xref: /titanic_44/usr/src/uts/common/vm/seg_spt.c (revision 2a0eb52b53ee0ec5aa0e2d204728f731c00d571f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/param.h>
30 #include <sys/user.h>
31 #include <sys/mman.h>
32 #include <sys/kmem.h>
33 #include <sys/sysmacros.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/tuneable.h>
37 #include <vm/hat.h>
38 #include <vm/seg.h>
39 #include <vm/as.h>
40 #include <vm/anon.h>
41 #include <vm/page.h>
42 #include <sys/buf.h>
43 #include <sys/swap.h>
44 #include <sys/atomic.h>
45 #include <vm/seg_spt.h>
46 #include <sys/debug.h>
47 #include <sys/vtrace.h>
48 #include <sys/shm.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 
52 #include <sys/tnf_probe.h>
53 
54 #define	SEGSPTADDR	(caddr_t)0x0
55 
56 /*
57  * # pages used for spt
58  */
59 static size_t	spt_used;
60 
61 /*
62  * segspt_minfree is the memory left for system after ISM
63  * locked its pages; it is set up to 5% of availrmem in
64  * sptcreate when ISM is created.  ISM should not use more
65  * than ~90% of availrmem; if it does, then the performance
66  * of the system may decrease. Machines with large memories may
67  * be able to use up more memory for ISM so we set the default
68  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
69  * If somebody wants even more memory for ISM (risking hanging
70  * the system) they can patch the segspt_minfree to smaller number.
71  */
72 pgcnt_t segspt_minfree = 0;
73 
74 static int segspt_create(struct seg *seg, caddr_t argsp);
75 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
76 static void segspt_free(struct seg *seg);
77 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
78 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
79 
80 static void
81 segspt_badop()
82 {
83 	panic("segspt_badop called");
84 	/*NOTREACHED*/
85 }
86 
87 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
88 
89 struct seg_ops segspt_ops = {
90 	SEGSPT_BADOP(int),		/* dup */
91 	segspt_unmap,
92 	segspt_free,
93 	SEGSPT_BADOP(int),		/* fault */
94 	SEGSPT_BADOP(faultcode_t),	/* faulta */
95 	SEGSPT_BADOP(int),		/* setprot */
96 	SEGSPT_BADOP(int),		/* checkprot */
97 	SEGSPT_BADOP(int),		/* kluster */
98 	SEGSPT_BADOP(size_t),		/* swapout */
99 	SEGSPT_BADOP(int),		/* sync */
100 	SEGSPT_BADOP(size_t),		/* incore */
101 	SEGSPT_BADOP(int),		/* lockop */
102 	SEGSPT_BADOP(int),		/* getprot */
103 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
104 	SEGSPT_BADOP(int),		/* gettype */
105 	SEGSPT_BADOP(int),		/* getvp */
106 	SEGSPT_BADOP(int),		/* advise */
107 	SEGSPT_BADOP(void),		/* dump */
108 	SEGSPT_BADOP(int),		/* pagelock */
109 	SEGSPT_BADOP(int),		/* setpgsz */
110 	SEGSPT_BADOP(int),		/* getmemid */
111 	segspt_getpolicy,		/* getpolicy */
112 	SEGSPT_BADOP(int),		/* capable */
113 };
114 
115 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
116 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
117 static void segspt_shmfree(struct seg *seg);
118 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
119 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
120 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
121 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
122 			register size_t len, register uint_t prot);
123 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
124 			uint_t prot);
125 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
126 static size_t	segspt_shmswapout(struct seg *seg);
127 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
128 			register char *vec);
129 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
130 			int attr, uint_t flags);
131 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
132 			int attr, int op, ulong_t *lockmap, size_t pos);
133 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
134 			uint_t *protv);
135 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
136 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
137 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
138 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
139 			uint_t behav);
140 static void segspt_shmdump(struct seg *seg);
141 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
142 			struct page ***, enum lock_type, enum seg_rw);
143 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
144 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
145 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
146 static int segspt_shmcapable(struct seg *, segcapability_t);
147 
148 struct seg_ops segspt_shmops = {
149 	segspt_shmdup,
150 	segspt_shmunmap,
151 	segspt_shmfree,
152 	segspt_shmfault,
153 	segspt_shmfaulta,
154 	segspt_shmsetprot,
155 	segspt_shmcheckprot,
156 	segspt_shmkluster,
157 	segspt_shmswapout,
158 	segspt_shmsync,
159 	segspt_shmincore,
160 	segspt_shmlockop,
161 	segspt_shmgetprot,
162 	segspt_shmgetoffset,
163 	segspt_shmgettype,
164 	segspt_shmgetvp,
165 	segspt_shmadvise,	/* advise */
166 	segspt_shmdump,
167 	segspt_shmpagelock,
168 	segspt_shmsetpgsz,
169 	segspt_shmgetmemid,
170 	segspt_shmgetpolicy,
171 	segspt_shmcapable,
172 };
173 
174 static void segspt_purge(struct seg *seg);
175 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
176 		enum seg_rw);
177 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
178 		page_t **ppa);
179 
180 
181 
182 /*ARGSUSED*/
183 int
184 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
185     uint_t prot, uint_t flags, uint_t share_szc)
186 {
187 	int 	err;
188 	struct  as	*newas;
189 	struct	segspt_crargs sptcargs;
190 
191 #ifdef DEBUG
192 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
193                 	tnf_ulong, size, size );
194 #endif
195 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
196 		segspt_minfree = availrmem/20;	/* for the system */
197 
198 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
199 		return (EINVAL);
200 
201 	/*
202 	 * get a new as for this shared memory segment
203 	 */
204 	newas = as_alloc();
205 	sptcargs.amp = amp;
206 	sptcargs.prot = prot;
207 	sptcargs.flags = flags;
208 	sptcargs.szc = share_szc;
209 
210 	/*
211 	 * create a shared page table (spt) segment
212 	 */
213 
214 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
215 		as_free(newas);
216 		return (err);
217 	}
218 	*sptseg = sptcargs.seg_spt;
219 	return (0);
220 }
221 
222 void
223 sptdestroy(struct as *as, struct anon_map *amp)
224 {
225 
226 #ifdef DEBUG
227 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
228 #endif
229 	(void) as_unmap(as, SEGSPTADDR, amp->size);
230 	as_free(as);
231 }
232 
233 /*
234  * called from seg_free().
