xref: /titanic_44/usr/src/uts/common/vm/seg_spt.c (revision fdd1ecae0dfe07e6aa8ee90687e2e91c876dc189)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/user.h>
30 #include <sys/mman.h>
31 #include <sys/kmem.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cmn_err.h>
34 #include <sys/systm.h>
35 #include <sys/tuneable.h>
36 #include <vm/hat.h>
37 #include <vm/seg.h>
38 #include <vm/as.h>
39 #include <vm/anon.h>
40 #include <vm/page.h>
41 #include <sys/buf.h>
42 #include <sys/swap.h>
43 #include <sys/atomic.h>
44 #include <vm/seg_spt.h>
45 #include <sys/debug.h>
46 #include <sys/vtrace.h>
47 #include <sys/shm.h>
48 #include <sys/shm_impl.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 #include <sys/policy.h>
52 #include <sys/project.h>
53 #include <sys/tnf_probe.h>
54 #include <sys/zone.h>
55 
56 #define	SEGSPTADDR	(caddr_t)0x0
57 
58 /*
59  * # pages used for spt
60  */
61 size_t	spt_used;
62 
63 /*
64  * segspt_minfree is the memory left for system after ISM
65  * locked its pages; it is set up to 5% of availrmem in
66  * sptcreate when ISM is created.  ISM should not use more
67  * than ~90% of availrmem; if it does, then the performance
68  * of the system may decrease. Machines with large memories may
69  * be able to use up more memory for ISM so we set the default
70  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
71  * If somebody wants even more memory for ISM (risking hanging
72  * the system) they can patch the segspt_minfree to smaller number.
73  */
74 pgcnt_t segspt_minfree = 0;
75 
76 static int segspt_create(struct seg *seg, caddr_t argsp);
77 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
78 static void segspt_free(struct seg *seg);
79 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
80 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
81 
82 static void
83 segspt_badop()
84 {
85 	panic("segspt_badop called");
86 	/*NOTREACHED*/
87 }
88 
89 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
90 
91 struct seg_ops segspt_ops = {
92 	SEGSPT_BADOP(int),		/* dup */
93 	segspt_unmap,
94 	segspt_free,
95 	SEGSPT_BADOP(int),		/* fault */
96 	SEGSPT_BADOP(faultcode_t),	/* faulta */
97 	SEGSPT_BADOP(int),		/* setprot */
98 	SEGSPT_BADOP(int),		/* checkprot */
99 	SEGSPT_BADOP(int),		/* kluster */
100 	SEGSPT_BADOP(size_t),		/* swapout */
101 	SEGSPT_BADOP(int),		/* sync */
102 	SEGSPT_BADOP(size_t),		/* incore */
103 	SEGSPT_BADOP(int),		/* lockop */
104 	SEGSPT_BADOP(int),		/* getprot */
105 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
106 	SEGSPT_BADOP(int),		/* gettype */
107 	SEGSPT_BADOP(int),		/* getvp */
108 	SEGSPT_BADOP(int),		/* advise */
109 	SEGSPT_BADOP(void),		/* dump */
110 	SEGSPT_BADOP(int),		/* pagelock */
111 	SEGSPT_BADOP(int),		/* setpgsz */
112 	SEGSPT_BADOP(int),		/* getmemid */
113 	segspt_getpolicy,		/* getpolicy */
114 	SEGSPT_BADOP(int),		/* capable */
115 };
116 
117 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
118 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
119 static void segspt_shmfree(struct seg *seg);
120 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
121 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
122 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
123 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
124 			register size_t len, register uint_t prot);
125 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
126 			uint_t prot);
127 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
128 static size_t	segspt_shmswapout(struct seg *seg);
129 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
130 			register char *vec);
131 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
132 			int attr, uint_t flags);
133 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
134 			int attr, int op, ulong_t *lockmap, size_t pos);
135 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
136 			uint_t *protv);
137 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
138 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
139 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
140 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
141 			uint_t behav);
142 static void segspt_shmdump(struct seg *seg);
143 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
144 			struct page ***, enum lock_type, enum seg_rw);
145 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
146 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
147 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
148 static int segspt_shmcapable(struct seg *, segcapability_t);
149 
150 struct seg_ops segspt_shmops = {
151 	segspt_shmdup,
152 	segspt_shmunmap,
153 	segspt_shmfree,
154 	segspt_shmfault,
155 	segspt_shmfaulta,
156 	segspt_shmsetprot,
157 	segspt_shmcheckprot,
158 	segspt_shmkluster,
159 	segspt_shmswapout,
160 	segspt_shmsync,
161 	segspt_shmincore,
162 	segspt_shmlockop,
163 	segspt_shmgetprot,
164 	segspt_shmgetoffset,
165 	segspt_shmgettype,
166 	segspt_shmgetvp,
167 	segspt_shmadvise,	/* advise */
168 	segspt_shmdump,
169 	segspt_shmpagelock,
170 	segspt_shmsetpgsz,
171 	segspt_shmgetmemid,
172 	segspt_shmgetpolicy,
173 	segspt_shmcapable,
174 };
175 
176 static void segspt_purge(struct seg *seg);
177 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
178 		enum seg_rw);
179 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
180 		page_t **ppa);
181 
182 
183 
184 /*ARGSUSED*/
185 int
186 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
187 	uint_t prot, uint_t flags, uint_t share_szc)
188 {
189 	int 	err;
190 	struct  as	*newas;
191 	struct	segspt_crargs sptcargs;
192 
193 #ifdef DEBUG
194 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
195 			tnf_ulong, size, size );
196 #endif
197 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
198 		segspt_minfree = availrmem/20;	/* for the system */
199 
200 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
201 		return (EINVAL);
202 
203 	/*
204 	 * get a new as for this shared memory segment
205 	 */
206 	newas = as_alloc();
207 	newas->a_proc = NULL;
208 	sptcargs.amp = amp;
209 	sptcargs.prot = prot;
210 	sptcargs.flags = flags;
211 	sptcargs.szc = share_szc;
212 	/*
213 	 * create a shared page table (spt) segment
214 	 */
215 
216 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
217 		as_free(newas);
218 		return (err);
219 	}
220 	*sptseg = sptcargs.seg_spt;
221 	return (0);
222 }
223 
224 void
225 sptdestroy(struct as *as, struct anon_map *amp)
226 {
227 
228 #ifdef DEBUG
229 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
230 #endif
231 	(void) as_unmap(as, SEGSPTADDR, amp->size);
232 	as_free(as);
233 }
234 
235 /*
236  * called from seg_free().
237  * free (i.e., unlock, unmap, return to free list)
238  *  all the pages in the given seg.
239  */
240 void
241 segspt_free(struct seg	*seg)
242 {
243 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
244 
245 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
246 
247 	if (sptd != NULL) {
248 		if (sptd->spt_realsize)
249 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
250 
251 	if (sptd->spt_ppa_lckcnt)
252 		kmem_free(sptd->spt_ppa_lckcnt,
253 		    sizeof (*sptd->spt_ppa_lckcnt)
254 		    * btopr(sptd->spt_amp->size));
255 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
256 		mutex_destroy(&sptd->spt_lock);
257 		kmem_free(sptd, sizeof (*sptd));
258 	}
259 }
260 
261 /*ARGSUSED*/
262 static int
263 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
264 	uint_t flags)
265 {
266 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
267 
268 	return (0);
269 }
270 
271 /*ARGSUSED*/
272 static size_t
273 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
274 {
275 	caddr_t	eo_seg;
276 	pgcnt_t	npages;
277 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
278 	struct seg	*sptseg;
279 	struct spt_data *sptd;
280 
281 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
282 #ifdef lint
283 	seg = seg;
284 #endif
285 	sptseg = shmd->shm_sptseg;
286 	sptd = sptseg->s_data;
287 
288 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
289 		eo_seg = addr + len;
290 		while (addr < eo_seg) {
291 			/* page exists, and it's locked. */
292 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
293 				SEG_PAGE_ANON;
294 			addr += PAGESIZE;
295 		}
296 		return (len);
297 	} else {
298 		struct  anon_map *amp = shmd->shm_amp;
299 		struct  anon	*ap;
300 		page_t		*pp;
301 		pgcnt_t 	anon_index;
302 		struct vnode 	*vp;
303 		u_offset_t 	off;
304 		ulong_t		i;
305 		int		ret;
306 		anon_sync_obj_t	cookie;
307 
308 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
309 		anon_index = seg_page(seg, addr);
310 		npages = btopr(len);
311 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
312 			return (EINVAL);
313 		}
314 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
315 		for (i = 0; i < npages; i++, anon_index++) {
316 			ret = 0;
317 			anon_array_enter(amp, anon_index, &cookie);
318 			ap = anon_get_ptr(amp->ahp, anon_index);
319 			if (ap != NULL) {
320 				swap_xlate(ap, &vp, &off);
321 				anon_array_exit(&cookie);
322 				pp = page_lookup_nowait(vp, off, SE_SHARED);
323 				if (pp != NULL) {
324 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
325 					page_unlock(pp);
326 				}
327 			} else {
328 				anon_array_exit(&cookie);
329 			}
330 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
331 				ret |= SEG_PAGE_LOCKED;
332 			}
333 			*vec++ = (char)ret;
334 		}
335 		ANON_LOCK_EXIT(&amp->a_rwlock);
336 		return (len);
337 	}
338 }
339 
340 static int
341 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
342 {
343 	size_t share_size;
344 
345 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
346 
347 	/*
348 	 * seg.s_size may have been rounded up to the largest page size
349 	 * in shmat().
350 	 * XXX This should be cleanedup. sptdestroy should take a length
351 	 * argument which should be the same as sptcreate. Then
352 	 * this rounding would not be needed (or is done in shm.c)
353 	 * Only the check for full segment will be needed.
354 	 *
355 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
356 	 * to be useful at all.
357 	 */
358 	share_size = page_get_pagesize(seg->s_szc);
359 	ssize = P2ROUNDUP(ssize, share_size);
360 
361 	if (raddr == seg->s_base && ssize == seg->s_size) {
362 		seg_free(seg);
363 		return (0);
364 	} else
365 		return (EINVAL);
366 }
367 
368 int
369 segspt_create(struct seg *seg, caddr_t argsp)
370 {
371 	int		err;
372 	caddr_t		addr = seg->s_base;
373 	struct spt_data *sptd;
374 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
375 	struct anon_map *amp = sptcargs->amp;
376 	struct kshmid	*sp = amp->a_sp;
377 	struct	cred	*cred = CRED();
378 	ulong_t		i, j, anon_index = 0;
379 	pgcnt_t		npages = btopr(amp->size);
380 	struct vnode	*vp;
381 	page_t		**ppa;
382 	uint_t		hat_flags;
383 	size_t		pgsz;
384 	pgcnt_t		pgcnt;
385 	caddr_t		a;
386 	pgcnt_t		pidx;
387 	size_t		sz;
388 	proc_t		*procp = curproc;
389 	rctl_qty_t	lockedbytes = 0;
390 	kproject_t	*proj;
391 
392 	/*
393 	 * We are holding the a_lock on the underlying dummy as,
394 	 * so we can make calls to the HAT layer.
