 				/*
1771 				 * skip this one if copy-on-write
1772 				 * is not yet broken.
1773 				 */
1774 				if (ap->an_refcnt > 1) {
1775 					mutex_exit(ahm);
1776 					goto skiplp;
1777 				}
1778 				if (ap->an_pvp) {
1779 					swap_phys_free(ap->an_pvp,
1780 					    ap->an_poff, PAGESIZE);
1781 					ap->an_pvp = NULL;
1782 					ap->an_poff = 0;
1783 				}
1784 				mutex_exit(ahm);
1785 			}
1786 			page_destroy_pages(root_pp);
1787 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1788 			anon_array_exit(&cookie);
1789 			continue;
1790 		}
1791 skiplp:
1792 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1793 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1794 			page_unlock(pp);
1795 		anon_array_exit(&cookie);
1796 	}
1797 }
1798 
1799 /*
1800  * Return the kept page(s) and protections back to the segment driver.
1801  */
1802 int
1803 anon_getpage(
1804 	struct anon **app,
1805 	uint_t *protp,
1806 	page_t *pl[],
1807 	size_t plsz,
1808 	struct seg *seg,
1809 	caddr_t addr,
1810 	enum seg_rw rw,
1811 	struct cred *cred)
1812 {
1813 	page_t *pp;
1814 	struct anon *ap = *app;
1815 	struct vnode *vp;
1816 	anoff_t off;
1817 	int err;
1818 	kmutex_t *ahm;
1819 
1820 	swap_xlate(ap, &vp, &off);
1821 
1822 	/*
1823 	 * Lookup the page. If page is being paged in,
1824 	 * wait for it to finish as we must return a list of
1825 	 * pages since this routine acts like the VOP_GETPAGE
1826 	 * routine does.
1827 	 */
1828 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1829 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1830 		mutex_enter(ahm);
1831 		if (ap->an_refcnt == 1)
1832 			*protp = PROT_ALL;
1833 		else
1834 			*protp = PROT_ALL & ~PROT_WRITE;
1835 		mutex_exit(ahm);
1836 		pl[0] = pp;
1837 		pl[1] = NULL;
1838 		return (0);
1839 	}
1840 
1841 	/*
1842 	 * Simply treat it as a vnode fault on the anon vp.
1843 	 */
1844 
1845 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1846 	    "anon_getpage:seg %x addr %x vp %x",
1847 	    seg, addr, vp);
1848 
1849 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1850 	    seg, addr, rw, cred, NULL);
1851 
1852 	if (err == 0 && pl != NULL) {
1853 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1854 		mutex_enter(ahm);
1855 		if (ap->an_refcnt != 1)
1856 			*protp &= ~PROT_WRITE;	/* make read-only */
1857 		mutex_exit(ahm);
1858 	}
1859 	return (err);
1860 }
1861 
1862 /*
1863  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1864  * page cannot be allocated. returns -2 if some other process has allocated a
1865  * larger page.
1866  *
1867  * For cowfault it will allocate any size pages to fill the requested area to
1868  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1869  * slots within a large page with other processes). This policy greatly
1870  * simplifies large page freeing (which is only freed when all anon slot
1871  * refcnts are 0).
1872  */
1873 int
1874 anon_map_getpages(
1875 	struct anon_map *amp,
1876 	ulong_t	start_idx,
1877 	uint_t	szc,
1878 	struct seg *seg,
1879 	caddr_t	addr,
1880 	uint_t prot,
1881 	uint_t *protp,
1882 	page_t	*ppa[],
1883 	uint_t	*ppa_szc,
1884 	struct vpage vpage[],
1885 	enum seg_rw rw,
1886 	int brkcow,
1887 	int anypgsz,
1888 	int pgflags,
1889 	struct cred *cred)
1890 {
1891 	pgcnt_t		pgcnt;
1892 	struct anon	*ap;
1893 	struct vnode	*vp;
1894 	anoff_t		off;
1895 	page_t		*pp, *pl[2], *conpp = NULL;
1896 	caddr_t		vaddr;
1897 	ulong_t		pg_idx, an_idx, i;
1898 	spgcnt_t	nreloc = 0;
1899 	int		prealloc = 1;
1900 	int		err, slotcreate;
1901 	uint_t		vpprot;
1902 	int		upsize = (szc < seg->s_szc);
1903 
1904 #if !defined(__i386) && !defined(__amd64)
1905 	ASSERT(seg->s_szc != 0);
1906 #endif
1907 	ASSERT(szc <= seg->s_szc);
1908 	ASSERT(ppa_szc != NULL);
1909 	ASSERT(rw != S_CREATE);
1910 
1911 	*protp = PROT_ALL;
1912 
1913 	VM_STAT_ADD(anonvmstats.getpages[0]);
1914 
1915 	if (szc == 0) {
1916 		VM_STAT_ADD(anonvmstats.getpages[1]);
1917 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1918 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1919 			    addr, rw, cred);
1920 			if (err)
1921 				return (err);
1922 			ppa[0] = pl[0];
1923 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1924 				VM_STAT_ADD(anonvmstats.getpages[2]);
1925 				if (ppa[0]->p_szc != 0 && upsize) {
1926 					VM_STAT_ADD(anonvmstats.getpages[3]);
1927 					*ppa_szc = MIN(ppa[0]->p_szc,
1928 					    seg->s_szc);
1929 					page_unlock(ppa[0]);
1930 					return (-2);
1931 				}
1932 				return (0);
1933 			}
1934 			panic("anon_map_getpages: cowfault for szc 0");
1935 		} else {
1936 			VM_STAT_ADD(anonvmstats.getpages[4]);
1937 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1938 			if (ppa[0] == NULL)
1939 				return (ENOMEM);
1940 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1941 			    ANON_SLEEP);
1942 			return (0);
1943 		}
1944 	}
1945 
1946 	pgcnt = page_get_pagecnt(szc);
1947 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1948 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1949 
1950 	/*
1951 	 * First we check for the case that the requtested large
1952 	 * page or larger page already exists in the system.
1953 	 * Actually we only check if the first constituent page
1954 	 * exists and only preallocate if it's not found.
1955 	 */
1956 	ap = anon_get_ptr(amp->ahp, start_idx);
1957 	if (ap) {
1958 		uint_t pszc;
1959 		swap_xlate(ap, &vp, &off);
1960 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1961 			if (pszc > szc && upsize) {
1962 				*ppa_szc = MIN(pszc, seg->s_szc);
1963 				return (-2);
1964 			}
1965 			if (pszc >= szc) {
1966 				prealloc = 0;
1967 			}
1968 		}
1969 	}
1970 
1971 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1972 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1973 
1974 top:
1975 	/*
1976 	 * If a smaller page or no page at all was found,
1977 	 * grab a large page off the freelist.
1978 	 */
1979 	if (prealloc) {
1980 		ASSERT(conpp == NULL);
1981 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1982 		    szc, 0, pgflags) != 0) {
1983 			VM_STAT_ADD(anonvmstats.getpages[7]);
1984 			if (brkcow == 0 || szc < seg->s_szc ||
1985 			    !anon_szcshare(amp->ahp, start_idx)) {
1986 				/*
1987 				 * If the refcnt's of all anon slots are <= 1
1988 				 * they can't increase since we are holding
1989 				 * the address space's lock. So segvn can
1990 				 * safely decrease szc without risking to
1991 				 * generate a cow fault for the region smaller
1992 				 * than the segment's largest page size.
