xref: /titanic_44/usr/src/uts/common/vm/seg_vn.c (revision fbd1c0dae6f4a2ccc2ce0527c7f19d3dd5ea90b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - shared or copy-on-write from a vnode/anonymous memory.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/t_lock.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/debug.h>
52 #include <sys/cred.h>
53 #include <sys/vmsystm.h>
54 #include <sys/tuneable.h>
55 #include <sys/bitmap.h>
56 #include <sys/swap.h>
57 #include <sys/kmem.h>
58 #include <sys/sysmacros.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/callb.h>
62 #include <sys/vm.h>
63 #include <sys/dumphdr.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_vn.h>
70 #include <vm/pvn.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/vpage.h>
74 #include <sys/proc.h>
75 #include <sys/task.h>
76 #include <sys/project.h>
77 #include <sys/zone.h>
78 #include <sys/shm_impl.h>
79 /*
80  * Private seg op routines.
81  */
82 static int	segvn_dup(struct seg *seg, struct seg *newseg);
83 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
84 static void	segvn_free(struct seg *seg);
85 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
86 		    caddr_t addr, size_t len, enum fault_type type,
87 		    enum seg_rw rw);
88 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
89 static int	segvn_setprot(struct seg *seg, caddr_t addr,
90 		    size_t len, uint_t prot);
91 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
92 		    size_t len, uint_t prot);
93 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
94 static size_t	segvn_swapout(struct seg *seg);
95 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
96 		    int attr, uint_t flags);
97 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
98 		    char *vec);
99 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
100 		    int attr, int op, ulong_t *lockmap, size_t pos);
101 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
102 		    uint_t *protv);
103 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
104 static int	segvn_gettype(struct seg *seg, caddr_t addr);
105 static int	segvn_getvp(struct seg *seg, caddr_t addr,
106 		    struct vnode **vpp);
107 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
108 		    uint_t behav);
109 static void	segvn_dump(struct seg *seg);
110 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
111 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
112 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
113 		    uint_t szc);
114 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
115 		    memid_t *memidp);
116 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
117 static int	segvn_capable(struct seg *seg, segcapability_t capable);
118 
119 struct	seg_ops segvn_ops = {
120 	segvn_dup,
121 	segvn_unmap,
122 	segvn_free,
123 	segvn_fault,
124 	segvn_faulta,
125 	segvn_setprot,
126 	segvn_checkprot,
127 	segvn_kluster,
128 	segvn_swapout,
129 	segvn_sync,
130 	segvn_incore,
131 	segvn_lockop,
132 	segvn_getprot,
133 	segvn_getoffset,
134 	segvn_gettype,
135 	segvn_getvp,
136 	segvn_advise,
137 	segvn_dump,
138 	segvn_pagelock,
139 	segvn_setpagesize,
140 	segvn_getmemid,
141 	segvn_getpolicy,
142 	segvn_capable,
143 };
144 
145 /*
146  * Common zfod structures, provided as a shorthand for others to use.
147  */
148 static segvn_crargs_t zfod_segvn_crargs =
149 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
150 static segvn_crargs_t kzfod_segvn_crargs =
151 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
152 	PROT_ALL & ~PROT_USER);
153 static segvn_crargs_t stack_noexec_crargs =
154 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
155 
156 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
157 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
158 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
159 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
160 
161 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
162 
163 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
164 
165 static int	segvn_concat(struct seg *, struct seg *, int);
166 static int	segvn_extend_prev(struct seg *, struct seg *,
167 		    struct segvn_crargs *, size_t);
168 static int	segvn_extend_next(struct seg *, struct seg *,
169 		    struct segvn_crargs *, size_t);
170 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
171 static void	segvn_pagelist_rele(page_t **);
172 static void	segvn_setvnode_mpss(vnode_t *);
173 static void	segvn_relocate_pages(page_t **, page_t *);
174 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
175 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
176     uint_t, page_t **, page_t **, uint_t *, int *);
177 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
178     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
179 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
180     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
181 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
182     u_offset_t, struct vpage *, page_t **, uint_t,
183     enum fault_type, enum seg_rw, int, int);
184 static void	segvn_vpage(struct seg *);
185 
186 static void segvn_purge(struct seg *seg);
187 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
188     enum seg_rw);
189 
190 static int sameprot(struct seg *, caddr_t, size_t);
191 
192 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
193 static int segvn_clrszc(struct seg *);
194 static struct seg *segvn_split_seg(struct seg *, caddr_t);
195 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
196     ulong_t, uint_t);
197 
198 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
199     size_t, void *, u_offset_t);
200 
201 static int segvn_slock_anonpages(page_t *, int);
202 static void segvn_sunlock_anonpages(page_t *, int);
203 
204 static struct kmem_cache *segvn_cache;
205 
206 #ifdef VM_STATS
207 static struct segvnvmstats_str {
208 	ulong_t	fill_vp_pages[31];
209 	ulong_t fltvnpages[49];
210 	ulong_t	fullszcpages[10];
211 	ulong_t	relocatepages[3];
212 	ulong_t	fltanpages[17];
213 	ulong_t pagelock[3];
214 	ulong_t	demoterange[3];
215 } segvnvmstats;
216 #endif /* VM_STATS */
217 
218 #define	SDR_RANGE	1		/* demote entire range */
219 #define	SDR_END		2		/* demote non aligned ends only */
220 
221 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
222 		if ((len) != 0) { 		      	      		      \
223 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
224 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
225 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
226 			    (len)), pgsz);				      \
227 			ASSERT(lpgeaddr > lpgaddr);		      	      \
228 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
229 		} else {					      	      \
230 			lpgeaddr = lpgaddr = (addr);	      		      \
231 		}							      \
232 	}
233 
234 /*ARGSUSED*/
235 static int
236 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
237 {
238 	struct segvn_data *svd = buf;
239 
240 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
241 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
242 	svd->svn_trnext = svd->svn_trprev = NULL;
243 	return (0);
244 }
245 
246 /*ARGSUSED1*/
247 static void
248 segvn_cache_destructor(void *buf, void *cdrarg)
249 {
250 	struct segvn_data *svd = buf;
251 
252 	rw_destroy(&svd->lock);
253 	mutex_destroy(&svd->segp_slock);
254 }
255 
256 /*ARGSUSED*/
257 static int
258 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
259 {
260 	bzero(buf, sizeof (svntr_t));
261 	return (0);
262 }
263 
264 /*
265  * Patching this variable to non-zero allows the system to run with
266  * stacks marked as "not executable".  It's a bit of a kludge, but is
267  * provided as a tweakable for platforms that export those ABIs
268  * (e.g. sparc V8) that have executable stacks enabled by default.
269  * There are also some restrictions for platforms that don't actually
270  * implement 'noexec' protections.
271  *
272  * Once enabled, the system is (therefore) unable to provide a fully
273  * ABI-compliant execution environment, though practically speaking,
274  * most everything works.  The exceptions are generally some interpreters
275  * and debuggers that create executable code on the stack and jump
276  * into it (without explicitly mprotecting the address range to include
277  * PROT_EXEC).
278  *
279  * One important class of applications that are disabled are those
280  * that have been transformed into malicious agents using one of the
281  * numerous "buffer overflow" attacks.  See 4007890.
282  */
283 int noexec_user_stack = 0;
284 int noexec_user_stack_log = 1;
285 
286 int segvn_lpg_disable = 0;
287 uint_t segvn_maxpgszc = 0;
288 
289 ulong_t segvn_vmpss_clrszc_cnt;
290 ulong_t segvn_vmpss_clrszc_err;
291 ulong_t segvn_fltvnpages_clrszc_cnt;
292 ulong_t segvn_fltvnpages_clrszc_err;
293 ulong_t segvn_setpgsz_align_err;
294 ulong_t segvn_setpgsz_anon_align_err;
295 ulong_t segvn_setpgsz_getattr_err;
296 ulong_t segvn_setpgsz_eof_err;
297 ulong_t segvn_faultvnmpss_align_err1;
298 ulong_t segvn_faultvnmpss_align_err2;
299 ulong_t segvn_faultvnmpss_align_err3;
300 ulong_t segvn_faultvnmpss_align_err4;
301 ulong_t segvn_faultvnmpss_align_err5;
302 ulong_t	segvn_vmpss_pageio_deadlk_err;
303 
304 int segvn_use_regions = 1;
305 
306 /*
307  * Segvn supports text replication optimization for NUMA platforms. Text
308  * replica's are represented by anon maps (amp). There's one amp per text file
309  * region per lgroup. A process chooses the amp for each of its text mappings
310  * based on the lgroup assignment of its main thread (t_tid = 1). All
311  * processes that want a replica on a particular lgroup for the same text file
312  * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
313  * with vp,off,size,szc used as a key. Text replication segments are read only
314  * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
315  * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
316  * pages. Replication amp is assigned to a segment when it gets its first
317  * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
318  * rechecks periodically if the process still maps an amp local to the main
319  * thread. If not async thread forces process to remap to an amp in the new
320  * home lgroup of the main thread. Current text replication implementation
321  * only provides the benefit to workloads that do most of their work in the
322  * main thread of a process or all the threads of a process run in the same
323  * lgroup. To extend text replication benefit to different types of
324  * multithreaded workloads further work would be needed in the hat layer to
325  * allow the same virtual address in the same hat to simultaneously map
326  * different physical addresses (i.e. page table replication would be needed
327  * for x86).
328  *
329  * amp pages are used instead of vnode pages as long as segment has a very
330  * simple life cycle.  It's created via segvn_create(), handles S_EXEC
331  * (S_READ) pagefaults and is fully unmapped.  If anything more complicated
332  * happens such as protection is changed, real COW fault happens, pagesize is
333  * changed, MC_LOCK is requested or segment is partially unmapped we turn off
334  * text replication by converting the segment back to vnode only segment
335  * (unmap segment's address range and set svd->amp to NULL).
336  *
337  * The original file can be changed after amp is inserted into
338  * svntr_hashtab. Processes that are launched after the file is already
339  * changed can't use the replica's created prior to the file change. To
340  * implement this functionality hash entries are timestamped. Replica's can
341  * only be used if current file modification time is the same as the timestamp
342  * saved when hash entry was created. However just timestamps alone are not
343  * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
344  * deal with file changes via MAP_SHARED mappings differently. When writable
345  * MAP_SHARED mappings are created to vnodes marked as executable we mark all
346  * existing replica's for this vnode as not usable for future text
347  * mappings. And we don't create new replica's for files that currently have
348  * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
349  * true).
350  */
351 
352 #define	SEGVN_TEXTREPL_MAXBYTES_FACTOR	(20)
353 size_t	segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
354 
355 static ulong_t			svntr_hashtab_sz = 512;
356 static svntr_bucket_t		*svntr_hashtab = NULL;
357 static struct kmem_cache	*svntr_cache;
358 static svntr_stats_t		*segvn_textrepl_stats;
359 static ksema_t 			segvn_trasync_sem;
360 
361 int				segvn_disable_textrepl = 0;
362 size_t				textrepl_size_thresh = (size_t)-1;
363 size_t				segvn_textrepl_bytes = 0;
364 size_t				segvn_textrepl_max_bytes = 0;
365 clock_t				segvn_update_textrepl_interval = 0;
366 int				segvn_update_tr_time = 10;
367 int				segvn_disable_textrepl_update = 0;
368 
369 static void segvn_textrepl(struct seg *);
370 static void segvn_textunrepl(struct seg *, int);
371 static void segvn_inval_trcache(vnode_t *);
372 static void segvn_trasync_thread(void);
373 static void segvn_trupdate_wakeup(void *);
374 static void segvn_trupdate(void);
375 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
376     ulong_t);
377 
378 /*
379  * Initialize segvn data structures
380  */
381 void
382 segvn_init(void)
383 {
384 	uint_t maxszc;
385 	uint_t szc;
386 	size_t pgsz;
387 
388 	segvn_cache = kmem_cache_create("segvn_cache",
389 		sizeof (struct segvn_data), 0,
390 		segvn_cache_constructor, segvn_cache_destructor, NULL,
391 		NULL, NULL, 0);
392 
393 	if (segvn_lpg_disable != 0)
394 		return;
395 	szc = maxszc = page_num_pagesizes() - 1;
396 	if (szc == 0) {
397 		segvn_lpg_disable = 1;
398 		return;
399 	}
400 	if (page_get_pagesize(0) != PAGESIZE) {
401 		panic("segvn_init: bad szc 0");
402 		/*NOTREACHED*/
403 	}
404 	while (szc != 0) {
405 		pgsz = page_get_pagesize(szc);
406 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
407 			panic("segvn_init: bad szc %d", szc);
408 			/*NOTREACHED*/
409 		}
410 		szc--;
411 	}
412 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
413 		segvn_maxpgszc = maxszc;
414 
415 	if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
416 		segvn_use_regions = 0;
417 
418 	/*
419 	 * For now shared regions and text replication segvn support
420 	 * are mutually exclusive. This is acceptable because
421 	 * currently significant benefit from text replication was
422 	 * only observed on AMD64 NUMA platforms (due to relatively
423 	 * small L2$ size) and currently we don't support shared
424 	 * regions on x86.
425 	 */
426 	if (segvn_use_regions && !segvn_disable_textrepl) {
427 		segvn_disable_textrepl = 1;
428 	}
429 
430 #if defined(_LP64)
431 	if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
432 	    !segvn_disable_textrepl) {
433 		ulong_t i;
434 		size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
435 
436 		svntr_cache = kmem_cache_create("svntr_cache",
437 		    sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
438 		    NULL, NULL, NULL, 0);
439 		svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
440 		for (i = 0; i < svntr_hashtab_sz; i++) {
441 			mutex_init(&svntr_hashtab[i].tr_lock,  NULL,
442 			    MUTEX_DEFAULT, NULL);
443 		}
444 		segvn_textrepl_max_bytes = ptob(physmem) /
445 		    segvn_textrepl_max_bytes_factor;
446 		segvn_textrepl_stats = kmem_zalloc(NCPU *
447 		    sizeof (svntr_stats_t), KM_SLEEP);
448 		sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
449 		(void) thread_create(NULL, 0, segvn_trasync_thread,
450 		    NULL, 0, &p0, TS_RUN, minclsyspri);
451 	}
452 #endif
453 }
454 
455 #define	SEGVN_PAGEIO	((void *)0x1)
456 #define	SEGVN_NOPAGEIO	((void *)0x2)
457 
458 static void
459 segvn_setvnode_mpss(vnode_t *vp)
460 {
461 	int err;
462 
463 	ASSERT(vp->v_mpssdata == NULL ||
464 	    vp->v_mpssdata == SEGVN_PAGEIO ||
465 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
466 
467 	if (vp->v_mpssdata == NULL) {
468 		if (vn_vmpss_usepageio(vp)) {
469 			err = VOP_PAGEIO(vp, (page_t *)NULL,
470 			    (u_offset_t)0, 0, 0, CRED());
471 		} else {
472 			err = ENOSYS;
473 		}
474 		/*
475 		 * set v_mpssdata just once per vnode life
476 		 * so that it never changes.
477 		 */
478 		mutex_enter(&vp->v_lock);
479 		if (vp->v_mpssdata == NULL) {
480 			if (err == EINVAL) {
481 				vp->v_mpssdata = SEGVN_PAGEIO;
482 			} else {
483 				vp->v_mpssdata = SEGVN_NOPAGEIO;
484 			}
485 		}
486 		mutex_exit(&vp->v_lock);
487 	}
488 }
489 
490 int
491 segvn_create(struct seg *seg, void *argsp)
492 {
493 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
494 	struct segvn_data *svd;
495 	size_t swresv = 0;
496 	struct cred *cred;
497 	struct anon_map *amp;
498 	int error = 0;
499 	size_t pgsz;
500 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
501 	int use_rgn = 0;
502 	int trok = 0;
503 
504 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
505 
506 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
507 		panic("segvn_create type");
508 		/*NOTREACHED*/
509 	}
510 
511 	/*
512 	 * Check arguments.  If a shared anon structure is given then
513 	 * it is illegal to also specify a vp.
514 	 */
515 	if (a->amp != NULL && a->vp != NULL) {
516 		panic("segvn_create anon_map");
517 		/*NOTREACHED*/
518 	}
519 
520 	if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
521 	    a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
522 	    segvn_use_regions) {
523 		use_rgn = 1;
524 	}
525 
526 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
527 	if (a->type == MAP_SHARED)
528 		a->flags &= ~MAP_NORESERVE;
529 
530 	if (a->szc != 0) {
531 		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
532 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
533 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
534 			a->szc = 0;
535 		} else {
536 			if (a->szc > segvn_maxpgszc)
537 				a->szc = segvn_maxpgszc;
538 			pgsz = page_get_pagesize(a->szc);
539 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
540 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
541 				a->szc = 0;
542 			} else if (a->vp != NULL) {
543 				extern struct vnode kvp;
544 				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
545 					/*
546 					 * paranoid check.
547 					 * hat_page_demote() is not supported
548 					 * on swapfs pages.
549 					 */
550 					a->szc = 0;
551 				} else if (map_addr_vacalign_check(seg->s_base,
552 				    a->offset & PAGEMASK)) {
553 					a->szc = 0;
554 				}
555 			} else if (a->amp != NULL) {
556 				pgcnt_t anum = btopr(a->offset);
557 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
558 				if (!IS_P2ALIGNED(anum, pgcnt)) {
559 					a->szc = 0;
560 				}
561 			}
562 		}
563 	}
564 
565 	/*
566 	 * If segment may need private pages, reserve them now.
567 	 */
568 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
569 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
570 		if (anon_resv(seg->s_size) == 0)
571 			return (EAGAIN);
572 		swresv = seg->s_size;
573 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
574 			seg, swresv, 1);
575 	}
576 
577 	/*
578 	 * Reserve any mapping structures that may be required.
579 	 *
580 	 * Don't do it for segments that may use regions. It's currently a
581 	 * noop in the hat implementations anyway.
582 	 */
583 	if (!use_rgn) {
584 		hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
585 	}
586 
587 	if (a->cred) {
588 		cred = a->cred;
589 		crhold(cred);
590 	} else {
591 		crhold(cred = CRED());
592 	}
593 
594 	/* Inform the vnode of the new mapping */
595 	if (a->vp != NULL) {
596 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
597 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
598 		    a->maxprot, a->type, cred);
599 		if (error) {
600 			if (swresv != 0) {
601 				anon_unresv(swresv);
602 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
603 					"anon proc:%p %lu %u",
604 					seg, swresv, 0);
605 			}
606 			crfree(cred);
607 			if (!use_rgn) {
608 				hat_unload(seg->s_as->a_hat, seg->s_base,
609 				    seg->s_size, HAT_UNLOAD_UNMAP);
610 			}
611 			return (error);
612 		}
613 		/*
614 		 * svntr_hashtab will be NULL if we support shared regions.
615 		 */
616 		trok = ((a->flags & MAP_TEXT) &&
617 		    (seg->s_size > textrepl_size_thresh ||
618 			(a->flags & _MAP_TEXTREPL)) &&
619 		    lgrp_optimizations() && svntr_hashtab != NULL &&
620 		    a->type == MAP_PRIVATE && swresv == 0 &&
621 		    !(a->flags & MAP_NORESERVE) &&
622 		    seg->s_as != &kas && a->vp->v_type == VREG);
623 
624 		ASSERT(!trok || !use_rgn);
625 	}
626 
627 	/*
628 	 * If more than one segment in the address space, and they're adjacent
629 	 * virtually, try to concatenate them.  Don't concatenate if an
630 	 * explicit anon_map structure was supplied (e.g., SystemV shared
631 	 * memory) or if we'll use text replication for this segment.
632 	 */
633 	if (a->amp == NULL && !use_rgn && !trok) {
634 		struct seg *pseg, *nseg;
635 		struct segvn_data *psvd, *nsvd;
636 		lgrp_mem_policy_t ppolicy, npolicy;
637 		uint_t	lgrp_mem_policy_flags = 0;
638 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
639 
640 		/*
641 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
642 		 * extending stack/heap segments.
643 		 */
644 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
645 		    !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
646 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
647 		} else {
648 			/*
649 			 * Get policy when not extending it from another segment
650 			 */
651 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
652 		}
653 
654 		/*
655 		 * First, try to concatenate the previous and new segments
656 		 */
657 		pseg = AS_SEGPREV(seg->s_as, seg);
658 		if (pseg != NULL &&
659 		    pseg->s_base + pseg->s_size == seg->s_base &&
660 		    pseg->s_ops == &segvn_ops) {
661 			/*
662 			 * Get memory allocation policy from previous segment.
663 			 * When extension is specified (e.g. for heap) apply
664 			 * this policy to the new segment regardless of the
665 			 * outcome of segment concatenation.  Extension occurs
666 			 * for non-default policy otherwise default policy is
667 			 * used and is based on extended segment size.
668 			 */
669 			psvd = (struct segvn_data *)pseg->s_data;
670 			ppolicy = psvd->policy_info.mem_policy;
671 			if (lgrp_mem_policy_flags ==
672 			    LGRP_MP_FLAG_EXTEND_UP) {
673 				if (ppolicy != lgrp_mem_default_policy) {
674 					mpolicy = ppolicy;
675 				} else {
676 					mpolicy = lgrp_mem_policy_default(
677 					    pseg->s_size + seg->s_size,
678 					    a->type);
679 				}
680 			}
681 
682 			if (mpolicy == ppolicy &&
683 			    (pseg->s_size + seg->s_size <=
684 			    segvn_comb_thrshld || psvd->amp == NULL) &&
685 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
686 				/*
687 				 * success! now try to concatenate
688 				 * with following seg
689 				 */
690 				crfree(cred);
691 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
692 				if (nseg != NULL &&
693 				    nseg != pseg &&
694 				    nseg->s_ops == &segvn_ops &&
695 				    pseg->s_base + pseg->s_size ==
696 				    nseg->s_base)
697 					(void) segvn_concat(pseg, nseg, 0);
698 				ASSERT(pseg->s_szc == 0 ||
699 				    (a->szc == pseg->s_szc &&
700 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
701 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
702 				return (0);
703 			}
704 		}
705 
706 		/*
707 		 * Failed, so try to concatenate with following seg
708 		 */
709 		nseg = AS_SEGNEXT(seg->s_as, seg);
710 		if (nseg != NULL &&
711 		    seg->s_base + seg->s_size == nseg->s_base &&
712 		    nseg->s_ops == &segvn_ops) {
713 			/*
714 			 * Get memory allocation policy from next segment.
715 			 * When extension is specified (e.g. for stack) apply
716 			 * this policy to the new segment regardless of the
717 			 * outcome of segment concatenation.  Extension occurs
718 			 * for non-default policy otherwise default policy is
719 			 * used and is based on extended segment size.
720 			 */
721 			nsvd = (struct segvn_data *)nseg->s_data;
722 			npolicy = nsvd->policy_info.mem_policy;
723 			if (lgrp_mem_policy_flags ==
724 			    LGRP_MP_FLAG_EXTEND_DOWN) {
725 				if (npolicy != lgrp_mem_default_policy) {
726 					mpolicy = npolicy;
727 				} else {
728 					mpolicy = lgrp_mem_policy_default(
729 					    nseg->s_size + seg->s_size,
730 					    a->type);
731 				}
732 			}
733 
734 			if (mpolicy == npolicy &&
735 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
736 				crfree(cred);
737 				ASSERT(nseg->s_szc == 0 ||
738 				    (a->szc == nseg->s_szc &&
739 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
740 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
741 				return (0);
742 			}
743 		}
744 	}
745 
746 	if (a->vp != NULL) {
747 		VN_HOLD(a->vp);
748 		if (a->type == MAP_SHARED)
749 			lgrp_shm_policy_init(NULL, a->vp);
750 	}
751 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
752 
753 	seg->s_ops = &segvn_ops;
754 	seg->s_data = (void *)svd;
755 	seg->s_szc = a->szc;
756 
757 	svd->seg = seg;
758 	svd->vp = a->vp;
759 	/*
760 	 * Anonymous mappings have no backing file so the offset is meaningless.
761 	 */
762 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
763 	svd->prot = a->prot;
764 	svd->maxprot = a->maxprot;
765 	svd->pageprot = 0;
766 	svd->type = a->type;
767 	svd->vpage = NULL;
768 	svd->cred = cred;
769 	svd->advice = MADV_NORMAL;
770 	svd->pageadvice = 0;
771 	svd->flags = (ushort_t)a->flags;
772 	svd->softlockcnt = 0;
773 	svd->rcookie = HAT_INVALID_REGION_COOKIE;
774 
775 	if (a->szc != 0 && a->vp != NULL) {
776 		segvn_setvnode_mpss(a->vp);
777 	}
778 	if (svd->type == MAP_SHARED && svd->vp != NULL &&
779 	    (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
780 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
781 		segvn_inval_trcache(svd->vp);
782 	}
783 
784 	amp = a->amp;
785 	if ((svd->amp = amp) == NULL) {
786 		svd->anon_index = 0;
787 		if (svd->type == MAP_SHARED) {
788 			svd->swresv = 0;
789 			/*
790 			 * Shared mappings to a vp need no other setup.
791 			 * If we have a shared mapping to an anon_map object
792 			 * which hasn't been allocated yet,  allocate the
793 			 * struct now so that it will be properly shared
794 			 * by remembering the swap reservation there.
795 			 */
796 			if (a->vp == NULL) {
797 				svd->amp = anonmap_alloc(seg->s_size, swresv,
798 				    ANON_SLEEP);
799 				svd->amp->a_szc = seg->s_szc;
800 			}
801 		} else {
802 			/*
803 			 * Private mapping (with or without a vp).
804 			 * Allocate anon_map when needed.
805 			 */
806 			svd->swresv = swresv;
807 		}
808 	} else {
809 		pgcnt_t anon_num;
810 
811 		/*
812 		 * Mapping to an existing anon_map structure without a vp.
813 		 * For now we will insure that the segment size isn't larger
814 		 * than the size - offset gives us.  Later on we may wish to
815 		 * have the anon array dynamically allocated itself so that
816 		 * we don't always have to allocate all the anon pointer slots.
817 		 * This of course involves adding extra code to check that we
818 		 * aren't trying to use an anon pointer slot beyond the end
819 		 * of the currently allocated anon array.
820 		 */
821 		if ((amp->size - a->offset) < seg->s_size) {
822 			panic("segvn_create anon_map size");
823 			/*NOTREACHED*/
824 		}
825 
826 		anon_num = btopr(a->offset);
827 
828 		if (a->type == MAP_SHARED) {
829 			/*
830 			 * SHARED mapping to a given anon_map.
831 			 */
832 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
833 			amp->refcnt++;
834 			if (a->szc > amp->a_szc) {
835 				amp->a_szc = a->szc;
836 			}
837 			ANON_LOCK_EXIT(&amp->a_rwlock);
838 			svd->anon_index = anon_num;
839 			svd->swresv = 0;
840 		} else {
841 			/*
842 			 * PRIVATE mapping to a given anon_map.
843 			 * Make sure that all the needed anon
844 			 * structures are created (so that we will
845 			 * share the underlying pages if nothing
846 			 * is written by this mapping) and then
847 			 * duplicate the anon array as is done
848 			 * when a privately mapped segment is dup'ed.
849 			 */
850 			struct anon *ap;
851 			caddr_t addr;
852 			caddr_t eaddr;
853 			ulong_t	anon_idx;
854 			int hat_flag = HAT_LOAD;
855 
856 			if (svd->flags & MAP_TEXT) {
857 				hat_flag |= HAT_LOAD_TEXT;
858 			}
859 
860 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
861 			svd->amp->a_szc = seg->s_szc;
862 			svd->anon_index = 0;
863 			svd->swresv = swresv;
864 
865 			/*
866 			 * Prevent 2 threads from allocating anon
867 			 * slots simultaneously.
868 			 */
869 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
870 			eaddr = seg->s_base + seg->s_size;
871 
872 			for (anon_idx = anon_num, addr = seg->s_base;
873 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
874 				page_t *pp;
875 
876 				if ((ap = anon_get_ptr(amp->ahp,
877 				    anon_idx)) != NULL)
878 					continue;
879 
880 				/*
881 				 * Allocate the anon struct now.
882 				 * Might as well load up translation
883 				 * to the page while we're at it...
884 				 */
885 				pp = anon_zero(seg, addr, &ap, cred);
886 				if (ap == NULL || pp == NULL) {
887 					panic("segvn_create anon_zero");
888 					/*NOTREACHED*/
889 				}
890 
891 				/*
892 				 * Re-acquire the anon_map lock and
893 				 * initialize the anon array entry.
894 				 */
895 				ASSERT(anon_get_ptr(amp->ahp,
896 				    anon_idx) == NULL);
897 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
898 				    ANON_SLEEP);
899 
900 				ASSERT(seg->s_szc == 0);
901 				ASSERT(!IS_VMODSORT(pp->p_vnode));
902 
903 				ASSERT(use_rgn == 0);
904 				hat_memload(seg->s_as->a_hat, addr, pp,
905 					svd->prot & ~PROT_WRITE, hat_flag);
906 
907 				page_unlock(pp);
908 			}
909 			ASSERT(seg->s_szc == 0);
910 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
911 			    0, seg->s_size);
912 			ANON_LOCK_EXIT(&amp->a_rwlock);
913 		}
914 	}
915 
916 	/*
917 	 * Set default memory allocation policy for segment
918 	 *
919 	 * Always set policy for private memory at least for initialization
920 	 * even if this is a shared memory segment
921 	 */
922 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
923 
924 	if (svd->type == MAP_SHARED)
925 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
926 		    svd->vp, svd->offset, seg->s_size);
927 
928 	if (use_rgn) {
929 		ASSERT(!trok);
930 		ASSERT(svd->amp == NULL);
931 		svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
932 		    seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
933 		    (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
934 		    HAT_REGION_TEXT);
935 	}
936 
937 	ASSERT(!trok || !(svd->prot & PROT_WRITE));
938 	svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
939 
940 	return (0);
941 }
942 
943 /*
944  * Concatenate two existing segments, if possible.
945  * Return 0 on success, -1 if two segments are not compatible
946  * or -2 on memory allocation failure.
947  * If amp_cat == 1 then try and concat segments with anon maps
948  */
949 static int
950 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
951 {
952 	struct segvn_data *svd1 = seg1->s_data;
953 	struct segvn_data *svd2 = seg2->s_data;
954 	struct anon_map *amp1 = svd1->amp;
955 	struct anon_map *amp2 = svd2->amp;
956 	struct vpage *vpage1 = svd1->vpage;
957 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
958 	size_t size, nvpsize;
959 	pgcnt_t npages1, npages2;
960 
961 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
962 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
963 	ASSERT(seg1->s_ops == seg2->s_ops);
964 
965 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
966 	    HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
967 		return (-1);
968 	}
969 
970 	/* both segments exist, try to merge them */
971 #define	incompat(x)	(svd1->x != svd2->x)
972 	if (incompat(vp) || incompat(maxprot) ||
973 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
974 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
975 	    incompat(type) || incompat(cred) || incompat(flags) ||
976 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
977 	    (svd2->softlockcnt > 0))
978 		return (-1);
979 #undef incompat
980 
981 	/*
982 	 * vp == NULL implies zfod, offset doesn't matter
983 	 */
984 	if (svd1->vp != NULL &&
985 	    svd1->offset + seg1->s_size != svd2->offset) {
986 		return (-1);
987 	}
988 
989 	/*
990 	 * Don't concatenate if either segment uses text replication.
991 	 */
992 	if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
993 		return (-1);
994 	}
995 
996 	/*
997 	 * Fail early if we're not supposed to concatenate
998 	 * segments with non NULL amp.
999 	 */
1000 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1001 		return (-1);
1002 	}
1003 
1004 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1005 		if (amp1 != amp2) {
1006 			return (-1);
1007 		}
1008 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1009 		    svd2->anon_index) {
1010 			return (-1);
1011 		}
1012 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1013 	}
1014 
1015 	/*
1016 	 * If either seg has vpages, create a new merged vpage array.
1017 	 */
1018 	if (vpage1 != NULL || vpage2 != NULL) {
1019 		struct vpage *vp;
1020 
1021 		npages1 = seg_pages(seg1);
1022 		npages2 = seg_pages(seg2);
1023 		nvpsize = vpgtob(npages1 + npages2);
1024 
1025 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1026 			return (-2);
1027 		}
1028 
1029 		if (vpage1 != NULL) {
1030 			bcopy(vpage1, nvpage, vpgtob(npages1));
1031 		} else {
1032 			for (vp = nvpage; vp < nvpage + npages1; vp++) {
1033 				VPP_SETPROT(vp, svd1->prot);
1034 				VPP_SETADVICE(vp, svd1->advice);
1035 			}
1036 		}
1037 
1038 		if (vpage2 != NULL) {
1039 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1040 		} else {
1041 			for (vp = nvpage + npages1;
1042 			    vp < nvpage + npages1 + npages2; vp++) {
1043 				VPP_SETPROT(vp, svd2->prot);
1044 				VPP_SETADVICE(vp, svd2->advice);
1045 			}
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * If either segment has private pages, create a new merged anon
1051 	 * array. If mergeing shared anon segments just decrement anon map's
1052 	 * refcnt.
1053 	 */
1054 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
1055 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
1056 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1057 		ASSERT(amp1->refcnt >= 2);
1058 		amp1->refcnt--;
1059 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1060 		svd2->amp = NULL;
1061 	} else if (amp1 != NULL || amp2 != NULL) {
1062 		struct anon_hdr *nahp;
1063 		struct anon_map *namp = NULL;
1064 		size_t asize;
1065 
1066 		ASSERT(svd1->type == MAP_PRIVATE);
1067 
1068 		asize = seg1->s_size + seg2->s_size;
1069 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1070 			if (nvpage != NULL) {
1071 				kmem_free(nvpage, nvpsize);
1072 			}
1073 			return (-2);
1074 		}
1075 		if (amp1 != NULL) {
1076 			/*
1077 			 * XXX anon rwlock is not really needed because
1078 			 * this is a private segment and we are writers.
1079 			 */
1080 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1081 			ASSERT(amp1->refcnt == 1);
1082 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1083 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1084 				anon_release(nahp, btop(asize));
1085 				ANON_LOCK_EXIT(&amp1->a_rwlock);
1086 				if (nvpage != NULL) {
1087 					kmem_free(nvpage, nvpsize);
1088 				}
1089 				return (-2);
1090 			}
1091 		}
1092 		if (amp2 != NULL) {
1093 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1094 			ASSERT(amp2->refcnt == 1);
1095 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1096 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
1097 			    ANON_NOSLEEP)) {
1098 				anon_release(nahp, btop(asize));
1099 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1100 				if (amp1 != NULL) {
1101 					ANON_LOCK_EXIT(&amp1->a_rwlock);
1102 				}
1103 				if (nvpage != NULL) {
1104 					kmem_free(nvpage, nvpsize);
1105 				}
1106 				return (-2);
1107 			}
1108 		}
1109 		if (amp1 != NULL) {
1110 			namp = amp1;
1111 			anon_release(amp1->ahp, btop(amp1->size));
1112 		}
1113 		if (amp2 != NULL) {
1114 			if (namp == NULL) {
1115 				ASSERT(amp1 == NULL);
1116 				namp = amp2;
1117 				anon_release(amp2->ahp, btop(amp2->size));
1118 			} else {
1119 				amp2->refcnt--;
1120 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1121 				anonmap_free(amp2);
1122 			}
1123 			svd2->amp = NULL; /* needed for seg_free */
1124 		}
1125 		namp->ahp = nahp;
1126 		namp->size = asize;
1127 		svd1->amp = namp;
1128 		svd1->anon_index = 0;
1129 		ANON_LOCK_EXIT(&namp->a_rwlock);
1130 	}
1131 	/*
1132 	 * Now free the old vpage structures.
1133 	 */
1134 	if (nvpage != NULL) {
1135 		if (vpage1 != NULL) {
1136 			kmem_free(vpage1, vpgtob(npages1));
1137 		}
1138 		if (vpage2 != NULL) {
1139 			svd2->vpage = NULL;
1140 			kmem_free(vpage2, vpgtob(npages2));
1141 		}
1142 		if (svd2->pageprot) {
1143 			svd1->pageprot = 1;
1144 		}
1145 		if (svd2->pageadvice) {
1146 			svd1->pageadvice = 1;
1147 		}
1148 		svd1->vpage = nvpage;
1149 	}
1150 
1151 	/* all looks ok, merge segments */
1152 	svd1->swresv += svd2->swresv;
1153 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
1154 	size = seg2->s_size;
1155 	seg_free(seg2);
1156 	seg1->s_size += size;
1157 	return (0);
1158 }
1159 
1160 /*
1161  * Extend the previous segment (seg1) to include the
1162  * new segment (seg2 + a), if possible.
1163  * Return 0 on success.
1164  */
1165 static int
1166 segvn_extend_prev(seg1, seg2, a, swresv)
1167 	struct seg *seg1, *seg2;
1168 	struct segvn_crargs *a;
1169 	size_t swresv;
1170 {
1171 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1172 	size_t size;
1173 	struct anon_map *amp1;
1174 	struct vpage *new_vpage;
1175 
1176 	/*
1177 	 * We don't need any segment level locks for "segvn" data
1178 	 * since the address space is "write" locked.
1179 	 */
1180 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1181 
1182 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1183 		return (-1);
1184 	}
1185 
1186 	/* second segment is new, try to extend first */
1187 	/* XXX - should also check cred */
1188 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1189 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1190 	    svd1->type != a->type || svd1->flags != a->flags ||
1191 	    seg1->s_szc != a->szc)
1192 		return (-1);
1193 
1194 	/* vp == NULL implies zfod, offset doesn't matter */
1195 	if (svd1->vp != NULL &&
1196 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1197 		return (-1);
1198 
1199 	if (svd1->tr_state != SEGVN_TR_OFF) {
1200 		return (-1);
1201 	}
1202 
1203 	amp1 = svd1->amp;
1204 	if (amp1) {
1205 		pgcnt_t newpgs;
1206 
1207 		/*
1208 		 * Segment has private pages, can data structures
1209 		 * be expanded?
1210 		 *
1211 		 * Acquire the anon_map lock to prevent it from changing,
1212 		 * if it is shared.  This ensures that the anon_map
1213 		 * will not change while a thread which has a read/write
1214 		 * lock on an address space references it.
1215 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1216 		 * is 1.
1217 		 *
1218 		 * Can't grow a MAP_SHARED segment with an anonmap because
1219 		 * there may be existing anon slots where we want to extend
1220 		 * the segment and we wouldn't know what to do with them
1221 		 * (e.g., for tmpfs right thing is to just leave them there,
1222 		 * for /dev/zero they should be cleared out).
1223 		 */
1224 		if (svd1->type == MAP_SHARED)
1225 			return (-1);
1226 
1227 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1228 		if (amp1->refcnt > 1) {
1229 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1230 			return (-1);
1231 		}
1232 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1233 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1234 
1235 		if (newpgs == 0) {
1236 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1237 			return (-1);
1238 		}
1239 		amp1->size = ptob(newpgs);
1240 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1241 	}
1242 	if (svd1->vpage != NULL) {
1243 		struct vpage *vp, *evp;
1244 		new_vpage =
1245 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1246 			KM_NOSLEEP);
1247 		if (new_vpage == NULL)
1248 			return (-1);
1249 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1250 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1251 		svd1->vpage = new_vpage;
1252 
1253 		vp = new_vpage + seg_pages(seg1);
1254 		evp = vp + seg_pages(seg2);
1255 		for (; vp < evp; vp++)
1256 			VPP_SETPROT(vp, a->prot);
1257 	}
1258 	size = seg2->s_size;
1259 	seg_free(seg2);
1260 	seg1->s_size += size;
1261 	svd1->swresv += swresv;
1262 	if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1263 	    svd1->type == MAP_SHARED && svd1->vp != NULL &&
1264 	    (svd1->vp->v_flag & VVMEXEC)) {
1265 		ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1266 		segvn_inval_trcache(svd1->vp);
1267 	}
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Extend the next segment (seg2) to include the
1273  * new segment (seg1 + a), if possible.
