xref: /titanic_44/usr/src/uts/common/vm/seg_spt.c (revision aad98a6d8e89f8f5a62a1793da807d4bc5e5b159)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/param.h>
30 #include <sys/user.h>
31 #include <sys/mman.h>
32 #include <sys/kmem.h>
33 #include <sys/sysmacros.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/tuneable.h>
37 #include <vm/hat.h>
38 #include <vm/seg.h>
39 #include <vm/as.h>
40 #include <vm/anon.h>
41 #include <vm/page.h>
42 #include <sys/buf.h>
43 #include <sys/swap.h>
44 #include <sys/atomic.h>
45 #include <vm/seg_spt.h>
46 #include <sys/debug.h>
47 #include <sys/vtrace.h>
48 #include <sys/shm.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 
52 #include <sys/tnf_probe.h>
53 
54 #define	SEGSPTADDR	(caddr_t)0x0
55 
56 /*
57  * # pages used for spt
58  */
59 static size_t	spt_used;
60 
61 /*
62  * segspt_minfree is the memory left for system after ISM
63  * locked its pages; it is set up to 5% of availrmem in
64  * sptcreate when ISM is created.  ISM should not use more
65  * than ~90% of availrmem; if it does, then the performance
66  * of the system may decrease. Machines with large memories may
67  * be able to use up more memory for ISM so we set the default
68  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
69  * If somebody wants even more memory for ISM (risking hanging
70  * the system) they can patch the segspt_minfree to smaller number.
71  */
72 pgcnt_t segspt_minfree = 0;
73 
74 static int segspt_create(struct seg *seg, caddr_t argsp);
75 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
76 static void segspt_free(struct seg *seg);
77 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
78 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
79 
80 static void
81 segspt_badop()
82 {
83 	panic("segspt_badop called");
84 	/*NOTREACHED*/
85 }
86 
87 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
88 
89 struct seg_ops segspt_ops = {
90 	SEGSPT_BADOP(int),		/* dup */
91 	segspt_unmap,
92 	segspt_free,
93 	SEGSPT_BADOP(int),		/* fault */
94 	SEGSPT_BADOP(faultcode_t),	/* faulta */
95 	SEGSPT_BADOP(int),		/* setprot */
96 	SEGSPT_BADOP(int),		/* checkprot */
97 	SEGSPT_BADOP(int),		/* kluster */
98 	SEGSPT_BADOP(size_t),		/* swapout */
99 	SEGSPT_BADOP(int),		/* sync */
100 	SEGSPT_BADOP(size_t),		/* incore */
101 	SEGSPT_BADOP(int),		/* lockop */
102 	SEGSPT_BADOP(int),		/* getprot */
103 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
104 	SEGSPT_BADOP(int),		/* gettype */
105 	SEGSPT_BADOP(int),		/* getvp */
106 	SEGSPT_BADOP(int),		/* advise */
107 	SEGSPT_BADOP(void),		/* dump */
108 	SEGSPT_BADOP(int),		/* pagelock */
109 	SEGSPT_BADOP(int),		/* setpgsz */
110 	SEGSPT_BADOP(int),		/* getmemid */
111 	segspt_getpolicy,		/* getpolicy */
112 	SEGSPT_BADOP(int),		/* capable */
113 };
114 
115 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
116 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
117 static void segspt_shmfree(struct seg *seg);
118 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
119 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
120 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
121 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
122 			register size_t len, register uint_t prot);
123 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
124 			uint_t prot);
125 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
126 static size_t	segspt_shmswapout(struct seg *seg);
127 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
128 			register char *vec);
129 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
130 			int attr, uint_t flags);
131 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
132 			int attr, int op, ulong_t *lockmap, size_t pos);
133 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
134 			uint_t *protv);
135 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
136 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
137 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
138 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
139 			uint_t behav);
140 static void segspt_shmdump(struct seg *seg);
141 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
142 			struct page ***, enum lock_type, enum seg_rw);
143 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
144 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
145 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
146 static int segspt_shmcapable(struct seg *, segcapability_t);
147 
148 struct seg_ops segspt_shmops = {
149 	segspt_shmdup,
150 	segspt_shmunmap,
151 	segspt_shmfree,
152 	segspt_shmfault,
153 	segspt_shmfaulta,
154 	segspt_shmsetprot,
155 	segspt_shmcheckprot,
156 	segspt_shmkluster,
157 	segspt_shmswapout,
158 	segspt_shmsync,
159 	segspt_shmincore,
160 	segspt_shmlockop,
161 	segspt_shmgetprot,
162 	segspt_shmgetoffset,
163 	segspt_shmgettype,
164 	segspt_shmgetvp,
165 	segspt_shmadvise,	/* advise */
166 	segspt_shmdump,
167 	segspt_shmpagelock,
168 	segspt_shmsetpgsz,
169 	segspt_shmgetmemid,
170 	segspt_shmgetpolicy,
171 	segspt_shmcapable,
172 };
173 
174 static void segspt_purge(struct seg *seg);
175 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
176 		enum seg_rw);
177 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
178 		page_t **ppa);
179 
180 
181 
182 /*ARGSUSED*/
183 int
184 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
185     uint_t prot, uint_t flags, uint_t share_szc)
186 {
187 	int 	err;
188 	struct  as	*newas;
189 	struct	segspt_crargs sptcargs;
190 
191 #ifdef DEBUG
192 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
193                 	tnf_ulong, size, size );
194 #endif
195 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
196 		segspt_minfree = availrmem/20;	/* for the system */
197 
198 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
199 		return (EINVAL);
200 
201 	/*
202 	 * get a new as for this shared memory segment
203 	 */
204 	newas = as_alloc();
205 	sptcargs.amp = amp;
206 	sptcargs.prot = prot;
207 	sptcargs.flags = flags;
208 	sptcargs.szc = share_szc;
209 
210 	/*
211 	 * create a shared page table (spt) segment
212 	 */
213 
214 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
215 		as_free(newas);
216 		return (err);
217 	}
218 	*sptseg = sptcargs.seg_spt;
219 	return (0);
220 }
221 
222 void
223 sptdestroy(struct as *as, struct anon_map *amp)
224 {
225 
226 #ifdef DEBUG
227 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
228 #endif
229 	(void) as_unmap(as, SEGSPTADDR, amp->size);
230 	as_free(as);
231 }
232 
233 /*
234  * called from seg_free().
235  * free (i.e., unlock, unmap, return to free list)
236  *  all the pages in the given seg.
237  */
238 void
239 segspt_free(struct seg	*seg)
240 {
241 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
242 
243 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
244 
245 	if (sptd != NULL) {
246 		if (sptd->spt_realsize)
247 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
248 
249 		if (sptd->spt_ppa_lckcnt)
250 			kmem_free(sptd->spt_ppa_lckcnt,
251 				sizeof (*sptd->spt_ppa_lckcnt)
252 				* btopr(sptd->spt_amp->size));
253 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
254 		mutex_destroy(&sptd->spt_lock);
255 		kmem_free(sptd, sizeof (*sptd));
256 	}
257 }
258 
259 /*ARGSUSED*/
260 static int
261 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
262 	uint_t flags)
263 {
264 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
265 
266 	return (0);
267 }
268 
269 /*ARGSUSED*/
270 static size_t
271 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
272 {
273 	caddr_t	eo_seg;
274 	pgcnt_t	npages;
275 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
276 	struct seg	*sptseg;
277 	struct spt_data *sptd;
278 
279 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
280 #ifdef lint
281 	seg = seg;
282 #endif
283 	sptseg = shmd->shm_sptseg;
284 	sptd = sptseg->s_data;
285 
286 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
287 		eo_seg = addr + len;
288 		while (addr < eo_seg) {
289 			/* page exists, and it's locked. */
290 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
291 				SEG_PAGE_ANON;
292 			addr += PAGESIZE;
293 		}
294 		return (len);
295 	} else {
296 		struct  anon_map *amp = shmd->shm_amp;
297 		struct  anon	*ap;
298 		page_t		*pp;
299 		pgcnt_t 	anon_index;
300 		struct vnode 	*vp;
301 		u_offset_t 	off;
302 		ulong_t		i;
303 		int		ret;
304 		anon_sync_obj_t	cookie;
305 
306 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
307 		anon_index = seg_page(seg, addr);
308 		npages = btopr(len);
309 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
310 			return (EINVAL);
311 		}
312 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
313 		for (i = 0; i < npages; i++, anon_index++) {
314 			ret = 0;
315 			anon_array_enter(amp, anon_index, &cookie);
316 			ap = anon_get_ptr(amp->ahp, anon_index);
317 			if (ap != NULL) {
318 				swap_xlate(ap, &vp, &off);
319 				anon_array_exit(&cookie);
320 				pp = page_lookup_nowait(vp, off, SE_SHARED);
321 				if (pp != NULL) {
322 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
323 					page_unlock(pp);
324 				}
325 			} else {
326 				anon_array_exit(&cookie);
327 			}
328 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
329 				ret |= SEG_PAGE_LOCKED;
330 			}
331 			*vec++ = (char)ret;
332 		}
333 		ANON_LOCK_EXIT(&amp->a_rwlock);
334 		return (len);
335 	}
336 }
337 
338 static int
339 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
340 {
341 	size_t share_size;
342 
343 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
344 
345 	/*
346 	 * seg.s_size may have been rounded up to the largest page size
347 	 * in shmat().
348 	 * XXX This should be cleanedup. sptdestroy should take a length
349 	 * argument which should be the same as sptcreate. Then
350 	 * this rounding would not be needed (or is done in shm.c)
351 	 * Only the check for full segment will be needed.
352 	 *
353 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
354 	 * to be useful at all.
355 	 */
356 	share_size = page_get_pagesize(seg->s_szc);
357 	ssize = P2ROUNDUP(ssize, share_size);
358 
359 	if (raddr == seg->s_base && ssize == seg->s_size) {
360 		seg_free(seg);
361 		return (0);
362 	} else
363 		return (EINVAL);
364 }
365 
366 int
367 segspt_create(struct seg *seg, caddr_t argsp)
368 {
369 	int		err;
370 	caddr_t		addr = seg->s_base;
371 	struct spt_data *sptd;
372 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
373 	struct anon_map *amp = sptcargs->amp;
374 	struct	cred	*cred = CRED();
375 	ulong_t		i, j, anon_index = 0;
376 	pgcnt_t		npages = btopr(amp->size);
377 	struct vnode	*vp;
378 	page_t		**ppa;
379 	uint_t		hat_flags;
380 
381 	/*
382 	 * We are holding the a_lock on the underlying dummy as,
383 	 * so we can make calls to the HAT layer.