235  * free (i.e., unlock, unmap, return to free list)
236  *  all the pages in the given seg.
237  */
238 void
239 segspt_free(struct seg	*seg)
240 {
241 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
242 
243 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
244 
245 	if (sptd != NULL) {
246 		if (sptd->spt_realsize)
247 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
248 
249 		if (sptd->spt_ppa_lckcnt)
250 			kmem_free(sptd->spt_ppa_lckcnt,
251 				sizeof (*sptd->spt_ppa_lckcnt)
252 				* btopr(sptd->spt_amp->size));
253 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
254 		mutex_destroy(&sptd->spt_lock);
255 		kmem_free(sptd, sizeof (*sptd));
256 	}
257 }
258 
259 /*ARGSUSED*/
260 static int
261 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
262 	uint_t flags)
263 {
264 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
265 
266 	return (0);
267 }
268 
269 /*ARGSUSED*/
270 static size_t
271 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
272 {
273 	caddr_t	eo_seg;
274 	pgcnt_t	npages;
275 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
276 	struct seg	*sptseg;
277 	struct spt_data *sptd;
278 
279 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
280 #ifdef lint
281 	seg = seg;
282 #endif
283 	sptseg = shmd->shm_sptseg;
284 	sptd = sptseg->s_data;
285 
286 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
287 		eo_seg = addr + len;
288 		while (addr < eo_seg) {
289 			/* page exists, and it's locked. */
290 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
291 				SEG_PAGE_ANON;
292 			addr += PAGESIZE;
293 		}
294 		return (len);
295 	} else {
296 		struct  anon_map *amp = shmd->shm_amp;
297 		struct  anon	*ap;
298 		page_t		*pp;
299 		pgcnt_t 	anon_index;
300 		struct vnode 	*vp;
301 		u_offset_t 	off;
302 		ulong_t		i;
303 		int		ret;
304 		anon_sync_obj_t	cookie;
305 
306 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
307 		anon_index = seg_page(seg, addr);
308 		npages = btopr(len);
309 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
310 			return (EINVAL);
311 		}
312 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
313 		for (i = 0; i < npages; i++, anon_index++) {
314 			ret = 0;
315 			anon_array_enter(amp, anon_index, &cookie);
316 			ap = anon_get_ptr(amp->ahp, anon_index);
317 			if (ap != NULL) {
318 				swap_xlate(ap, &vp, &off);
319 				anon_array_exit(&cookie);
320 				pp = page_lookup_nowait(vp, off, SE_SHARED);
321 				if (pp != NULL) {
322 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
323 					page_unlock(pp);
324 				}
325 			} else {
326 				anon_array_exit(&cookie);
327 			}
328 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
329 				ret |= SEG_PAGE_LOCKED;
330 			}
331 			*vec++ = (char)ret;
332 		}
333 		ANON_LOCK_EXIT(&amp->a_rwlock);
334 		return (len);
335 	}
336 }
337 
338 static int
339 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
340 {
341 	size_t share_size;
342 
343 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
344 
345 	/*
346 	 * seg.s_size may have been rounded up to the largest page size
347 	 * in shmat().
348 	 * XXX This should be cleanedup. sptdestroy should take a length
349 	 * argument which should be the same as sptcreate. Then
350 	 * this rounding would not be needed (or is done in shm.c)
351 	 * Only the check for full segment will be needed.
352 	 *
353 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
354 	 * to be useful at all.
355 	 */
356 	share_size = page_get_pagesize(seg->s_szc);
357 	ssize = P2ROUNDUP(ssize, share_size);
358 
359 	if (raddr == seg->s_base && ssize == seg->s_size) {
360 		seg_free(seg);
361 		return (0);
362 	} else
363 		return (EINVAL);
364 }
365 
366 int
367 segspt_create(struct seg *seg, caddr_t argsp)
368 {
369 	int		err;
370 	caddr_t		addr = seg->s_base;
371 	struct spt_data *sptd;
372 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
373 	struct anon_map *amp = sptcargs->amp;
374 	struct	cred	*cred = CRED();
375 	ulong_t		i, j, anon_index = 0;
376 	pgcnt_t		npages = btopr(amp->size);
377 	struct vnode	*vp;
378 	page_t		**ppa;
379 	uint_t		hat_flags;
380 
381 	/*
382 	 * We are holding the a_lock on the underlying dummy as,
383 	 * so we can make calls to the HAT layer.
