xref: /titanic_44/usr/src/uts/common/vm/seg_vn.c (revision 1979231e1e29c981e5d1e6cee60f2db46d052b00)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - shared or copy-on-write from a vnode/anonymous memory.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/t_lock.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/debug.h>
52 #include <sys/cred.h>
53 #include <sys/vmsystm.h>
54 #include <sys/tuneable.h>
55 #include <sys/bitmap.h>
56 #include <sys/swap.h>
57 #include <sys/kmem.h>
58 #include <sys/sysmacros.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/vm.h>
62 #include <sys/dumphdr.h>
63 #include <sys/lgrp.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_vn.h>
69 #include <vm/pvn.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/vpage.h>
73 
74 /*
75  * Private seg op routines.
76  */
77 static int	segvn_dup(struct seg *seg, struct seg *newseg);
78 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
79 static void	segvn_free(struct seg *seg);
80 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
81 		    caddr_t addr, size_t len, enum fault_type type,
82 		    enum seg_rw rw);
83 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
84 static int	segvn_setprot(struct seg *seg, caddr_t addr,
85 		    size_t len, uint_t prot);
86 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
87 		    size_t len, uint_t prot);
88 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
89 static size_t	segvn_swapout(struct seg *seg);
90 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
91 		    int attr, uint_t flags);
92 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
93 		    char *vec);
94 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
95 		    int attr, int op, ulong_t *lockmap, size_t pos);
96 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
97 		    uint_t *protv);
98 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
99 static int	segvn_gettype(struct seg *seg, caddr_t addr);
100 static int	segvn_getvp(struct seg *seg, caddr_t addr,
101 		    struct vnode **vpp);
102 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
103 		    uint_t behav);
104 static void	segvn_dump(struct seg *seg);
105 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
106 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
107 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
108 		    uint_t szc);
109 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
110 		    memid_t *memidp);
111 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
112 static int	segvn_capable(struct seg *seg, segcapability_t capable);
113 
114 struct	seg_ops segvn_ops = {
115 	segvn_dup,
116 	segvn_unmap,
117 	segvn_free,
118 	segvn_fault,
119 	segvn_faulta,
120 	segvn_setprot,
121 	segvn_checkprot,
122 	segvn_kluster,
123 	segvn_swapout,
124 	segvn_sync,
125 	segvn_incore,
126 	segvn_lockop,
127 	segvn_getprot,
128 	segvn_getoffset,
129 	segvn_gettype,
130 	segvn_getvp,
131 	segvn_advise,
132 	segvn_dump,
133 	segvn_pagelock,
134 	segvn_setpagesize,
135 	segvn_getmemid,
136 	segvn_getpolicy,
137 	segvn_capable,
138 };
139 
140 /*
141  * Common zfod structures, provided as a shorthand for others to use.
142  */
143 static segvn_crargs_t zfod_segvn_crargs =
144 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
145 static segvn_crargs_t kzfod_segvn_crargs =
146 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
147 	PROT_ALL & ~PROT_USER);
148 static segvn_crargs_t stack_noexec_crargs =
149 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
150 
151 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
152 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
153 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
154 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
155 
156 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
157 
158 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
159 
160 static int	segvn_concat(struct seg *, struct seg *, int);
161 static int	segvn_extend_prev(struct seg *, struct seg *,
162 		    struct segvn_crargs *, size_t);
163 static int	segvn_extend_next(struct seg *, struct seg *,
164 		    struct segvn_crargs *, size_t);
165 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
166 static void	segvn_pagelist_rele(page_t **);
167 static void	segvn_setvnode_mpss(vnode_t *);
168 static void	segvn_relocate_pages(page_t **, page_t *);
169 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
170 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
171     uint_t, page_t **, page_t **, uint_t *, int *);
172 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
173     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
174 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
175     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
176 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
177     u_offset_t, struct vpage *, page_t **, uint_t,
178     enum fault_type, enum seg_rw, int, int);
179 static void	segvn_vpage(struct seg *);
180 
181 static void segvn_purge(struct seg *seg);
182 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
183     enum seg_rw);
184 
185 static int sameprot(struct seg *, caddr_t, size_t);
186 
187 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
188 static int segvn_clrszc(struct seg *);
189 static struct seg *segvn_split_seg(struct seg *, caddr_t);
190 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
191     ulong_t, uint_t);
192 
193 static int segvn_pp_lock_anonpages(page_t *, int);
194 static void segvn_pp_unlock_anonpages(page_t *, int);
195 
196 static struct kmem_cache *segvn_cache;
197 
198 #ifdef VM_STATS
199 static struct segvnvmstats_str {
200 	ulong_t	fill_vp_pages[31];
201 	ulong_t fltvnpages[49];
202 	ulong_t	fullszcpages[10];
203 	ulong_t	relocatepages[3];
204 	ulong_t	fltanpages[17];
205 	ulong_t pagelock[3];
206 	ulong_t	demoterange[3];
207 } segvnvmstats;
208 #endif /* VM_STATS */
209 
210 #define	SDR_RANGE	1		/* demote entire range */
211 #define	SDR_END		2		/* demote non aligned ends only */
212 
213 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {            \
214 		if ((len) != 0) { 		      	      		      \
215 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
216 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
217 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
218 			    (len)), pgsz);				      \
219 			ASSERT(lpgeaddr > lpgaddr);		      	      \
220 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
221 		} else {					      	      \
222 			lpgeaddr = lpgaddr = (addr);	      		      \
223 		}							      \
224 	}
225 
226 /*ARGSUSED*/
227 static int
228 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
229 {
230 	struct segvn_data *svd = buf;
231 
232 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
233 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
234 	return (0);
235 }
236 
237 /*ARGSUSED1*/
238 static void
239 segvn_cache_destructor(void *buf, void *cdrarg)
240 {
241 	struct segvn_data *svd = buf;
242 
243 	rw_destroy(&svd->lock);
244 	mutex_destroy(&svd->segp_slock);
245 }
246 
247 /*
248  * Patching this variable to non-zero allows the system to run with
249  * stacks marked as "not executable".  It's a bit of a kludge, but is
250  * provided as a tweakable for platforms that export those ABIs
251  * (e.g. sparc V8) that have executable stacks enabled by default.
252  * There are also some restrictions for platforms that don't actually
253  * implement 'noexec' protections.
254  *
255  * Once enabled, the system is (therefore) unable to provide a fully
256  * ABI-compliant execution environment, though practically speaking,
257  * most everything works.  The exceptions are generally some interpreters
258  * and debuggers that create executable code on the stack and jump
259  * into it (without explicitly mprotecting the address range to include
260  * PROT_EXEC).
261  *
262  * One important class of applications that are disabled are those
263  * that have been transformed into malicious agents using one of the
264  * numerous "buffer overflow" attacks.  See 4007890.
265  */
266 int noexec_user_stack = 0;
267 int noexec_user_stack_log = 1;
268 
269 int segvn_lpg_disable = 0;
270 uint_t segvn_maxpgszc = 0;
271 
272 ulong_t segvn_vmpss_clrszc_cnt;
273 ulong_t segvn_vmpss_clrszc_err;
274 ulong_t segvn_fltvnpages_clrszc_cnt;
275 ulong_t segvn_fltvnpages_clrszc_err;
276 ulong_t segvn_setpgsz_align_err;
277 ulong_t segvn_setpgsz_anon_align_err;
278 ulong_t segvn_setpgsz_getattr_err;
279 ulong_t segvn_setpgsz_eof_err;
280 ulong_t segvn_faultvnmpss_align_err1;
281 ulong_t segvn_faultvnmpss_align_err2;
282 ulong_t segvn_faultvnmpss_align_err3;
283 ulong_t segvn_faultvnmpss_align_err4;
284 ulong_t segvn_faultvnmpss_align_err5;
285 ulong_t	segvn_vmpss_pageio_deadlk_err;
286 
287 /*
288  * Initialize segvn data structures
289  */
290 void
291 segvn_init(void)
292 {
293 	uint_t maxszc;
294 	uint_t szc;
295 	size_t pgsz;
296 
297 	segvn_cache = kmem_cache_create("segvn_cache",
298 		sizeof (struct segvn_data), 0,
299 		segvn_cache_constructor, segvn_cache_destructor, NULL,
300 		NULL, NULL, 0);
301 
302 	if (segvn_lpg_disable != 0)
303 		return;
304 	szc = maxszc = page_num_pagesizes() - 1;
305 	if (szc == 0) {
306 		segvn_lpg_disable = 1;
307 		return;
308 	}
309 	if (page_get_pagesize(0) != PAGESIZE) {
310 		panic("segvn_init: bad szc 0");
311 		/*NOTREACHED*/
312 	}
313 	while (szc != 0) {
314 		pgsz = page_get_pagesize(szc);
315 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
316 			panic("segvn_init: bad szc %d", szc);
317 			/*NOTREACHED*/
318 		}
319 		szc--;
320 	}
321 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
322 		segvn_maxpgszc = maxszc;
323 }
324 
325 #define	SEGVN_PAGEIO	((void *)0x1)
326 #define	SEGVN_NOPAGEIO	((void *)0x2)
327 
328 static void
329 segvn_setvnode_mpss(vnode_t *vp)
330 {
331 	int err;
332 
333 	ASSERT(vp->v_mpssdata == NULL ||
334 	    vp->v_mpssdata == SEGVN_PAGEIO ||
335 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
336 
337 	if (vp->v_mpssdata == NULL) {
338 		if (vn_vmpss_usepageio(vp)) {
339 			err = VOP_PAGEIO(vp, (page_t *)NULL,
340 			    (u_offset_t)0, 0, 0, CRED());
341 		} else {
342 			err = ENOSYS;
343 		}
344 		/*
345 		 * set v_mpssdata just once per vnode life
346 		 * so that it never changes.
347 		 */
348 		mutex_enter(&vp->v_lock);
349 		if (vp->v_mpssdata == NULL) {
350 			if (err == EINVAL) {
351 				vp->v_mpssdata = SEGVN_PAGEIO;
352 			} else {
353 				vp->v_mpssdata = SEGVN_NOPAGEIO;
354 			}
355 		}
356 		mutex_exit(&vp->v_lock);
357 	}
358 }
359 
360 int
361 segvn_create(struct seg *seg, void *argsp)
362 {
363 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
364 	struct segvn_data *svd;
365 	size_t swresv = 0;
366 	struct cred *cred;
367 	struct anon_map *amp;
368 	int error = 0;
369 	size_t pgsz;
370 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
371 
372 
373 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
374 
375 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
376 		panic("segvn_create type");
377 		/*NOTREACHED*/
378 	}
379 
380 	/*
381 	 * Check arguments.  If a shared anon structure is given then
382 	 * it is illegal to also specify a vp.
383 	 */
384 	if (a->amp != NULL && a->vp != NULL) {
385 		panic("segvn_create anon_map");
386 		/*NOTREACHED*/
387 	}
388 
389 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
390 	if (a->type == MAP_SHARED)
391 		a->flags &= ~MAP_NORESERVE;
392 
393 	if (a->szc != 0) {
394 		if (segvn_lpg_disable != 0 ||
395 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
396 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
397 			a->szc = 0;
398 		} else {
399 			if (a->szc > segvn_maxpgszc)
400 				a->szc = segvn_maxpgszc;
401 			pgsz = page_get_pagesize(a->szc);
402 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
403 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
404 				a->szc = 0;
405 			} else if (a->vp != NULL) {
406 				extern struct vnode kvp;
407 				if (IS_SWAPFSVP(a->vp) || a->vp == &kvp) {
408 					/*
409 					 * paranoid check.
410 					 * hat_page_demote() is not supported
411 					 * on swapfs pages.
412 					 */
413 					a->szc = 0;
414 				} else if (map_addr_vacalign_check(seg->s_base,
415 				    a->offset & PAGEMASK)) {
416 					a->szc = 0;
417 				}
418 			} else if (a->amp != NULL) {
419 				pgcnt_t anum = btopr(a->offset);
420 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
421 				if (!IS_P2ALIGNED(anum, pgcnt)) {
422 					a->szc = 0;
423 				}
424 			}
425 		}
426 	}
427 
428 	/*
429 	 * If segment may need private pages, reserve them now.
430 	 */
431 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
432 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
433 		if (anon_resv(seg->s_size) == 0)
434 			return (EAGAIN);
435 		swresv = seg->s_size;
436 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
437 			seg, swresv, 1);
438 	}
439 
440 	/*
441 	 * Reserve any mapping structures that may be required.
442 	 */
443 	hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
444 
445 	if (a->cred) {
446 		cred = a->cred;
447 		crhold(cred);
448 	} else {
449 		crhold(cred = CRED());
450 	}
451 
452 	/* Inform the vnode of the new mapping */
453 	if (a->vp) {
454 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
455 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
456 		    a->maxprot, a->type, cred);
457 		if (error) {
458 			if (swresv != 0) {
459 				anon_unresv(swresv);
460 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
461 					"anon proc:%p %lu %u",
462 					seg, swresv, 0);
463 			}
464 			crfree(cred);
465 			hat_unload(seg->s_as->a_hat, seg->s_base,
466 				seg->s_size, HAT_UNLOAD_UNMAP);
467 			return (error);
468 		}
469 	}
470 
471 	/*
472 	 * If more than one segment in the address space, and
473 	 * they're adjacent virtually, try to concatenate them.
474 	 * Don't concatenate if an explicit anon_map structure
475 	 * was supplied (e.g., SystemV shared memory).
476 	 */
477 	if (a->amp == NULL) {
478 		struct seg *pseg, *nseg;
479 		struct segvn_data *psvd, *nsvd;
480 		lgrp_mem_policy_t ppolicy, npolicy;
481 		uint_t	lgrp_mem_policy_flags = 0;
482 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
483 
484 		/*
485 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
486 		 * extending stack/heap segments.
487 		 */
488 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
489 			!(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
490 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
491 		} else {
492 			/*
493 			 * Get policy when not extending it from another segment
494 			 */
495 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
496 		}
497 
498 		/*
499 		 * First, try to concatenate the previous and new segments
500 		 */
501 		pseg = AS_SEGPREV(seg->s_as, seg);
502 		if (pseg != NULL &&
503 		    pseg->s_base + pseg->s_size == seg->s_base &&
504 		    pseg->s_ops == &segvn_ops) {
505 			/*
506 			 * Get memory allocation policy from previous segment.
507 			 * When extension is specified (e.g. for heap) apply
508 			 * this policy to the new segment regardless of the
509 			 * outcome of segment concatenation.  Extension occurs
510 			 * for non-default policy otherwise default policy is
511 			 * used and is based on extended segment size.
512 			 */
513 			psvd = (struct segvn_data *)pseg->s_data;
514 			ppolicy = psvd->policy_info.mem_policy;
515 			if (lgrp_mem_policy_flags ==
516 			    LGRP_MP_FLAG_EXTEND_UP) {
517 				if (ppolicy != lgrp_mem_default_policy) {
518 					mpolicy = ppolicy;
519 				} else {
520 					mpolicy = lgrp_mem_policy_default(
521 					    pseg->s_size + seg->s_size,
522 					    a->type);
523 				}
524 			}
525 
526 			if (mpolicy == ppolicy &&
527 			    (pseg->s_size + seg->s_size <=
528 			    segvn_comb_thrshld || psvd->amp == NULL) &&
529 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
530 				/*
531 				 * success! now try to concatenate
532 				 * with following seg
533 				 */
534 				crfree(cred);
535 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
536 				if (nseg != NULL &&
537 				    nseg != pseg &&
538 				    nseg->s_ops == &segvn_ops &&
539 				    pseg->s_base + pseg->s_size ==
540 				    nseg->s_base)
541 					(void) segvn_concat(pseg, nseg, 0);
542 				ASSERT(pseg->s_szc == 0 ||
543 				    (a->szc == pseg->s_szc &&
544 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
545 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
546 				return (0);
547 			}
548 		}
549 
550 		/*
551 		 * Failed, so try to concatenate with following seg
552 		 */
553 		nseg = AS_SEGNEXT(seg->s_as, seg);
554 		if (nseg != NULL &&
555 		    seg->s_base + seg->s_size == nseg->s_base &&
556 		    nseg->s_ops == &segvn_ops) {
557 			/*
558 			 * Get memory allocation policy from next segment.
559 			 * When extension is specified (e.g. for stack) apply
560 			 * this policy to the new segment regardless of the
561 			 * outcome of segment concatenation.  Extension occurs
562 			 * for non-default policy otherwise default policy is
563 			 * used and is based on extended segment size.
564 			 */
565 			nsvd = (struct segvn_data *)nseg->s_data;
566 			npolicy = nsvd->policy_info.mem_policy;
567 			if (lgrp_mem_policy_flags ==
568 			    LGRP_MP_FLAG_EXTEND_DOWN) {
569 				if (npolicy != lgrp_mem_default_policy) {
570 					mpolicy = npolicy;
571 				} else {
572 					mpolicy = lgrp_mem_policy_default(
573 					    nseg->s_size + seg->s_size,
574 					    a->type);
575 				}
576 			}
577 
578 			if (mpolicy == npolicy &&
579 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
580 				crfree(cred);
581 				ASSERT(nseg->s_szc == 0 ||
582 				    (a->szc == nseg->s_szc &&
583 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
584 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
585 				return (0);
586 			}
587 		}
588 	}
589 
590 	if (a->vp != NULL) {
591 		VN_HOLD(a->vp);
592 		if (a->type == MAP_SHARED)
593 			lgrp_shm_policy_init(NULL, a->vp);
594 	}
595 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
596 
597 	seg->s_ops = &segvn_ops;
598 	seg->s_data = (void *)svd;
599 	seg->s_szc = a->szc;
600 
601 	svd->vp = a->vp;
602 	/*
603 	 * Anonymous mappings have no backing file so the offset is meaningless.
604 	 */
605 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
606 	svd->prot = a->prot;
607 	svd->maxprot = a->maxprot;
608 	svd->pageprot = 0;
609 	svd->type = a->type;
610 	svd->vpage = NULL;
611 	svd->cred = cred;
612 	svd->advice = MADV_NORMAL;
613 	svd->pageadvice = 0;
614 	svd->flags = (ushort_t)a->flags;
615 	svd->softlockcnt = 0;
616 	if (a->szc != 0 && a->vp != NULL) {
617 		segvn_setvnode_mpss(a->vp);
618 	}
619 
620 	amp = a->amp;
621 	if ((svd->amp = amp) == NULL) {
622 		svd->anon_index = 0;
623 		if (svd->type == MAP_SHARED) {
624 			svd->swresv = 0;
625 			/*
626 			 * Shared mappings to a vp need no other setup.
627 			 * If we have a shared mapping to an anon_map object
628 			 * which hasn't been allocated yet,  allocate the
629 			 * struct now so that it will be properly shared
630 			 * by remembering the swap reservation there.
631 			 */
632 			if (a->vp == NULL) {
633 				svd->amp = anonmap_alloc(seg->s_size, swresv);
634 				svd->amp->a_szc = seg->s_szc;
635 			}
636 		} else {
637 			/*
638 			 * Private mapping (with or without a vp).
639 			 * Allocate anon_map when needed.
640 			 */
641 			svd->swresv = swresv;
642 		}
643 	} else {
644 		pgcnt_t anon_num;
645 
646 		/*
647 		 * Mapping to an existing anon_map structure without a vp.
648 		 * For now we will insure that the segment size isn't larger
649 		 * than the size - offset gives us.  Later on we may wish to
650 		 * have the anon array dynamically allocated itself so that
651 		 * we don't always have to allocate all the anon pointer slots.
652 		 * This of course involves adding extra code to check that we
653 		 * aren't trying to use an anon pointer slot beyond the end
654 		 * of the currently allocated anon array.
655 		 */
656 		if ((amp->size - a->offset) < seg->s_size) {
657 			panic("segvn_create anon_map size");
658 			/*NOTREACHED*/
659 		}
660 
661 		anon_num = btopr(a->offset);
662 
663 		if (a->type == MAP_SHARED) {
664 			/*
665 			 * SHARED mapping to a given anon_map.
666 			 */
667 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
668 			amp->refcnt++;
669 			if (a->szc > amp->a_szc) {
670 				amp->a_szc = a->szc;
671 			}
672 			ANON_LOCK_EXIT(&amp->a_rwlock);
673 			svd->anon_index = anon_num;
674 			svd->swresv = 0;
675 		} else {
676 			/*
677 			 * PRIVATE mapping to a given anon_map.
678 			 * Make sure that all the needed anon
679 			 * structures are created (so that we will
680 			 * share the underlying pages if nothing
681 			 * is written by this mapping) and then
682 			 * duplicate the anon array as is done
683 			 * when a privately mapped segment is dup'ed.
684 			 */
685 			struct anon *ap;
686 			caddr_t addr;
687 			caddr_t eaddr;
688 			ulong_t	anon_idx;
689 			int hat_flag = HAT_LOAD;
690 
691 			if (svd->flags & MAP_TEXT) {
692 				hat_flag |= HAT_LOAD_TEXT;
693 			}
694 
695 			svd->amp = anonmap_alloc(seg->s_size, 0);
696 			svd->amp->a_szc = seg->s_szc;
697 			svd->anon_index = 0;
698 			svd->swresv = swresv;
699 
700 			/*
701 			 * Prevent 2 threads from allocating anon
702 			 * slots simultaneously.
703 			 */
704 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
705 			eaddr = seg->s_base + seg->s_size;
706 
707 			for (anon_idx = anon_num, addr = seg->s_base;
708 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
709 				page_t *pp;
710 
711 				if ((ap = anon_get_ptr(amp->ahp,
712 				    anon_idx)) != NULL)
713 					continue;
714 
715 				/*
716 				 * Allocate the anon struct now.
717 				 * Might as well load up translation
718 				 * to the page while we're at it...
719 				 */
720 				pp = anon_zero(seg, addr, &ap, cred);
721 				if (ap == NULL || pp == NULL) {
722 					panic("segvn_create anon_zero");
723 					/*NOTREACHED*/
724 				}
725 
726 				/*
727 				 * Re-acquire the anon_map lock and
728 				 * initialize the anon array entry.
729 				 */
730 				ASSERT(anon_get_ptr(amp->ahp,
731 				    anon_idx) == NULL);
732 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
733 				    ANON_SLEEP);
734 
735 				ASSERT(seg->s_szc == 0);
736 				ASSERT(!IS_VMODSORT(pp->p_vnode));
737 
738 				hat_memload(seg->s_as->a_hat, addr, pp,
739 					svd->prot & ~PROT_WRITE, hat_flag);
740 
741 				page_unlock(pp);
742 			}
743 			ASSERT(seg->s_szc == 0);
744 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
745 			    0, seg->s_size);
746 			ANON_LOCK_EXIT(&amp->a_rwlock);
747 		}
748 	}
749 
750 	/*
751 	 * Set default memory allocation policy for segment
752 	 *
753 	 * Always set policy for private memory at least for initialization
754 	 * even if this is a shared memory segment
755 	 */
756 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
757 
758 	if (svd->type == MAP_SHARED)
759 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
760 		    svd->vp, svd->offset, seg->s_size);
761 
762 	return (0);
763 }
764 
765 /*
766  * Concatenate two existing segments, if possible.
767  * Return 0 on success, -1 if two segments are not compatible
768  * or -2 on memory allocation failure.
769  * If amp_cat == 1 then try and concat segments with anon maps
770  */
771 static int
772 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
773 {
774 	struct segvn_data *svd1 = seg1->s_data;
775 	struct segvn_data *svd2 = seg2->s_data;
776 	struct anon_map *amp1 = svd1->amp;
777 	struct anon_map *amp2 = svd2->amp;
778 	struct vpage *vpage1 = svd1->vpage;
779 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
780 	size_t size, nvpsize;
781 	pgcnt_t npages1, npages2;
782 
783 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
784 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
785 	ASSERT(seg1->s_ops == seg2->s_ops);
786 
787 	/* both segments exist, try to merge them */
788 #define	incompat(x)	(svd1->x != svd2->x)
789 	if (incompat(vp) || incompat(maxprot) ||
790 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
791 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
792 	    incompat(type) || incompat(cred) || incompat(flags) ||
793 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
794 	    (svd2->softlockcnt > 0))
795 		return (-1);
796 #undef incompat
797 
798 	/*
799 	 * vp == NULL implies zfod, offset doesn't matter
800 	 */
801 	if (svd1->vp != NULL &&
802 	    svd1->offset + seg1->s_size != svd2->offset) {
803 		return (-1);
804 	}
805 
806 	/*
807 	 * Fail early if we're not supposed to concatenate
808 	 * segments with non NULL amp.
809 	 */
810 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
811 		return (-1);
812 	}
813 
814 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
815 		if (amp1 != amp2) {
816 			return (-1);
817 		}
818 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
819 		    svd2->anon_index) {
820 			return (-1);
821 		}
822 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
823 	}
824 
825 	/*
826 	 * If either seg has vpages, create a new merged vpage array.
827 	 */
828 	if (vpage1 != NULL || vpage2 != NULL) {
829 		struct vpage *vp;
830 
831 		npages1 = seg_pages(seg1);
832 		npages2 = seg_pages(seg2);
833 		nvpsize = vpgtob(npages1 + npages2);
834 
835 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
836 			return (-2);
837 		}
838 		if (vpage1 != NULL) {
839 			bcopy(vpage1, nvpage, vpgtob(npages1));
840 		}
841 		if (vpage2 != NULL) {
842 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
843 		}
844 		for (vp = nvpage; vp < nvpage + npages1; vp++) {
845 			if (svd2->pageprot && !svd1->pageprot) {
846 				VPP_SETPROT(vp, svd1->prot);
847 			}
848 			if (svd2->pageadvice && !svd1->pageadvice) {
849 				VPP_SETADVICE(vp, svd1->advice);
850 			}
851 		}
852 		for (vp = nvpage + npages1;
853 		    vp < nvpage + npages1 + npages2; vp++) {
854 			if (svd1->pageprot && !svd2->pageprot) {
855 				VPP_SETPROT(vp, svd2->prot);
856 			}
857 			if (svd1->pageadvice && !svd2->pageadvice) {
858 				VPP_SETADVICE(vp, svd2->advice);
859 			}
860 		}
861 	}
862 
863 	/*
864 	 * If either segment has private pages, create a new merged anon
865 	 * array. If mergeing shared anon segments just decrement anon map's
866 	 * refcnt.
867 	 */
868 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
869 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
870 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
871 		ASSERT(amp1->refcnt >= 2);
872 		amp1->refcnt--;
873 		ANON_LOCK_EXIT(&amp1->a_rwlock);
874 		svd2->amp = NULL;
875 	} else if (amp1 != NULL || amp2 != NULL) {
876 		struct anon_hdr *nahp;
877 		struct anon_map *namp = NULL;
878 		size_t asize;
879 
880 		ASSERT(svd1->type == MAP_PRIVATE);
881 
882 		asize = seg1->s_size + seg2->s_size;
883 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
884 			if (nvpage != NULL) {
885 				kmem_free(nvpage, nvpsize);
886 			}
887 			return (-2);
888 		}
889 		if (amp1 != NULL) {
890 			/*
891 			 * XXX anon rwlock is not really needed because
892 			 * this is a private segment and we are writers.
893 			 */
894 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
895 			ASSERT(amp1->refcnt == 1);
896 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
897 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
898 				anon_release(nahp, btop(asize));
899 				ANON_LOCK_EXIT(&amp1->a_rwlock);
900 				if (nvpage != NULL) {
901 					kmem_free(nvpage, nvpsize);
902 				}
903 				return (-2);
904 			}
905 		}
906 		if (amp2 != NULL) {
907 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
908 			ASSERT(amp2->refcnt == 1);
909 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
910 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
911 			    ANON_NOSLEEP)) {
912 				anon_release(nahp, btop(asize));
913 				ANON_LOCK_EXIT(&amp2->a_rwlock);
914 				if (amp1 != NULL) {
915 					ANON_LOCK_EXIT(&amp1->a_rwlock);
916 				}
917 				if (nvpage != NULL) {
918 					kmem_free(nvpage, nvpsize);
919 				}
920 				return (-2);
921 			}
922 		}
923 		if (amp1 != NULL) {
924 			namp = amp1;
925 			anon_release(amp1->ahp, btop(amp1->size));
926 		}
927 		if (amp2 != NULL) {
928 			if (namp == NULL) {
929 				ASSERT(amp1 == NULL);
930 				namp = amp2;
931 				anon_release(amp2->ahp, btop(amp2->size));
932 			} else {
933 				amp2->refcnt--;
934 				ANON_LOCK_EXIT(&amp2->a_rwlock);
935 				anonmap_free(amp2);
936 			}
937 			svd2->amp = NULL; /* needed for seg_free */
938 		}
939 		namp->ahp = nahp;
940 		namp->size = asize;
941 		svd1->amp = namp;
942 		svd1->anon_index = 0;
943 		ANON_LOCK_EXIT(&namp->a_rwlock);
944 	}
945 	/*
946 	 * Now free the old vpage structures.
947 	 */
948 	if (nvpage != NULL) {
949 		if (vpage1 != NULL) {
950 			kmem_free(vpage1, vpgtob(npages1));
951 		}
952 		if (vpage2 != NULL) {
953 			svd2->vpage = NULL;
954 			kmem_free(vpage2, vpgtob(npages2));
955 		}
956 		if (svd2->pageprot) {
957 			svd1->pageprot = 1;
958 		}
959 		if (svd2->pageadvice) {
960 			svd1->pageadvice = 1;
961 		}
962 		svd1->vpage = nvpage;
963 	}
964 
965 	/* all looks ok, merge segments */
966 	svd1->swresv += svd2->swresv;
967 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
968 	size = seg2->s_size;
969 	seg_free(seg2);
970 	seg1->s_size += size;
971 	return (0);
972 }
973 
974 /*
975  * Extend the previous segment (seg1) to include the
976  * new segment (seg2 + a), if possible.
977  * Return 0 on success.
978  */
979 static int
980 segvn_extend_prev(seg1, seg2, a, swresv)
981 	struct seg *seg1, *seg2;
982 	struct segvn_crargs *a;
983 	size_t swresv;
984 {
985 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
986 	size_t size;
987 	struct anon_map *amp1;
988 	struct vpage *new_vpage;
989 
990 	/*
991 	 * We don't need any segment level locks for "segvn" data
992 	 * since the address space is "write" locked.
993 	 */
994 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
995 
996 	/* second segment is new, try to extend first */
997 	/* XXX - should also check cred */
998 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
999 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1000 	    svd1->type != a->type || svd1->flags != a->flags ||
1001 	    seg1->s_szc != a->szc)
1002 		return (-1);
1003 
1004 	/* vp == NULL implies zfod, offset doesn't matter */
1005 	if (svd1->vp != NULL &&
1006 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1007 		return (-1);
1008 
1009 	amp1 = svd1->amp;
1010 	if (amp1) {
1011 		pgcnt_t newpgs;
1012 
1013 		/*
1014 		 * Segment has private pages, can data structures
1015 		 * be expanded?
1016 		 *
1017 		 * Acquire the anon_map lock to prevent it from changing,
1018 		 * if it is shared.  This ensures that the anon_map
1019 		 * will not change while a thread which has a read/write
1020 		 * lock on an address space references it.
1021 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1022 		 * is 1.
1023 		 *
1024 		 * Can't grow a MAP_SHARED segment with an anonmap because
1025 		 * there may be existing anon slots where we want to extend
1026 		 * the segment and we wouldn't know what to do with them
1027 		 * (e.g., for tmpfs right thing is to just leave them there,
1028 		 * for /dev/zero they should be cleared out).
1029 		 */
1030 		if (svd1->type == MAP_SHARED)
1031 			return (-1);
1032 
1033 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1034 		if (amp1->refcnt > 1) {
1035 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1036 			return (-1);
1037 		}
1038 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1039 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1040 
1041 		if (newpgs == 0) {
1042 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1043 			return (-1);
1044 		}
1045 		amp1->size = ptob(newpgs);
1046 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1047 	}
1048 	if (svd1->vpage != NULL) {
1049 		new_vpage =
1050 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1051 			KM_NOSLEEP);
1052 		if (new_vpage == NULL)
1053 			return (-1);
1054 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1055 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1056 		svd1->vpage = new_vpage;
1057 		if (svd1->pageprot) {
1058 			struct vpage *vp, *evp;
1059 
1060 			vp = new_vpage + seg_pages(seg1);
1061 			evp = vp + seg_pages(seg2);
1062 			for (; vp < evp; vp++)
1063 				VPP_SETPROT(vp, a->prot);
1064 		}
1065 	}
1066 	size = seg2->s_size;
1067 	seg_free(seg2);
1068 	seg1->s_size += size;
1069 	svd1->swresv += swresv;
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Extend the next segment (seg2) to include the
1075  * new segment (seg1 + a), if possible.
1076  * Return 0 on success.
1077  */
1078 static int
1079 segvn_extend_next(
1080 	struct seg *seg1,
1081 	struct seg *seg2,
1082 	struct segvn_crargs *a,
1083 	size_t swresv)
1084 {
1085 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1086 	size_t size;
1087 	struct anon_map *amp2;
1088 	struct vpage *new_vpage;
1089 
1090 	/*
1091 	 * We don't need any segment level locks for "segvn" data
1092 	 * since the address space is "write" locked.
1093 	 */
1094 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1095 
1096 	/* first segment is new, try to extend second */
1097 	/* XXX - should also check cred */
1098 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1099 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1100 	    svd2->type != a->type || svd2->flags != a->flags ||
1101 	    seg2->s_szc != a->szc)
1102 		return (-1);
1103 	/* vp == NULL implies zfod, offset doesn't matter */
1104 	if (svd2->vp != NULL &&
1105 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1106 		return (-1);
1107 
1108 	amp2 = svd2->amp;
1109 	if (amp2) {
1110 		pgcnt_t newpgs;
1111 
1112 		/*
1113 		 * Segment has private pages, can data structures
1114 		 * be expanded?