395 	 */
396 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
397 	ASSERT(sp != NULL);
398 
399 #ifdef DEBUG
400 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
401 				tnf_opaque, addr, addr,
402 				tnf_ulong, len, seg->s_size);
403 #endif
404 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
405 		if (err = anon_swap_adjust(npages))
406 			return (err);
407 	}
408 	err = ENOMEM;
409 
410 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
411 		goto out1;
412 
413 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
414 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
415 		    KM_NOSLEEP)) == NULL)
416 			goto out2;
417 	}
418 
419 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
420 
421 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
422 		goto out3;
423 
424 	seg->s_ops = &segspt_ops;
425 	sptd->spt_vp = vp;
426 	sptd->spt_amp = amp;
427 	sptd->spt_prot = sptcargs->prot;
428 	sptd->spt_flags = sptcargs->flags;
429 	seg->s_data = (caddr_t)sptd;
430 	sptd->spt_ppa = NULL;
431 	sptd->spt_ppa_lckcnt = NULL;
432 	seg->s_szc = sptcargs->szc;
433 
434 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
435 	if (seg->s_szc > amp->a_szc) {
436 		amp->a_szc = seg->s_szc;
437 	}
438 	ANON_LOCK_EXIT(&amp->a_rwlock);
439 
440 	/*
441 	 * Set policy to affect initial allocation of pages in
442 	 * anon_map_createpages()
443 	 */
444 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
445 	    NULL, 0, ptob(npages));
446 
447 	if (sptcargs->flags & SHM_PAGEABLE) {
448 		size_t  share_sz;
449 		pgcnt_t new_npgs, more_pgs;
450 		struct anon_hdr *nahp;
451 		zone_t *zone;
452 
453 		share_sz = page_get_pagesize(seg->s_szc);
454 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
455 			/*
456 			 * We are rounding up the size of the anon array
457 			 * on 4 M boundary because we always create 4 M
458 			 * of page(s) when locking, faulting pages and we
459 			 * don't have to check for all corner cases e.g.
460 			 * if there is enough space to allocate 4 M
461 			 * page.
462 			 */
463 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
464 			more_pgs = new_npgs - npages;
465 
466 			/*
467 			 * The zone will never be NULL, as a fully created
468 			 * shm always has an owning zone.
469 			 */
470 			zone = sp->shm_perm.ipc_zone;
471 			ASSERT(zone != NULL);
472 			if (anon_resv_zone(ptob(more_pgs), zone) == 0) {
473 				err = ENOMEM;
474 				goto out4;
475 			}
476 
477 			nahp = anon_create(new_npgs, ANON_SLEEP);
478 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
479 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
480 			    ANON_SLEEP);
481 			anon_release(amp->ahp, npages);
482 			amp->ahp = nahp;
483 			ASSERT(amp->swresv == ptob(npages));
484 			amp->swresv = amp->size = ptob(new_npgs);
485 			ANON_LOCK_EXIT(&amp->a_rwlock);
486 			npages = new_npgs;
487 		}
488 
489 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
490 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
491 		sptd->spt_pcachecnt = 0;
492 		sptd->spt_realsize = ptob(npages);
493 		sptcargs->seg_spt = seg;
494 		return (0);
495 	}
496 
497 	/*
498 	 * get array of pages for each anon slot in amp
499 	 */
500 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
501 	    seg, addr, S_CREATE, cred)) != 0)
502 		goto out4;
503 
504 	mutex_enter(&sp->shm_mlock);
505 
506 	/* May be partially locked, so, count bytes to charge for locking */
507 	for (i = 0; i < npages; i++)
508 		if (ppa[i]->p_lckcnt == 0)
509 			lockedbytes += PAGESIZE;
510 
511 	proj = sp->shm_perm.ipc_proj;
512 
513 	if (lockedbytes > 0) {
514 		mutex_enter(&procp->p_lock);
515 		if (rctl_incr_locked_mem(procp, proj, lockedbytes, 0)) {
516 			mutex_exit(&procp->p_lock);
517 			mutex_exit(&sp->shm_mlock);
518 			for (i = 0; i < npages; i++)
519 				page_unlock(ppa[i]);
520 			err = ENOMEM;
521 			goto out4;
522 		}
523 		mutex_exit(&procp->p_lock);
524 	}
525 
526 	/*
527 	 * addr is initial address corresponding to the first page on ppa list
528 	 */
529 	for (i = 0; i < npages; i++) {
530 		/* attempt to lock all pages */
531 		if (page_pp_lock(ppa[i], 0, 1) == 0) {
532 			/*
533 			 * if unable to lock any page, unlock all
534 			 * of them and return error
535 			 */
536 			for (j = 0; j < i; j++)
537 				page_pp_unlock(ppa[j], 0, 1);
538 			for (i = 0; i < npages; i++)
539 				page_unlock(ppa[i]);
540 			rctl_decr_locked_mem(NULL, proj, lockedbytes, 0);
541 			mutex_exit(&sp->shm_mlock);
542 			err = ENOMEM;
543 			goto out4;
544 		}
545 	}
546 	mutex_exit(&sp->shm_mlock);
547 
548 	/*
549 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
550 	 * for the entire life of the segment. For example platforms
551 	 * that do not support Dynamic Reconfiguration.
552 	 */
553 	hat_flags = HAT_LOAD_SHARE;
554 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
555 		hat_flags |= HAT_LOAD_LOCK;
556 
557 	/*
558 	 * Load translations one lare page at a time
559 	 * to make sure we don't create mappings bigger than
560 	 * segment's size code in case underlying pages
561 	 * are shared with segvn's segment that uses bigger
562 	 * size code than we do.
563 	 */
564 	pgsz = page_get_pagesize(seg->s_szc);
565 	pgcnt = page_get_pagecnt(seg->s_szc);
566 	for (a = addr, pidx = 0; pidx < npages; a += pgsz, pidx += pgcnt) {
567 		sz = MIN(pgsz, ptob(npages - pidx));
568 		hat_memload_array(seg->s_as->a_hat, a, sz,
569 		    &ppa[pidx], sptd->spt_prot, hat_flags);
570 	}
571 
572 	/*
573 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
574 	 * we will leave the pages locked SE_SHARED for the life
575 	 * of the ISM segment. This will prevent any calls to
576 	 * hat_pageunload() on this ISM segment for those platforms.
577 	 */
578 	if (!(hat_flags & HAT_LOAD_LOCK)) {
579 		/*
580 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
581 		 * we no longer need to hold the SE_SHARED lock on the pages,
582 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
583 		 * SE_SHARED lock on the pages as necessary.
584 		 */
585 		for (i = 0; i < npages; i++)
586 			page_unlock(ppa[i]);
587 	}
588 	sptd->spt_pcachecnt = 0;
589 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
590 	sptd->spt_realsize = ptob(npages);
591 	atomic_add_long(&spt_used, npages);
592 	sptcargs->seg_spt = seg;
593 	return (0);
594 
595 out4:
596 	seg->s_data = NULL;
597 	kmem_free(vp, sizeof (*vp));
598 out3:
599 	mutex_destroy(&sptd->spt_lock);
600 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
601 		kmem_free(ppa, (sizeof (*ppa) * npages));
602 out2:
603 	kmem_free(sptd, sizeof (*sptd));
604 out1:
605 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
606 		anon_swap_restore(npages);
607 	return (err);
608 }
609 
610 /*ARGSUSED*/
611 void
612 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
613 {
614 	struct page 	*pp;
615 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
616 	pgcnt_t		npages;
617 	ulong_t		anon_idx;
618 	struct anon_map *amp;
619 	struct anon 	*ap;
620 	struct vnode 	*vp;
621 	u_offset_t 	off;
622 	uint_t		hat_flags;
623 	int		root = 0;
624 	pgcnt_t		pgs, curnpgs = 0;
625 	page_t		*rootpp;
626 	rctl_qty_t	unlocked_bytes = 0;
627 	kproject_t	*proj;
628 	kshmid_t	*sp;
629 
630 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
631 
632 	len = P2ROUNDUP(len, PAGESIZE);
633 
634 	npages = btop(len);
635 
636 	hat_flags = HAT_UNLOAD_UNLOCK | HAT_UNLOAD_UNMAP;
637 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
638 	    (sptd->spt_flags & SHM_PAGEABLE)) {
639 		hat_flags = HAT_UNLOAD_UNMAP;
640 	}
641 
642 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
643 
644 	amp = sptd->spt_amp;
645 	if (sptd->spt_flags & SHM_PAGEABLE)
646 		npages = btop(amp->size);
647 
648 	ASSERT(amp != NULL);
649 
650 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
651 		sp = amp->a_sp;
652 		proj = sp->shm_perm.ipc_proj;
653 		mutex_enter(&sp->shm_mlock);
654 	}
655 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
656 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
657 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
658 				panic("segspt_free_pages: null app");
659 				/*NOTREACHED*/
660 			}
661 		} else {
662 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
663 			    == NULL)
664 				continue;
665 		}
666 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
667 		swap_xlate(ap, &vp, &off);
668 
669 		/*
670 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
671 		 * the pages won't be having SE_SHARED lock at this
672 		 * point.
673 		 *
674 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
675 		 * the pages are still held SE_SHARED locked from the
676 		 * original segspt_create()
677 		 *
678 		 * Our goal is to get SE_EXCL lock on each page, remove
679 		 * permanent lock on it and invalidate the page.
680 		 */
681 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
682 			if (hat_flags == HAT_UNLOAD_UNMAP)
683 				pp = page_lookup(vp, off, SE_EXCL);
684 			else {
685 				if ((pp = page_find(vp, off)) == NULL) {
686 					panic("segspt_free_pages: "
687 					    "page not locked");
688 					/*NOTREACHED*/
689 				}
690 				if (!page_tryupgrade(pp)) {
691 					page_unlock(pp);
692 					pp = page_lookup(vp, off, SE_EXCL);
693 				}
694 			}
695 			if (pp == NULL) {
696 				panic("segspt_free_pages: "
697 				    "page not in the system");
698 				/*NOTREACHED*/
699 			}
700 			ASSERT(pp->p_lckcnt > 0);
701 			page_pp_unlock(pp, 0, 1);
702 			if (pp->p_lckcnt == 0)
703 				    unlocked_bytes += PAGESIZE;
704 		} else {
705 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
706 				continue;
707 		}
708 		/*
709 		 * It's logical to invalidate the pages here as in most cases
710 		 * these were created by segspt.
711 		 */
712 		if (pp->p_szc != 0) {
713 			if (root == 0) {
714 				ASSERT(curnpgs == 0);
715 				root = 1;
716 				rootpp = pp;
717 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
718 				ASSERT(pgs > 1);
719 				ASSERT(IS_P2ALIGNED(pgs, pgs));
720 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
721 				curnpgs--;
722 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
723 				ASSERT(curnpgs == 1);
724 				ASSERT(page_pptonum(pp) ==
725 				    page_pptonum(rootpp) + (pgs - 1));
726 				page_destroy_pages(rootpp);
727 				root = 0;
728 				curnpgs = 0;
729 			} else {
730 				ASSERT(curnpgs > 1);
731 				ASSERT(page_pptonum(pp) ==
732 				    page_pptonum(rootpp) + (pgs - curnpgs));
733 				curnpgs--;
734 			}
735 		} else {
736 			if (root != 0 || curnpgs != 0) {
737 				panic("segspt_free_pages: bad large page");
738 				/*NOTREACHED*/
739 			}
740 			/*LINTED: constant in conditional context */
741 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
742 		}
743 	}
744 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
745 		if (unlocked_bytes > 0)
746 			rctl_decr_locked_mem(NULL, proj, unlocked_bytes, 0);
747 		mutex_exit(&sp->shm_mlock);
748 	}
749 	if (root != 0 || curnpgs != 0) {
750 		panic("segspt_free_pages: bad large page");
751 		/*NOTREACHED*/
752 	}
753 
754 	/*
755 	 * mark that pages have been released
756 	 */
757 	sptd->spt_realsize = 0;
758 
759 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
760 		atomic_add_long(&spt_used, -npages);
761 		anon_swap_restore(npages);
762 	}
763 }
764 
765 /*
766  * Get memory allocation policy info for specified address in given segment
767  */
768 static lgrp_mem_policy_info_t *
769 segspt_getpolicy(struct seg *seg, caddr_t addr)
770 {
771 	struct anon_map		*amp;
772 	ulong_t			anon_index;
773 	lgrp_mem_policy_info_t	*policy_info;
774 	struct spt_data		*spt_data;
775 
776 	ASSERT(seg != NULL);
777 
778 	/*
779 	 * Get anon_map from segspt
780 	 *
781 	 * Assume that no lock needs to be held on anon_map, since
782 	 * it should be protected by its reference count which must be
783 	 * nonzero for an existing segment
784 	 * Need to grab readers lock on policy tree though
785 	 */
786 	spt_data = (struct spt_data *)seg->s_data;
787 	if (spt_data == NULL)
788 		return (NULL);
789 	amp = spt_data->spt_amp;
790 	ASSERT(amp->refcnt != 0);
791 
792 	/*
793 	 * Get policy info
794 	 *
795 	 * Assume starting anon index of 0
796 	 */
797 	anon_index = seg_page(seg, addr);
798 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
799 
800 	return (policy_info);
801 }
802 
803 /*
804  * DISM only.