384 	 */
385 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
386 
387 #ifdef DEBUG
388 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
389                                 tnf_opaque, addr, addr,
390 				tnf_ulong, len, seg->s_size);
391 #endif
392 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
393 		if (err = anon_swap_adjust(npages))
394 			return (err);
395 	}
396 	err = ENOMEM;
397 
398 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
399 		goto out1;
400 
401 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
402 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
403 		    KM_NOSLEEP)) == NULL)
404 			goto out2;
405 	}
406 
407 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
408 
409 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
410 		goto out3;
411 
412 	seg->s_ops = &segspt_ops;
413 	sptd->spt_vp = vp;
414 	sptd->spt_amp = amp;
415 	sptd->spt_prot = sptcargs->prot;
416 	sptd->spt_flags = sptcargs->flags;
417 	seg->s_data = (caddr_t)sptd;
418 	sptd->spt_ppa = NULL;
419 	sptd->spt_ppa_lckcnt = NULL;
420 	seg->s_szc = sptcargs->szc;
421 
422 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
423 	amp->a_szc = seg->s_szc;
424 	ANON_LOCK_EXIT(&amp->a_rwlock);
425 
426 	/*
427 	 * Set policy to affect initial allocation of pages in
428 	 * anon_map_createpages()
429 	 */
430 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
431 	    NULL, 0, ptob(npages));
432 
433 	if (sptcargs->flags & SHM_PAGEABLE) {
434 		size_t  share_sz;
435 		pgcnt_t new_npgs, more_pgs;
436 		struct anon_hdr *nahp;
437 
438 		share_sz = page_get_pagesize(seg->s_szc);
439 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
440 			/*
441 			 * We are rounding up the size of the anon array
442 			 * on 4 M boundary because we always create 4 M
443 			 * of page(s) when locking, faulting pages and we
444 			 * don't have to check for all corner cases e.g.
445 			 * if there is enough space to allocate 4 M
446 			 * page.
447 			 */
448 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
449 			more_pgs = new_npgs - npages;
450 
451 			if (anon_resv(ptob(more_pgs)) == 0) {
452 				err = ENOMEM;
453 				goto out4;
454 			}
455 			nahp = anon_create(new_npgs, ANON_SLEEP);
456 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
457 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
458 			    ANON_SLEEP);
459 			anon_release(amp->ahp, npages);
460 			amp->ahp = nahp;
461 			amp->swresv = amp->size = ptob(new_npgs);
462 			ANON_LOCK_EXIT(&amp->a_rwlock);
463 			npages = new_npgs;
464 		}
465 
466 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
467 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
468 		sptd->spt_pcachecnt = 0;
469 		sptd->spt_realsize = ptob(npages);
470 		sptcargs->seg_spt = seg;
471 		return (0);
472 	}
473 
474 	/*
475 	 * get array of pages for each anon slot in amp
476 	 */
477 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
478 	    seg, addr, S_CREATE, cred)) != 0)
479 		goto out4;
480 
481 	/*
482 	 * addr is initial address corresponding to the first page on ppa list
483 	 */
484 	for (i = 0; i < npages; i++) {
485 		/* attempt to lock all pages */
486 		if (!page_pp_lock(ppa[i], 0, 1)) {
487 			/*
488 			 * if unable to lock any page, unlock all
489 			 * of them and return error
490 			 */
491 			for (j = 0; j < i; j++)
492 				page_pp_unlock(ppa[j], 0, 1);
493 			for (i = 0; i < npages; i++) {
494 				page_unlock(ppa[i]);
495 			}
496 			err = ENOMEM;
497 			goto out4;
498 		}
499 	}
500 
501 	/*
502 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
503 	 * for the entire life of the segment. For example platforms
504 	 * that do not support Dynamic Reconfiguration.
505 	 */
506 	hat_flags = HAT_LOAD_SHARE;
507 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
508 		hat_flags |= HAT_LOAD_LOCK;
509 
510 	hat_memload_array(seg->s_as->a_hat, addr, ptob(npages),
511 	    ppa, sptd->spt_prot, hat_flags);
512 
513 	/*
514 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
515 	 * we will leave the pages locked SE_SHARED for the life
516 	 * of the ISM segment. This will prevent any calls to
517 	 * hat_pageunload() on this ISM segment for those platforms.
518 	 */
519 	if (!(hat_flags & HAT_LOAD_LOCK)) {
520 		/*
521 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
522 		 * we no longer need to hold the SE_SHARED lock on the pages,
523 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
524 		 * SE_SHARED lock on the pages as necessary.
525 		 */
526 		for (i = 0; i < npages; i++)
527 			page_unlock(ppa[i]);
528 	}
529 	sptd->spt_pcachecnt = 0;
530 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
531 	sptd->spt_realsize = ptob(npages);
532 	atomic_add_long(&spt_used, npages);
533 	sptcargs->seg_spt = seg;
534 	return (0);
535 
536 out4:
537 	seg->s_data = NULL;
538 	kmem_free(vp, sizeof (*vp));
539 out3:
540 	mutex_destroy(&sptd->spt_lock);
541 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
542 		kmem_free(ppa, (sizeof (*ppa) * npages));
543 out2:
544 	kmem_free(sptd, sizeof (*sptd));
545 out1:
546 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
547 		anon_swap_restore(npages);
548 	return (err);
549 }
550 
551 /*ARGSUSED*/
552 void
553 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
554 {
555 	struct page 	*pp;
556 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
557 	pgcnt_t		npages;
558 	ulong_t		anon_idx;
559 	struct anon_map *amp;
560 	struct anon 	*ap;
561 	struct vnode 	*vp;
562 	u_offset_t 	off;
563 	uint_t		hat_flags;
564 	int		root = 0;
565 	pgcnt_t		pgs, curnpgs = 0;
566 	page_t		*rootpp;
567 
568 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
569 
570 	len = P2ROUNDUP(len, PAGESIZE);
571 
572 	npages = btop(len);
573 
574 	hat_flags = HAT_UNLOAD_UNLOCK;
575 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
576 	    (sptd->spt_flags & SHM_PAGEABLE)) {
577 		hat_flags = HAT_UNLOAD;
578 	}
579 
580 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
581 
582 	amp = sptd->spt_amp;
583 	if (sptd->spt_flags & SHM_PAGEABLE)
584 		npages = btop(amp->size);
585 
586 	ASSERT(amp);
587 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
588 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
589 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
590 				panic("segspt_free_pages: null app");
591 				/*NOTREACHED*/
592 			}
593 		} else {
594 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
595 			    == NULL)
596 				continue;
597 		}
598 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
599 		swap_xlate(ap, &vp, &off);
600 
601 		/*
602 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
603 		 * the pages won't be having SE_SHARED lock at this
604 		 * point.
605 		 *
606 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
607 		 * the pages are still held SE_SHARED locked from the
608 		 * original segspt_create()
609 		 *
610 		 * Our goal is to get SE_EXCL lock on each page, remove
611 		 * permanent lock on it and invalidate the page.
612 		 */
613 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
614 			if (hat_flags == HAT_UNLOAD)
615 				pp = page_lookup(vp, off, SE_EXCL);
616 			else {
617 				if ((pp = page_find(vp, off)) == NULL) {
618 					panic("segspt_free_pages: "
619 					    "page not locked");
620 					/*NOTREACHED*/
621 				}
622 				if (!page_tryupgrade(pp)) {
623 					page_unlock(pp);
624 					pp = page_lookup(vp, off, SE_EXCL);
625 				}
626 			}
627 			if (pp == NULL) {
628 				panic("segspt_free_pages: "
629 				    "page not in the system");
630 				/*NOTREACHED*/
631 			}
632 			page_pp_unlock(pp, 0, 1);
633 		} else {
634 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
635 				continue;
636 			page_pp_unlock(pp, 0, 0);
637 		}
638 		/*
639 		 * It's logical to invalidate the pages here as in most cases
640 		 * these were created by segspt.
641 		 */
642 		if (pp->p_szc != 0) {
643 			/*
644 			 * For DISM swap is released in shm_rm_amp.
645 			 */
646 			if ((sptd->spt_flags & SHM_PAGEABLE) == 0 &&
647 			    ap->an_pvp != NULL) {
648 				panic("segspt_free_pages: pvp non NULL");
649 				/*NOTREACHED*/
650 			}
651 			if (root == 0) {
652 				ASSERT(curnpgs == 0);
653 				root = 1;
654 				rootpp = pp;
655 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
656 				ASSERT(pgs > 1);
657 				ASSERT(IS_P2ALIGNED(pgs, pgs));
658 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
659 				curnpgs--;
660 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
661 				ASSERT(curnpgs == 1);
662 				ASSERT(page_pptonum(pp) ==
663 				    page_pptonum(rootpp) + (pgs - 1));
664 				page_destroy_pages(rootpp);
665 				root = 0;
666 				curnpgs = 0;
667 			} else {
668 				ASSERT(curnpgs > 1);
669 				ASSERT(page_pptonum(pp) ==
670 				    page_pptonum(rootpp) + (pgs - curnpgs));
671 				curnpgs--;
672 			}
673 		} else {
674 			if (root != 0 || curnpgs != 0) {
675 				panic("segspt_free_pages: bad large page");
676 				/*NOTREACHED*/
677 			}
678 			/*LINTED: constant in conditional context */
679 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
680 		}
681 	}
682 
683 	if (root != 0 || curnpgs != 0) {
684 		panic("segspt_free_pages: bad large page");
685 		/*NOTREACHED*/
686 	}
687 
688 	/*
689 	 * mark that pages have been released
690 	 */
691 	sptd->spt_realsize = 0;
692 
693 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
694 		atomic_add_long(&spt_used, -npages);
695 		anon_swap_restore(npages);
696 	}
697 }
698 
699 /*
700  * Get memory allocation policy info for specified address in given segment
701  */
702 static lgrp_mem_policy_info_t *
703 segspt_getpolicy(struct seg *seg, caddr_t addr)
704 {
705 	struct anon_map		*amp;
706 	ulong_t			anon_index;
707 	lgrp_mem_policy_info_t	*policy_info;
708 	struct spt_data		*spt_data;
709 
710 	ASSERT(seg != NULL);
711 
712 	/*
713 	 * Get anon_map from segspt
714 	 *
715 	 * Assume that no lock needs to be held on anon_map, since
716 	 * it should be protected by its reference count which must be
717 	 * nonzero for an existing segment
718 	 * Need to grab readers lock on policy tree though
719 	 */
720 	spt_data = (struct spt_data *)seg->s_data;
721 	if (spt_data == NULL)
722 		return (NULL);
723 	amp = spt_data->spt_amp;
724 	ASSERT(amp->refcnt != 0);
725 
726 	/*
727 	 * Get policy info
728 	 *
729 	 * Assume starting anon index of 0
730 	 */
731 	anon_index = seg_page(seg, addr);
732 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
733 
734 	return (policy_info);
735 }
736 
737 /*
738  * DISM only.
739  * Return locked pages over a given range.
740  *
741  * We will cache all DISM locked pages and save the pplist for the
742  * entire segment in the ppa field of the underlying DISM segment structure.