1115 		 *
1116 		 * Acquire the anon_map lock to prevent it from changing,
1117 		 * if it is shared.  This ensures that the anon_map
1118 		 * will not change while a thread which has a read/write
1119 		 * lock on an address space references it.
1120 		 *
1121 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1122 		 * is 1.
1123 		 */
1124 		if (svd2->type == MAP_SHARED)
1125 			return (-1);
1126 
1127 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1128 		if (amp2->refcnt > 1) {
1129 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1130 			return (-1);
1131 		}
1132 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1133 		    btop(seg2->s_size), btop(seg1->s_size),
1134 		    ANON_NOSLEEP | ANON_GROWDOWN);
1135 
1136 		if (newpgs == 0) {
1137 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1138 			return (-1);
1139 		}
1140 		amp2->size = ptob(newpgs);
1141 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1142 	}
1143 	if (svd2->vpage != NULL) {
1144 		new_vpage =
1145 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1146 			KM_NOSLEEP);
1147 		if (new_vpage == NULL) {
1148 			/* Not merging segments so adjust anon_index back */
1149 			if (amp2)
1150 				svd2->anon_index += seg_pages(seg1);
1151 			return (-1);
1152 		}
1153 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1154 		    vpgtob(seg_pages(seg2)));
1155 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1156 		svd2->vpage = new_vpage;
1157 		if (svd2->pageprot) {
1158 			struct vpage *vp, *evp;
1159 
1160 			vp = new_vpage;
1161 			evp = vp + seg_pages(seg1);
1162 			for (; vp < evp; vp++)
1163 				VPP_SETPROT(vp, a->prot);
1164 		}
1165 	}
1166 	size = seg1->s_size;
1167 	seg_free(seg1);
1168 	seg2->s_size += size;
1169 	seg2->s_base -= size;
1170 	svd2->offset -= size;
1171 	svd2->swresv += swresv;
1172 	return (0);
1173 }
1174 
1175 static int
1176 segvn_dup(struct seg *seg, struct seg *newseg)
1177 {
1178 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1179 	struct segvn_data *newsvd;
1180 	pgcnt_t npages = seg_pages(seg);
1181 	int error = 0;
1182 	uint_t prot;
1183 	size_t len;
1184 
1185 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1186 
1187 	/*
1188 	 * If segment has anon reserved, reserve more for the new seg.
1189 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1190 	 * allocated anon slots; thus we reserve for the child as many slots
1191 	 * as the parent has allocated. This semantic prevents the child or
1192 	 * parent from dieing during a copy-on-write fault caused by trying
1193 	 * to write a shared pre-existing anon page.
1194 	 */
1195 	if ((len = svd->swresv) != 0) {
1196 		if (anon_resv(svd->swresv) == 0)
1197 			return (ENOMEM);
1198 
1199 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1200 			seg, len, 0);
1201 	}
1202 
1203 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1204 
1205 	newseg->s_ops = &segvn_ops;
1206 	newseg->s_data = (void *)newsvd;
1207 	newseg->s_szc = seg->s_szc;
1208 
1209 	if ((newsvd->vp = svd->vp) != NULL) {
1210 		VN_HOLD(svd->vp);
1211 		if (svd->type == MAP_SHARED)
1212 			lgrp_shm_policy_init(NULL, svd->vp);
1213 	}
1214 	newsvd->offset = svd->offset;
1215 	newsvd->prot = svd->prot;
1216 	newsvd->maxprot = svd->maxprot;
1217 	newsvd->pageprot = svd->pageprot;
1218 	newsvd->type = svd->type;
1219 	newsvd->cred = svd->cred;
1220 	crhold(newsvd->cred);
1221 	newsvd->advice = svd->advice;
1222 	newsvd->pageadvice = svd->pageadvice;
1223 	newsvd->swresv = svd->swresv;
1224 	newsvd->flags = svd->flags;
1225 	newsvd->softlockcnt = 0;
1226 	newsvd->policy_info = svd->policy_info;
1227 	if ((newsvd->amp = svd->amp) == NULL) {
1228 		/*
1229 		 * Not attaching to a shared anon object.
1230 		 */
1231 		newsvd->anon_index = 0;
1232 	} else {
1233 		struct anon_map *amp;
1234 
1235 		amp = svd->amp;
1236 		if (svd->type == MAP_SHARED) {
1237 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1238 			amp->refcnt++;
1239 			ANON_LOCK_EXIT(&amp->a_rwlock);
1240 			newsvd->anon_index = svd->anon_index;
1241 		} else {
1242 			int reclaim = 1;
1243 
1244 			/*
1245 			 * Allocate and initialize new anon_map structure.
1246 			 */
1247 			newsvd->amp = anonmap_alloc(newseg->s_size, 0);
1248 			newsvd->amp->a_szc = newseg->s_szc;
1249 			newsvd->anon_index = 0;
1250 
1251 			/*
1252 			 * We don't have to acquire the anon_map lock
1253 			 * for the new segment (since it belongs to an
1254 			 * address space that is still not associated
1255 			 * with any process), or the segment in the old
1256 			 * address space (since all threads in it
1257 			 * are stopped while duplicating the address space).
1258 			 */
1259 
1260 			/*
1261 			 * The goal of the following code is to make sure that
1262 			 * softlocked pages do not end up as copy on write
1263 			 * pages.  This would cause problems where one
1264 			 * thread writes to a page that is COW and a different
1265 			 * thread in the same process has softlocked it.  The
1266 			 * softlock lock would move away from this process
1267 			 * because the write would cause this process to get
1268 			 * a copy (without the softlock).
1269 			 *
1270 			 * The strategy here is to just break the
1271 			 * sharing on pages that could possibly be
1272 			 * softlocked.
1273 			 */
1274 retry:
1275 			if (svd->softlockcnt) {
1276 				struct anon *ap, *newap;
1277 				size_t i;
1278 				uint_t vpprot;
1279 				page_t *anon_pl[1+1], *pp;
1280 				caddr_t addr;
1281 				ulong_t anon_idx = 0;
1282 
1283 				/*
1284 				 * The softlock count might be non zero
1285 				 * because some pages are still stuck in the
1286 				 * cache for lazy reclaim. Flush the cache
1287 				 * now. This should drop the count to zero.
1288 				 * [or there is really I/O going on to these
1289 				 * pages]. Note, we have the writers lock so
1290 				 * nothing gets inserted during the flush.
1291 				 */
1292 				if (reclaim == 1) {
1293 					segvn_purge(seg);
1294 					reclaim = 0;
1295 					goto retry;
1296 				}
1297 				i = btopr(seg->s_size);
1298 				addr = seg->s_base;
1299 				/*
1300 				 * XXX break cow sharing using PAGESIZE
1301 				 * pages. They will be relocated into larger
1302 				 * pages at fault time.
1303 				 */
1304 				while (i-- > 0) {
1305 					if (ap = anon_get_ptr(amp->ahp,
1306 					    anon_idx)) {
1307 						error = anon_getpage(&ap,
1308 						    &vpprot, anon_pl, PAGESIZE,
1309 						    seg, addr, S_READ,
1310 						    svd->cred);
1311 						if (error) {
1312 							newsvd->vpage = NULL;
1313 							goto out;
1314 						}
1315 						/*
1316 						 * prot need not be computed
1317 						 * below 'cause anon_private is
1318 						 * going to ignore it anyway
1319 						 * as child doesn't inherit
1320 						 * pagelock from parent.
1321 						 */
1322 						prot = svd->pageprot ?
1323 						    VPP_PROT(
1324 						    &svd->vpage[
1325 						    seg_page(seg, addr)])
1326 						    : svd->prot;
1327 						pp = anon_private(&newap,
1328 						    newseg, addr, prot,
1329 						    anon_pl[0],	0,
1330 						    newsvd->cred);
1331 						if (pp == NULL) {
1332 							/* no mem abort */
1333 							newsvd->vpage = NULL;
1334 							error = ENOMEM;
1335 							goto out;
1336 						}
1337 						(void) anon_set_ptr(
1338 						    newsvd->amp->ahp, anon_idx,
1339 						    newap, ANON_SLEEP);
1340 						page_unlock(pp);
1341 					}
1342 					addr += PAGESIZE;
1343 					anon_idx++;
1344 				}
1345 			} else {	/* common case */
1346 				if (seg->s_szc != 0) {
1347 					/*
1348 					 * If at least one of anon slots of a
1349 					 * large page exists then make sure
1350 					 * all anon slots of a large page
1351 					 * exist to avoid partial cow sharing
1352 					 * of a large page in the future.
1353 					 */
1354 					anon_dup_fill_holes(amp->ahp,
1355 					    svd->anon_index, newsvd->amp->ahp,
1356 					    0, seg->s_size, seg->s_szc,
1357 					    svd->vp != NULL);
1358 				} else {
1359 					anon_dup(amp->ahp, svd->anon_index,
1360 					    newsvd->amp->ahp, 0, seg->s_size);
1361 				}
1362 
1363 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1364 				    seg->s_size, PROT_WRITE);
1365 			}
1366 		}
1367 	}
1368 	/*
1369 	 * If necessary, create a vpage structure for the new segment.
1370 	 * Do not copy any page lock indications.
1371 	 */
1372 	if (svd->vpage != NULL) {
1373 		uint_t i;
1374 		struct vpage *ovp = svd->vpage;
1375 		struct vpage *nvp;
1376 
1377 		nvp = newsvd->vpage =
1378 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1379 		for (i = 0; i < npages; i++) {
1380 			*nvp = *ovp++;
1381 			VPP_CLRPPLOCK(nvp++);
1382 		}
1383 	} else
1384 		newsvd->vpage = NULL;
1385 
1386 	/* Inform the vnode of the new mapping */
1387 	if (newsvd->vp != NULL) {
1388 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1389 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1390 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1391 	}
1392 out:
1393 	return (error);
1394 }
1395 
1396 
1397 /*
1398  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1399  * those pages actually processed by the HAT
1400  */
1401 extern int free_pages;
1402 
1403 static void
1404 segvn_hat_unload_callback(hat_callback_t *cb)
1405 {
1406 	struct seg		*seg = cb->hcb_data;
1407 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1408 	size_t			len;
1409 	u_offset_t		off;
1410 
1411 	ASSERT(svd->vp != NULL);
1412 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1413 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1414 
1415 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1416 	off = cb->hcb_start_addr - seg->s_base;
1417 	free_vp_pages(svd->vp, svd->offset + off, len);
1418 }
1419 
1420 
1421 static int
1422 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1423 {
1424 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1425 	struct segvn_data *nsvd;
1426 	struct seg *nseg;
1427 	struct anon_map *amp;
1428 	pgcnt_t	opages;		/* old segment size in pages */
1429 	pgcnt_t	npages;		/* new segment size in pages */
1430 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1431 	hat_callback_t callback;	/* used for free_vp_pages() */
1432 	hat_callback_t *cbp = NULL;
1433 	caddr_t nbase;
1434 	size_t nsize;
1435 	size_t oswresv;
1436 	int reclaim = 1;
1437 
1438 	/*
1439 	 * We don't need any segment level locks for "segvn" data
1440 	 * since the address space is "write" locked.
1441 	 */
1442 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1443 
1444 	/*
1445 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1446 	 * softlockcnt is protected from change by the as write lock.
1447 	 */
1448 retry:
1449 	if (svd->softlockcnt > 0) {
1450 		/*
1451 		 * since we do have the writers lock nobody can fill
1452 		 * the cache during the purge. The flush either succeeds
1453 		 * or we still have pending I/Os.
1454 		 */
1455 		if (reclaim == 1) {
1456 			segvn_purge(seg);
1457 			reclaim = 0;
1458 			goto retry;
1459 		}
1460 		return (EAGAIN);
1461 	}
1462 
1463 	/*
1464 	 * Check for bad sizes
1465 	 */
1466 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1467 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1468 		panic("segvn_unmap");
1469 		/*NOTREACHED*/
1470 	}
1471 
1472 	if (seg->s_szc != 0) {
1473 		size_t pgsz = page_get_pagesize(seg->s_szc);
1474 		int err;
1475 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1476 			ASSERT(seg->s_base != addr || seg->s_size != len);
1477 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1478 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1479 			if (err == 0) {
1480 				return (IE_RETRY);
1481 			}
1482 			return (err);
1483 		}
1484 	}
1485 
1486 	/* Inform the vnode of the unmapping. */
1487 	if (svd->vp) {
1488 		int error;
1489 
1490 		error = VOP_DELMAP(svd->vp,
1491 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1492 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1493 			svd->type, svd->cred);
1494 
1495 		if (error == EAGAIN)
1496 			return (error);
1497 	}
1498 	/*
1499 	 * Remove any page locks set through this mapping.
1500 	 */
1501 	(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1502 
1503 	/*
1504 	 * Unload any hardware translations in the range to be taken out.
1505 	 * Use a callback to invoke free_vp_pages() effectively.
1506 	 */
1507 	if (svd->vp != NULL && free_pages != 0) {
1508 		callback.hcb_data = seg;
1509 		callback.hcb_function = segvn_hat_unload_callback;
1510 		cbp = &callback;
1511 	}
1512 	hat_unload_callback(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP, cbp);
1513 
1514 	/*
1515 	 * Check for entire segment
1516 	 */
1517 	if (addr == seg->s_base && len == seg->s_size) {
1518 		seg_free(seg);
1519 		return (0);
1520 	}
1521 
1522 	opages = seg_pages(seg);
1523 	dpages = btop(len);
1524 	npages = opages - dpages;
1525 	amp = svd->amp;
1526 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1527 
1528 	/*
1529 	 * Check for beginning of segment
1530 	 */
1531 	if (addr == seg->s_base) {
1532 		if (svd->vpage != NULL) {
1533 			size_t nbytes;
1534 			struct vpage *ovpage;
1535 
1536 			ovpage = svd->vpage;	/* keep pointer to vpage */
1537 
1538 			nbytes = vpgtob(npages);
1539 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1540 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1541 
1542 			/* free up old vpage */
1543 			kmem_free(ovpage, vpgtob(opages));
1544 		}
1545 		if (amp != NULL) {
1546 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1547 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1548 				/*
1549 				 * Free up now unused parts of anon_map array.
1550 				 */
1551 				if (amp->a_szc == seg->s_szc) {
1552 					if (seg->s_szc != 0) {
1553 						anon_free_pages(amp->ahp,
1554 						    svd->anon_index, len,
1555 						    seg->s_szc);
1556 					} else {
1557 						anon_free(amp->ahp,
1558 						    svd->anon_index,
1559 						    len);
1560 					}
1561 				} else {
1562 					ASSERT(svd->type == MAP_SHARED);
1563 					ASSERT(amp->a_szc > seg->s_szc);
1564 					anon_shmap_free_pages(amp,
1565 					    svd->anon_index, len);
1566 				}
1567 
1568 				/*
1569 				 * Unreserve swap space for the
1570 				 * unmapped chunk of this segment in
1571 				 * case it's MAP_SHARED
1572 				 */
1573 				if (svd->type == MAP_SHARED) {
1574 					anon_unresv(len);
1575 					amp->swresv -= len;
1576 				}
1577 			}
1578 			ANON_LOCK_EXIT(&amp->a_rwlock);
1579 			svd->anon_index += dpages;
1580 		}
1581 		if (svd->vp != NULL)
1582 			svd->offset += len;
1583 
1584 		if (svd->swresv) {
1585 			if (svd->flags & MAP_NORESERVE) {
1586 				ASSERT(amp);
1587 				oswresv = svd->swresv;
1588 
1589 				svd->swresv = ptob(anon_pages(amp->ahp,
1590 				    svd->anon_index, npages));
1591 				anon_unresv(oswresv - svd->swresv);
1592 			} else {
1593 				anon_unresv(len);
1594 				svd->swresv -= len;
1595 			}
1596 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1597 				seg, len, 0);
1598 		}
1599 
1600 		seg->s_base += len;
1601 		seg->s_size -= len;
1602 		return (0);
1603 	}
1604 
1605 	/*
1606 	 * Check for end of segment
1607 	 */
1608 	if (addr + len == seg->s_base + seg->s_size) {
1609 		if (svd->vpage != NULL) {
1610 			size_t nbytes;
1611 			struct vpage *ovpage;
1612 
1613 			ovpage = svd->vpage;	/* keep pointer to vpage */
1614 
1615 			nbytes = vpgtob(npages);
1616 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1617 			bcopy(ovpage, svd->vpage, nbytes);
1618 
1619 			/* free up old vpage */
1620 			kmem_free(ovpage, vpgtob(opages));
1621 
1622 		}
1623 		if (amp != NULL) {
1624 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1625 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1626 				/*
1627 				 * Free up now unused parts of anon_map array.
1628 				 */
1629 				ulong_t an_idx = svd->anon_index + npages;
1630 				if (amp->a_szc == seg->s_szc) {
1631 					if (seg->s_szc != 0) {
1632 						anon_free_pages(amp->ahp,
1633 						    an_idx, len,
1634 						    seg->s_szc);
1635 					} else {
1636 						anon_free(amp->ahp, an_idx,
1637 						    len);
1638 					}
1639 				} else {
1640 					ASSERT(svd->type == MAP_SHARED);
1641 					ASSERT(amp->a_szc > seg->s_szc);
1642 					anon_shmap_free_pages(amp,
1643 					    an_idx, len);
1644 				}
1645 
1646 				/*
1647 				 * Unreserve swap space for the
1648 				 * unmapped chunk of this segment in
1649 				 * case it's MAP_SHARED
1650 				 */
1651 				if (svd->type == MAP_SHARED) {
1652 					anon_unresv(len);
1653 					amp->swresv -= len;
1654 				}
1655 			}
1656 			ANON_LOCK_EXIT(&amp->a_rwlock);
1657 		}
1658 
1659 		if (svd->swresv) {
1660 			if (svd->flags & MAP_NORESERVE) {
1661 				ASSERT(amp);
1662 				oswresv = svd->swresv;
1663 				svd->swresv = ptob(anon_pages(amp->ahp,
1664 					svd->anon_index, npages));
1665 				anon_unresv(oswresv - svd->swresv);
1666 			} else {
1667 				anon_unresv(len);
1668 				svd->swresv -= len;
1669 			}
1670 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1671 				"anon proc:%p %lu %u", seg, len, 0);
1672 		}
1673 
1674 		seg->s_size -= len;
1675 		return (0);
1676 	}
1677 
1678 	/*
1679 	 * The section to go is in the middle of the segment,
1680 	 * have to make it into two segments.  nseg is made for
1681 	 * the high end while seg is cut down at the low end.
1682 	 */
1683 	nbase = addr + len;				/* new seg base */
1684 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1685 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1686 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1687 	if (nseg == NULL) {
1688 		panic("segvn_unmap seg_alloc");
1689 		/*NOTREACHED*/
1690 	}
1691 	nseg->s_ops = seg->s_ops;
1692 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1693 	nseg->s_data = (void *)nsvd;
1694 	nseg->s_szc = seg->s_szc;
1695 	*nsvd = *svd;
1696 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
1697 	nsvd->swresv = 0;
1698 	nsvd->softlockcnt = 0;
1699 
1700 	if (svd->vp != NULL) {
1701 		VN_HOLD(nsvd->vp);
1702 		if (nsvd->type == MAP_SHARED)
1703 			lgrp_shm_policy_init(NULL, nsvd->vp);
1704 	}
1705 	crhold(svd->cred);
1706 
1707 	if (svd->vpage == NULL) {
1708 		nsvd->vpage = NULL;
1709 	} else {
1710 		/* need to split vpage into two arrays */
1711 		size_t nbytes;
1712 		struct vpage *ovpage;
1713 
1714 		ovpage = svd->vpage;		/* keep pointer to vpage */
1715 
1716 		npages = seg_pages(seg);	/* seg has shrunk */
1717 		nbytes = vpgtob(npages);
1718 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1719 
1720 		bcopy(ovpage, svd->vpage, nbytes);
1721 
1722 		npages = seg_pages(nseg);
1723 		nbytes = vpgtob(npages);
1724 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1725 
1726 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
1727 
1728 		/* free up old vpage */
1729 		kmem_free(ovpage, vpgtob(opages));
1730 	}
1731 
1732 	if (amp == NULL) {
1733 		nsvd->amp = NULL;
1734 		nsvd->anon_index = 0;
1735 	} else {
1736 		/*
1737 		 * Need to create a new anon map for the new segment.
1738 		 * We'll also allocate a new smaller array for the old
1739 		 * smaller segment to save space.
1740 		 */
1741 		opages = btop((uintptr_t)(addr - seg->s_base));
1742 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1743 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1744 			/*
1745 			 * Free up now unused parts of anon_map array.
1746 			 */
1747 			ulong_t an_idx = svd->anon_index + opages;
1748 			if (amp->a_szc == seg->s_szc) {
1749 				if (seg->s_szc != 0) {
1750 					anon_free_pages(amp->ahp, an_idx, len,
1751 					    seg->s_szc);
1752 				} else {
1753 					anon_free(amp->ahp, an_idx,
1754 					    len);
1755 				}
1756 			} else {
1757 				ASSERT(svd->type == MAP_SHARED);
1758 				ASSERT(amp->a_szc > seg->s_szc);
1759 				anon_shmap_free_pages(amp, an_idx, len);
1760 			}
1761 
1762 			/*
1763 			 * Unreserve swap space for the
1764 			 * unmapped chunk of this segment in
1765 			 * case it's MAP_SHARED
1766 			 */
1767 			if (svd->type == MAP_SHARED) {
1768 				anon_unresv(len);
1769 				amp->swresv -= len;
1770 			}
1771 		}
1772 		nsvd->anon_index = svd->anon_index +
1773 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
1774 		if (svd->type == MAP_SHARED) {
1775 			amp->refcnt++;
1776 			nsvd->amp = amp;
1777 		} else {
1778 			struct anon_map *namp;
1779 			struct anon_hdr *nahp;
1780 
1781 			ASSERT(svd->type == MAP_PRIVATE);
1782 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
1783 			namp = anonmap_alloc(nseg->s_size, 0);
1784 			namp->a_szc = seg->s_szc;
1785 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
1786 			    0, btop(seg->s_size), ANON_SLEEP);
1787 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
1788 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
1789 			anon_release(amp->ahp, btop(amp->size));
1790 			svd->anon_index = 0;
1791 			nsvd->anon_index = 0;
1792 			amp->ahp = nahp;
1793 			amp->size = seg->s_size;
1794 			nsvd->amp = namp;
1795 		}
1796 		ANON_LOCK_EXIT(&amp->a_rwlock);
1797 	}
1798 	if (svd->swresv) {
1799 		if (svd->flags & MAP_NORESERVE) {
1800 			ASSERT(amp);
1801 			oswresv = svd->swresv;
1802 			svd->swresv = ptob(anon_pages(amp->ahp,
1803 				svd->anon_index, btop(seg->s_size)));
1804 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
1805 				nsvd->anon_index, btop(nseg->s_size)));
1806 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
1807 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
1808 		} else {
1809 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
1810 				panic("segvn_unmap: "
1811 				    "cannot split swap reservation");
1812 				/*NOTREACHED*/
1813 			}
1814 			anon_unresv(len);
1815 			svd->swresv = seg->s_size;
1816 			nsvd->swresv = nseg->s_size;
1817 		}
1818 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1819 			seg, len, 0);
1820 	}
1821 
1822 	return (0);			/* I'm glad that's all over with! */
1823 }
1824 
1825 static void
1826 segvn_free(struct seg *seg)
1827 {
1828 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1829 	pgcnt_t npages = seg_pages(seg);
1830 	struct anon_map *amp;
1831 	size_t len;
1832 
1833 	/*
1834 	 * We don't need any segment level locks for "segvn" data
1835 	 * since the address space is "write" locked.
1836 	 */
1837 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1838 
1839 	/*
1840 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
1841 	 * of unmapped? XXX
1842 	 */
1843 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
1844 	    0, MC_UNLOCK, NULL, 0);
1845 
1846 	/*
1847 	 * Deallocate the vpage and anon pointers if necessary and possible.
1848 	 */
1849 	if (svd->vpage != NULL) {
1850 		kmem_free(svd->vpage, vpgtob(npages));
1851 		svd->vpage = NULL;
1852 	}
1853 	if ((amp = svd->amp) != NULL) {
1854 		/*
1855 		 * If there are no more references to this anon_map
1856 		 * structure, then deallocate the structure after freeing
1857 		 * up all the anon slot pointers that we can.
1858 		 */
1859 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1860 		ASSERT(amp->a_szc >= seg->s_szc);
1861 		if (--amp->refcnt == 0) {
1862 			if (svd->type == MAP_PRIVATE) {
1863 				/*
1864 				 * Private - we only need to anon_free
1865 				 * the part that this segment refers to.
1866 				 */
1867 				if (seg->s_szc != 0) {
1868 					anon_free_pages(amp->ahp,
1869 					    svd->anon_index, seg->s_size,
1870 					    seg->s_szc);
1871 				} else {
1872 					anon_free(amp->ahp, svd->anon_index,
1873 					    seg->s_size);
1874 				}
1875 			} else {
1876 				/*
1877 				 * Shared - anon_free the entire
1878 				 * anon_map's worth of stuff and
1879 				 * release any swap reservation.
1880 				 */
1881 				if (amp->a_szc != 0) {
1882 					anon_shmap_free_pages(amp, 0,
1883 					    amp->size);
1884 				} else {
1885 					anon_free(amp->ahp, 0, amp->size);
1886 				}
1887 				if ((len = amp->swresv) != 0) {
1888 					anon_unresv(len);
1889 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1890 						"anon proc:%p %lu %u",
1891 						seg, len, 0);
1892 				}
1893 			}
1894 			svd->amp = NULL;
1895 			ANON_LOCK_EXIT(&amp->a_rwlock);
1896 			anonmap_free(amp);
1897 		} else if (svd->type == MAP_PRIVATE) {
1898 			/*
1899 			 * We had a private mapping which still has
1900 			 * a held anon_map so just free up all the
1901 			 * anon slot pointers that we were using.
1902 			 */
1903 			if (seg->s_szc != 0) {
1904 				anon_free_pages(amp->ahp, svd->anon_index,
1905 				    seg->s_size, seg->s_szc);
1906 			} else {
1907 				anon_free(amp->ahp, svd->anon_index,
1908 				    seg->s_size);
1909 			}
1910 			ANON_LOCK_EXIT(&amp->a_rwlock);
1911 		} else {
1912 			ANON_LOCK_EXIT(&amp->a_rwlock);
1913 		}
1914 	}
1915 
1916 	/*
1917 	 * Release swap reservation.
1918 	 */
1919 	if ((len = svd->swresv) != 0) {
1920 		anon_unresv(svd->swresv);
1921 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1922 			seg, len, 0);
1923 		svd->swresv = 0;
1924 	}
1925 	/*
1926 	 * Release claim on vnode, credentials, and finally free the
1927 	 * private data.
1928 	 */
1929 	if (svd->vp != NULL) {
1930 		if (svd->type == MAP_SHARED)
1931 			lgrp_shm_policy_fini(NULL, svd->vp);
1932 		VN_RELE(svd->vp);
1933 		svd->vp = NULL;
1934 	}
1935 	crfree(svd->cred);
1936 	svd->cred = NULL;
1937 
1938 	seg->s_data = NULL;
1939 	kmem_cache_free(segvn_cache, svd);
1940 }
1941 
1942 ulong_t segvn_lpglck_limit = 0;
1943 /*
1944  * Support routines used by segvn_pagelock() and softlock faults for anonymous
1945  * pages to implement availrmem accounting in a way that makes sure the
1946  * same memory is accounted just once for all softlock/pagelock purposes.
1947  * This prevents a bug when availrmem is quickly incorrectly exausted from
1948  * several pagelocks to different parts of the same large page since each
1949  * pagelock has to decrement availrmem by the size of the entire large
1950  * page. Note those pages are not COW shared until softunlock/pageunlock so
1951  * we don't need to use cow style accounting here.  We also need to make sure
1952  * the entire large page is accounted even if softlock range is less than the
1953  * entire large page because large anon pages can't be demoted when any of
1954  * constituent pages is locked. The caller calls this routine for every page_t
1955  * it locks. The very first page in the range may not be the root page of a
1956  * large page. For all other pages it's guranteed we are going to visit the
1957  * root of a particular large page before any other constituent page as we are
1958  * locking sequential pages belonging to the same anon map. So we do all the
1959  * locking when the root is encountered except for the very first page.  Since
1960  * softlocking is not supported (except S_READ_NOCOW special case) for vmpss
1961  * segments and since vnode pages can be demoted without locking all
1962  * constituent pages vnode pages don't come here.  Unlocking relies on the
1963  * fact that pagesize can't change whenever any of constituent large pages is
1964  * locked at least SE_SHARED. This allows unlocking code to find the right
1965  * root and decrement availrmem by the same amount it was incremented when the
1966  * page was locked.
1967  */
1968 static int
1969 segvn_pp_lock_anonpages(page_t *pp, int first)
1970 {
1971 	pgcnt_t		pages;
1972 	pfn_t		pfn;
1973 	uchar_t		szc = pp->p_szc;
1974 
1975 	ASSERT(PAGE_LOCKED(pp));
1976 	ASSERT(pp->p_vnode != NULL);
1977 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
1978 
1979 	/*
1980 	 * pagesize won't change as long as any constituent page is locked.
1981 	 */
1982 	pages = page_get_pagecnt(pp->p_szc);
1983 	pfn = page_pptonum(pp);
1984 
1985 	if (!first) {
1986 		if (!IS_P2ALIGNED(pfn, pages)) {
1987 #ifdef DEBUG
1988 			pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
1989 			pfn = page_pptonum(pp);
1990 			ASSERT(IS_P2ALIGNED(pfn, pages));
1991 			ASSERT(pp->p_szc == szc);
1992 			ASSERT(pp->p_vnode != NULL);
1993 			ASSERT(IS_SWAPFSVP(pp->p_vnode));
1994 			ASSERT(pp->p_slckcnt != 0);
1995 #endif /* DEBUG */
1996 			return (1);
1997 		}
1998 	} else if (!IS_P2ALIGNED(pfn, pages)) {
1999 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2000 #ifdef DEBUG
2001 		pfn = page_pptonum(pp);
2002 		ASSERT(IS_P2ALIGNED(pfn, pages));
2003 		ASSERT(pp->p_szc == szc);
2004 		ASSERT(pp->p_vnode != NULL);
2005 		ASSERT(IS_SWAPFSVP(pp->p_vnode));
2006 #endif /* DEBUG */
2007 	}
2008 
2009 	/*
2010 	 * pp is a root page.
2011 	 * We haven't locked this large page yet.
2012 	 */
2013 	page_struct_lock(pp);
2014 	if (pp->p_slckcnt != 0) {
2015 		if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
2016 			pp->p_slckcnt++;
2017 			page_struct_unlock(pp);
2018 			return (1);
2019 		}
2020 		page_struct_unlock(pp);
2021 		segvn_lpglck_limit++;
2022 		return (0);
2023 	}
2024 	mutex_enter(&freemem_lock);
2025 	if (availrmem < tune.t_minarmem + pages) {
2026 		mutex_exit(&freemem_lock);
2027 		page_struct_unlock(pp);
2028 		return (0);
2029 	}
2030 	pp->p_slckcnt++;
2031 	availrmem -= pages;
2032 	mutex_exit(&freemem_lock);
2033 	page_struct_unlock(pp);
2034 	return (1);
2035 }
2036 
2037 static void
2038 segvn_pp_unlock_anonpages(page_t *pp, int first)
2039 {
2040 	pgcnt_t		pages;
2041 	pfn_t		pfn;
2042 
2043 	ASSERT(PAGE_LOCKED(pp));
2044 	ASSERT(pp->p_vnode != NULL);
2045 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2046 
2047 	/*
2048 	 * pagesize won't change as long as any constituent page is locked.
2049 	 */
2050 	pages = page_get_pagecnt(pp->p_szc);
2051 	pfn = page_pptonum(pp);
2052 
2053 	if (!first) {
2054 		if (!IS_P2ALIGNED(pfn, pages)) {
2055 			return;
2056 		}
2057 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2058 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2059 #ifdef DEBUG
2060 		pfn = page_pptonum(pp);
2061 		ASSERT(IS_P2ALIGNED(pfn, pages));
2062 #endif /* DEBUG */
2063 	}
2064 	ASSERT(pp->p_vnode != NULL);
2065 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2066 	ASSERT(pp->p_slckcnt != 0);
2067 	page_struct_lock(pp);
2068 	if (--pp->p_slckcnt == 0) {
2069 		mutex_enter(&freemem_lock);
2070 		availrmem += pages;
2071 		mutex_exit(&freemem_lock);
2072 	}
2073 	page_struct_unlock(pp);
2074 }
2075 
2076 /*
2077  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2078  * already been F_SOFTLOCK'ed.
2079  * Caller must always match addr and len of a softunlock with a previous
2080  * softlock with exactly the same addr and len.
2081  */
2082 static void
2083 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2084 {
2085 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2086 	page_t *pp;
2087 	caddr_t adr;
2088 	struct vnode *vp;
2089 	u_offset_t offset;
2090 	ulong_t anon_index;
2091 	struct anon_map *amp;
2092 	struct anon *ap = NULL;
2093 
2094 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2095 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2096 
2097 	if ((amp = svd->amp) != NULL)
2098 		anon_index = svd->anon_index + seg_page(seg, addr);
2099 
2100 	hat_unlock(seg->s_as->a_hat, addr, len);
2101 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2102 		if (amp != NULL) {
2103 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2104 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2105 								!= NULL) {
2106 				swap_xlate(ap, &vp, &offset);
2107 			} else {
2108 				vp = svd->vp;
2109 				offset = svd->offset +
2110 				    (uintptr_t)(adr - seg->s_base);
2111 			}
2112 			ANON_LOCK_EXIT(&amp->a_rwlock);
2113 		} else {
2114 			vp = svd->vp;
2115 			offset = svd->offset +
2116 			    (uintptr_t)(adr - seg->s_base);
2117 		}
2118 
2119 		/*
2120 		 * Use page_find() instead of page_lookup() to
2121 		 * find the page since we know that it is locked.