1993 				 */
1994 				VM_STAT_ADD(anonvmstats.getpages[8]);
1995 				return (-1);
1996 			}
1997 		docow:
1998 			/*
1999 			 * This is a cow fault. Copy away the entire 1 large
2000 			 * page region of this segment.
2001 			 */
2002 			if (szc != seg->s_szc)
2003 				panic("anon_map_getpages: cowfault for szc %d",
2004 				    szc);
2005 			vaddr = addr;
2006 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2007 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2008 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2009 				    NULL) {
2010 					err = anon_getpage(&ap, &vpprot, pl,
2011 					    PAGESIZE, seg, vaddr, rw, cred);
2012 					if (err) {
2013 						for (i = 0; i < pg_idx; i++) {
2014 							if ((pp = ppa[i]) !=
2015 							    NULL)
2016 								page_unlock(pp);
2017 						}
2018 						return (err);
2019 					}
2020 					ppa[pg_idx] = pl[0];
2021 				} else {
2022 					/*
2023 					 * Since this is a cowfault we know
2024 					 * that this address space has a
2025 					 * parent or children which means
2026 					 * anon_dup_fill_holes() has initialized
2027 					 * all anon slots within a large page
2028 					 * region that had at least one anon
2029 					 * slot at the time of fork().
2030 					 */
2031 					panic("anon_map_getpages: "
2032 					    "cowfault but anon slot is empty");
2033 				}
2034 			}
2035 			VM_STAT_ADD(anonvmstats.getpages[9]);
2036 			*protp = PROT_ALL;
2037 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2038 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2039 		}
2040 	}
2041 
2042 	VM_STAT_ADD(anonvmstats.getpages[10]);
2043 
2044 	an_idx = start_idx;
2045 	pg_idx = 0;
2046 	vaddr = addr;
2047 	while (pg_idx < pgcnt) {
2048 		slotcreate = 0;
2049 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2050 			VM_STAT_ADD(anonvmstats.getpages[11]);
2051 			/*
2052 			 * For us to have decided not to preallocate
2053 			 * would have meant that a large page
2054 			 * was found. Which also means that all of the
2055 			 * anon slots for that page would have been
2056 			 * already created for us.
2057 			 */
2058 			if (prealloc == 0)
2059 				panic("anon_map_getpages: prealloc = 0");
2060 
2061 			slotcreate = 1;
2062 			ap = anon_alloc(NULL, 0);
2063 		}
2064 		swap_xlate(ap, &vp, &off);
2065 
2066 		/*
2067 		 * Now setup our preallocated page to pass down
2068 		 * to swap_getpage().
2069 		 */
2070 		if (prealloc) {
2071 			ASSERT(ppa[pg_idx]->p_szc == szc);
2072 			conpp = ppa[pg_idx];
2073 		}
2074 		ASSERT(prealloc || conpp == NULL);
2075 
2076 		/*
2077 		 * If we just created this anon slot then call
2078 		 * with S_CREATE to prevent doing IO on the page.
2079 		 * Similar to the anon_zero case.
2080 		 */
2081 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2082 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2083 		    slotcreate == 1 ? S_CREATE : rw, cred);
2084 
2085 		if (err) {
2086 			ASSERT(err != -2 || upsize);
2087 			VM_STAT_ADD(anonvmstats.getpages[12]);
2088 			ASSERT(slotcreate == 0);
2089 			goto io_err;
2090 		}
2091 
2092 		pp = pl[0];
2093 
2094 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2095 			VM_STAT_ADD(anonvmstats.getpages[13]);
2096 			ASSERT(slotcreate == 0);
2097 			ASSERT(prealloc == 0);
2098 			ASSERT(pg_idx == 0);
2099 			if (pp->p_szc > szc) {
2100 				ASSERT(upsize);
2101 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2102 				page_unlock(pp);
2103 				VM_STAT_ADD(anonvmstats.getpages[14]);
2104 				return (-2);
2105 			}
2106 			page_unlock(pp);
2107 			prealloc = 1;
2108 			goto top;
2109 		}
2110 
2111 		/*
2112 		 * If we decided to preallocate but VOP_GETPAGE
2113 		 * found a page in the system that satisfies our
2114 		 * request then free up our preallocated large page
2115 		 * and continue looping accross the existing large
2116 		 * page via VOP_GETPAGE.
2117 		 */
2118 		if (prealloc && pp != ppa[pg_idx]) {
2119 			VM_STAT_ADD(anonvmstats.getpages[15]);
2120 			ASSERT(slotcreate == 0);
2121 			ASSERT(pg_idx == 0);
2122 			conpp = NULL;
2123 			prealloc = 0;
2124 			page_free_pages(ppa[0]);
2125 		}
2126 
2127 		if (prealloc && nreloc > 1) {
2128 			/*
2129 			 * we have relocated out of a smaller large page.
2130 			 * skip npgs - 1 iterations and continue which will
2131 			 * increment by one the loop indices.
2132 			 */
2133 			spgcnt_t npgs = nreloc;
2134 
2135 			VM_STAT_ADD(anonvmstats.getpages[16]);
2136 
2137 			ASSERT(pp == ppa[pg_idx]);
2138 			ASSERT(slotcreate == 0);
2139 			ASSERT(pg_idx + npgs <= pgcnt);
2140 			if ((*protp & PROT_WRITE) &&
2141 			    anon_share(amp->ahp, an_idx, npgs)) {
2142 				*protp &= ~PROT_WRITE;
2143 			}
2144 			pg_idx += npgs;
2145 			an_idx += npgs;
2146 			vaddr += PAGESIZE * npgs;
2147 			continue;
2148 		}
2149 
2150 		VM_STAT_ADD(anonvmstats.getpages[17]);
2151 
2152 		/*
2153 		 * Anon_zero case.
2154 		 */
2155 		if (slotcreate) {
2156 			ASSERT(prealloc);
2157 			pagezero(pp, 0, PAGESIZE);
2158 			CPU_STATS_ADD_K(vm, zfod, 1);
2159 			hat_setrefmod(pp);
2160 		}
2161 
2162 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2163 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2164 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2165 
2166 		if (pg_idx > 0 &&
2167 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2168 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2169 			panic("anon_map_getpages: unexpected page");
2170 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2171 			panic("anon_map_getpages: unaligned page");
2172 		}
2173 
2174 		if (prealloc == 0) {
2175 			ppa[pg_idx] = pp;
2176 		}
2177 
2178 		if (ap->an_refcnt > 1) {
2179 			VM_STAT_ADD(anonvmstats.getpages[18]);
2180 			*protp &= ~PROT_WRITE;
2181 		}
2182 
2183 		/*
2184 		 * If this is a new anon slot then initialize
2185 		 * the anon array entry.
2186 		 */
2187 		if (slotcreate) {
2188 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2189 		}
2190 		pg_idx++;
2191 		an_idx++;
2192 		vaddr += PAGESIZE;
2193 	}
2194 
2195 	/*
2196 	 * Since preallocated pages come off the freelist
2197 	 * they are locked SE_EXCL. Simply downgrade and return.