743  * Later, during a call to segspt_reclaim() we will use this ppa array
744  * to page_unlock() all of the pages and then we will free this ppa list.
745  */
746 /*ARGSUSED*/
747 static int
748 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
749     struct page ***ppp, enum lock_type type, enum seg_rw rw)
750 {
751 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
752 	struct  seg	*sptseg = shmd->shm_sptseg;
753 	struct  spt_data *sptd = sptseg->s_data;
754 	pgcnt_t pg_idx, npages, tot_npages, npgs;
755 	struct  page **pplist, **pl, **ppa, *pp;
756 	struct  anon_map *amp;
757 	spgcnt_t	an_idx;
758 	int 	ret = ENOTSUP;
759 	uint_t	pl_built = 0;
760 	struct  anon *ap;
761 	struct  vnode *vp;
762 	u_offset_t off;
763 	pgcnt_t claim_availrmem = 0;
764 	uint_t	szc;
765 
766 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
767 
768 	/*
769 	 * We want to lock/unlock the entire ISM segment. Therefore,
770 	 * we will be using the underlying sptseg and it's base address
771 	 * and length for the caching arguments.
772 	 */
773 	ASSERT(sptseg);
774 	ASSERT(sptd);
775 
776 	pg_idx = seg_page(seg, addr);
777 	npages = btopr(len);
778 
779 	/*
780 	 * check if the request is larger than number of pages covered
781 	 * by amp
782 	 */
783 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
784 		*ppp = NULL;
785 		return (ENOTSUP);
786 	}
787 
788 	if (type == L_PAGEUNLOCK) {
789 		ASSERT(sptd->spt_ppa != NULL);
790 
791 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
792 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
793 
794 		/*
795 		 * If someone is blocked while unmapping, we purge
796 		 * segment page cache and thus reclaim pplist synchronously
797 		 * without waiting for seg_pasync_thread. This speeds up
798 		 * unmapping in cases where munmap(2) is called, while
799 		 * raw async i/o is still in progress or where a thread
800 		 * exits on data fault in a multithreaded application.
801 		 */
802 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
803 			segspt_purge(seg);
804 		}
805 		return (0);
806 	} else if (type == L_PAGERECLAIM) {
807 		ASSERT(sptd->spt_ppa != NULL);
808 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
809 		    sptd->spt_ppa, sptd->spt_prot);
810 		return (0);
811 	}
812 
813 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
814 		segspt_purge(seg);
815 		/*
816 		 * for DISM ppa needs to be rebuild since
817 		 * number of locked pages could be changed
818 		 */
819 		*ppp = NULL;
820 		return (ENOTSUP);
821 	}
822 
823 	/*
824 	 * First try to find pages in segment page cache, without
825 	 * holding the segment lock.
826 	 */
827 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
828 	    sptd->spt_prot);
829 	if (pplist != NULL) {
830 		ASSERT(sptd->spt_ppa != NULL);
831 		ASSERT(sptd->spt_ppa == pplist);
832 		ppa = sptd->spt_ppa;
833 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
834 			if (ppa[an_idx] == NULL) {
835 				seg_pinactive(seg, seg->s_base,
836 				    sptd->spt_amp->size, ppa,
837 				    sptd->spt_prot, segspt_reclaim);
838 				*ppp = NULL;
839 				return (ENOTSUP);
840 			}
841 			if ((szc = ppa[an_idx]->p_szc) != 0) {
842 				npgs = page_get_pagecnt(szc);
843 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
844 			} else {
845 				an_idx++;
846 			}
847 		}
848 		/*
849 		 * Since we cache the entire DISM segment, we want to
850 		 * set ppp to point to the first slot that corresponds
851 		 * to the requested addr, i.e. pg_idx.
852 		 */
853 		*ppp = &(sptd->spt_ppa[pg_idx]);
854 		return (0);
855 	}
856 
857 	/* The L_PAGELOCK case... */
858 	mutex_enter(&sptd->spt_lock);
859 	/*
860 	 * try to find pages in segment page cache with mutex
861 	 */
862 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
863 	    sptd->spt_prot);
864 	if (pplist != NULL) {
865 		ASSERT(sptd->spt_ppa != NULL);
866 		ASSERT(sptd->spt_ppa == pplist);
867 		ppa = sptd->spt_ppa;
868 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
869 			if (ppa[an_idx] == NULL) {
870 				mutex_exit(&sptd->spt_lock);
871 				seg_pinactive(seg, seg->s_base,
872 				    sptd->spt_amp->size, ppa,
873 				    sptd->spt_prot, segspt_reclaim);
874 				*ppp = NULL;
875 				return (ENOTSUP);
876 			}
877 			if ((szc = ppa[an_idx]->p_szc) != 0) {
878 				npgs = page_get_pagecnt(szc);
879 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
880 			} else {
881 				an_idx++;
882 			}
883 		}
884 		/*
885 		 * Since we cache the entire DISM segment, we want to
886 		 * set ppp to point to the first slot that corresponds
887 		 * to the requested addr, i.e. pg_idx.
888 		 */
889 		mutex_exit(&sptd->spt_lock);
890 		*ppp = &(sptd->spt_ppa[pg_idx]);
891 		return (0);
892 	}
893 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
894 	    SEGP_FAIL) {
895 		mutex_exit(&sptd->spt_lock);
896 		*ppp = NULL;
897 		return (ENOTSUP);
898 	}
899 
900 	/*
901 	 * No need to worry about protections because DISM pages are always rw.
902 	 */
903 	pl = pplist = NULL;
904 	amp = sptd->spt_amp;
905 
906 	/*
907 	 * Do we need to build the ppa array?
908 	 */
909 	if (sptd->spt_ppa == NULL) {
910 		pgcnt_t lpg_cnt = 0;
911 
912 		pl_built = 1;
913 		tot_npages = btopr(sptd->spt_amp->size);
914 
915 		ASSERT(sptd->spt_pcachecnt == 0);
916 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
917 		pl = pplist;
918 
919 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
920 		for (an_idx = 0; an_idx < tot_npages; ) {
921 			ap = anon_get_ptr(amp->ahp, an_idx);
922 			/*
923 			 * Cache only mlocked pages. For large pages
924 			 * if one (constituent) page is mlocked
925 			 * all pages for that large page
926 			 * are cached also. This is for quick
927 			 * lookups of ppa array;
928 			 */
929 			if ((ap != NULL) && (lpg_cnt != 0 ||
930 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
931 
932 				swap_xlate(ap, &vp, &off);
933 				pp = page_lookup(vp, off, SE_SHARED);
934 				ASSERT(pp != NULL);
935 				if (lpg_cnt == 0) {
936 					npgs = page_get_pagecnt(pp->p_szc);
937 					if (!IS_P2ALIGNED(an_idx, npgs)) {
938 						an_idx = P2ALIGN(an_idx, npgs);
939 						page_unlock(pp);
940 						continue;
941 					}
942 				}
943 				if (++lpg_cnt == npgs)
944 					lpg_cnt = 0;
945 
946 				/*
947 				 * availrmem is decremented only
948 				 * for unlocked pages
949 				 */
950 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
951 					claim_availrmem++;
952 				pplist[an_idx] = pp;
953 			}
954 			an_idx++;
955 		}
956 		ANON_LOCK_EXIT(&amp->a_rwlock);
957 
958 		mutex_enter(&freemem_lock);
959 		if (availrmem < tune.t_minarmem + claim_availrmem) {
960 			mutex_exit(&freemem_lock);
961 			ret = FC_MAKE_ERR(ENOMEM);
962 			claim_availrmem = 0;
963 			goto insert_fail;
964 		} else {
965 			availrmem -= claim_availrmem;
966 		}
967 		mutex_exit(&freemem_lock);
968 
969 		sptd->spt_ppa = pl;
970 	} else {
971 		/*
972 		 * We already have a valid ppa[].
973 		 */
974 		pl = sptd->spt_ppa;
975 	}
976 
977 	ASSERT(pl != NULL);
978 
979 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
980 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
981 	    segspt_reclaim);
982 	if (ret == SEGP_FAIL) {
983 		/*
984 		 * seg_pinsert failed. We return
985 		 * ENOTSUP, so that the as_pagelock() code will
986 		 * then try the slower F_SOFTLOCK path.
987 		 */
988 		if (pl_built) {
989 			/*
990 			 * No one else has referenced the ppa[].
991 			 * We created it and we need to destroy it.
992 			 */
993 			sptd->spt_ppa = NULL;
994 		}
995 		ret = ENOTSUP;
996 		goto insert_fail;
997 	}
998 
999 	/*
1000 	 * In either case, we increment softlockcnt on the 'real' segment.
1001 	 */
1002 	sptd->spt_pcachecnt++;
1003 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1004 
1005 	ppa = sptd->spt_ppa;
1006 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1007 		if (ppa[an_idx] == NULL) {
1008 			mutex_exit(&sptd->spt_lock);
1009 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1010 			    pl, sptd->spt_prot, segspt_reclaim);
1011 			*ppp = NULL;
1012 			return (ENOTSUP);
1013 		}
1014 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1015 			npgs = page_get_pagecnt(szc);
1016 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1017 		} else {
1018 			an_idx++;
1019 		}
1020 	}
1021 	/*
1022 	 * We can now drop the sptd->spt_lock since the ppa[]
1023 	 * exists and he have incremented pacachecnt.
1024 	 */
1025 	mutex_exit(&sptd->spt_lock);
1026 
1027 	/*
1028 	 * Since we cache the entire segment, we want to
1029 	 * set ppp to point to the first slot that corresponds
1030 	 * to the requested addr, i.e. pg_idx.
1031 	 */
1032 	*ppp = &(sptd->spt_ppa[pg_idx]);
1033 	return (ret);
1034 
1035 insert_fail:
1036 	/*
1037 	 * We will only reach this code if we tried and failed.
1038 	 *
1039 	 * And we can drop the lock on the dummy seg, once we've failed
1040 	 * to set up a new ppa[].
1041 	 */
1042 	mutex_exit(&sptd->spt_lock);
1043 
1044 	if (pl_built) {
1045 		mutex_enter(&freemem_lock);
1046 		availrmem += claim_availrmem;
1047 		mutex_exit(&freemem_lock);
1048 
1049 		/*
1050 		 * We created pl and we need to destroy it.
1051 		 */
1052 		pplist = pl;
1053 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1054 			if (pplist[an_idx] != NULL)
1055 				page_unlock(pplist[an_idx]);
1056 		}
1057 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1058 	}
1059 
1060 	if (shmd->shm_softlockcnt <= 0) {
1061 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1062 			mutex_enter(&seg->s_as->a_contents);
1063 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1064 				AS_CLRUNMAPWAIT(seg->s_as);
1065 				cv_broadcast(&seg->s_as->a_cv);
1066 			}
1067 			mutex_exit(&seg->s_as->a_contents);
1068 		}
1069 	}
1070 	*ppp = NULL;
1071 	return (ret);
1072 }
1073 
1074 
1075 
1076 /*
1077  * return locked pages over a given range.