2122 		 */
2123 		pp = page_find(vp, offset);
2124 		if (pp == NULL) {
2125 			panic(
2126 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2127 			    (void *)adr, (void *)ap, (void *)vp, offset);
2128 			/*NOTREACHED*/
2129 		}
2130 
2131 		if (rw == S_WRITE) {
2132 			hat_setrefmod(pp);
2133 			if (seg->s_as->a_vbits)
2134 				hat_setstat(seg->s_as, adr, PAGESIZE,
2135 				    P_REF | P_MOD);
2136 		} else if (rw != S_OTHER) {
2137 			hat_setref(pp);
2138 			if (seg->s_as->a_vbits)
2139 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2140 		}
2141 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2142 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2143 		if (svd->vp == NULL) {
2144 			segvn_pp_unlock_anonpages(pp, adr == addr);
2145 		}
2146 		page_unlock(pp);
2147 	}
2148 	mutex_enter(&freemem_lock); /* for availrmem */
2149 	if (svd->vp != NULL) {
2150 		availrmem += btop(len);
2151 	}
2152 	segvn_pages_locked -= btop(len);
2153 	svd->softlockcnt -= btop(len);
2154 	mutex_exit(&freemem_lock);
2155 	if (svd->softlockcnt == 0) {
2156 		/*
2157 		 * All SOFTLOCKS are gone. Wakeup any waiting
2158 		 * unmappers so they can try again to unmap.
2159 		 * Check for waiters first without the mutex
2160 		 * held so we don't always grab the mutex on
2161 		 * softunlocks.
2162 		 */
2163 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2164 			mutex_enter(&seg->s_as->a_contents);
2165 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2166 				AS_CLRUNMAPWAIT(seg->s_as);
2167 				cv_broadcast(&seg->s_as->a_cv);
2168 			}
2169 			mutex_exit(&seg->s_as->a_contents);
2170 		}
2171 	}
2172 }
2173 
2174 #define	PAGE_HANDLED	((page_t *)-1)
2175 
2176 /*
2177  * Release all the pages in the NULL terminated ppp list
2178  * which haven't already been converted to PAGE_HANDLED.
2179  */
2180 static void
2181 segvn_pagelist_rele(page_t **ppp)
2182 {
2183 	for (; *ppp != NULL; ppp++) {
2184 		if (*ppp != PAGE_HANDLED)
2185 			page_unlock(*ppp);
2186 	}
2187 }
2188 
2189 static int stealcow = 1;
2190 
2191 /*
2192  * Workaround for viking chip bug.  See bug id 1220902.
2193  * To fix this down in pagefault() would require importing so
2194  * much as and segvn code as to be unmaintainable.
2195  */
2196 int enable_mbit_wa = 0;
2197 
2198 /*
2199  * Handles all the dirty work of getting the right
2200  * anonymous pages and loading up the translations.
2201  * This routine is called only from segvn_fault()
2202  * when looping over the range of addresses requested.
2203  *
2204  * The basic algorithm here is:
2205  * 	If this is an anon_zero case
2206  *		Call anon_zero to allocate page
2207  *		Load up translation
2208  *		Return
2209  *	endif
2210  *	If this is an anon page
2211  *		Use anon_getpage to get the page
2212  *	else
2213  *		Find page in pl[] list passed in
2214  *	endif
2215  *	If not a cow
2216  *		Load up the translation to the page
2217  *		return
2218  *	endif
2219  *	Call anon_private to handle cow
2220  *	Load up (writable) translation to new page
2221  */
2222 static faultcode_t
2223 segvn_faultpage(
2224 	struct hat *hat,		/* the hat to use for mapping */
2225 	struct seg *seg,		/* seg_vn of interest */
2226 	caddr_t addr,			/* address in as */
2227 	u_offset_t off,			/* offset in vp */
2228 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2229 	page_t *pl[],			/* object source page pointer */
2230 	uint_t vpprot,			/* access allowed to object pages */
2231 	enum fault_type type,		/* type of fault */
2232 	enum seg_rw rw,			/* type of access at fault */
2233 	int brkcow,			/* we may need to break cow */
2234 	int first)			/* first page for this fault if 1 */
2235 {
2236 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2237 	page_t *pp, **ppp;
2238 	uint_t pageflags = 0;
2239 	page_t *anon_pl[1 + 1];
2240 	page_t *opp = NULL;		/* original page */
2241 	uint_t prot;
2242 	int err;
2243 	int cow;
2244 	int claim;
2245 	int steal = 0;
2246 	ulong_t anon_index;
2247 	struct anon *ap, *oldap;
2248 	struct anon_map *amp;
2249 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2250 	int anon_lock = 0;
2251 	anon_sync_obj_t cookie;
2252 
2253 	if (svd->flags & MAP_TEXT) {
2254 		hat_flag |= HAT_LOAD_TEXT;
2255 	}
2256 
2257 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2258 	ASSERT(seg->s_szc == 0);
2259 
2260 	/*
2261 	 * Initialize protection value for this page.
2262 	 * If we have per page protection values check it now.
2263 	 */
2264 	if (svd->pageprot) {
2265 		uint_t protchk;
2266 
2267 		switch (rw) {
2268 		case S_READ:
2269 			protchk = PROT_READ;
2270 			break;
2271 		case S_WRITE:
2272 			protchk = PROT_WRITE;
2273 			break;
2274 		case S_EXEC:
2275 			protchk = PROT_EXEC;
2276 			break;
2277 		case S_OTHER:
2278 		default:
2279 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2280 			break;
2281 		}
2282 
2283 		prot = VPP_PROT(vpage);
2284 		if ((prot & protchk) == 0)
2285 			return (FC_PROT);	/* illegal access type */
2286 	} else {
2287 		prot = svd->prot;
2288 	}
2289 
2290 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2291 		mutex_enter(&freemem_lock);
2292 		if (availrmem <= tune.t_minarmem) {
2293 			mutex_exit(&freemem_lock);
2294 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2295 		} else {
2296 			availrmem--;
2297 			svd->softlockcnt++;
2298 			segvn_pages_locked++;
2299 		}
2300 		mutex_exit(&freemem_lock);
2301 	}
2302 
2303 	/*
2304 	 * Always acquire the anon array lock to prevent 2 threads from
2305 	 * allocating separate anon slots for the same "addr".
2306 	 */
2307 
2308 	if ((amp = svd->amp) != NULL) {
2309 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2310 		anon_index = svd->anon_index + seg_page(seg, addr);
2311 		anon_array_enter(amp, anon_index, &cookie);
2312 		anon_lock = 1;
2313 	}
2314 
2315 	if (svd->vp == NULL && amp != NULL) {
2316 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2317 			/*
2318 			 * Allocate a (normally) writable anonymous page of
2319 			 * zeroes. If no advance reservations, reserve now.
2320 			 */
2321 			if (svd->flags & MAP_NORESERVE) {
2322 				if (anon_resv(ptob(1))) {
2323 					svd->swresv += ptob(1);
2324 				} else {
2325 					err = ENOMEM;
2326 					goto out;
2327 				}
2328 			}
2329 			if ((pp = anon_zero(seg, addr, &ap,
2330 			    svd->cred)) == NULL) {
2331 				err = ENOMEM;
2332 				goto out;	/* out of swap space */
2333 			}
2334 			/*
2335 			 * Re-acquire the anon_map lock and
2336 			 * initialize the anon array entry.
2337 			 */
2338 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2339 				ANON_SLEEP);
2340 
2341 			ASSERT(pp->p_szc == 0);
2342 			if (type == F_SOFTLOCK) {
2343 				if (!segvn_pp_lock_anonpages(pp, first)) {
2344 					page_unlock(pp);
2345 					err = ENOMEM;
2346 					goto out;
2347 				} else {
2348 					mutex_enter(&freemem_lock);
2349 					svd->softlockcnt++;
2350 					segvn_pages_locked++;
2351 					mutex_exit(&freemem_lock);
2352 				}
2353 			}
2354 
2355 			if (enable_mbit_wa) {
2356 				if (rw == S_WRITE)
2357 					hat_setmod(pp);
2358 				else if (!hat_ismod(pp))
2359 					prot &= ~PROT_WRITE;
2360 			}
2361 			/*
2362 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2363 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2364 			 * MAP_NORESERVE segment, we may need to
2365 			 * permanently lock the page as it is being faulted
2366 			 * for the first time. The following text applies
2367 			 * only to MAP_NORESERVE segments:
2368 			 *
2369 			 * As per memcntl(2), if this segment was created
2370 			 * after MCL_FUTURE was applied (a "future"
2371 			 * segment), its pages must be locked.  If this
2372 			 * segment existed at MCL_FUTURE application (a
2373 			 * "past" segment), the interface is unclear.
2374 			 *
2375 			 * We decide to lock only if vpage is present:
2376 			 *
2377 			 * - "future" segments will have a vpage array (see
2378 			 *    as_map), and so will be locked as required
2379 			 *
2380 			 * - "past" segments may not have a vpage array,
2381 			 *    depending on whether events (such as
2382 			 *    mprotect) have occurred. Locking if vpage
2383 			 *    exists will preserve legacy behavior.  Not
2384 			 *    locking if vpage is absent, will not break
2385 			 *    the interface or legacy behavior.  Note that
2386 			 *    allocating vpage here if it's absent requires
2387 			 *    upgrading the segvn reader lock, the cost of
2388 			 *    which does not seem worthwhile.
2389 			 */
2390 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2391 			    (svd->flags & MAP_NORESERVE)) {
2392 				claim = VPP_PROT(vpage) & PROT_WRITE;
2393 				ASSERT(svd->type == MAP_PRIVATE);
2394 				if (page_pp_lock(pp, claim, 0))
2395 					VPP_SETPPLOCK(vpage);
2396 			}
2397 
2398 
2399 			/*
2400 			 * Handle pages that have been marked for migration
2401 			 */
2402 			if (lgrp_optimizations())
2403 				page_migrate(seg, addr, &pp, 1);
2404 			hat_memload(hat, addr, pp, prot, hat_flag);
2405 
2406 			if (!(hat_flag & HAT_LOAD_LOCK))
2407 				page_unlock(pp);
2408 
2409 			anon_array_exit(&cookie);
2410 			return (0);
2411 		}
2412 	}
2413 
2414 	/*
2415 	 * Obtain the page structure via anon_getpage() if it is
2416 	 * a private copy of an object (the result of a previous
2417 	 * copy-on-write).
2418 	 */
2419 	if (amp != NULL) {
2420 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2421 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2422 			    seg, addr, rw, svd->cred);
2423 			if (err)
2424 				goto out;
2425 
2426 			if (svd->type == MAP_SHARED) {
2427 				/*
2428 				 * If this is a shared mapping to an
2429 				 * anon_map, then ignore the write
2430 				 * permissions returned by anon_getpage().
2431 				 * They apply to the private mappings
2432 				 * of this anon_map.
2433 				 */
2434 				vpprot |= PROT_WRITE;
2435 			}
2436 			opp = anon_pl[0];
2437 		}
2438 	}
2439 
2440 	/*
2441 	 * Search the pl[] list passed in if it is from the
2442 	 * original object (i.e., not a private copy).
2443 	 */
2444 	if (opp == NULL) {
2445 		/*
2446 		 * Find original page.  We must be bringing it in
2447 		 * from the list in pl[].
2448 		 */
2449 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2450 			if (opp == PAGE_HANDLED)
2451 				continue;
2452 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2453 			if (opp->p_offset == off)
2454 				break;
2455 		}
2456 		if (opp == NULL) {
2457 			panic("segvn_faultpage not found");
2458 			/*NOTREACHED*/
2459 		}
2460 		*ppp = PAGE_HANDLED;
2461 
2462 	}
2463 
2464 	ASSERT(PAGE_LOCKED(opp));
2465 
2466 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2467 		"segvn_fault:pp %p vp %p offset %llx",
2468 		opp, NULL, 0);
2469 
2470 	/*
2471 	 * The fault is treated as a copy-on-write fault if a
2472 	 * write occurs on a private segment and the object
2473 	 * page (i.e., mapping) is write protected.  We assume
2474 	 * that fatal protection checks have already been made.
2475 	 */
2476 
2477 	cow = brkcow && ((vpprot & PROT_WRITE) == 0);
2478 
2479 	/*
2480 	 * If not a copy-on-write case load the translation
2481 	 * and return.
2482 	 */
2483 	if (cow == 0) {
2484 		if (type == F_SOFTLOCK && svd->vp == NULL) {
2485 
2486 			ASSERT(opp->p_szc == 0 ||
2487 			    (svd->type == MAP_SHARED &&
2488 				amp != NULL && amp->a_szc != 0));
2489 
2490 			if (!segvn_pp_lock_anonpages(opp, first)) {
2491 				page_unlock(opp);
2492 				err = ENOMEM;
2493 				goto out;
2494 			} else {
2495 				mutex_enter(&freemem_lock);
2496 				svd->softlockcnt++;
2497 				segvn_pages_locked++;
2498 				mutex_exit(&freemem_lock);
2499 			}
2500 		}
2501 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2502 			if (rw == S_WRITE)
2503 				hat_setmod(opp);
2504 			else if (rw != S_OTHER && !hat_ismod(opp))
2505 				prot &= ~PROT_WRITE;
2506 		}
2507 
2508 		/*
2509 		 * Handle pages that have been marked for migration
2510 		 */
2511 		if (lgrp_optimizations())
2512 			page_migrate(seg, addr, &opp, 1);
2513 
2514 		hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
2515 
2516 		if (!(hat_flag & HAT_LOAD_LOCK))
2517 			page_unlock(opp);
2518 
2519 		if (anon_lock) {
2520 			anon_array_exit(&cookie);
2521 		}
2522 		return (0);
2523 	}
2524 
2525 	hat_setref(opp);
2526 
2527 	ASSERT(amp != NULL && anon_lock);
2528 
2529 	/*
2530 	 * Steal the page only if it isn't a private page
2531 	 * since stealing a private page is not worth the effort.
2532 	 */
2533 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2534 		steal = 1;
2535 
2536 	/*
2537 	 * Steal the original page if the following conditions are true:
2538 	 *
2539 	 * We are low on memory, the page is not private, page is not large,
2540 	 * not shared, not modified, not `locked' or if we have it `locked'
2541 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2542 	 * that the page is not shared) and if it doesn't have any
2543 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2544 	 * and p_lckcnt because we first get exclusive lock on page.
2545 	 */
2546 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2547 
2548 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2549 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2550 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2551 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2552 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2553 		/*
2554 		 * Check if this page has other translations
2555 		 * after unloading our translation.
2556 		 */
2557 		if (hat_page_is_mapped(opp)) {
2558 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2559 				HAT_UNLOAD);
2560 		}
2561 
2562 		/*
2563 		 * hat_unload() might sync back someone else's recent
2564 		 * modification, so check again.
2565 		 */
2566 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2567 			pageflags |= STEAL_PAGE;
2568 	}
2569 
2570 	/*
2571 	 * If we have a vpage pointer, see if it indicates that we have
2572 	 * ``locked'' the page we map -- if so, tell anon_private to
2573 	 * transfer the locking resource to the new page.
2574 	 *
2575 	 * See Statement at the beginning of segvn_lockop regarding
2576 	 * the way lockcnts/cowcnts are handled during COW.
2577 	 *
2578 	 */
2579 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2580 		pageflags |= LOCK_PAGE;
2581 
2582 	/*
2583 	 * Allocate a private page and perform the copy.
2584 	 * For MAP_NORESERVE reserve swap space now, unless this
2585 	 * is a cow fault on an existing anon page in which case
2586 	 * MAP_NORESERVE will have made advance reservations.
2587 	 */
2588 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2589 		if (anon_resv(ptob(1))) {
2590 			svd->swresv += ptob(1);
2591 		} else {
2592 			page_unlock(opp);
2593 			err = ENOMEM;
2594 			goto out;
2595 		}
2596 	}
2597 	oldap = ap;
2598 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2599 	if (pp == NULL) {
2600 		err = ENOMEM;	/* out of swap space */
2601 		goto out;
2602 	}
2603 
2604 	/*
2605 	 * If we copied away from an anonymous page, then
2606 	 * we are one step closer to freeing up an anon slot.
2607 	 *
2608 	 * NOTE:  The original anon slot must be released while
2609 	 * holding the "anon_map" lock.  This is necessary to prevent
2610 	 * other threads from obtaining a pointer to the anon slot
2611 	 * which may be freed if its "refcnt" is 1.
2612 	 */
2613 	if (oldap != NULL)
2614 		anon_decref(oldap);
2615 
2616 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2617 
2618 	ASSERT(pp->p_szc == 0);
2619 	if (type == F_SOFTLOCK && svd->vp == NULL) {
2620 		if (!segvn_pp_lock_anonpages(pp, first)) {
2621 			page_unlock(pp);
2622 			err = ENOMEM;
2623 			goto out;
2624 		} else {
2625 			mutex_enter(&freemem_lock);
2626 			svd->softlockcnt++;
2627 			segvn_pages_locked++;
2628 			mutex_exit(&freemem_lock);
2629 		}
2630 	}
2631 
2632 	ASSERT(!IS_VMODSORT(pp->p_vnode));
2633 	if (enable_mbit_wa) {
2634 		if (rw == S_WRITE)
2635 			hat_setmod(pp);
2636 		else if (!hat_ismod(pp))
2637 			prot &= ~PROT_WRITE;
2638 	}
2639 
2640 
2641 	/*
2642 	 * Handle pages that have been marked for migration
2643 	 */
2644 	if (lgrp_optimizations())
2645 		page_migrate(seg, addr, &pp, 1);
2646 	hat_memload(hat, addr, pp, prot, hat_flag);
2647 
2648 	if (!(hat_flag & HAT_LOAD_LOCK))
2649 		page_unlock(pp);
2650 
2651 	ASSERT(anon_lock);
2652 	anon_array_exit(&cookie);
2653 	return (0);
2654 out:
2655 	if (anon_lock)
2656 		anon_array_exit(&cookie);
2657 
2658 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2659 		mutex_enter(&freemem_lock);
2660 		availrmem++;
2661 		segvn_pages_locked--;
2662 		svd->softlockcnt--;
2663 		mutex_exit(&freemem_lock);
2664 	}
2665 	return (FC_MAKE_ERR(err));
2666 }
2667 
2668 /*
2669  * relocate a bunch of smaller targ pages into one large repl page. all targ
2670  * pages must be complete pages smaller than replacement pages.
2671  * it's assumed that no page's szc can change since they are all PAGESIZE or
2672  * complete large pages locked SHARED.
2673  */
2674 static void
2675 segvn_relocate_pages(page_t **targ, page_t *replacement)
2676 {
2677 	page_t *pp;
2678 	pgcnt_t repl_npgs, curnpgs;
2679 	pgcnt_t i;
2680 	uint_t repl_szc = replacement->p_szc;
2681 	page_t *first_repl = replacement;
2682 	page_t *repl;
2683 	spgcnt_t npgs;
2684 
2685 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
2686 
2687 	ASSERT(repl_szc != 0);
2688 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
2689 
2690 	i = 0;
2691 	while (repl_npgs) {
2692 		spgcnt_t nreloc;
2693 		int err;
2694 		ASSERT(replacement != NULL);
2695 		pp = targ[i];
2696 		ASSERT(pp->p_szc < repl_szc);
2697 		ASSERT(PAGE_EXCL(pp));
2698 		ASSERT(!PP_ISFREE(pp));
2699 		curnpgs = page_get_pagecnt(pp->p_szc);
2700 		if (curnpgs == 1) {
2701 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
2702 			repl = replacement;
2703 			page_sub(&replacement, repl);
2704 			ASSERT(PAGE_EXCL(repl));
2705 			ASSERT(!PP_ISFREE(repl));
2706 			ASSERT(repl->p_szc == repl_szc);
2707 		} else {
2708 			page_t *repl_savepp;
2709 			int j;
2710 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
2711 			repl_savepp = replacement;
2712 			for (j = 0; j < curnpgs; j++) {
2713 				repl = replacement;
2714 				page_sub(&replacement, repl);
2715 				ASSERT(PAGE_EXCL(repl));
2716 				ASSERT(!PP_ISFREE(repl));
2717 				ASSERT(repl->p_szc == repl_szc);
2718 				ASSERT(page_pptonum(targ[i + j]) ==
2719 				    page_pptonum(targ[i]) + j);
2720 			}
2721 			repl = repl_savepp;
2722 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
2723 		}
2724 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
2725 		if (err || nreloc != curnpgs) {
2726 			panic("segvn_relocate_pages: "
2727 			    "page_relocate failed err=%d curnpgs=%ld "
2728 			    "nreloc=%ld", err, curnpgs, nreloc);
2729 		}
2730 		ASSERT(curnpgs <= repl_npgs);
2731 		repl_npgs -= curnpgs;
2732 		i += curnpgs;
2733 	}
2734 	ASSERT(replacement == NULL);
2735 
2736 	repl = first_repl;
2737 	repl_npgs = npgs;
2738 	for (i = 0; i < repl_npgs; i++) {
2739 		ASSERT(PAGE_EXCL(repl));
2740 		ASSERT(!PP_ISFREE(repl));
2741 		targ[i] = repl;
2742 		page_downgrade(targ[i]);
2743 		repl++;
2744 	}
2745 }
2746 
2747 /*
2748  * Check if all pages in ppa array are complete smaller than szc pages and
2749  * their roots will still be aligned relative to their current size if the
2750  * entire ppa array is relocated into one szc page. If these conditions are
2751  * not met return 0.
2752  *
2753  * If all pages are properly aligned attempt to upgrade their locks
2754  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
2755  * upgrdfail was set to 0 by caller.
2756  *
2757  * Return 1 if all pages are aligned and locked exclusively.
2758  *
2759  * If all pages in ppa array happen to be physically contiguous to make one
2760  * szc page and all exclusive locks are successfully obtained promote the page
2761  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
2762  */
2763 static int
2764 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
2765 {
2766 	page_t *pp;
2767 	pfn_t pfn;
2768 	pgcnt_t totnpgs = page_get_pagecnt(szc);
2769 	pfn_t first_pfn;
2770 	int contig = 1;
2771 	pgcnt_t i;
2772 	pgcnt_t j;
2773 	uint_t curszc;
2774 	pgcnt_t curnpgs;
2775 	int root = 0;
2776 
2777 	ASSERT(szc > 0);
2778 
2779 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
2780 
2781 	for (i = 0; i < totnpgs; i++) {
2782 		pp = ppa[i];
2783 		ASSERT(PAGE_SHARED(pp));
2784 		ASSERT(!PP_ISFREE(pp));
2785 		pfn = page_pptonum(pp);
2786 		if (i == 0) {
2787 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
2788 				contig = 0;
2789 			} else {
2790 				first_pfn = pfn;
2791 			}
2792 		} else if (contig && pfn != first_pfn + i) {
2793 			contig = 0;
2794 		}
2795 		if (pp->p_szc == 0) {
2796 			if (root) {
2797 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
2798 				return (0);
2799 			}
2800 		} else if (!root) {
2801 			if ((curszc = pp->p_szc) >= szc) {
2802 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
2803 				return (0);
2804 			}
2805 			if (curszc == 0) {
2806 				/*
2807 				 * p_szc changed means we don't have all pages
2808 				 * locked. return failure.
2809 				 */
2810 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
2811 				return (0);
2812 			}
2813 			curnpgs = page_get_pagecnt(curszc);
2814 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
2815 			    !IS_P2ALIGNED(i, curnpgs)) {
2816 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
2817 				return (0);
2818 			}
2819 			root = 1;
2820 		} else {
2821 			ASSERT(i > 0);
2822 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
2823 			if (pp->p_szc != curszc) {
2824 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
2825 				return (0);
2826 			}
2827 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
2828 				panic("segvn_full_szcpages: "
2829 				    "large page not physically contiguous");
2830 			}
2831 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
2832 				root = 0;
2833 			}
2834 		}
2835 	}
2836 
2837 	for (i = 0; i < totnpgs; i++) {
2838 		ASSERT(ppa[i]->p_szc < szc);
2839 		if (!page_tryupgrade(ppa[i])) {
2840 			for (j = 0; j < i; j++) {
2841 				page_downgrade(ppa[j]);
2842 			}
2843 			*pszc = ppa[i]->p_szc;
2844 			*upgrdfail = 1;
2845 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
2846 			return (0);
2847 		}
2848 	}
2849 
2850 	/*
2851 	 * When a page is put a free cachelist its szc is set to 0.  if file
2852 	 * system reclaimed pages from cachelist targ pages will be physically
2853 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
2854 	 * pages without any relocations.
2855 	 * To avoid any hat issues with previous small mappings
2856 	 * hat_pageunload() the target pages first.
2857 	 */
2858 	if (contig) {
2859 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
2860 		for (i = 0; i < totnpgs; i++) {
2861 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
2862 		}
2863 		for (i = 0; i < totnpgs; i++) {
2864 			ppa[i]->p_szc = szc;
2865 		}
2866 		for (i = 0; i < totnpgs; i++) {
2867 			ASSERT(PAGE_EXCL(ppa[i]));
2868 			page_downgrade(ppa[i]);
2869 		}
2870 		if (pszc != NULL) {
2871 			*pszc = szc;
2872 		}
2873 	}
2874 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
2875 	return (1);
2876 }
2877 
2878 /*
2879  * Create physically contiguous pages for [vp, off] - [vp, off +
2880  * page_size(szc)) range and for private segment return them in ppa array.
2881  * Pages are created either via IO or relocations.
2882  *
2883  * Return 1 on sucess and 0 on failure.
2884  *
2885  * If physically contiguos pages already exist for this range return 1 without
2886  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
2887  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
2888  */
2889 
2890 static int
2891 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
2892     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
2893     int *downsize)
2894 
2895 {
2896 	page_t *pplist = *ppplist;
2897 	size_t pgsz = page_get_pagesize(szc);
2898 	pgcnt_t pages = btop(pgsz);
2899 	ulong_t start_off = off;
2900 	u_offset_t eoff = off + pgsz;
2901 	spgcnt_t nreloc;
2902 	u_offset_t io_off = off;
2903 	size_t io_len;
2904 	page_t *io_pplist = NULL;
2905 	page_t *done_pplist = NULL;
2906 	pgcnt_t pgidx = 0;
2907 	page_t *pp;
2908 	page_t *newpp;
2909 	page_t *targpp;
2910 	int io_err = 0;
2911 	int i;
2912 	pfn_t pfn;
2913 	ulong_t ppages;
2914 	page_t *targ_pplist = NULL;
2915 	page_t *repl_pplist = NULL;
2916 	page_t *tmp_pplist;
2917 	int nios = 0;
2918 	uint_t pszc;
2919 	struct vattr va;
2920 
2921 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
2922 
2923 	ASSERT(szc != 0);
2924 	ASSERT(pplist->p_szc == szc);
2925 
2926 	/*
2927 	 * downsize will be set to 1 only if we fail to lock pages. this will
2928 	 * allow subsequent faults to try to relocate the page again. If we
2929 	 * fail due to misalignment don't downsize and let the caller map the
2930 	 * whole region with small mappings to avoid more faults into the area
2931 	 * where we can't get large pages anyway.
2932 	 */
2933 	*downsize = 0;
2934 
2935 	while (off < eoff) {
2936 		newpp = pplist;
2937 		ASSERT(newpp != NULL);
2938 		ASSERT(PAGE_EXCL(newpp));
2939 		ASSERT(!PP_ISFREE(newpp));
2940 		/*
2941 		 * we pass NULL for nrelocp to page_lookup_create()
2942 		 * so that it doesn't relocate. We relocate here
2943 		 * later only after we make sure we can lock all
2944 		 * pages in the range we handle and they are all
2945 		 * aligned.
2946 		 */
2947 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
2948 		ASSERT(pp != NULL);
2949 		ASSERT(!PP_ISFREE(pp));
2950 		ASSERT(pp->p_vnode == vp);
2951 		ASSERT(pp->p_offset == off);
2952 		if (pp == newpp) {
2953 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
2954 			page_sub(&pplist, pp);
2955 			ASSERT(PAGE_EXCL(pp));
2956 			ASSERT(page_iolock_assert(pp));
2957 			page_list_concat(&io_pplist, &pp);
2958 			off += PAGESIZE;
2959 			continue;
2960 		}
2961 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
2962 		pfn = page_pptonum(pp);
2963 		pszc = pp->p_szc;
2964 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
2965 		    IS_P2ALIGNED(pfn, pages)) {
2966 			ASSERT(repl_pplist == NULL);
2967 			ASSERT(done_pplist == NULL);
2968 			ASSERT(pplist == *ppplist);
2969 			page_unlock(pp);
2970 			page_free_replacement_page(pplist);
2971 			page_create_putback(pages);
2972 			*ppplist = NULL;
2973 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
2974 			return (1);
2975 		}
2976 		if (pszc >= szc) {
2977 			page_unlock(pp);
2978 			segvn_faultvnmpss_align_err1++;
2979 			goto out;
2980 		}
2981 		ppages = page_get_pagecnt(pszc);
2982 		if (!IS_P2ALIGNED(pfn, ppages)) {
2983 			ASSERT(pszc > 0);
2984 			/*
2985 			 * sizing down to pszc won't help.
2986 			 */
2987 			page_unlock(pp);
2988 			segvn_faultvnmpss_align_err2++;
2989 			goto out;
2990 		}
2991 		pfn = page_pptonum(newpp);
2992 		if (!IS_P2ALIGNED(pfn, ppages)) {
2993 			ASSERT(pszc > 0);
2994 			/*
2995 			 * sizing down to pszc won't help.
2996 			 */
2997 			page_unlock(pp);
2998 			segvn_faultvnmpss_align_err3++;
2999 			goto out;
3000 		}
3001 		if (!PAGE_EXCL(pp)) {
3002 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3003 			page_unlock(pp);
3004 			*downsize = 1;
3005 			*ret_pszc = pp->p_szc;
3006 			goto out;
3007 		}
3008 		targpp = pp;
3009 		if (io_pplist != NULL) {
3010 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3011 			io_len = off - io_off;
3012 			/*
3013 			 * Some file systems like NFS don't check EOF
3014 			 * conditions in VOP_PAGEIO(). Check it here
3015 			 * now that pages are locked SE_EXCL. Any file
3016 			 * truncation will wait until the pages are
3017 			 * unlocked so no need to worry that file will
3018 			 * be truncated after we check its size here.
3019 			 * XXX fix NFS to remove this check.
3020 			 */
3021 			va.va_mask = AT_SIZE;
3022 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3023 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3024 				page_unlock(targpp);
3025 				goto out;
3026 			}
3027 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3028 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3029 				*downsize = 1;
3030 				*ret_pszc = 0;
3031 				page_unlock(targpp);
3032 				goto out;
3033 			}
3034 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3035 				B_READ, svd->cred);
3036 			if (io_err) {
3037 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3038 				page_unlock(targpp);
3039 				if (io_err == EDEADLK) {
3040 					segvn_vmpss_pageio_deadlk_err++;
3041 				}
3042 				goto out;
3043 			}
3044 			nios++;
3045 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3046 			while (io_pplist != NULL) {
3047 				pp = io_pplist;
3048 				page_sub(&io_pplist, pp);
3049 				ASSERT(page_iolock_assert(pp));
3050 				page_io_unlock(pp);
3051 				pgidx = (pp->p_offset - start_off) >>
3052 				    PAGESHIFT;
3053 				ASSERT(pgidx < pages);
3054 				ppa[pgidx] = pp;
3055 				page_list_concat(&done_pplist, &pp);
3056 			}
3057 		}
3058 		pp = targpp;
3059 		ASSERT(PAGE_EXCL(pp));
3060 		ASSERT(pp->p_szc <= pszc);
3061 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3062 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3063 			page_unlock(pp);
3064 			*downsize = 1;
3065 			*ret_pszc = pp->p_szc;
3066 			goto out;
3067 		}
3068 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3069 		/*
3070 		 * page szc chould have changed before the entire group was
3071 		 * locked. reread page szc.
3072 		 */
3073 		pszc = pp->p_szc;
3074 		ppages = page_get_pagecnt(pszc);
3075 
3076 		/* link just the roots */
3077 		page_list_concat(&targ_pplist, &pp);
3078 		page_sub(&pplist, newpp);
3079 		page_list_concat(&repl_pplist, &newpp);
3080 		off += PAGESIZE;
3081 		while (--ppages != 0) {
3082 			newpp = pplist;
3083 			page_sub(&pplist, newpp);
3084 			off += PAGESIZE;
3085 		}
3086 		io_off = off;
3087 	}
3088 	if (io_pplist != NULL) {
3089 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3090 		io_len = eoff - io_off;
3091 		va.va_mask = AT_SIZE;
3092 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3093 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3094 			goto out;
3095 		}
3096 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3097 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3098 			*downsize = 1;
3099 			*ret_pszc = 0;
3100 			goto out;
3101 		}
3102 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3103 		    B_READ, svd->cred);
3104 		if (io_err) {
3105 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3106 			if (io_err == EDEADLK) {
3107 				segvn_vmpss_pageio_deadlk_err++;
3108 			}
3109 			goto out;
3110 		}
3111 		nios++;
3112 		while (io_pplist != NULL) {
3113 			pp = io_pplist;
3114 			page_sub(&io_pplist, pp);
3115 			ASSERT(page_iolock_assert(pp));
3116 			page_io_unlock(pp);
3117 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3118 			ASSERT(pgidx < pages);
3119 			ppa[pgidx] = pp;
3120 		}
3121 	}
3122 	/*
3123 	 * we're now bound to succeed or panic.
3124 	 * remove pages from done_pplist. it's not needed anymore.