2198 	 */
2199 	if (prealloc) {
2200 		VM_STAT_ADD(anonvmstats.getpages[19]);
2201 		conpp = NULL;
2202 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2203 			page_downgrade(ppa[pg_idx]);
2204 		}
2205 	}
2206 	ASSERT(conpp == NULL);
2207 
2208 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2209 		VM_STAT_ADD(anonvmstats.getpages[20]);
2210 		return (0);
2211 	}
2212 
2213 	if (szc < seg->s_szc)
2214 		panic("anon_map_getpages: cowfault for szc %d", szc);
2215 
2216 	VM_STAT_ADD(anonvmstats.getpages[21]);
2217 
2218 	*protp = PROT_ALL;
2219 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2220 	    ppa, vpage, anypgsz, pgflags, cred));
2221 io_err:
2222 	/*
2223 	 * We got an IO error somewhere in our large page.
2224 	 * If we were using a preallocated page then just demote
2225 	 * all the constituent pages that we've succeeded with sofar
2226 	 * to PAGESIZE pages and leave them in the system
2227 	 * unlocked.
2228 	 */
2229 
2230 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2231 
2232 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2233 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2234 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2235 
2236 	if (prealloc) {
2237 		conpp = NULL;
2238 		if (pg_idx > 0) {
2239 			VM_STAT_ADD(anonvmstats.getpages[25]);
2240 			for (i = 0; i < pgcnt; i++) {
2241 				pp = ppa[i];
2242 				ASSERT(PAGE_EXCL(pp));
2243 				ASSERT(pp->p_szc == szc);
2244 				pp->p_szc = 0;
2245 			}
2246 			for (i = 0; i < pg_idx; i++) {
2247 				ASSERT(!hat_page_is_mapped(ppa[i]));
2248 				page_unlock(ppa[i]);
2249 			}
2250 			/*
2251 			 * Now free up the remaining unused constituent
2252 			 * pages.
2253 			 */
2254 			while (pg_idx < pgcnt) {
2255 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2256 				page_free(ppa[pg_idx], 0);
2257 				pg_idx++;
2258 			}
2259 		} else {
2260 			VM_STAT_ADD(anonvmstats.getpages[26]);
2261 			page_free_pages(ppa[0]);
2262 		}
2263 	} else {
2264 		VM_STAT_ADD(anonvmstats.getpages[27]);
2265 		ASSERT(err > 0);
2266 		for (i = 0; i < pg_idx; i++)
2267 			page_unlock(ppa[i]);
2268 	}
2269 	ASSERT(conpp == NULL);
2270 	if (err != -1)
2271 		return (err);
2272 	/*
2273 	 * we are here because we failed to relocate.
2274 	 */
2275 	ASSERT(prealloc);
2276 	if (brkcow == 0 || szc < seg->s_szc ||
2277 	    !anon_szcshare(amp->ahp, start_idx)) {
2278 		VM_STAT_ADD(anonvmstats.getpages[28]);
2279 		return (-1);
2280 	}
2281 	VM_STAT_ADD(anonvmstats.getpages[29]);
2282 	goto docow;
2283 }
2284 
2285 
2286 /*
2287  * Turn a reference to an object or shared anon page
2288  * into a private page with a copy of the data from the
2289  * original page which is always locked by the caller.
2290  * This routine unloads the translation and unlocks the
2291  * original page, if it isn't being stolen, before returning
2292  * to the caller.
2293  *
2294  * NOTE:  The original anon slot is not freed by this routine
2295  *	  It must be freed by the caller while holding the
2296  *	  "anon_map" lock to prevent races which can occur if
2297  *	  a process has multiple lwps in its address space.
2298  */
2299 page_t *
2300 anon_private(
2301 	struct anon **app,
2302 	struct seg *seg,
2303 	caddr_t addr,
2304 	uint_t	prot,
2305 	page_t *opp,
2306 	int oppflags,
2307 	struct cred *cred)
2308 {
2309 	struct anon *old = *app;
2310 	struct anon *new;
2311 	page_t *pp = NULL;
2312 	struct vnode *vp;
2313 	anoff_t off;
2314 	page_t *anon_pl[1 + 1];
2315 	int err;
2316 
2317 	if (oppflags & STEAL_PAGE)
2318 		ASSERT(PAGE_EXCL(opp));
2319 	else
2320 		ASSERT(PAGE_LOCKED(opp));
2321 
2322 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2323 
2324 	/* Kernel probe */
2325 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2326 		tnf_opaque,	address,	addr);
2327 
2328 	*app = new = anon_alloc(NULL, 0);
2329 	swap_xlate(new, &vp, &off);
2330 
2331 	if (oppflags & STEAL_PAGE) {
2332 		page_rename(opp, vp, (u_offset_t)off);
2333 		pp = opp;
2334 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2335 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2336 		    seg, addr, pp, vp, off);
2337 		hat_setmod(pp);
2338 
2339 		/* bug 4026339 */
2340 		page_downgrade(pp);
2341 		return (pp);
2342 	}
2343 
2344 	/*
2345 	 * Call the VOP_GETPAGE routine to create the page, thereby
2346 	 * enabling the vnode driver to allocate any filesystem
2347 	 * space (e.g., disk block allocation for UFS).  This also
2348 	 * prevents more than one page from being added to the
2349 	 * vnode at the same time.
2350 	 */
2351 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2352 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2353 	if (err)
2354 		goto out;
2355 
2356 	pp = anon_pl[0];
2357 
2358 	/*
2359 	 * If the original page was locked, we need to move the lock
2360 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2361 	 * page to 'cowcnt/lckcnt' of the new page.
2362 	 *
2363 	 * See Statement at the beginning of segvn_lockop() and
2364 	 * comments in page_pp_useclaim() regarding the way
2365 	 * cowcnts/lckcnts are handled.
2366 	 *
2367 	 * Also availrmem must be decremented up front for read only mapping
2368 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2369 	 * if availrmem did not need to be decremented after all.
2370 	 */
2371 	if (oppflags & LOCK_PAGE) {
2372 		if ((prot & PROT_WRITE) == 0) {
2373 			mutex_enter(&freemem_lock);
2374 			if (availrmem > pages_pp_maximum) {
2375 				availrmem--;
2376 				pages_useclaim++;
2377 			} else {
2378 				mutex_exit(&freemem_lock);
2379 				goto out;
2380 			}
2381 			mutex_exit(&freemem_lock);
2382 		}
2383 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2384 	}
2385 
2386 	/*
2387 	 * Now copy the contents from the original page,
2388 	 * which is locked and loaded in the MMU by
2389 	 * the caller to prevent yet another page fault.
2390 	 */
2391 	/* XXX - should set mod bit in here */
2392 	if (ppcopy(opp, pp) == 0) {
2393 		/*
2394 		 * Before ppcopy could hanlde UE or other faults, we
2395 		 * would have panicked here, and still have no option
2396 		 * but to do so now.
2397 		 */
2398 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2399 		    (void *)opp, (void *)pp);
2400 	}
2401 
2402 	hat_setrefmod(pp);		/* mark as modified */
2403 
2404 	/*
2405 	 * Unload the old translation.
2406 	 */
2407 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2408 
2409 	/*
2410 	 * Free unmapped, unmodified original page.
2411 	 * or release the lock on the original page,
2412 	 * otherwise the process will sleep forever in
2413 	 * anon_decref() waiting for the "exclusive" lock
2414 	 * on the page.