384 	 */
385 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
386 
387 #ifdef DEBUG
388 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
389                                 tnf_opaque, addr, addr,
390 				tnf_ulong, len, seg->s_size);
391 #endif
392 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
393 		if (err = anon_swap_adjust(npages))
394 			return (err);
395 	}
396 	err = ENOMEM;
397 
398 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
399 		goto out1;
400 
401 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
402 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
403 		    KM_NOSLEEP)) == NULL)
404 			goto out2;
405 	}
406 
407 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
408 
409 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
410 		goto out3;
411 
412 	seg->s_ops = &segspt_ops;
413 	sptd->spt_vp = vp;
414 	sptd->spt_amp = amp;
415 	sptd->spt_prot = sptcargs->prot;
416 	sptd->spt_flags = sptcargs->flags;
417 	seg->s_data = (caddr_t)sptd;
418 	sptd->spt_ppa = NULL;
419 	sptd->spt_ppa_lckcnt = NULL;
420 	seg->s_szc = sptcargs->szc;
421 
422 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
423 	amp->a_szc = seg->s_szc;
424 	ANON_LOCK_EXIT(&amp->a_rwlock);
425 
426 	/*
427 	 * Set policy to affect initial allocation of pages in
428 	 * anon_map_createpages()
429 	 */
430 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
431 	    NULL, 0, ptob(npages));
432 
433 	if (sptcargs->flags & SHM_PAGEABLE) {
434 		size_t  share_sz;
435 		pgcnt_t new_npgs, more_pgs;
436 		struct anon_hdr *nahp;
437 
438 		share_sz = page_get_pagesize(seg->s_szc);
439 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
440 			/*
441 			 * We are rounding up the size of the anon array
442 			 * on 4 M boundary because we always create 4 M
443 			 * of page(s) when locking, faulting pages and we
444 			 * don't have to check for all corner cases e.g.
445 			 * if there is enough space to allocate 4 M
446 			 * page.
447 			 */
448 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
449 			more_pgs = new_npgs - npages;
450 
451 			if (anon_resv(ptob(more_pgs)) == 0) {
452 				err = ENOMEM;
453 				goto out4;
454 			}
455 			nahp = anon_create(new_npgs, ANON_SLEEP);
456 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
457 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
458 			    ANON_SLEEP);
459 			anon_release(amp->ahp, npages);
460 			amp->ahp = nahp;
461 			amp->swresv = amp->size = ptob(new_npgs);
462 			ANON_LOCK_EXIT(&amp->a_rwlock);
463 			npages = new_npgs;
464 		}
465 
466 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
467 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
468 		sptd->spt_pcachecnt = 0;
469 		sptd->spt_realsize = ptob(npages);
470 		sptcargs->seg_spt = seg;
471 		return (0);
472 	}
473 
474 	/*
475 	 * get array of pages for each anon slot in amp
476 	 */
477 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
478 	    seg, addr, S_CREATE, cred)) != 0)
479 		goto out4;
480 
481 	/*
482 	 * addr is initial address corresponding to the first page on ppa list
483 	 */
484 	for (i = 0; i < npages; i++) {
485 		/* attempt to lock all pages */
486 		if (!page_pp_lock(ppa[i], 0, 1)) {
487 			/*
488 			 * if unable to lock any page, unlock all
489 			 * of them and return error
490 			 */
491 			for (j = 0; j < i; j++)
492 				page_pp_unlock(ppa[j], 0, 1);
493 			for (i = 0; i < npages; i++) {
494 				page_unlock(ppa[i]);
495 			}
496 			err = ENOMEM;
497 			goto out4;
498 		}
499 	}
500 
501 	/*
502 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
503 	 * for the entire life of the segment. For example platforms
504 	 * that do not support Dynamic Reconfiguration.
505 	 */
506 	hat_flags = HAT_LOAD_SHARE;
507 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
508 		hat_flags |= HAT_LOAD_LOCK;
509 
510 	hat_memload_array(seg->s_as->a_hat, addr, ptob(npages),
511 	    ppa, sptd->spt_prot, hat_flags);
512 
513 	/*
514 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
515 	 * we will leave the pages locked SE_SHARED for the life
516 	 * of the ISM segment. This will prevent any calls to
517 	 * hat_pageunload() on this ISM segment for those platforms.
518 	 */
519 	if (!(hat_flags & HAT_LOAD_LOCK)) {
520 		/*
521 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
522 		 * we no longer need to hold the SE_SHARED lock on the pages,
523 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
524 		 * SE_SHARED lock on the pages as necessary.