3125 	 */
3126 	while (done_pplist != NULL) {
3127 		pp = done_pplist;
3128 		page_sub(&done_pplist, pp);
3129 	}
3130 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3131 	ASSERT(pplist == NULL);
3132 	*ppplist = NULL;
3133 	while (targ_pplist != NULL) {
3134 		int ret;
3135 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3136 		ASSERT(repl_pplist);
3137 		pp = targ_pplist;
3138 		page_sub(&targ_pplist, pp);
3139 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3140 		newpp = repl_pplist;
3141 		page_sub(&repl_pplist, newpp);
3142 #ifdef DEBUG
3143 		pfn = page_pptonum(pp);
3144 		pszc = pp->p_szc;
3145 		ppages = page_get_pagecnt(pszc);
3146 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3147 		pfn = page_pptonum(newpp);
3148 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3149 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3150 #endif
3151 		nreloc = 0;
3152 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3153 		if (ret != 0 || nreloc == 0) {
3154 			panic("segvn_fill_vp_pages: "
3155 			    "page_relocate failed");
3156 		}
3157 		pp = newpp;
3158 		while (nreloc-- != 0) {
3159 			ASSERT(PAGE_EXCL(pp));
3160 			ASSERT(pp->p_vnode == vp);
3161 			ASSERT(pgidx ==
3162 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3163 			ppa[pgidx++] = pp;
3164 			pp++;
3165 		}
3166 	}
3167 
3168 	if (svd->type == MAP_PRIVATE) {
3169 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3170 		for (i = 0; i < pages; i++) {
3171 			ASSERT(ppa[i] != NULL);
3172 			ASSERT(PAGE_EXCL(ppa[i]));
3173 			ASSERT(ppa[i]->p_vnode == vp);
3174 			ASSERT(ppa[i]->p_offset ==
3175 			    start_off + (i << PAGESHIFT));
3176 			page_downgrade(ppa[i]);
3177 		}
3178 		ppa[pages] = NULL;
3179 	} else {
3180 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3181 		/*
3182 		 * the caller will still call VOP_GETPAGE() for shared segments
3183 		 * to check FS write permissions. For private segments we map
3184 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3185 		 */
3186 		for (i = 0; i < pages; i++) {
3187 			ASSERT(ppa[i] != NULL);
3188 			ASSERT(PAGE_EXCL(ppa[i]));
3189 			ASSERT(ppa[i]->p_vnode == vp);
3190 			ASSERT(ppa[i]->p_offset ==
3191 			    start_off + (i << PAGESHIFT));
3192 			page_unlock(ppa[i]);
3193 		}
3194 		ppa[0] = NULL;
3195 	}
3196 
3197 	return (1);
3198 out:
3199 	/*
3200 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3201 	 * linked on targ_pplist by root pages. reassemble unused replacement
3202 	 * and io pages back to pplist.
3203 	 */
3204 	if (io_pplist != NULL) {
3205 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3206 		pp = io_pplist;
3207 		do {
3208 			ASSERT(pp->p_vnode == vp);
3209 			ASSERT(pp->p_offset == io_off);
3210 			ASSERT(page_iolock_assert(pp));
3211 			page_io_unlock(pp);
3212 			page_hashout(pp, NULL);
3213 			io_off += PAGESIZE;
3214 		} while ((pp = pp->p_next) != io_pplist);
3215 		page_list_concat(&io_pplist, &pplist);
3216 		pplist = io_pplist;
3217 	}
3218 	tmp_pplist = NULL;
3219 	while (targ_pplist != NULL) {
3220 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3221 		pp = targ_pplist;
3222 		ASSERT(PAGE_EXCL(pp));
3223 		page_sub(&targ_pplist, pp);
3224 
3225 		pszc = pp->p_szc;
3226 		ppages = page_get_pagecnt(pszc);
3227 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3228 
3229 		if (pszc != 0) {
3230 			group_page_unlock(pp);
3231 		}
3232 		page_unlock(pp);
3233 
3234 		pp = repl_pplist;
3235 		ASSERT(pp != NULL);
3236 		ASSERT(PAGE_EXCL(pp));
3237 		ASSERT(pp->p_szc == szc);
3238 		page_sub(&repl_pplist, pp);
3239 
3240 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3241 
3242 		/* relink replacement page */
3243 		page_list_concat(&tmp_pplist, &pp);
3244 		while (--ppages != 0) {
3245 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3246 			pp++;
3247 			ASSERT(PAGE_EXCL(pp));
3248 			ASSERT(pp->p_szc == szc);
3249 			page_list_concat(&tmp_pplist, &pp);
3250 		}
3251 	}
3252 	if (tmp_pplist != NULL) {
3253 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3254 		page_list_concat(&tmp_pplist, &pplist);
3255 		pplist = tmp_pplist;
3256 	}
3257 	/*
3258 	 * at this point all pages are either on done_pplist or
3259 	 * pplist. They can't be all on done_pplist otherwise
3260 	 * we'd've been done.
3261 	 */
3262 	ASSERT(pplist != NULL);
3263 	if (nios != 0) {
3264 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3265 		pp = pplist;
3266 		do {
3267 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3268 			ASSERT(pp->p_szc == szc);
3269 			ASSERT(PAGE_EXCL(pp));
3270 			ASSERT(pp->p_vnode != vp);
3271 			pp->p_szc = 0;
3272 		} while ((pp = pp->p_next) != pplist);
3273 
3274 		pp = done_pplist;
3275 		do {
3276 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3277 			ASSERT(pp->p_szc == szc);
3278 			ASSERT(PAGE_EXCL(pp));
3279 			ASSERT(pp->p_vnode == vp);
3280 			pp->p_szc = 0;
3281 		} while ((pp = pp->p_next) != done_pplist);
3282 
3283 		while (pplist != NULL) {
3284 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3285 			pp = pplist;
3286 			page_sub(&pplist, pp);
3287 			page_free(pp, 0);
3288 		}
3289 
3290 		while (done_pplist != NULL) {
3291 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3292 			pp = done_pplist;
3293 			page_sub(&done_pplist, pp);
3294 			page_unlock(pp);
3295 		}
3296 		*ppplist = NULL;
3297 		return (0);
3298 	}
3299 	ASSERT(pplist == *ppplist);
3300 	if (io_err) {
3301 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3302 		/*
3303 		 * don't downsize on io error.
3304 		 * see if vop_getpage succeeds.
3305 		 * pplist may still be used in this case
3306 		 * for relocations.
3307 		 */
3308 		return (0);
3309 	}
3310 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3311 	page_free_replacement_page(pplist);
3312 	page_create_putback(pages);
3313 	*ppplist = NULL;
3314 	return (0);
3315 }
3316 
3317 int segvn_anypgsz = 0;
3318 
3319 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3320 		if ((type) == F_SOFTLOCK) {		\
3321 			mutex_enter(&freemem_lock);	\
3322 			availrmem += (pages);		\
3323 			segvn_pages_locked -= (pages);	\
3324 			svd->softlockcnt -= (pages);	\
3325 			mutex_exit(&freemem_lock);	\
3326 		}
3327 
3328 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3329 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3330 			if ((rw) == S_WRITE) {				\
3331 				for (i = 0; i < (pages); i++) {		\
3332 					ASSERT((ppa)[i]->p_vnode ==	\
3333 					    (ppa)[0]->p_vnode);		\
3334 					hat_setmod((ppa)[i]);		\
3335 				}					\
3336 			} else if ((rw) != S_OTHER &&			\
3337 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3338 				for (i = 0; i < (pages); i++) {		\
3339 					ASSERT((ppa)[i]->p_vnode ==	\
3340 					    (ppa)[0]->p_vnode);		\
3341 					if (!hat_ismod((ppa)[i])) {	\
3342 						prot &= ~PROT_WRITE;	\
3343 						break;			\
3344 					}				\
3345 				}					\
3346 			}						\
3347 		}
3348 
3349 #ifdef  VM_STATS
3350 
3351 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3352 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3353 
3354 #else /* VM_STATS */
3355 
3356 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3357 
3358 #endif
3359 
3360 static faultcode_t
3361 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3362     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3363     caddr_t eaddr, int brkcow)
3364 {
3365 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3366 	struct anon_map *amp = svd->amp;
3367 	uchar_t segtype = svd->type;
3368 	uint_t szc = seg->s_szc;
3369 	size_t pgsz = page_get_pagesize(szc);
3370 	size_t maxpgsz = pgsz;
3371 	pgcnt_t pages = btop(pgsz);
3372 	pgcnt_t maxpages = pages;
3373 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3374 	caddr_t a = lpgaddr;
3375 	caddr_t	maxlpgeaddr = lpgeaddr;
3376 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3377 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3378 	struct vpage *vpage = (svd->vpage != NULL) ?
3379 	    &svd->vpage[seg_page(seg, a)] : NULL;
3380 	vnode_t *vp = svd->vp;
3381 	page_t **ppa;
3382 	uint_t	pszc;
3383 	size_t	ppgsz;
3384 	pgcnt_t	ppages;
3385 	faultcode_t err = 0;
3386 	int ierr;
3387 	int vop_size_err = 0;
3388 	uint_t protchk, prot, vpprot;
3389 	ulong_t i;
3390 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3391 	anon_sync_obj_t an_cookie;
3392 	enum seg_rw arw;
3393 	int alloc_failed = 0;
3394 	int adjszc_chk;
3395 	struct vattr va;
3396 	int xhat = 0;
3397 	page_t *pplist;
3398 	pfn_t pfn;
3399 	int physcontig;
3400 	int upgrdfail;
3401 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3402 
3403 	ASSERT(szc != 0);
3404 	ASSERT(vp != NULL);
3405 	ASSERT(brkcow == 0 || amp != NULL);
3406 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3407 	ASSERT(!(svd->flags & MAP_NORESERVE));
3408 	ASSERT(type != F_SOFTUNLOCK);
3409 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3410 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3411 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3412 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3413 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3414 
3415 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3416 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3417 
3418 	if (svd->flags & MAP_TEXT) {
3419 		hat_flag |= HAT_LOAD_TEXT;
3420 	}
3421 
3422 	if (svd->pageprot) {
3423 		switch (rw) {
3424 		case S_READ:
3425 			protchk = PROT_READ;
3426 			break;
3427 		case S_WRITE:
3428 			protchk = PROT_WRITE;
3429 			break;
3430 		case S_EXEC:
3431 			protchk = PROT_EXEC;
3432 			break;
3433 		case S_OTHER:
3434 		default:
3435 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3436 			break;
3437 		}
3438 	} else {
3439 		prot = svd->prot;
3440 		/* caller has already done segment level protection check. */
3441 	}
3442 
3443 	if (seg->s_as->a_hat != hat) {
3444 		xhat = 1;
3445 	}
3446 
3447 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3448 		SEGVN_VMSTAT_FLTVNPAGES(2);
3449 		arw = S_READ;
3450 	} else {
3451 		arw = rw;
3452 	}
3453 
3454 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3455 
3456 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3457 
3458 	for (;;) {
3459 		adjszc_chk = 0;
3460 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3461 			if (adjszc_chk) {
3462 				while (szc < seg->s_szc) {
3463 					uintptr_t e;
3464 					uint_t tszc;
3465 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3466 					    seg->s_szc;
3467 					ppgsz = page_get_pagesize(tszc);
3468 					if (!IS_P2ALIGNED(a, ppgsz) ||
3469 					    ((alloc_failed >> tszc) &
3470 						0x1)) {
3471 						break;
3472 					}
3473 					SEGVN_VMSTAT_FLTVNPAGES(4);
3474 					szc = tszc;
3475 					pgsz = ppgsz;
3476 					pages = btop(pgsz);
3477 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3478 					lpgeaddr = (caddr_t)e;
3479 				}
3480 			}
3481 
3482 		again:
3483 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3484 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3485 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3486 				anon_array_enter(amp, aindx, &an_cookie);
3487 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3488 					SEGVN_VMSTAT_FLTVNPAGES(5);
3489 					if (anon_pages(amp->ahp, aindx,
3490 					    maxpages) != maxpages) {
3491 						panic("segvn_fault_vnodepages:"
3492 						    " empty anon slots\n");
3493 					}
3494 					anon_array_exit(&an_cookie);
3495 					ANON_LOCK_EXIT(&amp->a_rwlock);
3496 					err = segvn_fault_anonpages(hat, seg,
3497 					    a, a + maxpgsz, type, rw,
3498 					    MAX(a, addr),
3499 					    MIN(a + maxpgsz, eaddr), brkcow);
3500 					if (err != 0) {
3501 						SEGVN_VMSTAT_FLTVNPAGES(6);
3502 						goto out;
3503 					}
3504 					if (szc < seg->s_szc) {
3505 						szc = seg->s_szc;
3506 						pgsz = maxpgsz;
3507 						pages = maxpages;
3508 						lpgeaddr = maxlpgeaddr;
3509 					}
3510 					goto next;
3511 				} else if (anon_pages(amp->ahp, aindx,
3512 				    maxpages)) {
3513 					panic("segvn_fault_vnodepages:"
3514 						" non empty anon slots\n");
3515 				} else {
3516 					SEGVN_VMSTAT_FLTVNPAGES(7);
3517 					anon_array_exit(&an_cookie);
3518 					ANON_LOCK_EXIT(&amp->a_rwlock);
3519 				}
3520 			}
3521 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3522 
3523 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3524 				ASSERT(vpage != NULL);
3525 				prot = VPP_PROT(vpage);
3526 				ASSERT(sameprot(seg, a, maxpgsz));
3527 				if ((prot & protchk) == 0) {
3528 					SEGVN_VMSTAT_FLTVNPAGES(8);
3529 					err = FC_PROT;
3530 					goto out;
3531 				}
3532 			}
3533 			if (type == F_SOFTLOCK) {
3534 				mutex_enter(&freemem_lock);
3535 				if (availrmem < tune.t_minarmem + pages) {
3536 					mutex_exit(&freemem_lock);
3537 					err = FC_MAKE_ERR(ENOMEM);
3538 					goto out;
3539 				} else {
3540 					availrmem -= pages;
3541 					segvn_pages_locked += pages;
3542 					svd->softlockcnt += pages;
3543 				}
3544 				mutex_exit(&freemem_lock);
3545 			}
3546 
3547 			pplist = NULL;
3548 			physcontig = 0;
3549 			ppa[0] = NULL;
3550 			if (!brkcow && szc &&
3551 			    !page_exists_physcontig(vp, off, szc,
3552 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3553 				SEGVN_VMSTAT_FLTVNPAGES(9);
3554 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3555 				    szc, 0) && type != F_SOFTLOCK) {
3556 					SEGVN_VMSTAT_FLTVNPAGES(10);
3557 					pszc = 0;
3558 					ierr = -1;
3559 					alloc_failed |= (1 << szc);
3560 					break;
3561 				}
3562 				if (pplist != NULL &&
3563 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3564 					int downsize;
3565 					SEGVN_VMSTAT_FLTVNPAGES(11);
3566 					physcontig = segvn_fill_vp_pages(svd,
3567 					    vp, off, szc, ppa, &pplist,
3568 					    &pszc, &downsize);
3569 					ASSERT(!physcontig || pplist == NULL);
3570 					if (!physcontig && downsize &&
3571 					    type != F_SOFTLOCK) {
3572 						ASSERT(pplist == NULL);
3573 						SEGVN_VMSTAT_FLTVNPAGES(12);
3574 						ierr = -1;
3575 						break;
3576 					}
3577 					ASSERT(!physcontig ||
3578 					    segtype == MAP_PRIVATE ||
3579 					    ppa[0] == NULL);
3580 					if (physcontig && ppa[0] == NULL) {
3581 						physcontig = 0;
3582 					}
3583 				}
3584 			} else if (!brkcow && szc && ppa[0] != NULL) {
3585 				SEGVN_VMSTAT_FLTVNPAGES(13);
3586 				ASSERT(segtype == MAP_PRIVATE);
3587 				physcontig = 1;
3588 			}
3589 
3590 			if (!physcontig) {
3591 				SEGVN_VMSTAT_FLTVNPAGES(14);
3592 				ppa[0] = NULL;
3593 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3594 				    &vpprot, ppa, pgsz, seg, a, arw,
3595 				    svd->cred);
3596 				if (segtype == MAP_PRIVATE) {
3597 					SEGVN_VMSTAT_FLTVNPAGES(15);
3598 					vpprot &= ~PROT_WRITE;
3599 				}
3600 			} else {
3601 				ASSERT(segtype == MAP_PRIVATE);
3602 				SEGVN_VMSTAT_FLTVNPAGES(16);
3603 				vpprot = PROT_ALL & ~PROT_WRITE;
3604 				ierr = 0;
3605 			}
3606 
3607 			if (ierr != 0) {
3608 				SEGVN_VMSTAT_FLTVNPAGES(17);
3609 				if (pplist != NULL) {
3610 					SEGVN_VMSTAT_FLTVNPAGES(18);
3611 					page_free_replacement_page(pplist);
3612 					page_create_putback(pages);
3613 				}
3614 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3615 				if (a + pgsz <= eaddr) {
3616 					SEGVN_VMSTAT_FLTVNPAGES(19);
3617 					err = FC_MAKE_ERR(ierr);
3618 					goto out;
3619 				}
3620 				va.va_mask = AT_SIZE;
3621 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
3622 					SEGVN_VMSTAT_FLTVNPAGES(20);
3623 					err = FC_MAKE_ERR(EIO);
3624 					goto out;
3625 				}
3626 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
3627 					SEGVN_VMSTAT_FLTVNPAGES(21);
3628 					err = FC_MAKE_ERR(ierr);
3629 					goto out;
3630 				}
3631 				if (btopr(va.va_size) <
3632 				    btopr(off + (eaddr - a))) {
3633 					SEGVN_VMSTAT_FLTVNPAGES(22);
3634 					err = FC_MAKE_ERR(ierr);
3635 					goto out;
3636 				}
3637 				if (brkcow || type == F_SOFTLOCK) {
3638 					/* can't reduce map area */
3639 					SEGVN_VMSTAT_FLTVNPAGES(23);
3640 					vop_size_err = 1;
3641 					goto out;
3642 				}
3643 				SEGVN_VMSTAT_FLTVNPAGES(24);
3644 				ASSERT(szc != 0);
3645 				pszc = 0;
3646 				ierr = -1;
3647 				break;
3648 			}
3649 
3650 			if (amp != NULL) {
3651 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3652 				anon_array_enter(amp, aindx, &an_cookie);
3653 			}
3654 			if (amp != NULL &&
3655 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
3656 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3657 
3658 				SEGVN_VMSTAT_FLTVNPAGES(25);
3659 				if (anon_pages(amp->ahp, taindx, maxpages) !=
3660 				    maxpages) {
3661 					panic("segvn_fault_vnodepages:"
3662 					    " empty anon slots\n");
3663 				}
3664 				for (i = 0; i < pages; i++) {
3665 					page_unlock(ppa[i]);
3666 				}
3667 				anon_array_exit(&an_cookie);
3668 				ANON_LOCK_EXIT(&amp->a_rwlock);
3669 				if (pplist != NULL) {
3670 					page_free_replacement_page(pplist);
3671 					page_create_putback(pages);
3672 				}
3673 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3674 				if (szc < seg->s_szc) {
3675 					SEGVN_VMSTAT_FLTVNPAGES(26);
3676 					/*
3677 					 * For private segments SOFTLOCK
3678 					 * either always breaks cow (any rw
3679 					 * type except S_READ_NOCOW) or
3680 					 * address space is locked as writer
3681 					 * (S_READ_NOCOW case) and anon slots
3682 					 * can't show up on second check.
3683 					 * Therefore if we are here for
3684 					 * SOFTLOCK case it must be a cow
3685 					 * break but cow break never reduces
3686 					 * szc. Thus the assert below.
3687 					 */
3688 					ASSERT(!brkcow && type != F_SOFTLOCK);
3689 					pszc = seg->s_szc;
3690 					ierr = -2;
3691 					break;
3692 				}
3693 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3694 				goto again;
3695 			}
3696 #ifdef DEBUG
3697 			if (amp != NULL) {
3698 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3699 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
3700 			}
3701 #endif /* DEBUG */
3702 
3703 			if (brkcow) {
3704 				ASSERT(amp != NULL);
3705 				ASSERT(pplist == NULL);
3706 				ASSERT(szc == seg->s_szc);
3707 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3708 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3709 				SEGVN_VMSTAT_FLTVNPAGES(27);
3710 				ierr = anon_map_privatepages(amp, aindx, szc,
3711 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
3712 				    svd->cred);
3713 				if (ierr != 0) {
3714 					SEGVN_VMSTAT_FLTVNPAGES(28);
3715 					anon_array_exit(&an_cookie);
3716 					ANON_LOCK_EXIT(&amp->a_rwlock);
3717 					SEGVN_RESTORE_SOFTLOCK(type, pages);
3718 					err = FC_MAKE_ERR(ierr);
3719 					goto out;
3720 				}
3721 
3722 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
3723 				/*
3724 				 * p_szc can't be changed for locked
3725 				 * swapfs pages.
3726 				 */
3727 				hat_memload_array(hat, a, pgsz, ppa, prot,
3728 				    hat_flag);
3729 
3730 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3731 					SEGVN_VMSTAT_FLTVNPAGES(29);
3732 					for (i = 0; i < pages; i++) {
3733 						page_unlock(ppa[i]);
3734 					}
3735 				}
3736 				anon_array_exit(&an_cookie);
3737 				ANON_LOCK_EXIT(&amp->a_rwlock);
3738 				goto next;
3739 			}
3740 
3741 			pfn = page_pptonum(ppa[0]);
3742 			/*
3743 			 * hat_page_demote() needs an EXCl lock on one of
3744 			 * constituent page_t's and it decreases root's p_szc
3745 			 * last. This means if root's p_szc is equal szc and
3746 			 * all its constituent pages are locked
3747 			 * hat_page_demote() that could have changed p_szc to
3748 			 * szc is already done and no new have page_demote()
3749 			 * can start for this large page.
3750 			 */
3751 
3752 			/*
3753 			 * we need to make sure same mapping size is used for
3754 			 * the same address range if there's a possibility the
3755 			 * adddress is already mapped because hat layer panics
3756 			 * when translation is loaded for the range already
3757 			 * mapped with a different page size.  We achieve it
3758 			 * by always using largest page size possible subject
3759 			 * to the constraints of page size, segment page size
3760 			 * and page alignment.  Since mappings are invalidated
3761 			 * when those constraints change and make it
3762 			 * impossible to use previously used mapping size no
3763 			 * mapping size conflicts should happen.
3764 			 */
3765 
3766 		chkszc:
3767 			if ((pszc = ppa[0]->p_szc) == szc &&
3768 			    IS_P2ALIGNED(pfn, pages)) {
3769 
3770 				SEGVN_VMSTAT_FLTVNPAGES(30);
3771 #ifdef DEBUG
3772 				for (i = 0; i < pages; i++) {
3773 					ASSERT(PAGE_LOCKED(ppa[i]));
3774 					ASSERT(!PP_ISFREE(ppa[i]));
3775 					ASSERT(page_pptonum(ppa[i]) ==
3776 					    pfn + i);
3777 					ASSERT(ppa[i]->p_szc == szc);
3778 					ASSERT(ppa[i]->p_vnode == vp);
3779 					ASSERT(ppa[i]->p_offset ==
3780 					    off + (i << PAGESHIFT));
3781 				}
3782 #endif /* DEBUG */
3783 				/*
3784 				 * All pages are of szc we need and they are
3785 				 * all locked so they can't change szc. load
3786 				 * translations.
3787 				 *
3788 				 * if page got promoted since last check
3789 				 * we don't need pplist.
3790 				 */
3791 				if (pplist != NULL) {
3792 					page_free_replacement_page(pplist);
3793 					page_create_putback(pages);
3794 				}
3795 				if (PP_ISMIGRATE(ppa[0])) {
3796 					page_migrate(seg, a, ppa, pages);
3797 				}
3798 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3799 				    prot, vpprot);
3800 				if (!xhat) {
3801 					hat_memload_array(hat, a, pgsz, ppa,
3802 					    prot & vpprot, hat_flag);
3803 				} else {
3804 					/*
3805 					 * avoid large xhat mappings to FS
3806 					 * pages so that hat_page_demote()
3807 					 * doesn't need to check for xhat
3808 					 * large mappings.
3809 					 */
3810 					for (i = 0; i < pages; i++) {
3811 						hat_memload(hat,
3812 						    a + (i << PAGESHIFT),
3813 						    ppa[i], prot & vpprot,
3814 						    hat_flag);
3815 					}
3816 				}
3817 
3818 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3819 					for (i = 0; i < pages; i++) {
3820 						page_unlock(ppa[i]);
3821 					}
3822 				}
3823 				if (amp != NULL) {
3824 					anon_array_exit(&an_cookie);
3825 					ANON_LOCK_EXIT(&amp->a_rwlock);
3826 				}
3827 				goto next;
3828 			}
3829 
3830 			/*
3831 			 * See if upsize is possible.
3832 			 */
3833 			if (pszc > szc && szc < seg->s_szc &&
3834 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
3835 				pgcnt_t aphase;
3836 				uint_t pszc1 = MIN(pszc, seg->s_szc);
3837 				ppgsz = page_get_pagesize(pszc1);
3838 				ppages = btop(ppgsz);
3839 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
3840 
3841 				ASSERT(type != F_SOFTLOCK);
3842 
3843 				SEGVN_VMSTAT_FLTVNPAGES(31);
3844 				if (aphase != P2PHASE(pfn, ppages)) {
3845 					segvn_faultvnmpss_align_err4++;
3846 				} else {
3847 					SEGVN_VMSTAT_FLTVNPAGES(32);
3848 					if (pplist != NULL) {
3849 						page_t *pl = pplist;
3850 						page_free_replacement_page(pl);
3851 						page_create_putback(pages);
3852 					}
3853 					for (i = 0; i < pages; i++) {
3854 						page_unlock(ppa[i]);
3855 					}
3856 					if (amp != NULL) {
3857 						anon_array_exit(&an_cookie);
3858 						ANON_LOCK_EXIT(&amp->a_rwlock);
3859 					}
3860 					pszc = pszc1;
3861 					ierr = -2;
3862 					break;
3863 				}
3864 			}
3865 
3866 			/*
3867 			 * check if we should use smallest mapping size.
3868 			 */
3869 			upgrdfail = 0;
3870 			if (szc == 0 || xhat ||
3871 			    (pszc >= szc &&
3872 			    !IS_P2ALIGNED(pfn, pages)) ||
3873 			    (pszc < szc &&
3874 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
3875 				&pszc))) {
3876 
3877 				if (upgrdfail && type != F_SOFTLOCK) {
3878 					/*
3879 					 * segvn_full_szcpages failed to lock
3880 					 * all pages EXCL. Size down.
3881 					 */
3882 					ASSERT(pszc < szc);
3883 
3884 					SEGVN_VMSTAT_FLTVNPAGES(33);
3885 
3886 					if (pplist != NULL) {
3887 						page_t *pl = pplist;
3888 						page_free_replacement_page(pl);
3889 						page_create_putback(pages);
3890 					}
3891 
3892 					for (i = 0; i < pages; i++) {
3893 						page_unlock(ppa[i]);
3894 					}
3895 					if (amp != NULL) {
3896 						anon_array_exit(&an_cookie);
3897 						ANON_LOCK_EXIT(&amp->a_rwlock);
3898 					}
3899 					ierr = -1;
3900 					break;
3901 				}
3902 				if (szc != 0 && !xhat) {
3903 					segvn_faultvnmpss_align_err5++;
3904 				}
3905 				SEGVN_VMSTAT_FLTVNPAGES(34);
3906 				if (pplist != NULL) {
3907 					page_free_replacement_page(pplist);
3908 					page_create_putback(pages);
3909 				}
3910 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3911 				    prot, vpprot);
3912 				if (upgrdfail && segvn_anypgsz_vnode) {
3913 					/* SOFTLOCK case */
3914 					hat_memload_array(hat, a, pgsz,
3915 					    ppa, prot & vpprot, hat_flag);
3916 				} else {
3917 					for (i = 0; i < pages; i++) {
3918 						hat_memload(hat,
3919 						    a + (i << PAGESHIFT),
3920 						    ppa[i], prot & vpprot,
3921 						    hat_flag);
3922 					}
3923 				}
3924 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3925 					for (i = 0; i < pages; i++) {
3926 						page_unlock(ppa[i]);
3927 					}
3928 				}
3929 				if (amp != NULL) {
3930 					anon_array_exit(&an_cookie);
3931 					ANON_LOCK_EXIT(&amp->a_rwlock);
3932 				}
3933 				goto next;
3934 			}
3935 
3936 			if (pszc == szc) {
3937 				/*
3938 				 * segvn_full_szcpages() upgraded pages szc.
3939 				 */
3940 				ASSERT(pszc == ppa[0]->p_szc);
3941 				ASSERT(IS_P2ALIGNED(pfn, pages));
3942 				goto chkszc;
3943 			}
3944 
3945 			if (pszc > szc) {
3946 				kmutex_t *szcmtx;
3947 				SEGVN_VMSTAT_FLTVNPAGES(35);
3948 				/*
3949 				 * p_szc of ppa[0] can change since we haven't
3950 				 * locked all constituent pages. Call
3951 				 * page_lock_szc() to prevent szc changes.
3952 				 * This should be a rare case that happens when
3953 				 * multiple segments use a different page size
3954 				 * to map the same file offsets.
3955 				 */
3956 				szcmtx = page_szc_lock(ppa[0]);
3957 				pszc = ppa[0]->p_szc;
3958 				ASSERT(szcmtx != NULL || pszc == 0);
3959 				ASSERT(ppa[0]->p_szc <= pszc);
3960 				if (pszc <= szc) {
3961 					SEGVN_VMSTAT_FLTVNPAGES(36);
3962 					if (szcmtx != NULL) {
3963 						mutex_exit(szcmtx);
3964 					}
3965 					goto chkszc;
3966 				}
3967 				if (pplist != NULL) {
3968 					/*
3969 					 * page got promoted since last check.
3970 					 * we don't need preaalocated large
3971 					 * page.
3972 					 */
3973 					SEGVN_VMSTAT_FLTVNPAGES(37);
3974 					page_free_replacement_page(pplist);
3975 					page_create_putback(pages);
3976 				}
3977 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3978 				    prot, vpprot);
3979 				hat_memload_array(hat, a, pgsz, ppa,
3980 				    prot & vpprot, hat_flag);
3981 				mutex_exit(szcmtx);
3982 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3983 					for (i = 0; i < pages; i++) {
3984 						page_unlock(ppa[i]);
3985 					}
3986 				}
3987 				if (amp != NULL) {
3988 					anon_array_exit(&an_cookie);
3989 					ANON_LOCK_EXIT(&amp->a_rwlock);
3990 				}
3991 				goto next;
3992 			}
3993 
3994 			/*
3995 			 * if page got demoted since last check
3996 			 * we could have not allocated larger page.
3997 			 * allocate now.
3998 			 */
3999 			if (pplist == NULL &&
4000 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4001 				szc, 0) && type != F_SOFTLOCK) {
4002 				SEGVN_VMSTAT_FLTVNPAGES(38);
4003 				for (i = 0; i < pages; i++) {
4004 					page_unlock(ppa[i]);
4005 				}
4006 				if (amp != NULL) {
4007 					anon_array_exit(&an_cookie);
4008 					ANON_LOCK_EXIT(&amp->a_rwlock);
4009 				}
4010 				ierr = -1;
4011 				alloc_failed |= (1 << szc);
4012 				break;
4013 			}
4014 
4015 			SEGVN_VMSTAT_FLTVNPAGES(39);
4016 
4017 			if (pplist != NULL) {
4018 				segvn_relocate_pages(ppa, pplist);
4019 #ifdef DEBUG
4020 			} else {
4021 				ASSERT(type == F_SOFTLOCK);
4022 				SEGVN_VMSTAT_FLTVNPAGES(40);
4023 #endif /* DEBUG */
4024 			}
4025 
4026 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4027 
4028 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4029 				ASSERT(type == F_SOFTLOCK);
4030 				for (i = 0; i < pages; i++) {
4031 					ASSERT(ppa[i]->p_szc < szc);
4032 					hat_memload(hat, a + (i << PAGESHIFT),
4033 					    ppa[i], prot & vpprot, hat_flag);
4034 				}
4035 			} else {
4036 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4037 				hat_memload_array(hat, a, pgsz, ppa,
4038 				    prot & vpprot, hat_flag);
4039 			}
4040 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4041 				for (i = 0; i < pages; i++) {
4042 					ASSERT(PAGE_SHARED(ppa[i]));
4043 					page_unlock(ppa[i]);
4044 				}
4045 			}
4046 			if (amp != NULL) {
4047 				anon_array_exit(&an_cookie);
4048 				ANON_LOCK_EXIT(&amp->a_rwlock);
4049 			}
4050 
4051 		next:
4052 			if (vpage != NULL) {
4053 				vpage += pages;
4054 			}
4055 			adjszc_chk = 1;
4056 		}
4057 		if (a == lpgeaddr)
4058 			break;
4059 		ASSERT(a < lpgeaddr);
4060 
4061 		ASSERT(!brkcow && type != F_SOFTLOCK);
4062 
4063 		/*
4064 		 * ierr == -1 means we failed to map with a large page.
4065 		 * (either due to allocation/relocation failures or
4066 		 * misalignment with other mappings to this file.
4067 		 *
4068 		 * ierr == -2 means some other thread allocated a large page
4069 		 * after we gave up tp map with a large page.  retry with
4070 		 * larger mapping.
4071 		 */
4072 		ASSERT(ierr == -1 || ierr == -2);
4073 		ASSERT(ierr == -2 || szc != 0);
4074 		ASSERT(ierr == -1 || szc < seg->s_szc);
4075 		if (ierr == -2) {
4076 			SEGVN_VMSTAT_FLTVNPAGES(41);
4077 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4078 			szc = pszc;
4079 		} else if (segvn_anypgsz_vnode) {
4080 			SEGVN_VMSTAT_FLTVNPAGES(42);
4081 			szc--;
4082 		} else {
4083 			SEGVN_VMSTAT_FLTVNPAGES(43);
4084 			ASSERT(pszc < szc);
4085 			/*
4086 			 * other process created pszc large page.