1078  *
1079  * We will cache the entire ISM segment and save the pplist for the
1080  * entire segment in the ppa field of the underlying ISM segment structure.
1081  * Later, during a call to segspt_reclaim() we will use this ppa array
1082  * to page_unlock() all of the pages and then we will free this ppa list.
1083  */
1084 /*ARGSUSED*/
1085 static int
1086 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1087     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1088 {
1089 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1090 	struct seg	*sptseg = shmd->shm_sptseg;
1091 	struct spt_data *sptd = sptseg->s_data;
1092 	pgcnt_t np, page_index, npages;
1093 	caddr_t a, spt_base;
1094 	struct page **pplist, **pl, *pp;
1095 	struct anon_map *amp;
1096 	ulong_t anon_index;
1097 	int ret = ENOTSUP;
1098 	uint_t	pl_built = 0;
1099 	struct anon *ap;
1100 	struct vnode *vp;
1101 	u_offset_t off;
1102 
1103 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1104 
1105 	/*
1106 	 * We want to lock/unlock the entire ISM segment. Therefore,
1107 	 * we will be using the underlying sptseg and it's base address
1108 	 * and length for the caching arguments.
1109 	 */
1110 	ASSERT(sptseg);
1111 	ASSERT(sptd);
1112 
1113 	if (sptd->spt_flags & SHM_PAGEABLE) {
1114 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1115 	}
1116 
1117 	page_index = seg_page(seg, addr);
1118 	npages = btopr(len);
1119 
1120 	/*
1121 	 * check if the request is larger than number of pages covered
1122 	 * by amp
1123 	 */
1124 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1125 		*ppp = NULL;
1126 		return (ENOTSUP);
1127 	}
1128 
1129 	if (type == L_PAGEUNLOCK) {
1130 
1131 		ASSERT(sptd->spt_ppa != NULL);
1132 
1133 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1134 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1135 
1136 		/*
1137 		 * If someone is blocked while unmapping, we purge
1138 		 * segment page cache and thus reclaim pplist synchronously
1139 		 * without waiting for seg_pasync_thread. This speeds up
1140 		 * unmapping in cases where munmap(2) is called, while
1141 		 * raw async i/o is still in progress or where a thread
1142 		 * exits on data fault in a multithreaded application.
1143 		 */
1144 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1145 			segspt_purge(seg);
1146 		}
1147 		return (0);
1148 	} else if (type == L_PAGERECLAIM) {
1149 		ASSERT(sptd->spt_ppa != NULL);
1150 
1151 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1152 		    sptd->spt_ppa, sptd->spt_prot);
1153 		return (0);
1154 	}
1155 
1156 	/*
1157 	 * First try to find pages in segment page cache, without
1158 	 * holding the segment lock.
1159 	 */
1160 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1161 	    sptd->spt_prot);
1162 	if (pplist != NULL) {
1163 		ASSERT(sptd->spt_ppa == pplist);
1164 		ASSERT(sptd->spt_ppa[page_index]);
1165 		/*
1166 		 * Since we cache the entire ISM segment, we want to
1167 		 * set ppp to point to the first slot that corresponds
1168 		 * to the requested addr, i.e. page_index.
1169 		 */
1170 		*ppp = &(sptd->spt_ppa[page_index]);
1171 		return (0);
1172 	}
1173 
1174 	/* The L_PAGELOCK case... */
1175 	mutex_enter(&sptd->spt_lock);
1176 
1177 	/*
1178 	 * try to find pages in segment page cache
1179 	 */
1180 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1181 	    sptd->spt_prot);
1182 	if (pplist != NULL) {
1183 		ASSERT(sptd->spt_ppa == pplist);
1184 		/*
1185 		 * Since we cache the entire segment, we want to
1186 		 * set ppp to point to the first slot that corresponds
1187 		 * to the requested addr, i.e. page_index.
1188 		 */
1189 		mutex_exit(&sptd->spt_lock);
1190 		*ppp = &(sptd->spt_ppa[page_index]);
1191 		return (0);
1192 	}
1193 
1194 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1195 	    SEGP_FAIL) {
1196 		mutex_exit(&sptd->spt_lock);
1197 		*ppp = NULL;
1198 		return (ENOTSUP);
1199 	}
1200 
1201 	/*
1202 	 * No need to worry about protections because ISM pages
1203 	 * are always rw.
1204 	 */
1205 	pl = pplist = NULL;
1206 
1207 	/*
1208 	 * Do we need to build the ppa array?
1209 	 */
1210 	if (sptd->spt_ppa == NULL) {
1211 		ASSERT(sptd->spt_ppa == pplist);
1212 
1213 		spt_base = sptseg->s_base;
1214 		pl_built = 1;
1215 
1216 		/*
1217 		 * availrmem is decremented once during anon_swap_adjust()
1218 		 * and is incremented during the anon_unresv(), which is
1219 		 * called from shm_rm_amp() when the segment is destroyed.
1220 		 */
1221 		amp = sptd->spt_amp;
1222 		ASSERT(amp != NULL);
1223 
1224 		/* pcachecnt is protected by sptd->spt_lock */
1225 		ASSERT(sptd->spt_pcachecnt == 0);
1226 		pplist = kmem_zalloc(sizeof (page_t *)
1227 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1228 		pl = pplist;
1229 
1230 		anon_index = seg_page(sptseg, spt_base);
1231 
1232 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1233 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1234 		    a += PAGESIZE, anon_index++, pplist++) {
1235 			ap = anon_get_ptr(amp->ahp, anon_index);
1236 			ASSERT(ap != NULL);
1237 			swap_xlate(ap, &vp, &off);
1238 			pp = page_lookup(vp, off, SE_SHARED);
1239 			ASSERT(pp != NULL);
1240 			*pplist = pp;
1241 		}
1242 		ANON_LOCK_EXIT(&amp->a_rwlock);
1243 
1244 		if (a < (spt_base + sptd->spt_amp->size)) {
1245 			ret = ENOTSUP;
1246 			goto insert_fail;
1247 		}
1248 		sptd->spt_ppa = pl;
1249 	} else {
1250 		/*
1251 		 * We already have a valid ppa[].
1252 		 */
1253 		pl = sptd->spt_ppa;
1254 	}
1255 
1256 	ASSERT(pl != NULL);
1257 
1258 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1259 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1260 	if (ret == SEGP_FAIL) {
1261 		/*
1262 		 * seg_pinsert failed. We return
1263 		 * ENOTSUP, so that the as_pagelock() code will
1264 		 * then try the slower F_SOFTLOCK path.
1265 		 */
1266 		if (pl_built) {
1267 			/*
1268 			 * No one else has referenced the ppa[].
1269 			 * We created it and we need to destroy it.
1270 			 */
1271 			sptd->spt_ppa = NULL;
1272 		}
1273 		ret = ENOTSUP;
1274 		goto insert_fail;
1275 	}
1276 
1277 	/*
1278 	 * In either case, we increment softlockcnt on the 'real' segment.
1279 	 */
1280 	sptd->spt_pcachecnt++;
1281 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1282 
1283 	/*
1284 	 * We can now drop the sptd->spt_lock since the ppa[]
1285 	 * exists and he have incremented pacachecnt.
1286 	 */
1287 	mutex_exit(&sptd->spt_lock);
1288 
1289 	/*
1290 	 * Since we cache the entire segment, we want to
1291 	 * set ppp to point to the first slot that corresponds
1292 	 * to the requested addr, i.e. page_index.
1293 	 */
1294 	*ppp = &(sptd->spt_ppa[page_index]);
1295 	return (ret);
1296 
1297 insert_fail:
1298 	/*
1299 	 * We will only reach this code if we tried and failed.
1300 	 *
1301 	 * And we can drop the lock on the dummy seg, once we've failed
1302 	 * to set up a new ppa[].
1303 	 */
1304 	mutex_exit(&sptd->spt_lock);
1305 
1306 	if (pl_built) {
1307 		/*
1308 		 * We created pl and we need to destroy it.
1309 		 */
1310 		pplist = pl;
1311 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1312 		while (np) {
1313 			page_unlock(*pplist);
1314 			np--;
1315 			pplist++;
1316 		}
1317 		kmem_free(pl, sizeof (page_t *) *
1318 				btopr(sptd->spt_amp->size));
1319 	}
1320 	if (shmd->shm_softlockcnt <= 0) {
1321 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1322 			mutex_enter(&seg->s_as->a_contents);
1323 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1324 				AS_CLRUNMAPWAIT(seg->s_as);
1325 				cv_broadcast(&seg->s_as->a_cv);
1326 			}
1327 			mutex_exit(&seg->s_as->a_contents);
1328 		}
1329 	}
1330 	*ppp = NULL;
1331 	return (ret);
1332 }
1333 
1334 /*
1335  * purge any cached pages in the I/O page cache
1336  */
1337 static void
1338 segspt_purge(struct seg *seg)
1339 {
1340 	seg_ppurge(seg);
1341 }
1342 
1343 static int
1344 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1345 	enum seg_rw rw)
1346 {
1347 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1348 	struct	seg	*sptseg;
1349 	struct	spt_data *sptd;
1350 	pgcnt_t npages, i, free_availrmem = 0;
1351 	int	done = 0;
1352 
1353 #ifdef lint
1354 	addr = addr;
1355 #endif
1356 	sptseg = shmd->shm_sptseg;
1357 	sptd = sptseg->s_data;
1358 	npages = (len >> PAGESHIFT);
1359 	ASSERT(npages);
1360 	ASSERT(sptd->spt_pcachecnt != 0);
1361 	ASSERT(sptd->spt_ppa == pplist);
1362 	ASSERT(npages == btopr(sptd->spt_amp->size));
1363 
1364 	/*
1365 	 * Acquire the lock on the dummy seg and destroy the
1366 	 * ppa array IF this is the last pcachecnt.
1367 	 */
1368 	mutex_enter(&sptd->spt_lock);
1369 	if (--sptd->spt_pcachecnt == 0) {
1370 		for (i = 0; i < npages; i++) {
1371 			if (pplist[i] == NULL) {
1372 				continue;
1373 			}
1374 			if (rw == S_WRITE) {
1375 				hat_setrefmod(pplist[i]);
1376 			} else {
1377 				hat_setref(pplist[i]);
1378 			}
1379 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1380 				(sptd->spt_ppa_lckcnt[i] == 0))
1381 				free_availrmem++;
1382 			page_unlock(pplist[i]);
1383 		}
1384 		if (sptd->spt_flags & SHM_PAGEABLE) {
1385 			mutex_enter(&freemem_lock);
1386 			availrmem += free_availrmem;
1387 			mutex_exit(&freemem_lock);
1388 		}
1389 		/*
1390 		 * Since we want to cach/uncache the entire ISM segment,
1391 		 * we will track the pplist in a segspt specific field
1392 		 * ppa, that is initialized at the time we add an entry to
1393 		 * the cache.