2415 	 */
2416 	(void) page_release(opp, 1);
2417 
2418 	/*
2419 	 * we are done with page creation so downgrade the new
2420 	 * page's selock to shared, this helps when multiple
2421 	 * as_fault(...SOFTLOCK...) are done to the same
2422 	 * page(aio)
2423 	 */
2424 	page_downgrade(pp);
2425 
2426 	/*
2427 	 * NOTE:  The original anon slot must be freed by the
2428 	 * caller while holding the "anon_map" lock, if we
2429 	 * copied away from an anonymous page.
2430 	 */
2431 	return (pp);
2432 
2433 out:
2434 	*app = old;
2435 	if (pp)
2436 		page_unlock(pp);
2437 	anon_decref(new);
2438 	page_unlock(opp);
2439 	return ((page_t *)NULL);
2440 }
2441 
2442 int
2443 anon_map_privatepages(
2444 	struct anon_map *amp,
2445 	ulong_t	start_idx,
2446 	uint_t	szc,
2447 	struct seg *seg,
2448 	caddr_t addr,
2449 	uint_t	prot,
2450 	page_t	*ppa[],
2451 	struct vpage vpage[],
2452 	int anypgsz,
2453 	int pgflags,
2454 	struct cred *cred)
2455 {
2456 	pgcnt_t		pgcnt;
2457 	struct vnode	*vp;
2458 	anoff_t		off;
2459 	page_t		*pl[2], *conpp = NULL;
2460 	int		err;
2461 	int		prealloc = 1;
2462 	struct anon	*ap, *oldap;
2463 	caddr_t		vaddr;
2464 	page_t		*pplist, *pp;
2465 	ulong_t		pg_idx, an_idx;
2466 	spgcnt_t	nreloc = 0;
2467 	int		pagelock = 0;
2468 	kmutex_t	*ahmpages = NULL;
2469 #ifdef DEBUG
2470 	int		refcnt;
2471 #endif
2472 
2473 	ASSERT(szc != 0);
2474 	ASSERT(szc == seg->s_szc);
2475 
2476 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2477 
2478 	pgcnt = page_get_pagecnt(szc);
2479 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2480 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2481 
2482 	ASSERT(amp != NULL);
2483 	ap = anon_get_ptr(amp->ahp, start_idx);
2484 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2485 
2486 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2487 
2488 	/*
2489 	 * Now try and allocate the large page. If we fail then just
2490 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2491 	 * the caller make this decision but to avoid added complexity
2492 	 * it's simplier to handle that case here.
2493 	 */
2494 	if (anypgsz == -1) {
2495 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2496 		prealloc = 0;
2497 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2498 	    anypgsz, pgflags) != 0) {
2499 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2500 		prealloc = 0;
2501 	}
2502 
2503 	/*
2504 	 * make the decrement of all refcnts of all
2505 	 * anon slots of a large page appear atomic by
2506 	 * getting an anonpages_hash_lock for the
2507 	 * first anon slot of a large page.
2508 	 */
2509 	if (ap != NULL) {
2510 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2511 		    ap->an_off)];
2512 		mutex_enter(ahmpages);
2513 		if (ap->an_refcnt == 1) {
2514 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2515 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2516 			mutex_exit(ahmpages);
2517 
2518 			if (prealloc) {
2519 				page_free_replacement_page(pplist);
2520 				page_create_putback(pgcnt);
2521 			}
2522 			ASSERT(ppa[0]->p_szc <= szc);
2523 			if (ppa[0]->p_szc == szc) {
2524 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2525 				return (0);
2526 			}
2527 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2528 				ASSERT(ppa[pg_idx] != NULL);
2529 				page_unlock(ppa[pg_idx]);
2530 			}
2531 			return (-1);
2532 		}
2533 	}
2534 
2535 	/*
2536 	 * If we are passed in the vpage array and this is
2537 	 * not PROT_WRITE then we need to decrement availrmem
2538 	 * up front before we try anything. If we need to and
2539 	 * can't decrement availrmem then its better to fail now
2540 	 * than in the middle of processing the new large page.
2541 	 * page_pp_usclaim() on behalf of each constituent page
2542 	 * below will adjust availrmem back for the cases not needed.
2543 	 */
2544 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2545 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2546 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2547 				pagelock = 1;
2548 				break;
2549 			}
2550 		}
2551 		if (pagelock) {
2552 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2553 			mutex_enter(&freemem_lock);
2554 			if (availrmem >= pages_pp_maximum + pgcnt) {
2555 				availrmem -= pgcnt;
2556 				pages_useclaim += pgcnt;
2557 			} else {
2558 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2559 				mutex_exit(&freemem_lock);
2560 				if (ahmpages != NULL) {
2561 					mutex_exit(ahmpages);
2562 				}
2563 				if (prealloc) {
2564 					page_free_replacement_page(pplist);
2565 					page_create_putback(pgcnt);
2566 				}
2567 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2568 					if (ppa[pg_idx] != NULL)
2569 						page_unlock(ppa[pg_idx]);
2570 				return (ENOMEM);
2571 			}
2572 			mutex_exit(&freemem_lock);
2573 		}
2574 	}
2575 
2576 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2577 
2578 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2579 
2580 	an_idx = start_idx;
2581 	pg_idx = 0;
2582 	vaddr = addr;
2583 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2584 		ASSERT(ppa[pg_idx] != NULL);
2585 		oldap = anon_get_ptr(amp->ahp, an_idx);
2586 		ASSERT(ahmpages != NULL || oldap == NULL);
2587 		ASSERT(ahmpages == NULL || oldap != NULL);
2588 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2589 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2590 		    (refcnt = oldap->an_refcnt));
2591 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2592 		    refcnt == oldap->an_refcnt);
2593 
2594 		ap = anon_alloc(NULL, 0);
2595 
2596 		swap_xlate(ap, &vp, &off);
2597 
2598 		/*
2599 		 * Now setup our preallocated page to pass down to
2600 		 * swap_getpage().
2601 		 */
2602 		if (prealloc) {
2603 			pp = pplist;
2604 			page_sub(&pplist, pp);
2605 			conpp = pp;
2606 		}
2607 
2608 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2609 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2610 		    S_CREATE, cred);
2611 
2612 		/*
2613 		 * Impossible to fail this is S_CREATE.
2614 		 */
2615 		if (err)
2616 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2617 
2618 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2619 		ASSERT(prealloc == 0 || nreloc == 1);
2620 
2621 		pp = pl[0];
2622 
2623 		/*
2624 		 * If the original page was locked, we need to move
2625 		 * the lock to the new page by transfering
2626 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2627 		 * of the new page. pg_idx can be used to index
2628 		 * into the vpage array since the caller will guarentee
2629 		 * that vpage struct passed in corresponds to addr
2630 		 * and forward.
2631 		 */
2632 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2633 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2634 		} else if (pagelock) {
2635 			mutex_enter(&freemem_lock);
2636 			availrmem++;
2637 			pages_useclaim--;
2638 			mutex_exit(&freemem_lock);
2639 		}
2640 
2641 		/*
2642 		 * Now copy the contents from the original page.
2643 		 */
2644 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2645 			/*
2646 			 * Before ppcopy could hanlde UE or other faults, we
2647 			 * would have panicked here, and still have no option
2648 			 * but to do so now.