1274  * Return 0 on success.
1275  */
1276 static int
1277 segvn_extend_next(
1278 	struct seg *seg1,
1279 	struct seg *seg2,
1280 	struct segvn_crargs *a,
1281 	size_t swresv)
1282 {
1283 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1284 	size_t size;
1285 	struct anon_map *amp2;
1286 	struct vpage *new_vpage;
1287 
1288 	/*
1289 	 * We don't need any segment level locks for "segvn" data
1290 	 * since the address space is "write" locked.
1291 	 */
1292 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1293 
1294 	if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1295 		return (-1);
1296 	}
1297 
1298 	/* first segment is new, try to extend second */
1299 	/* XXX - should also check cred */
1300 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1301 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1302 	    svd2->type != a->type || svd2->flags != a->flags ||
1303 	    seg2->s_szc != a->szc)
1304 		return (-1);
1305 	/* vp == NULL implies zfod, offset doesn't matter */
1306 	if (svd2->vp != NULL &&
1307 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1308 		return (-1);
1309 
1310 	if (svd2->tr_state != SEGVN_TR_OFF) {
1311 		return (-1);
1312 	}
1313 
1314 	amp2 = svd2->amp;
1315 	if (amp2) {
1316 		pgcnt_t newpgs;
1317 
1318 		/*
1319 		 * Segment has private pages, can data structures
1320 		 * be expanded?
1321 		 *
1322 		 * Acquire the anon_map lock to prevent it from changing,
1323 		 * if it is shared.  This ensures that the anon_map
1324 		 * will not change while a thread which has a read/write
1325 		 * lock on an address space references it.
1326 		 *
1327 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1328 		 * is 1.
1329 		 */
1330 		if (svd2->type == MAP_SHARED)
1331 			return (-1);
1332 
1333 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1334 		if (amp2->refcnt > 1) {
1335 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1336 			return (-1);
1337 		}
1338 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1339 		    btop(seg2->s_size), btop(seg1->s_size),
1340 		    ANON_NOSLEEP | ANON_GROWDOWN);
1341 
1342 		if (newpgs == 0) {
1343 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1344 			return (-1);
1345 		}
1346 		amp2->size = ptob(newpgs);
1347 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1348 	}
1349 	if (svd2->vpage != NULL) {
1350 		struct vpage *vp, *evp;
1351 		new_vpage =
1352 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1353 			KM_NOSLEEP);
1354 		if (new_vpage == NULL) {
1355 			/* Not merging segments so adjust anon_index back */
1356 			if (amp2)
1357 				svd2->anon_index += seg_pages(seg1);
1358 			return (-1);
1359 		}
1360 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1361 		    vpgtob(seg_pages(seg2)));
1362 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1363 		svd2->vpage = new_vpage;
1364 
1365 		vp = new_vpage;
1366 		evp = vp + seg_pages(seg1);
1367 		for (; vp < evp; vp++)
1368 			VPP_SETPROT(vp, a->prot);
1369 	}
1370 	size = seg1->s_size;
1371 	seg_free(seg1);
1372 	seg2->s_size += size;
1373 	seg2->s_base -= size;
1374 	svd2->offset -= size;
1375 	svd2->swresv += swresv;
1376 	if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1377 	    svd2->type == MAP_SHARED && svd2->vp != NULL &&
1378 	    (svd2->vp->v_flag & VVMEXEC)) {
1379 		ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1380 		segvn_inval_trcache(svd2->vp);
1381 	}
1382 	return (0);
1383 }
1384 
1385 static int
1386 segvn_dup(struct seg *seg, struct seg *newseg)
1387 {
1388 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1389 	struct segvn_data *newsvd;
1390 	pgcnt_t npages = seg_pages(seg);
1391 	int error = 0;
1392 	uint_t prot;
1393 	size_t len;
1394 	struct anon_map *amp;
1395 
1396 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1397 
1398 	/*
1399 	 * If segment has anon reserved, reserve more for the new seg.
1400 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1401 	 * allocated anon slots; thus we reserve for the child as many slots
1402 	 * as the parent has allocated. This semantic prevents the child or
1403 	 * parent from dieing during a copy-on-write fault caused by trying
1404 	 * to write a shared pre-existing anon page.
1405 	 */
1406 	if ((len = svd->swresv) != 0) {
1407 		if (anon_resv(svd->swresv) == 0)
1408 			return (ENOMEM);
1409 
1410 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1411 			seg, len, 0);
1412 	}
1413 
1414 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1415 
1416 	newseg->s_ops = &segvn_ops;
1417 	newseg->s_data = (void *)newsvd;
1418 	newseg->s_szc = seg->s_szc;
1419 
1420 	newsvd->seg = newseg;
1421 	if ((newsvd->vp = svd->vp) != NULL) {
1422 		VN_HOLD(svd->vp);
1423 		if (svd->type == MAP_SHARED)
1424 			lgrp_shm_policy_init(NULL, svd->vp);
1425 	}
1426 	newsvd->offset = svd->offset;
1427 	newsvd->prot = svd->prot;
1428 	newsvd->maxprot = svd->maxprot;
1429 	newsvd->pageprot = svd->pageprot;
1430 	newsvd->type = svd->type;
1431 	newsvd->cred = svd->cred;
1432 	crhold(newsvd->cred);
1433 	newsvd->advice = svd->advice;
1434 	newsvd->pageadvice = svd->pageadvice;
1435 	newsvd->swresv = svd->swresv;
1436 	newsvd->flags = svd->flags;
1437 	newsvd->softlockcnt = 0;
1438 	newsvd->policy_info = svd->policy_info;
1439 	newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1440 
1441 	if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1442 		/*
1443 		 * Not attaching to a shared anon object.
1444 		 */
1445 		ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1446 		    svd->tr_state == SEGVN_TR_OFF);
1447 		if (svd->tr_state == SEGVN_TR_ON) {
1448 			ASSERT(newsvd->vp != NULL && amp != NULL);
1449 			newsvd->tr_state = SEGVN_TR_INIT;
1450 		} else {
1451 			newsvd->tr_state = svd->tr_state;
1452 		}
1453 		newsvd->amp = NULL;
1454 		newsvd->anon_index = 0;
1455 	} else {
1456 		/* regions for now are only used on pure vnode segments */
1457 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1458 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1459 		newsvd->tr_state = SEGVN_TR_OFF;
1460 		if (svd->type == MAP_SHARED) {
1461 			newsvd->amp = amp;
1462 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1463 			amp->refcnt++;
1464 			ANON_LOCK_EXIT(&amp->a_rwlock);
1465 			newsvd->anon_index = svd->anon_index;
1466 		} else {
1467 			int reclaim = 1;
1468 
1469 			/*
1470 			 * Allocate and initialize new anon_map structure.
1471 			 */
1472 			newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1473 			    ANON_SLEEP);
1474 			newsvd->amp->a_szc = newseg->s_szc;
1475 			newsvd->anon_index = 0;
1476 
1477 			/*
1478 			 * We don't have to acquire the anon_map lock
1479 			 * for the new segment (since it belongs to an
1480 			 * address space that is still not associated
1481 			 * with any process), or the segment in the old
1482 			 * address space (since all threads in it
1483 			 * are stopped while duplicating the address space).
1484 			 */
1485 
1486 			/*
1487 			 * The goal of the following code is to make sure that
1488 			 * softlocked pages do not end up as copy on write
1489 			 * pages.  This would cause problems where one
1490 			 * thread writes to a page that is COW and a different
1491 			 * thread in the same process has softlocked it.  The
1492 			 * softlock lock would move away from this process
1493 			 * because the write would cause this process to get
1494 			 * a copy (without the softlock).
1495 			 *
1496 			 * The strategy here is to just break the
1497 			 * sharing on pages that could possibly be
1498 			 * softlocked.
1499 			 */
1500 retry:
1501 			if (svd->softlockcnt) {
1502 				struct anon *ap, *newap;
1503 				size_t i;
1504 				uint_t vpprot;
1505 				page_t *anon_pl[1+1], *pp;
1506 				caddr_t addr;
1507 				ulong_t old_idx = svd->anon_index;
1508 				ulong_t new_idx = 0;
1509 
1510 				/*
1511 				 * The softlock count might be non zero
1512 				 * because some pages are still stuck in the
1513 				 * cache for lazy reclaim. Flush the cache
1514 				 * now. This should drop the count to zero.
1515 				 * [or there is really I/O going on to these
1516 				 * pages]. Note, we have the writers lock so
1517 				 * nothing gets inserted during the flush.
1518 				 */
1519 				if (reclaim == 1) {
1520 					segvn_purge(seg);
1521 					reclaim = 0;
1522 					goto retry;
1523 				}
1524 				i = btopr(seg->s_size);
1525 				addr = seg->s_base;
1526 				/*
1527 				 * XXX break cow sharing using PAGESIZE
1528 				 * pages. They will be relocated into larger
1529 				 * pages at fault time.
1530 				 */
1531 				while (i-- > 0) {
1532 					if (ap = anon_get_ptr(amp->ahp,
1533 					    old_idx)) {
1534 						error = anon_getpage(&ap,
1535 						    &vpprot, anon_pl, PAGESIZE,
1536 						    seg, addr, S_READ,
1537 						    svd->cred);
1538 						if (error) {
1539 							newsvd->vpage = NULL;
1540 							goto out;
1541 						}
1542 						/*
1543 						 * prot need not be computed
1544 						 * below 'cause anon_private is
1545 						 * going to ignore it anyway
1546 						 * as child doesn't inherit
1547 						 * pagelock from parent.
1548 						 */
1549 						prot = svd->pageprot ?
1550 						    VPP_PROT(
1551 						    &svd->vpage[
1552 						    seg_page(seg, addr)])
1553 						    : svd->prot;
1554 						pp = anon_private(&newap,
1555 						    newseg, addr, prot,
1556 						    anon_pl[0],	0,
1557 						    newsvd->cred);
1558 						if (pp == NULL) {
1559 							/* no mem abort */
1560 							newsvd->vpage = NULL;
1561 							error = ENOMEM;
1562 							goto out;
1563 						}
1564 						(void) anon_set_ptr(
1565 						    newsvd->amp->ahp, new_idx,
1566 						    newap, ANON_SLEEP);
1567 						page_unlock(pp);
1568 					}
1569 					addr += PAGESIZE;
1570 					old_idx++;
1571 					new_idx++;
1572 				}
1573 			} else {	/* common case */
1574 				if (seg->s_szc != 0) {
1575 					/*
1576 					 * If at least one of anon slots of a
1577 					 * large page exists then make sure
1578 					 * all anon slots of a large page
1579 					 * exist to avoid partial cow sharing
1580 					 * of a large page in the future.
1581 					 */
1582 					anon_dup_fill_holes(amp->ahp,
1583 					    svd->anon_index, newsvd->amp->ahp,
1584 					    0, seg->s_size, seg->s_szc,
1585 					    svd->vp != NULL);
1586 				} else {
1587 					anon_dup(amp->ahp, svd->anon_index,
1588 					    newsvd->amp->ahp, 0, seg->s_size);
1589 				}
1590 
1591 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1592 				    seg->s_size, PROT_WRITE);
1593 			}
1594 		}
1595 	}
1596 	/*
1597 	 * If necessary, create a vpage structure for the new segment.
1598 	 * Do not copy any page lock indications.
1599 	 */
1600 	if (svd->vpage != NULL) {
1601 		uint_t i;
1602 		struct vpage *ovp = svd->vpage;
1603 		struct vpage *nvp;
1604 
1605 		nvp = newsvd->vpage =
1606 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1607 		for (i = 0; i < npages; i++) {
1608 			*nvp = *ovp++;
1609 			VPP_CLRPPLOCK(nvp++);
1610 		}
1611 	} else
1612 		newsvd->vpage = NULL;
1613 
1614 	/* Inform the vnode of the new mapping */
1615 	if (newsvd->vp != NULL) {
1616 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1617 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1618 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1619 	}
1620 out:
1621 	if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1622 		ASSERT(newsvd->amp == NULL);
1623 		ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1624 		newsvd->rcookie = svd->rcookie;
1625 		hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1626 	}
1627 	return (error);
1628 }
1629 
1630 
1631 /*
1632  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1633  * those pages actually processed by the HAT
1634  */
1635 extern int free_pages;
1636 
1637 static void
1638 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1639     size_t r_size, void *r_obj, u_offset_t r_objoff)
1640 {
1641 	u_offset_t off;
1642 	size_t len;
1643 	vnode_t *vp = (vnode_t *)r_obj;
1644 
1645 	ASSERT(eaddr > saddr);
1646 	ASSERT(saddr >= r_saddr);
1647 	ASSERT(saddr < r_saddr + r_size);
1648 	ASSERT(eaddr > r_saddr);
1649 	ASSERT(eaddr <= r_saddr + r_size);
1650 	ASSERT(vp != NULL);
1651 
1652 	if (!free_pages) {
1653 		return;
1654 	}
1655 
1656 	len = eaddr - saddr;
1657 	off = (saddr - r_saddr) + r_objoff;
1658 	free_vp_pages(vp, off, len);
1659 }
1660 
1661 static void
1662 segvn_hat_unload_callback(hat_callback_t *cb)
1663 {
1664 	struct seg		*seg = cb->hcb_data;
1665 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1666 	size_t			len;
1667 	u_offset_t		off;
1668 
1669 	ASSERT(svd->vp != NULL);
1670 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1671 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1672 
1673 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1674 	off = cb->hcb_start_addr - seg->s_base;
1675 	free_vp_pages(svd->vp, svd->offset + off, len);
1676 }
1677 
1678 static int
1679 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1680 {
1681 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1682 	struct segvn_data *nsvd;
1683 	struct seg *nseg;
1684 	struct anon_map *amp;
1685 	pgcnt_t	opages;		/* old segment size in pages */
1686 	pgcnt_t	npages;		/* new segment size in pages */
1687 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1688 	hat_callback_t callback;	/* used for free_vp_pages() */
1689 	hat_callback_t *cbp = NULL;
1690 	caddr_t nbase;
1691 	size_t nsize;
1692 	size_t oswresv;
1693 	int reclaim = 1;
1694 
1695 	/*
1696 	 * We don't need any segment level locks for "segvn" data
1697 	 * since the address space is "write" locked.
1698 	 */
1699 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1700 
1701 	/*
1702 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1703 	 * softlockcnt is protected from change by the as write lock.
1704 	 */
1705 retry:
1706 	if (svd->softlockcnt > 0) {
1707 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1708 		/*
1709 		 * since we do have the writers lock nobody can fill
1710 		 * the cache during the purge. The flush either succeeds
1711 		 * or we still have pending I/Os.
1712 		 */
1713 		if (reclaim == 1) {
1714 			segvn_purge(seg);
1715 			reclaim = 0;
1716 			goto retry;
1717 		}
1718 		return (EAGAIN);
1719 	}
1720 
1721 	/*
1722 	 * Check for bad sizes
1723 	 */
1724 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1725 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1726 		panic("segvn_unmap");
1727 		/*NOTREACHED*/
1728 	}
1729 
1730 	if (seg->s_szc != 0) {
1731 		size_t pgsz = page_get_pagesize(seg->s_szc);
1732 		int err;
1733 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1734 			ASSERT(seg->s_base != addr || seg->s_size != len);
1735 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1736 				ASSERT(svd->amp == NULL);
1737 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1738 				hat_leave_region(seg->s_as->a_hat,
1739 				    svd->rcookie, HAT_REGION_TEXT);
1740 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
1741 				/*
1742 				 * could pass a flag to segvn_demote_range()
1743 				 * below to tell it not to do any unloads but
1744 				 * this case is rare enough to not bother for
1745 				 * now.
1746 				 */
1747 			} else if (svd->tr_state == SEGVN_TR_INIT) {
1748 				svd->tr_state = SEGVN_TR_OFF;
1749 			} else if (svd->tr_state == SEGVN_TR_ON) {
1750 				ASSERT(svd->amp != NULL);
1751 				segvn_textunrepl(seg, 1);
1752 				ASSERT(svd->amp == NULL);
1753 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1754 			}
1755 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1756 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1757 			if (err == 0) {
1758 				return (IE_RETRY);
1759 			}
1760 			return (err);
1761 		}
1762 	}
1763 
1764 	/* Inform the vnode of the unmapping. */
1765 	if (svd->vp) {
1766 		int error;
1767 
1768 		error = VOP_DELMAP(svd->vp,
1769 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1770 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1771 			svd->type, svd->cred);
1772 
1773 		if (error == EAGAIN)
1774 			return (error);
1775 	}
1776 
1777 	/*
1778 	 * Remove any page locks set through this mapping.
1779 	 * If text replication is not off no page locks could have been
1780 	 * established via this mapping.
1781 	 */
1782 	if (svd->tr_state == SEGVN_TR_OFF) {
1783 		(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1784 	}
1785 
1786 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1787 		ASSERT(svd->amp == NULL);
1788 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1789 		ASSERT(svd->type == MAP_PRIVATE);
1790 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1791 		    HAT_REGION_TEXT);
1792 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
1793 	} else if (svd->tr_state == SEGVN_TR_ON) {
1794 		ASSERT(svd->amp != NULL);
1795 		ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1796 		segvn_textunrepl(seg, 1);
1797 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1798 	} else {
1799 		if (svd->tr_state != SEGVN_TR_OFF) {
1800 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
1801 			svd->tr_state = SEGVN_TR_OFF;
1802 		}
1803 		/*
1804 		 * Unload any hardware translations in the range to be taken
1805 		 * out. Use a callback to invoke free_vp_pages() effectively.
1806 		 */
1807 		if (svd->vp != NULL && free_pages != 0) {
1808 			callback.hcb_data = seg;
1809 			callback.hcb_function = segvn_hat_unload_callback;
1810 			cbp = &callback;
1811 		}
1812 		hat_unload_callback(seg->s_as->a_hat, addr, len,
1813 		    HAT_UNLOAD_UNMAP, cbp);
1814 
1815 		if (svd->type == MAP_SHARED && svd->vp != NULL &&
1816 		    (svd->vp->v_flag & VVMEXEC) &&
1817 		    ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1818 			segvn_inval_trcache(svd->vp);
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * Check for entire segment
1824 	 */
1825 	if (addr == seg->s_base && len == seg->s_size) {
1826 		seg_free(seg);
1827 		return (0);
1828 	}
1829 
1830 	opages = seg_pages(seg);
1831 	dpages = btop(len);
1832 	npages = opages - dpages;
1833 	amp = svd->amp;
1834 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1835 
1836 	/*
1837 	 * Check for beginning of segment
1838 	 */
1839 	if (addr == seg->s_base) {
1840 		if (svd->vpage != NULL) {
1841 			size_t nbytes;
1842 			struct vpage *ovpage;
1843 
1844 			ovpage = svd->vpage;	/* keep pointer to vpage */
1845 
1846 			nbytes = vpgtob(npages);
1847 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1848 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1849 
1850 			/* free up old vpage */
1851 			kmem_free(ovpage, vpgtob(opages));
1852 		}
1853 		if (amp != NULL) {
1854 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1855 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1856 				/*
1857 				 * Free up now unused parts of anon_map array.
1858 				 */
1859 				if (amp->a_szc == seg->s_szc) {
1860 					if (seg->s_szc != 0) {
1861 						anon_free_pages(amp->ahp,
1862 						    svd->anon_index, len,
1863 						    seg->s_szc);
1864 					} else {
1865 						anon_free(amp->ahp,
1866 						    svd->anon_index,
1867 						    len);
1868 					}
1869 				} else {
1870 					ASSERT(svd->type == MAP_SHARED);
1871 					ASSERT(amp->a_szc > seg->s_szc);
1872 					anon_shmap_free_pages(amp,
1873 					    svd->anon_index, len);
1874 				}
1875 
1876 				/*
1877 				 * Unreserve swap space for the
1878 				 * unmapped chunk of this segment in
1879 				 * case it's MAP_SHARED
1880 				 */
1881 				if (svd->type == MAP_SHARED) {
1882 					anon_unresv(len);
1883 					amp->swresv -= len;
1884 				}
1885 			}
1886 			ANON_LOCK_EXIT(&amp->a_rwlock);
1887 			svd->anon_index += dpages;
1888 		}
1889 		if (svd->vp != NULL)
1890 			svd->offset += len;
1891 
1892 		if (svd->swresv) {
1893 			if (svd->flags & MAP_NORESERVE) {
1894 				ASSERT(amp);
1895 				oswresv = svd->swresv;
1896 
1897 				svd->swresv = ptob(anon_pages(amp->ahp,
1898 				    svd->anon_index, npages));
1899 				anon_unresv(oswresv - svd->swresv);
1900 			} else {
1901 				anon_unresv(len);
1902 				svd->swresv -= len;
1903 			}
1904 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1905 				seg, len, 0);
1906 		}
1907 
1908 		seg->s_base += len;
1909 		seg->s_size -= len;
1910 		return (0);
1911 	}
1912 
1913 	/*
1914 	 * Check for end of segment
1915 	 */
1916 	if (addr + len == seg->s_base + seg->s_size) {
1917 		if (svd->vpage != NULL) {
1918 			size_t nbytes;
1919 			struct vpage *ovpage;
1920 
1921 			ovpage = svd->vpage;	/* keep pointer to vpage */
1922 
1923 			nbytes = vpgtob(npages);
1924 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1925 			bcopy(ovpage, svd->vpage, nbytes);
1926 
1927 			/* free up old vpage */
1928 			kmem_free(ovpage, vpgtob(opages));
1929 
1930 		}
1931 		if (amp != NULL) {
1932 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1933 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1934 				/*
1935 				 * Free up now unused parts of anon_map array.
1936 				 */
1937 				ulong_t an_idx = svd->anon_index + npages;
1938 				if (amp->a_szc == seg->s_szc) {
1939 					if (seg->s_szc != 0) {
1940 						anon_free_pages(amp->ahp,
1941 						    an_idx, len,
1942 						    seg->s_szc);
1943 					} else {
1944 						anon_free(amp->ahp, an_idx,
1945 						    len);
1946 					}
1947 				} else {
1948 					ASSERT(svd->type == MAP_SHARED);
1949 					ASSERT(amp->a_szc > seg->s_szc);
1950 					anon_shmap_free_pages(amp,
1951 					    an_idx, len);
1952 				}
1953 
1954 				/*
1955 				 * Unreserve swap space for the
1956 				 * unmapped chunk of this segment in
1957 				 * case it's MAP_SHARED
1958 				 */
1959 				if (svd->type == MAP_SHARED) {
1960 					anon_unresv(len);
1961 					amp->swresv -= len;
1962 				}
1963 			}
1964 			ANON_LOCK_EXIT(&amp->a_rwlock);
1965 		}
1966 
1967 		if (svd->swresv) {
1968 			if (svd->flags & MAP_NORESERVE) {
1969 				ASSERT(amp);
1970 				oswresv = svd->swresv;
1971 				svd->swresv = ptob(anon_pages(amp->ahp,
1972 					svd->anon_index, npages));
1973 				anon_unresv(oswresv - svd->swresv);
1974 			} else {
1975 				anon_unresv(len);
1976 				svd->swresv -= len;
1977 			}
1978 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1979 				"anon proc:%p %lu %u", seg, len, 0);
1980 		}
1981 
1982 		seg->s_size -= len;
1983 		return (0);
1984 	}
1985 
1986 	/*
1987 	 * The section to go is in the middle of the segment,
1988 	 * have to make it into two segments.  nseg is made for
1989 	 * the high end while seg is cut down at the low end.
1990 	 */
1991 	nbase = addr + len;				/* new seg base */
1992 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1993 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1994 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1995 	if (nseg == NULL) {
1996 		panic("segvn_unmap seg_alloc");
1997 		/*NOTREACHED*/
1998 	}
1999 	nseg->s_ops = seg->s_ops;
2000 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2001 	nseg->s_data = (void *)nsvd;
2002 	nseg->s_szc = seg->s_szc;
2003 	*nsvd = *svd;
2004 	nsvd->seg = nseg;
2005 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2006 	nsvd->swresv = 0;
2007 	nsvd->softlockcnt = 0;
2008 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2009 
2010 	if (svd->vp != NULL) {
2011 		VN_HOLD(nsvd->vp);
2012 		if (nsvd->type == MAP_SHARED)
2013 			lgrp_shm_policy_init(NULL, nsvd->vp);
2014 	}
2015 	crhold(svd->cred);
2016 
2017 	if (svd->vpage == NULL) {
2018 		nsvd->vpage = NULL;
2019 	} else {
2020 		/* need to split vpage into two arrays */
2021 		size_t nbytes;
2022 		struct vpage *ovpage;
2023 
2024 		ovpage = svd->vpage;		/* keep pointer to vpage */
2025 
2026 		npages = seg_pages(seg);	/* seg has shrunk */
2027 		nbytes = vpgtob(npages);
2028 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2029 
2030 		bcopy(ovpage, svd->vpage, nbytes);
2031 
2032 		npages = seg_pages(nseg);
2033 		nbytes = vpgtob(npages);
2034 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2035 
2036 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2037 
2038 		/* free up old vpage */
2039 		kmem_free(ovpage, vpgtob(opages));
2040 	}
2041 
2042 	if (amp == NULL) {
2043 		nsvd->amp = NULL;
2044 		nsvd->anon_index = 0;
2045 	} else {
2046 		/*
2047 		 * Need to create a new anon map for the new segment.
2048 		 * We'll also allocate a new smaller array for the old
2049 		 * smaller segment to save space.
2050 		 */
2051 		opages = btop((uintptr_t)(addr - seg->s_base));
2052 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2053 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2054 			/*
2055 			 * Free up now unused parts of anon_map array.
2056 			 */
2057 			ulong_t an_idx = svd->anon_index + opages;
2058 			if (amp->a_szc == seg->s_szc) {
2059 				if (seg->s_szc != 0) {
2060 					anon_free_pages(amp->ahp, an_idx, len,
2061 					    seg->s_szc);
2062 				} else {
2063 					anon_free(amp->ahp, an_idx,
2064 					    len);
2065 				}
2066 			} else {
2067 				ASSERT(svd->type == MAP_SHARED);
2068 				ASSERT(amp->a_szc > seg->s_szc);
2069 				anon_shmap_free_pages(amp, an_idx, len);
2070 			}
2071 
2072 			/*
2073 			 * Unreserve swap space for the
2074 			 * unmapped chunk of this segment in
2075 			 * case it's MAP_SHARED
2076 			 */
2077 			if (svd->type == MAP_SHARED) {
2078 				anon_unresv(len);
2079 				amp->swresv -= len;
2080 			}
2081 		}
2082 		nsvd->anon_index = svd->anon_index +
2083 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
2084 		if (svd->type == MAP_SHARED) {
2085 			amp->refcnt++;
2086 			nsvd->amp = amp;
2087 		} else {
2088 			struct anon_map *namp;
2089 			struct anon_hdr *nahp;
2090 
2091 			ASSERT(svd->type == MAP_PRIVATE);
2092 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2093 			namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2094 			namp->a_szc = seg->s_szc;
2095 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2096 			    0, btop(seg->s_size), ANON_SLEEP);
2097 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2098 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2099 			anon_release(amp->ahp, btop(amp->size));
2100 			svd->anon_index = 0;
2101 			nsvd->anon_index = 0;
2102 			amp->ahp = nahp;
2103 			amp->size = seg->s_size;
2104 			nsvd->amp = namp;
2105 		}
2106 		ANON_LOCK_EXIT(&amp->a_rwlock);
2107 	}
2108 	if (svd->swresv) {
2109 		if (svd->flags & MAP_NORESERVE) {
2110 			ASSERT(amp);
2111 			oswresv = svd->swresv;
2112 			svd->swresv = ptob(anon_pages(amp->ahp,
2113 				svd->anon_index, btop(seg->s_size)));
2114 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2115 				nsvd->anon_index, btop(nseg->s_size)));
2116 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2117 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
2118 		} else {
2119 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
2120 				panic("segvn_unmap: "
2121 				    "cannot split swap reservation");
2122 				/*NOTREACHED*/
2123 			}
2124 			anon_unresv(len);
2125 			svd->swresv = seg->s_size;
2126 			nsvd->swresv = nseg->s_size;
2127 		}
2128 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2129 			seg, len, 0);
2130 	}
2131 
2132 	return (0);			/* I'm glad that's all over with! */
2133 }
2134 
2135 static void
2136 segvn_free(struct seg *seg)
2137 {
2138 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2139 	pgcnt_t npages = seg_pages(seg);
2140 	struct anon_map *amp;
2141 	size_t len;
2142 
2143 	/*
2144 	 * We don't need any segment level locks for "segvn" data
2145 	 * since the address space is "write" locked.
2146 	 */
2147 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2148 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
2149 
2150 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2151 
2152 	/*
2153 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
2154 	 * of unmapped? XXX
2155 	 */
2156 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
2157 	    0, MC_UNLOCK, NULL, 0);
2158 
2159 	/*
2160 	 * Deallocate the vpage and anon pointers if necessary and possible.
2161 	 */
2162 	if (svd->vpage != NULL) {
2163 		kmem_free(svd->vpage, vpgtob(npages));
2164 		svd->vpage = NULL;
2165 	}
2166 	if ((amp = svd->amp) != NULL) {
2167 		/*
2168 		 * If there are no more references to this anon_map
2169 		 * structure, then deallocate the structure after freeing
2170 		 * up all the anon slot pointers that we can.
2171 		 */
2172 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2173 		ASSERT(amp->a_szc >= seg->s_szc);
2174 		if (--amp->refcnt == 0) {
2175 			if (svd->type == MAP_PRIVATE) {
2176 				/*
2177 				 * Private - we only need to anon_free
2178 				 * the part that this segment refers to.
2179 				 */
2180 				if (seg->s_szc != 0) {
2181 					anon_free_pages(amp->ahp,
2182 					    svd->anon_index, seg->s_size,
2183 					    seg->s_szc);
2184 				} else {
2185 					anon_free(amp->ahp, svd->anon_index,
2186 					    seg->s_size);
2187 				}
2188 			} else {
2189 				/*
2190 				 * Shared - anon_free the entire
2191 				 * anon_map's worth of stuff and
2192 				 * release any swap reservation.
2193 				 */
2194 				if (amp->a_szc != 0) {
2195 					anon_shmap_free_pages(amp, 0,
2196 					    amp->size);
2197 				} else {
2198 					anon_free(amp->ahp, 0, amp->size);
2199 				}
2200 				if ((len = amp->swresv) != 0) {
2201 					anon_unresv(len);
2202 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2203 						"anon proc:%p %lu %u",
2204 						seg, len, 0);
2205 				}
2206 			}
2207 			svd->amp = NULL;
2208 			ANON_LOCK_EXIT(&amp->a_rwlock);
2209 			anonmap_free(amp);
2210 		} else if (svd->type == MAP_PRIVATE) {
2211 			/*
2212 			 * We had a private mapping which still has
2213 			 * a held anon_map so just free up all the
2214 			 * anon slot pointers that we were using.
2215 			 */
2216 			if (seg->s_szc != 0) {
2217 				anon_free_pages(amp->ahp, svd->anon_index,
2218 				    seg->s_size, seg->s_szc);
2219 			} else {
2220 				anon_free(amp->ahp, svd->anon_index,
2221 				    seg->s_size);
2222 			}
2223 			ANON_LOCK_EXIT(&amp->a_rwlock);
2224 		} else {
2225 			ANON_LOCK_EXIT(&amp->a_rwlock);
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * Release swap reservation.
2231 	 */
2232 	if ((len = svd->swresv) != 0) {
2233 		anon_unresv(svd->swresv);
2234 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2235 			seg, len, 0);
2236 		svd->swresv = 0;
2237 	}
2238 	/*
2239 	 * Release claim on vnode, credentials, and finally free the
2240 	 * private data.
2241 	 */
2242 	if (svd->vp != NULL) {
2243 		if (svd->type == MAP_SHARED)
2244 			lgrp_shm_policy_fini(NULL, svd->vp);
2245 		VN_RELE(svd->vp);
2246 		svd->vp = NULL;
2247 	}
2248 	crfree(svd->cred);
2249 	svd->cred = NULL;
2250 
2251 	seg->s_data = NULL;
2252 	kmem_cache_free(segvn_cache, svd);
2253 }
2254 
2255 #ifdef DEBUG
2256 uint32_t segvn_slock_mtbf = 0;
2257 #endif
2258 
2259 ulong_t segvn_lpglck_limit = 0;
2260 
2261 /*
2262  * Support routines used by segvn_pagelock() and softlock faults for anonymous
2263  * pages to implement availrmem accounting in a way that makes sure the
2264  * same memory is accounted just once for all softlock/pagelock purposes.
2265  * This prevents a bug when availrmem is quickly incorrectly exausted from
2266  * several pagelocks to different parts of the same large page since each
2267  * pagelock has to decrement availrmem by the size of the entire large
2268  * page. Note those pages are not COW shared until softunlock/pageunlock so
2269  * we don't need to use cow style accounting here.  We also need to make sure
2270  * the entire large page is accounted even if softlock range is less than the
2271  * entire large page because large anon pages can't be demoted when any of
2272  * constituent pages is locked. The caller calls this routine for every page_t
2273  * it locks. The very first page in the range may not be the root page of a
2274  * large page. For all other pages it's guranteed we are going to visit the
2275  * root of a particular large page before any other constituent page as we are
2276  * locking sequential pages belonging to the same anon map. So we do all the
2277  * locking when the root is encountered except for the very first page.  Since
2278  * softlocking is not supported (except S_READ_NOCOW special case) for vmpss
2279  * segments and since vnode pages can be demoted without locking all
2280  * constituent pages vnode pages don't come here.  Unlocking relies on the
2281  * fact that pagesize can't change whenever any of constituent large pages is
2282  * locked at least SE_SHARED. This allows unlocking code to find the right
2283  * root and decrement availrmem by the same amount it was incremented when the
2284  * page was locked.
2285  */
2286 static int
2287 segvn_slock_anonpages(page_t *pp, int first)
2288 {
2289 	pgcnt_t		pages;
2290 	pfn_t		pfn;
2291 	uchar_t		szc = pp->p_szc;
2292 
2293 	ASSERT(PAGE_LOCKED(pp));
2294 	ASSERT(pp->p_vnode != NULL);
2295 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2296 
2297 	/*
2298 	 * pagesize won't change as long as any constituent page is locked.
2299 	 */
2300 	pages = page_get_pagecnt(pp->p_szc);
2301 	pfn = page_pptonum(pp);
2302 
2303 	if (!first) {
2304 		if (!IS_P2ALIGNED(pfn, pages)) {
2305 #ifdef DEBUG
2306 			pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2307 			pfn = page_pptonum(pp);
2308 			ASSERT(IS_P2ALIGNED(pfn, pages));
2309 			ASSERT(pp->p_szc == szc);
2310 			ASSERT(pp->p_vnode != NULL);
2311 			ASSERT(IS_SWAPFSVP(pp->p_vnode));
2312 			ASSERT(pp->p_slckcnt != 0);
2313 #endif /* DEBUG */
2314 			return (1);
2315 		}
2316 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2317 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2318 #ifdef DEBUG
2319 		pfn = page_pptonum(pp);
2320 		ASSERT(IS_P2ALIGNED(pfn, pages));
2321 		ASSERT(pp->p_szc == szc);
2322 		ASSERT(pp->p_vnode != NULL);
2323 		ASSERT(IS_SWAPFSVP(pp->p_vnode));
2324 #endif /* DEBUG */
2325 	}
2326 
2327 #ifdef DEBUG
2328 	if (segvn_slock_mtbf && !(gethrtime() % segvn_slock_mtbf)) {
2329 		return (0);
2330 	}
2331 #endif /* DEBUG */
2332 
2333 	/*
2334 	 * pp is a root page.
2335 	 * We haven't locked this large page yet.
2336 	 */
2337 	page_struct_lock(pp);
2338 	if (pp->p_slckcnt != 0) {
2339 		if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
2340 			pp->p_slckcnt++;
2341 			page_struct_unlock(pp);
2342 			return (1);
2343 		}
2344 		page_struct_unlock(pp);
2345 		segvn_lpglck_limit++;
2346 		return (0);
2347 	}
2348 	mutex_enter(&freemem_lock);
2349 	if (availrmem < tune.t_minarmem + pages) {
2350 		mutex_exit(&freemem_lock);
2351 		page_struct_unlock(pp);
2352 		return (0);
2353 	}
2354 	pp->p_slckcnt++;
2355 	availrmem -= pages;
2356 	mutex_exit(&freemem_lock);
2357 	page_struct_unlock(pp);
2358 	return (1);
2359 }
2360 
2361 static void
2362 segvn_sunlock_anonpages(page_t *pp, int first)
2363 {
2364 	pgcnt_t		pages;
2365 	pfn_t		pfn;
2366 
2367 	ASSERT(PAGE_LOCKED(pp));
2368 	ASSERT(pp->p_vnode != NULL);
2369 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2370 
2371 	/*
2372 	 * pagesize won't change as long as any constituent page is locked.
2373 	 */
2374 	pages = page_get_pagecnt(pp->p_szc);
2375 	pfn = page_pptonum(pp);
2376 
2377 	if (!first) {
2378 		if (!IS_P2ALIGNED(pfn, pages)) {
2379 			return;
2380 		}
2381 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2382 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2383 #ifdef DEBUG
2384 		pfn = page_pptonum(pp);
2385 		ASSERT(IS_P2ALIGNED(pfn, pages));
2386 #endif /* DEBUG */
2387 	}
2388 	ASSERT(pp->p_vnode != NULL);
2389 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2390 	ASSERT(pp->p_slckcnt != 0);
2391 	page_struct_lock(pp);
2392 	if (--pp->p_slckcnt == 0) {
2393 		mutex_enter(&freemem_lock);
2394 		availrmem += pages;
2395 		mutex_exit(&freemem_lock);
2396 	}
2397 	page_struct_unlock(pp);
2398 }
2399 
2400 /*
2401  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2402  * already been F_SOFTLOCK'ed.
2403  * Caller must always match addr and len of a softunlock with a previous
2404  * softlock with exactly the same addr and len.
2405  */
2406 static void
2407 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2408 {
2409 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2410 	page_t *pp;
2411 	caddr_t adr;
2412 	struct vnode *vp;
2413 	u_offset_t offset;
2414 	ulong_t anon_index;
2415 	struct anon_map *amp;
2416 	struct anon *ap = NULL;
2417 
2418 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2419 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2420 
2421 	if ((amp = svd->amp) != NULL)
2422 		anon_index = svd->anon_index + seg_page(seg, addr);
2423 
2424 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2425 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2426 		hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2427 	} else {
2428 		hat_unlock(seg->s_as->a_hat, addr, len);
2429 	}
2430 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2431 		if (amp != NULL) {
2432 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2433 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2434 								!= NULL) {
2435 				swap_xlate(ap, &vp, &offset);
2436 			} else {
2437 				vp = svd->vp;
2438 				offset = svd->offset +
2439 				    (uintptr_t)(adr - seg->s_base);
2440 			}
2441 			ANON_LOCK_EXIT(&amp->a_rwlock);
2442 		} else {
2443 			vp = svd->vp;
2444 			offset = svd->offset +
2445 			    (uintptr_t)(adr - seg->s_base);
2446 		}
2447 
2448 		/*
2449 		 * Use page_find() instead of page_lookup() to
2450 		 * find the page since we know that it is locked.