805  * Return locked pages over a given range.
806  *
807  * We will cache all DISM locked pages and save the pplist for the
808  * entire segment in the ppa field of the underlying DISM segment structure.
809  * Later, during a call to segspt_reclaim() we will use this ppa array
810  * to page_unlock() all of the pages and then we will free this ppa list.
811  */
812 /*ARGSUSED*/
813 static int
814 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
815     struct page ***ppp, enum lock_type type, enum seg_rw rw)
816 {
817 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
818 	struct  seg	*sptseg = shmd->shm_sptseg;
819 	struct  spt_data *sptd = sptseg->s_data;
820 	pgcnt_t pg_idx, npages, tot_npages, npgs;
821 	struct  page **pplist, **pl, **ppa, *pp;
822 	struct  anon_map *amp;
823 	spgcnt_t	an_idx;
824 	int 	ret = ENOTSUP;
825 	uint_t	pl_built = 0;
826 	struct  anon *ap;
827 	struct  vnode *vp;
828 	u_offset_t off;
829 	pgcnt_t claim_availrmem = 0;
830 	uint_t	szc;
831 
832 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
833 
834 	/*
835 	 * We want to lock/unlock the entire ISM segment. Therefore,
836 	 * we will be using the underlying sptseg and it's base address
837 	 * and length for the caching arguments.
838 	 */
839 	ASSERT(sptseg);
840 	ASSERT(sptd);
841 
842 	pg_idx = seg_page(seg, addr);
843 	npages = btopr(len);
844 
845 	/*
846 	 * check if the request is larger than number of pages covered
847 	 * by amp
848 	 */
849 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
850 		*ppp = NULL;
851 		return (ENOTSUP);
852 	}
853 
854 	if (type == L_PAGEUNLOCK) {
855 		ASSERT(sptd->spt_ppa != NULL);
856 
857 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
858 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
859 
860 		/*
861 		 * If someone is blocked while unmapping, we purge
862 		 * segment page cache and thus reclaim pplist synchronously
863 		 * without waiting for seg_pasync_thread. This speeds up
864 		 * unmapping in cases where munmap(2) is called, while
865 		 * raw async i/o is still in progress or where a thread
866 		 * exits on data fault in a multithreaded application.
867 		 */
868 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
869 			segspt_purge(seg);
870 		}
871 		return (0);
872 	} else if (type == L_PAGERECLAIM) {
873 		ASSERT(sptd->spt_ppa != NULL);
874 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
875 		    sptd->spt_ppa, sptd->spt_prot);
876 		return (0);
877 	}
878 
879 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
880 		segspt_purge(seg);
881 		/*
882 		 * for DISM ppa needs to be rebuild since
883 		 * number of locked pages could be changed
884 		 */
885 		*ppp = NULL;
886 		return (ENOTSUP);
887 	}
888 
889 	/*
890 	 * First try to find pages in segment page cache, without
891 	 * holding the segment lock.
892 	 */
893 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
894 	    sptd->spt_prot);
895 	if (pplist != NULL) {
896 		ASSERT(sptd->spt_ppa != NULL);
897 		ASSERT(sptd->spt_ppa == pplist);
898 		ppa = sptd->spt_ppa;
899 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
900 			if (ppa[an_idx] == NULL) {
901 				seg_pinactive(seg, seg->s_base,
902 				    sptd->spt_amp->size, ppa,
903 				    sptd->spt_prot, segspt_reclaim);
904 				*ppp = NULL;
905 				return (ENOTSUP);
906 			}
907 			if ((szc = ppa[an_idx]->p_szc) != 0) {
908 				npgs = page_get_pagecnt(szc);
909 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
910 			} else {
911 				an_idx++;
912 			}
913 		}
914 		/*
915 		 * Since we cache the entire DISM segment, we want to
916 		 * set ppp to point to the first slot that corresponds
917 		 * to the requested addr, i.e. pg_idx.
918 		 */
919 		*ppp = &(sptd->spt_ppa[pg_idx]);
920 		return (0);
921 	}
922 
923 	/* The L_PAGELOCK case... */
924 	mutex_enter(&sptd->spt_lock);
925 	/*
926 	 * try to find pages in segment page cache with mutex
927 	 */
928 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
929 	    sptd->spt_prot);
930 	if (pplist != NULL) {
931 		ASSERT(sptd->spt_ppa != NULL);
932 		ASSERT(sptd->spt_ppa == pplist);
933 		ppa = sptd->spt_ppa;
934 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
935 			if (ppa[an_idx] == NULL) {
936 				mutex_exit(&sptd->spt_lock);
937 				seg_pinactive(seg, seg->s_base,
938 				    sptd->spt_amp->size, ppa,
939 				    sptd->spt_prot, segspt_reclaim);
940 				*ppp = NULL;
941 				return (ENOTSUP);
942 			}
943 			if ((szc = ppa[an_idx]->p_szc) != 0) {
944 				npgs = page_get_pagecnt(szc);
945 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
946 			} else {
947 				an_idx++;
948 			}
949 		}
950 		/*
951 		 * Since we cache the entire DISM segment, we want to
952 		 * set ppp to point to the first slot that corresponds
953 		 * to the requested addr, i.e. pg_idx.
954 		 */
955 		mutex_exit(&sptd->spt_lock);
956 		*ppp = &(sptd->spt_ppa[pg_idx]);
957 		return (0);
958 	}
959 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
960 	    SEGP_FAIL) {
961 		mutex_exit(&sptd->spt_lock);
962 		*ppp = NULL;
963 		return (ENOTSUP);
964 	}
965 
966 	/*
967 	 * No need to worry about protections because DISM pages are always rw.
968 	 */
969 	pl = pplist = NULL;
970 	amp = sptd->spt_amp;
971 
972 	/*
973 	 * Do we need to build the ppa array?
974 	 */
975 	if (sptd->spt_ppa == NULL) {
976 		pgcnt_t lpg_cnt = 0;
977 
978 		pl_built = 1;
979 		tot_npages = btopr(sptd->spt_amp->size);
980 
981 		ASSERT(sptd->spt_pcachecnt == 0);
982 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
983 		pl = pplist;
984 
985 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
986 		for (an_idx = 0; an_idx < tot_npages; ) {
987 			ap = anon_get_ptr(amp->ahp, an_idx);
988 			/*
989 			 * Cache only mlocked pages. For large pages
990 			 * if one (constituent) page is mlocked
991 			 * all pages for that large page
992 			 * are cached also. This is for quick
993 			 * lookups of ppa array;
994 			 */
995 			if ((ap != NULL) && (lpg_cnt != 0 ||
996 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
997 
998 				swap_xlate(ap, &vp, &off);
999 				pp = page_lookup(vp, off, SE_SHARED);
1000 				ASSERT(pp != NULL);
1001 				if (lpg_cnt == 0) {
1002 					lpg_cnt++;
1003 					/*
1004 					 * For a small page, we are done --
1005 					 * lpg_count is reset to 0 below.
1006 					 *
1007 					 * For a large page, we are guaranteed
1008 					 * to find the anon structures of all
1009 					 * constituent pages and a non-zero
1010 					 * lpg_cnt ensures that we don't test
1011 					 * for mlock for these. We are done
1012 					 * when lpg_count reaches (npgs + 1).
1013 					 * If we are not the first constituent
1014 					 * page, restart at the first one.
1015 					 */
1016 					npgs = page_get_pagecnt(pp->p_szc);
1017 					if (!IS_P2ALIGNED(an_idx, npgs)) {
1018 						an_idx = P2ALIGN(an_idx, npgs);
1019 						page_unlock(pp);
1020 						continue;
1021 					}
1022 				}
1023 				if (++lpg_cnt > npgs)
1024 					lpg_cnt = 0;
1025 
1026 				/*
1027 				 * availrmem is decremented only
1028 				 * for unlocked pages
1029 				 */
1030 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
1031 					claim_availrmem++;
1032 				pplist[an_idx] = pp;
1033 			}
1034 			an_idx++;
1035 		}
1036 		ANON_LOCK_EXIT(&amp->a_rwlock);
1037 
1038 		mutex_enter(&freemem_lock);
1039 		if (availrmem < tune.t_minarmem + claim_availrmem) {
1040 			mutex_exit(&freemem_lock);
1041 			ret = FC_MAKE_ERR(ENOMEM);
1042 			claim_availrmem = 0;
1043 			goto insert_fail;
1044 		} else {
1045 			availrmem -= claim_availrmem;
1046 		}
1047 		mutex_exit(&freemem_lock);
1048 
1049 		sptd->spt_ppa = pl;
1050 	} else {
1051 		/*
1052 		 * We already have a valid ppa[].
1053 		 */
1054 		pl = sptd->spt_ppa;
1055 	}
1056 
1057 	ASSERT(pl != NULL);
1058 
1059 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1060 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
1061 	    segspt_reclaim);
1062 	if (ret == SEGP_FAIL) {
1063 		/*
1064 		 * seg_pinsert failed. We return
1065 		 * ENOTSUP, so that the as_pagelock() code will
1066 		 * then try the slower F_SOFTLOCK path.
1067 		 */
1068 		if (pl_built) {
1069 			/*
1070 			 * No one else has referenced the ppa[].
1071 			 * We created it and we need to destroy it.
1072 			 */
1073 			sptd->spt_ppa = NULL;
1074 		}
1075 		ret = ENOTSUP;
1076 		goto insert_fail;
1077 	}
1078 
1079 	/*
1080 	 * In either case, we increment softlockcnt on the 'real' segment.
1081 	 */
1082 	sptd->spt_pcachecnt++;
1083 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1084 
1085 	ppa = sptd->spt_ppa;
1086 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1087 		if (ppa[an_idx] == NULL) {
1088 			mutex_exit(&sptd->spt_lock);
1089 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1090 			    pl, sptd->spt_prot, segspt_reclaim);
1091 			*ppp = NULL;
1092 			return (ENOTSUP);
1093 		}
1094 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1095 			npgs = page_get_pagecnt(szc);
1096 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1097 		} else {
1098 			an_idx++;
1099 		}
1100 	}
1101 	/*
1102 	 * We can now drop the sptd->spt_lock since the ppa[]
1103 	 * exists and he have incremented pacachecnt.
1104 	 */
1105 	mutex_exit(&sptd->spt_lock);
1106 
1107 	/*
1108 	 * Since we cache the entire segment, we want to
1109 	 * set ppp to point to the first slot that corresponds
1110 	 * to the requested addr, i.e. pg_idx.
1111 	 */
1112 	*ppp = &(sptd->spt_ppa[pg_idx]);
1113 	return (ret);
1114 
1115 insert_fail:
1116 	/*
1117 	 * We will only reach this code if we tried and failed.