1394 		 */
1395 		ASSERT(sptd->spt_pcachecnt == 0);
1396 		kmem_free(pplist, sizeof (page_t *) * npages);
1397 		sptd->spt_ppa = NULL;
1398 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1399 		done = 1;
1400 	}
1401 	mutex_exit(&sptd->spt_lock);
1402 	/*
1403 	 * Now decrement softlockcnt.
1404 	 */
1405 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1406 
1407 	if (shmd->shm_softlockcnt <= 0) {
1408 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1409 			mutex_enter(&seg->s_as->a_contents);
1410 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1411 				AS_CLRUNMAPWAIT(seg->s_as);
1412 				cv_broadcast(&seg->s_as->a_cv);
1413 			}
1414 			mutex_exit(&seg->s_as->a_contents);
1415 		}
1416 	}
1417 	return (done);
1418 }
1419 
1420 /*
1421  * Do a F_SOFTUNLOCK call over the range requested.
1422  * The range must have already been F_SOFTLOCK'ed.
1423  *
1424  * The calls to acquire and release the anon map lock mutex were
1425  * removed in order to avoid a deadly embrace during a DR
1426  * memory delete operation.  (Eg. DR blocks while waiting for a
1427  * exclusive lock on a page that is being used for kaio; the
1428  * thread that will complete the kaio and call segspt_softunlock
1429  * blocks on the anon map lock; another thread holding the anon
1430  * map lock blocks on another page lock via the segspt_shmfault
1431  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1432  *
1433  * The appropriateness of the removal is based upon the following:
1434  * 1. If we are holding a segment's reader lock and the page is held
1435  * shared, then the corresponding element in anonmap which points to
1436  * anon struct cannot change and there is no need to acquire the
1437  * anonymous map lock.
1438  * 2. Threads in segspt_softunlock have a reader lock on the segment
1439  * and already have the shared page lock, so we are guaranteed that
1440  * the anon map slot cannot change and therefore can call anon_get_ptr()
1441  * without grabbing the anonymous map lock.
1442  * 3. Threads that softlock a shared page break copy-on-write, even if
1443  * its a read.  Thus cow faults can be ignored with respect to soft
1444  * unlocking, since the breaking of cow means that the anon slot(s) will
1445  * not be shared.
1446  */
1447 static void
1448 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1449 	size_t len, enum seg_rw rw)
1450 {
1451 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1452 	struct seg	*sptseg;
1453 	struct spt_data *sptd;
1454 	page_t *pp;
1455 	caddr_t adr;
1456 	struct vnode *vp;
1457 	u_offset_t offset;
1458 	ulong_t anon_index;
1459 	struct anon_map *amp;		/* XXX - for locknest */
1460 	struct anon *ap = NULL;
1461 	pgcnt_t npages;
1462 
1463 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1464 
1465 	sptseg = shmd->shm_sptseg;
1466 	sptd = sptseg->s_data;
1467 
1468 	/*
1469 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1470 	 * and therefore their pages are SE_SHARED locked
1471 	 * for the entire life of the segment.
1472 	 */
1473 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1474 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1475 		goto softlock_decrement;
1476 	}
1477 
1478 	/*
1479 	 * Any thread is free to do a page_find and
1480 	 * page_unlock() on the pages within this seg.
1481 	 *
1482 	 * We are already holding the as->a_lock on the user's
1483 	 * real segment, but we need to hold the a_lock on the
1484 	 * underlying dummy as. This is mostly to satisfy the
1485 	 * underlying HAT layer.
1486 	 */
1487 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1488 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1489 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1490 
1491 	amp = sptd->spt_amp;
1492 	ASSERT(amp != NULL);
1493 	anon_index = seg_page(sptseg, sptseg_addr);
1494 
1495 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1496 		ap = anon_get_ptr(amp->ahp, anon_index++);
1497 		ASSERT(ap != NULL);
1498 		swap_xlate(ap, &vp, &offset);
1499 
1500 		/*
1501 		 * Use page_find() instead of page_lookup() to
1502 		 * find the page since we know that it has a
1503 		 * "shared" lock.
1504 		 */
1505 		pp = page_find(vp, offset);
1506 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1507 		if (pp == NULL) {
1508 			panic("segspt_softunlock: "
1509 			    "addr %p, ap %p, vp %p, off %llx",
1510 			    (void *)adr, (void *)ap, (void *)vp, offset);
1511 			/*NOTREACHED*/
1512 		}
1513 
1514 		if (rw == S_WRITE) {
1515 			hat_setrefmod(pp);
1516 		} else if (rw != S_OTHER) {
1517 			hat_setref(pp);
1518 		}
1519 		page_unlock(pp);
1520 	}
1521 
1522 softlock_decrement:
1523 	npages = btopr(len);
1524 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1525 	if (shmd->shm_softlockcnt == 0) {
1526 		/*
1527 		 * All SOFTLOCKS are gone. Wakeup any waiting
1528 		 * unmappers so they can try again to unmap.
1529 		 * Check for waiters first without the mutex
1530 		 * held so we don't always grab the mutex on
1531 		 * softunlocks.
1532 		 */
1533 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1534 			mutex_enter(&seg->s_as->a_contents);
1535 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1536 				AS_CLRUNMAPWAIT(seg->s_as);
1537 				cv_broadcast(&seg->s_as->a_cv);
1538 			}
1539 			mutex_exit(&seg->s_as->a_contents);
1540 		}
1541 	}
1542 }
1543 
1544 int
1545 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1546 {
1547 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1548 	struct shm_data *shmd;
1549 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1550 	struct spt_data *sptd;
1551 	int error = 0;
1552 
1553 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1554 
1555 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1556 	if (shmd == NULL)
1557 		return (ENOMEM);
1558 
1559 	shmd->shm_sptas = shmd_arg->shm_sptas;
1560 	shmd->shm_amp = shm_amp;
1561 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1562 
1563 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1564 	    NULL, 0, seg->s_size);
1565 
1566 	seg->s_data = (void *)shmd;
1567 	seg->s_ops = &segspt_shmops;
1568 	seg->s_szc = shmd->shm_sptseg->s_szc;
1569 	sptd = shmd->shm_sptseg->s_data;
1570 
1571 	if (sptd->spt_flags & SHM_PAGEABLE) {
1572 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1573 		    KM_NOSLEEP)) == NULL) {
1574 			seg->s_data = (void *)NULL;
1575 			kmem_free(shmd, (sizeof (*shmd)));
1576 			return (ENOMEM);
1577 		}
1578 		shmd->shm_lckpgs = 0;
1579 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1580 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1581 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1582 			    seg->s_size, seg->s_szc)) != 0) {
1583 				kmem_free(shmd->shm_vpage,
1584 					btopr(shm_amp->size));
1585 			}
1586 		}
1587 	} else {
1588 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1589 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1590 				seg->s_size, seg->s_szc);
1591 	}
1592 	if (error) {
1593 		seg->s_szc = 0;
1594 		seg->s_data = (void *)NULL;
1595 		kmem_free(shmd, (sizeof (*shmd)));
1596 	} else {
1597 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1598 		shm_amp->refcnt++;
1599 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1600 	}
1601 	return (error);
1602 }
1603 
1604 int
1605 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1606 {
1607 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1608 	int reclaim = 1;
1609 
1610 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1611 retry:
1612 	if (shmd->shm_softlockcnt > 0) {
1613 		if (reclaim == 1) {
1614 			segspt_purge(seg);
1615 			reclaim = 0;
1616 			goto retry;
1617 		}
1618 		return (EAGAIN);
1619 	}
1620 
1621 	if (ssize != seg->s_size) {
1622 #ifdef DEBUG
1623 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1624 		    ssize, seg->s_size);
1625 #endif
1626 		return (EINVAL);
1627 	}
1628 
1629 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1630 	    NULL, 0);
1631 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1632 
1633 	seg_free(seg);
1634 
1635 	return (0);
1636 }
1637 
1638 void
1639 segspt_shmfree(struct seg *seg)
1640 {
1641 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1642 	struct anon_map *shm_amp = shmd->shm_amp;
1643 
1644 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1645 
1646 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1647 		MC_UNLOCK, NULL, 0);
1648 
1649 	/*
1650 	 * Need to increment refcnt when attaching
1651 	 * and decrement when detaching because of dup().
1652 	 */
1653 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1654 	shm_amp->refcnt--;
1655 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1656 
1657 	if (shmd->shm_vpage) {	/* only for DISM */
1658 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1659 		shmd->shm_vpage = NULL;
1660 	}
1661 	kmem_free(shmd, sizeof (*shmd));
1662 }
1663 
1664 /*ARGSUSED*/
1665 int
1666 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1667 {
1668 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1669 
1670 	/*
1671 	 * Shared page table is more than shared mapping.
1672 	 *  Individual process sharing page tables can't change prot
1673 	 *  because there is only one set of page tables.
1674 	 *  This will be allowed after private page table is
1675 	 *  supported.
1676 	 */
1677 /* need to return correct status error? */
1678 	return (0);
1679 }
1680 
1681 
1682 faultcode_t
1683 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1684     size_t len, enum fault_type type, enum seg_rw rw)
1685 {
1686 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1687 	struct  seg		*sptseg = shmd->shm_sptseg;
1688 	struct  as		*curspt = shmd->shm_sptas;
1689 	struct  spt_data 	*sptd = sptseg->s_data;
1690 	pgcnt_t npages;
1691 	size_t  share_sz, size;
1692 	caddr_t segspt_addr, shm_addr;
1693 	page_t  **ppa;
1694 	int	i;
1695 	ulong_t an_idx = 0;
1696 	int	err = 0;
1697 	int	dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0);
1698 
1699 #ifdef lint
1700 	hat = hat;
1701 #endif
1702 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1703 
1704 	/*
1705 	 * Because of the way spt is implemented
1706 	 * the realsize of the segment does not have to be
1707 	 * equal to the segment size itself. The segment size is
1708 	 * often in multiples of a page size larger than PAGESIZE.
1709 	 * The realsize is rounded up to the nearest PAGESIZE
1710 	 * based on what the user requested. This is a bit of
1711 	 * ungliness that is historical but not easily fixed
1712 	 * without re-designing the higher levels of ISM.
1713 	 */
1714 	ASSERT(addr >= seg->s_base);
1715 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1716 		return (FC_NOMAP);
1717 	/*
1718 	 * For all of the following cases except F_PROT, we need to
1719 	 * make any necessary adjustments to addr and len
1720 	 * and get all of the necessary page_t's into an array called ppa[].
1721 	 *
1722 	 * The code in shmat() forces base addr and len of ISM segment
1723 	 * to be aligned to largest page size supported. Therefore,
1724 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1725 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1726 	 * in large pagesize chunks, or else we will screw up the HAT
1727 	 * layer by calling hat_memload_array() with differing page sizes
1728 	 * over a given virtual range.