2451 		 */
2452 		pp = page_find(vp, offset);
2453 		if (pp == NULL) {
2454 			panic(
2455 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2456 			    (void *)adr, (void *)ap, (void *)vp, offset);
2457 			/*NOTREACHED*/
2458 		}
2459 
2460 		if (rw == S_WRITE) {
2461 			hat_setrefmod(pp);
2462 			if (seg->s_as->a_vbits)
2463 				hat_setstat(seg->s_as, adr, PAGESIZE,
2464 				    P_REF | P_MOD);
2465 		} else if (rw != S_OTHER) {
2466 			hat_setref(pp);
2467 			if (seg->s_as->a_vbits)
2468 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2469 		}
2470 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2471 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2472 		if (svd->vp == NULL) {
2473 			segvn_sunlock_anonpages(pp, adr == addr);
2474 		}
2475 		page_unlock(pp);
2476 	}
2477 	mutex_enter(&freemem_lock); /* for availrmem */
2478 	if (svd->vp != NULL) {
2479 		availrmem += btop(len);
2480 	}
2481 	segvn_pages_locked -= btop(len);
2482 	svd->softlockcnt -= btop(len);
2483 	mutex_exit(&freemem_lock);
2484 	if (svd->softlockcnt == 0) {
2485 		/*
2486 		 * All SOFTLOCKS are gone. Wakeup any waiting
2487 		 * unmappers so they can try again to unmap.
2488 		 * Check for waiters first without the mutex
2489 		 * held so we don't always grab the mutex on
2490 		 * softunlocks.
2491 		 */
2492 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2493 			mutex_enter(&seg->s_as->a_contents);
2494 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2495 				AS_CLRUNMAPWAIT(seg->s_as);
2496 				cv_broadcast(&seg->s_as->a_cv);
2497 			}
2498 			mutex_exit(&seg->s_as->a_contents);
2499 		}
2500 	}
2501 }
2502 
2503 #define	PAGE_HANDLED	((page_t *)-1)
2504 
2505 /*
2506  * Release all the pages in the NULL terminated ppp list
2507  * which haven't already been converted to PAGE_HANDLED.
2508  */
2509 static void
2510 segvn_pagelist_rele(page_t **ppp)
2511 {
2512 	for (; *ppp != NULL; ppp++) {
2513 		if (*ppp != PAGE_HANDLED)
2514 			page_unlock(*ppp);
2515 	}
2516 }
2517 
2518 static int stealcow = 1;
2519 
2520 /*
2521  * Workaround for viking chip bug.  See bug id 1220902.
2522  * To fix this down in pagefault() would require importing so
2523  * much as and segvn code as to be unmaintainable.
2524  */
2525 int enable_mbit_wa = 0;
2526 
2527 /*
2528  * Handles all the dirty work of getting the right
2529  * anonymous pages and loading up the translations.
2530  * This routine is called only from segvn_fault()
2531  * when looping over the range of addresses requested.
2532  *
2533  * The basic algorithm here is:
2534  * 	If this is an anon_zero case
2535  *		Call anon_zero to allocate page
2536  *		Load up translation
2537  *		Return
2538  *	endif
2539  *	If this is an anon page
2540  *		Use anon_getpage to get the page
2541  *	else
2542  *		Find page in pl[] list passed in
2543  *	endif
2544  *	If not a cow
2545  *		Load up the translation to the page
2546  *		return
2547  *	endif
2548  *	Call anon_private to handle cow
2549  *	Load up (writable) translation to new page
2550  */
2551 static faultcode_t
2552 segvn_faultpage(
2553 	struct hat *hat,		/* the hat to use for mapping */
2554 	struct seg *seg,		/* seg_vn of interest */
2555 	caddr_t addr,			/* address in as */
2556 	u_offset_t off,			/* offset in vp */
2557 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2558 	page_t *pl[],			/* object source page pointer */
2559 	uint_t vpprot,			/* access allowed to object pages */
2560 	enum fault_type type,		/* type of fault */
2561 	enum seg_rw rw,			/* type of access at fault */
2562 	int brkcow,			/* we may need to break cow */
2563 	int first)			/* first page for this fault if 1 */
2564 {
2565 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2566 	page_t *pp, **ppp;
2567 	uint_t pageflags = 0;
2568 	page_t *anon_pl[1 + 1];
2569 	page_t *opp = NULL;		/* original page */
2570 	uint_t prot;
2571 	int err;
2572 	int cow;
2573 	int claim;
2574 	int steal = 0;
2575 	ulong_t anon_index;
2576 	struct anon *ap, *oldap;
2577 	struct anon_map *amp;
2578 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2579 	int anon_lock = 0;
2580 	anon_sync_obj_t cookie;
2581 
2582 	if (svd->flags & MAP_TEXT) {
2583 		hat_flag |= HAT_LOAD_TEXT;
2584 	}
2585 
2586 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2587 	ASSERT(seg->s_szc == 0);
2588 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
2589 
2590 	/*
2591 	 * Initialize protection value for this page.
2592 	 * If we have per page protection values check it now.
2593 	 */
2594 	if (svd->pageprot) {
2595 		uint_t protchk;
2596 
2597 		switch (rw) {
2598 		case S_READ:
2599 			protchk = PROT_READ;
2600 			break;
2601 		case S_WRITE:
2602 			protchk = PROT_WRITE;
2603 			break;
2604 		case S_EXEC:
2605 			protchk = PROT_EXEC;
2606 			break;
2607 		case S_OTHER:
2608 		default:
2609 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2610 			break;
2611 		}
2612 
2613 		prot = VPP_PROT(vpage);
2614 		if ((prot & protchk) == 0)
2615 			return (FC_PROT);	/* illegal access type */
2616 	} else {
2617 		prot = svd->prot;
2618 	}
2619 
2620 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2621 		mutex_enter(&freemem_lock);
2622 		if (availrmem <= tune.t_minarmem) {
2623 			mutex_exit(&freemem_lock);
2624 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2625 		} else {
2626 			availrmem--;
2627 			svd->softlockcnt++;
2628 			segvn_pages_locked++;
2629 		}
2630 		mutex_exit(&freemem_lock);
2631 	}
2632 
2633 	/*
2634 	 * Always acquire the anon array lock to prevent 2 threads from
2635 	 * allocating separate anon slots for the same "addr".
2636 	 */
2637 
2638 	if ((amp = svd->amp) != NULL) {
2639 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2640 		anon_index = svd->anon_index + seg_page(seg, addr);
2641 		anon_array_enter(amp, anon_index, &cookie);
2642 		anon_lock = 1;
2643 	}
2644 
2645 	if (svd->vp == NULL && amp != NULL) {
2646 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2647 			/*
2648 			 * Allocate a (normally) writable anonymous page of
2649 			 * zeroes. If no advance reservations, reserve now.
2650 			 */
2651 			if (svd->flags & MAP_NORESERVE) {
2652 				if (anon_resv_zone(ptob(1),
2653 				    seg->s_as->a_proc->p_zone)) {
2654 					atomic_add_long(&svd->swresv, ptob(1));
2655 				} else {
2656 					err = ENOMEM;
2657 					goto out;
2658 				}
2659 			}
2660 			if ((pp = anon_zero(seg, addr, &ap,
2661 			    svd->cred)) == NULL) {
2662 				err = ENOMEM;
2663 				goto out;	/* out of swap space */
2664 			}
2665 			/*
2666 			 * Re-acquire the anon_map lock and
2667 			 * initialize the anon array entry.
2668 			 */
2669 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2670 				ANON_SLEEP);
2671 
2672 			ASSERT(pp->p_szc == 0);
2673 
2674 			/*
2675 			 * Handle pages that have been marked for migration
2676 			 */
2677 			if (lgrp_optimizations())
2678 				page_migrate(seg, addr, &pp, 1);
2679 
2680 			if (type == F_SOFTLOCK) {
2681 				if (!segvn_slock_anonpages(pp, first)) {
2682 					page_unlock(pp);
2683 					err = ENOMEM;
2684 					goto out;
2685 				} else {
2686 					mutex_enter(&freemem_lock);
2687 					svd->softlockcnt++;
2688 					segvn_pages_locked++;
2689 					mutex_exit(&freemem_lock);
2690 				}
2691 			}
2692 
2693 			if (enable_mbit_wa) {
2694 				if (rw == S_WRITE)
2695 					hat_setmod(pp);
2696 				else if (!hat_ismod(pp))
2697 					prot &= ~PROT_WRITE;
2698 			}
2699 			/*
2700 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2701 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2702 			 * MAP_NORESERVE segment, we may need to
2703 			 * permanently lock the page as it is being faulted
2704 			 * for the first time. The following text applies
2705 			 * only to MAP_NORESERVE segments:
2706 			 *
2707 			 * As per memcntl(2), if this segment was created
2708 			 * after MCL_FUTURE was applied (a "future"
2709 			 * segment), its pages must be locked.  If this
2710 			 * segment existed at MCL_FUTURE application (a
2711 			 * "past" segment), the interface is unclear.
2712 			 *
2713 			 * We decide to lock only if vpage is present:
2714 			 *
2715 			 * - "future" segments will have a vpage array (see
2716 			 *    as_map), and so will be locked as required
2717 			 *
2718 			 * - "past" segments may not have a vpage array,
2719 			 *    depending on whether events (such as
2720 			 *    mprotect) have occurred. Locking if vpage
2721 			 *    exists will preserve legacy behavior.  Not
2722 			 *    locking if vpage is absent, will not break
2723 			 *    the interface or legacy behavior.  Note that
2724 			 *    allocating vpage here if it's absent requires
2725 			 *    upgrading the segvn reader lock, the cost of
2726 			 *    which does not seem worthwhile.
2727 			 *
2728 			 * Usually testing and setting VPP_ISPPLOCK and
2729 			 * VPP_SETPPLOCK requires holding the segvn lock as
2730 			 * writer, but in this case all readers are
2731 			 * serializing on the anon array lock.
2732 			 */
2733 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2734 			    (svd->flags & MAP_NORESERVE) &&
2735 			    !VPP_ISPPLOCK(vpage)) {
2736 				proc_t *p = seg->s_as->a_proc;
2737 				ASSERT(svd->type == MAP_PRIVATE);
2738 				mutex_enter(&p->p_lock);
2739 				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2740 				    1) == 0) {
2741 					claim = VPP_PROT(vpage) & PROT_WRITE;
2742 					if (page_pp_lock(pp, claim, 0)) {
2743 						VPP_SETPPLOCK(vpage);
2744 					} else {
2745 						rctl_decr_locked_mem(p, NULL,
2746 						    PAGESIZE, 1);
2747 					}
2748 				}
2749 				mutex_exit(&p->p_lock);
2750 			}
2751 
2752 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2753 			hat_memload(hat, addr, pp, prot, hat_flag);
2754 
2755 			if (!(hat_flag & HAT_LOAD_LOCK))
2756 				page_unlock(pp);
2757 
2758 			anon_array_exit(&cookie);
2759 			return (0);
2760 		}
2761 	}
2762 
2763 	/*
2764 	 * Obtain the page structure via anon_getpage() if it is
2765 	 * a private copy of an object (the result of a previous
2766 	 * copy-on-write).
2767 	 */
2768 	if (amp != NULL) {
2769 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2770 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2771 			    seg, addr, rw, svd->cred);
2772 			if (err)
2773 				goto out;
2774 
2775 			if (svd->type == MAP_SHARED) {
2776 				/*
2777 				 * If this is a shared mapping to an
2778 				 * anon_map, then ignore the write
2779 				 * permissions returned by anon_getpage().
2780 				 * They apply to the private mappings
2781 				 * of this anon_map.
2782 				 */
2783 				vpprot |= PROT_WRITE;
2784 			}
2785 			opp = anon_pl[0];
2786 		}
2787 	}
2788 
2789 	/*
2790 	 * Search the pl[] list passed in if it is from the
2791 	 * original object (i.e., not a private copy).
2792 	 */
2793 	if (opp == NULL) {
2794 		/*
2795 		 * Find original page.  We must be bringing it in
2796 		 * from the list in pl[].
2797 		 */
2798 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2799 			if (opp == PAGE_HANDLED)
2800 				continue;
2801 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2802 			if (opp->p_offset == off)
2803 				break;
2804 		}
2805 		if (opp == NULL) {
2806 			panic("segvn_faultpage not found");
2807 			/*NOTREACHED*/
2808 		}
2809 		*ppp = PAGE_HANDLED;
2810 
2811 	}
2812 
2813 	ASSERT(PAGE_LOCKED(opp));
2814 
2815 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2816 		"segvn_fault:pp %p vp %p offset %llx",
2817 		opp, NULL, 0);
2818 
2819 	/*
2820 	 * The fault is treated as a copy-on-write fault if a
2821 	 * write occurs on a private segment and the object
2822 	 * page (i.e., mapping) is write protected.  We assume
2823 	 * that fatal protection checks have already been made.
2824 	 */
2825 
2826 	if (brkcow) {
2827 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2828 		cow = !(vpprot & PROT_WRITE);
2829 	} else if (svd->tr_state == SEGVN_TR_ON) {
2830 		/*
2831 		 * If we are doing text replication COW on first touch.
2832 		 */
2833 		ASSERT(amp != NULL);
2834 		ASSERT(svd->vp != NULL);
2835 		ASSERT(rw != S_WRITE);
2836 		cow = (ap == NULL);
2837 	} else {
2838 		cow = 0;
2839 	}
2840 
2841 	/*
2842 	 * If not a copy-on-write case load the translation
2843 	 * and return.
2844 	 */
2845 	if (cow == 0) {
2846 
2847 		/*
2848 		 * Handle pages that have been marked for migration
2849 		 */
2850 		if (lgrp_optimizations())
2851 			page_migrate(seg, addr, &opp, 1);
2852 
2853 		if (type == F_SOFTLOCK && svd->vp == NULL) {
2854 
2855 			ASSERT(opp->p_szc == 0 ||
2856 			    (svd->type == MAP_SHARED &&
2857 				amp != NULL && amp->a_szc != 0));
2858 
2859 			if (!segvn_slock_anonpages(opp, first)) {
2860 				page_unlock(opp);
2861 				err = ENOMEM;
2862 				goto out;
2863 			} else {
2864 				mutex_enter(&freemem_lock);
2865 				svd->softlockcnt++;
2866 				segvn_pages_locked++;
2867 				mutex_exit(&freemem_lock);
2868 			}
2869 		}
2870 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2871 			if (rw == S_WRITE)
2872 				hat_setmod(opp);
2873 			else if (rw != S_OTHER && !hat_ismod(opp))
2874 				prot &= ~PROT_WRITE;
2875 		}
2876 
2877 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2878 		    (!svd->pageprot && svd->prot == (prot & vpprot)));
2879 		ASSERT(amp == NULL ||
2880 		    svd->rcookie == HAT_INVALID_REGION_COOKIE);
2881 		hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2882 		    svd->rcookie);
2883 
2884 		if (!(hat_flag & HAT_LOAD_LOCK))
2885 			page_unlock(opp);
2886 
2887 		if (anon_lock) {
2888 			anon_array_exit(&cookie);
2889 		}
2890 		return (0);
2891 	}
2892 
2893 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2894 
2895 	hat_setref(opp);
2896 
2897 	ASSERT(amp != NULL && anon_lock);
2898 
2899 	/*
2900 	 * Steal the page only if it isn't a private page
2901 	 * since stealing a private page is not worth the effort.
2902 	 */
2903 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2904 		steal = 1;
2905 
2906 	/*
2907 	 * Steal the original page if the following conditions are true:
2908 	 *
2909 	 * We are low on memory, the page is not private, page is not large,
2910 	 * not shared, not modified, not `locked' or if we have it `locked'
2911 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2912 	 * that the page is not shared) and if it doesn't have any
2913 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2914 	 * and p_lckcnt because we first get exclusive lock on page.
2915 	 */
2916 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2917 
2918 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2919 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2920 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2921 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2922 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2923 		/*
2924 		 * Check if this page has other translations
2925 		 * after unloading our translation.
2926 		 */
2927 		if (hat_page_is_mapped(opp)) {
2928 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2929 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2930 				HAT_UNLOAD);
2931 		}
2932 
2933 		/*
2934 		 * hat_unload() might sync back someone else's recent
2935 		 * modification, so check again.
2936 		 */
2937 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2938 			pageflags |= STEAL_PAGE;
2939 	}
2940 
2941 	/*
2942 	 * If we have a vpage pointer, see if it indicates that we have
2943 	 * ``locked'' the page we map -- if so, tell anon_private to
2944 	 * transfer the locking resource to the new page.
2945 	 *
2946 	 * See Statement at the beginning of segvn_lockop regarding
2947 	 * the way lockcnts/cowcnts are handled during COW.
2948 	 *
2949 	 */
2950 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2951 		pageflags |= LOCK_PAGE;
2952 
2953 	/*
2954 	 * Allocate a private page and perform the copy.
2955 	 * For MAP_NORESERVE reserve swap space now, unless this
2956 	 * is a cow fault on an existing anon page in which case
2957 	 * MAP_NORESERVE will have made advance reservations.
2958 	 */
2959 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2960 		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
2961 			atomic_add_long(&svd->swresv, ptob(1));
2962 		} else {
2963 			page_unlock(opp);
2964 			err = ENOMEM;
2965 			goto out;
2966 		}
2967 	}
2968 	oldap = ap;
2969 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2970 	if (pp == NULL) {
2971 		err = ENOMEM;	/* out of swap space */
2972 		goto out;
2973 	}
2974 
2975 	/*
2976 	 * If we copied away from an anonymous page, then
2977 	 * we are one step closer to freeing up an anon slot.
2978 	 *
2979 	 * NOTE:  The original anon slot must be released while
2980 	 * holding the "anon_map" lock.  This is necessary to prevent
2981 	 * other threads from obtaining a pointer to the anon slot
2982 	 * which may be freed if its "refcnt" is 1.
2983 	 */
2984 	if (oldap != NULL)
2985 		anon_decref(oldap);
2986 
2987 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2988 
2989 	/*
2990 	 * Handle pages that have been marked for migration
2991 	 */
2992 	if (lgrp_optimizations())
2993 		page_migrate(seg, addr, &pp, 1);
2994 
2995 	ASSERT(pp->p_szc == 0);
2996 	if (type == F_SOFTLOCK && svd->vp == NULL) {
2997 		if (!segvn_slock_anonpages(pp, first)) {
2998 			page_unlock(pp);
2999 			err = ENOMEM;
3000 			goto out;
3001 		} else {
3002 			mutex_enter(&freemem_lock);
3003 			svd->softlockcnt++;
3004 			segvn_pages_locked++;
3005 			mutex_exit(&freemem_lock);
3006 		}
3007 	}
3008 
3009 	ASSERT(!IS_VMODSORT(pp->p_vnode));
3010 	if (enable_mbit_wa) {
3011 		if (rw == S_WRITE)
3012 			hat_setmod(pp);
3013 		else if (!hat_ismod(pp))
3014 			prot &= ~PROT_WRITE;
3015 	}
3016 
3017 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3018 	hat_memload(hat, addr, pp, prot, hat_flag);
3019 
3020 	if (!(hat_flag & HAT_LOAD_LOCK))
3021 		page_unlock(pp);
3022 
3023 	ASSERT(anon_lock);
3024 	anon_array_exit(&cookie);
3025 	return (0);
3026 out:
3027 	if (anon_lock)
3028 		anon_array_exit(&cookie);
3029 
3030 	if (type == F_SOFTLOCK && svd->vp != NULL) {
3031 		mutex_enter(&freemem_lock);
3032 		availrmem++;
3033 		segvn_pages_locked--;
3034 		svd->softlockcnt--;
3035 		mutex_exit(&freemem_lock);
3036 	}
3037 	return (FC_MAKE_ERR(err));
3038 }
3039 
3040 /*
3041  * relocate a bunch of smaller targ pages into one large repl page. all targ
3042  * pages must be complete pages smaller than replacement pages.
3043  * it's assumed that no page's szc can change since they are all PAGESIZE or
3044  * complete large pages locked SHARED.
3045  */
3046 static void
3047 segvn_relocate_pages(page_t **targ, page_t *replacement)
3048 {
3049 	page_t *pp;
3050 	pgcnt_t repl_npgs, curnpgs;
3051 	pgcnt_t i;
3052 	uint_t repl_szc = replacement->p_szc;
3053 	page_t *first_repl = replacement;
3054 	page_t *repl;
3055 	spgcnt_t npgs;
3056 
3057 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3058 
3059 	ASSERT(repl_szc != 0);
3060 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
3061 
3062 	i = 0;
3063 	while (repl_npgs) {
3064 		spgcnt_t nreloc;
3065 		int err;
3066 		ASSERT(replacement != NULL);
3067 		pp = targ[i];
3068 		ASSERT(pp->p_szc < repl_szc);
3069 		ASSERT(PAGE_EXCL(pp));
3070 		ASSERT(!PP_ISFREE(pp));
3071 		curnpgs = page_get_pagecnt(pp->p_szc);
3072 		if (curnpgs == 1) {
3073 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3074 			repl = replacement;
3075 			page_sub(&replacement, repl);
3076 			ASSERT(PAGE_EXCL(repl));
3077 			ASSERT(!PP_ISFREE(repl));
3078 			ASSERT(repl->p_szc == repl_szc);
3079 		} else {
3080 			page_t *repl_savepp;
3081 			int j;
3082 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3083 			repl_savepp = replacement;
3084 			for (j = 0; j < curnpgs; j++) {
3085 				repl = replacement;
3086 				page_sub(&replacement, repl);
3087 				ASSERT(PAGE_EXCL(repl));
3088 				ASSERT(!PP_ISFREE(repl));
3089 				ASSERT(repl->p_szc == repl_szc);
3090 				ASSERT(page_pptonum(targ[i + j]) ==
3091 				    page_pptonum(targ[i]) + j);
3092 			}
3093 			repl = repl_savepp;
3094 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3095 		}
3096 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3097 		if (err || nreloc != curnpgs) {
3098 			panic("segvn_relocate_pages: "
3099 			    "page_relocate failed err=%d curnpgs=%ld "
3100 			    "nreloc=%ld", err, curnpgs, nreloc);
3101 		}
3102 		ASSERT(curnpgs <= repl_npgs);
3103 		repl_npgs -= curnpgs;
3104 		i += curnpgs;
3105 	}
3106 	ASSERT(replacement == NULL);
3107 
3108 	repl = first_repl;
3109 	repl_npgs = npgs;
3110 	for (i = 0; i < repl_npgs; i++) {
3111 		ASSERT(PAGE_EXCL(repl));
3112 		ASSERT(!PP_ISFREE(repl));
3113 		targ[i] = repl;
3114 		page_downgrade(targ[i]);
3115 		repl++;
3116 	}
3117 }
3118 
3119 /*
3120  * Check if all pages in ppa array are complete smaller than szc pages and
3121  * their roots will still be aligned relative to their current size if the
3122  * entire ppa array is relocated into one szc page. If these conditions are
3123  * not met return 0.
3124  *
3125  * If all pages are properly aligned attempt to upgrade their locks
3126  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3127  * upgrdfail was set to 0 by caller.
3128  *
3129  * Return 1 if all pages are aligned and locked exclusively.
3130  *
3131  * If all pages in ppa array happen to be physically contiguous to make one
3132  * szc page and all exclusive locks are successfully obtained promote the page
3133  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3134  */
3135 static int
3136 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3137 {
3138 	page_t *pp;
3139 	pfn_t pfn;
3140 	pgcnt_t totnpgs = page_get_pagecnt(szc);
3141 	pfn_t first_pfn;
3142 	int contig = 1;
3143 	pgcnt_t i;
3144 	pgcnt_t j;
3145 	uint_t curszc;
3146 	pgcnt_t curnpgs;
3147 	int root = 0;
3148 
3149 	ASSERT(szc > 0);
3150 
3151 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3152 
3153 	for (i = 0; i < totnpgs; i++) {
3154 		pp = ppa[i];
3155 		ASSERT(PAGE_SHARED(pp));
3156 		ASSERT(!PP_ISFREE(pp));
3157 		pfn = page_pptonum(pp);
3158 		if (i == 0) {
3159 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
3160 				contig = 0;
3161 			} else {
3162 				first_pfn = pfn;
3163 			}
3164 		} else if (contig && pfn != first_pfn + i) {
3165 			contig = 0;
3166 		}
3167 		if (pp->p_szc == 0) {
3168 			if (root) {
3169 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3170 				return (0);
3171 			}
3172 		} else if (!root) {
3173 			if ((curszc = pp->p_szc) >= szc) {
3174 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3175 				return (0);
3176 			}
3177 			if (curszc == 0) {
3178 				/*
3179 				 * p_szc changed means we don't have all pages
3180 				 * locked. return failure.
3181 				 */
3182 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3183 				return (0);
3184 			}
3185 			curnpgs = page_get_pagecnt(curszc);
3186 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
3187 			    !IS_P2ALIGNED(i, curnpgs)) {
3188 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3189 				return (0);
3190 			}
3191 			root = 1;
3192 		} else {
3193 			ASSERT(i > 0);
3194 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3195 			if (pp->p_szc != curszc) {
3196 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3197 				return (0);
3198 			}
3199 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3200 				panic("segvn_full_szcpages: "
3201 				    "large page not physically contiguous");
3202 			}
3203 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3204 				root = 0;
3205 			}
3206 		}
3207 	}
3208 
3209 	for (i = 0; i < totnpgs; i++) {
3210 		ASSERT(ppa[i]->p_szc < szc);
3211 		if (!page_tryupgrade(ppa[i])) {
3212 			for (j = 0; j < i; j++) {
3213 				page_downgrade(ppa[j]);
3214 			}
3215 			*pszc = ppa[i]->p_szc;
3216 			*upgrdfail = 1;
3217 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3218 			return (0);
3219 		}
3220 	}
3221 
3222 	/*
3223 	 * When a page is put a free cachelist its szc is set to 0.  if file
3224 	 * system reclaimed pages from cachelist targ pages will be physically
3225 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
3226 	 * pages without any relocations.
3227 	 * To avoid any hat issues with previous small mappings
3228 	 * hat_pageunload() the target pages first.
3229 	 */
3230 	if (contig) {
3231 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3232 		for (i = 0; i < totnpgs; i++) {
3233 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3234 		}
3235 		for (i = 0; i < totnpgs; i++) {
3236 			ppa[i]->p_szc = szc;
3237 		}
3238 		for (i = 0; i < totnpgs; i++) {
3239 			ASSERT(PAGE_EXCL(ppa[i]));
3240 			page_downgrade(ppa[i]);
3241 		}
3242 		if (pszc != NULL) {
3243 			*pszc = szc;
3244 		}
3245 	}
3246 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3247 	return (1);
3248 }
3249 
3250 /*
3251  * Create physically contiguous pages for [vp, off] - [vp, off +
3252  * page_size(szc)) range and for private segment return them in ppa array.
3253  * Pages are created either via IO or relocations.
3254  *
3255  * Return 1 on sucess and 0 on failure.
3256  *
3257  * If physically contiguos pages already exist for this range return 1 without
3258  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3259  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3260  */
3261 
3262 static int
3263 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3264     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3265     int *downsize)
3266 
3267 {
3268 	page_t *pplist = *ppplist;
3269 	size_t pgsz = page_get_pagesize(szc);
3270 	pgcnt_t pages = btop(pgsz);
3271 	ulong_t start_off = off;
3272 	u_offset_t eoff = off + pgsz;
3273 	spgcnt_t nreloc;
3274 	u_offset_t io_off = off;
3275 	size_t io_len;
3276 	page_t *io_pplist = NULL;
3277 	page_t *done_pplist = NULL;
3278 	pgcnt_t pgidx = 0;
3279 	page_t *pp;
3280 	page_t *newpp;
3281 	page_t *targpp;
3282 	int io_err = 0;
3283 	int i;
3284 	pfn_t pfn;
3285 	ulong_t ppages;
3286 	page_t *targ_pplist = NULL;
3287 	page_t *repl_pplist = NULL;
3288 	page_t *tmp_pplist;
3289 	int nios = 0;
3290 	uint_t pszc;
3291 	struct vattr va;
3292 
3293 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3294 
3295 	ASSERT(szc != 0);
3296 	ASSERT(pplist->p_szc == szc);
3297 
3298 	/*
3299 	 * downsize will be set to 1 only if we fail to lock pages. this will
3300 	 * allow subsequent faults to try to relocate the page again. If we
3301 	 * fail due to misalignment don't downsize and let the caller map the
3302 	 * whole region with small mappings to avoid more faults into the area
3303 	 * where we can't get large pages anyway.
3304 	 */
3305 	*downsize = 0;
3306 
3307 	while (off < eoff) {
3308 		newpp = pplist;
3309 		ASSERT(newpp != NULL);
3310 		ASSERT(PAGE_EXCL(newpp));
3311 		ASSERT(!PP_ISFREE(newpp));
3312 		/*
3313 		 * we pass NULL for nrelocp to page_lookup_create()
3314 		 * so that it doesn't relocate. We relocate here
3315 		 * later only after we make sure we can lock all
3316 		 * pages in the range we handle and they are all
3317 		 * aligned.
3318 		 */
3319 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3320 		ASSERT(pp != NULL);
3321 		ASSERT(!PP_ISFREE(pp));
3322 		ASSERT(pp->p_vnode == vp);
3323 		ASSERT(pp->p_offset == off);
3324 		if (pp == newpp) {
3325 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3326 			page_sub(&pplist, pp);
3327 			ASSERT(PAGE_EXCL(pp));
3328 			ASSERT(page_iolock_assert(pp));
3329 			page_list_concat(&io_pplist, &pp);
3330 			off += PAGESIZE;
3331 			continue;
3332 		}
3333 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3334 		pfn = page_pptonum(pp);
3335 		pszc = pp->p_szc;
3336 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3337 		    IS_P2ALIGNED(pfn, pages)) {
3338 			ASSERT(repl_pplist == NULL);
3339 			ASSERT(done_pplist == NULL);
3340 			ASSERT(pplist == *ppplist);
3341 			page_unlock(pp);
3342 			page_free_replacement_page(pplist);
3343 			page_create_putback(pages);
3344 			*ppplist = NULL;
3345 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3346 			return (1);
3347 		}
3348 		if (pszc >= szc) {
3349 			page_unlock(pp);
3350 			segvn_faultvnmpss_align_err1++;
3351 			goto out;
3352 		}
3353 		ppages = page_get_pagecnt(pszc);
3354 		if (!IS_P2ALIGNED(pfn, ppages)) {
3355 			ASSERT(pszc > 0);
3356 			/*
3357 			 * sizing down to pszc won't help.
3358 			 */
3359 			page_unlock(pp);
3360 			segvn_faultvnmpss_align_err2++;
3361 			goto out;
3362 		}
3363 		pfn = page_pptonum(newpp);
3364 		if (!IS_P2ALIGNED(pfn, ppages)) {
3365 			ASSERT(pszc > 0);
3366 			/*
3367 			 * sizing down to pszc won't help.
3368 			 */
3369 			page_unlock(pp);
3370 			segvn_faultvnmpss_align_err3++;
3371 			goto out;
3372 		}
3373 		if (!PAGE_EXCL(pp)) {
3374 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3375 			page_unlock(pp);
3376 			*downsize = 1;
3377 			*ret_pszc = pp->p_szc;
3378 			goto out;
3379 		}
3380 		targpp = pp;
3381 		if (io_pplist != NULL) {
3382 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3383 			io_len = off - io_off;
3384 			/*
3385 			 * Some file systems like NFS don't check EOF
3386 			 * conditions in VOP_PAGEIO(). Check it here
3387 			 * now that pages are locked SE_EXCL. Any file
3388 			 * truncation will wait until the pages are
3389 			 * unlocked so no need to worry that file will
3390 			 * be truncated after we check its size here.
3391 			 * XXX fix NFS to remove this check.
3392 			 */
3393 			va.va_mask = AT_SIZE;
3394 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3395 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3396 				page_unlock(targpp);
3397 				goto out;
3398 			}
3399 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3400 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3401 				*downsize = 1;
3402 				*ret_pszc = 0;
3403 				page_unlock(targpp);
3404 				goto out;
3405 			}
3406 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3407 				B_READ, svd->cred);
3408 			if (io_err) {
3409 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3410 				page_unlock(targpp);
3411 				if (io_err == EDEADLK) {
3412 					segvn_vmpss_pageio_deadlk_err++;
3413 				}
3414 				goto out;
3415 			}
3416 			nios++;
3417 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3418 			while (io_pplist != NULL) {
3419 				pp = io_pplist;
3420 				page_sub(&io_pplist, pp);
3421 				ASSERT(page_iolock_assert(pp));
3422 				page_io_unlock(pp);
3423 				pgidx = (pp->p_offset - start_off) >>
3424 				    PAGESHIFT;
3425 				ASSERT(pgidx < pages);
3426 				ppa[pgidx] = pp;
3427 				page_list_concat(&done_pplist, &pp);
3428 			}
3429 		}
3430 		pp = targpp;
3431 		ASSERT(PAGE_EXCL(pp));
3432 		ASSERT(pp->p_szc <= pszc);
3433 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3434 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3435 			page_unlock(pp);
3436 			*downsize = 1;
3437 			*ret_pszc = pp->p_szc;
3438 			goto out;
3439 		}
3440 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3441 		/*
3442 		 * page szc chould have changed before the entire group was
3443 		 * locked. reread page szc.
3444 		 */
3445 		pszc = pp->p_szc;
3446 		ppages = page_get_pagecnt(pszc);
3447 
3448 		/* link just the roots */
3449 		page_list_concat(&targ_pplist, &pp);
3450 		page_sub(&pplist, newpp);
3451 		page_list_concat(&repl_pplist, &newpp);
3452 		off += PAGESIZE;
3453 		while (--ppages != 0) {
3454 			newpp = pplist;
3455 			page_sub(&pplist, newpp);
3456 			off += PAGESIZE;
3457 		}
3458 		io_off = off;
3459 	}
3460 	if (io_pplist != NULL) {
3461 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3462 		io_len = eoff - io_off;
3463 		va.va_mask = AT_SIZE;
3464 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3465 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3466 			goto out;
3467 		}
3468 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3469 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3470 			*downsize = 1;
3471 			*ret_pszc = 0;
3472 			goto out;
3473 		}
3474 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3475 		    B_READ, svd->cred);
3476 		if (io_err) {
3477 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3478 			if (io_err == EDEADLK) {
3479 				segvn_vmpss_pageio_deadlk_err++;
3480 			}
3481 			goto out;
3482 		}
3483 		nios++;
3484 		while (io_pplist != NULL) {
3485 			pp = io_pplist;
3486 			page_sub(&io_pplist, pp);
3487 			ASSERT(page_iolock_assert(pp));
3488 			page_io_unlock(pp);
3489 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3490 			ASSERT(pgidx < pages);
3491 			ppa[pgidx] = pp;
3492 		}
3493 	}
3494 	/*
3495 	 * we're now bound to succeed or panic.
3496 	 * remove pages from done_pplist. it's not needed anymore.
3497 	 */
3498 	while (done_pplist != NULL) {
3499 		pp = done_pplist;
3500 		page_sub(&done_pplist, pp);
3501 	}
3502 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3503 	ASSERT(pplist == NULL);
3504 	*ppplist = NULL;
3505 	while (targ_pplist != NULL) {
3506 		int ret;
3507 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3508 		ASSERT(repl_pplist);
3509 		pp = targ_pplist;
3510 		page_sub(&targ_pplist, pp);
3511 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3512 		newpp = repl_pplist;
3513 		page_sub(&repl_pplist, newpp);
3514 #ifdef DEBUG
3515 		pfn = page_pptonum(pp);
3516 		pszc = pp->p_szc;
3517 		ppages = page_get_pagecnt(pszc);
3518 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3519 		pfn = page_pptonum(newpp);
3520 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3521 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3522 #endif
3523 		nreloc = 0;
3524 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3525 		if (ret != 0 || nreloc == 0) {
3526 			panic("segvn_fill_vp_pages: "
3527 			    "page_relocate failed");
3528 		}
3529 		pp = newpp;
3530 		while (nreloc-- != 0) {
3531 			ASSERT(PAGE_EXCL(pp));
3532 			ASSERT(pp->p_vnode == vp);
3533 			ASSERT(pgidx ==
3534 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3535 			ppa[pgidx++] = pp;
3536 			pp++;
3537 		}
3538 	}
3539 
3540 	if (svd->type == MAP_PRIVATE) {
3541 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3542 		for (i = 0; i < pages; i++) {
3543 			ASSERT(ppa[i] != NULL);
3544 			ASSERT(PAGE_EXCL(ppa[i]));
3545 			ASSERT(ppa[i]->p_vnode == vp);
3546 			ASSERT(ppa[i]->p_offset ==
3547 			    start_off + (i << PAGESHIFT));
3548 			page_downgrade(ppa[i]);
3549 		}
3550 		ppa[pages] = NULL;
3551 	} else {
3552 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3553 		/*
3554 		 * the caller will still call VOP_GETPAGE() for shared segments
3555 		 * to check FS write permissions. For private segments we map
3556 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3557 		 */
3558 		for (i = 0; i < pages; i++) {
3559 			ASSERT(ppa[i] != NULL);
3560 			ASSERT(PAGE_EXCL(ppa[i]));
3561 			ASSERT(ppa[i]->p_vnode == vp);
3562 			ASSERT(ppa[i]->p_offset ==
3563 			    start_off + (i << PAGESHIFT));
3564 			page_unlock(ppa[i]);
3565 		}
3566 		ppa[0] = NULL;
3567 	}
3568 
3569 	return (1);
3570 out:
3571 	/*
3572 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3573 	 * linked on targ_pplist by root pages. reassemble unused replacement
3574 	 * and io pages back to pplist.
3575 	 */
3576 	if (io_pplist != NULL) {
3577 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3578 		pp = io_pplist;
3579 		do {
3580 			ASSERT(pp->p_vnode == vp);
3581 			ASSERT(pp->p_offset == io_off);
3582 			ASSERT(page_iolock_assert(pp));
3583 			page_io_unlock(pp);
3584 			page_hashout(pp, NULL);
3585 			io_off += PAGESIZE;
3586 		} while ((pp = pp->p_next) != io_pplist);
3587 		page_list_concat(&io_pplist, &pplist);
3588 		pplist = io_pplist;
3589 	}
3590 	tmp_pplist = NULL;
3591 	while (targ_pplist != NULL) {
3592 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3593 		pp = targ_pplist;
3594 		ASSERT(PAGE_EXCL(pp));
3595 		page_sub(&targ_pplist, pp);
3596 
3597 		pszc = pp->p_szc;
3598 		ppages = page_get_pagecnt(pszc);
3599 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3600 
3601 		if (pszc != 0) {
3602 			group_page_unlock(pp);
3603 		}
3604 		page_unlock(pp);
3605 
3606 		pp = repl_pplist;
3607 		ASSERT(pp != NULL);
3608 		ASSERT(PAGE_EXCL(pp));
3609 		ASSERT(pp->p_szc == szc);
3610 		page_sub(&repl_pplist, pp);
3611 
3612 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3613 
3614 		/* relink replacement page */
3615 		page_list_concat(&tmp_pplist, &pp);
3616 		while (--ppages != 0) {
3617 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3618 			pp++;
3619 			ASSERT(PAGE_EXCL(pp));
3620 			ASSERT(pp->p_szc == szc);
3621 			page_list_concat(&tmp_pplist, &pp);
3622 		}
3623 	}
3624 	if (tmp_pplist != NULL) {
3625 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3626 		page_list_concat(&tmp_pplist, &pplist);
3627 		pplist = tmp_pplist;
3628 	}
3629 	/*
3630 	 * at this point all pages are either on done_pplist or
3631 	 * pplist. They can't be all on done_pplist otherwise
3632 	 * we'd've been done.