1118 	 *
1119 	 * And we can drop the lock on the dummy seg, once we've failed
1120 	 * to set up a new ppa[].
1121 	 */
1122 	mutex_exit(&sptd->spt_lock);
1123 
1124 	if (pl_built) {
1125 		mutex_enter(&freemem_lock);
1126 		availrmem += claim_availrmem;
1127 		mutex_exit(&freemem_lock);
1128 
1129 		/*
1130 		 * We created pl and we need to destroy it.
1131 		 */
1132 		pplist = pl;
1133 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1134 			if (pplist[an_idx] != NULL)
1135 				page_unlock(pplist[an_idx]);
1136 		}
1137 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1138 	}
1139 
1140 	if (shmd->shm_softlockcnt <= 0) {
1141 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1142 			mutex_enter(&seg->s_as->a_contents);
1143 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1144 				AS_CLRUNMAPWAIT(seg->s_as);
1145 				cv_broadcast(&seg->s_as->a_cv);
1146 			}
1147 			mutex_exit(&seg->s_as->a_contents);
1148 		}
1149 	}
1150 	*ppp = NULL;
1151 	return (ret);
1152 }
1153 
1154 
1155 
1156 /*
1157  * return locked pages over a given range.
1158  *
1159  * We will cache the entire ISM segment and save the pplist for the
1160  * entire segment in the ppa field of the underlying ISM segment structure.
1161  * Later, during a call to segspt_reclaim() we will use this ppa array
1162  * to page_unlock() all of the pages and then we will free this ppa list.
1163  */
1164 /*ARGSUSED*/
1165 static int
1166 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1167     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1168 {
1169 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1170 	struct seg	*sptseg = shmd->shm_sptseg;
1171 	struct spt_data *sptd = sptseg->s_data;
1172 	pgcnt_t np, page_index, npages;
1173 	caddr_t a, spt_base;
1174 	struct page **pplist, **pl, *pp;
1175 	struct anon_map *amp;
1176 	ulong_t anon_index;
1177 	int ret = ENOTSUP;
1178 	uint_t	pl_built = 0;
1179 	struct anon *ap;
1180 	struct vnode *vp;
1181 	u_offset_t off;
1182 
1183 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1184 
1185 	/*
1186 	 * We want to lock/unlock the entire ISM segment. Therefore,
1187 	 * we will be using the underlying sptseg and it's base address
1188 	 * and length for the caching arguments.
1189 	 */
1190 	ASSERT(sptseg);
1191 	ASSERT(sptd);
1192 
1193 	if (sptd->spt_flags & SHM_PAGEABLE) {
1194 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1195 	}
1196 
1197 	page_index = seg_page(seg, addr);
1198 	npages = btopr(len);
1199 
1200 	/*
1201 	 * check if the request is larger than number of pages covered
1202 	 * by amp
1203 	 */
1204 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1205 		*ppp = NULL;
1206 		return (ENOTSUP);
1207 	}
1208 
1209 	if (type == L_PAGEUNLOCK) {
1210 
1211 		ASSERT(sptd->spt_ppa != NULL);
1212 
1213 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1214 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1215 
1216 		/*
1217 		 * If someone is blocked while unmapping, we purge
1218 		 * segment page cache and thus reclaim pplist synchronously
1219 		 * without waiting for seg_pasync_thread. This speeds up
1220 		 * unmapping in cases where munmap(2) is called, while
1221 		 * raw async i/o is still in progress or where a thread
1222 		 * exits on data fault in a multithreaded application.
1223 		 */
1224 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1225 			segspt_purge(seg);
1226 		}
1227 		return (0);
1228 	} else if (type == L_PAGERECLAIM) {
1229 		ASSERT(sptd->spt_ppa != NULL);
1230 
1231 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1232 		    sptd->spt_ppa, sptd->spt_prot);
1233 		return (0);
1234 	}
1235 
1236 	/*
1237 	 * First try to find pages in segment page cache, without
1238 	 * holding the segment lock.
1239 	 */
1240 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1241 	    sptd->spt_prot);
1242 	if (pplist != NULL) {
1243 		ASSERT(sptd->spt_ppa == pplist);
1244 		ASSERT(sptd->spt_ppa[page_index]);
1245 		/*
1246 		 * Since we cache the entire ISM segment, we want to
1247 		 * set ppp to point to the first slot that corresponds
1248 		 * to the requested addr, i.e. page_index.
1249 		 */
1250 		*ppp = &(sptd->spt_ppa[page_index]);
1251 		return (0);
1252 	}
1253 
1254 	/* The L_PAGELOCK case... */
1255 	mutex_enter(&sptd->spt_lock);
1256 
1257 	/*
1258 	 * try to find pages in segment page cache
1259 	 */
1260 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1261 	    sptd->spt_prot);
1262 	if (pplist != NULL) {
1263 		ASSERT(sptd->spt_ppa == pplist);
1264 		/*
1265 		 * Since we cache the entire segment, we want to
1266 		 * set ppp to point to the first slot that corresponds
1267 		 * to the requested addr, i.e. page_index.
1268 		 */
1269 		mutex_exit(&sptd->spt_lock);
1270 		*ppp = &(sptd->spt_ppa[page_index]);
1271 		return (0);
1272 	}
1273 
1274 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1275 	    SEGP_FAIL) {
1276 		mutex_exit(&sptd->spt_lock);
1277 		*ppp = NULL;
1278 		return (ENOTSUP);
1279 	}
1280 
1281 	/*
1282 	 * No need to worry about protections because ISM pages
1283 	 * are always rw.
1284 	 */
1285 	pl = pplist = NULL;
1286 
1287 	/*
1288 	 * Do we need to build the ppa array?
1289 	 */
1290 	if (sptd->spt_ppa == NULL) {
1291 		ASSERT(sptd->spt_ppa == pplist);
1292 
1293 		spt_base = sptseg->s_base;
1294 		pl_built = 1;
1295 
1296 		/*
1297 		 * availrmem is decremented once during anon_swap_adjust()
1298 		 * and is incremented during the anon_unresv(), which is
1299 		 * called from shm_rm_amp() when the segment is destroyed.
1300 		 */
1301 		amp = sptd->spt_amp;
1302 		ASSERT(amp != NULL);
1303 
1304 		/* pcachecnt is protected by sptd->spt_lock */
1305 		ASSERT(sptd->spt_pcachecnt == 0);
1306 		pplist = kmem_zalloc(sizeof (page_t *)
1307 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1308 		pl = pplist;
1309 
1310 		anon_index = seg_page(sptseg, spt_base);
1311 
1312 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1313 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1314 		    a += PAGESIZE, anon_index++, pplist++) {
1315 			ap = anon_get_ptr(amp->ahp, anon_index);
1316 			ASSERT(ap != NULL);
1317 			swap_xlate(ap, &vp, &off);
1318 			pp = page_lookup(vp, off, SE_SHARED);
1319 			ASSERT(pp != NULL);
1320 			*pplist = pp;
1321 		}
1322 		ANON_LOCK_EXIT(&amp->a_rwlock);
1323 
1324 		if (a < (spt_base + sptd->spt_amp->size)) {
1325 			ret = ENOTSUP;
1326 			goto insert_fail;
1327 		}
1328 		sptd->spt_ppa = pl;
1329 	} else {
1330 		/*
1331 		 * We already have a valid ppa[].
1332 		 */
1333 		pl = sptd->spt_ppa;
1334 	}
1335 
1336 	ASSERT(pl != NULL);
1337 
1338 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1339 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1340 	if (ret == SEGP_FAIL) {
1341 		/*
1342 		 * seg_pinsert failed. We return
1343 		 * ENOTSUP, so that the as_pagelock() code will
1344 		 * then try the slower F_SOFTLOCK path.
1345 		 */
1346 		if (pl_built) {
1347 			/*
1348 			 * No one else has referenced the ppa[].
1349 			 * We created it and we need to destroy it.
1350 			 */
1351 			sptd->spt_ppa = NULL;
1352 		}
1353 		ret = ENOTSUP;
1354 		goto insert_fail;
1355 	}
1356 
1357 	/*
1358 	 * In either case, we increment softlockcnt on the 'real' segment.
1359 	 */
1360 	sptd->spt_pcachecnt++;
1361 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1362 
1363 	/*
1364 	 * We can now drop the sptd->spt_lock since the ppa[]
1365 	 * exists and he have incremented pacachecnt.
1366 	 */
1367 	mutex_exit(&sptd->spt_lock);
1368 
1369 	/*
1370 	 * Since we cache the entire segment, we want to
1371 	 * set ppp to point to the first slot that corresponds
1372 	 * to the requested addr, i.e. page_index.
1373 	 */
1374 	*ppp = &(sptd->spt_ppa[page_index]);
1375 	return (ret);
1376 
1377 insert_fail:
1378 	/*
1379 	 * We will only reach this code if we tried and failed.
1380 	 *
1381 	 * And we can drop the lock on the dummy seg, once we've failed
1382 	 * to set up a new ppa[].
1383 	 */
1384 	mutex_exit(&sptd->spt_lock);
1385 
1386 	if (pl_built) {
1387 		/*
1388 		 * We created pl and we need to destroy it.
1389 		 */
1390 		pplist = pl;
1391 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1392 		while (np) {
1393 			page_unlock(*pplist);
1394 			np--;
1395 			pplist++;
1396 		}
1397 		kmem_free(pl, sizeof (page_t *) *
1398 				btopr(sptd->spt_amp->size));
1399 	}
1400 	if (shmd->shm_softlockcnt <= 0) {
1401 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1402 			mutex_enter(&seg->s_as->a_contents);
1403 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1404 				AS_CLRUNMAPWAIT(seg->s_as);
1405 				cv_broadcast(&seg->s_as->a_cv);
1406 			}
1407 			mutex_exit(&seg->s_as->a_contents);
1408 		}
1409 	}
1410 	*ppp = NULL;
1411 	return (ret);
1412 }
1413 
1414 /*
1415  * purge any cached pages in the I/O page cache
1416  */
1417 static void
1418 segspt_purge(struct seg *seg)
1419 {
1420 	seg_ppurge(seg);
1421 }
1422 
1423 static int
1424 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1425 	enum seg_rw rw)
1426 {
1427 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1428 	struct	seg	*sptseg;
1429 	struct	spt_data *sptd;
1430 	pgcnt_t npages, i, free_availrmem = 0;
1431 	int	done = 0;
1432 
1433 #ifdef lint
1434 	addr = addr;
1435 #endif
1436 	sptseg = shmd->shm_sptseg;
1437 	sptd = sptseg->s_data;
1438 	npages = (len >> PAGESHIFT);
1439 	ASSERT(npages);
1440 	ASSERT(sptd->spt_pcachecnt != 0);
1441 	ASSERT(sptd->spt_ppa == pplist);
1442 	ASSERT(npages == btopr(sptd->spt_amp->size));
1443 	/*
1444 	 * Acquire the lock on the dummy seg and destroy the
1445 	 * ppa array IF this is the last pcachecnt.
1446 	 */
1447 	mutex_enter(&sptd->spt_lock);
1448 	if (--sptd->spt_pcachecnt == 0) {
1449 		for (i = 0; i < npages; i++) {
1450 			if (pplist[i] == NULL) {
1451 				continue;
1452 			}
1453 			if (rw == S_WRITE) {
1454 				hat_setrefmod(pplist[i]);
1455 			} else {
1456 				hat_setref(pplist[i]);
1457 			}
1458 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1459 			    (sptd->spt_ppa_lckcnt[i] == 0))
1460 				free_availrmem++;
1461 			page_unlock(pplist[i]);
1462 		}
1463 		if (sptd->spt_flags & SHM_PAGEABLE) {
1464 			mutex_enter(&freemem_lock);
1465 			availrmem += free_availrmem;
1466 			mutex_exit(&freemem_lock);
1467 		}
1468 		/*
1469 		 * Since we want to cach/uncache the entire ISM segment,
1470 		 * we will track the pplist in a segspt specific field
1471 		 * ppa, that is initialized at the time we add an entry to
1472 		 * the cache.