2649 			 */
2650 			panic("anon_map_privatepages, ppcopy failed");
2651 		}
2652 
2653 		hat_setrefmod(pp);		/* mark as modified */
2654 
2655 		/*
2656 		 * Release the lock on the original page,
2657 		 * derement the old slot, and down grade the lock
2658 		 * on the new copy.
2659 		 */
2660 		page_unlock(ppa[pg_idx]);
2661 
2662 		if (!prealloc)
2663 			page_downgrade(pp);
2664 
2665 		ppa[pg_idx] = pp;
2666 
2667 		/*
2668 		 * Now reflect the copy in the new anon array.
2669 		 */
2670 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2671 		if (oldap != NULL)
2672 			anon_decref(oldap);
2673 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2674 	}
2675 
2676 	/*
2677 	 * Unload the old large page translation.
2678 	 */
2679 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2680 
2681 	if (ahmpages != NULL) {
2682 		mutex_exit(ahmpages);
2683 	}
2684 	ASSERT(prealloc == 0 || pplist == NULL);
2685 	if (prealloc) {
2686 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2687 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2688 			page_downgrade(ppa[pg_idx]);
2689 		}
2690 	}
2691 
2692 	return (0);
2693 }
2694 
2695 /*
2696  * Allocate a private zero-filled anon page.
2697  */
2698 page_t *
2699 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2700 {
2701 	struct anon *ap;
2702 	page_t *pp;
2703 	struct vnode *vp;
2704 	anoff_t off;
2705 	page_t *anon_pl[1 + 1];
2706 	int err;
2707 
2708 	/* Kernel probe */
2709 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2710 		tnf_opaque,	address,	addr);
2711 
2712 	*app = ap = anon_alloc(NULL, 0);
2713 	swap_xlate(ap, &vp, &off);
2714 
2715 	/*
2716 	 * Call the VOP_GETPAGE routine to create the page, thereby
2717 	 * enabling the vnode driver to allocate any filesystem
2718 	 * dependent structures (e.g., disk block allocation for UFS).
2719 	 * This also prevents more than on page from being added to
2720 	 * the vnode at the same time since it is locked.
2721 	 */
2722 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2723 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2724 	if (err) {
2725 		*app = NULL;
2726 		anon_decref(ap);
2727 		return (NULL);
2728 	}
2729 	pp = anon_pl[0];
2730 
2731 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2732 	page_downgrade(pp);
2733 	CPU_STATS_ADD_K(vm, zfod, 1);
2734 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2735 	return (pp);
2736 }
2737 
2738 
2739 /*
2740  * Allocate array of private zero-filled anon pages for empty slots
2741  * and kept pages for non empty slots within given range.
2742  *
2743  * NOTE: This rontine will try and use large pages
2744  *	if available and supported by underlying platform.
2745  */
2746 int
2747 anon_map_createpages(
2748 	struct anon_map *amp,
2749 	ulong_t start_index,
2750 	size_t len,
2751 	page_t *ppa[],
2752 	struct seg *seg,
2753 	caddr_t addr,
2754 	enum seg_rw rw,
2755 	struct cred *cred)
2756 {
2757 
2758 	struct anon	*ap;
2759 	struct vnode	*ap_vp;
2760 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2761 	int		err = 0;
2762 	ulong_t		p_index, index;
2763 	pgcnt_t		npgs, pg_cnt;
2764 	spgcnt_t	nreloc = 0;
2765 	uint_t		l_szc, szc, prot;
2766 	anoff_t		ap_off;
2767 	size_t		pgsz;
2768 	lgrp_t		*lgrp;
2769 	kmutex_t	*ahm;
2770 
2771 	/*
2772 	 * XXX For now only handle S_CREATE.
2773 	 */
2774 	ASSERT(rw == S_CREATE);
2775 
2776 	index	= start_index;
2777 	p_index	= 0;
2778 	npgs = btopr(len);
2779 
2780 	/*
2781 	 * If this platform supports multiple page sizes
2782 	 * then try and allocate directly from the free
2783 	 * list for pages larger than PAGESIZE.
2784 	 *
2785 	 * NOTE:When we have page_create_ru we can stop
2786 	 *	directly allocating from the freelist.
2787 	 */
2788 	l_szc  = seg->s_szc;
2789 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2790 	while (npgs) {
2791 
2792 		/*
2793 		 * if anon slot already exists
2794 		 *   (means page has been created)
2795 		 * so 1) look up the page
2796 		 *    2) if the page is still in memory, get it.
2797 		 *    3) if not, create a page and
2798 		 *	  page in from physical swap device.
2799 		 * These are done in anon_getpage().
2800 		 */
2801 		ap = anon_get_ptr(amp->ahp, index);
2802 		if (ap) {
2803 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2804 			    seg, addr, S_READ, cred);
2805 			if (err) {
2806 				ANON_LOCK_EXIT(&amp->a_rwlock);
2807 				panic("anon_map_createpages: anon_getpage");
2808 			}
2809 			pp = anon_pl[0];
2810 			ppa[p_index++] = pp;
2811 
2812 			/*
2813 			 * an_pvp can become non-NULL after SysV's page was
2814 			 * paged out before ISM was attached to this SysV
2815 			 * shared memory segment. So free swap slot if needed.
2816 			 */
2817 			if (ap->an_pvp != NULL) {
2818 				page_io_lock(pp);
2819 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
2820 				    ap->an_off)];
2821 				mutex_enter(ahm);
2822 				if (ap->an_pvp != NULL) {
2823 					swap_phys_free(ap->an_pvp,
2824 					    ap->an_poff, PAGESIZE);
2825 					ap->an_pvp = NULL;
2826 					ap->an_poff = 0;
2827 					mutex_exit(ahm);
2828 					hat_setmod(pp);
2829 				} else {
2830 					mutex_exit(ahm);
2831 				}
2832 				page_io_unlock(pp);
2833 			}
2834 
2835 			addr += PAGESIZE;
2836 			index++;
2837 			npgs--;
2838 			continue;
2839 		}
2840 		/*
2841 		 * Now try and allocate the largest page possible
2842 		 * for the current address and range.
2843 		 * Keep dropping down in page size until:
2844 		 *
2845 		 *	1) Properly aligned
2846 		 *	2) Does not overlap existing anon pages
2847 		 *	3) Fits in remaining range.
2848 		 *	4) able to allocate one.
2849 		 *
2850 		 * NOTE: XXX When page_create_ru is completed this code
2851 		 *	 will change.
2852 		 */
2853 		szc    = l_szc;
2854 		pplist = NULL;
2855 		pg_cnt = 0;
2856 		while (szc) {
2857 			pgsz	= page_get_pagesize(szc);
2858 			pg_cnt	= pgsz >> PAGESHIFT;
2859 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2860 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2861 				/*
2862 				 * XXX
2863 				 * Since we are faking page_create()
2864 				 * we also need to do the freemem and
2865 				 * pcf accounting.
2866 				 */
2867 				(void) page_create_wait(pg_cnt, PG_WAIT);
2868 
2869 				/*
2870 				 * Get lgroup to allocate next page of shared
2871 				 * memory from and use it to specify where to
2872 				 * allocate the physical memory
2873 				 */
2874 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2875 
2876 				pplist = page_get_freelist(
2877 				    anon_vp, (u_offset_t)0, seg,
2878 				    addr, pgsz, 0, lgrp);
2879 
2880 				if (pplist == NULL) {
2881 					page_create_putback(pg_cnt);
2882 				}
2883 
2884 				/*
2885 				 * If a request for a page of size
2886 				 * larger than PAGESIZE failed
2887 				 * then don't try that size anymore.