3633 	 */
3634 	ASSERT(pplist != NULL);
3635 	if (nios != 0) {
3636 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3637 		pp = pplist;
3638 		do {
3639 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3640 			ASSERT(pp->p_szc == szc);
3641 			ASSERT(PAGE_EXCL(pp));
3642 			ASSERT(pp->p_vnode != vp);
3643 			pp->p_szc = 0;
3644 		} while ((pp = pp->p_next) != pplist);
3645 
3646 		pp = done_pplist;
3647 		do {
3648 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3649 			ASSERT(pp->p_szc == szc);
3650 			ASSERT(PAGE_EXCL(pp));
3651 			ASSERT(pp->p_vnode == vp);
3652 			pp->p_szc = 0;
3653 		} while ((pp = pp->p_next) != done_pplist);
3654 
3655 		while (pplist != NULL) {
3656 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3657 			pp = pplist;
3658 			page_sub(&pplist, pp);
3659 			page_free(pp, 0);
3660 		}
3661 
3662 		while (done_pplist != NULL) {
3663 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3664 			pp = done_pplist;
3665 			page_sub(&done_pplist, pp);
3666 			page_unlock(pp);
3667 		}
3668 		*ppplist = NULL;
3669 		return (0);
3670 	}
3671 	ASSERT(pplist == *ppplist);
3672 	if (io_err) {
3673 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3674 		/*
3675 		 * don't downsize on io error.
3676 		 * see if vop_getpage succeeds.
3677 		 * pplist may still be used in this case
3678 		 * for relocations.
3679 		 */
3680 		return (0);
3681 	}
3682 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3683 	page_free_replacement_page(pplist);
3684 	page_create_putback(pages);
3685 	*ppplist = NULL;
3686 	return (0);
3687 }
3688 
3689 int segvn_anypgsz = 0;
3690 
3691 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3692 		if ((type) == F_SOFTLOCK) {		\
3693 			mutex_enter(&freemem_lock);	\
3694 			availrmem += (pages);		\
3695 			segvn_pages_locked -= (pages);	\
3696 			svd->softlockcnt -= (pages);	\
3697 			mutex_exit(&freemem_lock);	\
3698 		}
3699 
3700 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3701 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3702 			if ((rw) == S_WRITE) {				\
3703 				for (i = 0; i < (pages); i++) {		\
3704 					ASSERT((ppa)[i]->p_vnode ==	\
3705 					    (ppa)[0]->p_vnode);		\
3706 					hat_setmod((ppa)[i]);		\
3707 				}					\
3708 			} else if ((rw) != S_OTHER &&			\
3709 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3710 				for (i = 0; i < (pages); i++) {		\
3711 					ASSERT((ppa)[i]->p_vnode ==	\
3712 					    (ppa)[0]->p_vnode);		\
3713 					if (!hat_ismod((ppa)[i])) {	\
3714 						prot &= ~PROT_WRITE;	\
3715 						break;			\
3716 					}				\
3717 				}					\
3718 			}						\
3719 		}
3720 
3721 #ifdef  VM_STATS
3722 
3723 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3724 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3725 
3726 #else /* VM_STATS */
3727 
3728 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3729 
3730 #endif
3731 
3732 static faultcode_t
3733 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3734     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3735     caddr_t eaddr, int brkcow)
3736 {
3737 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3738 	struct anon_map *amp = svd->amp;
3739 	uchar_t segtype = svd->type;
3740 	uint_t szc = seg->s_szc;
3741 	size_t pgsz = page_get_pagesize(szc);
3742 	size_t maxpgsz = pgsz;
3743 	pgcnt_t pages = btop(pgsz);
3744 	pgcnt_t maxpages = pages;
3745 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3746 	caddr_t a = lpgaddr;
3747 	caddr_t	maxlpgeaddr = lpgeaddr;
3748 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3749 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3750 	struct vpage *vpage = (svd->vpage != NULL) ?
3751 	    &svd->vpage[seg_page(seg, a)] : NULL;
3752 	vnode_t *vp = svd->vp;
3753 	page_t **ppa;
3754 	uint_t	pszc;
3755 	size_t	ppgsz;
3756 	pgcnt_t	ppages;
3757 	faultcode_t err = 0;
3758 	int ierr;
3759 	int vop_size_err = 0;
3760 	uint_t protchk, prot, vpprot;
3761 	ulong_t i;
3762 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3763 	anon_sync_obj_t an_cookie;
3764 	enum seg_rw arw;
3765 	int alloc_failed = 0;
3766 	int adjszc_chk;
3767 	struct vattr va;
3768 	int xhat = 0;
3769 	page_t *pplist;
3770 	pfn_t pfn;
3771 	int physcontig;
3772 	int upgrdfail;
3773 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3774 	int tron = (svd->tr_state == SEGVN_TR_ON);
3775 
3776 	ASSERT(szc != 0);
3777 	ASSERT(vp != NULL);
3778 	ASSERT(brkcow == 0 || amp != NULL);
3779 	ASSERT(tron == 0 || amp != NULL);
3780 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3781 	ASSERT(!(svd->flags & MAP_NORESERVE));
3782 	ASSERT(type != F_SOFTUNLOCK);
3783 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3784 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3785 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3786 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3787 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3788 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
3789 
3790 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3791 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3792 
3793 	if (svd->flags & MAP_TEXT) {
3794 		hat_flag |= HAT_LOAD_TEXT;
3795 	}
3796 
3797 	if (svd->pageprot) {
3798 		switch (rw) {
3799 		case S_READ:
3800 			protchk = PROT_READ;
3801 			break;
3802 		case S_WRITE:
3803 			protchk = PROT_WRITE;
3804 			break;
3805 		case S_EXEC:
3806 			protchk = PROT_EXEC;
3807 			break;
3808 		case S_OTHER:
3809 		default:
3810 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3811 			break;
3812 		}
3813 	} else {
3814 		prot = svd->prot;
3815 		/* caller has already done segment level protection check. */
3816 	}
3817 
3818 	if (seg->s_as->a_hat != hat) {
3819 		xhat = 1;
3820 	}
3821 
3822 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3823 		SEGVN_VMSTAT_FLTVNPAGES(2);
3824 		arw = S_READ;
3825 	} else {
3826 		arw = rw;
3827 	}
3828 
3829 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3830 
3831 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3832 
3833 	for (;;) {
3834 		adjszc_chk = 0;
3835 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3836 			if (adjszc_chk) {
3837 				while (szc < seg->s_szc) {
3838 					uintptr_t e;
3839 					uint_t tszc;
3840 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3841 					    seg->s_szc;
3842 					ppgsz = page_get_pagesize(tszc);
3843 					if (!IS_P2ALIGNED(a, ppgsz) ||
3844 					    ((alloc_failed >> tszc) &
3845 						0x1)) {
3846 						break;
3847 					}
3848 					SEGVN_VMSTAT_FLTVNPAGES(4);
3849 					szc = tszc;
3850 					pgsz = ppgsz;
3851 					pages = btop(pgsz);
3852 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3853 					lpgeaddr = (caddr_t)e;
3854 				}
3855 			}
3856 
3857 		again:
3858 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3859 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3860 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3861 				anon_array_enter(amp, aindx, &an_cookie);
3862 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3863 					SEGVN_VMSTAT_FLTVNPAGES(5);
3864 					ASSERT(anon_pages(amp->ahp, aindx,
3865 					    maxpages) == maxpages);
3866 					anon_array_exit(&an_cookie);
3867 					ANON_LOCK_EXIT(&amp->a_rwlock);
3868 					err = segvn_fault_anonpages(hat, seg,
3869 					    a, a + maxpgsz, type, rw,
3870 					    MAX(a, addr),
3871 					    MIN(a + maxpgsz, eaddr), brkcow);
3872 					if (err != 0) {
3873 						SEGVN_VMSTAT_FLTVNPAGES(6);
3874 						goto out;
3875 					}
3876 					if (szc < seg->s_szc) {
3877 						szc = seg->s_szc;
3878 						pgsz = maxpgsz;
3879 						pages = maxpages;
3880 						lpgeaddr = maxlpgeaddr;
3881 					}
3882 					goto next;
3883 				} else {
3884 					ASSERT(anon_pages(amp->ahp, aindx,
3885 					    maxpages) == 0);
3886 					SEGVN_VMSTAT_FLTVNPAGES(7);
3887 					anon_array_exit(&an_cookie);
3888 					ANON_LOCK_EXIT(&amp->a_rwlock);
3889 				}
3890 			}
3891 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3892 			ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3893 
3894 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3895 				ASSERT(vpage != NULL);
3896 				prot = VPP_PROT(vpage);
3897 				ASSERT(sameprot(seg, a, maxpgsz));
3898 				if ((prot & protchk) == 0) {
3899 					SEGVN_VMSTAT_FLTVNPAGES(8);
3900 					err = FC_PROT;
3901 					goto out;
3902 				}
3903 			}
3904 			if (type == F_SOFTLOCK) {
3905 				mutex_enter(&freemem_lock);
3906 				if (availrmem < tune.t_minarmem + pages) {
3907 					mutex_exit(&freemem_lock);
3908 					err = FC_MAKE_ERR(ENOMEM);
3909 					goto out;
3910 				} else {
3911 					availrmem -= pages;
3912 					segvn_pages_locked += pages;
3913 					svd->softlockcnt += pages;
3914 				}
3915 				mutex_exit(&freemem_lock);
3916 			}
3917 
3918 			pplist = NULL;
3919 			physcontig = 0;
3920 			ppa[0] = NULL;
3921 			if (!brkcow && !tron && szc &&
3922 			    !page_exists_physcontig(vp, off, szc,
3923 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3924 				SEGVN_VMSTAT_FLTVNPAGES(9);
3925 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3926 				    szc, 0, 0) && type != F_SOFTLOCK) {
3927 					SEGVN_VMSTAT_FLTVNPAGES(10);
3928 					pszc = 0;
3929 					ierr = -1;
3930 					alloc_failed |= (1 << szc);
3931 					break;
3932 				}
3933 				if (pplist != NULL &&
3934 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3935 					int downsize;
3936 					SEGVN_VMSTAT_FLTVNPAGES(11);
3937 					physcontig = segvn_fill_vp_pages(svd,
3938 					    vp, off, szc, ppa, &pplist,
3939 					    &pszc, &downsize);
3940 					ASSERT(!physcontig || pplist == NULL);
3941 					if (!physcontig && downsize &&
3942 					    type != F_SOFTLOCK) {
3943 						ASSERT(pplist == NULL);
3944 						SEGVN_VMSTAT_FLTVNPAGES(12);
3945 						ierr = -1;
3946 						break;
3947 					}
3948 					ASSERT(!physcontig ||
3949 					    segtype == MAP_PRIVATE ||
3950 					    ppa[0] == NULL);
3951 					if (physcontig && ppa[0] == NULL) {
3952 						physcontig = 0;
3953 					}
3954 				}
3955 			} else if (!brkcow && !tron && szc && ppa[0] != NULL) {
3956 				SEGVN_VMSTAT_FLTVNPAGES(13);
3957 				ASSERT(segtype == MAP_PRIVATE);
3958 				physcontig = 1;
3959 			}
3960 
3961 			if (!physcontig) {
3962 				SEGVN_VMSTAT_FLTVNPAGES(14);
3963 				ppa[0] = NULL;
3964 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3965 				    &vpprot, ppa, pgsz, seg, a, arw,
3966 				    svd->cred);
3967 #ifdef DEBUG
3968 				if (ierr == 0) {
3969 					for (i = 0; i < pages; i++) {
3970 						ASSERT(PAGE_LOCKED(ppa[i]));
3971 						ASSERT(!PP_ISFREE(ppa[i]));
3972 						ASSERT(ppa[i]->p_vnode == vp);
3973 						ASSERT(ppa[i]->p_offset ==
3974 						    off + (i << PAGESHIFT));
3975 					}
3976 				}
3977 #endif /* DEBUG */
3978 				if (segtype == MAP_PRIVATE) {
3979 					SEGVN_VMSTAT_FLTVNPAGES(15);
3980 					vpprot &= ~PROT_WRITE;
3981 				}
3982 			} else {
3983 				ASSERT(segtype == MAP_PRIVATE);
3984 				SEGVN_VMSTAT_FLTVNPAGES(16);
3985 				vpprot = PROT_ALL & ~PROT_WRITE;
3986 				ierr = 0;
3987 			}
3988 
3989 			if (ierr != 0) {
3990 				SEGVN_VMSTAT_FLTVNPAGES(17);
3991 				if (pplist != NULL) {
3992 					SEGVN_VMSTAT_FLTVNPAGES(18);
3993 					page_free_replacement_page(pplist);
3994 					page_create_putback(pages);
3995 				}
3996 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3997 				if (a + pgsz <= eaddr) {
3998 					SEGVN_VMSTAT_FLTVNPAGES(19);
3999 					err = FC_MAKE_ERR(ierr);
4000 					goto out;
4001 				}
4002 				va.va_mask = AT_SIZE;
4003 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
4004 					SEGVN_VMSTAT_FLTVNPAGES(20);
4005 					err = FC_MAKE_ERR(EIO);
4006 					goto out;
4007 				}
4008 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
4009 					SEGVN_VMSTAT_FLTVNPAGES(21);
4010 					err = FC_MAKE_ERR(ierr);
4011 					goto out;
4012 				}
4013 				if (btopr(va.va_size) <
4014 				    btopr(off + (eaddr - a))) {
4015 					SEGVN_VMSTAT_FLTVNPAGES(22);
4016 					err = FC_MAKE_ERR(ierr);
4017 					goto out;
4018 				}
4019 				if (brkcow || tron || type == F_SOFTLOCK) {
4020 					/* can't reduce map area */
4021 					SEGVN_VMSTAT_FLTVNPAGES(23);
4022 					vop_size_err = 1;
4023 					goto out;
4024 				}
4025 				SEGVN_VMSTAT_FLTVNPAGES(24);
4026 				ASSERT(szc != 0);
4027 				pszc = 0;
4028 				ierr = -1;
4029 				break;
4030 			}
4031 
4032 			if (amp != NULL) {
4033 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4034 				anon_array_enter(amp, aindx, &an_cookie);
4035 			}
4036 			if (amp != NULL &&
4037 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
4038 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4039 
4040 				SEGVN_VMSTAT_FLTVNPAGES(25);
4041 				ASSERT(anon_pages(amp->ahp, taindx,
4042 				    maxpages) == maxpages);
4043 				for (i = 0; i < pages; i++) {
4044 					page_unlock(ppa[i]);
4045 				}
4046 				anon_array_exit(&an_cookie);
4047 				ANON_LOCK_EXIT(&amp->a_rwlock);
4048 				if (pplist != NULL) {
4049 					page_free_replacement_page(pplist);
4050 					page_create_putback(pages);
4051 				}
4052 				SEGVN_RESTORE_SOFTLOCK(type, pages);
4053 				if (szc < seg->s_szc) {
4054 					SEGVN_VMSTAT_FLTVNPAGES(26);
4055 					/*
4056 					 * For private segments SOFTLOCK
4057 					 * either always breaks cow (any rw
4058 					 * type except S_READ_NOCOW) or
4059 					 * address space is locked as writer
4060 					 * (S_READ_NOCOW case) and anon slots
4061 					 * can't show up on second check.
4062 					 * Therefore if we are here for
4063 					 * SOFTLOCK case it must be a cow
4064 					 * break but cow break never reduces
4065 					 * szc. text replication (tron) in
4066 					 * this case works as cow break.
4067 					 * Thus the assert below.
4068 					 */
4069 					ASSERT(!brkcow && !tron &&
4070 					    type != F_SOFTLOCK);
4071 					pszc = seg->s_szc;
4072 					ierr = -2;
4073 					break;
4074 				}
4075 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4076 				goto again;
4077 			}
4078 #ifdef DEBUG
4079 			if (amp != NULL) {
4080 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4081 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4082 			}
4083 #endif /* DEBUG */
4084 
4085 			if (brkcow || tron) {
4086 				ASSERT(amp != NULL);
4087 				ASSERT(pplist == NULL);
4088 				ASSERT(szc == seg->s_szc);
4089 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4090 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
4091 				SEGVN_VMSTAT_FLTVNPAGES(27);
4092 				ierr = anon_map_privatepages(amp, aindx, szc,
4093 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
4094 				    tron ? PG_LOCAL : 0, svd->cred);
4095 				if (ierr != 0) {
4096 					SEGVN_VMSTAT_FLTVNPAGES(28);
4097 					anon_array_exit(&an_cookie);
4098 					ANON_LOCK_EXIT(&amp->a_rwlock);
4099 					SEGVN_RESTORE_SOFTLOCK(type, pages);
4100 					err = FC_MAKE_ERR(ierr);
4101 					goto out;
4102 				}
4103 
4104 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4105 				/*
4106 				 * p_szc can't be changed for locked
4107 				 * swapfs pages.
4108 				 */
4109 				ASSERT(svd->rcookie ==
4110 				    HAT_INVALID_REGION_COOKIE);
4111 				hat_memload_array(hat, a, pgsz, ppa, prot,
4112 				    hat_flag);
4113 
4114 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4115 					SEGVN_VMSTAT_FLTVNPAGES(29);
4116 					for (i = 0; i < pages; i++) {
4117 						page_unlock(ppa[i]);
4118 					}
4119 				}
4120 				anon_array_exit(&an_cookie);
4121 				ANON_LOCK_EXIT(&amp->a_rwlock);
4122 				goto next;
4123 			}
4124 
4125 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4126 			    (!svd->pageprot && svd->prot == (prot & vpprot)));
4127 
4128 			pfn = page_pptonum(ppa[0]);
4129 			/*
4130 			 * hat_page_demote() needs an SE_EXCL lock on one of
4131 			 * constituent page_t's and it decreases root's p_szc
4132 			 * last. This means if root's p_szc is equal szc and
4133 			 * all its constituent pages are locked
4134 			 * hat_page_demote() that could have changed p_szc to
4135 			 * szc is already done and no new have page_demote()
4136 			 * can start for this large page.
4137 			 */
4138 
4139 			/*
4140 			 * we need to make sure same mapping size is used for
4141 			 * the same address range if there's a possibility the
4142 			 * adddress is already mapped because hat layer panics
4143 			 * when translation is loaded for the range already
4144 			 * mapped with a different page size.  We achieve it
4145 			 * by always using largest page size possible subject
4146 			 * to the constraints of page size, segment page size
4147 			 * and page alignment.  Since mappings are invalidated
4148 			 * when those constraints change and make it
4149 			 * impossible to use previously used mapping size no
4150 			 * mapping size conflicts should happen.
4151 			 */
4152 
4153 		chkszc:
4154 			if ((pszc = ppa[0]->p_szc) == szc &&
4155 			    IS_P2ALIGNED(pfn, pages)) {
4156 
4157 				SEGVN_VMSTAT_FLTVNPAGES(30);
4158 #ifdef DEBUG
4159 				for (i = 0; i < pages; i++) {
4160 					ASSERT(PAGE_LOCKED(ppa[i]));
4161 					ASSERT(!PP_ISFREE(ppa[i]));
4162 					ASSERT(page_pptonum(ppa[i]) ==
4163 					    pfn + i);
4164 					ASSERT(ppa[i]->p_szc == szc);
4165 					ASSERT(ppa[i]->p_vnode == vp);
4166 					ASSERT(ppa[i]->p_offset ==
4167 					    off + (i << PAGESHIFT));
4168 				}
4169 #endif /* DEBUG */
4170 				/*
4171 				 * All pages are of szc we need and they are
4172 				 * all locked so they can't change szc. load
4173 				 * translations.
4174 				 *
4175 				 * if page got promoted since last check
4176 				 * we don't need pplist.
4177 				 */
4178 				if (pplist != NULL) {
4179 					page_free_replacement_page(pplist);
4180 					page_create_putback(pages);
4181 				}
4182 				if (PP_ISMIGRATE(ppa[0])) {
4183 					page_migrate(seg, a, ppa, pages);
4184 				}
4185 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4186 				    prot, vpprot);
4187 				if (!xhat) {
4188 					hat_memload_array_region(hat, a, pgsz,
4189 					    ppa, prot & vpprot, hat_flag,
4190 					    svd->rcookie);
4191 				} else {
4192 					/*
4193 					 * avoid large xhat mappings to FS
4194 					 * pages so that hat_page_demote()
4195 					 * doesn't need to check for xhat
4196 					 * large mappings.
4197 					 * Don't use regions with xhats.
4198 					 */
4199 					for (i = 0; i < pages; i++) {
4200 						hat_memload(hat,
4201 						    a + (i << PAGESHIFT),
4202 						    ppa[i], prot & vpprot,
4203 						    hat_flag);
4204 					}
4205 				}
4206 
4207 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4208 					for (i = 0; i < pages; i++) {
4209 						page_unlock(ppa[i]);
4210 					}
4211 				}
4212 				if (amp != NULL) {
4213 					anon_array_exit(&an_cookie);
4214 					ANON_LOCK_EXIT(&amp->a_rwlock);
4215 				}
4216 				goto next;
4217 			}
4218 
4219 			/*
4220 			 * See if upsize is possible.
4221 			 */
4222 			if (pszc > szc && szc < seg->s_szc &&
4223 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4224 				pgcnt_t aphase;
4225 				uint_t pszc1 = MIN(pszc, seg->s_szc);
4226 				ppgsz = page_get_pagesize(pszc1);
4227 				ppages = btop(ppgsz);
4228 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4229 
4230 				ASSERT(type != F_SOFTLOCK);
4231 
4232 				SEGVN_VMSTAT_FLTVNPAGES(31);
4233 				if (aphase != P2PHASE(pfn, ppages)) {
4234 					segvn_faultvnmpss_align_err4++;
4235 				} else {
4236 					SEGVN_VMSTAT_FLTVNPAGES(32);
4237 					if (pplist != NULL) {
4238 						page_t *pl = pplist;
4239 						page_free_replacement_page(pl);
4240 						page_create_putback(pages);
4241 					}
4242 					for (i = 0; i < pages; i++) {
4243 						page_unlock(ppa[i]);
4244 					}
4245 					if (amp != NULL) {
4246 						anon_array_exit(&an_cookie);
4247 						ANON_LOCK_EXIT(&amp->a_rwlock);
4248 					}
4249 					pszc = pszc1;
4250 					ierr = -2;
4251 					break;
4252 				}
4253 			}
4254 
4255 			/*
4256 			 * check if we should use smallest mapping size.
4257 			 */
4258 			upgrdfail = 0;
4259 			if (szc == 0 || xhat ||
4260 			    (pszc >= szc &&
4261 			    !IS_P2ALIGNED(pfn, pages)) ||
4262 			    (pszc < szc &&
4263 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
4264 				&pszc))) {
4265 
4266 				if (upgrdfail && type != F_SOFTLOCK) {
4267 					/*
4268 					 * segvn_full_szcpages failed to lock
4269 					 * all pages EXCL. Size down.
4270 					 */
4271 					ASSERT(pszc < szc);
4272 
4273 					SEGVN_VMSTAT_FLTVNPAGES(33);
4274 
4275 					if (pplist != NULL) {
4276 						page_t *pl = pplist;
4277 						page_free_replacement_page(pl);
4278 						page_create_putback(pages);
4279 					}
4280 
4281 					for (i = 0; i < pages; i++) {
4282 						page_unlock(ppa[i]);
4283 					}
4284 					if (amp != NULL) {
4285 						anon_array_exit(&an_cookie);
4286 						ANON_LOCK_EXIT(&amp->a_rwlock);
4287 					}
4288 					ierr = -1;
4289 					break;
4290 				}
4291 				if (szc != 0 && !xhat && !upgrdfail) {
4292 					segvn_faultvnmpss_align_err5++;
4293 				}
4294 				SEGVN_VMSTAT_FLTVNPAGES(34);
4295 				if (pplist != NULL) {
4296 					page_free_replacement_page(pplist);
4297 					page_create_putback(pages);
4298 				}
4299 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4300 				    prot, vpprot);
4301 				if (upgrdfail && segvn_anypgsz_vnode) {
4302 					/* SOFTLOCK case */
4303 					hat_memload_array_region(hat, a, pgsz,
4304 					    ppa, prot & vpprot, hat_flag,
4305 					    svd->rcookie);
4306 				} else {
4307 					for (i = 0; i < pages; i++) {
4308 						hat_memload_region(hat,
4309 						    a + (i << PAGESHIFT),
4310 						    ppa[i], prot & vpprot,
4311 						    hat_flag, svd->rcookie);
4312 					}
4313 				}
4314 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4315 					for (i = 0; i < pages; i++) {
4316 						page_unlock(ppa[i]);
4317 					}
4318 				}
4319 				if (amp != NULL) {
4320 					anon_array_exit(&an_cookie);
4321 					ANON_LOCK_EXIT(&amp->a_rwlock);
4322 				}
4323 				goto next;
4324 			}
4325 
4326 			if (pszc == szc) {
4327 				/*
4328 				 * segvn_full_szcpages() upgraded pages szc.
4329 				 */
4330 				ASSERT(pszc == ppa[0]->p_szc);
4331 				ASSERT(IS_P2ALIGNED(pfn, pages));
4332 				goto chkszc;
4333 			}
4334 
4335 			if (pszc > szc) {
4336 				kmutex_t *szcmtx;
4337 				SEGVN_VMSTAT_FLTVNPAGES(35);
4338 				/*
4339 				 * p_szc of ppa[0] can change since we haven't
4340 				 * locked all constituent pages. Call
4341 				 * page_lock_szc() to prevent szc changes.
4342 				 * This should be a rare case that happens when
4343 				 * multiple segments use a different page size
4344 				 * to map the same file offsets.
4345 				 */
4346 				szcmtx = page_szc_lock(ppa[0]);
4347 				pszc = ppa[0]->p_szc;
4348 				ASSERT(szcmtx != NULL || pszc == 0);
4349 				ASSERT(ppa[0]->p_szc <= pszc);
4350 				if (pszc <= szc) {
4351 					SEGVN_VMSTAT_FLTVNPAGES(36);
4352 					if (szcmtx != NULL) {
4353 						mutex_exit(szcmtx);
4354 					}
4355 					goto chkszc;
4356 				}
4357 				if (pplist != NULL) {
4358 					/*
4359 					 * page got promoted since last check.
4360 					 * we don't need preaalocated large
4361 					 * page.
4362 					 */
4363 					SEGVN_VMSTAT_FLTVNPAGES(37);
4364 					page_free_replacement_page(pplist);
4365 					page_create_putback(pages);
4366 				}
4367 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4368 				    prot, vpprot);
4369 				hat_memload_array_region(hat, a, pgsz, ppa,
4370 				    prot & vpprot, hat_flag, svd->rcookie);
4371 				mutex_exit(szcmtx);
4372 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4373 					for (i = 0; i < pages; i++) {
4374 						page_unlock(ppa[i]);
4375 					}
4376 				}
4377 				if (amp != NULL) {
4378 					anon_array_exit(&an_cookie);
4379 					ANON_LOCK_EXIT(&amp->a_rwlock);
4380 				}
4381 				goto next;
4382 			}
4383 
4384 			/*
4385 			 * if page got demoted since last check
4386 			 * we could have not allocated larger page.
4387 			 * allocate now.
4388 			 */
4389 			if (pplist == NULL &&
4390 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4391 				szc, 0, 0) && type != F_SOFTLOCK) {
4392 				SEGVN_VMSTAT_FLTVNPAGES(38);
4393 				for (i = 0; i < pages; i++) {
4394 					page_unlock(ppa[i]);
4395 				}
4396 				if (amp != NULL) {
4397 					anon_array_exit(&an_cookie);
4398 					ANON_LOCK_EXIT(&amp->a_rwlock);
4399 				}
4400 				ierr = -1;
4401 				alloc_failed |= (1 << szc);
4402 				break;
4403 			}
4404 
4405 			SEGVN_VMSTAT_FLTVNPAGES(39);
4406 
4407 			if (pplist != NULL) {
4408 				segvn_relocate_pages(ppa, pplist);
4409 #ifdef DEBUG
4410 			} else {
4411 				ASSERT(type == F_SOFTLOCK);
4412 				SEGVN_VMSTAT_FLTVNPAGES(40);
4413 #endif /* DEBUG */
4414 			}
4415 
4416 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4417 
4418 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4419 				ASSERT(type == F_SOFTLOCK);
4420 				for (i = 0; i < pages; i++) {
4421 					ASSERT(ppa[i]->p_szc < szc);
4422 					hat_memload_region(hat,
4423 					    a + (i << PAGESHIFT),
4424 					    ppa[i], prot & vpprot, hat_flag,
4425 					    svd->rcookie);
4426 				}
4427 			} else {
4428 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4429 				hat_memload_array_region(hat, a, pgsz, ppa,
4430 				    prot & vpprot, hat_flag, svd->rcookie);
4431 			}
4432 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4433 				for (i = 0; i < pages; i++) {
4434 					ASSERT(PAGE_SHARED(ppa[i]));
4435 					page_unlock(ppa[i]);
4436 				}
4437 			}
4438 			if (amp != NULL) {
4439 				anon_array_exit(&an_cookie);
4440 				ANON_LOCK_EXIT(&amp->a_rwlock);
4441 			}
4442 
4443 		next:
4444 			if (vpage != NULL) {
4445 				vpage += pages;
4446 			}
4447 			adjszc_chk = 1;
4448 		}
4449 		if (a == lpgeaddr)
4450 			break;
4451 		ASSERT(a < lpgeaddr);
4452 
4453 		ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4454 
4455 		/*
4456 		 * ierr == -1 means we failed to map with a large page.
4457 		 * (either due to allocation/relocation failures or
4458 		 * misalignment with other mappings to this file.
4459 		 *
4460 		 * ierr == -2 means some other thread allocated a large page
4461 		 * after we gave up tp map with a large page.  retry with
4462 		 * larger mapping.
4463 		 */
4464 		ASSERT(ierr == -1 || ierr == -2);
4465 		ASSERT(ierr == -2 || szc != 0);
4466 		ASSERT(ierr == -1 || szc < seg->s_szc);
4467 		if (ierr == -2) {
4468 			SEGVN_VMSTAT_FLTVNPAGES(41);
4469 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4470 			szc = pszc;
4471 		} else if (segvn_anypgsz_vnode) {
4472 			SEGVN_VMSTAT_FLTVNPAGES(42);
4473 			szc--;
4474 		} else {
4475 			SEGVN_VMSTAT_FLTVNPAGES(43);
4476 			ASSERT(pszc < szc);
4477 			/*
4478 			 * other process created pszc large page.
4479 			 * but we still have to drop to 0 szc.
4480 			 */
4481 			szc = 0;
4482 		}
4483 
4484 		pgsz = page_get_pagesize(szc);
4485 		pages = btop(pgsz);
4486 		if (ierr == -2) {
4487 			/*
4488 			 * Size up case. Note lpgaddr may only be needed for
4489 			 * softlock case so we don't adjust it here.
4490 			 */
4491 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4492 			ASSERT(a >= lpgaddr);
4493 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4494 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4495 			aindx = svd->anon_index + seg_page(seg, a);
4496 			vpage = (svd->vpage != NULL) ?
4497 			    &svd->vpage[seg_page(seg, a)] : NULL;
4498 		} else {
4499 			/*
4500 			 * Size down case. Note lpgaddr may only be needed for
4501 			 * softlock case so we don't adjust it here.
4502 			 */
4503 			ASSERT(IS_P2ALIGNED(a, pgsz));
4504 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4505 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4506 			ASSERT(a < lpgeaddr);
4507 			if (a < addr) {
4508 				SEGVN_VMSTAT_FLTVNPAGES(44);
4509 				/*
4510 				 * The beginning of the large page region can
4511 				 * be pulled to the right to make a smaller
4512 				 * region. We haven't yet faulted a single
4513 				 * page.
4514 				 */
4515 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4516 				ASSERT(a >= lpgaddr);
4517 				off = svd->offset +
4518 				    (uintptr_t)(a - seg->s_base);
4519 				aindx = svd->anon_index + seg_page(seg, a);
4520 				vpage = (svd->vpage != NULL) ?
4521 				    &svd->vpage[seg_page(seg, a)] : NULL;
4522 			}
4523 		}
4524 	}
4525 out:
4526 	kmem_free(ppa, ppasize);
4527 	if (!err && !vop_size_err) {
4528 		SEGVN_VMSTAT_FLTVNPAGES(45);
4529 		return (0);
4530 	}
4531 	if (type == F_SOFTLOCK && a > lpgaddr) {
4532 		SEGVN_VMSTAT_FLTVNPAGES(46);
4533 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4534 	}
4535 	if (!vop_size_err) {
4536 		SEGVN_VMSTAT_FLTVNPAGES(47);
4537 		return (err);
4538 	}
4539 	ASSERT(brkcow || tron || type == F_SOFTLOCK);
4540 	/*
4541 	 * Large page end is mapped beyond the end of file and it's a cow
4542 	 * fault (can be a text replication induced cow) or softlock so we can't
4543 	 * reduce the map area.  For now just demote the segment. This should
4544 	 * really only happen if the end of the file changed after the mapping
4545 	 * was established since when large page segments are created we make
4546 	 * sure they don't extend beyond the end of the file.
4547 	 */
4548 	SEGVN_VMSTAT_FLTVNPAGES(48);
4549 
4550 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4551 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4552 	err = 0;
4553 	if (seg->s_szc != 0) {
4554 		segvn_fltvnpages_clrszc_cnt++;
4555 		ASSERT(svd->softlockcnt == 0);
4556 		err = segvn_clrszc(seg);
4557 		if (err != 0) {
4558 			segvn_fltvnpages_clrszc_err++;
4559 		}
4560 	}
4561 	ASSERT(err || seg->s_szc == 0);
4562 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4563 	/* segvn_fault will do its job as if szc had been zero to begin with */
4564 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4565 }
4566 
4567 /*
4568  * This routine will attempt to fault in one large page.
4569  * it will use smaller pages if that fails.
4570  * It should only be called for pure anonymous segments.
4571  */
4572 static faultcode_t
4573 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4574     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4575     caddr_t eaddr, int brkcow)
4576 {
4577 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4578 	struct anon_map *amp = svd->amp;
4579 	uchar_t segtype = svd->type;
4580 	uint_t szc = seg->s_szc;
4581 	size_t pgsz = page_get_pagesize(szc);
4582 	size_t maxpgsz = pgsz;
4583 	pgcnt_t pages = btop(pgsz);
4584 	size_t ppasize = pages * sizeof (page_t *);
4585 	caddr_t a = lpgaddr;
4586 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4587 	struct vpage *vpage = (svd->vpage != NULL) ?
4588 	    &svd->vpage[seg_page(seg, a)] : NULL;
4589 	page_t **ppa;
4590 	uint_t	ppa_szc;
4591 	faultcode_t err;
4592 	int ierr;
4593 	uint_t protchk, prot, vpprot;
4594 	ulong_t i;
4595 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4596 	anon_sync_obj_t cookie;
4597 	int first = 1;
4598 	int adjszc_chk;
4599 	int purged = 0;
4600 	int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4601 
4602 	ASSERT(szc != 0);
4603 	ASSERT(amp != NULL);
4604 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4605 	ASSERT(!(svd->flags & MAP_NORESERVE));
4606 	ASSERT(type != F_SOFTUNLOCK);
4607 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4608 	ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4609 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
4610 
4611 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4612 
4613 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4614 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4615 
4616 	if (svd->flags & MAP_TEXT) {
4617 		hat_flag |= HAT_LOAD_TEXT;
4618 	}
4619 
4620 	if (svd->pageprot) {
4621 		switch (rw) {
4622 		case S_READ:
4623 			protchk = PROT_READ;
4624 			break;
4625 		case S_WRITE:
4626 			protchk = PROT_WRITE;
4627 			break;
4628 		case S_EXEC:
4629 			protchk = PROT_EXEC;
4630 			break;
4631 		case S_OTHER:
4632 		default:
4633 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4634 			break;
4635 		}
4636 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4637 	} else {
4638 		prot = svd->prot;
4639 		/* caller has already done segment level protection check. */
4640 	}
4641 
4642 	ppa = kmem_alloc(ppasize, KM_SLEEP);
4643 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4644 	for (;;) {
4645 		adjszc_chk = 0;
4646 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4647 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4648 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4649 				ASSERT(vpage != NULL);
4650 				prot = VPP_PROT(vpage);
4651 				ASSERT(sameprot(seg, a, maxpgsz));
4652 				if ((prot & protchk) == 0) {
4653 					err = FC_PROT;
4654 					goto error;
4655 				}
4656 			}
4657 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4658 			    pgsz < maxpgsz) {
4659 				ASSERT(a > lpgaddr);
4660 				szc = seg->s_szc;
4661 				pgsz = maxpgsz;
4662 				pages = btop(pgsz);
4663 				ASSERT(IS_P2ALIGNED(aindx, pages));
4664 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4665 				    pgsz);
4666 			}
4667 			if (type == F_SOFTLOCK && svd->vp != NULL) {
4668 				mutex_enter(&freemem_lock);
4669 				if (availrmem < tune.t_minarmem + pages) {
4670 					mutex_exit(&freemem_lock);
4671 					err = FC_MAKE_ERR(ENOMEM);
4672 					goto error;
4673 				} else {
4674 					availrmem -= pages;
4675 					segvn_pages_locked += pages;
4676 					svd->softlockcnt += pages;
4677 				}
4678 				mutex_exit(&freemem_lock);
4679 			}
4680 			anon_array_enter(amp, aindx, &cookie);
4681 			ppa_szc = (uint_t)-1;
4682 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4683 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4684 				segvn_anypgsz, pgflags, svd->cred);
4685 			if (ierr != 0) {
4686 				anon_array_exit(&cookie);
4687 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4688 				if (type == F_SOFTLOCK && svd->vp != NULL) {
4689 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4690 					mutex_enter(&freemem_lock);
4691 					availrmem += pages;
4692 					segvn_pages_locked -= pages;
4693 					svd->softlockcnt -= pages;
4694 					mutex_exit(&freemem_lock);
4695 				}
4696 				if (ierr > 0) {
4697 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4698 					err = FC_MAKE_ERR(ierr);
4699 					goto error;
4700 				}
4701 				break;
4702 			}
4703 
4704 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4705 
4706 			ASSERT(segtype == MAP_SHARED ||
4707 			    ppa[0]->p_szc <= szc);
4708 			ASSERT(segtype == MAP_PRIVATE ||
4709 			    ppa[0]->p_szc >= szc);
4710 
4711 			/*
4712 			 * Handle pages that have been marked for migration
4713 			 */
4714 			if (lgrp_optimizations())
4715 				page_migrate(seg, a, ppa, pages);
4716 
4717 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4718 			if (type == F_SOFTLOCK && svd->vp == NULL) {
4719 				/*
4720 				 * If all pages in ppa array belong to the same
4721 				 * large page call segvn_slock_anonpages()
4722 				 * just for ppa[0].