4087 			 * but we still have to drop to 0 szc.
4088 			 */
4089 			szc = 0;
4090 		}
4091 
4092 		pgsz = page_get_pagesize(szc);
4093 		pages = btop(pgsz);
4094 		if (ierr == -2) {
4095 			/*
4096 			 * Size up case. Note lpgaddr may only be needed for
4097 			 * softlock case so we don't adjust it here.
4098 			 */
4099 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4100 			ASSERT(a >= lpgaddr);
4101 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4102 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4103 			aindx = svd->anon_index + seg_page(seg, a);
4104 			vpage = (svd->vpage != NULL) ?
4105 			    &svd->vpage[seg_page(seg, a)] : NULL;
4106 		} else {
4107 			/*
4108 			 * Size down case. Note lpgaddr may only be needed for
4109 			 * softlock case so we don't adjust it here.
4110 			 */
4111 			ASSERT(IS_P2ALIGNED(a, pgsz));
4112 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4113 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4114 			ASSERT(a < lpgeaddr);
4115 			if (a < addr) {
4116 				SEGVN_VMSTAT_FLTVNPAGES(44);
4117 				/*
4118 				 * The beginning of the large page region can
4119 				 * be pulled to the right to make a smaller
4120 				 * region. We haven't yet faulted a single
4121 				 * page.
4122 				 */
4123 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4124 				ASSERT(a >= lpgaddr);
4125 				off = svd->offset +
4126 				    (uintptr_t)(a - seg->s_base);
4127 				aindx = svd->anon_index + seg_page(seg, a);
4128 				vpage = (svd->vpage != NULL) ?
4129 				    &svd->vpage[seg_page(seg, a)] : NULL;
4130 			}
4131 		}
4132 	}
4133 out:
4134 	kmem_free(ppa, ppasize);
4135 	if (!err && !vop_size_err) {
4136 		SEGVN_VMSTAT_FLTVNPAGES(45);
4137 		return (0);
4138 	}
4139 	if (type == F_SOFTLOCK && a > lpgaddr) {
4140 		SEGVN_VMSTAT_FLTVNPAGES(46);
4141 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4142 	}
4143 	if (!vop_size_err) {
4144 		SEGVN_VMSTAT_FLTVNPAGES(47);
4145 		return (err);
4146 	}
4147 	ASSERT(brkcow || type == F_SOFTLOCK);
4148 	/*
4149 	 * Large page end is mapped beyond the end of file and it's a cow
4150 	 * fault or softlock so we can't reduce the map area.  For now just
4151 	 * demote the segment. This should really only happen if the end of
4152 	 * the file changed after the mapping was established since when large
4153 	 * page segments are created we make sure they don't extend beyond the
4154 	 * end of the file.
4155 	 */
4156 	SEGVN_VMSTAT_FLTVNPAGES(48);
4157 
4158 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4159 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4160 	err = 0;
4161 	if (seg->s_szc != 0) {
4162 		segvn_fltvnpages_clrszc_cnt++;
4163 		ASSERT(svd->softlockcnt == 0);
4164 		err = segvn_clrszc(seg);
4165 		if (err != 0) {
4166 			segvn_fltvnpages_clrszc_err++;
4167 		}
4168 	}
4169 	ASSERT(err || seg->s_szc == 0);
4170 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4171 	/* segvn_fault will do its job as if szc had been zero to begin with */
4172 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4173 }
4174 
4175 /*
4176  * This routine will attempt to fault in one large page.
4177  * it will use smaller pages if that fails.
4178  * It should only be called for pure anonymous segments.
4179  */
4180 static faultcode_t
4181 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4182     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4183     caddr_t eaddr, int brkcow)
4184 {
4185 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4186 	struct anon_map *amp = svd->amp;
4187 	uchar_t segtype = svd->type;
4188 	uint_t szc = seg->s_szc;
4189 	size_t pgsz = page_get_pagesize(szc);
4190 	size_t maxpgsz = pgsz;
4191 	pgcnt_t pages = btop(pgsz);
4192 	size_t ppasize = pages * sizeof (page_t *);
4193 	caddr_t a = lpgaddr;
4194 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4195 	struct vpage *vpage = (svd->vpage != NULL) ?
4196 	    &svd->vpage[seg_page(seg, a)] : NULL;
4197 	page_t **ppa;
4198 	uint_t	ppa_szc;
4199 	faultcode_t err;
4200 	int ierr;
4201 	uint_t protchk, prot, vpprot;
4202 	ulong_t i;
4203 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4204 	anon_sync_obj_t cookie;
4205 	int first = 1;
4206 	int adjszc_chk;
4207 	int purged = 0;
4208 
4209 	ASSERT(szc != 0);
4210 	ASSERT(amp != NULL);
4211 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4212 	ASSERT(!(svd->flags & MAP_NORESERVE));
4213 	ASSERT(type != F_SOFTUNLOCK);
4214 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4215 
4216 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4217 
4218 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4219 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4220 
4221 	if (svd->flags & MAP_TEXT) {
4222 		hat_flag |= HAT_LOAD_TEXT;
4223 	}
4224 
4225 	if (svd->pageprot) {
4226 		switch (rw) {
4227 		case S_READ:
4228 			protchk = PROT_READ;
4229 			break;
4230 		case S_WRITE:
4231 			protchk = PROT_WRITE;
4232 			break;
4233 		case S_EXEC:
4234 			protchk = PROT_EXEC;
4235 			break;
4236 		case S_OTHER:
4237 		default:
4238 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4239 			break;
4240 		}
4241 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4242 	} else {
4243 		prot = svd->prot;
4244 		/* caller has already done segment level protection check. */
4245 	}
4246 
4247 	ppa = kmem_alloc(ppasize, KM_SLEEP);
4248 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4249 	for (;;) {
4250 		adjszc_chk = 0;
4251 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4252 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4253 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4254 				ASSERT(vpage != NULL);
4255 				prot = VPP_PROT(vpage);
4256 				ASSERT(sameprot(seg, a, maxpgsz));
4257 				if ((prot & protchk) == 0) {
4258 					err = FC_PROT;
4259 					goto error;
4260 				}
4261 			}
4262 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4263 			    pgsz < maxpgsz) {
4264 				ASSERT(a > lpgaddr);
4265 				szc = seg->s_szc;
4266 				pgsz = maxpgsz;
4267 				pages = btop(pgsz);
4268 				ASSERT(IS_P2ALIGNED(aindx, pages));
4269 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4270 				    pgsz);
4271 			}
4272 			if (type == F_SOFTLOCK && svd->vp != NULL) {
4273 				mutex_enter(&freemem_lock);
4274 				if (availrmem < tune.t_minarmem + pages) {
4275 					mutex_exit(&freemem_lock);
4276 					err = FC_MAKE_ERR(ENOMEM);
4277 					goto error;
4278 				} else {
4279 					availrmem -= pages;
4280 					segvn_pages_locked += pages;
4281 					svd->softlockcnt += pages;
4282 				}
4283 				mutex_exit(&freemem_lock);
4284 			}
4285 			anon_array_enter(amp, aindx, &cookie);
4286 			ppa_szc = (uint_t)-1;
4287 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4288 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4289 				segvn_anypgsz, svd->cred);
4290 			if (ierr != 0) {
4291 				anon_array_exit(&cookie);
4292 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4293 				if (type == F_SOFTLOCK && svd->vp != NULL) {
4294 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4295 					mutex_enter(&freemem_lock);
4296 					availrmem += pages;
4297 					segvn_pages_locked -= pages;
4298 					svd->softlockcnt -= pages;
4299 					mutex_exit(&freemem_lock);
4300 				}
4301 				if (ierr > 0) {
4302 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4303 					err = FC_MAKE_ERR(ierr);
4304 					goto error;
4305 				}
4306 				break;
4307 			}
4308 
4309 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4310 
4311 			ASSERT(segtype == MAP_SHARED ||
4312 			    ppa[0]->p_szc <= szc);
4313 			ASSERT(segtype == MAP_PRIVATE ||
4314 			    ppa[0]->p_szc >= szc);
4315 
4316 			if (type == F_SOFTLOCK && svd->vp == NULL) {
4317 				/*
4318 				 * All pages in ppa array belong to the same
4319 				 * large page. This means it's ok to call
4320 				 * segvn_pp_lock_anonpages just for ppa[0].
4321 				 */
4322 				if (!segvn_pp_lock_anonpages(ppa[0], first)) {
4323 					for (i = 0; i < pages; i++) {
4324 						page_unlock(ppa[i]);
4325 					}
4326 					err = FC_MAKE_ERR(ENOMEM);
4327 					goto error;
4328 				}
4329 				first = 0;
4330 				mutex_enter(&freemem_lock);
4331 				svd->softlockcnt += pages;
4332 				segvn_pages_locked += pages;
4333 				mutex_exit(&freemem_lock);
4334 			}
4335 
4336 			/*
4337 			 * Handle pages that have been marked for migration
4338 			 */
4339 			if (lgrp_optimizations())
4340 				page_migrate(seg, a, ppa, pages);
4341 
4342 			if (segtype == MAP_SHARED) {
4343 				vpprot |= PROT_WRITE;
4344 			}
4345 
4346 			hat_memload_array(hat, a, pgsz, ppa,
4347 			    prot & vpprot, hat_flag);
4348 
4349 			if (hat_flag & HAT_LOAD_LOCK) {
4350 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4351 			} else {
4352 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4353 				for (i = 0; i < pages; i++)
4354 					page_unlock(ppa[i]);
4355 			}
4356 			if (vpage != NULL)
4357 				vpage += pages;
4358 
4359 			anon_array_exit(&cookie);
4360 			adjszc_chk = 1;
4361 		}
4362 		if (a == lpgeaddr)
4363 			break;
4364 		ASSERT(a < lpgeaddr);
4365 		/*
4366 		 * ierr == -1 means we failed to allocate a large page.
4367 		 * so do a size down operation.
4368 		 *
4369 		 * ierr == -2 means some other process that privately shares
4370 		 * pages with this process has allocated a larger page and we
4371 		 * need to retry with larger pages. So do a size up
4372 		 * operation. This relies on the fact that large pages are
4373 		 * never partially shared i.e. if we share any constituent
4374 		 * page of a large page with another process we must share the
4375 		 * entire large page. Note this cannot happen for SOFTLOCK
4376 		 * case, unless current address (a) is at the beginning of the
4377 		 * next page size boundary because the other process couldn't
4378 		 * have relocated locked pages.
4379 		 */
4380 		ASSERT(ierr == -1 || ierr == -2);
4381 		/*
4382 		 * For the very first relocation failure try to purge this
4383 		 * segment's cache so that the relocator can obtain an
4384 		 * exclusive lock on pages we want to relocate.
4385 		 */
4386 		if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
4387 		    svd->softlockcnt != 0) {
4388 			purged = 1;
4389 			segvn_purge(seg);
4390 			continue;
4391 		}
4392 
4393 		if (segvn_anypgsz) {
4394 			ASSERT(ierr == -2 || szc != 0);
4395 			ASSERT(ierr == -1 || szc < seg->s_szc);
4396 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4397 		} else {
4398 			/*
4399 			 * For non COW faults and segvn_anypgsz == 0
4400 			 * we need to be careful not to loop forever
4401 			 * if existing page is found with szc other
4402 			 * than 0 or seg->s_szc. This could be due
4403 			 * to page relocations on behalf of DR or
4404 			 * more likely large page creation. For this
4405 			 * case simply re-size to existing page's szc
4406 			 * if returned by anon_map_getpages().
4407 			 */
4408 			if (ppa_szc == (uint_t)-1) {
4409 				szc = (ierr == -1) ? 0 : seg->s_szc;
4410 			} else {
4411 				ASSERT(ppa_szc <= seg->s_szc);
4412 				ASSERT(ierr == -2 || ppa_szc < szc);
4413 				ASSERT(ierr == -1 || ppa_szc > szc);
4414 				szc = ppa_szc;
4415 			}
4416 		}
4417 
4418 		pgsz = page_get_pagesize(szc);
4419 		pages = btop(pgsz);
4420 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4421 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4422 		if (type == F_SOFTLOCK) {
4423 			/*
4424 			 * For softlocks we cannot reduce the fault area
4425 			 * (calculated based on the largest page size for this
4426 			 * segment) for size down and a is already next
4427 			 * page size aligned as assertted above for size
4428 			 * ups. Therefore just continue in case of softlock.
4429 			 */
4430 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4431 			continue; /* keep lint happy */
4432 		} else if (ierr == -2) {
4433 
4434 			/*
4435 			 * Size up case. Note lpgaddr may only be needed for
4436 			 * softlock case so we don't adjust it here.
4437 			 */
4438 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4439 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4440 			ASSERT(a >= lpgaddr);
4441 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4442 			aindx = svd->anon_index + seg_page(seg, a);
4443 			vpage = (svd->vpage != NULL) ?
4444 			    &svd->vpage[seg_page(seg, a)] : NULL;
4445 		} else {
4446 			/*
4447 			 * Size down case. Note lpgaddr may only be needed for
4448 			 * softlock case so we don't adjust it here.
4449 			 */
4450 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4451 			ASSERT(IS_P2ALIGNED(a, pgsz));
4452 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4453 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4454 			ASSERT(a < lpgeaddr);
4455 			if (a < addr) {
4456 				/*
4457 				 * The beginning of the large page region can
4458 				 * be pulled to the right to make a smaller
4459 				 * region. We haven't yet faulted a single
4460 				 * page.
4461 				 */
4462 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4463 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4464 				ASSERT(a >= lpgaddr);
4465 				aindx = svd->anon_index + seg_page(seg, a);
4466 				vpage = (svd->vpage != NULL) ?
4467 				    &svd->vpage[seg_page(seg, a)] : NULL;
4468 			}
4469 		}
4470 	}
4471 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4472 	ANON_LOCK_EXIT(&amp->a_rwlock);
4473 	kmem_free(ppa, ppasize);
4474 	return (0);
4475 error:
4476 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4477 	ANON_LOCK_EXIT(&amp->a_rwlock);
4478 	kmem_free(ppa, ppasize);
4479 	if (type == F_SOFTLOCK && a > lpgaddr) {
4480 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4481 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4482 	}
4483 	return (err);
4484 }
4485 
4486 int fltadvice = 1;	/* set to free behind pages for sequential access */
4487 
4488 /*
4489  * This routine is called via a machine specific fault handling routine.
4490  * It is also called by software routines wishing to lock or unlock
4491  * a range of addresses.
4492  *
4493  * Here is the basic algorithm:
4494  *	If unlocking
4495  *		Call segvn_softunlock
4496  *		Return
4497  *	endif
4498  *	Checking and set up work
4499  *	If we will need some non-anonymous pages
4500  *		Call VOP_GETPAGE over the range of non-anonymous pages
4501  *	endif
4502  *	Loop over all addresses requested
4503  *		Call segvn_faultpage passing in page list
4504  *		    to load up translations and handle anonymous pages
4505  *	endloop
4506  *	Load up translation to any additional pages in page list not
4507  *	    already handled that fit into this segment
4508  */
4509 static faultcode_t
4510 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4511     enum fault_type type, enum seg_rw rw)
4512 {
4513 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4514 	page_t **plp, **ppp, *pp;
4515 	u_offset_t off;
4516 	caddr_t a;
4517 	struct vpage *vpage;
4518 	uint_t vpprot, prot;
4519 	int err;
4520 	page_t *pl[PVN_GETPAGE_NUM + 1];
4521 	size_t plsz, pl_alloc_sz;
4522 	size_t page;
4523 	ulong_t anon_index;
4524 	struct anon_map *amp;
4525 	int dogetpage = 0;
4526 	caddr_t	lpgaddr, lpgeaddr;
4527 	size_t pgsz;
4528 	anon_sync_obj_t cookie;
4529 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4530 
4531 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4532 
4533 	/*
4534 	 * First handle the easy stuff
4535 	 */
4536 	if (type == F_SOFTUNLOCK) {
4537 		if (rw == S_READ_NOCOW) {
4538 			rw = S_READ;
4539 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4540 		}
4541 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4542 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4543 		    page_get_pagesize(seg->s_szc);
4544 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4545 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4546 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4547 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4548 		return (0);
4549 	}
4550 
4551 top:
4552 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4553 
4554 	/*
4555 	 * If we have the same protections for the entire segment,
4556 	 * insure that the access being attempted is legitimate.
4557 	 */
4558 
4559 	if (svd->pageprot == 0) {
4560 		uint_t protchk;
4561 
4562 		switch (rw) {
4563 		case S_READ:
4564 		case S_READ_NOCOW:
4565 			protchk = PROT_READ;
4566 			break;
4567 		case S_WRITE:
4568 			protchk = PROT_WRITE;
4569 			break;
4570 		case S_EXEC:
4571 			protchk = PROT_EXEC;
4572 			break;
4573 		case S_OTHER:
4574 		default:
4575 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4576 			break;
4577 		}
4578 
4579 		if ((svd->prot & protchk) == 0) {
4580 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4581 			return (FC_PROT);	/* illegal access type */
4582 		}
4583 	}
4584 
4585 	/*
4586 	 * We can't allow the long term use of softlocks for vmpss segments,
4587 	 * because in some file truncation cases we should be able to demote
4588 	 * the segment, which requires that there are no softlocks.  The
4589 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
4590 	 * segment is S_READ_NOCOW, where the caller holds the address space
4591 	 * locked as writer and calls softunlock before dropping the as lock.
4592 	 * S_READ_NOCOW is used by /proc to read memory from another user.
4593 	 *
4594 	 * Another deadlock between SOFTLOCK and file truncation can happen
4595 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
4596 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
4597 	 * can cause a deadlock because the first set of page_t's remain
4598 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
4599 	 * SOFTLOCK if they have a length greater than the segment's
4600 	 * page size.
4601 	 *
4602 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
4603 	 * the access type is S_READ_NOCOW and the fault length is less than
4604 	 * or equal to the segment's page size. While this is quite restrictive,
4605 	 * it should be the most common case of SOFTLOCK against a vmpss
4606 	 * segment.
4607 	 *
4608 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
4609 	 * caller makes sure no COW will be caused by another thread for a
4610 	 * softlocked page.
4611 	 */
4612 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
4613 		int demote = 0;
4614 
4615 		if (rw != S_READ_NOCOW) {
4616 			demote = 1;
4617 		}
4618 		if (!demote && len > PAGESIZE) {
4619 			pgsz = page_get_pagesize(seg->s_szc);
4620 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
4621 			    lpgeaddr);
4622 			if (lpgeaddr - lpgaddr > pgsz) {
4623 				demote = 1;
4624 			}
4625 		}
4626 
4627 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4628 
4629 		if (demote) {
4630 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4631 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4632 			if (seg->s_szc != 0) {
4633 				segvn_vmpss_clrszc_cnt++;
4634 				ASSERT(svd->softlockcnt == 0);
4635 				err = segvn_clrszc(seg);
4636 				if (err) {
4637 					segvn_vmpss_clrszc_err++;
4638 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4639 					return (FC_MAKE_ERR(err));
4640 				}
4641 			}
4642 			ASSERT(seg->s_szc == 0);
4643 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4644 			goto top;
4645 		}
4646 	}
4647 
4648 	/*
4649 	 * Check to see if we need to allocate an anon_map structure.
4650 	 */
4651 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
4652 		/*
4653 		 * Drop the "read" lock on the segment and acquire
4654 		 * the "write" version since we have to allocate the
4655 		 * anon_map.
4656 		 */
4657 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4658 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4659 
4660 		if (svd->amp == NULL) {
4661 			svd->amp = anonmap_alloc(seg->s_size, 0);
4662 			svd->amp->a_szc = seg->s_szc;
4663 		}
4664 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4665 
4666 		/*
4667 		 * Start all over again since segment protections
4668 		 * may have changed after we dropped the "read" lock.
4669 		 */
4670 		goto top;
4671 	}
4672 
4673 	/*
4674 	 * S_READ_NOCOW vs S_READ distinction was
4675 	 * only needed for the code above. After
4676 	 * that we treat it as S_READ.
4677 	 */
4678 	if (rw == S_READ_NOCOW) {
4679 		ASSERT(type == F_SOFTLOCK);
4680 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4681 		rw = S_READ;
4682 	}
4683 
4684 	amp = svd->amp;
4685 
4686 	/*
4687 	 * MADV_SEQUENTIAL work is ignored for large page segments.
4688 	 */
4689 	if (seg->s_szc != 0) {
4690 		pgsz = page_get_pagesize(seg->s_szc);
4691 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4692 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4693 		if (svd->vp == NULL) {
4694 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
4695 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
4696 		} else {
4697 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
4698 				lpgeaddr, type, rw, addr, addr + len, brkcow);
4699 			if (err == IE_RETRY) {
4700 				ASSERT(seg->s_szc == 0);
4701 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
4702 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4703 				goto top;
4704 			}
4705 		}
4706 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4707 		return (err);
4708 	}
4709 
4710 	page = seg_page(seg, addr);
4711 	if (amp != NULL) {
4712 		anon_index = svd->anon_index + page;
4713 
4714 		if ((type == F_PROT) && (rw == S_READ) &&
4715 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
4716 			size_t index = anon_index;
4717 			struct anon *ap;
4718 
4719 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4720 			/*
4721 			 * The fast path could apply to S_WRITE also, except
4722 			 * that the protection fault could be caused by lazy
4723 			 * tlb flush when ro->rw. In this case, the pte is
4724 			 * RW already. But RO in the other cpu's tlb causes
4725 			 * the fault. Since hat_chgprot won't do anything if
4726 			 * pte doesn't change, we may end up faulting
4727 			 * indefinitely until the RO tlb entry gets replaced.
4728 			 */
4729 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
4730 				anon_array_enter(amp, index, &cookie);
4731 				ap = anon_get_ptr(amp->ahp, index);
4732 				anon_array_exit(&cookie);
4733 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
4734 					ANON_LOCK_EXIT(&amp->a_rwlock);
4735 					goto slow;
4736 				}
4737 			}
4738 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
4739 			ANON_LOCK_EXIT(&amp->a_rwlock);
4740 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4741 			return (0);
4742 		}
4743 	}
4744 slow:
4745 
4746 	if (svd->vpage == NULL)
4747 		vpage = NULL;
4748 	else
4749 		vpage = &svd->vpage[page];
4750 
4751 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
4752 
4753 	/*
4754 	 * If MADV_SEQUENTIAL has been set for the particular page we
4755 	 * are faulting on, free behind all pages in the segment and put
4756 	 * them on the free list.
4757 	 */
4758 	if ((page != 0) && fltadvice) {	/* not if first page in segment */
4759 		struct vpage *vpp;
4760 		ulong_t fanon_index;
4761 		size_t fpage;
4762 		u_offset_t pgoff, fpgoff;
4763 		struct vnode *fvp;
4764 		struct anon *fap = NULL;
4765 
4766 		if (svd->advice == MADV_SEQUENTIAL ||
4767 		    (svd->pageadvice &&
4768 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
4769 			pgoff = off - PAGESIZE;
4770 			fpage = page - 1;
4771 			if (vpage != NULL)
4772 				vpp = &svd->vpage[fpage];
4773 			if (amp != NULL)
4774 				fanon_index = svd->anon_index + fpage;
4775 
4776 			while (pgoff > svd->offset) {
4777 				if (svd->advice != MADV_SEQUENTIAL &&
4778 				    (!svd->pageadvice || (vpage &&
4779 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
4780 					break;
4781 
4782 				/*
4783 				 * If this is an anon page, we must find the
4784 				 * correct <vp, offset> for it
4785 				 */
4786 				fap = NULL;
4787 				if (amp != NULL) {
4788 					ANON_LOCK_ENTER(&amp->a_rwlock,
4789 						RW_READER);
4790 					anon_array_enter(amp, fanon_index,
4791 						&cookie);
4792 					fap = anon_get_ptr(amp->ahp,
4793 					    fanon_index);
4794 					if (fap != NULL) {
4795 						swap_xlate(fap, &fvp, &fpgoff);
4796 					} else {
4797 						fpgoff = pgoff;
4798 						fvp = svd->vp;
4799 					}
4800 					anon_array_exit(&cookie);
4801 					ANON_LOCK_EXIT(&amp->a_rwlock);
4802 				} else {
4803 					fpgoff = pgoff;
4804 					fvp = svd->vp;
4805 				}
4806 				if (fvp == NULL)
4807 					break;	/* XXX */
4808 				/*
4809 				 * Skip pages that are free or have an
4810 				 * "exclusive" lock.
4811 				 */
4812 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
4813 				if (pp == NULL)
4814 					break;
4815 				/*
4816 				 * We don't need the page_struct_lock to test
4817 				 * as this is only advisory; even if we
4818 				 * acquire it someone might race in and lock
4819 				 * the page after we unlock and before the
4820 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
4821 				 */
4822 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
4823 					/*
4824 					 * Hold the vnode before releasing
4825 					 * the page lock to prevent it from
4826 					 * being freed and re-used by some
4827 					 * other thread.
4828 					 */
4829 					VN_HOLD(fvp);
4830 					page_unlock(pp);
4831 					/*
4832 					 * We should build a page list
4833 					 * to kluster putpages XXX
4834 					 */
4835 					(void) VOP_PUTPAGE(fvp,
4836 					    (offset_t)fpgoff, PAGESIZE,
4837 					    (B_DONTNEED|B_FREE|B_ASYNC),
4838 					    svd->cred);
4839 					VN_RELE(fvp);
4840 				} else {
4841 					/*
4842 					 * XXX - Should the loop terminate if
4843 					 * the page is `locked'?
4844 					 */
4845 					page_unlock(pp);
4846 				}
4847 				--vpp;
4848 				--fanon_index;
4849 				pgoff -= PAGESIZE;
4850 			}
4851 		}
4852 	}
4853 
4854 	plp = pl;
4855 	*plp = NULL;
4856 	pl_alloc_sz = 0;
4857 
4858 	/*
4859 	 * See if we need to call VOP_GETPAGE for
4860 	 * *any* of the range being faulted on.
4861 	 * We can skip all of this work if there
4862 	 * was no original vnode.
4863 	 */
4864 	if (svd->vp != NULL) {
4865 		u_offset_t vp_off;
4866 		size_t vp_len;
4867 		struct anon *ap;
4868 		vnode_t *vp;
4869 
4870 		vp_off = off;
4871 		vp_len = len;
4872 
4873 		if (amp == NULL)
4874 			dogetpage = 1;
4875 		else {
4876 			/*
4877 			 * Only acquire reader lock to prevent amp->ahp
4878 			 * from being changed.  It's ok to miss pages,
4879 			 * hence we don't do anon_array_enter
4880 			 */
4881 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4882 			ap = anon_get_ptr(amp->ahp, anon_index);
4883 
4884 			if (len <= PAGESIZE)
4885 				/* inline non_anon() */
4886 				dogetpage = (ap == NULL);
4887 			else
4888 				dogetpage = non_anon(amp->ahp, anon_index,
4889 				    &vp_off, &vp_len);
4890 			ANON_LOCK_EXIT(&amp->a_rwlock);
4891 		}
4892 
4893 		if (dogetpage) {
4894 			enum seg_rw arw;
4895 			struct as *as = seg->s_as;
4896 
4897 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
4898 				/*
4899 				 * Page list won't fit in local array,
4900 				 * allocate one of the needed size.
4901 				 */
4902 				pl_alloc_sz =
4903 				    (btop(len) + 1) * sizeof (page_t *);
4904 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
4905 				plp[0] = NULL;
4906 				plsz = len;
4907 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
4908 			    rw == S_OTHER ||
4909 			    (((size_t)(addr + PAGESIZE) <
4910 			    (size_t)(seg->s_base + seg->s_size)) &&
4911 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
4912 				/*
4913 				 * Ask VOP_GETPAGE to return the exact number
4914 				 * of pages if
4915 				 * (a) this is a COW fault, or
4916 				 * (b) this is a software fault, or
4917 				 * (c) next page is already mapped.
4918 				 */
4919 				plsz = len;
4920 			} else {
4921 				/*
4922 				 * Ask VOP_GETPAGE to return adjacent pages
4923 				 * within the segment.
4924 				 */
4925 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
4926 					((seg->s_base + seg->s_size) - addr));
4927 				ASSERT((addr + plsz) <=
4928 				    (seg->s_base + seg->s_size));
4929 			}
4930 
4931 			/*
4932 			 * Need to get some non-anonymous pages.
4933 			 * We need to make only one call to GETPAGE to do
4934 			 * this to prevent certain deadlocking conditions
4935 			 * when we are doing locking.  In this case
4936 			 * non_anon() should have picked up the smallest
4937 			 * range which includes all the non-anonymous
4938 			 * pages in the requested range.  We have to
4939 			 * be careful regarding which rw flag to pass in
4940 			 * because on a private mapping, the underlying
4941 			 * object is never allowed to be written.
4942 			 */
4943 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
4944 				arw = S_READ;
4945 			} else {
4946 				arw = rw;
4947 			}
4948 			vp = svd->vp;
4949 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4950 				"segvn_getpage:seg %p addr %p vp %p",
4951 				seg, addr, vp);
4952 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
4953 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
4954 			    svd->cred);
4955 			if (err) {
4956 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4957 				segvn_pagelist_rele(plp);
4958 				if (pl_alloc_sz)
4959 					kmem_free(plp, pl_alloc_sz);
4960 				return (FC_MAKE_ERR(err));
4961 			}
4962 			if (svd->type == MAP_PRIVATE)
4963 				vpprot &= ~PROT_WRITE;
4964 		}
4965 	}
4966 
4967 	/*
4968 	 * N.B. at this time the plp array has all the needed non-anon
4969 	 * pages in addition to (possibly) having some adjacent pages.
4970 	 */
4971 
4972 	/*
4973 	 * Always acquire the anon_array_lock to prevent
4974 	 * 2 threads from allocating separate anon slots for
4975 	 * the same "addr".
4976 	 *
4977 	 * If this is a copy-on-write fault and we don't already
4978 	 * have the anon_array_lock, acquire it to prevent the
4979 	 * fault routine from handling multiple copy-on-write faults
4980 	 * on the same "addr" in the same address space.
4981 	 *
4982 	 * Only one thread should deal with the fault since after
4983 	 * it is handled, the other threads can acquire a translation
4984 	 * to the newly created private page.  This prevents two or
4985 	 * more threads from creating different private pages for the
4986 	 * same fault.
4987 	 *
4988 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
4989 	 * to prevent deadlock between this thread and another thread
4990 	 * which has soft-locked this page and wants to acquire serial_lock.
4991 	 * ( bug 4026339 )
4992 	 *
4993 	 * The fix for bug 4026339 becomes unnecessary when using the
4994 	 * locking scheme with per amp rwlock and a global set of hash
4995 	 * lock, anon_array_lock.  If we steal a vnode page when low
4996 	 * on memory and upgrad the page lock through page_rename,
4997 	 * then the page is PAGE_HANDLED, nothing needs to be done
4998 	 * for this page after returning from segvn_faultpage.
4999 	 *
5000 	 * But really, the page lock should be downgraded after
5001 	 * the stolen page is page_rename'd.
5002 	 */
5003 
5004 	if (amp != NULL)
5005 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5006 
5007 	/*
5008 	 * Ok, now loop over the address range and handle faults
5009 	 */
5010 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5011 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5012 		    type, rw, brkcow, a == addr);
5013 		if (err) {
5014 			if (amp != NULL)
5015 				ANON_LOCK_EXIT(&amp->a_rwlock);
5016 			if (type == F_SOFTLOCK && a > addr) {
5017 				segvn_softunlock(seg, addr, (a - addr),
5018 				    S_OTHER);
5019 			}
5020 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5021 			segvn_pagelist_rele(plp);
5022 			if (pl_alloc_sz)
5023 				kmem_free(plp, pl_alloc_sz);
5024 			return (err);
5025 		}
5026 		if (vpage) {
5027 			vpage++;
5028 		} else if (svd->vpage) {
5029 			page = seg_page(seg, addr);
5030 			vpage = &svd->vpage[++page];
5031 		}
5032 	}
5033 
5034 	/* Didn't get pages from the underlying fs so we're done */
5035 	if (!dogetpage)
5036 		goto done;
5037 
5038 	/*
5039 	 * Now handle any other pages in the list returned.
5040 	 * If the page can be used, load up the translations now.
5041 	 * Note that the for loop will only be entered if "plp"
5042 	 * is pointing to a non-NULL page pointer which means that
5043 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5044 	 */
5045 	if (svd->pageprot == 0)
5046 		prot = svd->prot & vpprot;
5047 
5048 
5049 	/*
5050 	 * Large Files: diff should be unsigned value because we started
5051 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5052 	 * large file of size > 2GB gets mapped to address space
5053 	 * the diff value can be > 2GB.
5054 	 */
5055 
5056 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5057 		size_t diff;
5058 		struct anon *ap;
5059 		int anon_index;
5060 		anon_sync_obj_t cookie;
5061 		int hat_flag = HAT_LOAD_ADV;
5062 
5063 		if (svd->flags & MAP_TEXT) {
5064 			hat_flag |= HAT_LOAD_TEXT;
5065 		}
5066 
5067 		if (pp == PAGE_HANDLED)
5068 			continue;
5069 
5070 		if (pp->p_offset >=  svd->offset &&
5071 			(pp->p_offset < svd->offset + seg->s_size)) {
5072 
5073 			diff = pp->p_offset - svd->offset;
5074 
5075 			/*
5076 			 * Large Files: Following is the assertion
5077 			 * validating the above cast.