525 		 */
526 		for (i = 0; i < npages; i++)
527 			page_unlock(ppa[i]);
528 	}
529 	sptd->spt_pcachecnt = 0;
530 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
531 	sptd->spt_realsize = ptob(npages);
532 	atomic_add_long(&spt_used, npages);
533 	sptcargs->seg_spt = seg;
534 	return (0);
535 
536 out4:
537 	seg->s_data = NULL;
538 	kmem_free(vp, sizeof (*vp));
539 out3:
540 	mutex_destroy(&sptd->spt_lock);
541 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
542 		kmem_free(ppa, (sizeof (*ppa) * npages));
543 out2:
544 	kmem_free(sptd, sizeof (*sptd));
545 out1:
546 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
547 		anon_swap_restore(npages);
548 	return (err);
549 }
550 
551 /*ARGSUSED*/
552 void
553 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
554 {
555 	struct page 	*pp;
556 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
557 	pgcnt_t		npages;
558 	ulong_t		anon_idx;
559 	struct anon_map *amp;
560 	struct anon 	*ap;
561 	struct vnode 	*vp;
562 	u_offset_t 	off;
563 	uint_t		hat_flags;
564 	int		root = 0;
565 	pgcnt_t		pgs, curnpgs = 0;
566 	page_t		*rootpp;
567 
568 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
569 
570 	len = P2ROUNDUP(len, PAGESIZE);
571 
572 	npages = btop(len);
573 
574 	hat_flags = HAT_UNLOAD_UNLOCK;
575 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
576 	    (sptd->spt_flags & SHM_PAGEABLE)) {
577 		hat_flags = HAT_UNLOAD;
578 	}
579 
580 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
581 
582 	amp = sptd->spt_amp;
583 	if (sptd->spt_flags & SHM_PAGEABLE)
584 		npages = btop(amp->size);
585 
586 	ASSERT(amp);
587 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
588 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
589 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
590 				panic("segspt_free_pages: null app");
591 				/*NOTREACHED*/
592 			}
593 		} else {
594 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
595 			    == NULL)
596 				continue;
597 		}
598 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
599 		swap_xlate(ap, &vp, &off);
600 
601 		/*
602 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
603 		 * the pages won't be having SE_SHARED lock at this
604 		 * point.
605 		 *
606 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
607 		 * the pages are still held SE_SHARED locked from the
608 		 * original segspt_create()
609 		 *
610 		 * Our goal is to get SE_EXCL lock on each page, remove
611 		 * permanent lock on it and invalidate the page.
612 		 */
613 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
614 			if (hat_flags == HAT_UNLOAD)
615 				pp = page_lookup(vp, off, SE_EXCL);
616 			else {
617 				if ((pp = page_find(vp, off)) == NULL) {
618 					panic("segspt_free_pages: "
619 					    "page not locked");
620 					/*NOTREACHED*/
621 				}
622 				if (!page_tryupgrade(pp)) {
623 					page_unlock(pp);
624 					pp = page_lookup(vp, off, SE_EXCL);
625 				}
626 			}
627 			if (pp == NULL) {
628 				panic("segspt_free_pages: "
629 				    "page not in the system");
630 				/*NOTREACHED*/
631 			}
632 			page_pp_unlock(pp, 0, 1);
633 		} else {
634 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
635 				continue;
636 			page_pp_unlock(pp, 0, 0);
637 		}
638 		/*
639 		 * It's logical to invalidate the pages here as in most cases
640 		 * these were created by segspt.
641 		 */
642 		if (pp->p_szc != 0) {
643 			/*
644 			 * For DISM swap is released in shm_rm_amp.
645 			 */
646 			if ((sptd->spt_flags & SHM_PAGEABLE) == 0 &&
647 			    ap->an_pvp != NULL) {
648 				panic("segspt_free_pages: pvp non NULL");
649 				/*NOTREACHED*/
650 			}
651 			if (root == 0) {
652 				ASSERT(curnpgs == 0);
653 				root = 1;
654 				rootpp = pp;
655 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
656 				ASSERT(pgs > 1);
657 				ASSERT(IS_P2ALIGNED(pgs, pgs));
658 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
659 				curnpgs--;
660 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
661 				ASSERT(curnpgs == 1);
662 				ASSERT(page_pptonum(pp) ==
663 				    page_pptonum(rootpp) + (pgs - 1));
664 				page_destroy_pages(rootpp);
665 				root = 0;
666 				curnpgs = 0;
667 			} else {
668 				ASSERT(curnpgs > 1);
669 				ASSERT(page_pptonum(pp) ==
670 				    page_pptonum(rootpp) + (pgs - curnpgs));
671 				curnpgs--;
672 			}
673 		} else {
674 			if (root != 0 || curnpgs != 0) {
675 				panic("segspt_free_pages: bad large page");
676 				/*NOTREACHED*/
677 			}
678 			/*LINTED: constant in conditional context */
679 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
680 		}
681 	}
682 
683 	if (root != 0 || curnpgs != 0) {
684 		panic("segspt_free_pages: bad large page");
685 		/*NOTREACHED*/
686 	}
687 
688 	/*
689 	 * mark that pages have been released
690 	 */
691 	sptd->spt_realsize = 0;
692 
693 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
694 		atomic_add_long(&spt_used, -npages);
695 		anon_swap_restore(npages);
696 	}
697 }
698 
699 /*
700  * Get memory allocation policy info for specified address in given segment
701  */
702 static lgrp_mem_policy_info_t *
703 segspt_getpolicy(struct seg *seg, caddr_t addr)
704 {
705 	struct anon_map		*amp;
706 	ulong_t			anon_index;
707 	lgrp_mem_policy_info_t	*policy_info;
708 	struct spt_data		*spt_data;
709 
710 	ASSERT(seg != NULL);
711 
712 	/*
713 	 * Get anon_map from segspt
714 	 *
715 	 * Assume that no lock needs to be held on anon_map, since
716 	 * it should be protected by its reference count which must be
717 	 * nonzero for an existing segment
718 	 * Need to grab readers lock on policy tree though
719 	 */
720 	spt_data = (struct spt_data *)seg->s_data;
721 	if (spt_data == NULL)
722 		return (NULL);
723 	amp = spt_data->spt_amp;
724 	ASSERT(amp->refcnt != 0);
725 
726 	/*
727 	 * Get policy info
728 	 *
729 	 * Assume starting anon index of 0
730 	 */
731 	anon_index = seg_page(seg, addr);
732 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
733 
734 	return (policy_info);
735 }
736 
737 /*
738  * DISM only.