4723 				 */
4724 				for (i = 0; i < pages; i++) {
4725 					if (!segvn_slock_anonpages(ppa[i],
4726 					    i == 0 && first)) {
4727 						ulong_t j;
4728 						for (j = 0; j < i; j++) {
4729 							segvn_sunlock_anonpages(
4730 								ppa[j],
4731 								j == 0 &&
4732 								first);
4733 							page_unlock(ppa[j]);
4734 						}
4735 						for (j = i; j < pages; j++) {
4736 							page_unlock(ppa[j]);
4737 						}
4738 						anon_array_exit(&cookie);
4739 						err = FC_MAKE_ERR(ENOMEM);
4740 						goto error;
4741 					}
4742 					if (i == 0 && ppa[0]->p_szc >= szc) {
4743 						ASSERT(!(page_pptonum(ppa[0]) &
4744 						    (pages - 1)));
4745 						break;
4746 					}
4747 				}
4748 				first = 0;
4749 				mutex_enter(&freemem_lock);
4750 				svd->softlockcnt += pages;
4751 				segvn_pages_locked += pages;
4752 				mutex_exit(&freemem_lock);
4753 			}
4754 
4755 			if (segtype == MAP_SHARED) {
4756 				vpprot |= PROT_WRITE;
4757 			}
4758 
4759 			hat_memload_array(hat, a, pgsz, ppa,
4760 			    prot & vpprot, hat_flag);
4761 
4762 			if (hat_flag & HAT_LOAD_LOCK) {
4763 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4764 			} else {
4765 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4766 				for (i = 0; i < pages; i++)
4767 					page_unlock(ppa[i]);
4768 			}
4769 			if (vpage != NULL)
4770 				vpage += pages;
4771 
4772 			anon_array_exit(&cookie);
4773 			adjszc_chk = 1;
4774 		}
4775 		if (a == lpgeaddr)
4776 			break;
4777 		ASSERT(a < lpgeaddr);
4778 		/*
4779 		 * ierr == -1 means we failed to allocate a large page.
4780 		 * so do a size down operation.
4781 		 *
4782 		 * ierr == -2 means some other process that privately shares
4783 		 * pages with this process has allocated a larger page and we
4784 		 * need to retry with larger pages. So do a size up
4785 		 * operation. This relies on the fact that large pages are
4786 		 * never partially shared i.e. if we share any constituent
4787 		 * page of a large page with another process we must share the
4788 		 * entire large page. Note this cannot happen for SOFTLOCK
4789 		 * case, unless current address (a) is at the beginning of the
4790 		 * next page size boundary because the other process couldn't
4791 		 * have relocated locked pages.
4792 		 */
4793 		ASSERT(ierr == -1 || ierr == -2);
4794 		/*
4795 		 * For the very first relocation failure try to purge this
4796 		 * segment's cache so that the relocator can obtain an
4797 		 * exclusive lock on pages we want to relocate.
4798 		 */
4799 		if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
4800 		    svd->softlockcnt != 0) {
4801 			purged = 1;
4802 			segvn_purge(seg);
4803 			continue;
4804 		}
4805 
4806 		if (segvn_anypgsz) {
4807 			ASSERT(ierr == -2 || szc != 0);
4808 			ASSERT(ierr == -1 || szc < seg->s_szc);
4809 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4810 		} else {
4811 			/*
4812 			 * For non COW faults and segvn_anypgsz == 0
4813 			 * we need to be careful not to loop forever
4814 			 * if existing page is found with szc other
4815 			 * than 0 or seg->s_szc. This could be due
4816 			 * to page relocations on behalf of DR or
4817 			 * more likely large page creation. For this
4818 			 * case simply re-size to existing page's szc
4819 			 * if returned by anon_map_getpages().
4820 			 */
4821 			if (ppa_szc == (uint_t)-1) {
4822 				szc = (ierr == -1) ? 0 : seg->s_szc;
4823 			} else {
4824 				ASSERT(ppa_szc <= seg->s_szc);
4825 				ASSERT(ierr == -2 || ppa_szc < szc);
4826 				ASSERT(ierr == -1 || ppa_szc > szc);
4827 				szc = ppa_szc;
4828 			}
4829 		}
4830 
4831 		pgsz = page_get_pagesize(szc);
4832 		pages = btop(pgsz);
4833 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4834 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4835 		if (type == F_SOFTLOCK) {
4836 			/*
4837 			 * For softlocks we cannot reduce the fault area
4838 			 * (calculated based on the largest page size for this
4839 			 * segment) for size down and a is already next
4840 			 * page size aligned as assertted above for size
4841 			 * ups. Therefore just continue in case of softlock.
4842 			 */
4843 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4844 			continue; /* keep lint happy */
4845 		} else if (ierr == -2) {
4846 
4847 			/*
4848 			 * Size up case. Note lpgaddr may only be needed for
4849 			 * softlock case so we don't adjust it here.
4850 			 */
4851 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4852 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4853 			ASSERT(a >= lpgaddr);
4854 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4855 			aindx = svd->anon_index + seg_page(seg, a);
4856 			vpage = (svd->vpage != NULL) ?
4857 			    &svd->vpage[seg_page(seg, a)] : NULL;
4858 		} else {
4859 			/*
4860 			 * Size down case. Note lpgaddr may only be needed for
4861 			 * softlock case so we don't adjust it here.
4862 			 */
4863 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4864 			ASSERT(IS_P2ALIGNED(a, pgsz));
4865 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4866 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4867 			ASSERT(a < lpgeaddr);
4868 			if (a < addr) {
4869 				/*
4870 				 * The beginning of the large page region can
4871 				 * be pulled to the right to make a smaller
4872 				 * region. We haven't yet faulted a single
4873 				 * page.
4874 				 */
4875 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4876 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4877 				ASSERT(a >= lpgaddr);
4878 				aindx = svd->anon_index + seg_page(seg, a);
4879 				vpage = (svd->vpage != NULL) ?
4880 				    &svd->vpage[seg_page(seg, a)] : NULL;
4881 			}
4882 		}
4883 	}
4884 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4885 	ANON_LOCK_EXIT(&amp->a_rwlock);
4886 	kmem_free(ppa, ppasize);
4887 	return (0);
4888 error:
4889 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4890 	ANON_LOCK_EXIT(&amp->a_rwlock);
4891 	kmem_free(ppa, ppasize);
4892 	if (type == F_SOFTLOCK && a > lpgaddr) {
4893 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4894 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4895 	}
4896 	return (err);
4897 }
4898 
4899 int fltadvice = 1;	/* set to free behind pages for sequential access */
4900 
4901 /*
4902  * This routine is called via a machine specific fault handling routine.
4903  * It is also called by software routines wishing to lock or unlock
4904  * a range of addresses.
4905  *
4906  * Here is the basic algorithm:
4907  *	If unlocking
4908  *		Call segvn_softunlock
4909  *		Return
4910  *	endif
4911  *	Checking and set up work
4912  *	If we will need some non-anonymous pages
4913  *		Call VOP_GETPAGE over the range of non-anonymous pages
4914  *	endif
4915  *	Loop over all addresses requested
4916  *		Call segvn_faultpage passing in page list
4917  *		    to load up translations and handle anonymous pages
4918  *	endloop
4919  *	Load up translation to any additional pages in page list not
4920  *	    already handled that fit into this segment
4921  */
4922 static faultcode_t
4923 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4924     enum fault_type type, enum seg_rw rw)
4925 {
4926 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4927 	page_t **plp, **ppp, *pp;
4928 	u_offset_t off;
4929 	caddr_t a;
4930 	struct vpage *vpage;
4931 	uint_t vpprot, prot;
4932 	int err;
4933 	page_t *pl[PVN_GETPAGE_NUM + 1];
4934 	size_t plsz, pl_alloc_sz;
4935 	size_t page;
4936 	ulong_t anon_index;
4937 	struct anon_map *amp;
4938 	int dogetpage = 0;
4939 	caddr_t	lpgaddr, lpgeaddr;
4940 	size_t pgsz;
4941 	anon_sync_obj_t cookie;
4942 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4943 
4944 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4945 	ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4946 
4947 	/*
4948 	 * First handle the easy stuff
4949 	 */
4950 	if (type == F_SOFTUNLOCK) {
4951 		if (rw == S_READ_NOCOW) {
4952 			rw = S_READ;
4953 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4954 		}
4955 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4956 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4957 		    page_get_pagesize(seg->s_szc);
4958 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4959 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4960 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4961 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4962 		return (0);
4963 	}
4964 
4965 	ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4966 	    !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4967 	if (brkcow == 0) {
4968 		if (svd->tr_state == SEGVN_TR_INIT) {
4969 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4970 			if (svd->tr_state == SEGVN_TR_INIT) {
4971 				ASSERT(svd->vp != NULL && svd->amp == NULL);
4972 				ASSERT(svd->flags & MAP_TEXT);
4973 				ASSERT(svd->type == MAP_PRIVATE);
4974 				segvn_textrepl(seg);
4975 				ASSERT(svd->tr_state != SEGVN_TR_INIT);
4976 				ASSERT(svd->tr_state != SEGVN_TR_ON ||
4977 				    svd->amp != NULL);
4978 			}
4979 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4980 		}
4981 	} else if (svd->tr_state != SEGVN_TR_OFF) {
4982 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4983 
4984 		if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4985 			ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4986 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4987 			return (FC_PROT);
4988 		}
4989 
4990 		if (svd->tr_state == SEGVN_TR_ON) {
4991 			ASSERT(svd->vp != NULL && svd->amp != NULL);
4992 			segvn_textunrepl(seg, 0);
4993 			ASSERT(svd->amp == NULL &&
4994 			    svd->tr_state == SEGVN_TR_OFF);
4995 		} else if (svd->tr_state != SEGVN_TR_OFF) {
4996 			svd->tr_state = SEGVN_TR_OFF;
4997 		}
4998 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
4999 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5000 	}
5001 
5002 top:
5003 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5004 
5005 	/*
5006 	 * If we have the same protections for the entire segment,
5007 	 * insure that the access being attempted is legitimate.
5008 	 */
5009 
5010 	if (svd->pageprot == 0) {
5011 		uint_t protchk;
5012 
5013 		switch (rw) {
5014 		case S_READ:
5015 		case S_READ_NOCOW:
5016 			protchk = PROT_READ;
5017 			break;
5018 		case S_WRITE:
5019 			protchk = PROT_WRITE;
5020 			break;
5021 		case S_EXEC:
5022 			protchk = PROT_EXEC;
5023 			break;
5024 		case S_OTHER:
5025 		default:
5026 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
5027 			break;
5028 		}
5029 
5030 		if ((svd->prot & protchk) == 0) {
5031 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5032 			return (FC_PROT);	/* illegal access type */
5033 		}
5034 	}
5035 
5036 	if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5037 		/* this must be SOFTLOCK S_READ fault */
5038 		ASSERT(svd->amp == NULL);
5039 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5040 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5041 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5042 		if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5043 			/*
5044 			 * this must be the first ever non S_READ_NOCOW
5045 			 * softlock for this segment.
5046 			 */
5047 			ASSERT(svd->softlockcnt == 0);
5048 			hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5049 			    HAT_REGION_TEXT);
5050 			svd->rcookie = HAT_INVALID_REGION_COOKIE;
5051 		}
5052 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5053 		goto top;
5054 	}
5055 
5056 	/*
5057 	 * We can't allow the long term use of softlocks for vmpss segments,
5058 	 * because in some file truncation cases we should be able to demote
5059 	 * the segment, which requires that there are no softlocks.  The
5060 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5061 	 * segment is S_READ_NOCOW, where the caller holds the address space
5062 	 * locked as writer and calls softunlock before dropping the as lock.
5063 	 * S_READ_NOCOW is used by /proc to read memory from another user.
5064 	 *
5065 	 * Another deadlock between SOFTLOCK and file truncation can happen
5066 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
5067 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5068 	 * can cause a deadlock because the first set of page_t's remain
5069 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
5070 	 * SOFTLOCK if they have a length greater than the segment's
5071 	 * page size.
5072 	 *
5073 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5074 	 * the access type is S_READ_NOCOW and the fault length is less than
5075 	 * or equal to the segment's page size. While this is quite restrictive,
5076 	 * it should be the most common case of SOFTLOCK against a vmpss
5077 	 * segment.
5078 	 *
5079 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5080 	 * caller makes sure no COW will be caused by another thread for a
5081 	 * softlocked page.
5082 	 */
5083 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5084 		int demote = 0;
5085 
5086 		if (rw != S_READ_NOCOW) {
5087 			demote = 1;
5088 		}
5089 		if (!demote && len > PAGESIZE) {
5090 			pgsz = page_get_pagesize(seg->s_szc);
5091 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5092 			    lpgeaddr);
5093 			if (lpgeaddr - lpgaddr > pgsz) {
5094 				demote = 1;
5095 			}
5096 		}
5097 
5098 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5099 
5100 		if (demote) {
5101 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5102 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5103 			if (seg->s_szc != 0) {
5104 				segvn_vmpss_clrszc_cnt++;
5105 				ASSERT(svd->softlockcnt == 0);
5106 				err = segvn_clrszc(seg);
5107 				if (err) {
5108 					segvn_vmpss_clrszc_err++;
5109 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5110 					return (FC_MAKE_ERR(err));
5111 				}
5112 			}
5113 			ASSERT(seg->s_szc == 0);
5114 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5115 			goto top;
5116 		}
5117 	}
5118 
5119 	/*
5120 	 * Check to see if we need to allocate an anon_map structure.
5121 	 */
5122 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5123 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5124 		/*
5125 		 * Drop the "read" lock on the segment and acquire
5126 		 * the "write" version since we have to allocate the
5127 		 * anon_map.
5128 		 */
5129 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5130 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5131 
5132 		if (svd->amp == NULL) {
5133 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5134 			svd->amp->a_szc = seg->s_szc;
5135 		}
5136 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5137 
5138 		/*
5139 		 * Start all over again since segment protections
5140 		 * may have changed after we dropped the "read" lock.
5141 		 */
5142 		goto top;
5143 	}
5144 
5145 	/*
5146 	 * S_READ_NOCOW vs S_READ distinction was
5147 	 * only needed for the code above. After
5148 	 * that we treat it as S_READ.
5149 	 */
5150 	if (rw == S_READ_NOCOW) {
5151 		ASSERT(type == F_SOFTLOCK);
5152 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5153 		rw = S_READ;
5154 	}
5155 
5156 	amp = svd->amp;
5157 
5158 	/*
5159 	 * MADV_SEQUENTIAL work is ignored for large page segments.
5160 	 */
5161 	if (seg->s_szc != 0) {
5162 		pgsz = page_get_pagesize(seg->s_szc);
5163 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5164 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5165 		if (svd->vp == NULL) {
5166 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
5167 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5168 		} else {
5169 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5170 				lpgeaddr, type, rw, addr, addr + len, brkcow);
5171 			if (err == IE_RETRY) {
5172 				ASSERT(seg->s_szc == 0);
5173 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5174 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5175 				goto top;
5176 			}
5177 		}
5178 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5179 		return (err);
5180 	}
5181 
5182 	page = seg_page(seg, addr);
5183 	if (amp != NULL) {
5184 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5185 		anon_index = svd->anon_index + page;
5186 
5187 		if (type == F_PROT && rw == S_READ &&
5188 		    svd->tr_state == SEGVN_TR_OFF &&
5189 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5190 			size_t index = anon_index;
5191 			struct anon *ap;
5192 
5193 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5194 			/*
5195 			 * The fast path could apply to S_WRITE also, except
5196 			 * that the protection fault could be caused by lazy
5197 			 * tlb flush when ro->rw. In this case, the pte is
5198 			 * RW already. But RO in the other cpu's tlb causes
5199 			 * the fault. Since hat_chgprot won't do anything if
5200 			 * pte doesn't change, we may end up faulting
5201 			 * indefinitely until the RO tlb entry gets replaced.
5202 			 */
5203 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5204 				anon_array_enter(amp, index, &cookie);
5205 				ap = anon_get_ptr(amp->ahp, index);
5206 				anon_array_exit(&cookie);
5207 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
5208 					ANON_LOCK_EXIT(&amp->a_rwlock);
5209 					goto slow;
5210 				}
5211 			}
5212 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5213 			ANON_LOCK_EXIT(&amp->a_rwlock);
5214 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5215 			return (0);
5216 		}
5217 	}
5218 slow:
5219 
5220 	if (svd->vpage == NULL)
5221 		vpage = NULL;
5222 	else
5223 		vpage = &svd->vpage[page];
5224 
5225 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
5226 
5227 	/*
5228 	 * If MADV_SEQUENTIAL has been set for the particular page we
5229 	 * are faulting on, free behind all pages in the segment and put
5230 	 * them on the free list.
5231 	 */
5232 
5233 	if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5234 		struct vpage *vpp;
5235 		ulong_t fanon_index;
5236 		size_t fpage;
5237 		u_offset_t pgoff, fpgoff;
5238 		struct vnode *fvp;
5239 		struct anon *fap = NULL;
5240 
5241 		if (svd->advice == MADV_SEQUENTIAL ||
5242 		    (svd->pageadvice &&
5243 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5244 			pgoff = off - PAGESIZE;
5245 			fpage = page - 1;
5246 			if (vpage != NULL)
5247 				vpp = &svd->vpage[fpage];
5248 			if (amp != NULL)
5249 				fanon_index = svd->anon_index + fpage;
5250 
5251 			while (pgoff > svd->offset) {
5252 				if (svd->advice != MADV_SEQUENTIAL &&
5253 				    (!svd->pageadvice || (vpage &&
5254 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5255 					break;
5256 
5257 				/*
5258 				 * If this is an anon page, we must find the
5259 				 * correct <vp, offset> for it
5260 				 */
5261 				fap = NULL;
5262 				if (amp != NULL) {
5263 					ANON_LOCK_ENTER(&amp->a_rwlock,
5264 						RW_READER);
5265 					anon_array_enter(amp, fanon_index,
5266 						&cookie);
5267 					fap = anon_get_ptr(amp->ahp,
5268 					    fanon_index);
5269 					if (fap != NULL) {
5270 						swap_xlate(fap, &fvp, &fpgoff);
5271 					} else {
5272 						fpgoff = pgoff;
5273 						fvp = svd->vp;
5274 					}
5275 					anon_array_exit(&cookie);
5276 					ANON_LOCK_EXIT(&amp->a_rwlock);
5277 				} else {
5278 					fpgoff = pgoff;
5279 					fvp = svd->vp;
5280 				}
5281 				if (fvp == NULL)
5282 					break;	/* XXX */
5283 				/*
5284 				 * Skip pages that are free or have an
5285 				 * "exclusive" lock.
5286 				 */
5287 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5288 				if (pp == NULL)
5289 					break;
5290 				/*
5291 				 * We don't need the page_struct_lock to test
5292 				 * as this is only advisory; even if we
5293 				 * acquire it someone might race in and lock
5294 				 * the page after we unlock and before the
5295 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5296 				 */
5297 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5298 					/*
5299 					 * Hold the vnode before releasing
5300 					 * the page lock to prevent it from
5301 					 * being freed and re-used by some
5302 					 * other thread.
5303 					 */
5304 					VN_HOLD(fvp);
5305 					page_unlock(pp);
5306 					/*
5307 					 * We should build a page list
5308 					 * to kluster putpages XXX
5309 					 */
5310 					(void) VOP_PUTPAGE(fvp,
5311 					    (offset_t)fpgoff, PAGESIZE,
5312 					    (B_DONTNEED|B_FREE|B_ASYNC),
5313 					    svd->cred);
5314 					VN_RELE(fvp);
5315 				} else {
5316 					/*
5317 					 * XXX - Should the loop terminate if
5318 					 * the page is `locked'?
5319 					 */
5320 					page_unlock(pp);
5321 				}
5322 				--vpp;
5323 				--fanon_index;
5324 				pgoff -= PAGESIZE;
5325 			}
5326 		}
5327 	}
5328 
5329 	plp = pl;
5330 	*plp = NULL;
5331 	pl_alloc_sz = 0;
5332 
5333 	/*
5334 	 * See if we need to call VOP_GETPAGE for
5335 	 * *any* of the range being faulted on.
5336 	 * We can skip all of this work if there
5337 	 * was no original vnode.
5338 	 */
5339 	if (svd->vp != NULL) {
5340 		u_offset_t vp_off;
5341 		size_t vp_len;
5342 		struct anon *ap;
5343 		vnode_t *vp;
5344 
5345 		vp_off = off;
5346 		vp_len = len;
5347 
5348 		if (amp == NULL)
5349 			dogetpage = 1;
5350 		else {
5351 			/*
5352 			 * Only acquire reader lock to prevent amp->ahp
5353 			 * from being changed.  It's ok to miss pages,
5354 			 * hence we don't do anon_array_enter
5355 			 */
5356 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5357 			ap = anon_get_ptr(amp->ahp, anon_index);
5358 
5359 			if (len <= PAGESIZE)
5360 				/* inline non_anon() */
5361 				dogetpage = (ap == NULL);
5362 			else
5363 				dogetpage = non_anon(amp->ahp, anon_index,
5364 				    &vp_off, &vp_len);
5365 			ANON_LOCK_EXIT(&amp->a_rwlock);
5366 		}
5367 
5368 		if (dogetpage) {
5369 			enum seg_rw arw;
5370 			struct as *as = seg->s_as;
5371 
5372 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5373 				/*
5374 				 * Page list won't fit in local array,
5375 				 * allocate one of the needed size.
5376 				 */
5377 				pl_alloc_sz =
5378 				    (btop(len) + 1) * sizeof (page_t *);
5379 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5380 				plp[0] = NULL;
5381 				plsz = len;
5382 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5383 			    svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5384 			    (((size_t)(addr + PAGESIZE) <
5385 			    (size_t)(seg->s_base + seg->s_size)) &&
5386 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
5387 				/*
5388 				 * Ask VOP_GETPAGE to return the exact number
5389 				 * of pages if
5390 				 * (a) this is a COW fault, or
5391 				 * (b) this is a software fault, or
5392 				 * (c) next page is already mapped.
5393 				 */
5394 				plsz = len;
5395 			} else {
5396 				/*
5397 				 * Ask VOP_GETPAGE to return adjacent pages
5398 				 * within the segment.
5399 				 */
5400 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5401 					((seg->s_base + seg->s_size) - addr));
5402 				ASSERT((addr + plsz) <=
5403 				    (seg->s_base + seg->s_size));
5404 			}
5405 
5406 			/*
5407 			 * Need to get some non-anonymous pages.
5408 			 * We need to make only one call to GETPAGE to do
5409 			 * this to prevent certain deadlocking conditions
5410 			 * when we are doing locking.  In this case
5411 			 * non_anon() should have picked up the smallest
5412 			 * range which includes all the non-anonymous
5413 			 * pages in the requested range.  We have to
5414 			 * be careful regarding which rw flag to pass in
5415 			 * because on a private mapping, the underlying
5416 			 * object is never allowed to be written.
5417 			 */
5418 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5419 				arw = S_READ;
5420 			} else {
5421 				arw = rw;
5422 			}
5423 			vp = svd->vp;
5424 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5425 				"segvn_getpage:seg %p addr %p vp %p",
5426 				seg, addr, vp);
5427 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5428 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5429 			    svd->cred);
5430 			if (err) {
5431 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5432 				segvn_pagelist_rele(plp);
5433 				if (pl_alloc_sz)
5434 					kmem_free(plp, pl_alloc_sz);
5435 				return (FC_MAKE_ERR(err));
5436 			}
5437 			if (svd->type == MAP_PRIVATE)
5438 				vpprot &= ~PROT_WRITE;
5439 		}
5440 	}
5441 
5442 	/*
5443 	 * N.B. at this time the plp array has all the needed non-anon
5444 	 * pages in addition to (possibly) having some adjacent pages.
5445 	 */
5446 
5447 	/*
5448 	 * Always acquire the anon_array_lock to prevent
5449 	 * 2 threads from allocating separate anon slots for
5450 	 * the same "addr".
5451 	 *
5452 	 * If this is a copy-on-write fault and we don't already
5453 	 * have the anon_array_lock, acquire it to prevent the
5454 	 * fault routine from handling multiple copy-on-write faults
5455 	 * on the same "addr" in the same address space.
5456 	 *
5457 	 * Only one thread should deal with the fault since after
5458 	 * it is handled, the other threads can acquire a translation
5459 	 * to the newly created private page.  This prevents two or
5460 	 * more threads from creating different private pages for the
5461 	 * same fault.
5462 	 *
5463 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5464 	 * to prevent deadlock between this thread and another thread
5465 	 * which has soft-locked this page and wants to acquire serial_lock.
5466 	 * ( bug 4026339 )
5467 	 *
5468 	 * The fix for bug 4026339 becomes unnecessary when using the
5469 	 * locking scheme with per amp rwlock and a global set of hash
5470 	 * lock, anon_array_lock.  If we steal a vnode page when low
5471 	 * on memory and upgrad the page lock through page_rename,
5472 	 * then the page is PAGE_HANDLED, nothing needs to be done
5473 	 * for this page after returning from segvn_faultpage.
5474 	 *
5475 	 * But really, the page lock should be downgraded after
5476 	 * the stolen page is page_rename'd.
5477 	 */
5478 
5479 	if (amp != NULL)
5480 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5481 
5482 	/*
5483 	 * Ok, now loop over the address range and handle faults
5484 	 */
5485 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5486 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5487 		    type, rw, brkcow, a == addr);
5488 		if (err) {
5489 			if (amp != NULL)
5490 				ANON_LOCK_EXIT(&amp->a_rwlock);
5491 			if (type == F_SOFTLOCK && a > addr) {
5492 				segvn_softunlock(seg, addr, (a - addr),
5493 				    S_OTHER);
5494 			}
5495 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5496 			segvn_pagelist_rele(plp);
5497 			if (pl_alloc_sz)
5498 				kmem_free(plp, pl_alloc_sz);
5499 			return (err);
5500 		}
5501 		if (vpage) {
5502 			vpage++;
5503 		} else if (svd->vpage) {
5504 			page = seg_page(seg, addr);
5505 			vpage = &svd->vpage[++page];
5506 		}
5507 	}
5508 
5509 	/* Didn't get pages from the underlying fs so we're done */
5510 	if (!dogetpage)
5511 		goto done;
5512 
5513 	/*
5514 	 * Now handle any other pages in the list returned.
5515 	 * If the page can be used, load up the translations now.
5516 	 * Note that the for loop will only be entered if "plp"
5517 	 * is pointing to a non-NULL page pointer which means that
5518 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5519 	 */
5520 	if (svd->pageprot == 0)
5521 		prot = svd->prot & vpprot;
5522 
5523 
5524 	/*
5525 	 * Large Files: diff should be unsigned value because we started
5526 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5527 	 * large file of size > 2GB gets mapped to address space
5528 	 * the diff value can be > 2GB.
5529 	 */
5530 
5531 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5532 		size_t diff;
5533 		struct anon *ap;
5534 		int anon_index;
5535 		anon_sync_obj_t cookie;
5536 		int hat_flag = HAT_LOAD_ADV;
5537 
5538 		if (svd->flags & MAP_TEXT) {
5539 			hat_flag |= HAT_LOAD_TEXT;
5540 		}
5541 
5542 		if (pp == PAGE_HANDLED)
5543 			continue;
5544 
5545 		if (svd->tr_state != SEGVN_TR_ON &&
5546 		    pp->p_offset >=  svd->offset &&
5547 		    pp->p_offset < svd->offset + seg->s_size) {
5548 
5549 			diff = pp->p_offset - svd->offset;
5550 
5551 			/*
5552 			 * Large Files: Following is the assertion
5553 			 * validating the above cast.
5554 			 */
5555 			ASSERT(svd->vp == pp->p_vnode);
5556 
5557 			page = btop(diff);
5558 			if (svd->pageprot)
5559 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5560 
5561 			/*
5562 			 * Prevent other threads in the address space from
5563 			 * creating private pages (i.e., allocating anon slots)
5564 			 * while we are in the process of loading translations
5565 			 * to additional pages returned by the underlying
5566 			 * object.
5567 			 */
5568 			if (amp != NULL) {
5569 				anon_index = svd->anon_index + page;
5570 				anon_array_enter(amp, anon_index, &cookie);
5571 				ap = anon_get_ptr(amp->ahp, anon_index);
5572 			}
5573 			if ((amp == NULL) || (ap == NULL)) {
5574 				if (IS_VMODSORT(pp->p_vnode) ||
5575 				    enable_mbit_wa) {
5576 					if (rw == S_WRITE)
5577 						hat_setmod(pp);
5578 					else if (rw != S_OTHER &&
5579 					    !hat_ismod(pp))
5580 						prot &= ~PROT_WRITE;
5581 				}
5582 				/*
5583 				 * Skip mapping read ahead pages marked
5584 				 * for migration, so they will get migrated
5585 				 * properly on fault
5586 				 */
5587 				ASSERT(amp == NULL ||
5588 				    svd->rcookie == HAT_INVALID_REGION_COOKIE);
5589 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5590 					hat_memload_region(hat,
5591 					    seg->s_base + diff,
5592 					    pp, prot, hat_flag,
5593 					    svd->rcookie);
5594 				}
5595 			}
5596 			if (amp != NULL)
5597 				anon_array_exit(&cookie);
5598 		}
5599 		page_unlock(pp);
5600 	}
5601 done:
5602 	if (amp != NULL)
5603 		ANON_LOCK_EXIT(&amp->a_rwlock);
5604 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5605 	if (pl_alloc_sz)
5606 		kmem_free(plp, pl_alloc_sz);
5607 	return (0);
5608 }
5609 
5610 /*
5611  * This routine is used to start I/O on pages asynchronously.  XXX it will
5612  * only create PAGESIZE pages. At fault time they will be relocated into
5613  * larger pages.
5614  */
5615 static faultcode_t
5616 segvn_faulta(struct seg *seg, caddr_t addr)
5617 {
5618 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5619 	int err;
5620 	struct anon_map *amp;
5621 	vnode_t *vp;
5622 
5623 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5624 
5625 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5626 	if ((amp = svd->amp) != NULL) {
5627 		struct anon *ap;
5628 
5629 		/*
5630 		 * Reader lock to prevent amp->ahp from being changed.
5631 		 * This is advisory, it's ok to miss a page, so
5632 		 * we don't do anon_array_enter lock.
5633 		 */
5634 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5635 		if ((ap = anon_get_ptr(amp->ahp,
5636 			svd->anon_index + seg_page(seg, addr))) != NULL) {
5637 
5638 			err = anon_getpage(&ap, NULL, NULL,
5639 			    0, seg, addr, S_READ, svd->cred);
5640 
5641 			ANON_LOCK_EXIT(&amp->a_rwlock);
5642 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5643 			if (err)
5644 				return (FC_MAKE_ERR(err));
5645 			return (0);
5646 		}
5647 		ANON_LOCK_EXIT(&amp->a_rwlock);
5648 	}
5649 
5650 	if (svd->vp == NULL) {
5651 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5652 		return (0);			/* zfod page - do nothing now */
5653 	}
5654 
5655 	vp = svd->vp;
5656 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5657 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5658 	err = VOP_GETPAGE(vp,
5659 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5660 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5661 	    S_OTHER, svd->cred);
5662 
5663 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5664 	if (err)
5665 		return (FC_MAKE_ERR(err));
5666 	return (0);
5667 }
5668 
5669 static int
5670 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5671 {
5672 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5673 	struct vpage *svp, *evp;
5674 	struct vnode *vp;
5675 	size_t pgsz;
5676 	pgcnt_t pgcnt;
5677 	anon_sync_obj_t cookie;
5678 	int unload_done = 0;
5679 
5680 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5681 
5682 	if ((svd->maxprot & prot) != prot)
5683 		return (EACCES);			/* violated maxprot */
5684 
5685 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5686 
5687 	/* return if prot is the same */
5688 	if (!svd->pageprot && svd->prot == prot) {
5689 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5690 		return (0);
5691 	}
5692 
5693 	/*
5694 	 * Since we change protections we first have to flush the cache.
5695 	 * This makes sure all the pagelock calls have to recheck
5696 	 * protections.
5697 	 */
5698 	if (svd->softlockcnt > 0) {
5699 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5700 		/*
5701 		 * Since we do have the segvn writers lock nobody can fill
5702 		 * the cache with entries belonging to this seg during
5703 		 * the purge. The flush either succeeds or we still have
5704 		 * pending I/Os.
5705 		 */
5706 		segvn_purge(seg);
5707 		if (svd->softlockcnt > 0) {
5708 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5709 			return (EAGAIN);
5710 		}
5711 	}
5712 
5713 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5714 		ASSERT(svd->amp == NULL);
5715 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5716 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5717 		    HAT_REGION_TEXT);
5718 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
5719 		unload_done = 1;
5720 	} else if (svd->tr_state == SEGVN_TR_INIT) {
5721 		svd->tr_state = SEGVN_TR_OFF;
5722 	} else if (svd->tr_state == SEGVN_TR_ON) {
5723 		ASSERT(svd->amp != NULL);
5724 		segvn_textunrepl(seg, 0);
5725 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5726 		unload_done = 1;
5727 	}
5728 
5729 	if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5730 	    svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5731 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5732 		segvn_inval_trcache(svd->vp);
5733 	}
5734 	if (seg->s_szc != 0) {
5735 		int err;
5736 		pgsz = page_get_pagesize(seg->s_szc);
5737 		pgcnt = pgsz >> PAGESHIFT;
5738 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5739 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5740 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5741 			ASSERT(seg->s_base != addr || seg->s_size != len);
5742 			/*
5743 			 * If we are holding the as lock as a reader then
5744 			 * we need to return IE_RETRY and let the as
5745 			 * layer drop and re-aquire the lock as a writer.
5746 			 */
5747 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5748 				return (IE_RETRY);
5749 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5750 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5751 				err = segvn_demote_range(seg, addr, len,
5752 				    SDR_END, 0);
5753 			} else {
5754 				uint_t szcvec = map_pgszcvec(seg->s_base,
5755 				    pgsz, (uintptr_t)seg->s_base,
5756 				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5757 				err = segvn_demote_range(seg, addr, len,
5758 				    SDR_END, szcvec);
5759 			}
5760 			if (err == 0)
5761 				return (IE_RETRY);
5762 			if (err == ENOMEM)
5763 				return (IE_NOMEM);
5764 			return (err);
5765 		}
5766 	}
5767 
5768 
5769 	/*
5770 	 * If it's a private mapping and we're making it writable
5771 	 * and no swap space has been reserved, have to reserve
5772 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
5773 	 * and we're removing write permission on the entire segment and
5774 	 * we haven't modified any pages, we can release the swap space.
5775 	 */
5776 	if (svd->type == MAP_PRIVATE) {
5777 		if (prot & PROT_WRITE) {
5778 			size_t sz;
5779 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
5780 				if (anon_resv_zone(seg->s_size,
5781 				    seg->s_as->a_proc->p_zone) == 0) {
5782 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5783 					return (IE_NOMEM);
5784 				}
5785 				sz = svd->swresv = seg->s_size;
5786 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5787 					"anon proc:%p %lu %u",
5788 					seg, sz, 1);
5789 			}
5790 		} else {
5791 			/*
5792 			 * Swap space is released only if this segment
5793 			 * does not map anonymous memory, since read faults
5794 			 * on such segments still need an anon slot to read
5795 			 * in the data.
5796 			 */
5797 			if (svd->swresv != 0 && svd->vp != NULL &&
5798 			    svd->amp == NULL && addr == seg->s_base &&
5799 			    len == seg->s_size && svd->pageprot == 0) {
5800 				anon_unresv_zone(svd->swresv,
5801 				    seg->s_as->a_proc->p_zone);
5802 				svd->swresv = 0;
5803 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5804 					"anon proc:%p %lu %u",
5805 					seg, 0, 0);
5806 			}
5807 		}
5808 	}
5809 
5810 	if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5811 		if (svd->prot == prot) {
5812 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5813 			return (0);			/* all done */
5814 		}
5815 		svd->prot = (uchar_t)prot;
5816 	} else if (svd->type == MAP_PRIVATE) {
5817 		struct anon *ap = NULL;
5818 		page_t *pp;
5819 		u_offset_t offset, off;
5820 		struct anon_map *amp;
5821 		ulong_t anon_idx = 0;
5822 
5823 		/*
5824 		 * A vpage structure exists or else the change does not
5825 		 * involve the entire segment.  Establish a vpage structure
5826 		 * if none is there.  Then, for each page in the range,
5827 		 * adjust its individual permissions.  Note that write-
5828 		 * enabling a MAP_PRIVATE page can affect the claims for
5829 		 * locked down memory.  Overcommitting memory terminates
5830 		 * the operation.
5831 		 */
5832 		segvn_vpage(seg);
5833 		svd->pageprot = 1;
5834 		if ((amp = svd->amp) != NULL) {
5835 			anon_idx = svd->anon_index + seg_page(seg, addr);
5836 			ASSERT(seg->s_szc == 0 ||
5837 			    IS_P2ALIGNED(anon_idx, pgcnt));
5838 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5839 		}
5840 
5841 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5842 		evp = &svd->vpage[seg_page(seg, addr + len)];
5843 
5844 		/*
5845 		 * See Statement at the beginning of segvn_lockop regarding
5846 		 * the way cowcnts and lckcnts are handled.
5847 		 */
5848 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5849 
5850 			if (seg->s_szc != 0) {
5851 				if (amp != NULL) {
5852 					anon_array_enter(amp, anon_idx,
5853 					    &cookie);
5854 				}
5855 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5856 				    !segvn_claim_pages(seg, svp, offset,
5857 					anon_idx, prot)) {
5858 					if (amp != NULL) {
5859 						anon_array_exit(&cookie);
5860 					}
5861 					break;
5862 				}
5863 				if (amp != NULL) {
5864 					anon_array_exit(&cookie);
5865 				}
5866 				anon_idx++;
5867 			} else {
5868 				if (amp != NULL) {
5869 					anon_array_enter(amp, anon_idx,
5870 						&cookie);
5871 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5872 				}
5873 
5874 				if (VPP_ISPPLOCK(svp) &&
5875 				    VPP_PROT(svp) != prot) {
5876 
5877 					if (amp == NULL || ap == NULL) {
5878 						vp = svd->vp;
5879 						off = offset;
5880 					} else
5881 						swap_xlate(ap, &vp, &off);
5882 					if (amp != NULL)
5883 						anon_array_exit(&cookie);
5884 
5885 					if ((pp = page_lookup(vp, off,
5886 					    SE_SHARED)) == NULL) {
5887 						panic("segvn_setprot: no page");
5888 						/*NOTREACHED*/
5889 					}
5890 					ASSERT(seg->s_szc == 0);
5891 					if ((VPP_PROT(svp) ^ prot) &
5892 					    PROT_WRITE) {
5893 						if (prot & PROT_WRITE) {
5894 						    if (!page_addclaim(pp)) {
5895 							page_unlock(pp);
5896 							break;
5897 						    }
5898 						} else {
5899 						    if (!page_subclaim(pp)) {
5900 							page_unlock(pp);
5901 							break;
5902 						    }
5903 						}
5904 					}
5905 					page_unlock(pp);
5906 				} else if (amp != NULL)
5907 					anon_array_exit(&cookie);
5908 			}
5909 			VPP_SETPROT(svp, prot);
5910 			offset += PAGESIZE;
5911 		}
5912 		if (amp != NULL)
5913 			ANON_LOCK_EXIT(&amp->a_rwlock);
5914 
5915 		/*
5916 		 * Did we terminate prematurely?  If so, simply unload
5917 		 * the translations to the things we've updated so far.