1473 		 */
1474 		ASSERT(sptd->spt_pcachecnt == 0);
1475 		kmem_free(pplist, sizeof (page_t *) * npages);
1476 		sptd->spt_ppa = NULL;
1477 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1478 		done = 1;
1479 	}
1480 	mutex_exit(&sptd->spt_lock);
1481 	/*
1482 	 * Now decrement softlockcnt.
1483 	 */
1484 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1485 
1486 	if (shmd->shm_softlockcnt <= 0) {
1487 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1488 			mutex_enter(&seg->s_as->a_contents);
1489 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1490 				AS_CLRUNMAPWAIT(seg->s_as);
1491 				cv_broadcast(&seg->s_as->a_cv);
1492 			}
1493 			mutex_exit(&seg->s_as->a_contents);
1494 		}
1495 	}
1496 	return (done);
1497 }
1498 
1499 /*
1500  * Do a F_SOFTUNLOCK call over the range requested.
1501  * The range must have already been F_SOFTLOCK'ed.
1502  *
1503  * The calls to acquire and release the anon map lock mutex were
1504  * removed in order to avoid a deadly embrace during a DR
1505  * memory delete operation.  (Eg. DR blocks while waiting for a
1506  * exclusive lock on a page that is being used for kaio; the
1507  * thread that will complete the kaio and call segspt_softunlock
1508  * blocks on the anon map lock; another thread holding the anon
1509  * map lock blocks on another page lock via the segspt_shmfault
1510  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1511  *
1512  * The appropriateness of the removal is based upon the following:
1513  * 1. If we are holding a segment's reader lock and the page is held
1514  * shared, then the corresponding element in anonmap which points to
1515  * anon struct cannot change and there is no need to acquire the
1516  * anonymous map lock.
1517  * 2. Threads in segspt_softunlock have a reader lock on the segment
1518  * and already have the shared page lock, so we are guaranteed that
1519  * the anon map slot cannot change and therefore can call anon_get_ptr()
1520  * without grabbing the anonymous map lock.
1521  * 3. Threads that softlock a shared page break copy-on-write, even if
1522  * its a read.  Thus cow faults can be ignored with respect to soft
1523  * unlocking, since the breaking of cow means that the anon slot(s) will
1524  * not be shared.
1525  */
1526 static void
1527 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1528 	size_t len, enum seg_rw rw)
1529 {
1530 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1531 	struct seg	*sptseg;
1532 	struct spt_data *sptd;
1533 	page_t *pp;
1534 	caddr_t adr;
1535 	struct vnode *vp;
1536 	u_offset_t offset;
1537 	ulong_t anon_index;
1538 	struct anon_map *amp;		/* XXX - for locknest */
1539 	struct anon *ap = NULL;
1540 	pgcnt_t npages;
1541 
1542 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1543 
1544 	sptseg = shmd->shm_sptseg;
1545 	sptd = sptseg->s_data;
1546 
1547 	/*
1548 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1549 	 * and therefore their pages are SE_SHARED locked
1550 	 * for the entire life of the segment.
1551 	 */
1552 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1553 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1554 		goto softlock_decrement;
1555 	}
1556 
1557 	/*
1558 	 * Any thread is free to do a page_find and
1559 	 * page_unlock() on the pages within this seg.
1560 	 *
1561 	 * We are already holding the as->a_lock on the user's
1562 	 * real segment, but we need to hold the a_lock on the
1563 	 * underlying dummy as. This is mostly to satisfy the
1564 	 * underlying HAT layer.
1565 	 */
1566 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1567 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1568 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1569 
1570 	amp = sptd->spt_amp;
1571 	ASSERT(amp != NULL);
1572 	anon_index = seg_page(sptseg, sptseg_addr);
1573 
1574 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1575 		ap = anon_get_ptr(amp->ahp, anon_index++);
1576 		ASSERT(ap != NULL);
1577 		swap_xlate(ap, &vp, &offset);
1578 
1579 		/*
1580 		 * Use page_find() instead of page_lookup() to
1581 		 * find the page since we know that it has a
1582 		 * "shared" lock.
1583 		 */
1584 		pp = page_find(vp, offset);
1585 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1586 		if (pp == NULL) {
1587 			panic("segspt_softunlock: "
1588 			    "addr %p, ap %p, vp %p, off %llx",
1589 			    (void *)adr, (void *)ap, (void *)vp, offset);
1590 			/*NOTREACHED*/
1591 		}
1592 
1593 		if (rw == S_WRITE) {
1594 			hat_setrefmod(pp);
1595 		} else if (rw != S_OTHER) {
1596 			hat_setref(pp);
1597 		}
1598 		page_unlock(pp);
1599 	}
1600 
1601 softlock_decrement:
1602 	npages = btopr(len);
1603 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1604 	if (shmd->shm_softlockcnt == 0) {
1605 		/*
1606 		 * All SOFTLOCKS are gone. Wakeup any waiting
1607 		 * unmappers so they can try again to unmap.
1608 		 * Check for waiters first without the mutex
1609 		 * held so we don't always grab the mutex on
1610 		 * softunlocks.
1611 		 */
1612 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1613 			mutex_enter(&seg->s_as->a_contents);
1614 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1615 				AS_CLRUNMAPWAIT(seg->s_as);
1616 				cv_broadcast(&seg->s_as->a_cv);
1617 			}
1618 			mutex_exit(&seg->s_as->a_contents);
1619 		}
1620 	}
1621 }
1622 
1623 int
1624 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1625 {
1626 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1627 	struct shm_data *shmd;
1628 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1629 	struct spt_data *sptd;
1630 	int error = 0;
1631 
1632 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1633 
1634 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1635 	if (shmd == NULL)
1636 		return (ENOMEM);
1637 
1638 	shmd->shm_sptas = shmd_arg->shm_sptas;
1639 	shmd->shm_amp = shm_amp;
1640 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1641 
1642 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1643 	    NULL, 0, seg->s_size);
1644 
1645 	seg->s_data = (void *)shmd;
1646 	seg->s_ops = &segspt_shmops;
1647 	seg->s_szc = shmd->shm_sptseg->s_szc;
1648 	sptd = shmd->shm_sptseg->s_data;
1649 
1650 	if (sptd->spt_flags & SHM_PAGEABLE) {
1651 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1652 		    KM_NOSLEEP)) == NULL) {
1653 			seg->s_data = (void *)NULL;
1654 			kmem_free(shmd, (sizeof (*shmd)));
1655 			return (ENOMEM);
1656 		}
1657 		shmd->shm_lckpgs = 0;
1658 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1659 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1660 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1661 			    seg->s_size, seg->s_szc)) != 0) {
1662 				kmem_free(shmd->shm_vpage,
1663 					btopr(shm_amp->size));
1664 			}
1665 		}
1666 	} else {
1667 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1668 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1669 				seg->s_size, seg->s_szc);
1670 	}
1671 	if (error) {
1672 		seg->s_szc = 0;
1673 		seg->s_data = (void *)NULL;
1674 		kmem_free(shmd, (sizeof (*shmd)));
1675 	} else {
1676 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1677 		shm_amp->refcnt++;
1678 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1679 	}
1680 	return (error);
1681 }
1682 
1683 int
1684 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1685 {
1686 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1687 	int reclaim = 1;
1688 
1689 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1690 retry:
1691 	if (shmd->shm_softlockcnt > 0) {
1692 		if (reclaim == 1) {
1693 			segspt_purge(seg);
1694 			reclaim = 0;
1695 			goto retry;
1696 		}
1697 		return (EAGAIN);
1698 	}
1699 
1700 	if (ssize != seg->s_size) {
1701 #ifdef DEBUG
1702 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1703 		    ssize, seg->s_size);
1704 #endif
1705 		return (EINVAL);
1706 	}
1707 
1708 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1709 	    NULL, 0);
1710 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1711 
1712 	seg_free(seg);
1713 
1714 	return (0);
1715 }
1716 
1717 void
1718 segspt_shmfree(struct seg *seg)
1719 {
1720 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1721 	struct anon_map *shm_amp = shmd->shm_amp;
1722 
1723 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1724 
1725 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1726 		MC_UNLOCK, NULL, 0);
1727 
1728 	/*
1729 	 * Need to increment refcnt when attaching
1730 	 * and decrement when detaching because of dup().
1731 	 */
1732 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1733 	shm_amp->refcnt--;
1734 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1735 
1736 	if (shmd->shm_vpage) {	/* only for DISM */
1737 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1738 		shmd->shm_vpage = NULL;
1739 	}
1740 	kmem_free(shmd, sizeof (*shmd));
1741 }
1742 
1743 /*ARGSUSED*/
1744 int
1745 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1746 {
1747 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1748 
1749 	/*
1750 	 * Shared page table is more than shared mapping.
1751 	 *  Individual process sharing page tables can't change prot
1752 	 *  because there is only one set of page tables.
1753 	 *  This will be allowed after private page table is
1754 	 *  supported.
1755 	 */
1756 /* need to return correct status error? */
1757 	return (0);
1758 }
1759 
1760 
1761 faultcode_t
1762 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1763     size_t len, enum fault_type type, enum seg_rw rw)
1764 {
1765 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1766 	struct  seg		*sptseg = shmd->shm_sptseg;
1767 	struct  as		*curspt = shmd->shm_sptas;
1768 	struct  spt_data 	*sptd = sptseg->s_data;
1769 	pgcnt_t npages;
1770 	size_t  size;
1771 	caddr_t segspt_addr, shm_addr;
1772 	page_t  **ppa;
1773 	int	i;
1774 	ulong_t an_idx = 0;
1775 	int	err = 0;
1776 	int	dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0);
1777 	size_t	pgsz;
1778 	pgcnt_t	pgcnt;
1779 	caddr_t	a;
1780 	pgcnt_t	pidx;
1781 
1782 #ifdef lint
1783 	hat = hat;
1784 #endif
1785 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1786 
1787 	/*
1788 	 * Because of the way spt is implemented
1789 	 * the realsize of the segment does not have to be
1790 	 * equal to the segment size itself. The segment size is
1791 	 * often in multiples of a page size larger than PAGESIZE.
1792 	 * The realsize is rounded up to the nearest PAGESIZE
1793 	 * based on what the user requested. This is a bit of
1794 	 * ungliness that is historical but not easily fixed
1795 	 * without re-designing the higher levels of ISM.
1796 	 */
1797 	ASSERT(addr >= seg->s_base);
1798 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1799 		return (FC_NOMAP);
1800 	/*
1801 	 * For all of the following cases except F_PROT, we need to
1802 	 * make any necessary adjustments to addr and len
1803 	 * and get all of the necessary page_t's into an array called ppa[].
1804 	 *
1805 	 * The code in shmat() forces base addr and len of ISM segment
1806 	 * to be aligned to largest page size supported. Therefore,
1807 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1808 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1809 	 * in large pagesize chunks, or else we will screw up the HAT
1810 	 * layer by calling hat_memload_array() with differing page sizes
1811 	 * over a given virtual range.
1812 	 */
1813 	pgsz = page_get_pagesize(sptseg->s_szc);
1814 	pgcnt = page_get_pagecnt(sptseg->s_szc);
1815 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
1816 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
1817 	npages = btopr(size);
1818 
1819 	/*
1820 	 * Now we need to convert from addr in segshm to addr in segspt.