739  * Return locked pages over a given range.
740  *
741  * We will cache all DISM locked pages and save the pplist for the
742  * entire segment in the ppa field of the underlying DISM segment structure.
743  * Later, during a call to segspt_reclaim() we will use this ppa array
744  * to page_unlock() all of the pages and then we will free this ppa list.
745  */
746 /*ARGSUSED*/
747 static int
748 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
749     struct page ***ppp, enum lock_type type, enum seg_rw rw)
750 {
751 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
752 	struct  seg	*sptseg = shmd->shm_sptseg;
753 	struct  spt_data *sptd = sptseg->s_data;
754 	pgcnt_t pg_idx, npages, tot_npages, npgs;
755 	struct  page **pplist, **pl, **ppa, *pp;
756 	struct  anon_map *amp;
757 	spgcnt_t	an_idx;
758 	int 	ret = ENOTSUP;
759 	uint_t	pl_built = 0;
760 	struct  anon *ap;
761 	struct  vnode *vp;
762 	u_offset_t off;
763 	pgcnt_t claim_availrmem = 0;
764 	uint_t	szc;
765 
766 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
767 
768 	/*
769 	 * We want to lock/unlock the entire ISM segment. Therefore,
770 	 * we will be using the underlying sptseg and it's base address
771 	 * and length for the caching arguments.
772 	 */
773 	ASSERT(sptseg);
774 	ASSERT(sptd);
775 
776 	pg_idx = seg_page(seg, addr);
777 	npages = btopr(len);
778 
779 	/*
780 	 * check if the request is larger than number of pages covered
781 	 * by amp
782 	 */
783 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
784 		*ppp = NULL;
785 		return (ENOTSUP);
786 	}
787 
788 	if (type == L_PAGEUNLOCK) {
789 		ASSERT(sptd->spt_ppa != NULL);
790 
791 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
792 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
793 
794 		/*
795 		 * If someone is blocked while unmapping, we purge
796 		 * segment page cache and thus reclaim pplist synchronously
797 		 * without waiting for seg_pasync_thread. This speeds up
798 		 * unmapping in cases where munmap(2) is called, while
799 		 * raw async i/o is still in progress or where a thread
800 		 * exits on data fault in a multithreaded application.
801 		 */
802 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
803 			segspt_purge(seg);
804 		}
805 		return (0);
806 	} else if (type == L_PAGERECLAIM) {
807 		ASSERT(sptd->spt_ppa != NULL);
808 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
809 		    sptd->spt_ppa, sptd->spt_prot);
810 		return (0);
811 	}
812 
813 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
814 		segspt_purge(seg);
815 		/*
816 		 * for DISM ppa needs to be rebuild since
817 		 * number of locked pages could be changed
818 		 */
819 		*ppp = NULL;
820 		return (ENOTSUP);
821 	}
822 
823 	/*
824 	 * First try to find pages in segment page cache, without
825 	 * holding the segment lock.
826 	 */
827 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
828 	    sptd->spt_prot);
829 	if (pplist != NULL) {
830 		ASSERT(sptd->spt_ppa != NULL);
831 		ASSERT(sptd->spt_ppa == pplist);
832 		ppa = sptd->spt_ppa;
833 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
834 			if (ppa[an_idx] == NULL) {
835 				seg_pinactive(seg, seg->s_base,
836 				    sptd->spt_amp->size, ppa,
837 				    sptd->spt_prot, segspt_reclaim);
838 				*ppp = NULL;
839 				return (ENOTSUP);
840 			}
841 			if ((szc = ppa[an_idx]->p_szc) != 0) {
842 				npgs = page_get_pagecnt(szc);
843 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
844 			} else {
845 				an_idx++;
846 			}
847 		}
848 		/*
849 		 * Since we cache the entire DISM segment, we want to
850 		 * set ppp to point to the first slot that corresponds
851 		 * to the requested addr, i.e. pg_idx.