1729 	 */
1730 	share_sz = page_get_pagesize(sptseg->s_szc);
1731 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
1732 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_sz);
1733 	npages = btopr(size);
1734 
1735 	/*
1736 	 * Now we need to convert from addr in segshm to addr in segspt.
1737 	 */
1738 	an_idx = seg_page(seg, shm_addr);
1739 	segspt_addr = sptseg->s_base + ptob(an_idx);
1740 
1741 	ASSERT((segspt_addr + ptob(npages)) <=
1742 		(sptseg->s_base + sptd->spt_realsize));
1743 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1744 
1745 	switch (type) {
1746 
1747 	case F_SOFTLOCK:
1748 
1749 		mutex_enter(&freemem_lock);
1750 		if (availrmem < tune.t_minarmem + npages) {
1751 			mutex_exit(&freemem_lock);
1752 			return (FC_MAKE_ERR(ENOMEM));
1753 		} else {
1754 			availrmem -= npages;
1755 		}
1756 		mutex_exit(&freemem_lock);
1757 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1758 		/*
1759 		 * Fall through to the F_INVAL case to load up the hat layer
1760 		 * entries with the HAT_LOAD_LOCK flag.
1761 		 */
1762 		/* FALLTHRU */
1763 	case F_INVAL:
1764 
1765 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1766 			return (FC_NOMAP);
1767 
1768 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1769 
1770 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1771 		if (err != 0) {
1772 			if (type == F_SOFTLOCK) {
1773 				mutex_enter(&freemem_lock);
1774 				availrmem += npages;
1775 				mutex_exit(&freemem_lock);
1776 				atomic_add_long((ulong_t *)(
1777 				    &(shmd->shm_softlockcnt)), -npages);
1778 			}
1779 			goto dism_err;
1780 		}
1781 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1782 		if (type == F_SOFTLOCK) {
1783 
1784 			/*
1785 			 * Load up the translation keeping it
1786 			 * locked and don't unlock the page.
1787 			 */
1788 			hat_memload_array(sptseg->s_as->a_hat, segspt_addr,
1789 			    size, ppa, sptd->spt_prot,
1790 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1791 		} else {
1792 			if (hat == seg->s_as->a_hat) {
1793 
1794 				/*
1795 				 * Migrate pages marked for migration
1796 				 */
1797 				if (lgrp_optimizations())
1798 					page_migrate(seg, shm_addr, ppa,
1799 					    npages);
1800 
1801 				/* CPU HAT */
1802 				hat_memload_array(sptseg->s_as->a_hat,
1803 				    segspt_addr, size, ppa, sptd->spt_prot,
1804 				    HAT_LOAD_SHARE);
1805 			} else {
1806 				/* XHAT. Pass real address */
1807 				hat_memload_array(hat, shm_addr,
1808 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1809 			}
1810 
1811 			/*
1812 			 * And now drop the SE_SHARED lock(s).
1813 			 */
1814 			if (dyn_ism_unmap) {
1815 				for (i = 0; i < npages; i++) {
1816 					page_unlock(ppa[i]);
1817 				}
1818 			}
1819 		}
1820 
1821 		if (!dyn_ism_unmap) {
1822 			if (hat_share(seg->s_as->a_hat, shm_addr,
1823 			    curspt->a_hat, segspt_addr, ptob(npages),
1824 			    seg->s_szc) != 0) {
1825 				panic("hat_share err in DISM fault");
1826 				/* NOTREACHED */
1827 			}
1828 			if (type == F_INVAL) {
1829 				for (i = 0; i < npages; i++) {
1830 					page_unlock(ppa[i]);
1831 				}
1832 			}
1833 		}
1834 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1835 dism_err:
1836 		kmem_free(ppa, npages * sizeof (page_t *));
1837 		return (err);
1838 
1839 	case F_SOFTUNLOCK:
1840 
1841 		mutex_enter(&freemem_lock);
1842 		availrmem += npages;
1843 		mutex_exit(&freemem_lock);
1844 
1845 		/*
1846 		 * This is a bit ugly, we pass in the real seg pointer,
1847 		 * but the segspt_addr is the virtual address within the
1848 		 * dummy seg.
1849 		 */
1850 		segspt_softunlock(seg, segspt_addr, size, rw);
1851 		return (0);
1852 
1853 	case F_PROT:
1854 
1855 		/*
1856 		 * This takes care of the unusual case where a user
1857 		 * allocates a stack in shared memory and a register
1858 		 * window overflow is written to that stack page before
1859 		 * it is otherwise modified.
1860 		 *
1861 		 * We can get away with this because ISM segments are
1862 		 * always rw. Other than this unusual case, there
1863 		 * should be no instances of protection violations.
1864 		 */
1865 		return (0);
1866 
1867 	default:
1868 #ifdef DEBUG
1869 		panic("segspt_dismfault default type?");
1870 #else
1871 		return (FC_NOMAP);
1872 #endif
1873 	}
1874 }
1875 
1876 
1877 faultcode_t
1878 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1879     size_t len, enum fault_type type, enum seg_rw rw)
1880 {
1881 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1882 	struct seg		*sptseg = shmd->shm_sptseg;
1883 	struct as		*curspt = shmd->shm_sptas;
1884 	struct spt_data 	*sptd   = sptseg->s_data;
1885 	pgcnt_t npages;
1886 	size_t share_size, size;
1887 	caddr_t sptseg_addr, shm_addr;
1888 	page_t *pp, **ppa;
1889 	int	i;
1890 	u_offset_t offset;
1891 	ulong_t anon_index = 0;
1892 	struct vnode *vp;
1893 	struct anon_map *amp;		/* XXX - for locknest */
1894 	struct anon *ap = NULL;
1895 	anon_sync_obj_t cookie;
1896 
1897 #ifdef lint
1898 	hat = hat;
1899 #endif
1900 
1901 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1902 
1903 	if (sptd->spt_flags & SHM_PAGEABLE) {
1904 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
1905 	}
1906 
1907 	/*
1908 	 * Because of the way spt is implemented
1909 	 * the realsize of the segment does not have to be
1910 	 * equal to the segment size itself. The segment size is
1911 	 * often in multiples of a page size larger than PAGESIZE.
1912 	 * The realsize is rounded up to the nearest PAGESIZE
1913 	 * based on what the user requested. This is a bit of
1914 	 * ungliness that is historical but not easily fixed
1915 	 * without re-designing the higher levels of ISM.
1916 	 */
1917 	ASSERT(addr >= seg->s_base);
1918 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1919 		return (FC_NOMAP);
1920 	/*
1921 	 * For all of the following cases except F_PROT, we need to
1922 	 * make any necessary adjustments to addr and len
1923 	 * and get all of the necessary page_t's into an array called ppa[].
1924 	 *
1925 	 * The code in shmat() forces base addr and len of ISM segment
1926 	 * to be aligned to largest page size supported. Therefore,
1927 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1928 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1929 	 * in large pagesize chunks, or else we will screw up the HAT
1930 	 * layer by calling hat_memload_array() with differing page sizes
1931 	 * over a given virtual range.
1932 	 */
1933 	share_size = page_get_pagesize(sptseg->s_szc);
1934 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
1935 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_size);
1936 	npages = btopr(size);
1937 
1938 	/*
1939 	 * Now we need to convert from addr in segshm to addr in segspt.
1940 	 */
1941 	anon_index = seg_page(seg, shm_addr);
1942 	sptseg_addr = sptseg->s_base + ptob(anon_index);
1943 
1944 	/*
1945 	 * And now we may have to adjust npages downward if we have
1946 	 * exceeded the realsize of the segment or initial anon
1947 	 * allocations.
1948 	 */
1949 	if ((sptseg_addr + ptob(npages)) >
1950 	    (sptseg->s_base + sptd->spt_realsize))
1951 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
1952 
1953 	npages = btopr(size);
1954 
1955 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
1956 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
1957 
1958 	switch (type) {
1959 
1960 	case F_SOFTLOCK:
1961 
1962 		/*
1963 		 * availrmem is decremented once during anon_swap_adjust()
1964 		 * and is incremented during the anon_unresv(), which is
1965 		 * called from shm_rm_amp() when the segment is destroyed.
1966 		 */
1967 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1968 		/*
1969 		 * Some platforms assume that ISM pages are SE_SHARED
1970 		 * locked for the entire life of the segment.
1971 		 */
1972 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
1973 			return (0);
1974 		/*
1975 		 * Fall through to the F_INVAL case to load up the hat layer
1976 		 * entries with the HAT_LOAD_LOCK flag.
1977 		 */
1978 
1979 		/* FALLTHRU */
1980 	case F_INVAL:
1981 
1982 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1983 			return (FC_NOMAP);
1984 
1985 		/*
1986 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
1987 		 * may still rely on this call to hat_share(). That
1988 		 * would imply that those hat's can fault on a
1989 		 * HAT_LOAD_LOCK translation, which would seem
1990 		 * contradictory.
1991 		 */
1992 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1993 			if (hat_share(seg->s_as->a_hat, seg->s_base,
1994 			    curspt->a_hat, sptseg->s_base,
1995 			    sptseg->s_size, sptseg->s_szc) != 0) {
1996 				panic("hat_share error in ISM fault");
1997 				/*NOTREACHED*/
1998 			}
1999 			return (0);
2000 		}
2001 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
2002 
2003 		/*
2004 		 * I see no need to lock the real seg,
2005 		 * here, because all of our work will be on the underlying
2006 		 * dummy seg.
2007 		 *
2008 		 * sptseg_addr and npages now account for large pages.
2009 		 */
2010 		amp = sptd->spt_amp;
2011 		ASSERT(amp != NULL);
2012 		anon_index = seg_page(sptseg, sptseg_addr);
2013 
2014 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2015 		for (i = 0; i < npages; i++) {
2016 			anon_array_enter(amp, anon_index, &cookie);
2017 			ap = anon_get_ptr(amp->ahp, anon_index++);
2018 			ASSERT(ap != NULL);
2019 			swap_xlate(ap, &vp, &offset);
2020 			anon_array_exit(&cookie);
2021 			pp = page_lookup(vp, offset, SE_SHARED);
2022 			ASSERT(pp != NULL);
2023 			ppa[i] = pp;
2024 		}
2025 		ANON_LOCK_EXIT(&amp->a_rwlock);
2026 		ASSERT(i == npages);
2027 
2028 		/*
2029 		 * We are already holding the as->a_lock on the user's
2030 		 * real segment, but we need to hold the a_lock on the
2031 		 * underlying dummy as. This is mostly to satisfy the
2032 		 * underlying HAT layer.
2033 		 */
2034 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2035 		if (type == F_SOFTLOCK) {
2036 			/*
2037 			 * Load up the translation keeping it
2038 			 * locked and don't unlock the page.