1821 	 */
1822 	an_idx = seg_page(seg, shm_addr);
1823 	segspt_addr = sptseg->s_base + ptob(an_idx);
1824 
1825 	ASSERT((segspt_addr + ptob(npages)) <=
1826 		(sptseg->s_base + sptd->spt_realsize));
1827 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1828 
1829 	switch (type) {
1830 
1831 	case F_SOFTLOCK:
1832 
1833 		mutex_enter(&freemem_lock);
1834 		if (availrmem < tune.t_minarmem + npages) {
1835 			mutex_exit(&freemem_lock);
1836 			return (FC_MAKE_ERR(ENOMEM));
1837 		} else {
1838 			availrmem -= npages;
1839 		}
1840 		mutex_exit(&freemem_lock);
1841 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1842 		/*
1843 		 * Fall through to the F_INVAL case to load up the hat layer
1844 		 * entries with the HAT_LOAD_LOCK flag.
1845 		 */
1846 		/* FALLTHRU */
1847 	case F_INVAL:
1848 
1849 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1850 			return (FC_NOMAP);
1851 
1852 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1853 
1854 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1855 		if (err != 0) {
1856 			if (type == F_SOFTLOCK) {
1857 				mutex_enter(&freemem_lock);
1858 				availrmem += npages;
1859 				mutex_exit(&freemem_lock);
1860 				atomic_add_long((ulong_t *)(
1861 				    &(shmd->shm_softlockcnt)), -npages);
1862 			}
1863 			goto dism_err;
1864 		}
1865 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1866 		a = segspt_addr;
1867 		pidx = 0;
1868 		if (type == F_SOFTLOCK) {
1869 
1870 			/*
1871 			 * Load up the translation keeping it
1872 			 * locked and don't unlock the page.
1873 			 */
1874 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
1875 				hat_memload_array(sptseg->s_as->a_hat,
1876 				    a, pgsz, &ppa[pidx], sptd->spt_prot,
1877 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1878 			}
1879 		} else {
1880 			if (hat == seg->s_as->a_hat) {
1881 
1882 				/*
1883 				 * Migrate pages marked for migration
1884 				 */
1885 				if (lgrp_optimizations())
1886 					page_migrate(seg, shm_addr, ppa,
1887 					    npages);
1888 
1889 				/* CPU HAT */
1890 				for (; pidx < npages;
1891 				    a += pgsz, pidx += pgcnt) {
1892 					hat_memload_array(sptseg->s_as->a_hat,
1893 					    a, pgsz, &ppa[pidx],
1894 					    sptd->spt_prot,
1895 					    HAT_LOAD_SHARE);
1896 				}
1897 			} else {
1898 				/* XHAT. Pass real address */
1899 				hat_memload_array(hat, shm_addr,
1900 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1901 			}
1902 
1903 			/*
1904 			 * And now drop the SE_SHARED lock(s).
1905 			 */
1906 			if (dyn_ism_unmap) {
1907 				for (i = 0; i < npages; i++) {
1908 					page_unlock(ppa[i]);
1909 				}
1910 			}
1911 		}
1912 
1913 		if (!dyn_ism_unmap) {
1914 			if (hat_share(seg->s_as->a_hat, shm_addr,
1915 			    curspt->a_hat, segspt_addr, ptob(npages),
1916 			    seg->s_szc) != 0) {
1917 				panic("hat_share err in DISM fault");
1918 				/* NOTREACHED */
1919 			}
1920 			if (type == F_INVAL) {
1921 				for (i = 0; i < npages; i++) {
1922 					page_unlock(ppa[i]);
1923 				}
1924 			}
1925 		}
1926 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1927 dism_err:
1928 		kmem_free(ppa, npages * sizeof (page_t *));
1929 		return (err);
1930 
1931 	case F_SOFTUNLOCK:
1932 
1933 		mutex_enter(&freemem_lock);
1934 		availrmem += npages;
1935 		mutex_exit(&freemem_lock);
1936 
1937 		/*
1938 		 * This is a bit ugly, we pass in the real seg pointer,
1939 		 * but the segspt_addr is the virtual address within the
1940 		 * dummy seg.
1941 		 */
1942 		segspt_softunlock(seg, segspt_addr, size, rw);
1943 		return (0);
1944 
1945 	case F_PROT:
1946 
1947 		/*
1948 		 * This takes care of the unusual case where a user
1949 		 * allocates a stack in shared memory and a register
1950 		 * window overflow is written to that stack page before
1951 		 * it is otherwise modified.
1952 		 *
1953 		 * We can get away with this because ISM segments are
1954 		 * always rw. Other than this unusual case, there
1955 		 * should be no instances of protection violations.
1956 		 */
1957 		return (0);
1958 
1959 	default:
1960 #ifdef DEBUG
1961 		panic("segspt_dismfault default type?");
1962 #else
1963 		return (FC_NOMAP);
1964 #endif
1965 	}
1966 }
1967 
1968 
1969 faultcode_t
1970 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1971     size_t len, enum fault_type type, enum seg_rw rw)
1972 {
1973 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1974 	struct seg		*sptseg = shmd->shm_sptseg;
1975 	struct as		*curspt = shmd->shm_sptas;
1976 	struct spt_data 	*sptd   = sptseg->s_data;
1977 	pgcnt_t npages;
1978 	size_t size;
1979 	caddr_t sptseg_addr, shm_addr;
1980 	page_t *pp, **ppa;
1981 	int	i;
1982 	u_offset_t offset;
1983 	ulong_t anon_index = 0;
1984 	struct vnode *vp;
1985 	struct anon_map *amp;		/* XXX - for locknest */
1986 	struct anon *ap = NULL;
1987 	size_t		pgsz;
1988 	pgcnt_t		pgcnt;
1989 	caddr_t		a;
1990 	pgcnt_t		pidx;
1991 	size_t		sz;
1992 
1993 #ifdef lint
1994 	hat = hat;
1995 #endif
1996 
1997 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1998 
1999 	if (sptd->spt_flags & SHM_PAGEABLE) {
2000 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
2001 	}
2002 
2003 	/*
2004 	 * Because of the way spt is implemented
2005 	 * the realsize of the segment does not have to be
2006 	 * equal to the segment size itself. The segment size is
2007 	 * often in multiples of a page size larger than PAGESIZE.
2008 	 * The realsize is rounded up to the nearest PAGESIZE
2009 	 * based on what the user requested. This is a bit of
2010 	 * ungliness that is historical but not easily fixed
2011 	 * without re-designing the higher levels of ISM.
2012 	 */
2013 	ASSERT(addr >= seg->s_base);
2014 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
2015 		return (FC_NOMAP);
2016 	/*
2017 	 * For all of the following cases except F_PROT, we need to
2018 	 * make any necessary adjustments to addr and len
2019 	 * and get all of the necessary page_t's into an array called ppa[].
2020 	 *
2021 	 * The code in shmat() forces base addr and len of ISM segment
2022 	 * to be aligned to largest page size supported. Therefore,
2023 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
2024 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
2025 	 * in large pagesize chunks, or else we will screw up the HAT
2026 	 * layer by calling hat_memload_array() with differing page sizes
2027 	 * over a given virtual range.
2028 	 */
2029 	pgsz = page_get_pagesize(sptseg->s_szc);
2030 	pgcnt = page_get_pagecnt(sptseg->s_szc);
2031 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
2032 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
2033 	npages = btopr(size);
2034 
2035 	/*
2036 	 * Now we need to convert from addr in segshm to addr in segspt.
2037 	 */
2038 	anon_index = seg_page(seg, shm_addr);
2039 	sptseg_addr = sptseg->s_base + ptob(anon_index);
2040 
2041 	/*
2042 	 * And now we may have to adjust npages downward if we have
2043 	 * exceeded the realsize of the segment or initial anon
2044 	 * allocations.
2045 	 */
2046 	if ((sptseg_addr + ptob(npages)) >
2047 	    (sptseg->s_base + sptd->spt_realsize))
2048 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
2049 
2050 	npages = btopr(size);
2051 
2052 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
2053 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
2054 
2055 	switch (type) {
2056 
2057 	case F_SOFTLOCK:
2058 
2059 		/*
2060 		 * availrmem is decremented once during anon_swap_adjust()
2061 		 * and is incremented during the anon_unresv(), which is
2062 		 * called from shm_rm_amp() when the segment is destroyed.
2063 		 */
2064 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
2065 		/*
2066 		 * Some platforms assume that ISM pages are SE_SHARED
2067 		 * locked for the entire life of the segment.
2068 		 */
2069 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
2070 			return (0);
2071 		/*
2072 		 * Fall through to the F_INVAL case to load up the hat layer
2073 		 * entries with the HAT_LOAD_LOCK flag.
2074 		 */
2075 
2076 		/* FALLTHRU */
2077 	case F_INVAL:
2078 
2079 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
2080 			return (FC_NOMAP);
2081 
2082 		/*
2083 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
2084 		 * may still rely on this call to hat_share(). That
2085 		 * would imply that those hat's can fault on a
2086 		 * HAT_LOAD_LOCK translation, which would seem
2087 		 * contradictory.
2088 		 */
2089 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2090 			if (hat_share(seg->s_as->a_hat, seg->s_base,
2091 			    curspt->a_hat, sptseg->s_base,
2092 			    sptseg->s_size, sptseg->s_szc) != 0) {
2093 				panic("hat_share error in ISM fault");
2094 				/*NOTREACHED*/
2095 			}
2096 			return (0);
2097 		}
2098 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
2099 
2100 		/*
2101 		 * I see no need to lock the real seg,
2102 		 * here, because all of our work will be on the underlying
2103 		 * dummy seg.
2104 		 *
2105 		 * sptseg_addr and npages now account for large pages.
2106 		 */
2107 		amp = sptd->spt_amp;
2108 		ASSERT(amp != NULL);
2109 		anon_index = seg_page(sptseg, sptseg_addr);
2110 
2111 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2112 		for (i = 0; i < npages; i++) {
2113 			ap = anon_get_ptr(amp->ahp, anon_index++);
2114 			ASSERT(ap != NULL);
2115 			swap_xlate(ap, &vp, &offset);
2116 			pp = page_lookup(vp, offset, SE_SHARED);
2117 			ASSERT(pp != NULL);
2118 			ppa[i] = pp;
2119 		}
2120 		ANON_LOCK_EXIT(&amp->a_rwlock);
2121 		ASSERT(i == npages);
2122 
2123 		/*
2124 		 * We are already holding the as->a_lock on the user's
2125 		 * real segment, but we need to hold the a_lock on the
2126 		 * underlying dummy as. This is mostly to satisfy the
2127 		 * underlying HAT layer.
2128 		 */
2129 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2130 		a = sptseg_addr;
2131 		pidx = 0;
2132 		if (type == F_SOFTLOCK) {
2133 			/*
2134 			 * Load up the translation keeping it
2135 			 * locked and don't unlock the page.
2136 			 */
2137 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
2138 				sz = MIN(pgsz, ptob(npages - pidx));
2139 				hat_memload_array(sptseg->s_as->a_hat, a,
2140 				    sz, &ppa[pidx], sptd->spt_prot,
2141 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2142 			}
2143 		} else {
2144 			if (hat == seg->s_as->a_hat) {
2145 
2146 				/*
2147 				 * Migrate pages marked for migration.
2148 				 */
2149 				if (lgrp_optimizations())
2150 					page_migrate(seg, shm_addr, ppa,
2151 					    npages);
2152 
2153 				/* CPU HAT */
2154 				for (; pidx < npages;
2155 				    a += pgsz, pidx += pgcnt) {
2156 					sz = MIN(pgsz, ptob(npages - pidx));
2157 					hat_memload_array(sptseg->s_as->a_hat,
2158 					    a, sz, &ppa[pidx],
2159 					    sptd->spt_prot, HAT_LOAD_SHARE);
2160 				}
2161 			} else {
2162 				/* XHAT. Pass real address */
2163 				hat_memload_array(hat, shm_addr,
2164 				    ptob(npages), ppa, sptd->spt_prot,
2165 				    HAT_LOAD_SHARE);
2166 			}
2167 
2168 			/*
2169 			 * And now drop the SE_SHARED lock(s).