852 		 */
853 		*ppp = &(sptd->spt_ppa[pg_idx]);
854 		return (0);
855 	}
856 
857 	/* The L_PAGELOCK case... */
858 	mutex_enter(&sptd->spt_lock);
859 	/*
860 	 * try to find pages in segment page cache with mutex
861 	 */
862 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
863 	    sptd->spt_prot);
864 	if (pplist != NULL) {
865 		ASSERT(sptd->spt_ppa != NULL);
866 		ASSERT(sptd->spt_ppa == pplist);
867 		ppa = sptd->spt_ppa;
868 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
869 			if (ppa[an_idx] == NULL) {
870 				mutex_exit(&sptd->spt_lock);
871 				seg_pinactive(seg, seg->s_base,
872 				    sptd->spt_amp->size, ppa,
873 				    sptd->spt_prot, segspt_reclaim);
874 				*ppp = NULL;
875 				return (ENOTSUP);
876 			}
877 			if ((szc = ppa[an_idx]->p_szc) != 0) {
878 				npgs = page_get_pagecnt(szc);
879 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
880 			} else {
881 				an_idx++;
882 			}
883 		}
884 		/*
885 		 * Since we cache the entire DISM segment, we want to
886 		 * set ppp to point to the first slot that corresponds
887 		 * to the requested addr, i.e. pg_idx.
888 		 */
889 		mutex_exit(&sptd->spt_lock);
890 		*ppp = &(sptd->spt_ppa[pg_idx]);
891 		return (0);
892 	}
893 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
894 	    SEGP_FAIL) {
895 		mutex_exit(&sptd->spt_lock);
896 		*ppp = NULL;
897 		return (ENOTSUP);
898 	}
899 
900 	/*
901 	 * No need to worry about protections because DISM pages are always rw.
902 	 */
903 	pl = pplist = NULL;
904 	amp = sptd->spt_amp;
905 
906 	/*
907 	 * Do we need to build the ppa array?
908 	 */
909 	if (sptd->spt_ppa == NULL) {
910 		pgcnt_t lpg_cnt = 0;
911 
912 		pl_built = 1;
913 		tot_npages = btopr(sptd->spt_amp->size);
914 
915 		ASSERT(sptd->spt_pcachecnt == 0);
916 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
917 		pl = pplist;
918 
919 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
920 		for (an_idx = 0; an_idx < tot_npages; ) {
921 			ap = anon_get_ptr(amp->ahp, an_idx);
922 			/*
923 			 * Cache only mlocked pages. For large pages
924 			 * if one (constituent) page is mlocked
925 			 * all pages for that large page
926 			 * are cached also. This is for quick
927 			 * lookups of ppa array;
928 			 */
929 			if ((ap != NULL) && (lpg_cnt != 0 ||
930 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
931 
932 				swap_xlate(ap, &vp, &off);
933 				pp = page_lookup(vp, off, SE_SHARED);
934 				ASSERT(pp != NULL);
935 				if (lpg_cnt == 0) {
936 					npgs = page_get_pagecnt(pp->p_szc);
937 					if (!IS_P2ALIGNED(an_idx, npgs)) {
938 						an_idx = P2ALIGN(an_idx, npgs);
939 						page_unlock(pp);
940 						continue;
941 					}
942 				}
943 				if (++lpg_cnt == npgs)
944 					lpg_cnt = 0;
945 
946 				/*
947 				 * availrmem is decremented only
948 				 * for unlocked pages
949 				 */
950 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
951 					claim_availrmem++;
952 				pplist[an_idx] = pp;
953 			}
954 			an_idx++;
955 		}
956 		ANON_LOCK_EXIT(&amp->a_rwlock);
957 
958 		mutex_enter(&freemem_lock);
959 		if (availrmem < tune.t_minarmem + claim_availrmem) {
960 			mutex_exit(&freemem_lock);
961 			ret = FC_MAKE_ERR(ENOMEM);
962 			claim_availrmem = 0;
963 			goto insert_fail;
964 		} else {
965 			availrmem -= claim_availrmem;
966 		}
967 		mutex_exit(&freemem_lock);
968 
969 		sptd->spt_ppa = pl;
970 	} else {
971 		/*
972 		 * We already have a valid ppa[].
973 		 */
974 		pl = sptd->spt_ppa;
975 	}
976 
977 	ASSERT(pl != NULL);
978 
979 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
980 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
981 	    segspt_reclaim);
982 	if (ret == SEGP_FAIL) {
983 		/*
984 		 * seg_pinsert failed. We return
985 		 * ENOTSUP, so that the as_pagelock() code will
986 		 * then try the slower F_SOFTLOCK path.
987 		 */
988 		sptd->spt_ppa = NULL;
989 		ret = ENOTSUP;
990 		goto insert_fail;
991 	}
992 
993 	/*
994 	 * In either case, we increment softlockcnt on the 'real' segment.
995 	 */
996 	sptd->spt_pcachecnt++;
997 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
998 
999 	ppa = sptd->spt_ppa;
1000 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1001 		if (ppa[an_idx] == NULL) {
1002 			mutex_exit(&sptd->spt_lock);
1003 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1004 			    pl, sptd->spt_prot, segspt_reclaim);
1005 			*ppp = NULL;
1006 			return (ENOTSUP);
1007 		}
1008 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1009 			npgs = page_get_pagecnt(szc);
1010 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1011 		} else {
1012 			an_idx++;
1013 		}
1014 	}
1015 	/*
1016 	 * We can now drop the sptd->spt_lock since the ppa[]
1017 	 * exists and he have incremented pacachecnt.