2888 				 */
2889 				if (pplist == NULL) {
2890 					l_szc = szc - 1;
2891 				} else {
2892 					break;
2893 				}
2894 			}
2895 			szc--;
2896 		}
2897 
2898 		/*
2899 		 * If just using PAGESIZE pages then don't
2900 		 * directly allocate from the free list.
2901 		 */
2902 		if (pplist == NULL) {
2903 			ASSERT(szc == 0);
2904 			pp = anon_zero(seg, addr, &ap, cred);
2905 			if (pp == NULL) {
2906 				ANON_LOCK_EXIT(&amp->a_rwlock);
2907 				panic("anon_map_createpages: anon_zero");
2908 			}
2909 			ppa[p_index++] = pp;
2910 
2911 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2912 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2913 
2914 			addr += PAGESIZE;
2915 			index++;
2916 			npgs--;
2917 			continue;
2918 		}
2919 
2920 		/*
2921 		 * pplist is a list of pg_cnt PAGESIZE pages.
2922 		 * These pages are locked SE_EXCL since they
2923 		 * came directly off the free list.
2924 		 */
2925 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2926 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2927 		ASSERT(conpp == NULL);
2928 		while (pg_cnt--) {
2929 
2930 			ap = anon_alloc(NULL, 0);
2931 			swap_xlate(ap, &ap_vp, &ap_off);
2932 
2933 			ASSERT(pplist != NULL);
2934 			pp = pplist;
2935 			page_sub(&pplist, pp);
2936 			PP_CLRFREE(pp);
2937 			PP_CLRAGED(pp);
2938 			conpp = pp;
2939 
2940 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2941 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2942 			    &nreloc, seg, addr, S_CREATE, cred);
2943 
2944 			if (err) {
2945 				ANON_LOCK_EXIT(&amp->a_rwlock);
2946 				panic("anon_map_createpages: S_CREATE");
2947 			}
2948 
2949 			ASSERT(anon_pl[0] == pp);
2950 			ASSERT(nreloc == 1);
2951 			pagezero(pp, 0, PAGESIZE);
2952 			CPU_STATS_ADD_K(vm, zfod, 1);
2953 			hat_setrefmod(pp);
2954 
2955 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2956 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2957 
2958 			ppa[p_index++] = pp;
2959 
2960 			addr += PAGESIZE;
2961 			index++;
2962 			npgs--;
2963 		}
2964 		conpp = NULL;
2965 		pg_cnt	= pgsz >> PAGESHIFT;
2966 		p_index = p_index - pg_cnt;
2967 		while (pg_cnt--) {
2968 			page_downgrade(ppa[p_index++]);
2969 		}
2970 	}
2971 	ANON_LOCK_EXIT(&amp->a_rwlock);
2972 	return (0);
2973 }
2974 
2975 static int
2976 anon_try_demote_pages(
2977 	struct anon_hdr *ahp,
2978 	ulong_t sidx,
2979 	uint_t szc,
2980 	page_t **ppa,
2981 	int private)
2982 {
2983 	struct anon	*ap;
2984 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2985 	page_t		*pp;
2986 	pgcnt_t		i;
2987 	kmutex_t	*ahmpages = NULL;
2988 	int		root = 0;
2989 	pgcnt_t		npgs;
2990 	pgcnt_t		curnpgs = 0;
2991 	size_t		ppasize = 0;
2992 
2993 	ASSERT(szc != 0);
2994 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2995 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
2996 	ASSERT(sidx < ahp->size);
2997 
2998 	if (ppa == NULL) {
2999 		ppasize = pgcnt * sizeof (page_t *);
3000 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3001 	}
3002 
3003 	ap = anon_get_ptr(ahp, sidx);
3004 	if (ap != NULL && private) {
3005 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3006 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
3007 		mutex_enter(ahmpages);
3008 	}
3009 
3010 	if (ap != NULL && ap->an_refcnt > 1) {
3011 		if (ahmpages != NULL) {
3012 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3013 			mutex_exit(ahmpages);
3014 		}
3015 		if (ppasize != 0) {
3016 			kmem_free(ppa, ppasize);
3017 		}
3018 		return (0);
3019 	}
3020 	if (ahmpages != NULL) {
3021 		mutex_exit(ahmpages);
3022 	}
3023 	if (ahp->size - sidx < pgcnt) {
3024 		ASSERT(private == 0);
3025 		pgcnt = ahp->size - sidx;
3026 	}
3027 	for (i = 0; i < pgcnt; i++, sidx++) {
3028 		ap = anon_get_ptr(ahp, sidx);
3029 		if (ap != NULL) {
3030 			if (ap->an_refcnt != 1) {
3031 				panic("anon_try_demote_pages: an_refcnt != 1");
3032 			}
3033 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3034 			    SE_EXCL);
3035 			if (pp != NULL) {
3036 				(void) hat_pageunload(pp,
3037 				    HAT_FORCE_PGUNLOAD);
3038 			}
3039 		} else {
3040 			ppa[i] = NULL;
3041 		}
3042 	}
3043 	for (i = 0; i < pgcnt; i++) {
3044 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3045 			ASSERT(pp->p_szc <= szc);
3046 			if (!root) {
3047 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3048 				if (curnpgs != 0)
3049 					panic("anon_try_demote_pages: "
3050 					    "bad large page");
3051 
3052 				root = 1;
3053 				curnpgs = npgs =
3054 				    page_get_pagecnt(pp->p_szc);
3055 
3056 				ASSERT(npgs <= pgcnt);
3057 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3058 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3059 			} else {
3060 				ASSERT(i > 0);
3061 				ASSERT(page_pptonum(pp) - 1 ==
3062 				    page_pptonum(ppa[i - 1]));
3063 				if ((page_pptonum(pp) & (npgs - 1)) ==
3064 				    npgs - 1)
3065 					root = 0;
3066 			}
3067 			ASSERT(PAGE_EXCL(pp));
3068 			pp->p_szc = 0;
3069 			ASSERT(curnpgs > 0);
3070 			curnpgs--;
3071 		}
3072 	}
3073 	if (root != 0 || curnpgs != 0)
3074 		panic("anon_try_demote_pages: bad large page");
3075 
3076 	for (i = 0; i < pgcnt; i++) {
3077 		if ((pp = ppa[i]) != NULL) {
3078 			ASSERT(!hat_page_is_mapped(pp));
3079 			ASSERT(pp->p_szc == 0);
3080 			page_unlock(pp);
3081 		}
3082 	}
3083 	if (ppasize != 0) {
3084 		kmem_free(ppa, ppasize);
3085 	}
3086 	return (1);
3087 }
3088 
3089 /*
3090  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3091  */
3092 int
3093 anon_map_demotepages(
3094 	struct anon_map *amp,
3095 	ulong_t	start_idx,
3096 	struct seg *seg,
3097 	caddr_t addr,
3098 	uint_t prot,
3099 	struct vpage vpage[],
3100 	struct cred *cred)
3101 {
3102 	struct anon	*ap;
3103 	uint_t		szc = seg->s_szc;
3104 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3105 	size_t		ppasize = pgcnt * sizeof (page_t *);
3106 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3107 	page_t		*pp;
3108 	page_t		*pl[2];
3109 	pgcnt_t		i, pg_idx;
3110 	ulong_t		an_idx;
3111 	caddr_t		vaddr;
3112 	int 		err;
3113 	int		retry = 0;
3114 	uint_t		vpprot;
3115 
3116 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3117 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3118 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3119 	ASSERT(ppa != NULL);
3120 	ASSERT(szc != 0);
3121 	ASSERT(szc == amp->a_szc);
3122 
3123 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3124 
3125 top:
3126 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3127 		kmem_free(ppa, ppasize);
3128 		return (0);
3129 	}
3130 
3131 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3132 
3133 	ASSERT(retry == 0); /* we can be here only once */
3134 
3135 	vaddr = addr;
3136 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3137 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3138 		ap = anon_get_ptr(amp->ahp, an_idx);
3139 		if (ap == NULL)