2170 			 */
2171 			for (i = 0; i < npages; i++)
2172 				page_unlock(ppa[i]);
2173 		}
2174 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2175 
2176 		kmem_free(ppa, sizeof (page_t *) * npages);
2177 		return (0);
2178 	case F_SOFTUNLOCK:
2179 
2180 		/*
2181 		 * This is a bit ugly, we pass in the real seg pointer,
2182 		 * but the sptseg_addr is the virtual address within the
2183 		 * dummy seg.
2184 		 */
2185 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2186 		return (0);
2187 
2188 	case F_PROT:
2189 
2190 		/*
2191 		 * This takes care of the unusual case where a user
2192 		 * allocates a stack in shared memory and a register
2193 		 * window overflow is written to that stack page before
2194 		 * it is otherwise modified.
2195 		 *
2196 		 * We can get away with this because ISM segments are
2197 		 * always rw. Other than this unusual case, there
2198 		 * should be no instances of protection violations.
2199 		 */
2200 		return (0);
2201 
2202 	default:
2203 #ifdef DEBUG
2204 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2205 #endif
2206 		return (FC_NOMAP);
2207 	}
2208 }
2209 
2210 /*ARGSUSED*/
2211 static faultcode_t
2212 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2213 {
2214 	return (0);
2215 }
2216 
2217 /*ARGSUSED*/
2218 static int
2219 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2220 {
2221 	return (0);
2222 }
2223 
2224 /*ARGSUSED*/
2225 static size_t
2226 segspt_shmswapout(struct seg *seg)
2227 {
2228 	return (0);
2229 }
2230 
2231 /*
2232  * duplicate the shared page tables
2233  */
2234 int
2235 segspt_shmdup(struct seg *seg, struct seg *newseg)
2236 {
2237 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2238 	struct anon_map 	*amp = shmd->shm_amp;
2239 	struct shm_data 	*shmd_new;
2240 	struct seg		*spt_seg = shmd->shm_sptseg;
2241 	struct spt_data		*sptd = spt_seg->s_data;
2242 	int			error = 0;
2243 
2244 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2245 
2246 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2247 	newseg->s_data = (void *)shmd_new;
2248 	shmd_new->shm_sptas = shmd->shm_sptas;
2249 	shmd_new->shm_amp = amp;
2250 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2251 	newseg->s_ops = &segspt_shmops;
2252 	newseg->s_szc = seg->s_szc;
2253 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2254 
2255 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2256 	amp->refcnt++;
2257 	ANON_LOCK_EXIT(&amp->a_rwlock);
2258 
2259 	if (sptd->spt_flags & SHM_PAGEABLE) {
2260 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2261 		shmd_new->shm_lckpgs = 0;
2262 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2263 			if ((error = hat_share(newseg->s_as->a_hat,
2264 			    newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR,
2265 			    seg->s_size, seg->s_szc)) != 0) {
2266 				kmem_free(shmd_new->shm_vpage,
2267 				btopr(amp->size));
2268 			}
2269 		}
2270 		return (error);
2271 	} else {
2272 		return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2273 		    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size,
2274 		    seg->s_szc));
2275 
2276 	}
2277 }
2278 
2279 /*ARGSUSED*/
2280 int
2281 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2282 {
2283 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2284 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2285 
2286 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2287 
2288 	/*
2289 	 * ISM segment is always rw.
2290 	 */
2291 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2292 }
2293 
2294 /*
2295  * Return an array of locked large pages, for empty slots allocate
2296  * private zero-filled anon pages.
2297  */
2298 static int
2299 spt_anon_getpages(
2300 	struct seg *sptseg,
2301 	caddr_t sptaddr,
2302 	size_t len,
2303 	page_t *ppa[])
2304 {
2305 	struct  spt_data *sptd = sptseg->s_data;
2306 	struct  anon_map *amp = sptd->spt_amp;
2307 	enum 	seg_rw rw = sptd->spt_prot;
2308 	uint_t	szc = sptseg->s_szc;
2309 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2310 	pgcnt_t	lp_npgs;
2311 	caddr_t	lp_addr, e_sptaddr;
2312 	uint_t	vpprot, ppa_szc = 0;
2313 	struct  vpage *vpage = NULL;
2314 	ulong_t	j, ppa_idx;
2315 	int	err, ierr = 0;
2316 	pgcnt_t	an_idx;
2317 	anon_sync_obj_t cookie;
2318 
2319 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2320 	ASSERT(len != 0);
2321 
2322 	pg_sz = share_sz;
2323 	lp_npgs = btop(pg_sz);
2324 	lp_addr = sptaddr;
2325 	e_sptaddr = sptaddr + len;
2326 	an_idx = seg_page(sptseg, sptaddr);
2327 	ppa_idx = 0;
2328 
2329 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2330 	/*CONSTCOND*/
2331 	while (1) {
2332 		for (; lp_addr < e_sptaddr;
2333 			an_idx += lp_npgs, lp_addr += pg_sz,
2334 			ppa_idx += lp_npgs) {
2335 
2336 			anon_array_enter(amp, an_idx, &cookie);
2337 			ppa_szc = (uint_t)-1;
2338 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2339 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2340 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, 0, kcred);
2341 			anon_array_exit(&cookie);
2342 
2343 			if (ierr != 0) {
2344 				if (ierr > 0) {
2345 					err = FC_MAKE_ERR(ierr);
2346 					goto lpgs_err;
2347 				}
2348 				break;
2349 			}
2350 		}
2351 		if (lp_addr == e_sptaddr) {
2352 			break;
2353 		}
2354 		ASSERT(lp_addr < e_sptaddr);
2355 
2356 		/*
2357 		 * ierr == -1 means we failed to allocate a large page.
2358 		 * so do a size down operation.
2359 		 *
2360 		 * ierr == -2 means some other process that privately shares
2361 		 * pages with this process has allocated a larger page and we
2362 		 * need to retry with larger pages. So do a size up
2363 		 * operation. This relies on the fact that large pages are
2364 		 * never partially shared i.e. if we share any constituent
2365 		 * page of a large page with another process we must share the
2366 		 * entire large page. Note this cannot happen for SOFTLOCK
2367 		 * case, unless current address (lpaddr) is at the beginning
2368 		 * of the next page size boundary because the other process
2369 		 * couldn't have relocated locked pages.
2370 		 */
2371 		ASSERT(ierr == -1 || ierr == -2);
2372 		if (segvn_anypgsz) {
2373 			ASSERT(ierr == -2 || szc != 0);
2374 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2375 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2376 		} else {
2377 			/*
2378 			 * For faults and segvn_anypgsz == 0
2379 			 * we need to be careful not to loop forever
2380 			 * if existing page is found with szc other
2381 			 * than 0 or seg->s_szc. This could be due
2382 			 * to page relocations on behalf of DR or
2383 			 * more likely large page creation. For this
2384 			 * case simply re-size to existing page's szc
2385 			 * if returned by anon_map_getpages().
2386 			 */
2387 			if (ppa_szc == (uint_t)-1) {
2388 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2389 			} else {
2390 				ASSERT(ppa_szc <= sptseg->s_szc);
2391 				ASSERT(ierr == -2 || ppa_szc < szc);
2392 				ASSERT(ierr == -1 || ppa_szc > szc);
2393 				szc = ppa_szc;
2394 			}
2395 		}
2396 		pg_sz = page_get_pagesize(szc);
2397 		lp_npgs = btop(pg_sz);
2398 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2399 	}
2400 	ANON_LOCK_EXIT(&amp->a_rwlock);
2401 	return (0);
2402 
2403 lpgs_err:
2404 	ANON_LOCK_EXIT(&amp->a_rwlock);
2405 	for (j = 0; j < ppa_idx; j++)
2406 		page_unlock(ppa[j]);
2407 	return (err);
2408 }
2409 
2410 /*
2411  * count the number of bytes in a set of spt pages that are currently not
2412  * locked
2413  */
2414 static rctl_qty_t
2415 spt_unlockedbytes(pgcnt_t npages, page_t **ppa)
2416 {
2417 	ulong_t	i;
2418 	rctl_qty_t unlocked = 0;
2419 
2420 	for (i = 0; i < npages; i++) {
2421 		if (ppa[i]->p_lckcnt == 0)
2422 			unlocked += PAGESIZE;
2423 	}
2424 	return (unlocked);
2425 }
2426 
2427 int
2428 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2429     page_t **ppa, ulong_t *lockmap, size_t pos,
2430     rctl_qty_t *locked)
2431 {
2432 	struct shm_data *shmd = seg->s_data;
2433 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2434 	ulong_t	i;
2435 	int	kernel;
2436 
2437 	/* return the number of bytes actually locked */
2438 	*locked = 0;
2439 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2440 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2441 			if (sptd->spt_ppa_lckcnt[anon_index] <
2442 			    (ushort_t)DISM_LOCK_MAX) {
2443 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2444 				    (ushort_t)DISM_LOCK_MAX) {
2445 					cmn_err(CE_WARN,
2446 					    "DISM page lock limit "
2447 					    "reached on DISM offset 0x%lx\n",
2448 					    anon_index << PAGESHIFT);
2449 				}
2450 				kernel = (sptd->spt_ppa &&
2451 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2452 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2453 					sptd->spt_ppa_lckcnt[anon_index]--;
2454 					return (EAGAIN);
2455 				}
2456 				/* if this is a newly locked page, count it */
2457 				if (ppa[i]->p_lckcnt == 1) {
2458 					*locked += PAGESIZE;
2459 				}
2460 				shmd->shm_lckpgs++;
2461 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2462 				if (lockmap != NULL)
2463 					BT_SET(lockmap, pos);
2464 			}
2465 		}
2466 	}
2467 	return (0);
2468 }
2469 
2470 /*ARGSUSED*/
2471 static int
2472 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2473     int attr, int op, ulong_t *lockmap, size_t pos)
2474 {
2475 	struct shm_data *shmd = seg->s_data;
2476 	struct seg	*sptseg = shmd->shm_sptseg;
2477 	struct spt_data *sptd = sptseg->s_data;
2478 	struct kshmid	*sp = sptd->spt_amp->a_sp;
2479 	pgcnt_t		npages, a_npages;
2480 	page_t		**ppa;
2481 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2482 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2483 	size_t		a_len;			/* aligned len */
2484 	size_t		share_sz;
2485 	ulong_t		i;
2486 	int		sts = 0;
2487 	rctl_qty_t	unlocked = 0;
2488 	rctl_qty_t	locked = 0;
2489 	struct proc	*p = curproc;
2490 	kproject_t	*proj;
2491 
2492 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2493 	ASSERT(sp != NULL);
2494 
2495 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2496 		return (0);
2497 	}
2498 
2499 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2500 	an_idx = seg_page(seg, addr);
2501 	npages = btopr(len);
2502 
2503 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2504 		return (ENOMEM);
2505 	}
2506 
2507 	/*
2508 	 * A shm's project never changes, so no lock needed.
2509 	 * The shm has a hold on the project, so it will not go away.
2510 	 * Since we have a mapping to shm within this zone, we know
2511 	 * that the zone will not go away.
2512 	 */
2513 	proj = sp->shm_perm.ipc_proj;
2514 
2515 	if (op == MC_LOCK) {
2516 
2517 		/*
2518 		 * Need to align addr and size request if they are not
2519 		 * aligned so we can always allocate large page(s) however
2520 		 * we only lock what was requested in initial request.