1018 	 */
1019 	mutex_exit(&sptd->spt_lock);
1020 
1021 	/*
1022 	 * Since we cache the entire segment, we want to
1023 	 * set ppp to point to the first slot that corresponds
1024 	 * to the requested addr, i.e. pg_idx.
1025 	 */
1026 	*ppp = &(sptd->spt_ppa[pg_idx]);
1027 	return (ret);
1028 
1029 insert_fail:
1030 	/*
1031 	 * We will only reach this code if we tried and failed.
1032 	 *
1033 	 * And we can drop the lock on the dummy seg, once we've failed
1034 	 * to set up a new ppa[].
1035 	 */
1036 	mutex_exit(&sptd->spt_lock);
1037 
1038 	if (pl_built) {
1039 		mutex_enter(&freemem_lock);
1040 		availrmem += claim_availrmem;
1041 		mutex_exit(&freemem_lock);
1042 
1043 		/*
1044 		 * We created pl and we need to destroy it.
1045 		 */
1046 		pplist = pl;
1047 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1048 			if (pplist[an_idx] != NULL)
1049 				page_unlock(pplist[an_idx]);
1050 		}
1051 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1052 	}
1053 
1054 	if (shmd->shm_softlockcnt <= 0) {
1055 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1056 			mutex_enter(&seg->s_as->a_contents);
1057 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1058 				AS_CLRUNMAPWAIT(seg->s_as);
1059 				cv_broadcast(&seg->s_as->a_cv);
1060 			}
1061 			mutex_exit(&seg->s_as->a_contents);
1062 		}
1063 	}
1064 	*ppp = NULL;
1065 	return (ret);
1066 }
1067 
1068 
1069 
1070 /*
1071  * return locked pages over a given range.
1072  *
1073  * We will cache the entire ISM segment and save the pplist for the
1074  * entire segment in the ppa field of the underlying ISM segment structure.
1075  * Later, during a call to segspt_reclaim() we will use this ppa array
1076  * to page_unlock() all of the pages and then we will free this ppa list.
1077  */
1078 /*ARGSUSED*/
1079 static int
1080 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1081     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1082 {
1083 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1084 	struct seg	*sptseg = shmd->shm_sptseg;
1085 	struct spt_data *sptd = sptseg->s_data;
1086 	pgcnt_t np, page_index, npages;
1087 	caddr_t a, spt_base;
1088 	struct page **pplist, **pl, *pp;
1089 	struct anon_map *amp;
1090 	ulong_t anon_index;
1091 	int ret = ENOTSUP;
1092 	uint_t	pl_built = 0;
1093 	struct anon *ap;
1094 	struct vnode *vp;
1095 	u_offset_t off;
1096 
1097 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1098 
1099 	/*
1100 	 * We want to lock/unlock the entire ISM segment. Therefore,
1101 	 * we will be using the underlying sptseg and it's base address
1102 	 * and length for the caching arguments.
1103 	 */
1104 	ASSERT(sptseg);
1105 	ASSERT(sptd);
1106 
1107 	if (sptd->spt_flags & SHM_PAGEABLE) {
1108 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1109 	}
1110 
1111 	page_index = seg_page(seg, addr);
1112 	npages = btopr(len);
1113 
1114 	/*
1115 	 * check if the request is larger than number of pages covered
1116 	 * by amp
1117 	 */
1118 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1119 		*ppp = NULL;
1120 		return (ENOTSUP);
1121 	}
1122 
1123 	if (type == L_PAGEUNLOCK) {
1124 
1125 		ASSERT(sptd->spt_ppa != NULL);
1126 
1127 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1128 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1129 
1130 		/*
1131 		 * If someone is blocked while unmapping, we purge
1132 		 * segment page cache and thus reclaim pplist synchronously
1133 		 * without waiting for seg_pasync_thread. This speeds up
1134 		 * unmapping in cases where munmap(2) is called, while
1135 		 * raw async i/o is still in progress or where a thread
1136 		 * exits on data fault in a multithreaded application.
1137 		 */
1138 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1139 			segspt_purge(seg);
1140 		}
1141 		return (0);
1142 	} else if (type == L_PAGERECLAIM) {
1143 		ASSERT(sptd->spt_ppa != NULL);
1144 
1145 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1146 		    sptd->spt_ppa, sptd->spt_prot);
1147 		return (0);
1148 	}
1149 
1150 	/*
1151 	 * First try to find pages in segment page cache, without
1152 	 * holding the segment lock.
1153 	 */
1154 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1155 	    sptd->spt_prot);
1156 	if (pplist != NULL) {
1157 		ASSERT(sptd->spt_ppa == pplist);
1158 		ASSERT(sptd->spt_ppa[page_index]);
1159 		/*
1160 		 * Since we cache the entire ISM segment, we want to
1161 		 * set ppp to point to the first slot that corresponds
1162 		 * to the requested addr, i.e. page_index.
1163 		 */
1164 		*ppp = &(sptd->spt_ppa[page_index]);
1165 		return (0);
1166 	}
1167 
1168 	/* The L_PAGELOCK case... */
1169 	mutex_enter(&sptd->spt_lock);
1170 
1171 	/*
1172 	 * try to find pages in segment page cache
1173 	 */
1174 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1175 	    sptd->spt_prot);
1176 	if (pplist != NULL) {
1177 		ASSERT(sptd->spt_ppa == pplist);
1178 		/*
1179 		 * Since we cache the entire segment, we want to
1180 		 * set ppp to point to the first slot that corresponds
1181 		 * to the requested addr, i.e. page_index.