3140 			panic("anon_map_demotepages: no anon slot");
3141 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3142 		    S_READ, cred);
3143 		if (err) {
3144 			for (i = 0; i < pg_idx; i++) {
3145 				if ((pp = ppa[i]) != NULL)
3146 					page_unlock(pp);
3147 			}
3148 			kmem_free(ppa, ppasize);
3149 			return (err);
3150 		}
3151 		ppa[pg_idx] = pl[0];
3152 	}
3153 
3154 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3155 	    vpage, -1, 0, cred);
3156 	if (err > 0) {
3157 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3158 		kmem_free(ppa, ppasize);
3159 		return (err);
3160 	}
3161 	ASSERT(err == 0 || err == -1);
3162 	if (err == -1) {
3163 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3164 		retry = 1;
3165 		goto top;
3166 	}
3167 	for (i = 0; i < pgcnt; i++) {
3168 		ASSERT(ppa[i] != NULL);
3169 		if (ppa[i]->p_szc != 0)
3170 			retry = 1;
3171 		page_unlock(ppa[i]);
3172 	}
3173 	if (retry) {
3174 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3175 		goto top;
3176 	}
3177 
3178 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3179 
3180 	kmem_free(ppa, ppasize);
3181 
3182 	return (0);
3183 }
3184 
3185 /*
3186  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3187  * structures with private anon maps. Therefore all anon structures should
3188  * have at most one reference at this point. This means underlying pages can
3189  * be exclusively locked and demoted or freed.  If not freeing the entire
3190  * large pages demote the ends of the region we free to be able to free
3191  * subpages. Page roots correspond to aligned index positions in anon map.
3192  */
3193 void
3194 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3195 {
3196 	ulong_t eidx = sidx + btopr(len);
3197 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3198 	struct anon_hdr *ahp = amp->ahp;
3199 	ulong_t tidx;
3200 	size_t size;
3201 	ulong_t sidx_aligned;
3202 	ulong_t eidx_aligned;
3203 
3204 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3205 	ASSERT(amp->refcnt <= 1);
3206 	ASSERT(amp->a_szc > 0);
3207 	ASSERT(eidx <= ahp->size);
3208 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3209 
3210 	if (len == 0) {	/* XXX */
3211 		return;
3212 	}
3213 
3214 	sidx_aligned = P2ALIGN(sidx, pages);
3215 	if (sidx_aligned != sidx ||
3216 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3217 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3218 		    amp->a_szc, NULL, 0)) {
3219 			panic("anon_shmap_free_pages: demote failed");
3220 		}
3221 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3222 		    P2NPHASE(sidx, pages);
3223 		size <<= PAGESHIFT;
3224 		anon_free(ahp, sidx, size);
3225 		sidx = sidx_aligned + pages;
3226 		if (eidx <= sidx) {
3227 			return;
3228 		}
3229 	}
3230 	eidx_aligned = P2ALIGN(eidx, pages);
3231 	if (sidx < eidx_aligned) {
3232 		anon_free_pages(ahp, sidx,
3233 		    (eidx_aligned - sidx) << PAGESHIFT,
3234 		    amp->a_szc);
3235 		sidx = eidx_aligned;
3236 	}
3237 	ASSERT(sidx == eidx_aligned);
3238 	if (eidx == eidx_aligned) {
3239 		return;
3240 	}
3241 	tidx = eidx;
3242 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3243 	    tidx - sidx < pages) {
3244 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3245 			panic("anon_shmap_free_pages: demote failed");
3246 		}
3247 		size = (eidx - sidx) << PAGESHIFT;
3248 		anon_free(ahp, sidx, size);
3249 	} else {
3250 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3251 	}
3252 }
3253 
3254 /*
3255  * This routine should be called with amp's writer lock when there're no other
3256  * users of amp.  All pcache entries of this amp must have been already
3257  * inactivated. We must not drop a_rwlock here to prevent new users from
3258  * attaching to this amp.
3259  */
3260 void
3261 anonmap_purge(struct anon_map *amp)
3262 {
3263 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3264 	ASSERT(amp->refcnt <= 1);
3265 
3266 	if (amp->a_softlockcnt != 0) {
3267 		seg_ppurge(NULL, amp, 0);
3268 	}
3269 
3270 	/*
3271 	 * Since all pcache entries were already inactive before this routine
3272 	 * was called seg_ppurge() couldn't return while there're still
3273 	 * entries that can be found via the list anchored at a_phead. So we
3274 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3275 	 * if asynchronous thread that manages pcache already removed pcache
3276 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3277 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3278 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3279 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3280 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3281 	 * barrier that prevents anonmap_purge() to complete while
3282 	 * shamp_reclaim() may still be referencing this amp.
3283 	 */
3284 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3285 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3286 
3287 	mutex_enter(&amp->a_purgemtx);
3288 	while (amp->a_softlockcnt != 0) {
3289 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3290 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3291 		amp->a_purgewait = 1;
3292 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3293 	}
3294 	mutex_exit(&amp->a_purgemtx);
3295 
3296 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3297 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3298 	ASSERT(amp->a_softlockcnt == 0);
3299 }
3300 
3301 /*
3302  * Allocate and initialize an anon_map structure for seg
3303  * associating the given swap reservation with the new anon_map.
3304  */
3305 struct anon_map *
3306 anonmap_alloc(size_t size, size_t swresv, int flags)
3307 {
3308 	struct anon_map *amp;
3309 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3310 
3311 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3312 	if (amp == NULL) {
3313 		ASSERT(kmflags == KM_NOSLEEP);
3314 		return (NULL);
3315 	}
3316 
3317 	amp->ahp = anon_create(btopr(size), flags);
3318 	if (amp->ahp == NULL) {
3319 		ASSERT(flags == ANON_NOSLEEP);
3320 		kmem_cache_free(anonmap_cache, amp);
3321 		return (NULL);
3322 	}
3323 	amp->refcnt = 1;
3324 	amp->size = size;
3325 	amp->swresv = swresv;
3326 	amp->locality = 0;
3327 	amp->a_szc = 0;
3328 	amp->a_sp = NULL;
3329 	amp->a_softlockcnt = 0;
3330 	amp->a_purgewait = 0;
3331 	amp->a_phead.p_lnext = &amp->a_phead;
3332 	amp->a_phead.p_lprev = &amp->a_phead;
3333 
3334 	return (amp);
3335 }
3336 
3337 void
3338 anonmap_free(struct anon_map *amp)
3339 {
3340 	ASSERT(amp->ahp != NULL);
3341 	ASSERT(amp->refcnt == 0);
3342 	ASSERT(amp->a_softlockcnt == 0);
3343 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3344 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3345 
3346 	lgrp_shm_policy_fini(amp, NULL);
3347 	anon_release(amp->ahp, btopr(amp->size));
3348 	kmem_cache_free(anonmap_cache, amp);
3349 }
3350 
3351 /*
3352  * Returns true if the app array has some empty slots.