2521 		 */
2522 		share_sz = page_get_pagesize(sptseg->s_szc);
2523 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2524 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2525 				share_sz);
2526 		a_npages = btop(a_len);
2527 		a_an_idx = seg_page(seg, a_addr);
2528 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2529 		ppa_idx = an_idx - a_an_idx;
2530 
2531 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2532 			KM_NOSLEEP)) == NULL) {
2533 			return (ENOMEM);
2534 		}
2535 
2536 		/*
2537 		 * Don't cache any new pages for IO and
2538 		 * flush any cached pages.
2539 		 */
2540 		mutex_enter(&sptd->spt_lock);
2541 		if (sptd->spt_ppa != NULL)
2542 			sptd->spt_flags |= DISM_PPA_CHANGED;
2543 
2544 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2545 		if (sts != 0) {
2546 			mutex_exit(&sptd->spt_lock);
2547 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2548 			return (sts);
2549 		}
2550 
2551 		mutex_enter(&sp->shm_mlock);
2552 		/* enforce locked memory rctl */
2553 		unlocked = spt_unlockedbytes(npages, &ppa[ppa_idx]);
2554 
2555 		mutex_enter(&p->p_lock);
2556 		if (rctl_incr_locked_mem(p, proj, unlocked, 0)) {
2557 			mutex_exit(&p->p_lock);
2558 			sts = EAGAIN;
2559 		} else {
2560 			mutex_exit(&p->p_lock);
2561 			sts = spt_lockpages(seg, an_idx, npages,
2562 			    &ppa[ppa_idx], lockmap, pos, &locked);
2563 
2564 			/*
2565 			 * correct locked count if not all pages could be
2566 			 * locked
2567 			 */
2568 			if ((unlocked - locked) > 0) {
2569 				rctl_decr_locked_mem(NULL, proj,
2570 				    (unlocked - locked), 0);
2571 			}
2572 		}
2573 		/*
2574 		 * unlock pages
2575 		 */
2576 		for (i = 0; i < a_npages; i++)
2577 			page_unlock(ppa[i]);
2578 		if (sptd->spt_ppa != NULL)
2579 			sptd->spt_flags |= DISM_PPA_CHANGED;
2580 		mutex_exit(&sp->shm_mlock);
2581 		mutex_exit(&sptd->spt_lock);
2582 
2583 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2584 
2585 	} else if (op == MC_UNLOCK) { /* unlock */
2586 		struct anon_map *amp;
2587 		struct anon 	*ap;
2588 		struct vnode 	*vp;
2589 		u_offset_t 	off;
2590 		struct page	*pp;
2591 		int		kernel;
2592 		anon_sync_obj_t cookie;
2593 		rctl_qty_t	unlocked = 0;
2594 
2595 		amp = sptd->spt_amp;
2596 		mutex_enter(&sptd->spt_lock);
2597 		if (shmd->shm_lckpgs == 0) {
2598 			mutex_exit(&sptd->spt_lock);
2599 			return (0);
2600 		}
2601 		/*
2602 		 * Don't cache new IO pages.
2603 		 */
2604 		if (sptd->spt_ppa != NULL)
2605 			sptd->spt_flags |= DISM_PPA_CHANGED;
2606 
2607 		mutex_enter(&sp->shm_mlock);
2608 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2609 		for (i = 0; i < npages; i++, an_idx++) {
2610 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2611 				anon_array_enter(amp, an_idx, &cookie);
2612 				ap = anon_get_ptr(amp->ahp, an_idx);
2613 				ASSERT(ap);
2614 
2615 				swap_xlate(ap, &vp, &off);
2616 				anon_array_exit(&cookie);
2617 				pp = page_lookup(vp, off, SE_SHARED);
2618 				ASSERT(pp);
2619 				/*
2620 				 * the availrmem is decremented only for
2621 				 * pages which are not in seg pcache,
2622 				 * for pages in seg pcache availrmem was
2623 				 * decremented in _dismpagelock() (if
2624 				 * they were not locked here)
2625 				 */
2626 				kernel = (sptd->spt_ppa &&
2627 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2628 				ASSERT(pp->p_lckcnt > 0);
2629 				page_pp_unlock(pp, 0, kernel);
2630 				if (pp->p_lckcnt == 0)
2631 					unlocked += PAGESIZE;
2632 				page_unlock(pp);
2633 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2634 				sptd->spt_ppa_lckcnt[an_idx]--;
2635 				shmd->shm_lckpgs--;
2636 			}
2637 		}
2638 		ANON_LOCK_EXIT(&amp->a_rwlock);
2639 		if (sptd->spt_ppa != NULL)
2640 			sptd->spt_flags |= DISM_PPA_CHANGED;
2641 		mutex_exit(&sptd->spt_lock);
2642 
2643 		rctl_decr_locked_mem(NULL, proj, unlocked, 0);
2644 		mutex_exit(&sp->shm_mlock);
2645 	}
2646 	return (sts);
2647 }
2648 
2649 /*ARGSUSED*/
2650 int
2651 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2652 {
2653 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2654 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2655 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2656 
2657 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2658 
2659 	/*
2660 	 * ISM segment is always rw.
2661 	 */
2662 	while (--pgno >= 0)
2663 		*protv++ = sptd->spt_prot;
2664 	return (0);
2665 }
2666 
2667 /*ARGSUSED*/
2668 u_offset_t
2669 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2670 {
2671 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2672 
2673 	/* Offset does not matter in ISM memory */
2674 
2675 	return ((u_offset_t)0);
2676 }
2677 
2678 /* ARGSUSED */
2679 int
2680 segspt_shmgettype(struct seg *seg, caddr_t addr)
2681 {
2682 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2683 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2684 
2685 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2686 
2687 	/*
2688 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2689 	 * reserved for DISM
2690 	 */
2691 	return (MAP_SHARED |
2692 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2693 }
2694 
2695 /*ARGSUSED*/
2696 int
2697 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2698 {
2699 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2700 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2701 
2702 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2703 
2704 	*vpp = sptd->spt_vp;
2705 	return (0);
2706 }
2707 
2708 /*ARGSUSED*/
2709 static int
2710 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2711 {
2712 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2713 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2714 	struct anon_map	*amp;
2715 	pgcnt_t		pg_idx;
2716 
2717 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2718 
2719 	if (behav == MADV_FREE) {
2720 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2721 			return (0);
2722 
2723 		amp = sptd->spt_amp;
2724 		pg_idx = seg_page(seg, addr);
2725 
2726 		mutex_enter(&sptd->spt_lock);
2727 		if (sptd->spt_ppa != NULL)
2728 			sptd->spt_flags |= DISM_PPA_CHANGED;
2729 		mutex_exit(&sptd->spt_lock);
2730 
2731 		/*
2732 		 * Purge all DISM cached pages
2733 		 */
2734 		seg_ppurge_seg(segspt_reclaim);
2735 
2736 		mutex_enter(&sptd->spt_lock);
2737 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2738 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2739 		ANON_LOCK_EXIT(&amp->a_rwlock);
2740 		mutex_exit(&sptd->spt_lock);
2741 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2742 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2743 		int			already_set;
2744 		ulong_t			anon_index;
2745 		lgrp_mem_policy_t	policy;
2746 		caddr_t			shm_addr;
2747 		size_t			share_size;
2748 		size_t			size;
2749 		struct seg		*sptseg = shmd->shm_sptseg;
2750 		caddr_t			sptseg_addr;
2751 
2752 		/*
2753 		 * Align address and length to page size of underlying segment
2754 		 */
2755 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2756 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2757 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2758 		    share_size);
2759 
2760 		amp = shmd->shm_amp;
2761 		anon_index = seg_page(seg, shm_addr);
2762 
2763 		/*
2764 		 * And now we may have to adjust size downward if we have
2765 		 * exceeded the realsize of the segment or initial anon
2766 		 * allocations.
2767 		 */
2768 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2769 		if ((sptseg_addr + size) >
2770 		    (sptseg->s_base + sptd->spt_realsize))
2771 			size = (sptseg->s_base + sptd->spt_realsize) -
2772 			    sptseg_addr;
2773 
2774 		/*
2775 		 * Set memory allocation policy for this segment
2776 		 */
2777 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2778 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2779 		    NULL, 0, len);
2780 
2781 		/*
2782 		 * If random memory allocation policy set already,
2783 		 * don't bother reapplying it.
2784 		 */
2785 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2786 			return (0);
2787 
2788 		/*
2789 		 * Mark any existing pages in the given range for
2790 		 * migration, flushing the I/O page cache, and using
2791 		 * underlying segment to calculate anon index and get
2792 		 * anonmap and vnode pointer from
2793 		 */
2794 		if (shmd->shm_softlockcnt > 0)
2795 			segspt_purge(seg);
2796 
2797 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2798 	}
2799 
2800 	return (0);
2801 }
2802 
2803 /*ARGSUSED*/
2804 void
2805 segspt_shmdump(struct seg *seg)
2806 {
2807 	/* no-op for ISM segment */
2808 }
2809 
2810 /*ARGSUSED*/
2811 static faultcode_t
2812 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2813 {
2814 	return (ENOTSUP);
2815 }
2816 
2817 /*
2818  * get a memory ID for an addr in a given segment
2819  */
2820 static int
2821 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2822 {
2823 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2824 	struct anon 	*ap;
2825 	size_t		anon_index;
2826 	struct anon_map	*amp = shmd->shm_amp;
2827 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2828 	struct seg	*sptseg = shmd->shm_sptseg;
2829 	anon_sync_obj_t	cookie;
2830 
2831 	anon_index = seg_page(seg, addr);
2832 
2833 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2834 		return (EFAULT);
2835 	}
2836 
2837 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2838 	anon_array_enter(amp, anon_index, &cookie);
2839 	ap = anon_get_ptr(amp->ahp, anon_index);
2840 	if (ap == NULL) {
2841 		struct page *pp;
2842 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2843 
2844 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2845 		if (pp == NULL) {
2846 			anon_array_exit(&cookie);
2847 			ANON_LOCK_EXIT(&amp->a_rwlock);
2848 			return (ENOMEM);
2849 		}
2850 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2851 		page_unlock(pp);
2852 	}
2853 	anon_array_exit(&cookie);
2854 	ANON_LOCK_EXIT(&amp->a_rwlock);
2855 	memidp->val[0] = (uintptr_t)ap;
2856 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2857 	return (0);
2858 }
2859 
2860 /*
2861  * Get memory allocation policy info for specified address in given segment
2862  */
2863 static lgrp_mem_policy_info_t *
2864 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2865 {
2866 	struct anon_map		*amp;
2867 	ulong_t			anon_index;
2868 	lgrp_mem_policy_info_t	*policy_info;
2869 	struct shm_data		*shm_data;
2870 
2871 	ASSERT(seg != NULL);
2872 
2873 	/*
2874 	 * Get anon_map from segshm
2875 	 *
2876 	 * Assume that no lock needs to be held on anon_map, since
2877 	 * it should be protected by its reference count which must be
2878 	 * nonzero for an existing segment
2879 	 * Need to grab readers lock on policy tree though
2880 	 */
2881 	shm_data = (struct shm_data *)seg->s_data;
2882 	if (shm_data == NULL)
2883 		return (NULL);
2884 	amp = shm_data->shm_amp;
2885 	ASSERT(amp->refcnt != 0);
2886 
2887 	/*
2888 	 * Get policy info
2889 	 *
2890 	 * Assume starting anon index of 0
2891 	 */
2892 	anon_index = seg_page(seg, addr);
2893 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2894 
2895 	return (policy_info);
2896 }
2897 
2898 /*ARGSUSED*/
2899 static int
2900 segspt_shmcapable(struct seg *seg, segcapability_t capability)
2901 {
2902 	return (0);
2903 }
2904