5078 			 */
5079 			ASSERT(svd->vp == pp->p_vnode);
5080 
5081 			page = btop(diff);
5082 			if (svd->pageprot)
5083 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5084 
5085 			/*
5086 			 * Prevent other threads in the address space from
5087 			 * creating private pages (i.e., allocating anon slots)
5088 			 * while we are in the process of loading translations
5089 			 * to additional pages returned by the underlying
5090 			 * object.
5091 			 */
5092 			if (amp != NULL) {
5093 				anon_index = svd->anon_index + page;
5094 				anon_array_enter(amp, anon_index, &cookie);
5095 				ap = anon_get_ptr(amp->ahp, anon_index);
5096 			}
5097 			if ((amp == NULL) || (ap == NULL)) {
5098 				if (IS_VMODSORT(pp->p_vnode) ||
5099 				    enable_mbit_wa) {
5100 					if (rw == S_WRITE)
5101 						hat_setmod(pp);
5102 					else if (rw != S_OTHER &&
5103 					    !hat_ismod(pp))
5104 						prot &= ~PROT_WRITE;
5105 				}
5106 				/*
5107 				 * Skip mapping read ahead pages marked
5108 				 * for migration, so they will get migrated
5109 				 * properly on fault
5110 				 */
5111 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5112 					hat_memload(hat, seg->s_base + diff,
5113 						pp, prot, hat_flag);
5114 				}
5115 			}
5116 			if (amp != NULL)
5117 				anon_array_exit(&cookie);
5118 		}
5119 		page_unlock(pp);
5120 	}
5121 done:
5122 	if (amp != NULL)
5123 		ANON_LOCK_EXIT(&amp->a_rwlock);
5124 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5125 	if (pl_alloc_sz)
5126 		kmem_free(plp, pl_alloc_sz);
5127 	return (0);
5128 }
5129 
5130 /*
5131  * This routine is used to start I/O on pages asynchronously.  XXX it will
5132  * only create PAGESIZE pages. At fault time they will be relocated into
5133  * larger pages.
5134  */
5135 static faultcode_t
5136 segvn_faulta(struct seg *seg, caddr_t addr)
5137 {
5138 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5139 	int err;
5140 	struct anon_map *amp;
5141 	vnode_t *vp;
5142 
5143 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5144 
5145 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5146 	if ((amp = svd->amp) != NULL) {
5147 		struct anon *ap;
5148 
5149 		/*
5150 		 * Reader lock to prevent amp->ahp from being changed.
5151 		 * This is advisory, it's ok to miss a page, so
5152 		 * we don't do anon_array_enter lock.
5153 		 */
5154 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5155 		if ((ap = anon_get_ptr(amp->ahp,
5156 			svd->anon_index + seg_page(seg, addr))) != NULL) {
5157 
5158 			err = anon_getpage(&ap, NULL, NULL,
5159 			    0, seg, addr, S_READ, svd->cred);
5160 
5161 			ANON_LOCK_EXIT(&amp->a_rwlock);
5162 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5163 			if (err)
5164 				return (FC_MAKE_ERR(err));
5165 			return (0);
5166 		}
5167 		ANON_LOCK_EXIT(&amp->a_rwlock);
5168 	}
5169 
5170 	if (svd->vp == NULL) {
5171 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5172 		return (0);			/* zfod page - do nothing now */
5173 	}
5174 
5175 	vp = svd->vp;
5176 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5177 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5178 	err = VOP_GETPAGE(vp,
5179 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5180 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5181 	    S_OTHER, svd->cred);
5182 
5183 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5184 	if (err)
5185 		return (FC_MAKE_ERR(err));
5186 	return (0);
5187 }
5188 
5189 static int
5190 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5191 {
5192 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5193 	struct vpage *svp, *evp;
5194 	struct vnode *vp;
5195 	size_t pgsz;
5196 	pgcnt_t pgcnt;
5197 	anon_sync_obj_t cookie;
5198 
5199 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5200 
5201 	if ((svd->maxprot & prot) != prot)
5202 		return (EACCES);			/* violated maxprot */
5203 
5204 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5205 
5206 	/* return if prot is the same */
5207 	if (!svd->pageprot && svd->prot == prot) {
5208 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5209 		return (0);
5210 	}
5211 
5212 	/*
5213 	 * Since we change protections we first have to flush the cache.
5214 	 * This makes sure all the pagelock calls have to recheck
5215 	 * protections.
5216 	 */
5217 	if (svd->softlockcnt > 0) {
5218 		/*
5219 		 * Since we do have the segvn writers lock nobody can fill
5220 		 * the cache with entries belonging to this seg during
5221 		 * the purge. The flush either succeeds or we still have
5222 		 * pending I/Os.
5223 		 */
5224 		segvn_purge(seg);
5225 		if (svd->softlockcnt > 0) {
5226 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5227 			return (EAGAIN);
5228 		}
5229 	}
5230 
5231 	if (seg->s_szc != 0) {
5232 		int err;
5233 		pgsz = page_get_pagesize(seg->s_szc);
5234 		pgcnt = pgsz >> PAGESHIFT;
5235 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5236 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5237 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5238 			ASSERT(seg->s_base != addr || seg->s_size != len);
5239 			/*
5240 			 * If we are holding the as lock as a reader then
5241 			 * we need to return IE_RETRY and let the as
5242 			 * layer drop and re-aquire the lock as a writer.
5243 			 */
5244 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5245 				return (IE_RETRY);
5246 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5247 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5248 				err = segvn_demote_range(seg, addr, len,
5249 				    SDR_END, 0);
5250 			} else {
5251 				uint_t szcvec = map_shm_pgszcvec(seg->s_base,
5252 				    pgsz, (uintptr_t)seg->s_base);
5253 				err = segvn_demote_range(seg, addr, len,
5254 				    SDR_END, szcvec);
5255 			}
5256 			if (err == 0)
5257 				return (IE_RETRY);
5258 			if (err == ENOMEM)
5259 				return (IE_NOMEM);
5260 			return (err);
5261 		}
5262 	}
5263 
5264 
5265 	/*
5266 	 * If it's a private mapping and we're making it writable
5267 	 * and no swap space has been reserved, have to reserve
5268 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
5269 	 * and we're removing write permission on the entire segment and
5270 	 * we haven't modified any pages, we can release the swap space.
5271 	 */
5272 	if (svd->type == MAP_PRIVATE) {
5273 		if (prot & PROT_WRITE) {
5274 			size_t sz;
5275 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
5276 				if (anon_resv(seg->s_size) == 0) {
5277 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5278 					return (IE_NOMEM);
5279 				}
5280 				sz = svd->swresv = seg->s_size;
5281 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5282 					"anon proc:%p %lu %u",
5283 					seg, sz, 1);
5284 			}
5285 		} else {
5286 			/*
5287 			 * Swap space is released only if this segment
5288 			 * does not map anonymous memory, since read faults
5289 			 * on such segments still need an anon slot to read
5290 			 * in the data.
5291 			 */
5292 			if (svd->swresv != 0 && svd->vp != NULL &&
5293 			    svd->amp == NULL && addr == seg->s_base &&
5294 			    len == seg->s_size && svd->pageprot == 0) {
5295 				anon_unresv(svd->swresv);
5296 				svd->swresv = 0;
5297 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5298 					"anon proc:%p %lu %u",
5299 					seg, 0, 0);
5300 			}
5301 		}
5302 	}
5303 
5304 	if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
5305 		if (svd->prot == prot) {
5306 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5307 			return (0);			/* all done */
5308 		}
5309 		svd->prot = (uchar_t)prot;
5310 	} else if (svd->type == MAP_PRIVATE) {
5311 		struct anon *ap = NULL;
5312 		page_t *pp;
5313 		u_offset_t offset, off;
5314 		struct anon_map *amp;
5315 		ulong_t anon_idx = 0;
5316 
5317 		/*
5318 		 * A vpage structure exists or else the change does not
5319 		 * involve the entire segment.  Establish a vpage structure
5320 		 * if none is there.  Then, for each page in the range,
5321 		 * adjust its individual permissions.  Note that write-
5322 		 * enabling a MAP_PRIVATE page can affect the claims for
5323 		 * locked down memory.  Overcommitting memory terminates
5324 		 * the operation.
5325 		 */
5326 		segvn_vpage(seg);
5327 		if ((amp = svd->amp) != NULL) {
5328 			anon_idx = svd->anon_index + seg_page(seg, addr);
5329 			ASSERT(seg->s_szc == 0 ||
5330 			    IS_P2ALIGNED(anon_idx, pgcnt));
5331 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5332 		}
5333 
5334 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5335 		evp = &svd->vpage[seg_page(seg, addr + len)];
5336 
5337 		/*
5338 		 * See Statement at the beginning of segvn_lockop regarding
5339 		 * the way cowcnts and lckcnts are handled.
5340 		 */
5341 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5342 
5343 			if (seg->s_szc != 0) {
5344 				if (amp != NULL) {
5345 					anon_array_enter(amp, anon_idx,
5346 					    &cookie);
5347 				}
5348 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5349 				    !segvn_claim_pages(seg, svp, offset,
5350 					anon_idx, prot)) {
5351 					if (amp != NULL) {
5352 						anon_array_exit(&cookie);
5353 					}
5354 					break;
5355 				}
5356 				if (amp != NULL) {
5357 					anon_array_exit(&cookie);
5358 				}
5359 				anon_idx++;
5360 			} else {
5361 				if (amp != NULL) {
5362 					anon_array_enter(amp, anon_idx,
5363 						&cookie);
5364 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5365 				}
5366 
5367 				if (VPP_ISPPLOCK(svp) &&
5368 				    VPP_PROT(svp) != prot) {
5369 
5370 					if (amp == NULL || ap == NULL) {
5371 						vp = svd->vp;
5372 						off = offset;
5373 					} else
5374 						swap_xlate(ap, &vp, &off);
5375 					if (amp != NULL)
5376 						anon_array_exit(&cookie);
5377 
5378 					if ((pp = page_lookup(vp, off,
5379 					    SE_SHARED)) == NULL) {
5380 						panic("segvn_setprot: no page");
5381 						/*NOTREACHED*/
5382 					}
5383 					ASSERT(seg->s_szc == 0);
5384 					if ((VPP_PROT(svp) ^ prot) &
5385 					    PROT_WRITE) {
5386 						if (prot & PROT_WRITE) {
5387 						    if (!page_addclaim(pp)) {
5388 							page_unlock(pp);
5389 							break;
5390 						    }
5391 						} else {
5392 						    if (!page_subclaim(pp)) {
5393 							page_unlock(pp);
5394 							break;
5395 						    }
5396 						}
5397 					}
5398 					page_unlock(pp);
5399 				} else if (amp != NULL)
5400 					anon_array_exit(&cookie);
5401 			}
5402 			VPP_SETPROT(svp, prot);
5403 			offset += PAGESIZE;
5404 		}
5405 		if (amp != NULL)
5406 			ANON_LOCK_EXIT(&amp->a_rwlock);
5407 
5408 		/*
5409 		 * Did we terminate prematurely?  If so, simply unload
5410 		 * the translations to the things we've updated so far.
5411 		 */
5412 		if (svp != evp) {
5413 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5414 			    PAGESIZE;
5415 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5416 			if (len != 0)
5417 				hat_unload(seg->s_as->a_hat, addr,
5418 				    len, HAT_UNLOAD);
5419 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5420 			return (IE_NOMEM);
5421 		}
5422 	} else {
5423 		segvn_vpage(seg);
5424 		evp = &svd->vpage[seg_page(seg, addr + len)];
5425 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5426 			VPP_SETPROT(svp, prot);
5427 		}
5428 	}
5429 
5430 	if (((prot & PROT_WRITE) != 0 &&
5431 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5432 	    (prot & ~PROT_USER) == PROT_NONE) {
5433 		/*
5434 		 * Either private or shared data with write access (in
5435 		 * which case we need to throw out all former translations
5436 		 * so that we get the right translations set up on fault
5437 		 * and we don't allow write access to any copy-on-write pages
5438 		 * that might be around or to prevent write access to pages
5439 		 * representing holes in a file), or we don't have permission
5440 		 * to access the memory at all (in which case we have to
5441 		 * unload any current translations that might exist).
5442 		 */
5443 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5444 	} else {
5445 		/*
5446 		 * A shared mapping or a private mapping in which write
5447 		 * protection is going to be denied - just change all the
5448 		 * protections over the range of addresses in question.
5449 		 * segvn does not support any other attributes other
5450 		 * than prot so we can use hat_chgattr.
5451 		 */
5452 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5453 	}
5454 
5455 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5456 
5457 	return (0);
5458 }
5459 
5460 /*
5461  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5462  * to determine if the seg is capable of mapping the requested szc.
5463  */
5464 static int
5465 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5466 {
5467 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5468 	struct segvn_data *nsvd;
5469 	struct anon_map *amp = svd->amp;
5470 	struct seg *nseg;
5471 	caddr_t eaddr = addr + len, a;
5472 	size_t pgsz = page_get_pagesize(szc);
5473 	pgcnt_t pgcnt = page_get_pagecnt(szc);
5474 	int err;
5475 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5476 	extern struct vnode kvp;
5477 
5478 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5479 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5480 
5481 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5482 		return (0);
5483 	}
5484 
5485 	/*
5486 	 * addr should always be pgsz aligned but eaddr may be misaligned if
5487 	 * it's at the end of the segment.
5488 	 *
5489 	 * XXX we should assert this condition since as_setpagesize() logic
5490 	 * guarantees it.
5491 	 */
5492 	if (!IS_P2ALIGNED(addr, pgsz) ||
5493 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
5494 		eaddr != seg->s_base + seg->s_size)) {
5495 
5496 		segvn_setpgsz_align_err++;
5497 		return (EINVAL);
5498 	}
5499 
5500 	if (amp != NULL && svd->type == MAP_SHARED) {
5501 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
5502 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
5503 
5504 			segvn_setpgsz_anon_align_err++;
5505 			return (EINVAL);
5506 		}
5507 	}
5508 
5509 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
5510 	    szc > segvn_maxpgszc) {
5511 		return (EINVAL);
5512 	}
5513 
5514 	/* paranoid check */
5515 	if (svd->vp != NULL &&
5516 	    (IS_SWAPFSVP(svd->vp) || svd->vp == &kvp)) {
5517 		    return (EINVAL);
5518 	}
5519 
5520 	if (seg->s_szc == 0 && svd->vp != NULL &&
5521 	    map_addr_vacalign_check(addr, off)) {
5522 		return (EINVAL);
5523 	}
5524 
5525 	/*
5526 	 * Check that protections are the same within new page
5527 	 * size boundaries.
5528 	 */
5529 	if (svd->pageprot) {
5530 		for (a = addr; a < eaddr; a += pgsz) {
5531 			if ((a + pgsz) > eaddr) {
5532 				if (!sameprot(seg, a, eaddr - a)) {
5533 					return (EINVAL);
5534 				}
5535 			} else {
5536 				if (!sameprot(seg, a, pgsz)) {
5537 					return (EINVAL);
5538 				}
5539 			}
5540 		}
5541 	}
5542 
5543 	/*
5544 	 * Since we are changing page size we first have to flush
5545 	 * the cache. This makes sure all the pagelock calls have
5546 	 * to recheck protections.
5547 	 */
5548 	if (svd->softlockcnt > 0) {
5549 		/*
5550 		 * Since we do have the segvn writers lock nobody can fill
5551 		 * the cache with entries belonging to this seg during
5552 		 * the purge. The flush either succeeds or we still have
5553 		 * pending I/Os.
5554 		 */
5555 		segvn_purge(seg);
5556 		if (svd->softlockcnt > 0) {
5557 			return (EAGAIN);
5558 		}
5559 	}
5560 
5561 	/*
5562 	 * Operation for sub range of existing segment.
5563 	 */
5564 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
5565 		if (szc < seg->s_szc) {
5566 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
5567 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
5568 			if (err == 0) {
5569 				return (IE_RETRY);
5570 			}
5571 			if (err == ENOMEM) {
5572 				return (IE_NOMEM);
5573 			}
5574 			return (err);
5575 		}
5576 		if (addr != seg->s_base) {
5577 			nseg = segvn_split_seg(seg, addr);
5578 			if (eaddr != (nseg->s_base + nseg->s_size)) {
5579 				/* eaddr is szc aligned */
5580 				(void) segvn_split_seg(nseg, eaddr);
5581 			}
5582 			return (IE_RETRY);
5583 		}
5584 		if (eaddr != (seg->s_base + seg->s_size)) {
5585 			/* eaddr is szc aligned */
5586 			(void) segvn_split_seg(seg, eaddr);
5587 		}
5588 		return (IE_RETRY);
5589 	}
5590 
5591 	/*
5592 	 * Break any low level sharing and reset seg->s_szc to 0.
5593 	 */
5594 	if ((err = segvn_clrszc(seg)) != 0) {
5595 		if (err == ENOMEM) {
5596 			err = IE_NOMEM;
5597 		}
5598 		return (err);
5599 	}
5600 	ASSERT(seg->s_szc == 0);
5601 
5602 	/*
5603 	 * If the end of the current segment is not pgsz aligned
5604 	 * then attempt to concatenate with the next segment.
5605 	 */
5606 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
5607 		nseg = AS_SEGNEXT(seg->s_as, seg);
5608 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
5609 			return (ENOMEM);
5610 		}
5611 		if (nseg->s_ops != &segvn_ops) {
5612 			return (EINVAL);
5613 		}
5614 		nsvd = (struct segvn_data *)nseg->s_data;
5615 		if (nsvd->softlockcnt > 0) {
5616 			segvn_purge(nseg);
5617 			if (nsvd->softlockcnt > 0) {
5618 				return (EAGAIN);
5619 			}
5620 		}
5621 		err = segvn_clrszc(nseg);
5622 		if (err == ENOMEM) {
5623 			err = IE_NOMEM;
5624 		}
5625 		if (err != 0) {
5626 			return (err);
5627 		}
5628 		err = segvn_concat(seg, nseg, 1);
5629 		if (err == -1) {
5630 			return (EINVAL);
5631 		}
5632 		if (err == -2) {
5633 			return (IE_NOMEM);
5634 		}
5635 		return (IE_RETRY);
5636 	}
5637 
5638 	/*
5639 	 * May need to re-align anon array to
5640 	 * new szc.
5641 	 */
5642 	if (amp != NULL) {
5643 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
5644 			struct anon_hdr *nahp;
5645 
5646 			ASSERT(svd->type == MAP_PRIVATE);
5647 
5648 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5649 			ASSERT(amp->refcnt == 1);
5650 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
5651 			if (nahp == NULL) {
5652 				ANON_LOCK_EXIT(&amp->a_rwlock);
5653 				return (IE_NOMEM);
5654 			}
5655 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
5656 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
5657 				anon_release(nahp, btop(amp->size));
5658 				ANON_LOCK_EXIT(&amp->a_rwlock);
5659 				return (IE_NOMEM);
5660 			}
5661 			anon_release(amp->ahp, btop(amp->size));
5662 			amp->ahp = nahp;
5663 			svd->anon_index = 0;
5664 			ANON_LOCK_EXIT(&amp->a_rwlock);
5665 		}
5666 	}
5667 	if (svd->vp != NULL && szc != 0) {
5668 		struct vattr va;
5669 		u_offset_t eoffpage = svd->offset;
5670 		va.va_mask = AT_SIZE;
5671 		eoffpage += seg->s_size;
5672 		eoffpage = btopr(eoffpage);
5673 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
5674 			segvn_setpgsz_getattr_err++;
5675 			return (EINVAL);
5676 		}
5677 		if (btopr(va.va_size) < eoffpage) {
5678 			segvn_setpgsz_eof_err++;
5679 			return (EINVAL);
5680 		}
5681 		if (amp != NULL) {
5682 			/*
5683 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
5684 			 * don't take anon map lock here to avoid holding it
5685 			 * across VOP_GETPAGE() calls that may call back into
5686 			 * segvn for klsutering checks. We don't really need
5687 			 * anon map lock here since it's a private segment and
5688 			 * we hold as level lock as writers.
5689 			 */
5690 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
5691 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
5692 			    seg->s_size, szc, svd->prot, svd->vpage,
5693 			    svd->cred)) != 0) {
5694 				return (EINVAL);
5695 			}
5696 		}
5697 		segvn_setvnode_mpss(svd->vp);
5698 	}
5699 
5700 	if (amp != NULL) {
5701 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5702 		if (svd->type == MAP_PRIVATE) {
5703 			amp->a_szc = szc;
5704 		} else if (szc > amp->a_szc) {
5705 			amp->a_szc = szc;
5706 		}
5707 		ANON_LOCK_EXIT(&amp->a_rwlock);
5708 	}
5709 
5710 	seg->s_szc = szc;
5711 
5712 	return (0);
5713 }
5714 
5715 static int
5716 segvn_clrszc(struct seg *seg)
5717 {
5718 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5719 	struct anon_map *amp = svd->amp;
5720 	size_t pgsz;
5721 	pgcnt_t pages;
5722 	int err = 0;
5723 	caddr_t a = seg->s_base;
5724 	caddr_t ea = a + seg->s_size;
5725 	ulong_t an_idx = svd->anon_index;
5726 	vnode_t *vp = svd->vp;
5727 	struct vpage *vpage = svd->vpage;
5728 	page_t *anon_pl[1 + 1], *pp;
5729 	struct anon *ap, *oldap;
5730 	uint_t prot = svd->prot, vpprot;
5731 
5732 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5733 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
5734 
5735 	if (vp == NULL && amp == NULL) {
5736 		seg->s_szc = 0;
5737 		return (0);
5738 	}
5739 
5740 	/*
5741 	 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
5742 	 * unload argument is 0 when we are freeing the segment
5743 	 * and unload was already done.
5744 	 */
5745 	hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
5746 	    HAT_UNLOAD_UNMAP);
5747 
5748 	if (amp == NULL || svd->type == MAP_SHARED) {
5749 		seg->s_szc = 0;
5750 		return (0);
5751 	}
5752 
5753 	pgsz = page_get_pagesize(seg->s_szc);
5754 	pages = btop(pgsz);
5755 
5756 	/*
5757 	 * XXX anon rwlock is not really needed because this is a
5758 	 * private segment and we are writers.
5759 	 */
5760 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5761 
5762 	for (; a < ea; a += pgsz, an_idx += pages) {
5763 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
5764 			if (svd->pageprot != 0) {
5765 				ASSERT(vpage != NULL);
5766 				prot = VPP_PROT(vpage);
5767 				ASSERT(sameprot(seg, a, pgsz));
5768 			}
5769 			if (seg->s_szc != 0) {
5770 				ASSERT(vp == NULL || anon_pages(amp->ahp,
5771 				    an_idx, pages) == pages);
5772 				if ((err = anon_map_demotepages(amp, an_idx,
5773 				    seg, a, prot, vpage, svd->cred)) != 0) {
5774 					goto out;
5775 				}
5776 			} else {
5777 				if (oldap->an_refcnt == 1) {
5778 					continue;
5779 				}
5780 				if ((err = anon_getpage(&oldap, &vpprot,
5781 				    anon_pl, PAGESIZE, seg, a, S_READ,
5782 				    svd->cred))) {
5783 					goto out;
5784 				}
5785 				if ((pp = anon_private(&ap, seg, a, prot,
5786 				    anon_pl[0], 0, svd->cred)) == NULL) {
5787 					err = ENOMEM;
5788 					goto out;
5789 				}
5790 				anon_decref(oldap);
5791 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
5792 				    ANON_SLEEP);
5793 				page_unlock(pp);
5794 			}
5795 		}
5796 		vpage = (vpage == NULL) ? NULL : vpage + pages;
5797 	}
5798 
5799 	amp->a_szc = 0;
5800 	seg->s_szc = 0;
5801 out:
5802 	ANON_LOCK_EXIT(&amp->a_rwlock);
5803 	return (err);
5804 }
5805 
5806 static int
5807 segvn_claim_pages(
5808 	struct seg *seg,
5809 	struct vpage *svp,
5810 	u_offset_t off,
5811 	ulong_t anon_idx,
5812 	uint_t prot)
5813 {
5814 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
5815 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
5816 	page_t	**ppa;
5817 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5818 	struct anon_map *amp = svd->amp;
5819 	struct vpage *evp = svp + pgcnt;
5820 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
5821 	    + seg->s_base;
5822 	struct anon *ap;
5823 	struct vnode *vp = svd->vp;
5824 	page_t *pp;
5825 	pgcnt_t pg_idx, i;
5826 	int err = 0;
5827 	anoff_t	aoff;
5828 	int anon = (amp != NULL) ? 1 : 0;
5829 
5830 	ASSERT(svd->type == MAP_PRIVATE);
5831 	ASSERT(svd->vpage != NULL);
5832 	ASSERT(seg->s_szc != 0);
5833 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5834 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
5835 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
5836 
5837 	if (VPP_PROT(svp) == prot)
5838 		return (1);
5839 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
5840 		return (1);
5841 
5842 	ppa = kmem_alloc(ppasize, KM_SLEEP);
5843 	if (anon && vp != NULL) {
5844 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
5845 			anon = 0;
5846 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
5847 		}
5848 		ASSERT(!anon ||
5849 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
5850 	}
5851 
5852 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
5853 		if (!VPP_ISPPLOCK(svp))
5854 			continue;
5855 		if (anon) {
5856 			ap = anon_get_ptr(amp->ahp, anon_idx);
5857 			if (ap == NULL) {
5858 				panic("segvn_claim_pages: no anon slot");
5859 			}
5860 			swap_xlate(ap, &vp, &aoff);
5861 			off = (u_offset_t)aoff;
5862 		}
5863 		ASSERT(vp != NULL);
5864 		if ((pp = page_lookup(vp,
5865 		    (u_offset_t)off, SE_SHARED)) == NULL) {
5866 			panic("segvn_claim_pages: no page");
5867 		}
5868 		ppa[pg_idx++] = pp;
5869 		off += PAGESIZE;
5870 	}
5871 
5872 	if (ppa[0] == NULL) {
5873 		kmem_free(ppa, ppasize);
5874 		return (1);
5875 	}
5876 
5877 	ASSERT(pg_idx <= pgcnt);
5878 	ppa[pg_idx] = NULL;
5879 
5880 	if (prot & PROT_WRITE)
5881 		err = page_addclaim_pages(ppa);
5882 	else
5883 		err = page_subclaim_pages(ppa);
5884 
5885 	for (i = 0; i < pg_idx; i++) {
5886 		ASSERT(ppa[i] != NULL);
5887 		page_unlock(ppa[i]);
5888 	}
5889 
5890 	kmem_free(ppa, ppasize);
5891 	return (err);
5892 }
5893 
5894 /*
5895  * Returns right (upper address) segment if split occured.
5896  * If the address is equal to the beginning or end of its segment it returns
5897  * the current segment.
5898  */
5899 static struct seg *
5900 segvn_split_seg(struct seg *seg, caddr_t addr)
5901 {
5902 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5903 	struct seg *nseg;
5904 	size_t nsize;
5905 	struct segvn_data *nsvd;
5906 
5907 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5908 	ASSERT(addr >= seg->s_base);
5909 	ASSERT(addr <= seg->s_base + seg->s_size);
5910 
5911 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
5912 		return (seg);
5913 
5914 	nsize = seg->s_base + seg->s_size - addr;
5915 	seg->s_size = addr - seg->s_base;
5916 	nseg = seg_alloc(seg->s_as, addr, nsize);
5917 	ASSERT(nseg != NULL);
5918 	nseg->s_ops = seg->s_ops;
5919 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
5920 	nseg->s_data = (void *)nsvd;
5921 	nseg->s_szc = seg->s_szc;
5922 	*nsvd = *svd;
5923 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
5924 
5925 	if (nsvd->vp != NULL) {
5926 		VN_HOLD(nsvd->vp);
5927 		nsvd->offset = svd->offset +
5928 		    (uintptr_t)(nseg->s_base - seg->s_base);
5929 		if (nsvd->type == MAP_SHARED)
5930 			lgrp_shm_policy_init(NULL, nsvd->vp);
5931 	} else {
5932 		/*
5933 		 * The offset for an anonymous segment has no signifigance in
5934 		 * terms of an offset into a file. If we were to use the above
5935 		 * calculation instead, the structures read out of
5936 		 * /proc/<pid>/xmap would be more difficult to decipher since
5937 		 * it would be unclear whether two seemingly contiguous
5938 		 * prxmap_t structures represented different segments or a
5939 		 * single segment that had been split up into multiple prxmap_t
5940 		 * structures (e.g. if some part of the segment had not yet
5941 		 * been faulted in).
5942 		 */
5943 		nsvd->offset = 0;
5944 	}
5945 
5946 	ASSERT(svd->softlockcnt == 0);
5947 	crhold(svd->cred);
5948 
5949 	if (svd->vpage != NULL) {
5950 		size_t bytes = vpgtob(seg_pages(seg));
5951 		size_t nbytes = vpgtob(seg_pages(nseg));
5952 		struct vpage *ovpage = svd->vpage;
5953 
5954 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
5955 		bcopy(ovpage, svd->vpage, bytes);
5956 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
5957 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
5958 		kmem_free(ovpage, bytes + nbytes);
5959 	}
5960 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
5961 		struct anon_map *oamp = svd->amp, *namp;
5962 		struct anon_hdr *nahp;
5963 
5964 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
5965 		ASSERT(oamp->refcnt == 1);
5966 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
5967 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
5968 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
5969 
5970 		namp = anonmap_alloc(nseg->s_size, 0);
5971 		namp->a_szc = nseg->s_szc;
5972 		(void) anon_copy_ptr(oamp->ahp,
5973 		    svd->anon_index + btop(seg->s_size),
5974 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
5975 		anon_release(oamp->ahp, btop(oamp->size));
5976 		oamp->ahp = nahp;
5977 		oamp->size = seg->s_size;
5978 		svd->anon_index = 0;
5979 		nsvd->amp = namp;
5980 		nsvd->anon_index = 0;
5981 		ANON_LOCK_EXIT(&oamp->a_rwlock);
5982 	} else if (svd->amp != NULL) {
5983 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
5984 		ASSERT(svd->amp == nsvd->amp);
5985 		ASSERT(seg->s_szc <= svd->amp->a_szc);
5986 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
5987 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
5988 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
5989 		svd->amp->refcnt++;
5990 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
5991 	}
5992 
5993 	/*
5994 	 * Split amount of swap reserve
5995 	 */
5996 	if (svd->swresv) {
5997 		/*
5998 		 * For MAP_NORESERVE, only allocate swap reserve for pages
5999 		 * being used.  Other segments get enough to cover whole
6000 		 * segment.
6001 		 */
6002 		if (svd->flags & MAP_NORESERVE) {
6003 			size_t	oswresv;
6004 
6005 			ASSERT(svd->amp);
6006 			oswresv = svd->swresv;
6007 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6008 				svd->anon_index, btop(seg->s_size)));
6009 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6010 				nsvd->anon_index, btop(nseg->s_size)));
6011 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6012 		} else {
6013 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
6014 			svd->swresv = seg->s_size;
6015 			nsvd->swresv = nseg->s_size;
6016 		}
6017 	}
6018 
6019 	return (nseg);
6020 }
6021 
6022 /*
6023  * called on memory operations (unmap, setprot, setpagesize) for a subset
6024  * of a large page segment to either demote the memory range (SDR_RANGE)
6025  * or the ends (SDR_END) by addr/len.
6026  *
6027  * returns 0 on success. returns errno, including ENOMEM, on failure.
6028  */
6029 static int
6030 segvn_demote_range(
6031 	struct seg *seg,
6032 	caddr_t addr,
6033 	size_t len,
6034 	int flag,
6035 	uint_t szcvec)
6036 {
6037 	caddr_t eaddr = addr + len;
6038 	caddr_t lpgaddr, lpgeaddr;
6039 	struct seg *nseg;
6040 	struct seg *badseg1 = NULL;
6041 	struct seg *badseg2 = NULL;
6042 	size_t pgsz;
6043 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6044 	int err;
6045 	uint_t szc = seg->s_szc;
6046 	uint_t tszcvec;
6047 
6048 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6049 	ASSERT(szc != 0);
6050 	pgsz = page_get_pagesize(szc);
6051 	ASSERT(seg->s_base != addr || seg->s_size != len);
6052 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6053 	ASSERT(svd->softlockcnt == 0);
6054 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6055 
6056 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6057 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6058 	if (flag == SDR_RANGE) {
6059 		/* demote entire range */
6060 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6061 		(void) segvn_split_seg(nseg, lpgeaddr);
6062 		ASSERT(badseg1->s_base == lpgaddr);
6063 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6064 	} else if (addr != lpgaddr) {
6065 		ASSERT(flag == SDR_END);
6066 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6067 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6068 		    eaddr < lpgaddr + 2 * pgsz) {
6069 			(void) segvn_split_seg(nseg, lpgeaddr);
6070 			ASSERT(badseg1->s_base == lpgaddr);
6071 			ASSERT(badseg1->s_size == 2 * pgsz);
6072 		} else {
6073 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6074 			ASSERT(badseg1->s_base == lpgaddr);
6075 			ASSERT(badseg1->s_size == pgsz);
6076 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6077 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6078 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6079 				badseg2 = nseg;
6080 				(void) segvn_split_seg(nseg, lpgeaddr);
6081 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6082 				ASSERT(badseg2->s_size == pgsz);
6083 			}
6084 		}
6085 	} else {
6086 		ASSERT(flag == SDR_END);
6087 		ASSERT(eaddr < lpgeaddr);
6088 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6089 		(void) segvn_split_seg(nseg, lpgeaddr);
6090 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6091 		ASSERT(badseg1->s_size == pgsz);
6092 	}
6093 
6094 	ASSERT(badseg1 != NULL);
6095 	ASSERT(badseg1->s_szc == szc);
6096 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6097 	    badseg1->s_size == 2 * pgsz);
6098 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6099 	ASSERT(badseg1->s_size == pgsz ||
6100 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6101 	if (err = segvn_clrszc(badseg1)) {
6102 		return (err);
6103 	}
6104 	ASSERT(badseg1->s_szc == 0);
6105 
6106 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6107 		uint_t tszc = highbit(tszcvec) - 1;
6108 		caddr_t ta = MAX(addr, badseg1->s_base);
6109 		caddr_t te;
6110 		size_t tpgsz = page_get_pagesize(tszc);
6111 
6112 		ASSERT(svd->type == MAP_SHARED);
6113 		ASSERT(flag == SDR_END);
6114 		ASSERT(tszc < szc && tszc > 0);
6115 
6116 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6117 			te = badseg1->s_base + badseg1->s_size;
6118 		} else {
6119 			te = eaddr;
6120 		}
6121 
6122 		ASSERT(ta <= te);
6123 		badseg1->s_szc = tszc;
6124 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6125 			if (badseg2 != NULL) {
6126 				err = segvn_demote_range(badseg1, ta, te - ta,
6127 				    SDR_END, tszcvec);
6128 				if (err != 0) {
6129 					return (err);
6130 				}
6131 			} else {
6132 				return (segvn_demote_range(badseg1, ta,
6133 				    te - ta, SDR_END, tszcvec));
6134 			}
6135 		}
6136 	}
6137 
6138 	if (badseg2 == NULL)
6139 		return (0);
6140 	ASSERT(badseg2->s_szc == szc);
6141 	ASSERT(badseg2->s_size == pgsz);
6142 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6143 	if (err = segvn_clrszc(badseg2)) {
6144 		return (err);
6145 	}
6146 	ASSERT(badseg2->s_szc == 0);
6147 
6148 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6149 		uint_t tszc = highbit(tszcvec) - 1;
6150 		size_t tpgsz = page_get_pagesize(tszc);
6151 
6152 		ASSERT(svd->type == MAP_SHARED);
6153 		ASSERT(flag == SDR_END);
6154 		ASSERT(tszc < szc && tszc > 0);
6155 		ASSERT(badseg2->s_base > addr);
6156 		ASSERT(eaddr > badseg2->s_base);
6157 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6158 
6159 		badseg2->s_szc = tszc;
6160 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6161 			return (segvn_demote_range(badseg2, badseg2->s_base,
6162 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6163 		}
6164 	}
6165 
6166 	return (0);
6167 }
6168 
6169 static int
6170 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6171 {
6172 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6173 	struct vpage *vp, *evp;
6174 
6175 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6176 
6177 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6178 	/*
6179 	 * If segment protection can be used, simply check against them.