3353  * The offp and lenp parameters are in/out parameters.  On entry
3354  * these values represent the starting offset and length of the
3355  * mapping.  When true is returned, these values may be modified
3356  * to be the largest range which includes empty slots.
3357  */
3358 int
3359 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3360 				size_t *lenp)
3361 {
3362 	ulong_t i, el;
3363 	ssize_t low, high;
3364 	struct anon *ap;
3365 
3366 	low = -1;
3367 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3368 		ap = anon_get_ptr(ahp, anon_idx);
3369 		if (ap == NULL) {
3370 			if (low == -1)
3371 				low = i;
3372 			high = i;
3373 		}
3374 	}
3375 	if (low != -1) {
3376 		/*
3377 		 * Found at least one non-anon page.
3378 		 * Set up the off and len return values.
3379 		 */
3380 		if (low != 0)
3381 			*offp += low;
3382 		*lenp = high - low + PAGESIZE;
3383 		return (1);
3384 	}
3385 	return (0);
3386 }
3387 
3388 /*
3389  * Return a count of the number of existing anon pages in the anon array
3390  * app in the range (off, off+len). The array and slots must be guaranteed
3391  * stable by the caller.
3392  */
3393 pgcnt_t
3394 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3395 {
3396 	pgcnt_t cnt = 0;
3397 
3398 	while (nslots-- > 0) {
3399 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3400 			cnt++;
3401 		anon_index++;
3402 	}
3403 	return (cnt);
3404 }
3405 
3406 /*
3407  * Move reserved phys swap into memory swap (unreserve phys swap
3408  * and reserve mem swap by the same amount).
3409  * Used by segspt when it needs to lock reserved swap npages in memory
3410  */
3411 int
3412 anon_swap_adjust(pgcnt_t npages)
3413 {
3414 	pgcnt_t unlocked_mem_swap;
3415 
3416 	mutex_enter(&anoninfo_lock);
3417 
3418 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3419 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3420 
3421 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3422 	    - k_anoninfo.ani_locked_swap;
3423 	if (npages > unlocked_mem_swap) {
3424 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3425 
3426 		/*
3427 		 * if there is not enough unlocked mem swap we take missing
3428 		 * amount from phys swap and give it to mem swap
3429 		 */
3430 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3431 			mutex_exit(&anoninfo_lock);
3432 			return (ENOMEM);
3433 		}
3434 
3435 		k_anoninfo.ani_mem_resv += adjusted_swap;
3436 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3437 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3438 
3439 		ANI_ADD(adjusted_swap);
3440 	}
3441 	k_anoninfo.ani_locked_swap += npages;
3442 
3443 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3444 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3445 
3446 	mutex_exit(&anoninfo_lock);
3447 
3448 	return (0);
3449 }
3450 
3451 /*
3452  * 'unlocked' reserved mem swap so when it is unreserved it
3453  * can be moved back phys (disk) swap
3454  */
3455 void
3456 anon_swap_restore(pgcnt_t npages)
3457 {
3458 	mutex_enter(&anoninfo_lock);
3459 
3460 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3461 
3462 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3463 	k_anoninfo.ani_locked_swap -= npages;
3464 
3465 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3466 
3467 	mutex_exit(&anoninfo_lock);
3468 }
3469 
3470 /*
3471  * Return the pointer from the list for a
3472  * specified anon index.
3473  */
3474 ulong_t *
3475 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3476 {
3477 	struct anon	**app;
3478 	void 		**ppp;
3479 
3480 	ASSERT(an_idx < ahp->size);
3481 
3482 	/*
3483 	 * Single level case.
3484 	 */
3485 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3486 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3487 	} else {
3488 
3489 		/*
3490 		 * 2 level case.
3491 		 */
3492 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3493 		if (*ppp == NULL) {
3494 			mutex_enter(&ahp->serial_lock);
3495 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3496 			if (*ppp == NULL)
3497 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3498 			mutex_exit(&ahp->serial_lock);
3499 		}
3500 		app = *ppp;
3501 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3502 	}
3503 }
3504 
3505 void
3506 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3507 {
3508 	ulong_t		*ap_slot;
3509 	kmutex_t	*mtx;
3510 	kcondvar_t	*cv;
3511 	int		hash;
3512 
3513 	/*
3514 	 * Use szc to determine anon slot(s) to appear atomic.
3515 	 * If szc = 0, then lock the anon slot and mark it busy.
3516 	 * If szc > 0, then lock the range of slots by getting the
3517 	 * anon_array_lock for the first anon slot, and mark only the
3518 	 * first anon slot busy to represent whole range being busy.
3519 	 */
3520 
3521 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3522 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3523 	hash = ANON_ARRAY_HASH(amp, an_idx);
3524 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3525 	sobj->sync_cv = cv = &anon_array_cv[hash];
3526 	mutex_enter(mtx);
3527 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3528 	while (ANON_ISBUSY(ap_slot))
3529 		cv_wait(cv, mtx);
3530 	ANON_SETBUSY(ap_slot);
3531 	sobj->sync_data = ap_slot;
3532 	mutex_exit(mtx);
3533 }
3534 
3535 int
3536 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3537 			anon_sync_obj_t *sobj)
3538 {
3539 	ulong_t		*ap_slot;
3540 	kmutex_t	*mtx;
3541 	int		hash;
3542 
3543 	/*
3544 	 * Try to lock a range of anon slots.
3545 	 * Use szc to determine anon slot(s) to appear atomic.
3546 	 * If szc = 0, then lock the anon slot and mark it busy.
3547 	 * If szc > 0, then lock the range of slots by getting the
3548 	 * anon_array_lock for the first anon slot, and mark only the
3549 	 * first anon slot busy to represent whole range being busy.
3550 	 * Fail if the mutex or the anon_array are busy.
3551 	 */
3552 
3553 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3554 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3555 	hash = ANON_ARRAY_HASH(amp, an_idx);
3556 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3557 	sobj->sync_cv = &anon_array_cv[hash];
3558 	if (!mutex_tryenter(mtx)) {
3559 		return (EWOULDBLOCK);
3560 	}
3561 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3562 	if (ANON_ISBUSY(ap_slot)) {
3563 		mutex_exit(mtx);
3564 		return (EWOULDBLOCK);
3565 	}
3566 	ANON_SETBUSY(ap_slot);
3567 	sobj->sync_data = ap_slot;
3568 	mutex_exit(mtx);
3569 	return (0);
3570 }
3571 
3572 void
3573 anon_array_exit(anon_sync_obj_t *sobj)
3574 {
3575 	mutex_enter(sobj->sync_mutex);
3576 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3577 	ANON_CLRBUSY(sobj->sync_data);
3578 	if (CV_HAS_WAITERS(sobj->sync_cv))
3579 		cv_broadcast(sobj->sync_cv);
3580 	mutex_exit(sobj->sync_mutex);
3581 }
3582