2039 			 */
2040 			hat_memload_array(sptseg->s_as->a_hat, sptseg_addr,
2041 			    ptob(npages), ppa, sptd->spt_prot,
2042 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2043 		} else {
2044 			if (hat == seg->s_as->a_hat) {
2045 
2046 				/*
2047 				 * Migrate pages marked for migration.
2048 				 */
2049 				if (lgrp_optimizations())
2050 					page_migrate(seg, shm_addr, ppa,
2051 					    npages);
2052 
2053 				/* CPU HAT */
2054 				hat_memload_array(sptseg->s_as->a_hat,
2055 				    sptseg_addr, ptob(npages), ppa,
2056 				    sptd->spt_prot, HAT_LOAD_SHARE);
2057 			} else {
2058 				/* XHAT. Pass real address */
2059 				hat_memload_array(hat, shm_addr,
2060 				    ptob(npages), ppa, sptd->spt_prot,
2061 				    HAT_LOAD_SHARE);
2062 			}
2063 
2064 			/*
2065 			 * And now drop the SE_SHARED lock(s).
2066 			 */
2067 			for (i = 0; i < npages; i++)
2068 				page_unlock(ppa[i]);
2069 		}
2070 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2071 
2072 		kmem_free(ppa, sizeof (page_t *) * npages);
2073 		return (0);
2074 	case F_SOFTUNLOCK:
2075 
2076 		/*
2077 		 * This is a bit ugly, we pass in the real seg pointer,
2078 		 * but the sptseg_addr is the virtual address within the
2079 		 * dummy seg.
2080 		 */
2081 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2082 		return (0);
2083 
2084 	case F_PROT:
2085 
2086 		/*
2087 		 * This takes care of the unusual case where a user
2088 		 * allocates a stack in shared memory and a register
2089 		 * window overflow is written to that stack page before
2090 		 * it is otherwise modified.
2091 		 *
2092 		 * We can get away with this because ISM segments are
2093 		 * always rw. Other than this unusual case, there
2094 		 * should be no instances of protection violations.
2095 		 */
2096 		return (0);
2097 
2098 	default:
2099 #ifdef DEBUG
2100 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2101 #endif
2102 		return (FC_NOMAP);
2103 	}
2104 }
2105 
2106 /*ARGSUSED*/
2107 static faultcode_t
2108 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2109 {
2110 	return (0);
2111 }
2112 
2113 /*ARGSUSED*/
2114 static int
2115 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2116 {
2117 	return (0);
2118 }
2119 
2120 /*ARGSUSED*/
2121 static size_t
2122 segspt_shmswapout(struct seg *seg)
2123 {
2124 	return (0);
2125 }
2126 
2127 /*
2128  * duplicate the shared page tables
2129  */
2130 int
2131 segspt_shmdup(struct seg *seg, struct seg *newseg)
2132 {
2133 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2134 	struct anon_map 	*amp = shmd->shm_amp;
2135 	struct shm_data 	*shmd_new;
2136 	struct seg		*spt_seg = shmd->shm_sptseg;
2137 	struct spt_data		*sptd = spt_seg->s_data;
2138 	int			error = 0;
2139 
2140 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2141 
2142 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2143 	newseg->s_data = (void *)shmd_new;
2144 	shmd_new->shm_sptas = shmd->shm_sptas;
2145 	shmd_new->shm_amp = amp;
2146 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2147 	newseg->s_ops = &segspt_shmops;
2148 	newseg->s_szc = seg->s_szc;
2149 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2150 
2151 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2152 	amp->refcnt++;
2153 	ANON_LOCK_EXIT(&amp->a_rwlock);
2154 
2155 	if (sptd->spt_flags & SHM_PAGEABLE) {
2156 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2157 		shmd_new->shm_lckpgs = 0;
2158 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2159 			if ((error = hat_share(newseg->s_as->a_hat,
2160 			    newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR,
2161 			    seg->s_size, seg->s_szc)) != 0) {
2162 				kmem_free(shmd_new->shm_vpage,
2163 				btopr(amp->size));
2164 			}
2165 		}
2166 		return (error);
2167 	} else {
2168 		return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2169 		    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size,
2170 		    seg->s_szc));
2171 
2172 	}
2173 }
2174 
2175 /*ARGSUSED*/
2176 int
2177 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2178 {
2179 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2180 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2181 
2182 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2183 
2184 	/*
2185 	 * ISM segment is always rw.
2186 	 */
2187 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2188 }
2189 
2190 /*
2191  * Return an array of locked large pages, for empty slots allocate
2192  * private zero-filled anon pages.
2193  */
2194 static int
2195 spt_anon_getpages(
2196 	struct seg *sptseg,
2197 	caddr_t sptaddr,
2198 	size_t len,
2199 	page_t *ppa[])
2200 {
2201 	struct  spt_data *sptd = sptseg->s_data;
2202 	struct  anon_map *amp = sptd->spt_amp;
2203 	enum 	seg_rw rw = sptd->spt_prot;
2204 	uint_t	szc = sptseg->s_szc;
2205 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2206 	pgcnt_t	lp_npgs;
2207 	caddr_t	lp_addr, e_sptaddr;
2208 	uint_t	vpprot, ppa_szc = 0;
2209 	struct  vpage *vpage = NULL;
2210 	ulong_t	j, ppa_idx;
2211 	int	err, ierr = 0;
2212 	pgcnt_t	an_idx;
2213 	anon_sync_obj_t cookie;
2214 
2215 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2216 	ASSERT(len != 0);
2217 
2218 	pg_sz = share_sz;
2219 	lp_npgs = btop(pg_sz);
2220 	lp_addr = sptaddr;
2221 	e_sptaddr = sptaddr + len;
2222 	an_idx = seg_page(sptseg, sptaddr);
2223 	ppa_idx = 0;
2224 
2225 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2226 	/*CONSTCOND*/
2227 	while (1) {
2228 		for (; lp_addr < e_sptaddr;
2229 			an_idx += lp_npgs, lp_addr += pg_sz,
2230 			ppa_idx += lp_npgs) {
2231 
2232 			anon_array_enter(amp, an_idx, &cookie);
2233 			ppa_szc = (uint_t)-1;
2234 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2235 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2236 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, kcred);
2237 			anon_array_exit(&cookie);
2238 
2239 			if (ierr != 0) {
2240 				if (ierr > 0) {
2241 					err = FC_MAKE_ERR(ierr);
2242 					goto lpgs_err;
2243 				}
2244 				break;
2245 			}
2246 		}
2247 		if (lp_addr == e_sptaddr) {
2248 			break;
2249 		}
2250 		ASSERT(lp_addr < e_sptaddr);
2251 
2252 		/*
2253 		 * ierr == -1 means we failed to allocate a large page.
2254 		 * so do a size down operation.
2255 		 *
2256 		 * ierr == -2 means some other process that privately shares
2257 		 * pages with this process has allocated a larger page and we
2258 		 * need to retry with larger pages. So do a size up
2259 		 * operation. This relies on the fact that large pages are
2260 		 * never partially shared i.e. if we share any constituent
2261 		 * page of a large page with another process we must share the
2262 		 * entire large page. Note this cannot happen for SOFTLOCK
2263 		 * case, unless current address (lpaddr) is at the beginning
2264 		 * of the next page size boundary because the other process
2265 		 * couldn't have relocated locked pages.
2266 		 */
2267 		ASSERT(ierr == -1 || ierr == -2);
2268 		if (segvn_anypgsz) {
2269 			ASSERT(ierr == -2 || szc != 0);
2270 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2271 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2272 		} else {
2273 			/*
2274 			 * For faults and segvn_anypgsz == 0
2275 			 * we need to be careful not to loop forever
2276 			 * if existing page is found with szc other
2277 			 * than 0 or seg->s_szc. This could be due
2278 			 * to page relocations on behalf of DR or
2279 			 * more likely large page creation. For this
2280 			 * case simply re-size to existing page's szc
2281 			 * if returned by anon_map_getpages().
2282 			 */
2283 			if (ppa_szc == (uint_t)-1) {
2284 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2285 			} else {
2286 				ASSERT(ppa_szc <= sptseg->s_szc);
2287 				ASSERT(ierr == -2 || ppa_szc < szc);
2288 				ASSERT(ierr == -1 || ppa_szc > szc);
2289 				szc = ppa_szc;
2290 			}
2291 		}
2292 		pg_sz = page_get_pagesize(szc);
2293 		lp_npgs = btop(pg_sz);
2294 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2295 	}
2296 	ANON_LOCK_EXIT(&amp->a_rwlock);
2297 	return (0);
2298 
2299 lpgs_err:
2300 	ANON_LOCK_EXIT(&amp->a_rwlock);
2301 	for (j = 0; j < ppa_idx; j++)
2302 		page_unlock(ppa[j]);
2303 	return (err);
2304 }
2305 
2306 int
2307 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2308     page_t **ppa, ulong_t *lockmap, size_t pos)
2309 {
2310 	struct shm_data *shmd = seg->s_data;
2311 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2312 	ulong_t	i;
2313 	int	kernel;
2314 
2315 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2316 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2317 			if (sptd->spt_ppa_lckcnt[anon_index] <
2318 			    (ushort_t)DISM_LOCK_MAX) {
2319 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2320 				    (ushort_t)DISM_LOCK_MAX) {
2321 					cmn_err(CE_WARN,
2322 					    "DISM page lock limit "
2323 					    "reached on DISM offset 0x%lx\n",
2324 					    anon_index << PAGESHIFT);
2325 				}
2326 				kernel = (sptd->spt_ppa &&
2327 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2328 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2329 					/* unlock rest of the pages */
2330 					for (; i < npages; i++)
2331 						page_unlock(ppa[i]);
2332 					sptd->spt_ppa_lckcnt[anon_index]--;
2333 					return (EAGAIN);
2334 				}
2335 				shmd->shm_lckpgs++;
2336 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2337 				if (lockmap != NULL)
2338 					BT_SET(lockmap, pos);
2339 			}
2340 		}
2341 		page_unlock(ppa[i]);
2342 	}
2343 	return (0);
2344 }
2345 
2346 /*ARGSUSED*/
2347 static int
2348 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2349     int attr, int op, ulong_t *lockmap, size_t pos)
2350 {
2351 	struct shm_data *shmd = seg->s_data;
2352 	struct seg	*sptseg = shmd->shm_sptseg;
2353 	struct spt_data *sptd = sptseg->s_data;
2354 	pgcnt_t		npages, a_npages;
2355 	page_t		**ppa;
2356 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2357 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2358 	size_t		a_len;			/* aligned len */
2359 	size_t		share_sz;
2360 	ulong_t		i;
2361 	int		sts = 0;
2362 
2363 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2364 
2365 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2366 		return (0);
2367 	}
2368 
2369 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2370 	an_idx = seg_page(seg, addr);
2371 	npages = btopr(len);
2372 
2373 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2374 		return (ENOMEM);
2375 	}
2376 
2377 	if (op == MC_LOCK) {
2378 		/*
2379 		 * Need to align addr and size request if they are not
2380 		 * aligned so we can always allocate large page(s) however
2381 		 * we only lock what was requested in initial request.