6180 	 */
6181 	if (svd->pageprot == 0) {
6182 		int err;
6183 
6184 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6185 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6186 		return (err);
6187 	}
6188 
6189 	/*
6190 	 * Have to check down to the vpage level.
6191 	 */
6192 	evp = &svd->vpage[seg_page(seg, addr + len)];
6193 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6194 		if ((VPP_PROT(vp) & prot) != prot) {
6195 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6196 			return (EACCES);
6197 		}
6198 	}
6199 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6200 	return (0);
6201 }
6202 
6203 static int
6204 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6205 {
6206 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6207 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6208 
6209 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6210 
6211 	if (pgno != 0) {
6212 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6213 		if (svd->pageprot == 0) {
6214 			do
6215 				protv[--pgno] = svd->prot;
6216 			while (pgno != 0);
6217 		} else {
6218 			size_t pgoff = seg_page(seg, addr);
6219 
6220 			do {
6221 				pgno--;
6222 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6223 			} while (pgno != 0);
6224 		}
6225 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6226 	}
6227 	return (0);
6228 }
6229 
6230 static u_offset_t
6231 segvn_getoffset(struct seg *seg, caddr_t addr)
6232 {
6233 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6234 
6235 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6236 
6237 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6238 }
6239 
6240 /*ARGSUSED*/
6241 static int
6242 segvn_gettype(struct seg *seg, caddr_t addr)
6243 {
6244 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6245 
6246 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6247 
6248 	return (svd->type | (svd->flags & MAP_NORESERVE));
6249 }
6250 
6251 /*ARGSUSED*/
6252 static int
6253 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6254 {
6255 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6256 
6257 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6258 
6259 	*vpp = svd->vp;
6260 	return (0);
6261 }
6262 
6263 /*
6264  * Check to see if it makes sense to do kluster/read ahead to
6265  * addr + delta relative to the mapping at addr.  We assume here
6266  * that delta is a signed PAGESIZE'd multiple (which can be negative).
6267  *
6268  * For segvn, we currently "approve" of the action if we are
6269  * still in the segment and it maps from the same vp/off,
6270  * or if the advice stored in segvn_data or vpages allows it.
6271  * Currently, klustering is not allowed only if MADV_RANDOM is set.
6272  */
6273 static int
6274 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6275 {
6276 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6277 	struct anon *oap, *ap;
6278 	ssize_t pd;
6279 	size_t page;
6280 	struct vnode *vp1, *vp2;
6281 	u_offset_t off1, off2;
6282 	struct anon_map *amp;
6283 
6284 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6285 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6286 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6287 
6288 	if (addr + delta < seg->s_base ||
6289 	    addr + delta >= (seg->s_base + seg->s_size))
6290 		return (-1);		/* exceeded segment bounds */
6291 
6292 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6293 	page = seg_page(seg, addr);
6294 
6295 	/*
6296 	 * Check to see if either of the pages addr or addr + delta
6297 	 * have advice set that prevents klustering (if MADV_RANDOM advice
6298 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6299 	 * is negative).
6300 	 */
6301 	if (svd->advice == MADV_RANDOM ||
6302 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
6303 		return (-1);
6304 	else if (svd->pageadvice && svd->vpage) {
6305 		struct vpage *bvpp, *evpp;
6306 
6307 		bvpp = &svd->vpage[page];
6308 		evpp = &svd->vpage[page + pd];
6309 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6310 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6311 			return (-1);
6312 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6313 		    VPP_ADVICE(evpp) == MADV_RANDOM)
6314 			return (-1);
6315 	}
6316 
6317 	if (svd->type == MAP_SHARED)
6318 		return (0);		/* shared mapping - all ok */
6319 
6320 	if ((amp = svd->amp) == NULL)
6321 		return (0);		/* off original vnode */
6322 
6323 	page += svd->anon_index;
6324 
6325 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6326 
6327 	oap = anon_get_ptr(amp->ahp, page);
6328 	ap = anon_get_ptr(amp->ahp, page + pd);
6329 
6330 	ANON_LOCK_EXIT(&amp->a_rwlock);
6331 
6332 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6333 		return (-1);		/* one with and one without an anon */
6334 	}
6335 
6336 	if (oap == NULL) {		/* implies that ap == NULL */
6337 		return (0);		/* off original vnode */
6338 	}
6339 
6340 	/*
6341 	 * Now we know we have two anon pointers - check to
6342 	 * see if they happen to be properly allocated.
6343 	 */
6344 
6345 	/*
6346 	 * XXX We cheat here and don't lock the anon slots. We can't because
6347 	 * we may have been called from the anon layer which might already
6348 	 * have locked them. We are holding a refcnt on the slots so they
6349 	 * can't disappear. The worst that will happen is we'll get the wrong
6350 	 * names (vp, off) for the slots and make a poor klustering decision.
6351 	 */
6352 	swap_xlate(ap, &vp1, &off1);
6353 	swap_xlate(oap, &vp2, &off2);
6354 
6355 
6356 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
6357 		return (-1);
6358 	return (0);
6359 }
6360 
6361 /*
6362  * Swap the pages of seg out to secondary storage, returning the
6363  * number of bytes of storage freed.
6364  *
6365  * The basic idea is first to unload all translations and then to call
6366  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
6367  * swap device.  Pages to which other segments have mappings will remain
6368  * mapped and won't be swapped.  Our caller (as_swapout) has already
6369  * performed the unloading step.
6370  *
6371  * The value returned is intended to correlate well with the process's
6372  * memory requirements.  However, there are some caveats:
6373  * 1)	When given a shared segment as argument, this routine will
6374  *	only succeed in swapping out pages for the last sharer of the
6375  *	segment.  (Previous callers will only have decremented mapping
6376  *	reference counts.)
6377  * 2)	We assume that the hat layer maintains a large enough translation
6378  *	cache to capture process reference patterns.
6379  */
6380 static size_t
6381 segvn_swapout(struct seg *seg)
6382 {
6383 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6384 	struct anon_map *amp;
6385 	pgcnt_t pgcnt = 0;
6386 	pgcnt_t npages;
6387 	pgcnt_t page;
6388 	ulong_t anon_index;
6389 
6390 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6391 
6392 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6393 	/*
6394 	 * Find pages unmapped by our caller and force them
6395 	 * out to the virtual swap device.
6396 	 */
6397 	if ((amp = svd->amp) != NULL)
6398 		anon_index = svd->anon_index;
6399 	npages = seg->s_size >> PAGESHIFT;
6400 	for (page = 0; page < npages; page++) {
6401 		page_t *pp;
6402 		struct anon *ap;
6403 		struct vnode *vp;
6404 		u_offset_t off;
6405 		anon_sync_obj_t cookie;
6406 
6407 		/*
6408 		 * Obtain <vp, off> pair for the page, then look it up.
6409 		 *
6410 		 * Note that this code is willing to consider regular
6411 		 * pages as well as anon pages.  Is this appropriate here?
6412 		 */
6413 		ap = NULL;
6414 		if (amp != NULL) {
6415 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6416 			if (anon_array_try_enter(amp, anon_index + page,
6417 						&cookie)) {
6418 				ANON_LOCK_EXIT(&amp->a_rwlock);
6419 				continue;
6420 			}
6421 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6422 			if (ap != NULL) {
6423 				swap_xlate(ap, &vp, &off);
6424 			} else {
6425 				vp = svd->vp;
6426 				off = svd->offset + ptob(page);
6427 			}
6428 			anon_array_exit(&cookie);
6429 			ANON_LOCK_EXIT(&amp->a_rwlock);
6430 		} else {
6431 			vp = svd->vp;
6432 			off = svd->offset + ptob(page);
6433 		}
6434 		if (vp == NULL) {		/* untouched zfod page */
6435 			ASSERT(ap == NULL);
6436 			continue;
6437 		}
6438 
6439 		pp = page_lookup_nowait(vp, off, SE_SHARED);
6440 		if (pp == NULL)
6441 			continue;
6442 
6443 
6444 		/*
6445 		 * Examine the page to see whether it can be tossed out,
6446 		 * keeping track of how many we've found.
6447 		 */
6448 		if (!page_tryupgrade(pp)) {
6449 			/*
6450 			 * If the page has an i/o lock and no mappings,
6451 			 * it's very likely that the page is being
6452 			 * written out as a result of klustering.
6453 			 * Assume this is so and take credit for it here.
6454 			 */
6455 			if (!page_io_trylock(pp)) {
6456 				if (!hat_page_is_mapped(pp))
6457 					pgcnt++;
6458 			} else {
6459 				page_io_unlock(pp);
6460 			}
6461 			page_unlock(pp);
6462 			continue;
6463 		}
6464 		ASSERT(!page_iolock_assert(pp));
6465 
6466 
6467 		/*
6468 		 * Skip if page is locked or has mappings.
6469 		 * We don't need the page_struct_lock to look at lckcnt
6470 		 * and cowcnt because the page is exclusive locked.
6471 		 */
6472 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
6473 		    hat_page_is_mapped(pp)) {
6474 			page_unlock(pp);
6475 			continue;
6476 		}
6477 
6478 		/*
6479 		 * dispose skips large pages so try to demote first.
6480 		 */
6481 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
6482 			page_unlock(pp);
6483 			/*
6484 			 * XXX should skip the remaining page_t's of this
6485 			 * large page.
6486 			 */
6487 			continue;
6488 		}
6489 
6490 		ASSERT(pp->p_szc == 0);
6491 
6492 		/*
6493 		 * No longer mapped -- we can toss it out.  How
6494 		 * we do so depends on whether or not it's dirty.
6495 		 */
6496 		if (hat_ismod(pp) && pp->p_vnode) {
6497 			/*
6498 			 * We must clean the page before it can be
6499 			 * freed.  Setting B_FREE will cause pvn_done
6500 			 * to free the page when the i/o completes.
6501 			 * XXX:	This also causes it to be accounted
6502 			 *	as a pageout instead of a swap: need
6503 			 *	B_SWAPOUT bit to use instead of B_FREE.
6504 			 *
6505 			 * Hold the vnode before releasing the page lock
6506 			 * to prevent it from being freed and re-used by
6507 			 * some other thread.
6508 			 */
6509 			VN_HOLD(vp);
6510 			page_unlock(pp);
6511 
6512 			/*
6513 			 * Queue all i/o requests for the pageout thread
6514 			 * to avoid saturating the pageout devices.
6515 			 */
6516 			if (!queue_io_request(vp, off))
6517 				VN_RELE(vp);
6518 		} else {
6519 			/*
6520 			 * The page was clean, free it.
6521 			 *
6522 			 * XXX:	Can we ever encounter modified pages
6523 			 *	with no associated vnode here?
6524 			 */
6525 			ASSERT(pp->p_vnode != NULL);
6526 			/*LINTED: constant in conditional context*/
6527 			VN_DISPOSE(pp, B_FREE, 0, kcred);
6528 		}
6529 
6530 		/*
6531 		 * Credit now even if i/o is in progress.
6532 		 */
6533 		pgcnt++;
6534 	}
6535 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6536 
6537 	/*
6538 	 * Wakeup pageout to initiate i/o on all queued requests.
6539 	 */
6540 	cv_signal_pageout();
6541 	return (ptob(pgcnt));
6542 }
6543 
6544 /*
6545  * Synchronize primary storage cache with real object in virtual memory.
6546  *
6547  * XXX - Anonymous pages should not be sync'ed out at all.
6548  */
6549 static int
6550 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
6551 {
6552 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6553 	struct vpage *vpp;
6554 	page_t *pp;
6555 	u_offset_t offset;
6556 	struct vnode *vp;
6557 	u_offset_t off;
6558 	caddr_t eaddr;
6559 	int bflags;
6560 	int err = 0;
6561 	int segtype;
6562 	int pageprot;
6563 	int prot;
6564 	ulong_t anon_index;
6565 	struct anon_map *amp;
6566 	struct anon *ap;
6567 	anon_sync_obj_t cookie;
6568 
6569 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6570 
6571 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6572 
6573 	if (svd->softlockcnt > 0) {
6574 		/*
6575 		 * flush all pages from seg cache
6576 		 * otherwise we may deadlock in swap_putpage
6577 		 * for B_INVAL page (4175402).
6578 		 *
6579 		 * Even if we grab segvn WRITER's lock or segp_slock
6580 		 * here, there might be another thread which could've
6581 		 * successfully performed lookup/insert just before
6582 		 * we acquired the lock here.  So, grabbing either
6583 		 * lock here is of not much use.  Until we devise
6584 		 * a strategy at upper layers to solve the
6585 		 * synchronization issues completely, we expect
6586 		 * applications to handle this appropriately.
6587 		 */
6588 		segvn_purge(seg);
6589 		if (svd->softlockcnt > 0) {
6590 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6591 			return (EAGAIN);
6592 		}
6593 	}
6594 
6595 	vpp = svd->vpage;
6596 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6597 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
6598 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
6599 
6600 	if (attr) {
6601 		pageprot = attr & ~(SHARED|PRIVATE);
6602 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
6603 
6604 		/*
6605 		 * We are done if the segment types don't match
6606 		 * or if we have segment level protections and
6607 		 * they don't match.
6608 		 */
6609 		if (svd->type != segtype) {
6610 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6611 			return (0);
6612 		}
6613 		if (vpp == NULL) {
6614 			if (svd->prot != pageprot) {
6615 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6616 				return (0);
6617 			}
6618 			prot = svd->prot;
6619 		} else
6620 			vpp = &svd->vpage[seg_page(seg, addr)];
6621 
6622 	} else if (svd->vp && svd->amp == NULL &&
6623 	    (flags & MS_INVALIDATE) == 0) {
6624 
6625 		/*
6626 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
6627 		 * is not on, just use one big request.
6628 		 */
6629 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
6630 		    bflags, svd->cred);
6631 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6632 		return (err);
6633 	}
6634 
6635 	if ((amp = svd->amp) != NULL)
6636 		anon_index = svd->anon_index + seg_page(seg, addr);
6637 
6638 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
6639 		ap = NULL;
6640 		if (amp != NULL) {
6641 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6642 			anon_array_enter(amp, anon_index, &cookie);
6643 			ap = anon_get_ptr(amp->ahp, anon_index++);
6644 			if (ap != NULL) {
6645 				swap_xlate(ap, &vp, &off);
6646 			} else {
6647 				vp = svd->vp;
6648 				off = offset;
6649 			}
6650 			anon_array_exit(&cookie);
6651 			ANON_LOCK_EXIT(&amp->a_rwlock);
6652 		} else {
6653 			vp = svd->vp;
6654 			off = offset;
6655 		}
6656 		offset += PAGESIZE;
6657 
6658 		if (vp == NULL)		/* untouched zfod page */
6659 			continue;
6660 
6661 		if (attr) {
6662 			if (vpp) {
6663 				prot = VPP_PROT(vpp);
6664 				vpp++;
6665 			}
6666 			if (prot != pageprot) {
6667 				continue;
6668 			}
6669 		}
6670 
6671 		/*
6672 		 * See if any of these pages are locked --  if so, then we
6673 		 * will have to truncate an invalidate request at the first
6674 		 * locked one. We don't need the page_struct_lock to test
6675 		 * as this is only advisory; even if we acquire it someone
6676 		 * might race in and lock the page after we unlock and before
6677 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
6678 		 */
6679 		if (flags & MS_INVALIDATE) {
6680 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
6681 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
6682 					page_unlock(pp);
6683 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6684 					return (EBUSY);
6685 				}
6686 				if (ap != NULL && pp->p_szc != 0 &&
6687 				    page_tryupgrade(pp)) {
6688 					if (pp->p_lckcnt == 0 &&
6689 					    pp->p_cowcnt == 0) {
6690 						/*
6691 						 * swapfs VN_DISPOSE() won't
6692 						 * invalidate large pages.
6693 						 * Attempt to demote.
6694 						 * XXX can't help it if it
6695 						 * fails. But for swapfs
6696 						 * pages it is no big deal.
6697 						 */
6698 						(void) page_try_demote_pages(
6699 						    pp);
6700 				    }
6701 				}
6702 				page_unlock(pp);
6703 			}
6704 		} else if (svd->type == MAP_SHARED && amp != NULL) {
6705 			/*
6706 			 * Avoid writting out to disk ISM's large pages
6707 			 * because segspt_free_pages() relies on NULL an_pvp
6708 			 * of anon slots of such pages.
6709 			 */
6710 
6711 			ASSERT(svd->vp == NULL);
6712 			/*
6713 			 * swapfs uses page_lookup_nowait if not freeing or
6714 			 * invalidating and skips a page if
6715 			 * page_lookup_nowait returns NULL.
6716 			 */
6717 			pp = page_lookup_nowait(vp, off, SE_SHARED);
6718 			if (pp == NULL) {
6719 				continue;
6720 			}
6721 			if (pp->p_szc != 0) {
6722 				page_unlock(pp);
6723 				continue;
6724 			}
6725 
6726 			/*
6727 			 * Note ISM pages are created large so (vp, off)'s
6728 			 * page cannot suddenly become large after we unlock
6729 			 * pp.
6730 			 */
6731 			page_unlock(pp);
6732 		}
6733 		/*
6734 		 * XXX - Should ultimately try to kluster
6735 		 * calls to VOP_PUTPAGE() for performance.
6736 		 */
6737 		VN_HOLD(vp);
6738 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
6739 		    bflags, svd->cred);
6740 		VN_RELE(vp);
6741 		if (err)
6742 			break;
6743 	}
6744 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6745 	return (err);
6746 }
6747 
6748 /*
6749  * Determine if we have data corresponding to pages in the
6750  * primary storage virtual memory cache (i.e., "in core").
6751  */
6752 static size_t
6753 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
6754 {
6755 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6756 	struct vnode *vp, *avp;
6757 	u_offset_t offset, aoffset;
6758 	size_t p, ep;
6759 	int ret;
6760 	struct vpage *vpp;
6761 	page_t *pp;
6762 	uint_t start;
6763 	struct anon_map *amp;		/* XXX - for locknest */
6764 	struct anon *ap;
6765 	uint_t attr;
6766 	anon_sync_obj_t cookie;
6767 
6768 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6769 
6770 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6771 	if (svd->amp == NULL && svd->vp == NULL) {
6772 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6773 		bzero(vec, btopr(len));
6774 		return (len);	/* no anonymous pages created yet */
6775 	}
6776 
6777 	p = seg_page(seg, addr);
6778 	ep = seg_page(seg, addr + len);
6779 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
6780 
6781 	amp = svd->amp;
6782 	for (; p < ep; p++, addr += PAGESIZE) {
6783 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
6784 		ret = start;
6785 		ap = NULL;
6786 		avp = NULL;
6787 		/* Grab the vnode/offset for the anon slot */
6788 		if (amp != NULL) {
6789 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6790 			anon_array_enter(amp, svd->anon_index + p, &cookie);
6791 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
6792 			if (ap != NULL) {
6793 				swap_xlate(ap, &avp, &aoffset);
6794 			}
6795 			anon_array_exit(&cookie);
6796 			ANON_LOCK_EXIT(&amp->a_rwlock);
6797 		}
6798 		if ((avp != NULL) && page_exists(avp, aoffset)) {
6799 			/* A page exists for the anon slot */
6800 			ret |= SEG_PAGE_INCORE;
6801 
6802 			/*
6803 			 * If page is mapped and writable
6804 			 */
6805 			attr = (uint_t)0;
6806 			if ((hat_getattr(seg->s_as->a_hat, addr,
6807 			    &attr) != -1) && (attr & PROT_WRITE)) {
6808 				ret |= SEG_PAGE_ANON;
6809 			}
6810 			/*
6811 			 * Don't get page_struct lock for lckcnt and cowcnt,
6812 			 * since this is purely advisory.
6813 			 */
6814 			if ((pp = page_lookup_nowait(avp, aoffset,
6815 			    SE_SHARED)) != NULL) {
6816 				if (pp->p_lckcnt)
6817 					ret |= SEG_PAGE_SOFTLOCK;
6818 				if (pp->p_cowcnt)
6819 					ret |= SEG_PAGE_HASCOW;
6820 				page_unlock(pp);
6821 			}
6822 		}
6823 
6824 		/* Gather vnode statistics */
6825 		vp = svd->vp;
6826 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6827 
6828 		if (vp != NULL) {
6829 			/*
6830 			 * Try to obtain a "shared" lock on the page
6831 			 * without blocking.  If this fails, determine
6832 			 * if the page is in memory.
6833 			 */
6834 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
6835 			if ((pp == NULL) && (page_exists(vp, offset))) {
6836 				/* Page is incore, and is named */
6837 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6838 			}
6839 			/*
6840 			 * Don't get page_struct lock for lckcnt and cowcnt,
6841 			 * since this is purely advisory.
6842 			 */
6843 			if (pp != NULL) {
6844 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6845 				if (pp->p_lckcnt)
6846 					ret |= SEG_PAGE_SOFTLOCK;
6847 				if (pp->p_cowcnt)
6848 					ret |= SEG_PAGE_HASCOW;
6849 				page_unlock(pp);
6850 			}
6851 		}
6852 
6853 		/* Gather virtual page information */
6854 		if (vpp) {
6855 			if (VPP_ISPPLOCK(vpp))
6856 				ret |= SEG_PAGE_LOCKED;
6857 			vpp++;
6858 		}
6859 
6860 		*vec++ = (char)ret;
6861 	}
6862 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6863 	return (len);
6864 }
6865 
6866 /*
6867  * Statement for p_cowcnts/p_lckcnts.
6868  *
6869  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
6870  * irrespective of the following factors or anything else:
6871  *
6872  *	(1) anon slots are populated or not
6873  *	(2) cow is broken or not
6874  *	(3) refcnt on ap is 1 or greater than 1
6875  *
6876  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
6877  * and munlock.
6878  *
6879  *
6880  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
6881  *
6882  *	if vpage has PROT_WRITE
6883  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
6884  *	else
6885  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
6886  *
6887  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
6888  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
6889  *
6890  *	We may also break COW if softlocking on read access in the physio case.
6891  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
6892  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
6893  *	vpage doesn't have PROT_WRITE.
6894  *
6895  *
6896  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
6897  *
6898  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
6899  *	increment p_lckcnt by calling page_subclaim() which takes care of
6900  * 	availrmem accounting and p_lckcnt overflow.
6901  *
6902  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
6903  *	increment p_cowcnt by calling page_addclaim() which takes care of
6904  *	availrmem availability and p_cowcnt overflow.
6905  */
6906 
6907 /*
6908  * Lock down (or unlock) pages mapped by this segment.
6909  *
6910  * XXX only creates PAGESIZE pages if anon slots are not initialized.
6911  * At fault time they will be relocated into larger pages.
6912  */
6913 static int
6914 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
6915     int attr, int op, ulong_t *lockmap, size_t pos)
6916 {
6917 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6918 	struct vpage *vpp;
6919 	struct vpage *evp;
6920 	page_t *pp;
6921 	u_offset_t offset;
6922 	u_offset_t off;
6923 	int segtype;
6924 	int pageprot;
6925 	int claim;
6926 	struct vnode *vp;
6927 	ulong_t anon_index;
6928 	struct anon_map *amp;
6929 	struct anon *ap;
6930 	struct vattr va;
6931 	anon_sync_obj_t cookie;
6932 
6933 	/*
6934 	 * Hold write lock on address space because may split or concatenate
6935 	 * segments
6936 	 */
6937 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6938 
6939 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6940 	if (attr) {
6941 		pageprot = attr & ~(SHARED|PRIVATE);
6942 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
6943 
6944 		/*
6945 		 * We are done if the segment types don't match
6946 		 * or if we have segment level protections and
6947 		 * they don't match.
6948 		 */
6949 		if (svd->type != segtype) {
6950 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6951 			return (0);
6952 		}
6953 		if (svd->pageprot == 0 && svd->prot != pageprot) {
6954 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6955 			return (0);
6956 		}
6957 	}
6958 
6959 	/*
6960 	 * If we're locking, then we must create a vpage structure if
6961 	 * none exists.  If we're unlocking, then check to see if there
6962 	 * is a vpage --  if not, then we could not have locked anything.
6963 	 */
6964 
6965 	if ((vpp = svd->vpage) == NULL) {
6966 		if (op == MC_LOCK)
6967 			segvn_vpage(seg);
6968 		else {
6969 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6970 			return (0);
6971 		}
6972 	}
6973 
6974 	/*
6975 	 * The anonymous data vector (i.e., previously
6976 	 * unreferenced mapping to swap space) can be allocated
6977 	 * by lazily testing for its existence.
6978 	 */
6979 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
6980 		svd->amp = anonmap_alloc(seg->s_size, 0);
6981 		svd->amp->a_szc = seg->s_szc;
6982 	}
6983 
6984 	if ((amp = svd->amp) != NULL) {
6985 		anon_index = svd->anon_index + seg_page(seg, addr);
6986 	}
6987 
6988 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6989 	evp = &svd->vpage[seg_page(seg, addr + len)];
6990 
6991 	/*
6992 	 * Loop over all pages in the range.  Process if we're locking and
6993 	 * page has not already been locked in this mapping; or if we're
6994 	 * unlocking and the page has been locked.
6995 	 */
6996 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
6997 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
6998 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
6999 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7000 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7001 
7002 			if (amp != NULL)
7003 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7004 			/*
7005 			 * If this isn't a MAP_NORESERVE segment and
7006 			 * we're locking, allocate anon slots if they
7007 			 * don't exist.  The page is brought in later on.
7008 			 */
7009 			if (op == MC_LOCK && svd->vp == NULL &&
7010 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7011 			    amp != NULL &&
7012 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7013 								== NULL)) {
7014 				anon_array_enter(amp, anon_index, &cookie);
7015 
7016 				if ((ap = anon_get_ptr(amp->ahp,
7017 						anon_index)) == NULL) {
7018 					pp = anon_zero(seg, addr, &ap,
7019 					    svd->cred);
7020 					if (pp == NULL) {
7021 						anon_array_exit(&cookie);
7022 						ANON_LOCK_EXIT(&amp->a_rwlock);
7023 						SEGVN_LOCK_EXIT(seg->s_as,
7024 						    &svd->lock);
7025 						return (ENOMEM);
7026 					}
7027 					ASSERT(anon_get_ptr(amp->ahp,
7028 						anon_index) == NULL);
7029 					(void) anon_set_ptr(amp->ahp,
7030 						anon_index, ap, ANON_SLEEP);
7031 					page_unlock(pp);
7032 				}
7033 				anon_array_exit(&cookie);
7034 			}
7035 
7036 			/*
7037 			 * Get name for page, accounting for
7038 			 * existence of private copy.
7039 			 */
7040 			ap = NULL;
7041 			if (amp != NULL) {
7042 				anon_array_enter(amp, anon_index, &cookie);
7043 				ap = anon_get_ptr(amp->ahp, anon_index);
7044 				if (ap != NULL) {
7045 					swap_xlate(ap, &vp, &off);
7046 				} else {
7047 					if (svd->vp == NULL &&
7048 					    (svd->flags & MAP_NORESERVE)) {
7049 						anon_array_exit(&cookie);
7050 						ANON_LOCK_EXIT(&amp->a_rwlock);
7051 						continue;
7052 					}
7053 					vp = svd->vp;
7054 					off = offset;
7055 				}
7056 				anon_array_exit(&cookie);
7057 				ANON_LOCK_EXIT(&amp->a_rwlock);
7058 			} else {
7059 				vp = svd->vp;
7060 				off = offset;
7061 			}
7062 
7063 			/*
7064 			 * Get page frame.  It's ok if the page is
7065 			 * not available when we're unlocking, as this
7066 			 * may simply mean that a page we locked got
7067 			 * truncated out of existence after we locked it.
7068 			 *
7069 			 * Invoke VOP_GETPAGE() to obtain the page struct
7070 			 * since we may need to read it from disk if its
7071 			 * been paged out.
7072 			 */
7073 			if (op != MC_LOCK)
7074 				pp = page_lookup(vp, off, SE_SHARED);
7075 			else {
7076 				page_t *pl[1 + 1];
7077 				int error;
7078 
7079 				ASSERT(vp != NULL);
7080 
7081 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7082 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7083 				    S_OTHER, svd->cred);
7084 
7085 				/*
7086 				 * If the error is EDEADLK then we must bounce
7087 				 * up and drop all vm subsystem locks and then
7088 				 * retry the operation later
7089 				 * This behavior is a temporary measure because
7090 				 * ufs/sds logging is badly designed and will
7091 				 * deadlock if we don't allow this bounce to
7092 				 * happen.  The real solution is to re-design
7093 				 * the logging code to work properly.  See bug
7094 				 * 4125102 for details of the problem.
7095 				 */
7096 				if (error == EDEADLK) {
7097 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7098 					return (error);
7099 				}
7100 				/*
7101 				 * Quit if we fail to fault in the page.  Treat
7102 				 * the failure as an error, unless the addr
7103 				 * is mapped beyond the end of a file.
7104 				 */
7105 				if (error && svd->vp) {
7106 					va.va_mask = AT_SIZE;
7107 					if (VOP_GETATTR(svd->vp, &va, 0,
7108 					    svd->cred) != 0) {
7109 						SEGVN_LOCK_EXIT(seg->s_as,
7110 						    &svd->lock);
7111 						return (EIO);
7112 					}
7113 					if (btopr(va.va_size) >=
7114 					    btopr(off + 1)) {
7115 						SEGVN_LOCK_EXIT(seg->s_as,
7116 						    &svd->lock);
7117 						return (EIO);
7118 					}
7119 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7120 					return (0);
7121 				} else if (error) {
7122 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7123 					return (EIO);
7124 				}
7125 				pp = pl[0];
7126 				ASSERT(pp != NULL);
7127 			}
7128 
7129 			/*
7130 			 * See Statement at the beginning of this routine.
7131 			 *
7132 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7133 			 * irrespective of following factors:
7134 			 *
7135 			 * (1) anon slots are populated or not
7136 			 * (2) cow is broken or not
7137 			 * (3) refcnt on ap is 1 or greater than 1
7138 			 *
7139 			 * See 4140683 for details
7140 			 */
7141 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7142 				(svd->type == MAP_PRIVATE));
7143 
7144 			/*
7145 			 * Perform page-level operation appropriate to
7146 			 * operation.  If locking, undo the SOFTLOCK
7147 			 * performed to bring the page into memory
7148 			 * after setting the lock.  If unlocking,
7149 			 * and no page was found, account for the claim
7150 			 * separately.
7151 			 */
7152 			if (op == MC_LOCK) {
7153 				int ret = 1;	/* Assume success */
7154 
7155 				/*
7156 				 * Make sure another thread didn't lock
7157 				 * the page after we released the segment
7158 				 * lock.