5918 		 */
5919 		if (svp != evp) {
5920 			if (unload_done) {
5921 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5922 				return (IE_NOMEM);
5923 			}
5924 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5925 			    PAGESIZE;
5926 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5927 			if (len != 0)
5928 				hat_unload(seg->s_as->a_hat, addr,
5929 				    len, HAT_UNLOAD);
5930 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5931 			return (IE_NOMEM);
5932 		}
5933 	} else {
5934 		segvn_vpage(seg);
5935 		svd->pageprot = 1;
5936 		evp = &svd->vpage[seg_page(seg, addr + len)];
5937 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5938 			VPP_SETPROT(svp, prot);
5939 		}
5940 	}
5941 
5942 	if (unload_done) {
5943 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5944 		return (0);
5945 	}
5946 
5947 	if (((prot & PROT_WRITE) != 0 &&
5948 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5949 	    (prot & ~PROT_USER) == PROT_NONE) {
5950 		/*
5951 		 * Either private or shared data with write access (in
5952 		 * which case we need to throw out all former translations
5953 		 * so that we get the right translations set up on fault
5954 		 * and we don't allow write access to any copy-on-write pages
5955 		 * that might be around or to prevent write access to pages
5956 		 * representing holes in a file), or we don't have permission
5957 		 * to access the memory at all (in which case we have to
5958 		 * unload any current translations that might exist).
5959 		 */
5960 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5961 	} else {
5962 		/*
5963 		 * A shared mapping or a private mapping in which write
5964 		 * protection is going to be denied - just change all the
5965 		 * protections over the range of addresses in question.
5966 		 * segvn does not support any other attributes other
5967 		 * than prot so we can use hat_chgattr.
5968 		 */
5969 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5970 	}
5971 
5972 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5973 
5974 	return (0);
5975 }
5976 
5977 /*
5978  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5979  * to determine if the seg is capable of mapping the requested szc.
5980  */
5981 static int
5982 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5983 {
5984 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5985 	struct segvn_data *nsvd;
5986 	struct anon_map *amp = svd->amp;
5987 	struct seg *nseg;
5988 	caddr_t eaddr = addr + len, a;
5989 	size_t pgsz = page_get_pagesize(szc);
5990 	pgcnt_t pgcnt = page_get_pagecnt(szc);
5991 	int err;
5992 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5993 	extern struct vnode kvp;
5994 
5995 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5996 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5997 
5998 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5999 		return (0);
6000 	}
6001 
6002 	/*
6003 	 * addr should always be pgsz aligned but eaddr may be misaligned if
6004 	 * it's at the end of the segment.
6005 	 *
6006 	 * XXX we should assert this condition since as_setpagesize() logic
6007 	 * guarantees it.
6008 	 */
6009 	if (!IS_P2ALIGNED(addr, pgsz) ||
6010 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
6011 		eaddr != seg->s_base + seg->s_size)) {
6012 
6013 		segvn_setpgsz_align_err++;
6014 		return (EINVAL);
6015 	}
6016 
6017 	if (amp != NULL && svd->type == MAP_SHARED) {
6018 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6019 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6020 
6021 			segvn_setpgsz_anon_align_err++;
6022 			return (EINVAL);
6023 		}
6024 	}
6025 
6026 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6027 	    szc > segvn_maxpgszc) {
6028 		return (EINVAL);
6029 	}
6030 
6031 	/* paranoid check */
6032 	if (svd->vp != NULL &&
6033 	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6034 		    return (EINVAL);
6035 	}
6036 
6037 	if (seg->s_szc == 0 && svd->vp != NULL &&
6038 	    map_addr_vacalign_check(addr, off)) {
6039 		return (EINVAL);
6040 	}
6041 
6042 	/*
6043 	 * Check that protections are the same within new page
6044 	 * size boundaries.
6045 	 */
6046 	if (svd->pageprot) {
6047 		for (a = addr; a < eaddr; a += pgsz) {
6048 			if ((a + pgsz) > eaddr) {
6049 				if (!sameprot(seg, a, eaddr - a)) {
6050 					return (EINVAL);
6051 				}
6052 			} else {
6053 				if (!sameprot(seg, a, pgsz)) {
6054 					return (EINVAL);
6055 				}
6056 			}
6057 		}
6058 	}
6059 
6060 	/*
6061 	 * Since we are changing page size we first have to flush
6062 	 * the cache. This makes sure all the pagelock calls have
6063 	 * to recheck protections.
6064 	 */
6065 	if (svd->softlockcnt > 0) {
6066 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6067 		/*
6068 		 * Since we do have the segvn writers lock nobody can fill
6069 		 * the cache with entries belonging to this seg during
6070 		 * the purge. The flush either succeeds or we still have
6071 		 * pending I/Os.
6072 		 */
6073 		segvn_purge(seg);
6074 		if (svd->softlockcnt > 0) {
6075 			return (EAGAIN);
6076 		}
6077 	}
6078 
6079 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6080 		ASSERT(svd->amp == NULL);
6081 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6082 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6083 		    HAT_REGION_TEXT);
6084 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6085 	} else if (svd->tr_state == SEGVN_TR_INIT) {
6086 		svd->tr_state = SEGVN_TR_OFF;
6087 	} else if (svd->tr_state == SEGVN_TR_ON) {
6088 		ASSERT(svd->amp != NULL);
6089 		segvn_textunrepl(seg, 1);
6090 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6091 		amp = NULL;
6092 	}
6093 
6094 	/*
6095 	 * Operation for sub range of existing segment.
6096 	 */
6097 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6098 		if (szc < seg->s_szc) {
6099 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
6100 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6101 			if (err == 0) {
6102 				return (IE_RETRY);
6103 			}
6104 			if (err == ENOMEM) {
6105 				return (IE_NOMEM);
6106 			}
6107 			return (err);
6108 		}
6109 		if (addr != seg->s_base) {
6110 			nseg = segvn_split_seg(seg, addr);
6111 			if (eaddr != (nseg->s_base + nseg->s_size)) {
6112 				/* eaddr is szc aligned */
6113 				(void) segvn_split_seg(nseg, eaddr);
6114 			}
6115 			return (IE_RETRY);
6116 		}
6117 		if (eaddr != (seg->s_base + seg->s_size)) {
6118 			/* eaddr is szc aligned */
6119 			(void) segvn_split_seg(seg, eaddr);
6120 		}
6121 		return (IE_RETRY);
6122 	}
6123 
6124 	/*
6125 	 * Break any low level sharing and reset seg->s_szc to 0.
6126 	 */
6127 	if ((err = segvn_clrszc(seg)) != 0) {
6128 		if (err == ENOMEM) {
6129 			err = IE_NOMEM;
6130 		}
6131 		return (err);
6132 	}
6133 	ASSERT(seg->s_szc == 0);
6134 
6135 	/*
6136 	 * If the end of the current segment is not pgsz aligned
6137 	 * then attempt to concatenate with the next segment.
6138 	 */
6139 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
6140 		nseg = AS_SEGNEXT(seg->s_as, seg);
6141 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6142 			return (ENOMEM);
6143 		}
6144 		if (nseg->s_ops != &segvn_ops) {
6145 			return (EINVAL);
6146 		}
6147 		nsvd = (struct segvn_data *)nseg->s_data;
6148 		if (nsvd->softlockcnt > 0) {
6149 			segvn_purge(nseg);
6150 			if (nsvd->softlockcnt > 0) {
6151 				return (EAGAIN);
6152 			}
6153 		}
6154 		err = segvn_clrszc(nseg);
6155 		if (err == ENOMEM) {
6156 			err = IE_NOMEM;
6157 		}
6158 		if (err != 0) {
6159 			return (err);
6160 		}
6161 		ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6162 		err = segvn_concat(seg, nseg, 1);
6163 		if (err == -1) {
6164 			return (EINVAL);
6165 		}
6166 		if (err == -2) {
6167 			return (IE_NOMEM);
6168 		}
6169 		return (IE_RETRY);
6170 	}
6171 
6172 	/*
6173 	 * May need to re-align anon array to
6174 	 * new szc.
6175 	 */
6176 	if (amp != NULL) {
6177 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6178 			struct anon_hdr *nahp;
6179 
6180 			ASSERT(svd->type == MAP_PRIVATE);
6181 
6182 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6183 			ASSERT(amp->refcnt == 1);
6184 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6185 			if (nahp == NULL) {
6186 				ANON_LOCK_EXIT(&amp->a_rwlock);
6187 				return (IE_NOMEM);
6188 			}
6189 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
6190 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6191 				anon_release(nahp, btop(amp->size));
6192 				ANON_LOCK_EXIT(&amp->a_rwlock);
6193 				return (IE_NOMEM);
6194 			}
6195 			anon_release(amp->ahp, btop(amp->size));
6196 			amp->ahp = nahp;
6197 			svd->anon_index = 0;
6198 			ANON_LOCK_EXIT(&amp->a_rwlock);
6199 		}
6200 	}
6201 	if (svd->vp != NULL && szc != 0) {
6202 		struct vattr va;
6203 		u_offset_t eoffpage = svd->offset;
6204 		va.va_mask = AT_SIZE;
6205 		eoffpage += seg->s_size;
6206 		eoffpage = btopr(eoffpage);
6207 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
6208 			segvn_setpgsz_getattr_err++;
6209 			return (EINVAL);
6210 		}
6211 		if (btopr(va.va_size) < eoffpage) {
6212 			segvn_setpgsz_eof_err++;
6213 			return (EINVAL);
6214 		}
6215 		if (amp != NULL) {
6216 			/*
6217 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
6218 			 * don't take anon map lock here to avoid holding it
6219 			 * across VOP_GETPAGE() calls that may call back into
6220 			 * segvn for klsutering checks. We don't really need
6221 			 * anon map lock here since it's a private segment and
6222 			 * we hold as level lock as writers.
6223 			 */
6224 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
6225 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
6226 			    seg->s_size, szc, svd->prot, svd->vpage,
6227 			    svd->cred)) != 0) {
6228 				return (EINVAL);
6229 			}
6230 		}
6231 		segvn_setvnode_mpss(svd->vp);
6232 	}
6233 
6234 	if (amp != NULL) {
6235 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6236 		if (svd->type == MAP_PRIVATE) {
6237 			amp->a_szc = szc;
6238 		} else if (szc > amp->a_szc) {
6239 			amp->a_szc = szc;
6240 		}
6241 		ANON_LOCK_EXIT(&amp->a_rwlock);
6242 	}
6243 
6244 	seg->s_szc = szc;
6245 
6246 	return (0);
6247 }
6248 
6249 static int
6250 segvn_clrszc(struct seg *seg)
6251 {
6252 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6253 	struct anon_map *amp = svd->amp;
6254 	size_t pgsz;
6255 	pgcnt_t pages;
6256 	int err = 0;
6257 	caddr_t a = seg->s_base;
6258 	caddr_t ea = a + seg->s_size;
6259 	ulong_t an_idx = svd->anon_index;
6260 	vnode_t *vp = svd->vp;
6261 	struct vpage *vpage = svd->vpage;
6262 	page_t *anon_pl[1 + 1], *pp;
6263 	struct anon *ap, *oldap;
6264 	uint_t prot = svd->prot, vpprot;
6265 	int pageflag = 0;
6266 
6267 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6268 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6269 	ASSERT(svd->softlockcnt == 0);
6270 
6271 	if (vp == NULL && amp == NULL) {
6272 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6273 		seg->s_szc = 0;
6274 		return (0);
6275 	}
6276 
6277 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6278 		ASSERT(svd->amp == NULL);
6279 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6280 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6281 		    HAT_REGION_TEXT);
6282 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6283 	} else if (svd->tr_state == SEGVN_TR_ON) {
6284 		ASSERT(svd->amp != NULL);
6285 		segvn_textunrepl(seg, 1);
6286 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6287 		amp = NULL;
6288 	} else {
6289 		if (svd->tr_state != SEGVN_TR_OFF) {
6290 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
6291 			svd->tr_state = SEGVN_TR_OFF;
6292 		}
6293 
6294 		/*
6295 		 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6296 		 * unload argument is 0 when we are freeing the segment
6297 		 * and unload was already done.
6298 		 */
6299 		hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6300 		    HAT_UNLOAD_UNMAP);
6301 	}
6302 
6303 	if (amp == NULL || svd->type == MAP_SHARED) {
6304 		seg->s_szc = 0;
6305 		return (0);
6306 	}
6307 
6308 	pgsz = page_get_pagesize(seg->s_szc);
6309 	pages = btop(pgsz);
6310 
6311 	/*
6312 	 * XXX anon rwlock is not really needed because this is a
6313 	 * private segment and we are writers.
6314 	 */
6315 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6316 
6317 	for (; a < ea; a += pgsz, an_idx += pages) {
6318 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6319 			ASSERT(vpage != NULL || svd->pageprot == 0);
6320 			if (vpage != NULL) {
6321 				ASSERT(sameprot(seg, a, pgsz));
6322 				prot = VPP_PROT(vpage);
6323 				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6324 			}
6325 			if (seg->s_szc != 0) {
6326 				ASSERT(vp == NULL || anon_pages(amp->ahp,
6327 				    an_idx, pages) == pages);
6328 				if ((err = anon_map_demotepages(amp, an_idx,
6329 				    seg, a, prot, vpage, svd->cred)) != 0) {
6330 					goto out;
6331 				}
6332 			} else {
6333 				if (oldap->an_refcnt == 1) {
6334 					continue;
6335 				}
6336 				if ((err = anon_getpage(&oldap, &vpprot,
6337 				    anon_pl, PAGESIZE, seg, a, S_READ,
6338 				    svd->cred))) {
6339 					goto out;
6340 				}
6341 				if ((pp = anon_private(&ap, seg, a, prot,
6342 				    anon_pl[0], pageflag, svd->cred)) == NULL) {
6343 					err = ENOMEM;
6344 					goto out;
6345 				}
6346 				anon_decref(oldap);
6347 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
6348 				    ANON_SLEEP);
6349 				page_unlock(pp);
6350 			}
6351 		}
6352 		vpage = (vpage == NULL) ? NULL : vpage + pages;
6353 	}
6354 
6355 	amp->a_szc = 0;
6356 	seg->s_szc = 0;
6357 out:
6358 	ANON_LOCK_EXIT(&amp->a_rwlock);
6359 	return (err);
6360 }
6361 
6362 static int
6363 segvn_claim_pages(
6364 	struct seg *seg,
6365 	struct vpage *svp,
6366 	u_offset_t off,
6367 	ulong_t anon_idx,
6368 	uint_t prot)
6369 {
6370 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
6371 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6372 	page_t	**ppa;
6373 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6374 	struct anon_map *amp = svd->amp;
6375 	struct vpage *evp = svp + pgcnt;
6376 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6377 	    + seg->s_base;
6378 	struct anon *ap;
6379 	struct vnode *vp = svd->vp;
6380 	page_t *pp;
6381 	pgcnt_t pg_idx, i;
6382 	int err = 0;
6383 	anoff_t aoff;
6384 	int anon = (amp != NULL) ? 1 : 0;
6385 
6386 	ASSERT(svd->type == MAP_PRIVATE);
6387 	ASSERT(svd->vpage != NULL);
6388 	ASSERT(seg->s_szc != 0);
6389 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6390 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6391 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6392 
6393 	if (VPP_PROT(svp) == prot)
6394 		return (1);
6395 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6396 		return (1);
6397 
6398 	ppa = kmem_alloc(ppasize, KM_SLEEP);
6399 	if (anon && vp != NULL) {
6400 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6401 			anon = 0;
6402 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6403 		}
6404 		ASSERT(!anon ||
6405 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6406 	}
6407 
6408 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6409 		if (!VPP_ISPPLOCK(svp))
6410 			continue;
6411 		if (anon) {
6412 			ap = anon_get_ptr(amp->ahp, anon_idx);
6413 			if (ap == NULL) {
6414 				panic("segvn_claim_pages: no anon slot");
6415 			}
6416 			swap_xlate(ap, &vp, &aoff);
6417 			off = (u_offset_t)aoff;
6418 		}
6419 		ASSERT(vp != NULL);
6420 		if ((pp = page_lookup(vp,
6421 		    (u_offset_t)off, SE_SHARED)) == NULL) {
6422 			panic("segvn_claim_pages: no page");
6423 		}
6424 		ppa[pg_idx++] = pp;
6425 		off += PAGESIZE;
6426 	}
6427 
6428 	if (ppa[0] == NULL) {
6429 		kmem_free(ppa, ppasize);
6430 		return (1);
6431 	}
6432 
6433 	ASSERT(pg_idx <= pgcnt);
6434 	ppa[pg_idx] = NULL;
6435 
6436 	if (prot & PROT_WRITE)
6437 		err = page_addclaim_pages(ppa);
6438 	else
6439 		err = page_subclaim_pages(ppa);
6440 
6441 	for (i = 0; i < pg_idx; i++) {
6442 		ASSERT(ppa[i] != NULL);
6443 		page_unlock(ppa[i]);
6444 	}
6445 
6446 	kmem_free(ppa, ppasize);
6447 	return (err);
6448 }
6449 
6450 /*
6451  * Returns right (upper address) segment if split occured.
6452  * If the address is equal to the beginning or end of its segment it returns
6453  * the current segment.
6454  */
6455 static struct seg *
6456 segvn_split_seg(struct seg *seg, caddr_t addr)
6457 {
6458 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6459 	struct seg *nseg;
6460 	size_t nsize;
6461 	struct segvn_data *nsvd;
6462 
6463 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6464 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6465 
6466 	ASSERT(addr >= seg->s_base);
6467 	ASSERT(addr <= seg->s_base + seg->s_size);
6468 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6469 
6470 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6471 		return (seg);
6472 
6473 	nsize = seg->s_base + seg->s_size - addr;
6474 	seg->s_size = addr - seg->s_base;
6475 	nseg = seg_alloc(seg->s_as, addr, nsize);
6476 	ASSERT(nseg != NULL);
6477 	nseg->s_ops = seg->s_ops;
6478 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6479 	nseg->s_data = (void *)nsvd;
6480 	nseg->s_szc = seg->s_szc;
6481 	*nsvd = *svd;
6482 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6483 	nsvd->seg = nseg;
6484 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6485 
6486 	if (nsvd->vp != NULL) {
6487 		VN_HOLD(nsvd->vp);
6488 		nsvd->offset = svd->offset +
6489 		    (uintptr_t)(nseg->s_base - seg->s_base);
6490 		if (nsvd->type == MAP_SHARED)
6491 			lgrp_shm_policy_init(NULL, nsvd->vp);
6492 	} else {
6493 		/*
6494 		 * The offset for an anonymous segment has no signifigance in
6495 		 * terms of an offset into a file. If we were to use the above
6496 		 * calculation instead, the structures read out of
6497 		 * /proc/<pid>/xmap would be more difficult to decipher since
6498 		 * it would be unclear whether two seemingly contiguous
6499 		 * prxmap_t structures represented different segments or a
6500 		 * single segment that had been split up into multiple prxmap_t
6501 		 * structures (e.g. if some part of the segment had not yet
6502 		 * been faulted in).
6503 		 */
6504 		nsvd->offset = 0;
6505 	}
6506 
6507 	ASSERT(svd->softlockcnt == 0);
6508 	crhold(svd->cred);
6509 
6510 	if (svd->vpage != NULL) {
6511 		size_t bytes = vpgtob(seg_pages(seg));
6512 		size_t nbytes = vpgtob(seg_pages(nseg));
6513 		struct vpage *ovpage = svd->vpage;
6514 
6515 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6516 		bcopy(ovpage, svd->vpage, bytes);
6517 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6518 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6519 		kmem_free(ovpage, bytes + nbytes);
6520 	}
6521 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6522 		struct anon_map *oamp = svd->amp, *namp;
6523 		struct anon_hdr *nahp;
6524 
6525 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6526 		ASSERT(oamp->refcnt == 1);
6527 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6528 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6529 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6530 
6531 		namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6532 		namp->a_szc = nseg->s_szc;
6533 		(void) anon_copy_ptr(oamp->ahp,
6534 		    svd->anon_index + btop(seg->s_size),
6535 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6536 		anon_release(oamp->ahp, btop(oamp->size));
6537 		oamp->ahp = nahp;
6538 		oamp->size = seg->s_size;
6539 		svd->anon_index = 0;
6540 		nsvd->amp = namp;
6541 		nsvd->anon_index = 0;
6542 		ANON_LOCK_EXIT(&oamp->a_rwlock);
6543 	} else if (svd->amp != NULL) {
6544 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6545 		ASSERT(svd->amp == nsvd->amp);
6546 		ASSERT(seg->s_szc <= svd->amp->a_szc);
6547 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6548 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6549 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6550 		svd->amp->refcnt++;
6551 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6552 	}
6553 
6554 	/*
6555 	 * Split amount of swap reserve
6556 	 */
6557 	if (svd->swresv) {
6558 		/*
6559 		 * For MAP_NORESERVE, only allocate swap reserve for pages
6560 		 * being used.  Other segments get enough to cover whole
6561 		 * segment.
6562 		 */
6563 		if (svd->flags & MAP_NORESERVE) {
6564 			size_t	oswresv;
6565 
6566 			ASSERT(svd->amp);
6567 			oswresv = svd->swresv;
6568 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6569 				svd->anon_index, btop(seg->s_size)));
6570 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6571 				nsvd->anon_index, btop(nseg->s_size)));
6572 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6573 		} else {
6574 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
6575 			svd->swresv = seg->s_size;
6576 			nsvd->swresv = nseg->s_size;
6577 		}
6578 	}
6579 
6580 	return (nseg);
6581 }
6582 
6583 /*
6584  * called on memory operations (unmap, setprot, setpagesize) for a subset
6585  * of a large page segment to either demote the memory range (SDR_RANGE)
6586  * or the ends (SDR_END) by addr/len.
6587  *
6588  * returns 0 on success. returns errno, including ENOMEM, on failure.
6589  */
6590 static int
6591 segvn_demote_range(
6592 	struct seg *seg,
6593 	caddr_t addr,
6594 	size_t len,
6595 	int flag,
6596 	uint_t szcvec)
6597 {
6598 	caddr_t eaddr = addr + len;
6599 	caddr_t lpgaddr, lpgeaddr;
6600 	struct seg *nseg;
6601 	struct seg *badseg1 = NULL;
6602 	struct seg *badseg2 = NULL;
6603 	size_t pgsz;
6604 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6605 	int err;
6606 	uint_t szc = seg->s_szc;
6607 	uint_t tszcvec;
6608 
6609 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6610 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6611 	ASSERT(szc != 0);
6612 	pgsz = page_get_pagesize(szc);
6613 	ASSERT(seg->s_base != addr || seg->s_size != len);
6614 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6615 	ASSERT(svd->softlockcnt == 0);
6616 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6617 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6618 
6619 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6620 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6621 	if (flag == SDR_RANGE) {
6622 		/* demote entire range */
6623 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6624 		(void) segvn_split_seg(nseg, lpgeaddr);
6625 		ASSERT(badseg1->s_base == lpgaddr);
6626 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6627 	} else if (addr != lpgaddr) {
6628 		ASSERT(flag == SDR_END);
6629 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6630 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6631 		    eaddr < lpgaddr + 2 * pgsz) {
6632 			(void) segvn_split_seg(nseg, lpgeaddr);
6633 			ASSERT(badseg1->s_base == lpgaddr);
6634 			ASSERT(badseg1->s_size == 2 * pgsz);
6635 		} else {
6636 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6637 			ASSERT(badseg1->s_base == lpgaddr);
6638 			ASSERT(badseg1->s_size == pgsz);
6639 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6640 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6641 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6642 				badseg2 = nseg;
6643 				(void) segvn_split_seg(nseg, lpgeaddr);
6644 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6645 				ASSERT(badseg2->s_size == pgsz);
6646 			}
6647 		}
6648 	} else {
6649 		ASSERT(flag == SDR_END);
6650 		ASSERT(eaddr < lpgeaddr);
6651 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6652 		(void) segvn_split_seg(nseg, lpgeaddr);
6653 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6654 		ASSERT(badseg1->s_size == pgsz);
6655 	}
6656 
6657 	ASSERT(badseg1 != NULL);
6658 	ASSERT(badseg1->s_szc == szc);
6659 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6660 	    badseg1->s_size == 2 * pgsz);
6661 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6662 	ASSERT(badseg1->s_size == pgsz ||
6663 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6664 	if (err = segvn_clrszc(badseg1)) {
6665 		return (err);
6666 	}
6667 	ASSERT(badseg1->s_szc == 0);
6668 
6669 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6670 		uint_t tszc = highbit(tszcvec) - 1;
6671 		caddr_t ta = MAX(addr, badseg1->s_base);
6672 		caddr_t te;
6673 		size_t tpgsz = page_get_pagesize(tszc);
6674 
6675 		ASSERT(svd->type == MAP_SHARED);
6676 		ASSERT(flag == SDR_END);
6677 		ASSERT(tszc < szc && tszc > 0);
6678 
6679 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6680 			te = badseg1->s_base + badseg1->s_size;
6681 		} else {
6682 			te = eaddr;
6683 		}
6684 
6685 		ASSERT(ta <= te);
6686 		badseg1->s_szc = tszc;
6687 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6688 			if (badseg2 != NULL) {
6689 				err = segvn_demote_range(badseg1, ta, te - ta,
6690 				    SDR_END, tszcvec);
6691 				if (err != 0) {
6692 					return (err);
6693 				}
6694 			} else {
6695 				return (segvn_demote_range(badseg1, ta,
6696 				    te - ta, SDR_END, tszcvec));
6697 			}
6698 		}
6699 	}
6700 
6701 	if (badseg2 == NULL)
6702 		return (0);
6703 	ASSERT(badseg2->s_szc == szc);
6704 	ASSERT(badseg2->s_size == pgsz);
6705 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6706 	if (err = segvn_clrszc(badseg2)) {
6707 		return (err);
6708 	}
6709 	ASSERT(badseg2->s_szc == 0);
6710 
6711 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6712 		uint_t tszc = highbit(tszcvec) - 1;
6713 		size_t tpgsz = page_get_pagesize(tszc);
6714 
6715 		ASSERT(svd->type == MAP_SHARED);
6716 		ASSERT(flag == SDR_END);
6717 		ASSERT(tszc < szc && tszc > 0);
6718 		ASSERT(badseg2->s_base > addr);
6719 		ASSERT(eaddr > badseg2->s_base);
6720 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6721 
6722 		badseg2->s_szc = tszc;
6723 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6724 			return (segvn_demote_range(badseg2, badseg2->s_base,
6725 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6726 		}
6727 	}
6728 
6729 	return (0);
6730 }
6731 
6732 static int
6733 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6734 {
6735 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6736 	struct vpage *vp, *evp;
6737 
6738 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6739 
6740 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6741 	/*
6742 	 * If segment protection can be used, simply check against them.
6743 	 */
6744 	if (svd->pageprot == 0) {
6745 		int err;
6746 
6747 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6748 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6749 		return (err);
6750 	}
6751 
6752 	/*
6753 	 * Have to check down to the vpage level.
6754 	 */
6755 	evp = &svd->vpage[seg_page(seg, addr + len)];
6756 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6757 		if ((VPP_PROT(vp) & prot) != prot) {
6758 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6759 			return (EACCES);
6760 		}
6761 	}
6762 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6763 	return (0);
6764 }
6765 
6766 static int
6767 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6768 {
6769 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6770 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6771 
6772 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6773 
6774 	if (pgno != 0) {
6775 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6776 		if (svd->pageprot == 0) {
6777 			do
6778 				protv[--pgno] = svd->prot;
6779 			while (pgno != 0);
6780 		} else {
6781 			size_t pgoff = seg_page(seg, addr);
6782 
6783 			do {
6784 				pgno--;
6785 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6786 			} while (pgno != 0);
6787 		}
6788 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6789 	}
6790 	return (0);
6791 }
6792 
6793 static u_offset_t
6794 segvn_getoffset(struct seg *seg, caddr_t addr)
6795 {
6796 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6797 
6798 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6799 
6800 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6801 }
6802 
6803 /*ARGSUSED*/
6804 static int
6805 segvn_gettype(struct seg *seg, caddr_t addr)
6806 {
6807 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6808 
6809 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6810 
6811 	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6812 	    MAP_INITDATA)));
6813 }
6814 
6815 /*ARGSUSED*/
6816 static int
6817 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6818 {
6819 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6820 
6821 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6822 
6823 	*vpp = svd->vp;
6824 	return (0);
6825 }
6826 
6827 /*
6828  * Check to see if it makes sense to do kluster/read ahead to
6829  * addr + delta relative to the mapping at addr.  We assume here
6830  * that delta is a signed PAGESIZE'd multiple (which can be negative).
6831  *
6832  * For segvn, we currently "approve" of the action if we are
6833  * still in the segment and it maps from the same vp/off,
6834  * or if the advice stored in segvn_data or vpages allows it.
6835  * Currently, klustering is not allowed only if MADV_RANDOM is set.
6836  */
6837 static int
6838 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6839 {
6840 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6841 	struct anon *oap, *ap;
6842 	ssize_t pd;
6843 	size_t page;
6844 	struct vnode *vp1, *vp2;
6845 	u_offset_t off1, off2;
6846 	struct anon_map *amp;
6847 
6848 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6849 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6850 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6851 
6852 	if (addr + delta < seg->s_base ||
6853 	    addr + delta >= (seg->s_base + seg->s_size))
6854 		return (-1);		/* exceeded segment bounds */
6855 
6856 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6857 	page = seg_page(seg, addr);
6858 
6859 	/*
6860 	 * Check to see if either of the pages addr or addr + delta
6861 	 * have advice set that prevents klustering (if MADV_RANDOM advice
6862 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6863 	 * is negative).
6864 	 */
6865 	if (svd->advice == MADV_RANDOM ||
6866 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
6867 		return (-1);
6868 	else if (svd->pageadvice && svd->vpage) {
6869 		struct vpage *bvpp, *evpp;
6870 
6871 		bvpp = &svd->vpage[page];
6872 		evpp = &svd->vpage[page + pd];
6873 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6874 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6875 			return (-1);
6876 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6877 		    VPP_ADVICE(evpp) == MADV_RANDOM)
6878 			return (-1);
6879 	}
6880 
6881 	if (svd->type == MAP_SHARED)
6882 		return (0);		/* shared mapping - all ok */
6883 
6884 	if ((amp = svd->amp) == NULL)
6885 		return (0);		/* off original vnode */
6886 
6887 	page += svd->anon_index;
6888 
6889 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6890 
6891 	oap = anon_get_ptr(amp->ahp, page);
6892 	ap = anon_get_ptr(amp->ahp, page + pd);
6893 
6894 	ANON_LOCK_EXIT(&amp->a_rwlock);
6895 
6896 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6897 		return (-1);		/* one with and one without an anon */
6898 	}
6899 
6900 	if (oap == NULL) {		/* implies that ap == NULL */
6901 		return (0);		/* off original vnode */
6902 	}
6903 
6904 	/*
6905 	 * Now we know we have two anon pointers - check to
6906 	 * see if they happen to be properly allocated.
6907 	 */
6908 
6909 	/*
6910 	 * XXX We cheat here and don't lock the anon slots. We can't because
6911 	 * we may have been called from the anon layer which might already
6912 	 * have locked them. We are holding a refcnt on the slots so they
6913 	 * can't disappear. The worst that will happen is we'll get the wrong
6914 	 * names (vp, off) for the slots and make a poor klustering decision.
6915 	 */
6916 	swap_xlate(ap, &vp1, &off1);
6917 	swap_xlate(oap, &vp2, &off2);
6918 
6919 
6920 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
6921 		return (-1);
6922 	return (0);
6923 }
6924 
6925 /*
6926  * Swap the pages of seg out to secondary storage, returning the
6927  * number of bytes of storage freed.
6928  *
6929  * The basic idea is first to unload all translations and then to call
6930  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
6931  * swap device.  Pages to which other segments have mappings will remain
6932  * mapped and won't be swapped.  Our caller (as_swapout) has already
6933  * performed the unloading step.
6934  *
6935  * The value returned is intended to correlate well with the process's
6936  * memory requirements.  However, there are some caveats:
6937  * 1)	When given a shared segment as argument, this routine will
6938  *	only succeed in swapping out pages for the last sharer of the
6939  *	segment.  (Previous callers will only have decremented mapping
6940  *	reference counts.)
6941  * 2)	We assume that the hat layer maintains a large enough translation
6942  *	cache to capture process reference patterns.
6943  */
6944 static size_t
6945 segvn_swapout(struct seg *seg)
6946 {
6947 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6948 	struct anon_map *amp;
6949 	pgcnt_t pgcnt = 0;
6950 	pgcnt_t npages;
6951 	pgcnt_t page;
6952 	ulong_t anon_index;
6953 
6954 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6955 
6956 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6957 	/*
6958 	 * Find pages unmapped by our caller and force them
6959 	 * out to the virtual swap device.
6960 	 */
6961 	if ((amp = svd->amp) != NULL)
6962 		anon_index = svd->anon_index;
6963 	npages = seg->s_size >> PAGESHIFT;
6964 	for (page = 0; page < npages; page++) {
6965 		page_t *pp;
6966 		struct anon *ap;
6967 		struct vnode *vp;
6968 		u_offset_t off;
6969 		anon_sync_obj_t cookie;
6970 
6971 		/*
6972 		 * Obtain <vp, off> pair for the page, then look it up.
6973 		 *
6974 		 * Note that this code is willing to consider regular
6975 		 * pages as well as anon pages.  Is this appropriate here?
6976 		 */
6977 		ap = NULL;
6978 		if (amp != NULL) {
6979 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6980 			if (anon_array_try_enter(amp, anon_index + page,
6981 						&cookie)) {
6982 				ANON_LOCK_EXIT(&amp->a_rwlock);
6983 				continue;
6984 			}
6985 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6986 			if (ap != NULL) {
6987 				swap_xlate(ap, &vp, &off);
6988 			} else {
6989 				vp = svd->vp;
6990 				off = svd->offset + ptob(page);
6991 			}
6992 			anon_array_exit(&cookie);
6993 			ANON_LOCK_EXIT(&amp->a_rwlock);
6994 		} else {
6995 			vp = svd->vp;
6996 			off = svd->offset + ptob(page);
6997 		}
6998 		if (vp == NULL) {		/* untouched zfod page */
6999 			ASSERT(ap == NULL);
7000 			continue;
7001 		}
7002 
7003 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7004 		if (pp == NULL)
7005 			continue;
7006 
7007 
7008 		/*
7009 		 * Examine the page to see whether it can be tossed out,
7010 		 * keeping track of how many we've found.
7011 		 */
7012 		if (!page_tryupgrade(pp)) {
7013 			/*
7014 			 * If the page has an i/o lock and no mappings,
7015 			 * it's very likely that the page is being
7016 			 * written out as a result of klustering.
7017 			 * Assume this is so and take credit for it here.
7018 			 */
7019 			if (!page_io_trylock(pp)) {
7020 				if (!hat_page_is_mapped(pp))
7021 					pgcnt++;
7022 			} else {
7023 				page_io_unlock(pp);
7024 			}
7025 			page_unlock(pp);
7026 			continue;
7027 		}
7028 		ASSERT(!page_iolock_assert(pp));
7029 
7030 
7031 		/*
7032 		 * Skip if page is locked or has mappings.
7033 		 * We don't need the page_struct_lock to look at lckcnt
7034 		 * and cowcnt because the page is exclusive locked.
7035 		 */
7036 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7037 		    hat_page_is_mapped(pp)) {
7038 			page_unlock(pp);
7039 			continue;
7040 		}
7041 
7042 		/*
7043 		 * dispose skips large pages so try to demote first.
7044 		 */
7045 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7046 			page_unlock(pp);
7047 			/*
7048 			 * XXX should skip the remaining page_t's of this
7049 			 * large page.
7050 			 */
7051 			continue;
7052 		}
7053 
7054 		ASSERT(pp->p_szc == 0);
7055 
7056 		/*
7057 		 * No longer mapped -- we can toss it out.  How
7058 		 * we do so depends on whether or not it's dirty.
7059 		 */
7060 		if (hat_ismod(pp) && pp->p_vnode) {
7061 			/*
7062 			 * We must clean the page before it can be
7063 			 * freed.  Setting B_FREE will cause pvn_done
7064 			 * to free the page when the i/o completes.
7065 			 * XXX:	This also causes it to be accounted
7066 			 *	as a pageout instead of a swap: need
7067 			 *	B_SWAPOUT bit to use instead of B_FREE.
7068 			 *
7069 			 * Hold the vnode before releasing the page lock
7070 			 * to prevent it from being freed and re-used by
7071 			 * some other thread.
7072 			 */
7073 			VN_HOLD(vp);
7074 			page_unlock(pp);
7075 
7076 			/*
7077 			 * Queue all i/o requests for the pageout thread
7078 			 * to avoid saturating the pageout devices.
7079 			 */
7080 			if (!queue_io_request(vp, off))
7081 				VN_RELE(vp);
7082 		} else {
7083 			/*
7084 			 * The page was clean, free it.
7085 			 *
7086 			 * XXX:	Can we ever encounter modified pages
7087 			 *	with no associated vnode here?
7088 			 */
7089 			ASSERT(pp->p_vnode != NULL);
7090 			/*LINTED: constant in conditional context*/
7091 			VN_DISPOSE(pp, B_FREE, 0, kcred);
7092 		}
7093 
7094 		/*
7095 		 * Credit now even if i/o is in progress.
7096 		 */
7097 		pgcnt++;
7098 	}
7099 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7100 
7101 	/*
7102 	 * Wakeup pageout to initiate i/o on all queued requests.
7103 	 */
7104 	cv_signal_pageout();
7105 	return (ptob(pgcnt));
7106 }
7107 
7108 /*
7109  * Synchronize primary storage cache with real object in virtual memory.
7110  *
7111  * XXX - Anonymous pages should not be sync'ed out at all.
7112  */
7113 static int
7114 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7115 {
7116 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7117 	struct vpage *vpp;
7118 	page_t *pp;
7119 	u_offset_t offset;
7120 	struct vnode *vp;
7121 	u_offset_t off;
7122 	caddr_t eaddr;
7123 	int bflags;
7124 	int err = 0;
7125 	int segtype;
7126 	int pageprot;
7127 	int prot;
7128 	ulong_t anon_index;
7129 	struct anon_map *amp;
7130 	struct anon *ap;
7131 	anon_sync_obj_t cookie;
7132 
7133 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7134 
7135 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7136 
7137 	if (svd->softlockcnt > 0) {
7138 		/*
7139 		 * flush all pages from seg cache
7140 		 * otherwise we may deadlock in swap_putpage
7141 		 * for B_INVAL page (4175402).
7142 		 *
7143 		 * Even if we grab segvn WRITER's lock or segp_slock
7144 		 * here, there might be another thread which could've
7145 		 * successfully performed lookup/insert just before
7146 		 * we acquired the lock here.  So, grabbing either
7147 		 * lock here is of not much use.  Until we devise
7148 		 * a strategy at upper layers to solve the
7149 		 * synchronization issues completely, we expect
7150 		 * applications to handle this appropriately.
7151 		 */
7152 		segvn_purge(seg);
7153 		if (svd->softlockcnt > 0) {
7154 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7155 			return (EAGAIN);
7156 		}
7157 	}
7158 
7159 	vpp = svd->vpage;
7160 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7161 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7162 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7163 
7164 	if (attr) {
7165 		pageprot = attr & ~(SHARED|PRIVATE);
7166 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7167 
7168 		/*
7169 		 * We are done if the segment types don't match
7170 		 * or if we have segment level protections and
7171 		 * they don't match.
7172 		 */
7173 		if (svd->type != segtype) {
7174 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7175 			return (0);
7176 		}
7177 		if (vpp == NULL) {
7178 			if (svd->prot != pageprot) {
7179 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7180 				return (0);
7181 			}
7182 			prot = svd->prot;
7183 		} else
7184 			vpp = &svd->vpage[seg_page(seg, addr)];
7185 
7186 	} else if (svd->vp && svd->amp == NULL &&
7187 	    (flags & MS_INVALIDATE) == 0) {
7188 
7189 		/*
7190 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
7191 		 * is not on, just use one big request.