2382 		 */
2383 		share_sz = page_get_pagesize(sptseg->s_szc);
2384 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2385 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2386 				share_sz);
2387 		a_npages = btop(a_len);
2388 		a_an_idx = seg_page(seg, a_addr);
2389 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2390 		ppa_idx = an_idx - a_an_idx;
2391 
2392 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2393 			KM_NOSLEEP)) == NULL) {
2394 			return (ENOMEM);
2395 		}
2396 
2397 		/*
2398 		 * Don't cache any new pages for IO and
2399 		 * flush any cached pages.
2400 		 */
2401 		mutex_enter(&sptd->spt_lock);
2402 		if (sptd->spt_ppa != NULL)
2403 			sptd->spt_flags |= DISM_PPA_CHANGED;
2404 
2405 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2406 		if (sts != 0) {
2407 			mutex_exit(&sptd->spt_lock);
2408 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2409 			return (sts);
2410 		}
2411 
2412 		sts = spt_lockpages(seg, an_idx, npages,
2413 		    &ppa[ppa_idx], lockmap, pos);
2414 		/*
2415 		 * unlock remaining pages for requests which are not
2416 		 * aligned or not in 4 M chunks
2417 		 */
2418 		for (i = 0; i < ppa_idx; i++)
2419 			page_unlock(ppa[i]);
2420 		for (i = ppa_idx + npages; i < a_npages; i++)
2421 			page_unlock(ppa[i]);
2422 		if (sptd->spt_ppa != NULL)
2423 			sptd->spt_flags |= DISM_PPA_CHANGED;
2424 		mutex_exit(&sptd->spt_lock);
2425 
2426 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2427 
2428 	} else if (op == MC_UNLOCK) { /* unlock */
2429 		struct anon_map *amp;
2430 		struct anon 	*ap;
2431 		struct vnode 	*vp;
2432 		u_offset_t 	off;
2433 		struct page	*pp;
2434 		int		kernel;
2435 		anon_sync_obj_t cookie;
2436 
2437 		amp = sptd->spt_amp;
2438 		mutex_enter(&sptd->spt_lock);
2439 		if (shmd->shm_lckpgs == 0) {
2440 			mutex_exit(&sptd->spt_lock);
2441 			return (0);
2442 		}
2443 		/*
2444 		 * Don't cache new IO pages.
2445 		 */
2446 		if (sptd->spt_ppa != NULL)
2447 			sptd->spt_flags |= DISM_PPA_CHANGED;
2448 
2449 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2450 		for (i = 0; i < npages; i++, an_idx++) {
2451 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2452 				anon_array_enter(amp, an_idx, &cookie);
2453 				ap = anon_get_ptr(amp->ahp, an_idx);
2454 				ASSERT(ap);
2455 				ASSERT(sptd->spt_ppa_lckcnt[an_idx] > 0);
2456 
2457 				swap_xlate(ap, &vp, &off);
2458 				anon_array_exit(&cookie);
2459 				pp = page_lookup(vp, off, SE_SHARED);
2460 				ASSERT(pp);
2461 				/*
2462 				 * the availrmem is decremented only for
2463 				 * pages which are not in seg pcache,
2464 				 * for pages in seg pcache availrmem was
2465 				 * decremented in _dismpagelock() (if
2466 				 * they were not locked here)
2467 				 */
2468 				kernel = (sptd->spt_ppa &&
2469 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2470 				page_pp_unlock(pp, 0, kernel);
2471 				page_unlock(pp);
2472 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2473 				sptd->spt_ppa_lckcnt[an_idx]--;
2474 				shmd->shm_lckpgs--;
2475 			}
2476 		}
2477 		ANON_LOCK_EXIT(&amp->a_rwlock);
2478 		if (sptd->spt_ppa != NULL)
2479 			sptd->spt_flags |= DISM_PPA_CHANGED;
2480 		mutex_exit(&sptd->spt_lock);
2481 	}
2482 	return (sts);
2483 }
2484 
2485 /*ARGSUSED*/
2486 int
2487 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2488 {
2489 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2490 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2491 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2492 
2493 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2494 
2495 	/*
2496 	 * ISM segment is always rw.
2497 	 */
2498 	while (--pgno >= 0)
2499 		*protv++ = sptd->spt_prot;
2500 	return (0);
2501 }
2502 
2503 /*ARGSUSED*/
2504 u_offset_t
2505 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2506 {
2507 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2508 
2509 	/* Offset does not matter in ISM memory */
2510 
2511 	return ((u_offset_t)0);
2512 }
2513 
2514 /* ARGSUSED */
2515 int
2516 segspt_shmgettype(struct seg *seg, caddr_t addr)
2517 {
2518 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2519 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2520 
2521 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2522 
2523 	/*
2524 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2525 	 * reserved for DISM
2526 	 */
2527 	return (MAP_SHARED |
2528 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2529 }
2530 
2531 /*ARGSUSED*/
2532 int
2533 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2534 {
2535 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2536 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2537 
2538 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2539 
2540 	*vpp = sptd->spt_vp;
2541 	return (0);
2542 }
2543 
2544 /*ARGSUSED*/
2545 static int
2546 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2547 {
2548 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2549 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2550 	struct anon_map	*amp;
2551 	pgcnt_t		pg_idx;
2552 
2553 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2554 
2555 	if (behav == MADV_FREE) {
2556 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2557 			return (0);
2558 
2559 		amp = sptd->spt_amp;
2560 		pg_idx = seg_page(seg, addr);
2561 
2562 		mutex_enter(&sptd->spt_lock);
2563 		if (sptd->spt_ppa != NULL)
2564 			sptd->spt_flags |= DISM_PPA_CHANGED;
2565 		mutex_exit(&sptd->spt_lock);
2566 
2567 		/*
2568 		 * Purge all DISM cached pages
2569 		 */
2570 		seg_ppurge_seg(segspt_reclaim);
2571 
2572 		mutex_enter(&sptd->spt_lock);
2573 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2574 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2575 		ANON_LOCK_EXIT(&amp->a_rwlock);
2576 		mutex_exit(&sptd->spt_lock);
2577 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2578 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2579 		int			already_set;
2580 		ulong_t			anon_index;
2581 		lgrp_mem_policy_t	policy;
2582 		caddr_t			shm_addr;
2583 		size_t			share_size;
2584 		size_t			size;
2585 		struct seg		*sptseg = shmd->shm_sptseg;
2586 		caddr_t			sptseg_addr;
2587 
2588 		/*
2589 		 * Align address and length to page size of underlying segment
2590 		 */
2591 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2592 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2593 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2594 		    share_size);
2595 
2596 		amp = shmd->shm_amp;
2597 		anon_index = seg_page(seg, shm_addr);
2598 
2599 		/*
2600 		 * And now we may have to adjust size downward if we have
2601 		 * exceeded the realsize of the segment or initial anon
2602 		 * allocations.
2603 		 */
2604 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2605 		if ((sptseg_addr + size) >
2606 		    (sptseg->s_base + sptd->spt_realsize))
2607 			size = (sptseg->s_base + sptd->spt_realsize) -
2608 			    sptseg_addr;
2609 
2610 		/*
2611 		 * Set memory allocation policy for this segment
2612 		 */
2613 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2614 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2615 		    NULL, 0, len);
2616 
2617 		/*
2618 		 * If random memory allocation policy set already,
2619 		 * don't bother reapplying it.
2620 		 */
2621 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2622 			return (0);
2623 
2624 		/*
2625 		 * Mark any existing pages in the given range for
2626 		 * migration, flushing the I/O page cache, and using
2627 		 * underlying segment to calculate anon index and get
2628 		 * anonmap and vnode pointer from
2629 		 */
2630 		if (shmd->shm_softlockcnt > 0)
2631 			segspt_purge(seg);
2632 
2633 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2634 	}
2635 
2636 	return (0);
2637 }
2638 
2639 /*ARGSUSED*/
2640 void
2641 segspt_shmdump(struct seg *seg)
2642 {
2643 	/* no-op for ISM segment */
2644 }
2645 
2646 /*ARGSUSED*/
2647 static faultcode_t
2648 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2649 {
2650 	return (ENOTSUP);
2651 }
2652 
2653 /*
2654  * get a memory ID for an addr in a given segment
2655  */
2656 static int
2657 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2658 {
2659 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2660 	struct anon 	*ap;
2661 	size_t		anon_index;
2662 	struct anon_map	*amp = shmd->shm_amp;
2663 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2664 	struct seg	*sptseg = shmd->shm_sptseg;
2665 	anon_sync_obj_t	cookie;
2666 
2667 	anon_index = seg_page(seg, addr);
2668 
2669 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2670 		return (EFAULT);
2671 	}
2672 
2673 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2674 	anon_array_enter(amp, anon_index, &cookie);
2675 	ap = anon_get_ptr(amp->ahp, anon_index);
2676 	if (ap == NULL) {
2677 		struct page *pp;
2678 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2679 
2680 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2681 		if (pp == NULL) {
2682 			anon_array_exit(&cookie);
2683 			ANON_LOCK_EXIT(&amp->a_rwlock);
2684 			return (ENOMEM);
2685 		}
2686 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2687 		page_unlock(pp);
2688 	}
2689 	anon_array_exit(&cookie);
2690 	ANON_LOCK_EXIT(&amp->a_rwlock);
2691 	memidp->val[0] = (uintptr_t)ap;
2692 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2693 	return (0);
2694 }
2695 
2696 /*
2697  * Get memory allocation policy info for specified address in given segment
2698  */
2699 static lgrp_mem_policy_info_t *
2700 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2701 {
2702 	struct anon_map		*amp;
2703 	ulong_t			anon_index;
2704 	lgrp_mem_policy_info_t	*policy_info;
2705 	struct shm_data		*shm_data;
2706 
2707 	ASSERT(seg != NULL);
2708 
2709 	/*
2710 	 * Get anon_map from segshm
2711 	 *
2712 	 * Assume that no lock needs to be held on anon_map, since
2713 	 * it should be protected by its reference count which must be
2714 	 * nonzero for an existing segment
2715 	 * Need to grab readers lock on policy tree though
2716 	 */
2717 	shm_data = (struct shm_data *)seg->s_data;
2718 	if (shm_data == NULL)
2719 		return (NULL);
2720 	amp = shm_data->shm_amp;
2721 	ASSERT(amp->refcnt != 0);
2722 
2723 	/*
2724 	 * Get policy info
2725 	 *
2726 	 * Assume starting anon index of 0
2727 	 */
2728 	anon_index = seg_page(seg, addr);
2729 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2730 
2731 	return (policy_info);
2732 }
2733 
2734 /*ARGSUSED*/
2735 static int
2736 segspt_shmcapable(struct seg *seg, segcapability_t capability)
2737 {
2738 	return (0);
2739 }
2740