7159 				 */
7160 				if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7161 				    !VPP_ISPPLOCK(vpp)) {
7162 					ret = page_pp_lock(pp, claim, 0);
7163 					if (ret != 0) {
7164 						VPP_SETPPLOCK(vpp);
7165 						if (lockmap != (ulong_t *)NULL)
7166 							BT_SET(lockmap, pos);
7167 					}
7168 				}
7169 				page_unlock(pp);
7170 				if (ret == 0) {
7171 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7172 					return (EAGAIN);
7173 				}
7174 			} else {
7175 				if (pp != NULL) {
7176 					if ((attr == 0 ||
7177 					    VPP_PROT(vpp) == pageprot) &&
7178 					    VPP_ISPPLOCK(vpp))
7179 						page_pp_unlock(pp, claim, 0);
7180 					page_unlock(pp);
7181 				}
7182 				VPP_CLRPPLOCK(vpp);
7183 			}
7184 		}
7185 	}
7186 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7187 	return (0);
7188 }
7189 
7190 /*
7191  * Set advice from user for specified pages
7192  * There are 5 types of advice:
7193  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
7194  *	MADV_RANDOM	- Random page references
7195  *				do not allow readahead or 'klustering'
7196  *	MADV_SEQUENTIAL	- Sequential page references
7197  *				Pages previous to the one currently being
7198  *				accessed (determined by fault) are 'not needed'
7199  *				and are freed immediately
7200  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
7201  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
7202  *	MADV_FREE	- Contents can be discarded
7203  *	MADV_ACCESS_DEFAULT- Default access
7204  *	MADV_ACCESS_LWP	- Next LWP will access heavily
7205  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
7206  */
7207 static int
7208 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
7209 {
7210 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7211 	size_t page;
7212 	int err = 0;
7213 	int already_set;
7214 	struct anon_map *amp;
7215 	ulong_t anon_index;
7216 	struct seg *next;
7217 	lgrp_mem_policy_t policy;
7218 	struct seg *prev;
7219 	struct vnode *vp;
7220 
7221 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7222 
7223 	/*
7224 	 * In case of MADV_FREE, we won't be modifying any segment private
7225 	 * data structures; so, we only need to grab READER's lock
7226 	 */
7227 	if (behav != MADV_FREE)
7228 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7229 	else
7230 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7231 
7232 	/*
7233 	 * Large pages are assumed to be only turned on when accesses to the
7234 	 * segment's address range have spatial and temporal locality. That
7235 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
7236 	 * Also, ignore advice affecting lgroup memory allocation
7237 	 * if don't need to do lgroup optimizations on this system
7238 	 */
7239 
7240 	if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
7241 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
7242 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
7243 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7244 		return (0);
7245 	}
7246 
7247 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
7248 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
7249 		/*
7250 		 * Since we are going to unload hat mappings
7251 		 * we first have to flush the cache. Otherwise
7252 		 * this might lead to system panic if another
7253 		 * thread is doing physio on the range whose
7254 		 * mappings are unloaded by madvise(3C).
7255 		 */
7256 		if (svd->softlockcnt > 0) {
7257 			/*
7258 			 * Since we do have the segvn writers lock
7259 			 * nobody can fill the cache with entries
7260 			 * belonging to this seg during the purge.
7261 			 * The flush either succeeds or we still
7262 			 * have pending I/Os. In the later case,
7263 			 * madvise(3C) fails.
7264 			 */
7265 			segvn_purge(seg);
7266 			if (svd->softlockcnt > 0) {
7267 				/*
7268 				 * Since madvise(3C) is advisory and
7269 				 * it's not part of UNIX98, madvise(3C)
7270 				 * failure here doesn't cause any hardship.
7271 				 * Note that we don't block in "as" layer.
7272 				 */
7273 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7274 				return (EAGAIN);
7275 			}
7276 		}
7277 	}
7278 
7279 	amp = svd->amp;
7280 	vp = svd->vp;
7281 	if (behav == MADV_FREE) {
7282 		/*
7283 		 * MADV_FREE is not supported for segments with
7284 		 * underlying object; if anonmap is NULL, anon slots
7285 		 * are not yet populated and there is nothing for
7286 		 * us to do. As MADV_FREE is advisory, we don't
7287 		 * return error in either case.
7288 		 */
7289 		if (vp || amp == NULL) {
7290 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7291 			return (0);
7292 		}
7293 
7294 		page = seg_page(seg, addr);
7295 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7296 		anon_disclaim(amp, svd->anon_index + page, len, 0);
7297 		ANON_LOCK_EXIT(&amp->a_rwlock);
7298 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7299 		return (0);
7300 	}
7301 
7302 	/*
7303 	 * If advice is to be applied to entire segment,
7304 	 * use advice field in seg_data structure
7305 	 * otherwise use appropriate vpage entry.
7306 	 */
7307 	if ((addr == seg->s_base) && (len == seg->s_size)) {
7308 		switch (behav) {
7309 		case MADV_ACCESS_LWP:
7310 		case MADV_ACCESS_MANY:
7311 		case MADV_ACCESS_DEFAULT:
7312 			/*
7313 			 * Set memory allocation policy for this segment
7314 			 */
7315 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7316 			if (svd->type == MAP_SHARED)
7317 				already_set = lgrp_shm_policy_set(policy, amp,
7318 				    svd->anon_index, vp, svd->offset, len);
7319 			else {
7320 				/*
7321 				 * For private memory, need writers lock on
7322 				 * address space because the segment may be
7323 				 * split or concatenated when changing policy
7324 				 */
7325 				if (AS_READ_HELD(seg->s_as,
7326 				    &seg->s_as->a_lock)) {
7327 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7328 					return (IE_RETRY);
7329 				}
7330 
7331 				already_set = lgrp_privm_policy_set(policy,
7332 				    &svd->policy_info, len);
7333 			}
7334 
7335 			/*
7336 			 * If policy set already and it shouldn't be reapplied,
7337 			 * don't do anything.
7338 			 */
7339 			if (already_set &&
7340 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7341 				break;
7342 
7343 			/*
7344 			 * Mark any existing pages in given range for
7345 			 * migration
7346 			 */
7347 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7348 			    vp, svd->offset, 1);
7349 
7350 			/*
7351 			 * If same policy set already or this is a shared
7352 			 * memory segment, don't need to try to concatenate
7353 			 * segment with adjacent ones.
7354 			 */
7355 			if (already_set || svd->type == MAP_SHARED)
7356 				break;
7357 
7358 			/*
7359 			 * Try to concatenate this segment with previous
7360 			 * one and next one, since we changed policy for
7361 			 * this one and it may be compatible with adjacent
7362 			 * ones now.
7363 			 */
7364 			prev = AS_SEGPREV(seg->s_as, seg);
7365 			next = AS_SEGNEXT(seg->s_as, seg);
7366 
7367 			if (next && next->s_ops == &segvn_ops &&
7368 			    addr + len == next->s_base)
7369 				(void) segvn_concat(seg, next, 1);
7370 
7371 			if (prev && prev->s_ops == &segvn_ops &&
7372 			    addr == prev->s_base + prev->s_size) {
7373 				/*
7374 				 * Drop lock for private data of current
7375 				 * segment before concatenating (deleting) it
7376 				 * and return IE_REATTACH to tell as_ctl() that
7377 				 * current segment has changed
7378 				 */
7379 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7380 				if (!segvn_concat(prev, seg, 1))
7381 					err = IE_REATTACH;
7382 
7383 				return (err);
7384 			}
7385 			break;
7386 
7387 		case MADV_SEQUENTIAL:
7388 			/*
7389 			 * unloading mapping guarantees
7390 			 * detection in segvn_fault
7391 			 */
7392 			ASSERT(seg->s_szc == 0);
7393 			hat_unload(seg->s_as->a_hat, addr, len,
7394 				HAT_UNLOAD);
7395 			/* FALLTHROUGH */
7396 		case MADV_NORMAL:
7397 		case MADV_RANDOM:
7398 			svd->advice = (uchar_t)behav;
7399 			svd->pageadvice = 0;
7400 			break;
7401 		case MADV_WILLNEED:	/* handled in memcntl */
7402 		case MADV_DONTNEED:	/* handled in memcntl */
7403 		case MADV_FREE:		/* handled above */
7404 			break;
7405 		default:
7406 			err = EINVAL;
7407 		}
7408 	} else {
7409 		caddr_t			eaddr;
7410 		struct seg		*new_seg;
7411 		struct segvn_data	*new_svd;
7412 		u_offset_t		off;
7413 		caddr_t			oldeaddr;
7414 
7415 		page = seg_page(seg, addr);
7416 
7417 		segvn_vpage(seg);
7418 
7419 		switch (behav) {
7420 			struct vpage *bvpp, *evpp;
7421 
7422 		case MADV_ACCESS_LWP:
7423 		case MADV_ACCESS_MANY:
7424 		case MADV_ACCESS_DEFAULT:
7425 			/*
7426 			 * Set memory allocation policy for portion of this
7427 			 * segment
7428 			 */
7429 
7430 			/*
7431 			 * Align address and length of advice to page
7432 			 * boundaries for large pages
7433 			 */
7434 			if (seg->s_szc != 0) {
7435 				size_t	pgsz;
7436 
7437 				pgsz = page_get_pagesize(seg->s_szc);
7438 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
7439 				len = P2ROUNDUP(len, pgsz);
7440 			}
7441 
7442 			/*
7443 			 * Check to see whether policy is set already
7444 			 */
7445 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7446 
7447 			anon_index = svd->anon_index + page;
7448 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
7449 
7450 			if (svd->type == MAP_SHARED)
7451 				already_set = lgrp_shm_policy_set(policy, amp,
7452 				    anon_index, vp, off, len);
7453 			else
7454 				already_set =
7455 				    (policy == svd->policy_info.mem_policy);
7456 
7457 			/*
7458 			 * If policy set already and it shouldn't be reapplied,
7459 			 * don't do anything.
7460 			 */
7461 			if (already_set &&
7462 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7463 				break;
7464 
7465 			/*
7466 			 * For private memory, need writers lock on
7467 			 * address space because the segment may be
7468 			 * split or concatenated when changing policy
7469 			 */
7470 			if (svd->type == MAP_PRIVATE &&
7471 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
7472 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7473 				return (IE_RETRY);
7474 			}
7475 
7476 			/*
7477 			 * Mark any existing pages in given range for
7478 			 * migration
7479 			 */
7480 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7481 			    vp, svd->offset, 1);
7482 
7483 			/*
7484 			 * Don't need to try to split or concatenate
7485 			 * segments, since policy is same or this is a shared
7486 			 * memory segment
7487 			 */
7488 			if (already_set || svd->type == MAP_SHARED)
7489 				break;
7490 
7491 			/*
7492 			 * Split off new segment if advice only applies to a
7493 			 * portion of existing segment starting in middle
7494 			 */
7495 			new_seg = NULL;
7496 			eaddr = addr + len;
7497 			oldeaddr = seg->s_base + seg->s_size;
7498 			if (addr > seg->s_base) {
7499 				/*
7500 				 * Must flush I/O page cache
7501 				 * before splitting segment
7502 				 */
7503 				if (svd->softlockcnt > 0)
7504 					segvn_purge(seg);
7505 
7506 				/*
7507 				 * Split segment and return IE_REATTACH to tell
7508 				 * as_ctl() that current segment changed
7509 				 */
7510 				new_seg = segvn_split_seg(seg, addr);
7511 				new_svd = (struct segvn_data *)new_seg->s_data;
7512 				err = IE_REATTACH;
7513 
7514 				/*
7515 				 * If new segment ends where old one
7516 				 * did, try to concatenate the new
7517 				 * segment with next one.
7518 				 */
7519 				if (eaddr == oldeaddr) {
7520 					/*
7521 					 * Set policy for new segment
7522 					 */
7523 					(void) lgrp_privm_policy_set(policy,
7524 					    &new_svd->policy_info,
7525 					    new_seg->s_size);
7526 
7527 					next = AS_SEGNEXT(new_seg->s_as,
7528 					    new_seg);
7529 
7530 					if (next &&
7531 					    next->s_ops == &segvn_ops &&
7532 					    eaddr == next->s_base)
7533 						(void) segvn_concat(new_seg,
7534 						    next, 1);
7535 				}
7536 			}
7537 
7538 			/*
7539 			 * Split off end of existing segment if advice only
7540 			 * applies to a portion of segment ending before
7541 			 * end of the existing segment
7542 			 */
7543 			if (eaddr < oldeaddr) {
7544 				/*
7545 				 * Must flush I/O page cache
7546 				 * before splitting segment
7547 				 */
7548 				if (svd->softlockcnt > 0)
7549 					segvn_purge(seg);
7550 
7551 				/*
7552 				 * If beginning of old segment was already
7553 				 * split off, use new segment to split end off
7554 				 * from.
7555 				 */
7556 				if (new_seg != NULL && new_seg != seg) {
7557 					/*
7558 					 * Split segment
7559 					 */
7560 					(void) segvn_split_seg(new_seg, eaddr);
7561 
7562 					/*
7563 					 * Set policy for new segment
7564 					 */
7565 					(void) lgrp_privm_policy_set(policy,
7566 					    &new_svd->policy_info,
7567 					    new_seg->s_size);
7568 				} else {
7569 					/*
7570 					 * Split segment and return IE_REATTACH
7571 					 * to tell as_ctl() that current
7572 					 * segment changed
7573 					 */
7574 					(void) segvn_split_seg(seg, eaddr);
7575 					err = IE_REATTACH;
7576 
7577 					(void) lgrp_privm_policy_set(policy,
7578 					    &svd->policy_info, seg->s_size);
7579 
7580 					/*
7581 					 * If new segment starts where old one
7582 					 * did, try to concatenate it with
7583 					 * previous segment.
7584 					 */
7585 					if (addr == seg->s_base) {
7586 						prev = AS_SEGPREV(seg->s_as,
7587 						    seg);
7588 
7589 						/*
7590 						 * Drop lock for private data
7591 						 * of current segment before
7592 						 * concatenating (deleting) it
7593 						 */
7594 						if (prev &&
7595 						    prev->s_ops ==
7596 						    &segvn_ops &&
7597 						    addr == prev->s_base +
7598 						    prev->s_size) {
7599 							SEGVN_LOCK_EXIT(
7600 							    seg->s_as,
7601 							    &svd->lock);
7602 							(void) segvn_concat(
7603 							    prev, seg, 1);
7604 							return (err);
7605 						}
7606 					}
7607 				}
7608 			}
7609 			break;
7610 		case MADV_SEQUENTIAL:
7611 			ASSERT(seg->s_szc == 0);
7612 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
7613 			/* FALLTHROUGH */
7614 		case MADV_NORMAL:
7615 		case MADV_RANDOM:
7616 			bvpp = &svd->vpage[page];
7617 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
7618 			for (; bvpp < evpp; bvpp++)
7619 				VPP_SETADVICE(bvpp, behav);
7620 			svd->advice = MADV_NORMAL;
7621 			break;
7622 		case MADV_WILLNEED:	/* handled in memcntl */
7623 		case MADV_DONTNEED:	/* handled in memcntl */
7624 		case MADV_FREE:		/* handled above */
7625 			break;
7626 		default:
7627 			err = EINVAL;
7628 		}
7629 	}
7630 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7631 	return (err);
7632 }
7633 
7634 /*
7635  * Create a vpage structure for this seg.
7636  */
7637 static void
7638 segvn_vpage(struct seg *seg)
7639 {
7640 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7641 	struct vpage *vp, *evp;
7642 
7643 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
7644 
7645 	/*
7646 	 * If no vpage structure exists, allocate one.  Copy the protections
7647 	 * and the advice from the segment itself to the individual pages.
7648 	 */
7649 	if (svd->vpage == NULL) {
7650 		svd->pageprot = 1;
7651 		svd->pageadvice = 1;
7652 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
7653 		    KM_SLEEP);
7654 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
7655 		for (vp = svd->vpage; vp < evp; vp++) {
7656 			VPP_SETPROT(vp, svd->prot);
7657 			VPP_SETADVICE(vp, svd->advice);
7658 		}
7659 	}
7660 }
7661 
7662 /*
7663  * Dump the pages belonging to this segvn segment.
7664  */
7665 static void
7666 segvn_dump(struct seg *seg)
7667 {
7668 	struct segvn_data *svd;
7669 	page_t *pp;
7670 	struct anon_map *amp;
7671 	ulong_t	anon_index;
7672 	struct vnode *vp;
7673 	u_offset_t off, offset;
7674 	pfn_t pfn;
7675 	pgcnt_t page, npages;
7676 	caddr_t addr;
7677 
7678 	npages = seg_pages(seg);
7679 	svd = (struct segvn_data *)seg->s_data;
7680 	vp = svd->vp;
7681 	off = offset = svd->offset;
7682 	addr = seg->s_base;
7683 
7684 	if ((amp = svd->amp) != NULL) {
7685 		anon_index = svd->anon_index;
7686 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7687 	}
7688 
7689 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
7690 		struct anon *ap;
7691 		int we_own_it = 0;
7692 
7693 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
7694 			swap_xlate_nopanic(ap, &vp, &off);
7695 		} else {
7696 			vp = svd->vp;
7697 			off = offset;
7698 		}
7699 
7700 		/*
7701 		 * If pp == NULL, the page either does not exist
7702 		 * or is exclusively locked.  So determine if it
7703 		 * exists before searching for it.
7704 		 */
7705 
7706 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
7707 			we_own_it = 1;
7708 		else
7709 			pp = page_exists(vp, off);
7710 
7711 		if (pp) {
7712 			pfn = page_pptonum(pp);
7713 			dump_addpage(seg->s_as, addr, pfn);
7714 			if (we_own_it)
7715 				page_unlock(pp);
7716 		}
7717 		addr += PAGESIZE;
7718 		dump_timeleft = dump_timeout;
7719 	}
7720 
7721 	if (amp != NULL)
7722 		ANON_LOCK_EXIT(&amp->a_rwlock);
7723 }
7724 
7725 /*
7726  * lock/unlock anon pages over a given range. Return shadow list
7727  */
7728 static int
7729 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
7730     enum lock_type type, enum seg_rw rw)
7731 {
7732 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7733 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
7734 	ulong_t anon_index;
7735 	uint_t protchk;
7736 	uint_t error;
7737 	struct anon_map *amp;
7738 	struct page **pplist, **pl, *pp;
7739 	caddr_t a;
7740 	size_t page;
7741 	caddr_t lpgaddr, lpgeaddr;
7742 	pgcnt_t szc0_npages = 0;
7743 
7744 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
7745 		"segvn_pagelock: start seg %p addr %p", seg, addr);
7746 
7747 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7748 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
7749 		/*
7750 		 * We are adjusting the pagelock region to the large page size
7751 		 * boundary because the unlocked part of a large page cannot
7752 		 * be freed anyway unless all constituent pages of a large
7753 		 * page are locked. Therefore this adjustment allows us to
7754 		 * decrement availrmem by the right value (note we don't want
7755 		 * to just decrement availrem by the large page size without
7756 		 * adjusting addr and len because then we may end up
7757 		 * decrementing availrmem by large page size for every
7758 		 * constituent page locked by a new as_pagelock call).
7759 		 * as_pageunlock caller must always match as_pagelock call's
7760 		 * addr and len.
7761 		 *
7762 		 * Note segment's page size cannot change while we are holding
7763 		 * as lock.  And then it cannot change while softlockcnt is
7764 		 * not 0. This will allow us to correctly recalculate large
7765 		 * page size region for the matching pageunlock/reclaim call.
7766 		 *
7767 		 * for pageunlock *ppp points to the pointer of page_t that
7768 		 * corresponds to the real unadjusted start address. Similar
7769 		 * for pagelock *ppp must point to the pointer of page_t that
7770 		 * corresponds to the real unadjusted start address.
7771 		 */
7772 		size_t pgsz = page_get_pagesize(seg->s_szc);
7773 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
7774 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
7775 	}
7776 
7777 	if (type == L_PAGEUNLOCK) {
7778 
7779 		/*
7780 		 * update hat ref bits for /proc. We need to make sure
7781 		 * that threads tracing the ref and mod bits of the
7782 		 * address space get the right data.
7783 		 * Note: page ref and mod bits are updated at reclaim time
7784 		 */
7785 		if (seg->s_as->a_vbits) {
7786 			for (a = addr; a < addr + len; a += PAGESIZE) {
7787 				if (rw == S_WRITE) {
7788 					hat_setstat(seg->s_as, a,
7789 					    PAGESIZE, P_REF | P_MOD);
7790 				} else {
7791 					hat_setstat(seg->s_as, a,
7792 					    PAGESIZE, P_REF);
7793 				}
7794 			}
7795 		}
7796 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7797 		if (seg->s_szc != 0) {
7798 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
7799 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
7800 			    *ppp - adjustpages, rw, segvn_reclaim);
7801 		} else {
7802 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
7803 		}
7804 
7805 		/*
7806 		 * If someone is blocked while unmapping, we purge
7807 		 * segment page cache and thus reclaim pplist synchronously
7808 		 * without waiting for seg_pasync_thread. This speeds up
7809 		 * unmapping in cases where munmap(2) is called, while
7810 		 * raw async i/o is still in progress or where a thread
7811 		 * exits on data fault in a multithreaded application.
7812 		 */
7813 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
7814 			/*
7815 			 * Even if we grab segvn WRITER's lock or segp_slock
7816 			 * here, there might be another thread which could've
7817 			 * successfully performed lookup/insert just before
7818 			 * we acquired the lock here.  So, grabbing either
7819 			 * lock here is of not much use.  Until we devise
7820 			 * a strategy at upper layers to solve the
7821 			 * synchronization issues completely, we expect
7822 			 * applications to handle this appropriately.
7823 			 */
7824 			segvn_purge(seg);
7825 		}
7826 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7827 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7828 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
7829 		return (0);
7830 	} else if (type == L_PAGERECLAIM) {
7831 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
7832 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7833 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
7834 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7835 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7836 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
7837 		return (0);
7838 	}
7839 
7840 	if (seg->s_szc != 0) {
7841 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
7842 		addr = lpgaddr;
7843 		len = lpgeaddr - lpgaddr;
7844 		npages = (len >> PAGESHIFT);
7845 	}
7846 
7847 	/*
7848 	 * for now we only support pagelock to anon memory. We've to check
7849 	 * protections for vnode objects and call into the vnode driver.
7850 	 * That's too much for a fast path. Let the fault entry point handle it.
7851 	 */
7852 	if (svd->vp != NULL) {
7853 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7854 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
7855 		*ppp = NULL;
7856 		return (ENOTSUP);
7857 	}
7858 
7859 	/*
7860 	 * if anonmap is not yet created, let the fault entry point populate it
7861 	 * with anon ptrs.
7862 	 */
7863 	if ((amp = svd->amp) == NULL) {
7864 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7865 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
7866 		*ppp = NULL;
7867 		return (EFAULT);
7868 	}
7869 
7870 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7871 
7872 	/*
7873 	 * we acquire segp_slock to prevent duplicate entries
7874 	 * in seg_pcache
7875 	 */
7876 	mutex_enter(&svd->segp_slock);
7877 
7878 	/*
7879 	 * try to find pages in segment page cache
7880 	 */
7881 	pplist = seg_plookup(seg, addr, len, rw);
7882 	if (pplist != NULL) {
7883 		mutex_exit(&svd->segp_slock);
7884 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7885 		*ppp = pplist + adjustpages;
7886 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
7887 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
7888 		return (0);
7889 	}
7890 
7891 	if (rw == S_READ) {
7892 		protchk = PROT_READ;
7893 	} else {
7894 		protchk = PROT_WRITE;
7895 	}
7896 
7897 	if (svd->pageprot == 0) {
7898 		if ((svd->prot & protchk) == 0) {
7899 			mutex_exit(&svd->segp_slock);
7900 			error = EFAULT;
7901 			goto out;
7902 		}
7903 	} else {
7904 		/*
7905 		 * check page protections
7906 		 */
7907 		for (a = addr; a < addr + len; a += PAGESIZE) {
7908 			struct vpage *vp;
7909 
7910 			vp = &svd->vpage[seg_page(seg, a)];
7911 			if ((VPP_PROT(vp) & protchk) == 0) {
7912 				mutex_exit(&svd->segp_slock);
7913 				error = EFAULT;
7914 				goto out;
7915 			}
7916 		}
7917 	}
7918 
7919 	/*
7920 	 * Avoid per page overhead of segvn_pp_lock_anonpages() for small
7921 	 * pages. For large pages segvn_pp_lock_anonpages() only does real
7922 	 * work once per large page.  The tradeoff is that we may decrement
7923 	 * availrmem more than once for the same page but this is ok
7924 	 * for small pages.
7925 	 */
7926 	if (seg->s_szc == 0) {
7927 		mutex_enter(&freemem_lock);
7928 		if (availrmem < tune.t_minarmem + npages) {
7929 			mutex_exit(&freemem_lock);
7930 			mutex_exit(&svd->segp_slock);
7931 			error = ENOMEM;
7932 			goto out;
7933 		}
7934 		availrmem -= npages;
7935 		mutex_exit(&freemem_lock);
7936 	}
7937 
7938 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
7939 	pl = pplist;
7940 	*ppp = pplist + adjustpages;
7941 
7942 	page = seg_page(seg, addr);
7943 	anon_index = svd->anon_index + page;
7944 
7945 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7946 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
7947 		struct anon *ap;
7948 		struct vnode *vp;
7949 		u_offset_t off;
7950 		anon_sync_obj_t cookie;
7951 
7952 		anon_array_enter(amp, anon_index, &cookie);
7953 		ap = anon_get_ptr(amp->ahp, anon_index);
7954 		if (ap == NULL) {
7955 			anon_array_exit(&cookie);
7956 			break;
7957 		} else {
7958 			/*
7959 			 * We must never use seg_pcache for COW pages
7960 			 * because we might end up with original page still
7961 			 * lying in seg_pcache even after private page is
7962 			 * created. This leads to data corruption as
7963 			 * aio_write refers to the page still in cache
7964 			 * while all other accesses refer to the private
7965 			 * page.
7966 			 */
7967 			if (ap->an_refcnt != 1) {
7968 				anon_array_exit(&cookie);
7969 				break;
7970 			}
7971 		}
7972 		swap_xlate(ap, &vp, &off);
7973 		anon_array_exit(&cookie);
7974 
7975 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7976 		if (pp == NULL) {
7977 			break;
7978 		}
7979 		if (seg->s_szc != 0 || pp->p_szc != 0) {
7980 			if (!segvn_pp_lock_anonpages(pp, a == addr)) {
7981 				page_unlock(pp);
7982 				break;
7983 			}
7984 		} else {
7985 			szc0_npages++;
7986 		}
7987 		*pplist++ = pp;
7988 	}
7989 	ANON_LOCK_EXIT(&amp->a_rwlock);
7990 
7991 	ASSERT(npages >= szc0_npages);
7992 
7993 	if (a >= addr + len) {
7994 		mutex_enter(&freemem_lock);
7995 		if (seg->s_szc == 0 && npages != szc0_npages) {
7996 			ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
7997 			availrmem += (npages - szc0_npages);
7998 		}
7999 		svd->softlockcnt += npages;
8000 		segvn_pages_locked += npages;
8001 		mutex_exit(&freemem_lock);
8002 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
8003 			segvn_reclaim);
8004 		mutex_exit(&svd->segp_slock);
8005 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8006 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
8007 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
8008 		return (0);
8009 	}
8010 
8011 	mutex_exit(&svd->segp_slock);
8012 	if (seg->s_szc == 0) {
8013 		mutex_enter(&freemem_lock);
8014 		availrmem += npages;
8015 		mutex_exit(&freemem_lock);
8016 	}
8017 	error = EFAULT;
8018 	pplist = pl;
8019 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
8020 	while (np > (uint_t)0) {
8021 		ASSERT(PAGE_LOCKED(*pplist));
8022 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8023 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8024 		}
8025 		page_unlock(*pplist);
8026 		np--;
8027 		pplist++;
8028 	}
8029 	kmem_free(pl, sizeof (page_t *) * npages);
8030 out:
8031 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8032 	*ppp = NULL;
8033 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8034 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
8035 	return (error);
8036 }
8037 
8038 /*
8039  * purge any cached pages in the I/O page cache
8040  */
8041 static void
8042 segvn_purge(struct seg *seg)
8043 {
8044 	seg_ppurge(seg);
8045 }
8046 
8047 static int
8048 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
8049 	enum seg_rw rw)
8050 {
8051 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8052 	pgcnt_t np, npages;
8053 	struct page **pl;
8054 	pgcnt_t szc0_npages = 0;
8055 
8056 #ifdef lint
8057 	addr = addr;
8058 #endif
8059 
8060 	npages = np = (len >> PAGESHIFT);
8061 	ASSERT(npages);
8062 	pl = pplist;
8063 	if (seg->s_szc != 0) {
8064 		size_t pgsz = page_get_pagesize(seg->s_szc);
8065 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
8066 			panic("segvn_reclaim: unaligned addr or len");
8067 			/*NOTREACHED*/
8068 		}
8069 	}
8070 
8071 	ASSERT(svd->vp == NULL && svd->amp != NULL);
8072 
8073 	while (np > (uint_t)0) {
8074 		if (rw == S_WRITE) {
8075 			hat_setrefmod(*pplist);
8076 		} else {
8077 			hat_setref(*pplist);
8078 		}
8079 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8080 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8081 		} else {
8082 			szc0_npages++;
8083 		}
8084 		page_unlock(*pplist);
8085 		np--;
8086 		pplist++;
8087 	}
8088 	kmem_free(pl, sizeof (page_t *) * npages);
8089 
8090 	mutex_enter(&freemem_lock);
8091 	segvn_pages_locked -= npages;
8092 	svd->softlockcnt -= npages;
8093 	if (szc0_npages != 0) {
8094 		availrmem += szc0_npages;
8095 	}
8096 	mutex_exit(&freemem_lock);
8097 	if (svd->softlockcnt <= 0) {
8098 		if (AS_ISUNMAPWAIT(seg->s_as)) {
8099 			mutex_enter(&seg->s_as->a_contents);
8100 			if (AS_ISUNMAPWAIT(seg->s_as)) {
8101 				AS_CLRUNMAPWAIT(seg->s_as);
8102 				cv_broadcast(&seg->s_as->a_cv);
8103 			}
8104 			mutex_exit(&seg->s_as->a_contents);
8105 		}
8106 	}
8107 	return (0);
8108 }
8109 /*
8110  * get a memory ID for an addr in a given segment
8111  *
8112  * XXX only creates PAGESIZE pages if anon slots are not initialized.
8113  * At fault time they will be relocated into larger pages.
8114  */
8115 static int
8116 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
8117 {
8118 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8119 	struct anon 	*ap = NULL;
8120 	ulong_t		anon_index;
8121 	struct anon_map	*amp;
8122 	anon_sync_obj_t cookie;
8123 
8124 	if (svd->type == MAP_PRIVATE) {
8125 		memidp->val[0] = (uintptr_t)seg->s_as;
8126 		memidp->val[1] = (uintptr_t)addr;
8127 		return (0);
8128 	}
8129 
8130 	if (svd->type == MAP_SHARED) {
8131 		if (svd->vp) {
8132 			memidp->val[0] = (uintptr_t)svd->vp;
8133 			memidp->val[1] = (u_longlong_t)svd->offset +
8134 			    (uintptr_t)(addr - seg->s_base);
8135 			return (0);
8136 		} else {
8137 
8138 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8139 			if ((amp = svd->amp) != NULL) {
8140 				anon_index = svd->anon_index +
8141 				    seg_page(seg, addr);
8142 			}
8143 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8144 
8145 			ASSERT(amp != NULL);
8146 
8147 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8148 			anon_array_enter(amp, anon_index, &cookie);
8149 			ap = anon_get_ptr(amp->ahp, anon_index);
8150 			if (ap == NULL) {
8151 				page_t		*pp;
8152 
8153 				pp = anon_zero(seg, addr, &ap, svd->cred);
8154 				if (pp == NULL) {
8155 					anon_array_exit(&cookie);
8156 					ANON_LOCK_EXIT(&amp->a_rwlock);
8157 					return (ENOMEM);
8158 				}
8159 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
8160 								== NULL);
8161 				(void) anon_set_ptr(amp->ahp, anon_index,
8162 				    ap, ANON_SLEEP);
8163 				page_unlock(pp);
8164 			}
8165 
8166 			anon_array_exit(&cookie);
8167 			ANON_LOCK_EXIT(&amp->a_rwlock);
8168 
8169 			memidp->val[0] = (uintptr_t)ap;
8170 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
8171 			return (0);
8172 		}
8173 	}
8174 	return (EINVAL);
8175 }
8176 
8177 static int
8178 sameprot(struct seg *seg, caddr_t a, size_t len)
8179 {
8180 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8181 	struct vpage *vpage;
8182 	spgcnt_t pages = btop(len);
8183 	uint_t prot;
8184 
8185 	if (svd->pageprot == 0)
8186 		return (1);
8187 
8188 	ASSERT(svd->vpage != NULL);
8189 
8190 	vpage = &svd->vpage[seg_page(seg, a)];
8191 	prot = VPP_PROT(vpage);
8192 	vpage++;
8193 	pages--;
8194 	while (pages-- > 0) {
8195 		if (prot != VPP_PROT(vpage))
8196 			return (0);
8197 		vpage++;
8198 	}
8199 	return (1);
8200 }
8201 
8202 /*
8203  * Get memory allocation policy info for specified address in given segment
8204  */
8205 static lgrp_mem_policy_info_t *
8206 segvn_getpolicy(struct seg *seg, caddr_t addr)
8207 {
8208 	struct anon_map		*amp;
8209 	ulong_t			anon_index;
8210 	lgrp_mem_policy_info_t	*policy_info;
8211 	struct segvn_data	*svn_data;
8212 	u_offset_t		vn_off;
8213 	vnode_t			*vp;
8214 
8215 	ASSERT(seg != NULL);
8216 
8217 	svn_data = (struct segvn_data *)seg->s_data;
8218 	if (svn_data == NULL)
8219 		return (NULL);
8220 
8221 	/*
8222 	 * Get policy info for private or shared memory
8223 	 */
8224 	if (svn_data->type != MAP_SHARED)
8225 		policy_info = &svn_data->policy_info;
8226 	else {
8227 		amp = svn_data->amp;
8228 		anon_index = svn_data->anon_index + seg_page(seg, addr);
8229 		vp = svn_data->vp;
8230 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
8231 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
8232 	}
8233 
8234 	return (policy_info);
8235 }
8236 
8237 /*ARGSUSED*/
8238 static int
8239 segvn_capable(struct seg *seg, segcapability_t capability)
8240 {
8241 	return (0);
8242 }
8243