7192 		 */
7193 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7194 		    bflags, svd->cred);
7195 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7196 		return (err);
7197 	}
7198 
7199 	if ((amp = svd->amp) != NULL)
7200 		anon_index = svd->anon_index + seg_page(seg, addr);
7201 
7202 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7203 		ap = NULL;
7204 		if (amp != NULL) {
7205 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7206 			anon_array_enter(amp, anon_index, &cookie);
7207 			ap = anon_get_ptr(amp->ahp, anon_index++);
7208 			if (ap != NULL) {
7209 				swap_xlate(ap, &vp, &off);
7210 			} else {
7211 				vp = svd->vp;
7212 				off = offset;
7213 			}
7214 			anon_array_exit(&cookie);
7215 			ANON_LOCK_EXIT(&amp->a_rwlock);
7216 		} else {
7217 			vp = svd->vp;
7218 			off = offset;
7219 		}
7220 		offset += PAGESIZE;
7221 
7222 		if (vp == NULL)		/* untouched zfod page */
7223 			continue;
7224 
7225 		if (attr) {
7226 			if (vpp) {
7227 				prot = VPP_PROT(vpp);
7228 				vpp++;
7229 			}
7230 			if (prot != pageprot) {
7231 				continue;
7232 			}
7233 		}
7234 
7235 		/*
7236 		 * See if any of these pages are locked --  if so, then we
7237 		 * will have to truncate an invalidate request at the first
7238 		 * locked one. We don't need the page_struct_lock to test
7239 		 * as this is only advisory; even if we acquire it someone
7240 		 * might race in and lock the page after we unlock and before
7241 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7242 		 */
7243 		if (flags & MS_INVALIDATE) {
7244 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7245 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7246 					page_unlock(pp);
7247 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7248 					return (EBUSY);
7249 				}
7250 				if (ap != NULL && pp->p_szc != 0 &&
7251 				    page_tryupgrade(pp)) {
7252 					if (pp->p_lckcnt == 0 &&
7253 					    pp->p_cowcnt == 0) {
7254 						/*
7255 						 * swapfs VN_DISPOSE() won't
7256 						 * invalidate large pages.
7257 						 * Attempt to demote.
7258 						 * XXX can't help it if it
7259 						 * fails. But for swapfs
7260 						 * pages it is no big deal.
7261 						 */
7262 						(void) page_try_demote_pages(
7263 						    pp);
7264 				    }
7265 				}
7266 				page_unlock(pp);
7267 			}
7268 		} else if (svd->type == MAP_SHARED && amp != NULL) {
7269 			/*
7270 			 * Avoid writting out to disk ISM's large pages
7271 			 * because segspt_free_pages() relies on NULL an_pvp
7272 			 * of anon slots of such pages.
7273 			 */
7274 
7275 			ASSERT(svd->vp == NULL);
7276 			/*
7277 			 * swapfs uses page_lookup_nowait if not freeing or
7278 			 * invalidating and skips a page if
7279 			 * page_lookup_nowait returns NULL.
7280 			 */
7281 			pp = page_lookup_nowait(vp, off, SE_SHARED);
7282 			if (pp == NULL) {
7283 				continue;
7284 			}
7285 			if (pp->p_szc != 0) {
7286 				page_unlock(pp);
7287 				continue;
7288 			}
7289 
7290 			/*
7291 			 * Note ISM pages are created large so (vp, off)'s
7292 			 * page cannot suddenly become large after we unlock
7293 			 * pp.
7294 			 */
7295 			page_unlock(pp);
7296 		}
7297 		/*
7298 		 * XXX - Should ultimately try to kluster
7299 		 * calls to VOP_PUTPAGE() for performance.
7300 		 */
7301 		VN_HOLD(vp);
7302 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7303 		    bflags, svd->cred);
7304 		VN_RELE(vp);
7305 		if (err)
7306 			break;
7307 	}
7308 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7309 	return (err);
7310 }
7311 
7312 /*
7313  * Determine if we have data corresponding to pages in the
7314  * primary storage virtual memory cache (i.e., "in core").
7315  */
7316 static size_t
7317 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7318 {
7319 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7320 	struct vnode *vp, *avp;
7321 	u_offset_t offset, aoffset;
7322 	size_t p, ep;
7323 	int ret;
7324 	struct vpage *vpp;
7325 	page_t *pp;
7326 	uint_t start;
7327 	struct anon_map *amp;		/* XXX - for locknest */
7328 	struct anon *ap;
7329 	uint_t attr;
7330 	anon_sync_obj_t cookie;
7331 
7332 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7333 
7334 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7335 	if (svd->amp == NULL && svd->vp == NULL) {
7336 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7337 		bzero(vec, btopr(len));
7338 		return (len);	/* no anonymous pages created yet */
7339 	}
7340 
7341 	p = seg_page(seg, addr);
7342 	ep = seg_page(seg, addr + len);
7343 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7344 
7345 	amp = svd->amp;
7346 	for (; p < ep; p++, addr += PAGESIZE) {
7347 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7348 		ret = start;
7349 		ap = NULL;
7350 		avp = NULL;
7351 		/* Grab the vnode/offset for the anon slot */
7352 		if (amp != NULL) {
7353 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7354 			anon_array_enter(amp, svd->anon_index + p, &cookie);
7355 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7356 			if (ap != NULL) {
7357 				swap_xlate(ap, &avp, &aoffset);
7358 			}
7359 			anon_array_exit(&cookie);
7360 			ANON_LOCK_EXIT(&amp->a_rwlock);
7361 		}
7362 		if ((avp != NULL) && page_exists(avp, aoffset)) {
7363 			/* A page exists for the anon slot */
7364 			ret |= SEG_PAGE_INCORE;
7365 
7366 			/*
7367 			 * If page is mapped and writable
7368 			 */
7369 			attr = (uint_t)0;
7370 			if ((hat_getattr(seg->s_as->a_hat, addr,
7371 			    &attr) != -1) && (attr & PROT_WRITE)) {
7372 				ret |= SEG_PAGE_ANON;
7373 			}
7374 			/*
7375 			 * Don't get page_struct lock for lckcnt and cowcnt,
7376 			 * since this is purely advisory.
7377 			 */
7378 			if ((pp = page_lookup_nowait(avp, aoffset,
7379 			    SE_SHARED)) != NULL) {
7380 				if (pp->p_lckcnt)
7381 					ret |= SEG_PAGE_SOFTLOCK;
7382 				if (pp->p_cowcnt)
7383 					ret |= SEG_PAGE_HASCOW;
7384 				page_unlock(pp);
7385 			}
7386 		}
7387 
7388 		/* Gather vnode statistics */
7389 		vp = svd->vp;
7390 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7391 
7392 		if (vp != NULL) {
7393 			/*
7394 			 * Try to obtain a "shared" lock on the page
7395 			 * without blocking.  If this fails, determine
7396 			 * if the page is in memory.
7397 			 */
7398 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
7399 			if ((pp == NULL) && (page_exists(vp, offset))) {
7400 				/* Page is incore, and is named */
7401 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7402 			}
7403 			/*
7404 			 * Don't get page_struct lock for lckcnt and cowcnt,
7405 			 * since this is purely advisory.
7406 			 */
7407 			if (pp != NULL) {
7408 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7409 				if (pp->p_lckcnt)
7410 					ret |= SEG_PAGE_SOFTLOCK;
7411 				if (pp->p_cowcnt)
7412 					ret |= SEG_PAGE_HASCOW;
7413 				page_unlock(pp);
7414 			}
7415 		}
7416 
7417 		/* Gather virtual page information */
7418 		if (vpp) {
7419 			if (VPP_ISPPLOCK(vpp))
7420 				ret |= SEG_PAGE_LOCKED;
7421 			vpp++;
7422 		}
7423 
7424 		*vec++ = (char)ret;
7425 	}
7426 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7427 	return (len);
7428 }
7429 
7430 /*
7431  * Statement for p_cowcnts/p_lckcnts.
7432  *
7433  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7434  * irrespective of the following factors or anything else:
7435  *
7436  *	(1) anon slots are populated or not
7437  *	(2) cow is broken or not
7438  *	(3) refcnt on ap is 1 or greater than 1
7439  *
7440  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7441  * and munlock.
7442  *
7443  *
7444  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7445  *
7446  *	if vpage has PROT_WRITE
7447  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
7448  *	else
7449  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
7450  *
7451  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
7452  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7453  *
7454  *	We may also break COW if softlocking on read access in the physio case.
7455  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
7456  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7457  *	vpage doesn't have PROT_WRITE.
7458  *
7459  *
7460  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7461  *
7462  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7463  *	increment p_lckcnt by calling page_subclaim() which takes care of
7464  * 	availrmem accounting and p_lckcnt overflow.
7465  *
7466  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7467  *	increment p_cowcnt by calling page_addclaim() which takes care of
7468  *	availrmem availability and p_cowcnt overflow.
7469  */
7470 
7471 /*
7472  * Lock down (or unlock) pages mapped by this segment.
7473  *
7474  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7475  * At fault time they will be relocated into larger pages.
7476  */
7477 static int
7478 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7479     int attr, int op, ulong_t *lockmap, size_t pos)
7480 {
7481 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7482 	struct vpage *vpp;
7483 	struct vpage *evp;
7484 	page_t *pp;
7485 	u_offset_t offset;
7486 	u_offset_t off;
7487 	int segtype;
7488 	int pageprot;
7489 	int claim;
7490 	struct vnode *vp;
7491 	ulong_t anon_index;
7492 	struct anon_map *amp;
7493 	struct anon *ap;
7494 	struct vattr va;
7495 	anon_sync_obj_t cookie;
7496 	struct kshmid *sp = NULL;
7497 	struct proc	*p = curproc;
7498 	kproject_t	*proj = NULL;
7499 	int chargeproc = 1;
7500 	size_t locked_bytes = 0;
7501 	size_t unlocked_bytes = 0;
7502 	int err = 0;
7503 
7504 	/*
7505 	 * Hold write lock on address space because may split or concatenate
7506 	 * segments
7507 	 */
7508 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7509 
7510 	/*
7511 	 * If this is a shm, use shm's project and zone, else use
7512 	 * project and zone of calling process
7513 	 */
7514 
7515 	/* Determine if this segment backs a sysV shm */
7516 	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7517 		ASSERT(svd->type == MAP_SHARED);
7518 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
7519 		sp = svd->amp->a_sp;
7520 		proj = sp->shm_perm.ipc_proj;
7521 		chargeproc = 0;
7522 	}
7523 
7524 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7525 	if (attr) {
7526 		pageprot = attr & ~(SHARED|PRIVATE);
7527 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7528 
7529 		/*
7530 		 * We are done if the segment types don't match
7531 		 * or if we have segment level protections and
7532 		 * they don't match.
7533 		 */
7534 		if (svd->type != segtype) {
7535 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7536 			return (0);
7537 		}
7538 		if (svd->pageprot == 0 && svd->prot != pageprot) {
7539 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7540 			return (0);
7541 		}
7542 	}
7543 
7544 	if (op == MC_LOCK) {
7545 		if (svd->tr_state == SEGVN_TR_INIT) {
7546 			svd->tr_state = SEGVN_TR_OFF;
7547 		} else if (svd->tr_state == SEGVN_TR_ON) {
7548 			ASSERT(svd->amp != NULL);
7549 			segvn_textunrepl(seg, 0);
7550 			ASSERT(svd->amp == NULL &&
7551 			    svd->tr_state == SEGVN_TR_OFF);
7552 		}
7553 	}
7554 
7555 	/*
7556 	 * If we're locking, then we must create a vpage structure if
7557 	 * none exists.  If we're unlocking, then check to see if there
7558 	 * is a vpage --  if not, then we could not have locked anything.
7559 	 */
7560 
7561 	if ((vpp = svd->vpage) == NULL) {
7562 		if (op == MC_LOCK)
7563 			segvn_vpage(seg);
7564 		else {
7565 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7566 			return (0);
7567 		}
7568 	}
7569 
7570 	/*
7571 	 * The anonymous data vector (i.e., previously
7572 	 * unreferenced mapping to swap space) can be allocated
7573 	 * by lazily testing for its existence.
7574 	 */
7575 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7576 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7577 		svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7578 		svd->amp->a_szc = seg->s_szc;
7579 	}
7580 
7581 	if ((amp = svd->amp) != NULL) {
7582 		anon_index = svd->anon_index + seg_page(seg, addr);
7583 	}
7584 
7585 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7586 	evp = &svd->vpage[seg_page(seg, addr + len)];
7587 
7588 	if (sp != NULL)
7589 		mutex_enter(&sp->shm_mlock);
7590 
7591 	/* determine number of unlocked bytes in range for lock operation */
7592 	if (op == MC_LOCK) {
7593 
7594 		if (sp == NULL) {
7595 			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7596 			    vpp++) {
7597 				if (!VPP_ISPPLOCK(vpp))
7598 					unlocked_bytes += PAGESIZE;
7599 			}
7600 		} else {
7601 			ulong_t		i_idx, i_edx;
7602 			anon_sync_obj_t	i_cookie;
7603 			struct anon	*i_ap;
7604 			struct vnode	*i_vp;
7605 			u_offset_t	i_off;
7606 
7607 			/* Only count sysV pages once for locked memory */
7608 			i_edx = svd->anon_index + seg_page(seg, addr + len);
7609 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7610 			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7611 				anon_array_enter(amp, i_idx, &i_cookie);
7612 				i_ap = anon_get_ptr(amp->ahp, i_idx);
7613 				if (i_ap == NULL) {
7614 					unlocked_bytes += PAGESIZE;
7615 					anon_array_exit(&i_cookie);
7616 					continue;
7617 				}
7618 				swap_xlate(i_ap, &i_vp, &i_off);
7619 				anon_array_exit(&i_cookie);
7620 				pp = page_lookup(i_vp, i_off, SE_SHARED);
7621 				if (pp == NULL) {
7622 					unlocked_bytes += PAGESIZE;
7623 					continue;
7624 				} else if (pp->p_lckcnt == 0)
7625 					unlocked_bytes += PAGESIZE;
7626 				page_unlock(pp);
7627 			}
7628 			ANON_LOCK_EXIT(&amp->a_rwlock);
7629 		}
7630 
7631 		mutex_enter(&p->p_lock);
7632 		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7633 		    chargeproc);
7634 		mutex_exit(&p->p_lock);
7635 
7636 		if (err) {
7637 			if (sp != NULL)
7638 				mutex_exit(&sp->shm_mlock);
7639 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7640 			return (err);
7641 		}
7642 	}
7643 	/*
7644 	 * Loop over all pages in the range.  Process if we're locking and
7645 	 * page has not already been locked in this mapping; or if we're
7646 	 * unlocking and the page has been locked.
7647 	 */
7648 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7649 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7650 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7651 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7652 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7653 
7654 			if (amp != NULL)
7655 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7656 			/*
7657 			 * If this isn't a MAP_NORESERVE segment and
7658 			 * we're locking, allocate anon slots if they
7659 			 * don't exist.  The page is brought in later on.
7660 			 */
7661 			if (op == MC_LOCK && svd->vp == NULL &&
7662 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7663 			    amp != NULL &&
7664 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7665 								== NULL)) {
7666 				anon_array_enter(amp, anon_index, &cookie);
7667 
7668 				if ((ap = anon_get_ptr(amp->ahp,
7669 						anon_index)) == NULL) {
7670 					pp = anon_zero(seg, addr, &ap,
7671 					    svd->cred);
7672 					if (pp == NULL) {
7673 						anon_array_exit(&cookie);
7674 						ANON_LOCK_EXIT(&amp->a_rwlock);
7675 						err = ENOMEM;
7676 						goto out;
7677 					}
7678 					ASSERT(anon_get_ptr(amp->ahp,
7679 						anon_index) == NULL);
7680 					(void) anon_set_ptr(amp->ahp,
7681 						anon_index, ap, ANON_SLEEP);
7682 					page_unlock(pp);
7683 				}
7684 				anon_array_exit(&cookie);
7685 			}
7686 
7687 			/*
7688 			 * Get name for page, accounting for
7689 			 * existence of private copy.
7690 			 */
7691 			ap = NULL;
7692 			if (amp != NULL) {
7693 				anon_array_enter(amp, anon_index, &cookie);
7694 				ap = anon_get_ptr(amp->ahp, anon_index);
7695 				if (ap != NULL) {
7696 					swap_xlate(ap, &vp, &off);
7697 				} else {
7698 					if (svd->vp == NULL &&
7699 					    (svd->flags & MAP_NORESERVE)) {
7700 						anon_array_exit(&cookie);
7701 						ANON_LOCK_EXIT(&amp->a_rwlock);
7702 						continue;
7703 					}
7704 					vp = svd->vp;
7705 					off = offset;
7706 				}
7707 				anon_array_exit(&cookie);
7708 				ANON_LOCK_EXIT(&amp->a_rwlock);
7709 			} else {
7710 				vp = svd->vp;
7711 				off = offset;
7712 			}
7713 
7714 			/*
7715 			 * Get page frame.  It's ok if the page is
7716 			 * not available when we're unlocking, as this
7717 			 * may simply mean that a page we locked got
7718 			 * truncated out of existence after we locked it.
7719 			 *
7720 			 * Invoke VOP_GETPAGE() to obtain the page struct
7721 			 * since we may need to read it from disk if its
7722 			 * been paged out.
7723 			 */
7724 			if (op != MC_LOCK)
7725 				pp = page_lookup(vp, off, SE_SHARED);
7726 			else {
7727 				page_t *pl[1 + 1];
7728 				int error;
7729 
7730 				ASSERT(vp != NULL);
7731 
7732 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7733 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7734 				    S_OTHER, svd->cred);
7735 
7736 				/*
7737 				 * If the error is EDEADLK then we must bounce
7738 				 * up and drop all vm subsystem locks and then
7739 				 * retry the operation later
7740 				 * This behavior is a temporary measure because
7741 				 * ufs/sds logging is badly designed and will
7742 				 * deadlock if we don't allow this bounce to
7743 				 * happen.  The real solution is to re-design
7744 				 * the logging code to work properly.  See bug
7745 				 * 4125102 for details of the problem.
7746 				 */
7747 				if (error == EDEADLK) {
7748 					err = error;
7749 					goto out;
7750 				}
7751 				/*
7752 				 * Quit if we fail to fault in the page.  Treat
7753 				 * the failure as an error, unless the addr
7754 				 * is mapped beyond the end of a file.
7755 				 */
7756 				if (error && svd->vp) {
7757 					va.va_mask = AT_SIZE;
7758 					if (VOP_GETATTR(svd->vp, &va, 0,
7759 					    svd->cred) != 0) {
7760 						err = EIO;
7761 						goto out;
7762 					}
7763 					if (btopr(va.va_size) >=
7764 					    btopr(off + 1)) {
7765 						err = EIO;
7766 						goto out;
7767 					}
7768 					goto out;
7769 
7770 				} else if (error) {
7771 					err = EIO;
7772 					goto out;
7773 				}
7774 				pp = pl[0];
7775 				ASSERT(pp != NULL);
7776 			}
7777 
7778 			/*
7779 			 * See Statement at the beginning of this routine.
7780 			 *
7781 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7782 			 * irrespective of following factors:
7783 			 *
7784 			 * (1) anon slots are populated or not
7785 			 * (2) cow is broken or not
7786 			 * (3) refcnt on ap is 1 or greater than 1
7787 			 *
7788 			 * See 4140683 for details
7789 			 */
7790 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7791 				(svd->type == MAP_PRIVATE));
7792 
7793 			/*
7794 			 * Perform page-level operation appropriate to
7795 			 * operation.  If locking, undo the SOFTLOCK
7796 			 * performed to bring the page into memory
7797 			 * after setting the lock.  If unlocking,
7798 			 * and no page was found, account for the claim
7799 			 * separately.
7800 			 */
7801 			if (op == MC_LOCK) {
7802 				int ret = 1;	/* Assume success */
7803 
7804 				ASSERT(!VPP_ISPPLOCK(vpp));
7805 
7806 				ret = page_pp_lock(pp, claim, 0);
7807 				if (ret == 0) {
7808 					/* locking page failed */
7809 					page_unlock(pp);
7810 					err = EAGAIN;
7811 					goto out;
7812 				}
7813 				VPP_SETPPLOCK(vpp);
7814 				if (sp != NULL) {
7815 					if (pp->p_lckcnt == 1)
7816 						locked_bytes += PAGESIZE;
7817 				} else
7818 					locked_bytes += PAGESIZE;
7819 
7820 				if (lockmap != (ulong_t *)NULL)
7821 					BT_SET(lockmap, pos);
7822 
7823 				page_unlock(pp);
7824 			} else {
7825 				ASSERT(VPP_ISPPLOCK(vpp));
7826 				if (pp != NULL) {
7827 					/* sysV pages should be locked */
7828 					ASSERT(sp == NULL || pp->p_lckcnt > 0);
7829 					page_pp_unlock(pp, claim, 0);
7830 					if (sp != NULL) {
7831 						if (pp->p_lckcnt == 0)
7832 							unlocked_bytes
7833 							    += PAGESIZE;
7834 					} else
7835 						unlocked_bytes += PAGESIZE;
7836 					page_unlock(pp);
7837 				} else {
7838 					ASSERT(sp == NULL);
7839 					unlocked_bytes += PAGESIZE;
7840 				}
7841 				VPP_CLRPPLOCK(vpp);
7842 			}
7843 		}
7844 	}
7845 out:
7846 	if (op == MC_LOCK) {
7847 		/* Credit back bytes that did not get locked */
7848 		if ((unlocked_bytes - locked_bytes) > 0) {
7849 			if (proj == NULL)
7850 				mutex_enter(&p->p_lock);
7851 			rctl_decr_locked_mem(p, proj,
7852 			    (unlocked_bytes - locked_bytes), chargeproc);
7853 			if (proj == NULL)
7854 				mutex_exit(&p->p_lock);
7855 		}
7856 
7857 	} else {
7858 		/* Account bytes that were unlocked */
7859 		if (unlocked_bytes > 0) {
7860 			if (proj == NULL)
7861 				mutex_enter(&p->p_lock);
7862 			rctl_decr_locked_mem(p, proj, unlocked_bytes,
7863 			    chargeproc);
7864 			if (proj == NULL)
7865 				mutex_exit(&p->p_lock);
7866 		}
7867 	}
7868 	if (sp != NULL)
7869 		mutex_exit(&sp->shm_mlock);
7870 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7871 
7872 	return (err);
7873 }
7874 
7875 /*
7876  * Set advice from user for specified pages
7877  * There are 5 types of advice:
7878  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
7879  *	MADV_RANDOM	- Random page references
7880  *				do not allow readahead or 'klustering'
7881  *	MADV_SEQUENTIAL	- Sequential page references
7882  *				Pages previous to the one currently being
7883  *				accessed (determined by fault) are 'not needed'
7884  *				and are freed immediately
7885  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
7886  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
7887  *	MADV_FREE	- Contents can be discarded
7888  *	MADV_ACCESS_DEFAULT- Default access
7889  *	MADV_ACCESS_LWP	- Next LWP will access heavily
7890  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
7891  */
7892 static int
7893 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
7894 {
7895 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7896 	size_t page;
7897 	int err = 0;
7898 	int already_set;
7899 	struct anon_map *amp;
7900 	ulong_t anon_index;
7901 	struct seg *next;
7902 	lgrp_mem_policy_t policy;
7903 	struct seg *prev;
7904 	struct vnode *vp;
7905 
7906 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7907 
7908 	/*
7909 	 * In case of MADV_FREE, we won't be modifying any segment private
7910 	 * data structures; so, we only need to grab READER's lock
7911 	 */
7912 	if (behav != MADV_FREE) {
7913 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7914 		if (svd->tr_state != SEGVN_TR_OFF) {
7915 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7916 			return (0);
7917 		}
7918 	} else {
7919 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7920 	}
7921 
7922 	/*
7923 	 * Large pages are assumed to be only turned on when accesses to the
7924 	 * segment's address range have spatial and temporal locality. That
7925 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
7926 	 * Also, ignore advice affecting lgroup memory allocation
7927 	 * if don't need to do lgroup optimizations on this system
7928 	 */
7929 
7930 	if ((behav == MADV_SEQUENTIAL &&
7931 	    (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
7932 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
7933 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
7934 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7935 		return (0);
7936 	}
7937 
7938 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
7939 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
7940 		/*
7941 		 * Since we are going to unload hat mappings
7942 		 * we first have to flush the cache. Otherwise
7943 		 * this might lead to system panic if another
7944 		 * thread is doing physio on the range whose
7945 		 * mappings are unloaded by madvise(3C).
7946 		 */
7947 		if (svd->softlockcnt > 0) {
7948 			/*
7949 			 * Since we do have the segvn writers lock
7950 			 * nobody can fill the cache with entries
7951 			 * belonging to this seg during the purge.
7952 			 * The flush either succeeds or we still
7953 			 * have pending I/Os. In the later case,
7954 			 * madvise(3C) fails.
7955 			 */
7956 			segvn_purge(seg);
7957 			if (svd->softlockcnt > 0) {
7958 				/*
7959 				 * Since madvise(3C) is advisory and
7960 				 * it's not part of UNIX98, madvise(3C)
7961 				 * failure here doesn't cause any hardship.
7962 				 * Note that we don't block in "as" layer.
7963 				 */
7964 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7965 				return (EAGAIN);
7966 			}
7967 		}
7968 	}
7969 
7970 	amp = svd->amp;
7971 	vp = svd->vp;
7972 	if (behav == MADV_FREE) {
7973 		/*
7974 		 * MADV_FREE is not supported for segments with
7975 		 * underlying object; if anonmap is NULL, anon slots
7976 		 * are not yet populated and there is nothing for
7977 		 * us to do. As MADV_FREE is advisory, we don't
7978 		 * return error in either case.
7979 		 */
7980 		if (vp != NULL || amp == NULL) {
7981 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7982 			return (0);
7983 		}
7984 
7985 		page = seg_page(seg, addr);
7986 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7987 		anon_disclaim(amp, svd->anon_index + page, len, 0);
7988 		ANON_LOCK_EXIT(&amp->a_rwlock);
7989 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7990 		return (0);
7991 	}
7992 
7993 	/*
7994 	 * If advice is to be applied to entire segment,
7995 	 * use advice field in seg_data structure
7996 	 * otherwise use appropriate vpage entry.
7997 	 */
7998 	if ((addr == seg->s_base) && (len == seg->s_size)) {
7999 		switch (behav) {
8000 		case MADV_ACCESS_LWP:
8001 		case MADV_ACCESS_MANY:
8002 		case MADV_ACCESS_DEFAULT:
8003 			/*
8004 			 * Set memory allocation policy for this segment
8005 			 */
8006 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8007 			if (svd->type == MAP_SHARED)
8008 				already_set = lgrp_shm_policy_set(policy, amp,
8009 				    svd->anon_index, vp, svd->offset, len);
8010 			else {
8011 				/*
8012 				 * For private memory, need writers lock on
8013 				 * address space because the segment may be
8014 				 * split or concatenated when changing policy
8015 				 */
8016 				if (AS_READ_HELD(seg->s_as,
8017 				    &seg->s_as->a_lock)) {
8018 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8019 					return (IE_RETRY);
8020 				}
8021 
8022 				already_set = lgrp_privm_policy_set(policy,
8023 				    &svd->policy_info, len);
8024 			}
8025 
8026 			/*
8027 			 * If policy set already and it shouldn't be reapplied,
8028 			 * don't do anything.
8029 			 */
8030 			if (already_set &&
8031 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8032 				break;
8033 
8034 			/*
8035 			 * Mark any existing pages in given range for
8036 			 * migration
8037 			 */
8038 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8039 			    vp, svd->offset, 1);
8040 
8041 			/*
8042 			 * If same policy set already or this is a shared
8043 			 * memory segment, don't need to try to concatenate
8044 			 * segment with adjacent ones.
8045 			 */
8046 			if (already_set || svd->type == MAP_SHARED)
8047 				break;
8048 
8049 			/*
8050 			 * Try to concatenate this segment with previous
8051 			 * one and next one, since we changed policy for
8052 			 * this one and it may be compatible with adjacent
8053 			 * ones now.
8054 			 */
8055 			prev = AS_SEGPREV(seg->s_as, seg);
8056 			next = AS_SEGNEXT(seg->s_as, seg);
8057 
8058 			if (next && next->s_ops == &segvn_ops &&
8059 			    addr + len == next->s_base)
8060 				(void) segvn_concat(seg, next, 1);
8061 
8062 			if (prev && prev->s_ops == &segvn_ops &&
8063 			    addr == prev->s_base + prev->s_size) {
8064 				/*
8065 				 * Drop lock for private data of current
8066 				 * segment before concatenating (deleting) it
8067 				 * and return IE_REATTACH to tell as_ctl() that
8068 				 * current segment has changed
8069 				 */
8070 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8071 				if (!segvn_concat(prev, seg, 1))
8072 					err = IE_REATTACH;
8073 
8074 				return (err);
8075 			}
8076 			break;
8077 
8078 		case MADV_SEQUENTIAL:
8079 			/*
8080 			 * unloading mapping guarantees
8081 			 * detection in segvn_fault
8082 			 */
8083 			ASSERT(seg->s_szc == 0);
8084 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8085 			hat_unload(seg->s_as->a_hat, addr, len,
8086 				HAT_UNLOAD);
8087 			/* FALLTHROUGH */
8088 		case MADV_NORMAL:
8089 		case MADV_RANDOM:
8090 			svd->advice = (uchar_t)behav;
8091 			svd->pageadvice = 0;
8092 			break;
8093 		case MADV_WILLNEED:	/* handled in memcntl */
8094 		case MADV_DONTNEED:	/* handled in memcntl */
8095 		case MADV_FREE:		/* handled above */
8096 			break;
8097 		default:
8098 			err = EINVAL;
8099 		}
8100 	} else {
8101 		caddr_t			eaddr;
8102 		struct seg		*new_seg;
8103 		struct segvn_data	*new_svd;
8104 		u_offset_t		off;
8105 		caddr_t			oldeaddr;
8106 
8107 		page = seg_page(seg, addr);
8108 
8109 		segvn_vpage(seg);
8110 
8111 		switch (behav) {
8112 			struct vpage *bvpp, *evpp;
8113 
8114 		case MADV_ACCESS_LWP:
8115 		case MADV_ACCESS_MANY:
8116 		case MADV_ACCESS_DEFAULT:
8117 			/*
8118 			 * Set memory allocation policy for portion of this
8119 			 * segment
8120 			 */
8121 
8122 			/*
8123 			 * Align address and length of advice to page
8124 			 * boundaries for large pages
8125 			 */
8126 			if (seg->s_szc != 0) {
8127 				size_t	pgsz;
8128 
8129 				pgsz = page_get_pagesize(seg->s_szc);
8130 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8131 				len = P2ROUNDUP(len, pgsz);
8132 			}
8133 
8134 			/*
8135 			 * Check to see whether policy is set already
8136 			 */
8137 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8138 
8139 			anon_index = svd->anon_index + page;
8140 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
8141 
8142 			if (svd->type == MAP_SHARED)
8143 				already_set = lgrp_shm_policy_set(policy, amp,
8144 				    anon_index, vp, off, len);
8145 			else
8146 				already_set =
8147 				    (policy == svd->policy_info.mem_policy);
8148 
8149 			/*
8150 			 * If policy set already and it shouldn't be reapplied,
8151 			 * don't do anything.
8152 			 */
8153 			if (already_set &&
8154 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8155 				break;
8156 
8157 			/*
8158 			 * For private memory, need writers lock on
8159 			 * address space because the segment may be
8160 			 * split or concatenated when changing policy
8161 			 */
8162 			if (svd->type == MAP_PRIVATE &&
8163 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
8164 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8165 				return (IE_RETRY);
8166 			}
8167 
8168 			/*
8169 			 * Mark any existing pages in given range for
8170 			 * migration
8171 			 */
8172 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8173 			    vp, svd->offset, 1);
8174 
8175 			/*
8176 			 * Don't need to try to split or concatenate
8177 			 * segments, since policy is same or this is a shared
8178 			 * memory segment
8179 			 */
8180 			if (already_set || svd->type == MAP_SHARED)
8181 				break;
8182 
8183 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8184 				ASSERT(svd->amp == NULL);
8185 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
8186 				ASSERT(svd->softlockcnt == 0);
8187 				hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8188 				    HAT_REGION_TEXT);
8189 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
8190 			}
8191 
8192 			/*
8193 			 * Split off new segment if advice only applies to a
8194 			 * portion of existing segment starting in middle
8195 			 */
8196 			new_seg = NULL;
8197 			eaddr = addr + len;
8198 			oldeaddr = seg->s_base + seg->s_size;
8199 			if (addr > seg->s_base) {
8200 				/*
8201 				 * Must flush I/O page cache
8202 				 * before splitting segment
8203 				 */
8204 				if (svd->softlockcnt > 0)
8205 					segvn_purge(seg);
8206 
8207 				/*
8208 				 * Split segment and return IE_REATTACH to tell
8209 				 * as_ctl() that current segment changed
8210 				 */
8211 				new_seg = segvn_split_seg(seg, addr);
8212 				new_svd = (struct segvn_data *)new_seg->s_data;
8213 				err = IE_REATTACH;
8214 
8215 				/*
8216 				 * If new segment ends where old one
8217 				 * did, try to concatenate the new
8218 				 * segment with next one.
8219 				 */
8220 				if (eaddr == oldeaddr) {
8221 					/*
8222 					 * Set policy for new segment
8223 					 */
8224 					(void) lgrp_privm_policy_set(policy,
8225 					    &new_svd->policy_info,
8226 					    new_seg->s_size);
8227 
8228 					next = AS_SEGNEXT(new_seg->s_as,
8229 					    new_seg);
8230 
8231 					if (next &&
8232 					    next->s_ops == &segvn_ops &&
8233 					    eaddr == next->s_base)
8234 						(void) segvn_concat(new_seg,
8235 						    next, 1);
8236 				}
8237 			}
8238 
8239 			/*
8240 			 * Split off end of existing segment if advice only
8241 			 * applies to a portion of segment ending before
8242 			 * end of the existing segment
8243 			 */
8244 			if (eaddr < oldeaddr) {
8245 				/*
8246 				 * Must flush I/O page cache
8247 				 * before splitting segment
8248 				 */
8249 				if (svd->softlockcnt > 0)
8250 					segvn_purge(seg);
8251 
8252 				/*
8253 				 * If beginning of old segment was already
8254 				 * split off, use new segment to split end off
8255 				 * from.
8256 				 */
8257 				if (new_seg != NULL && new_seg != seg) {
8258 					/*
8259 					 * Split segment
8260 					 */
8261 					(void) segvn_split_seg(new_seg, eaddr);
8262 
8263 					/*
8264 					 * Set policy for new segment
8265 					 */
8266 					(void) lgrp_privm_policy_set(policy,
8267 					    &new_svd->policy_info,
8268 					    new_seg->s_size);
8269 				} else {
8270 					/*
8271 					 * Split segment and return IE_REATTACH
8272 					 * to tell as_ctl() that current
8273 					 * segment changed
8274 					 */
8275 					(void) segvn_split_seg(seg, eaddr);
8276 					err = IE_REATTACH;
8277 
8278 					(void) lgrp_privm_policy_set(policy,
8279 					    &svd->policy_info, seg->s_size);
8280 
8281 					/*
8282 					 * If new segment starts where old one
8283 					 * did, try to concatenate it with
8284 					 * previous segment.
8285 					 */
8286 					if (addr == seg->s_base) {
8287 						prev = AS_SEGPREV(seg->s_as,
8288 						    seg);
8289 
8290 						/*
8291 						 * Drop lock for private data
8292 						 * of current segment before
8293 						 * concatenating (deleting) it
8294 						 */
8295 						if (prev &&
8296 						    prev->s_ops ==
8297 						    &segvn_ops &&
8298 						    addr == prev->s_base +
8299 						    prev->s_size) {
8300 							SEGVN_LOCK_EXIT(
8301 							    seg->s_as,
8302 							    &svd->lock);
8303 							(void) segvn_concat(
8304 							    prev, seg, 1);
8305 							return (err);
8306 						}
8307 					}
8308 				}
8309 			}
8310 			break;
8311 		case MADV_SEQUENTIAL:
8312 			ASSERT(seg->s_szc == 0);
8313 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8314 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8315 			/* FALLTHROUGH */
8316 		case MADV_NORMAL:
8317 		case MADV_RANDOM:
8318 			bvpp = &svd->vpage[page];
8319 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8320 			for (; bvpp < evpp; bvpp++)
8321 				VPP_SETADVICE(bvpp, behav);
8322 			svd->advice = MADV_NORMAL;
8323 			break;
8324 		case MADV_WILLNEED:	/* handled in memcntl */
8325 		case MADV_DONTNEED:	/* handled in memcntl */
8326 		case MADV_FREE:		/* handled above */
8327 			break;
8328 		default:
8329 			err = EINVAL;
8330 		}
8331 	}
8332 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8333 	return (err);
8334 }
8335 
8336 /*
8337  * Create a vpage structure for this seg.
8338  */
8339 static void
8340 segvn_vpage(struct seg *seg)
8341 {
8342 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8343 	struct vpage *vp, *evp;
8344 
8345 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8346 
8347 	/*
8348 	 * If no vpage structure exists, allocate one.  Copy the protections
8349 	 * and the advice from the segment itself to the individual pages.
8350 	 */
8351 	if (svd->vpage == NULL) {
8352 		svd->pageadvice = 1;
8353 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
8354 		    KM_SLEEP);
8355 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8356 		for (vp = svd->vpage; vp < evp; vp++) {
8357 			VPP_SETPROT(vp, svd->prot);
8358 			VPP_SETADVICE(vp, svd->advice);
8359 		}
8360 	}
8361 }
8362 
8363 /*
8364  * Dump the pages belonging to this segvn segment.
8365  */
8366 static void
8367 segvn_dump(struct seg *seg)
8368 {
8369 	struct segvn_data *svd;
8370 	page_t *pp;
8371 	struct anon_map *amp;
8372 	ulong_t	anon_index;
8373 	struct vnode *vp;
8374 	u_offset_t off, offset;
8375 	pfn_t pfn;
8376 	pgcnt_t page, npages;
8377 	caddr_t addr;
8378 
8379 	npages = seg_pages(seg);
8380 	svd = (struct segvn_data *)seg->s_data;
8381 	vp = svd->vp;
8382 	off = offset = svd->offset;
8383 	addr = seg->s_base;
8384 
8385 	if ((amp = svd->amp) != NULL) {
8386 		anon_index = svd->anon_index;
8387 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8388 	}
8389 
8390 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
8391 		struct anon *ap;
8392 		int we_own_it = 0;
8393 
8394 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8395 			swap_xlate_nopanic(ap, &vp, &off);
8396 		} else {
8397 			vp = svd->vp;
8398 			off = offset;
8399 		}
8400 
8401 		/*
8402 		 * If pp == NULL, the page either does not exist
8403 		 * or is exclusively locked.  So determine if it
8404 		 * exists before searching for it.
8405 		 */
8406 
8407 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8408 			we_own_it = 1;
8409 		else
8410 			pp = page_exists(vp, off);
8411 
8412 		if (pp) {
8413 			pfn = page_pptonum(pp);
8414 			dump_addpage(seg->s_as, addr, pfn);
8415 			if (we_own_it)
8416 				page_unlock(pp);
8417 		}
8418 		addr += PAGESIZE;
8419 		dump_timeleft = dump_timeout;
8420 	}
8421 
8422 	if (amp != NULL)
8423 		ANON_LOCK_EXIT(&amp->a_rwlock);
8424 }
8425 
8426 /*
8427  * lock/unlock anon pages over a given range. Return shadow list
8428  */
8429 static int
8430 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8431     enum lock_type type, enum seg_rw rw)
8432 {
8433 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8434 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
8435 	ulong_t anon_index;
8436 	uint_t protchk;
8437 	uint_t error;
8438 	struct anon_map *amp;
8439 	struct page **pplist, **pl, *pp;
8440 	caddr_t a;
8441 	size_t page;
8442 	caddr_t lpgaddr, lpgeaddr;
8443 	pgcnt_t szc0_npages = 0;
8444 
8445 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8446 		"segvn_pagelock: start seg %p addr %p", seg, addr);
8447 
8448 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8449 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
8450 		/*
8451 		 * We are adjusting the pagelock region to the large page size
8452 		 * boundary because the unlocked part of a large page cannot
8453 		 * be freed anyway unless all constituent pages of a large
8454 		 * page are locked. Therefore this adjustment allows us to
8455 		 * decrement availrmem by the right value (note we don't want
8456 		 * to just decrement availrem by the large page size without
8457 		 * adjusting addr and len because then we may end up
8458 		 * decrementing availrmem by large page size for every
8459 		 * constituent page locked by a new as_pagelock call).
8460 		 * as_pageunlock caller must always match as_pagelock call's
8461 		 * addr and len.
8462 		 *
8463 		 * Note segment's page size cannot change while we are holding
8464 		 * as lock.  And then it cannot change while softlockcnt is
8465 		 * not 0. This will allow us to correctly recalculate large
8466 		 * page size region for the matching pageunlock/reclaim call.
8467 		 *
8468 		 * for pageunlock *ppp points to the pointer of page_t that
8469 		 * corresponds to the real unadjusted start address. Similar
8470 		 * for pagelock *ppp must point to the pointer of page_t that
8471 		 * corresponds to the real unadjusted start address.
8472 		 */
8473 		size_t pgsz = page_get_pagesize(seg->s_szc);
8474 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8475 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
8476 	}
8477 
8478 	if (type == L_PAGEUNLOCK) {
8479 
8480 		/*
8481 		 * update hat ref bits for /proc. We need to make sure
8482 		 * that threads tracing the ref and mod bits of the
8483 		 * address space get the right data.
8484 		 * Note: page ref and mod bits are updated at reclaim time
8485 		 */
8486 		if (seg->s_as->a_vbits) {
8487 			for (a = addr; a < addr + len; a += PAGESIZE) {
8488 				if (rw == S_WRITE) {
8489 					hat_setstat(seg->s_as, a,
8490 					    PAGESIZE, P_REF | P_MOD);
8491 				} else {
8492 					hat_setstat(seg->s_as, a,
8493 					    PAGESIZE, P_REF);
8494 				}
8495 			}
8496 		}
8497 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8498 		if (seg->s_szc != 0) {
8499 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
8500 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
8501 			    *ppp - adjustpages, rw, segvn_reclaim);
8502 		} else {
8503 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
8504 		}
8505 
8506 		/*
8507 		 * If someone is blocked while unmapping, we purge
8508 		 * segment page cache and thus reclaim pplist synchronously
8509 		 * without waiting for seg_pasync_thread. This speeds up
8510 		 * unmapping in cases where munmap(2) is called, while
8511 		 * raw async i/o is still in progress or where a thread
8512 		 * exits on data fault in a multithreaded application.
8513 		 */
8514 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
8515 			/*
8516 			 * Even if we grab segvn WRITER's lock or segp_slock
8517 			 * here, there might be another thread which could've
8518 			 * successfully performed lookup/insert just before
8519 			 * we acquired the lock here.  So, grabbing either
8520 			 * lock here is of not much use.  Until we devise
8521 			 * a strategy at upper layers to solve the
8522 			 * synchronization issues completely, we expect
8523 			 * applications to handle this appropriately.
8524 			 */
8525 			segvn_purge(seg);
8526 		}
8527 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8528 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8529 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
8530 		return (0);
8531 	} else if (type == L_PAGERECLAIM) {
8532 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
8533 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8534 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
8535 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8536 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8537 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
8538 		return (0);
8539 	}
8540 
8541 	if (seg->s_szc != 0) {
8542 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
8543 		addr = lpgaddr;
8544 		len = lpgeaddr - lpgaddr;
8545 		npages = (len >> PAGESHIFT);
8546 	}
8547 
8548 	/*
8549 	 * for now we only support pagelock to anon memory. We've to check
8550 	 * protections for vnode objects and call into the vnode driver.
8551 	 * That's too much for a fast path. Let the fault entry point handle it.
8552 	 */
8553 	if (svd->vp != NULL) {
8554 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8555 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
8556 		*ppp = NULL;
8557 		return (ENOTSUP);
8558 	}
8559 
8560 	/*
8561 	 * if anonmap is not yet created, let the fault entry point populate it
8562 	 * with anon ptrs.
8563 	 */
8564 	if ((amp = svd->amp) == NULL) {
8565 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8566 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
8567 		*ppp = NULL;
8568 		return (EFAULT);
8569 	}
8570 
8571 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8572 
8573 	/*
8574 	 * we acquire segp_slock to prevent duplicate entries
8575 	 * in seg_pcache
8576 	 */
8577 	mutex_enter(&svd->segp_slock);
8578 
8579 	/*
8580 	 * try to find pages in segment page cache
8581 	 */
8582 	pplist = seg_plookup(seg, addr, len, rw);
8583 	if (pplist != NULL) {
8584 		mutex_exit(&svd->segp_slock);
8585 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8586 		*ppp = pplist + adjustpages;
8587 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
8588 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
8589 		return (0);
8590 	}
8591 
8592 	if (rw == S_READ) {
8593 		protchk = PROT_READ;
8594 	} else {
8595 		protchk = PROT_WRITE;
8596 	}
8597 
8598 	if (svd->pageprot == 0) {
8599 		if ((svd->prot & protchk) == 0) {
8600 			mutex_exit(&svd->segp_slock);
8601 			error = EFAULT;
8602 			goto out;
8603 		}
8604 	} else {
8605 		/*
8606 		 * check page protections
8607 		 */
8608 		for (a = addr; a < addr + len; a += PAGESIZE) {
8609 			struct vpage *vp;
8610 
8611 			vp = &svd->vpage[seg_page(seg, a)];
8612 			if ((VPP_PROT(vp) & protchk) == 0) {
8613 				mutex_exit(&svd->segp_slock);
8614 				error = EFAULT;
8615 				goto out;
8616 			}
8617 		}
8618 	}
8619 
8620 	/*
8621 	 * Avoid per page overhead of segvn_slock_anonpages() for small
8622 	 * pages. For large pages segvn_slock_anonpages() only does real
8623 	 * work once per large page.  The tradeoff is that we may decrement
8624 	 * availrmem more than once for the same page but this is ok
8625 	 * for small pages.
8626 	 */
8627 	if (seg->s_szc == 0) {
8628 		mutex_enter(&freemem_lock);
8629 		if (availrmem < tune.t_minarmem + npages) {
8630 			mutex_exit(&freemem_lock);
8631 			mutex_exit(&svd->segp_slock);
8632 			error = ENOMEM;
8633 			goto out;
8634 		}
8635 		availrmem -= npages;
8636 		mutex_exit(&freemem_lock);
8637 	}
8638 
8639 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
8640 	pl = pplist;
8641 	*ppp = pplist + adjustpages;
8642 
8643 	page = seg_page(seg, addr);
8644 	anon_index = svd->anon_index + page;
8645 
8646 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8647 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
8648 		struct anon *ap;
8649 		struct vnode *vp;
8650 		u_offset_t off;
8651 		anon_sync_obj_t cookie;
8652 
8653 		anon_array_enter(amp, anon_index, &cookie);
8654 		ap = anon_get_ptr(amp->ahp, anon_index);
8655 		if (ap == NULL) {
8656 			anon_array_exit(&cookie);
8657 			break;
8658 		} else {
8659 			/*
8660 			 * We must never use seg_pcache for COW pages
8661 			 * because we might end up with original page still
8662 			 * lying in seg_pcache even after private page is
8663 			 * created. This leads to data corruption as
8664 			 * aio_write refers to the page still in cache
8665 			 * while all other accesses refer to the private
8666 			 * page.
8667 			 */
8668 			if (ap->an_refcnt != 1) {
8669 				anon_array_exit(&cookie);
8670 				break;
8671 			}
8672 		}
8673 		swap_xlate(ap, &vp, &off);
8674 		anon_array_exit(&cookie);
8675 
8676 		pp = page_lookup_nowait(vp, off, SE_SHARED);
8677 		if (pp == NULL) {
8678 			break;
8679 		}
8680 		if (seg->s_szc != 0 || pp->p_szc != 0) {
8681 			if (!segvn_slock_anonpages(pp, a == addr)) {
8682 				page_unlock(pp);
8683 				break;
8684 			}
8685 		} else {
8686 			szc0_npages++;
8687 		}
8688 		*pplist++ = pp;
8689 	}
8690 	ANON_LOCK_EXIT(&amp->a_rwlock);
8691 
8692 	ASSERT(npages >= szc0_npages);
8693 
8694 	if (a >= addr + len) {
8695 		mutex_enter(&freemem_lock);
8696 		if (seg->s_szc == 0 && npages != szc0_npages) {
8697 			ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
8698 			availrmem += (npages - szc0_npages);
8699 		}
8700 		svd->softlockcnt += npages;
8701 		segvn_pages_locked += npages;
8702 		mutex_exit(&freemem_lock);
8703 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
8704 			segvn_reclaim);
8705 		mutex_exit(&svd->segp_slock);
8706 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8707 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
8708 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
8709 		return (0);
8710 	}
8711 
8712 	mutex_exit(&svd->segp_slock);
8713 	if (seg->s_szc == 0) {
8714 		mutex_enter(&freemem_lock);
8715 		availrmem += npages;
8716 		mutex_exit(&freemem_lock);
8717 	}
8718 	error = EFAULT;
8719 	pplist = pl;
8720 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
8721 	while (np > (uint_t)0) {
8722 		ASSERT(PAGE_LOCKED(*pplist));
8723 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8724 			segvn_sunlock_anonpages(*pplist, pplist == pl);
8725 		}
8726 		page_unlock(*pplist);
8727 		np--;
8728 		pplist++;
8729 	}
8730 	kmem_free(pl, sizeof (page_t *) * npages);
8731 out:
8732 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8733 	*ppp = NULL;
8734 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8735 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
8736 	return (error);
8737 }
8738 
8739 /*
8740  * purge any cached pages in the I/O page cache
8741  */
8742 static void
8743 segvn_purge(struct seg *seg)
8744 {
8745 	seg_ppurge(seg);
8746 }
8747 
8748 static int
8749 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
8750 	enum seg_rw rw)
8751 {
8752 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8753 	pgcnt_t np, npages;
8754 	struct page **pl;
8755 	pgcnt_t szc0_npages = 0;
8756 
8757 #ifdef lint
8758 	addr = addr;
8759 #endif
8760 
8761 	npages = np = (len >> PAGESHIFT);
8762 	ASSERT(npages);
8763 	pl = pplist;
8764 	if (seg->s_szc != 0) {
8765 		size_t pgsz = page_get_pagesize(seg->s_szc);
8766 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
8767 			panic("segvn_reclaim: unaligned addr or len");
8768 			/*NOTREACHED*/
8769 		}
8770 	}
8771 
8772 	ASSERT(svd->vp == NULL && svd->amp != NULL);
8773 
8774 	while (np > (uint_t)0) {
8775 		if (rw == S_WRITE) {
8776 			hat_setrefmod(*pplist);
8777 		} else {
8778 			hat_setref(*pplist);
8779 		}
8780 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8781 			segvn_sunlock_anonpages(*pplist, pplist == pl);
8782 		} else {
8783 			szc0_npages++;
8784 		}
8785 		page_unlock(*pplist);
8786 		np--;
8787 		pplist++;
8788 	}
8789 	kmem_free(pl, sizeof (page_t *) * npages);
8790 
8791 	mutex_enter(&freemem_lock);
8792 	segvn_pages_locked -= npages;
8793 	svd->softlockcnt -= npages;
8794 	if (szc0_npages != 0) {
8795 		availrmem += szc0_npages;
8796 	}
8797 	mutex_exit(&freemem_lock);
8798 	if (svd->softlockcnt <= 0) {
8799 		if (AS_ISUNMAPWAIT(seg->s_as)) {
8800 			mutex_enter(&seg->s_as->a_contents);
8801 			if (AS_ISUNMAPWAIT(seg->s_as)) {
8802 				AS_CLRUNMAPWAIT(seg->s_as);
8803 				cv_broadcast(&seg->s_as->a_cv);
8804 			}
8805 			mutex_exit(&seg->s_as->a_contents);
8806 		}
8807 	}
8808 	return (0);
8809 }
8810 /*
8811  * get a memory ID for an addr in a given segment
8812  *
8813  * XXX only creates PAGESIZE pages if anon slots are not initialized.
8814  * At fault time they will be relocated into larger pages.
8815  */
8816 static int
8817 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
8818 {
8819 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8820 	struct anon 	*ap = NULL;
8821 	ulong_t		anon_index;
8822 	struct anon_map	*amp;
8823 	anon_sync_obj_t cookie;
8824 
8825 	if (svd->type == MAP_PRIVATE) {
8826 		memidp->val[0] = (uintptr_t)seg->s_as;
8827 		memidp->val[1] = (uintptr_t)addr;
8828 		return (0);
8829 	}
8830 
8831 	if (svd->type == MAP_SHARED) {
8832 		if (svd->vp) {
8833 			memidp->val[0] = (uintptr_t)svd->vp;
8834 			memidp->val[1] = (u_longlong_t)svd->offset +
8835 			    (uintptr_t)(addr - seg->s_base);
8836 			return (0);
8837 		} else {
8838 
8839 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8840 			if ((amp = svd->amp) != NULL) {
8841 				anon_index = svd->anon_index +
8842 				    seg_page(seg, addr);
8843 			}
8844 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8845 
8846 			ASSERT(amp != NULL);
8847 
8848 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8849 			anon_array_enter(amp, anon_index, &cookie);
8850 			ap = anon_get_ptr(amp->ahp, anon_index);
8851 			if (ap == NULL) {
8852 				page_t		*pp;
8853 
8854 				pp = anon_zero(seg, addr, &ap, svd->cred);
8855 				if (pp == NULL) {
8856 					anon_array_exit(&cookie);
8857 					ANON_LOCK_EXIT(&amp->a_rwlock);
8858 					return (ENOMEM);
8859 				}
8860 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
8861 								== NULL);
8862 				(void) anon_set_ptr(amp->ahp, anon_index,
8863 				    ap, ANON_SLEEP);
8864 				page_unlock(pp);
8865 			}
8866 
8867 			anon_array_exit(&cookie);
8868 			ANON_LOCK_EXIT(&amp->a_rwlock);
8869 
8870 			memidp->val[0] = (uintptr_t)ap;
8871 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
8872 			return (0);
8873 		}
8874 	}
8875 	return (EINVAL);
8876 }
8877 
8878 static int
8879 sameprot(struct seg *seg, caddr_t a, size_t len)
8880 {
8881 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8882 	struct vpage *vpage;
8883 	spgcnt_t pages = btop(len);
8884 	uint_t prot;
8885 
8886 	if (svd->pageprot == 0)
8887 		return (1);
8888 
8889 	ASSERT(svd->vpage != NULL);
8890 
8891 	vpage = &svd->vpage[seg_page(seg, a)];
8892 	prot = VPP_PROT(vpage);
8893 	vpage++;
8894 	pages--;
8895 	while (pages-- > 0) {
8896 		if (prot != VPP_PROT(vpage))
8897 			return (0);
8898 		vpage++;
8899 	}
8900 	return (1);
8901 }
8902 
8903 /*
8904  * Get memory allocation policy info for specified address in given segment
8905  */
8906 static lgrp_mem_policy_info_t *
8907 segvn_getpolicy(struct seg *seg, caddr_t addr)
8908 {
8909 	struct anon_map		*amp;
8910 	ulong_t			anon_index;
8911 	lgrp_mem_policy_info_t	*policy_info;
8912 	struct segvn_data	*svn_data;
8913 	u_offset_t		vn_off;
8914 	vnode_t			*vp;
8915 
8916 	ASSERT(seg != NULL);
8917 
8918 	svn_data = (struct segvn_data *)seg->s_data;
8919 	if (svn_data == NULL)
8920 		return (NULL);
8921 
8922 	/*
8923 	 * Get policy info for private or shared memory
8924 	 */
8925 	if (svn_data->type != MAP_SHARED) {
8926 		if (svn_data->tr_state != SEGVN_TR_ON) {
8927 			policy_info = &svn_data->policy_info;
8928 		} else {
8929 			policy_info = &svn_data->tr_policy_info;
8930 			ASSERT(policy_info->mem_policy ==
8931 			    LGRP_MEM_POLICY_NEXT_SEG);
8932 		}
8933 	} else {
8934 		amp = svn_data->amp;
8935 		anon_index = svn_data->anon_index + seg_page(seg, addr);
8936 		vp = svn_data->vp;
8937 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
8938 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
8939 	}
8940 
8941 	return (policy_info);
8942 }
8943 
8944 /*ARGSUSED*/
8945 static int
8946 segvn_capable(struct seg *seg, segcapability_t capability)
8947 {
8948 	return (0);
8949 }
8950 
8951 /*
8952  * Bind text vnode segment to an amp. If we bind successfully mappings will be
8953  * established to per vnode mapping per lgroup amp pages instead of to vnode
8954  * pages. There's one amp per vnode text mapping per lgroup. Many processes
8955  * may share the same text replication amp. If a suitable amp doesn't already
8956  * exist in svntr hash table create a new one.  We may fail to bind to amp if
8957  * segment is not eligible for text replication.  Code below first checks for
8958  * these conditions. If binding is successful segment tr_state is set to on
8959  * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
8960  * svd->amp remains as NULL.
8961  */
8962 static void
8963 segvn_textrepl(struct seg *seg)
8964 {
8965 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
8966 	vnode_t			*vp = svd->vp;
8967 	u_offset_t		off = svd->offset;
8968 	size_t			size = seg->s_size;
8969 	u_offset_t		eoff = off + size;
8970 	uint_t			szc = seg->s_szc;
8971 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
8972 	svntr_t			*svntrp;
8973 	struct vattr		va;
8974 	proc_t			*p = seg->s_as->a_proc;
8975 	lgrp_id_t		lgrp_id;
8976 	lgrp_id_t		olid;
8977 	int			first;
8978 	struct anon_map		*amp;
8979 
8980 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8981 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8982 	ASSERT(p != NULL);
8983 	ASSERT(svd->tr_state == SEGVN_TR_INIT);
8984 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
8985 	ASSERT(svd->flags & MAP_TEXT);
8986 	ASSERT(svd->type == MAP_PRIVATE);
8987 	ASSERT(vp != NULL && svd->amp == NULL);
8988 	ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
8989 	ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
8990 	ASSERT(seg->s_as != &kas);
8991 	ASSERT(off < eoff);
8992 	ASSERT(svntr_hashtab != NULL);
8993 
8994 	/*
8995 	 * If numa optimizations are no longer desired bail out.
8996 	 */
8997 	if (!lgrp_optimizations()) {
8998 		svd->tr_state = SEGVN_TR_OFF;
8999 		return;
9000 	}
9001 
9002 	/*
9003 	 * Avoid creating anon maps with size bigger than the file size.
9004 	 * If VOP_GETATTR() call fails bail out.
9005 	 */
9006 	va.va_mask = AT_SIZE | AT_MTIME;
9007 	if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
9008 		svd->tr_state = SEGVN_TR_OFF;
9009 		SEGVN_TR_ADDSTAT(gaerr);
9010 		return;
9011 	}
9012 	if (btopr(va.va_size) < btopr(eoff)) {
9013 		svd->tr_state = SEGVN_TR_OFF;
9014 		SEGVN_TR_ADDSTAT(overmap);
9015 		return;
9016 	}
9017 
9018 	/*
9019 	 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9020 	 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9021 	 * mapping that checks if trcache for this vnode needs to be
9022 	 * invalidated can't miss us.
9023 	 */
9024 	if (!(vp->v_flag & VVMEXEC)) {
9025 		mutex_enter(&vp->v_lock);
9026 		vp->v_flag |= VVMEXEC;
9027 		mutex_exit(&vp->v_lock);
9028 	}
9029 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9030 	/*
9031 	 * Bail out if potentially MAP_SHARED writable mappings exist to this
9032 	 * vnode.  We don't want to use old file contents from existing
9033 	 * replicas if this mapping was established after the original file
9034 	 * was changed.
9035 	 */
9036 	if (vn_is_mapped(vp, V_WRITE)) {
9037 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9038 		svd->tr_state = SEGVN_TR_OFF;
9039 		SEGVN_TR_ADDSTAT(wrcnt);
9040 		return;
9041 	}
9042 	svntrp = svntr_hashtab[hash].tr_head;
9043 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9044 		ASSERT(svntrp->tr_refcnt != 0);
9045 		if (svntrp->tr_vp != vp) {
9046 			continue;
9047 		}
9048 		/*
9049 		 * Bail out if file was changed after this replication entry
9050 		 * was created since we need to use the latest file contents.
9051 		 */
9052 		if (!svntrp->tr_valid ||
9053 		    svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9054 		    svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec) {
9055 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9056 			svd->tr_state = SEGVN_TR_OFF;
9057 			SEGVN_TR_ADDSTAT(stale);
9058 			return;
9059 		}
9060 		/*
9061 		 * if off, eoff and szc match current segment we found the
9062 		 * existing entry we can use.
9063 		 */
9064 		if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9065 		    svntrp->tr_szc == szc) {
9066 			break;
9067 		}
9068 		/*
9069 		 * Don't create different but overlapping in file offsets
9070 		 * entries to avoid replication of the same file pages more
9071 		 * than once per lgroup.
9072 		 */
9073 		if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9074 		    (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9075 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9076 			svd->tr_state = SEGVN_TR_OFF;
9077 			SEGVN_TR_ADDSTAT(overlap);
9078 			return;
9079 		}
9080 	}
9081 	/*
9082 	 * If we didn't find existing entry create a new one.
9083 	 */
9084 	if (svntrp == NULL) {
9085 		svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9086 		if (svntrp == NULL) {
9087 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9088 			svd->tr_state = SEGVN_TR_OFF;
9089 			SEGVN_TR_ADDSTAT(nokmem);
9090 			return;
9091 		}
9092 #ifdef DEBUG
9093 		{
9094 			lgrp_id_t i;
9095 			for (i = 0; i < NLGRPS_MAX; i++) {
9096 				ASSERT(svntrp->tr_amp[i] == NULL);
9097 			}
9098 		}
9099 #endif /* DEBUG */
9100 		svntrp->tr_vp = vp;
9101 		svntrp->tr_off = off;
9102 		svntrp->tr_eoff = eoff;
9103 		svntrp->tr_szc = szc;
9104 		svntrp->tr_valid = 1;
9105 		svntrp->tr_mtime = va.va_mtime;
9106 		svntrp->tr_refcnt = 0;
9107 		svntrp->tr_next = svntr_hashtab[hash].tr_head;
9108 		svntr_hashtab[hash].tr_head = svntrp;
9109 	}
9110 	first = 1;
9111 again:
9112 	/*
9113 	 * We want to pick a replica with pages on main thread's (t_tid = 1,
9114 	 * aka T1) lgrp. Currently text replication is only optimized for
9115 	 * workloads that either have all threads of a process on the same
9116 	 * lgrp or execute their large text primarily on main thread.
9117 	 */
9118 	lgrp_id = p->p_t1_lgrpid;
9119 	if (lgrp_id == LGRP_NONE) {
9120 		/*
9121 		 * In case exec() prefaults text on non main thread use
9122 		 * current thread lgrpid.  It will become main thread anyway
9123 		 * soon.
9124 		 */
9125 		lgrp_id = lgrp_home_id(curthread);
9126 	}
9127 	/*
9128 	 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet.  Otherwise
9129 	 * just set it to NLGRPS_MAX if it's different from current process T1
9130 	 * home lgrp.  p_tr_lgrpid is used to detect if process uses text
9131 	 * replication and T1 new home is different from lgrp used for text
9132 	 * replication. When this happens asyncronous segvn thread rechecks if
9133 	 * segments should change lgrps used for text replication.  If we fail
9134 	 * to set p_tr_lgrpid with cas32 then set it to NLGRPS_MAX without cas
9135 	 * if it's not already NLGRPS_MAX and not equal lgrp_id we want to
9136 	 * use.  We don't need to use cas in this case because another thread
9137 	 * that races in between our non atomic check and set may only change
9138 	 * p_tr_lgrpid to NLGRPS_MAX at this point.
9139 	 */
9140 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9141 	olid = p->p_tr_lgrpid;
9142 	if (lgrp_id != olid && olid != NLGRPS_MAX) {
9143 		lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9144 		if (cas32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != olid) {
9145 			olid = p->p_tr_lgrpid;
9146 			ASSERT(olid != LGRP_NONE);
9147 			if (olid != lgrp_id && olid != NLGRPS_MAX) {
9148 				p->p_tr_lgrpid = NLGRPS_MAX;
9149 			}
9150 		}
9151 		ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9152 		membar_producer();
9153 		/*
9154 		 * lgrp_move_thread() won't schedule async recheck after
9155 		 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9156 		 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9157 		 * is not LGRP_NONE.
9158 		 */
9159 		if (first && p->p_t1_lgrpid != LGRP_NONE &&
9160 		    p->p_t1_lgrpid != lgrp_id) {
9161 			first = 0;
9162 			goto again;
9163 		}
9164 	}
9165 	/*
9166 	 * If no amp was created yet for lgrp_id create a new one as long as
9167 	 * we have enough memory to afford it.
9168 	 */
9169 	if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9170 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9171 		if (trmem > segvn_textrepl_max_bytes) {
9172 			SEGVN_TR_ADDSTAT(normem);
9173 			goto fail;
9174 		}
9175 		if (anon_try_resv_zone(size, NULL) == 0) {
9176 			SEGVN_TR_ADDSTAT(noanon);
9177 			goto fail;
9178 		}
9179 		amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9180 		if (amp == NULL) {
9181 			anon_unresv_zone(size, NULL);
9182 			SEGVN_TR_ADDSTAT(nokmem);
9183 			goto fail;
9184 		}
9185 		ASSERT(amp->refcnt == 1);
9186 		amp->a_szc = szc;
9187 		svntrp->tr_amp[lgrp_id] = amp;
9188 		SEGVN_TR_ADDSTAT(newamp);
9189 	}
9190 	svntrp->tr_refcnt++;
9191 	ASSERT(svd->svn_trnext == NULL);
9192 	ASSERT(svd->svn_trprev == NULL);
9193 	svd->svn_trnext = svntrp->tr_svnhead;
9194 	svd->svn_trprev = NULL;
9195 	if (svntrp->tr_svnhead != NULL) {
9196 		svntrp->tr_svnhead->svn_trprev = svd;
9197 	}
9198 	svntrp->tr_svnhead = svd;
9199 	ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9200 	ASSERT(amp->refcnt >= 1);
9201 	svd->amp = amp;
9202 	svd->anon_index = 0;
9203 	svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9204 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9205 	svd->tr_state = SEGVN_TR_ON;
9206 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9207 	SEGVN_TR_ADDSTAT(repl);
9208 	return;
9209 fail:
9210 	ASSERT(segvn_textrepl_bytes >= size);
9211 	atomic_add_long(&segvn_textrepl_bytes, -size);
9212 	ASSERT(svntrp != NULL);
9213 	ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
9214 	if (svntrp->tr_refcnt == 0) {
9215 		ASSERT(svntrp == svntr_hashtab[hash].tr_head);
9216 		svntr_hashtab[hash].tr_head = svntrp->tr_next;
9217 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9218 		kmem_cache_free(svntr_cache, svntrp);
9219 	} else {
9220 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9221 	}
9222 	svd->tr_state = SEGVN_TR_OFF;
9223 }
9224 
9225 /*
9226  * Convert seg back to regular vnode mapping seg by unbinding it from its text
9227  * replication amp.  This routine is most typically called when segment is
9228  * unmapped but can also be called when segment no longer qualifies for text
9229  * replication (e.g. due to protection changes). If unload_unmap is set use
9230  * HAT_UNLOAD_UNMAP flag in hat_unload_callback().  If we are the last user of
9231  * svntr free all its anon maps and remove it from the hash table.
9232  */
9233 static void
9234 segvn_textunrepl(struct seg *seg, int unload_unmap)
9235 {
9236 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9237 	vnode_t			*vp = svd->vp;
9238 	u_offset_t		off = svd->offset;
9239 	size_t			size = seg->s_size;
9240 	u_offset_t		eoff = off + size;
9241 	uint_t			szc = seg->s_szc;
9242 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9243 	svntr_t			*svntrp;
9244 	svntr_t			**prv_svntrp;
9245 	lgrp_id_t		lgrp_id = svd->tr_policy_info.mem_lgrpid;
9246 	lgrp_id_t		i;
9247 
9248 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9249 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
9250 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9251 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9252 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9253 	ASSERT(svd->amp != NULL);
9254 	ASSERT(svd->amp->refcnt >= 1);
9255 	ASSERT(svd->anon_index == 0);
9256 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9257 	ASSERT(svntr_hashtab != NULL);
9258 
9259 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9260 	prv_svntrp = &svntr_hashtab[hash].tr_head;
9261 	for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9262 		ASSERT(svntrp->tr_refcnt != 0);
9263 		if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9264 		    svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9265 			break;
9266 		}
9267 	}
9268 	if (svntrp == NULL) {
9269 		panic("segvn_textunrepl: svntr record not found");
9270 	}
9271 	if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9272 		panic("segvn_textunrepl: amp mismatch");
9273 	}
9274 	svd->tr_state = SEGVN_TR_OFF;
9275 	svd->amp = NULL;
9276 	if (svd->svn_trprev == NULL) {
9277 		ASSERT(svntrp->tr_svnhead == svd);
9278 		svntrp->tr_svnhead = svd->svn_trnext;
9279 		if (svntrp->tr_svnhead != NULL) {
9280 			svntrp->tr_svnhead->svn_trprev = NULL;
9281 		}
9282 		svd->svn_trnext = NULL;
9283 	} else {
9284 		svd->svn_trprev->svn_trnext = svd->svn_trnext;
9285 		if (svd->svn_trnext != NULL) {
9286 			svd->svn_trnext->svn_trprev = svd->svn_trprev;
9287 			svd->svn_trnext = NULL;
9288 		}
9289 		svd->svn_trprev = NULL;
9290 	}
9291 	if (--svntrp->tr_refcnt) {
9292 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9293 		goto done;
9294 	}
9295 	*prv_svntrp = svntrp->tr_next;
9296 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9297 	for (i = 0; i < NLGRPS_MAX; i++) {
9298 		struct anon_map *amp = svntrp->tr_amp[i];
9299 		if (amp == NULL) {
9300 			continue;
9301 		}
9302 		ASSERT(amp->refcnt == 1);
9303 		ASSERT(amp->swresv == size);
9304 		ASSERT(amp->size == size);
9305 		ASSERT(amp->a_szc == szc);
9306 		if (amp->a_szc != 0) {
9307 			anon_free_pages(amp->ahp, 0, size, szc);
9308 		} else {
9309 			anon_free(amp->ahp, 0, size);
9310 		}
9311 		svntrp->tr_amp[i] = NULL;
9312 		ASSERT(segvn_textrepl_bytes >= size);
9313 		atomic_add_long(&segvn_textrepl_bytes, -size);
9314 		anon_unresv_zone(amp->swresv, NULL);
9315 		amp->refcnt = 0;
9316 		anonmap_free(amp);
9317 	}
9318 	kmem_cache_free(svntr_cache, svntrp);
9319 done:
9320 	hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9321 	    unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9322 }
9323 
9324 /*
9325  * This is called when a MAP_SHARED writabble mapping is created to a vnode
9326  * that is currently used for execution (VVMEXEC flag is set). In this case we
9327  * need to prevent further use of existing replicas.
9328  */
9329 static void
9330 segvn_inval_trcache(vnode_t *vp)
9331 {
9332 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9333 	svntr_t			*svntrp;
9334 
9335 	ASSERT(vp->v_flag & VVMEXEC);
9336 
9337 	if (svntr_hashtab == NULL) {
9338 		return;
9339 	}
9340 
9341 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9342 	svntrp = svntr_hashtab[hash].tr_head;
9343 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9344 		ASSERT(svntrp->tr_refcnt != 0);
9345 		if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9346 			svntrp->tr_valid = 0;
9347 		}
9348 	}
9349 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9350 }
9351 
9352 static void
9353 segvn_trasync_thread(void)
9354 {
9355 	callb_cpr_t cpr_info;
9356 	kmutex_t cpr_lock;	/* just for CPR stuff */
9357 
9358 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9359 
9360 	CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9361 	    callb_generic_cpr, "segvn_async");
9362 
9363 	if (segvn_update_textrepl_interval == 0) {
9364 		segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9365 	} else {
9366 		segvn_update_textrepl_interval *= hz;
9367 	}
9368 	(void) timeout(segvn_trupdate_wakeup, NULL,
9369 	    segvn_update_textrepl_interval);
9370 
9371 	for (;;) {
9372 		mutex_enter(&cpr_lock);
9373 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
9374 		mutex_exit(&cpr_lock);
9375 		sema_p(&segvn_trasync_sem);
9376 		mutex_enter(&cpr_lock);
9377 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9378 		mutex_exit(&cpr_lock);
9379 		segvn_trupdate();
9380 	}
9381 }
9382 
9383 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9384 
9385 static void
9386 segvn_trupdate_wakeup(void *dummy)
9387 {
9388 	uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9389 
9390 	if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9391 		segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9392 		sema_v(&segvn_trasync_sem);
9393 	}
9394 
9395 	if (!segvn_disable_textrepl_update &&
9396 	    segvn_update_textrepl_interval != 0) {
9397 		(void) timeout(segvn_trupdate_wakeup, dummy,
9398 		    segvn_update_textrepl_interval);
9399 	}
9400 }
9401 
9402 static void
9403 segvn_trupdate(void)
9404 {
9405 	ulong_t		hash;
9406 	svntr_t		*svntrp;
9407 	segvn_data_t	*svd;
9408 
9409 	ASSERT(svntr_hashtab != NULL);
9410 
9411 	for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9412 		mutex_enter(&svntr_hashtab[hash].tr_lock);
9413 		svntrp = svntr_hashtab[hash].tr_head;
9414 		for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9415 			ASSERT(svntrp->tr_refcnt != 0);
9416 			svd = svntrp->tr_svnhead;
9417 			for (; svd != NULL; svd = svd->svn_trnext) {
9418 				segvn_trupdate_seg(svd->seg, svd, svntrp,
9419 				    hash);
9420 			}
9421 		}
9422 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9423 	}
9424 }
9425 
9426 static void
9427 segvn_trupdate_seg(struct seg *seg,
9428 	segvn_data_t *svd,
9429 	svntr_t *svntrp,
9430 	ulong_t hash)
9431 {
9432 	proc_t			*p;
9433 	lgrp_id_t		lgrp_id;
9434 	struct as		*as;
9435 	size_t			size;
9436 	struct anon_map		*amp;
9437 
9438 	ASSERT(svd->vp != NULL);
9439 	ASSERT(svd->vp == svntrp->tr_vp);
9440 	ASSERT(svd->offset == svntrp->tr_off);
9441 	ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
9442 	ASSERT(seg != NULL);
9443 	ASSERT(svd->seg == seg);
9444 	ASSERT(seg->s_data == (void *)svd);
9445 	ASSERT(seg->s_szc == svntrp->tr_szc);
9446 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9447 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9448 	ASSERT(svd->amp != NULL);
9449 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9450 	ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
9451 	ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
9452 	ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
9453 	ASSERT(svntrp->tr_refcnt != 0);
9454 	ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
9455 
9456 	as = seg->s_as;
9457 	ASSERT(as != NULL && as != &kas);
9458 	p = as->a_proc;
9459 	ASSERT(p != NULL);
9460 	ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9461 	lgrp_id = p->p_t1_lgrpid;
9462 	if (lgrp_id == LGRP_NONE) {
9463 		return;
9464 	}
9465 	ASSERT(lgrp_id < NLGRPS_MAX);
9466 	if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
9467 		return;
9468 	}
9469 
9470 	/*
9471 	 * Use tryenter locking since we are locking as/seg and svntr hash
9472 	 * lock in reverse from syncrounous thread order.
9473 	 */
9474 	if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) {
9475 		SEGVN_TR_ADDSTAT(nolock);
9476 		if (segvn_lgrp_trthr_migrs_snpsht) {
9477 			segvn_lgrp_trthr_migrs_snpsht = 0;
9478 		}
9479 		return;
9480 	}
9481 	if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
9482 		AS_LOCK_EXIT(as, &as->a_lock);
9483 		SEGVN_TR_ADDSTAT(nolock);
9484 		if (segvn_lgrp_trthr_migrs_snpsht) {
9485 			segvn_lgrp_trthr_migrs_snpsht = 0;
9486 		}
9487 		return;
9488 	}
9489 	size = seg->s_size;
9490 	if (svntrp->tr_amp[lgrp_id] == NULL) {
9491 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9492 		if (trmem > segvn_textrepl_max_bytes) {
9493 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9494 			AS_LOCK_EXIT(as, &as->a_lock);
9495 			atomic_add_long(&segvn_textrepl_bytes, -size);
9496 			SEGVN_TR_ADDSTAT(normem);
9497 			return;
9498 		}
9499 		if (anon_try_resv_zone(size, NULL) == 0) {
9500 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9501 			AS_LOCK_EXIT(as, &as->a_lock);
9502 			atomic_add_long(&segvn_textrepl_bytes, -size);
9503 			SEGVN_TR_ADDSTAT(noanon);
9504 			return;
9505 		}
9506 		amp = anonmap_alloc(size, size, KM_NOSLEEP);
9507 		if (amp == NULL) {
9508 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9509 			AS_LOCK_EXIT(as, &as->a_lock);
9510 			atomic_add_long(&segvn_textrepl_bytes, -size);
9511 			anon_unresv_zone(size, NULL);
9512 			SEGVN_TR_ADDSTAT(nokmem);
9513 			return;
9514 		}
9515 		ASSERT(amp->refcnt == 1);
9516 		amp->a_szc = seg->s_szc;
9517 		svntrp->tr_amp[lgrp_id] = amp;
9518 	}
9519 	/*
9520 	 * We don't need to drop the bucket lock but here we give other
9521 	 * threads a chance.  svntr and svd can't be unlinked as long as
9522 	 * segment lock is held as a writer and AS held as well.  After we
9523 	 * retake bucket lock we'll continue from where we left. We'll be able
9524 	 * to reach the end of either list since new entries are always added
9525 	 * to the beginning of the lists.
9526 	 */
9527 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9528 	hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
9529 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9530 
9531 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9532 	ASSERT(svd->amp != NULL);
9533 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9534 	ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
9535 	ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
9536 
9537 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9538 	svd->amp = svntrp->tr_amp[lgrp_id];
9539 	p->p_tr_lgrpid = NLGRPS_MAX;
9540 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9541 	AS_LOCK_EXIT(as, &as->a_lock);
9542 
9543 	ASSERT(svntrp->tr_refcnt != 0);
9544 	ASSERT(svd->vp == svntrp->tr_vp);
9545 	ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
9546 	ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
9547 	ASSERT(svd->seg == seg);
9548 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9549 
9550 	SEGVN_TR_ADDSTAT(asyncrepl);
9551 }
9552