1182 		 */
1183 		mutex_exit(&sptd->spt_lock);
1184 		*ppp = &(sptd->spt_ppa[page_index]);
1185 		return (0);
1186 	}
1187 
1188 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1189 	    SEGP_FAIL) {
1190 		mutex_exit(&sptd->spt_lock);
1191 		*ppp = NULL;
1192 		return (ENOTSUP);
1193 	}
1194 
1195 	/*
1196 	 * No need to worry about protections because ISM pages
1197 	 * are always rw.
1198 	 */
1199 	pl = pplist = NULL;
1200 
1201 	/*
1202 	 * Do we need to build the ppa array?
1203 	 */
1204 	if (sptd->spt_ppa == NULL) {
1205 		ASSERT(sptd->spt_ppa == pplist);
1206 
1207 		spt_base = sptseg->s_base;
1208 		pl_built = 1;
1209 
1210 		/*
1211 		 * availrmem is decremented once during anon_swap_adjust()
1212 		 * and is incremented during the anon_unresv(), which is
1213 		 * called from shm_rm_amp() when the segment is destroyed.
1214 		 */
1215 		amp = sptd->spt_amp;
1216 		ASSERT(amp != NULL);
1217 
1218 		/* pcachecnt is protected by sptd->spt_lock */
1219 		ASSERT(sptd->spt_pcachecnt == 0);
1220 		pplist = kmem_zalloc(sizeof (page_t *)
1221 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1222 		pl = pplist;
1223 
1224 		anon_index = seg_page(sptseg, spt_base);
1225 
1226 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1227 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1228 		    a += PAGESIZE, anon_index++, pplist++) {
1229 			ap = anon_get_ptr(amp->ahp, anon_index);
1230 			ASSERT(ap != NULL);
1231 			swap_xlate(ap, &vp, &off);
1232 			pp = page_lookup(vp, off, SE_SHARED);
1233 			ASSERT(pp != NULL);
1234 			*pplist = pp;
1235 		}
1236 		ANON_LOCK_EXIT(&amp->a_rwlock);
1237 
1238 		if (a < (spt_base + sptd->spt_amp->size)) {
1239 			ret = ENOTSUP;
1240 			goto insert_fail;
1241 		}
1242 		sptd->spt_ppa = pl;
1243 	} else {
1244 		/*
1245 		 * We already have a valid ppa[].
1246 		 */
1247 		pl = sptd->spt_ppa;
1248 	}
1249 
1250 	ASSERT(pl != NULL);
1251 
1252 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1253 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1254 	if (ret == SEGP_FAIL) {
1255 		/*
1256 		 * seg_pinsert failed. We return
1257 		 * ENOTSUP, so that the as_pagelock() code will
1258 		 * then try the slower F_SOFTLOCK path.
1259 		 */
1260 		if (pl_built) {
1261 			/*
1262 			 * No one else has referenced the ppa[].
1263 			 * We created it and we need to destroy it.
1264 			 */
1265 			sptd->spt_ppa = NULL;
1266 		}
1267 		ret = ENOTSUP;
1268 		goto insert_fail;
1269 	}
1270 
1271 	/*
1272 	 * In either case, we increment softlockcnt on the 'real' segment.
1273 	 */
1274 	sptd->spt_pcachecnt++;
1275 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1276 
1277 	/*
1278 	 * We can now drop the sptd->spt_lock since the ppa[]
1279 	 * exists and he have incremented pacachecnt.
1280 	 */
1281 	mutex_exit(&sptd->spt_lock);
1282 
1283 	/*
1284 	 * Since we cache the entire segment, we want to
1285 	 * set ppp to point to the first slot that corresponds
1286 	 * to the requested addr, i.e. page_index.
1287 	 */
1288 	*ppp = &(sptd->spt_ppa[page_index]);
1289 	return (ret);
1290 
1291 insert_fail:
1292 	/*
1293 	 * We will only reach this code if we tried and failed.
1294 	 *
1295 	 * And we can drop the lock on the dummy seg, once we've failed
1296 	 * to set up a new ppa[].
1297 	 */
1298 	mutex_exit(&sptd->spt_lock);
1299 
1300 	if (pl_built) {
1301 		/*
1302 		 * We created pl and we need to destroy it.
1303 		 */
1304 		pplist = pl;
1305 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1306 		while (np) {
1307 			page_unlock(*pplist);
1308 			np--;
1309 			pplist++;
1310 		}
1311 		kmem_free(pl, sizeof (page_t *) *
1312 				btopr(sptd->spt_amp->size));
1313 	}
1314 	if (shmd->shm_softlockcnt <= 0) {
1315 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1316 			mutex_enter(&seg->s_as->a_contents);
1317 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1318 				AS_CLRUNMAPWAIT(seg->s_as);
1319 				cv_broadcast(&seg->s_as->a_cv);
1320 			}
1321 			mutex_exit(&seg->s_as->a_contents);
1322 		}
1323 	}
1324 	*ppp = NULL;
1325 	return (ret);
1326 }
1327 
1328 /*
1329  * purge any cached pages in the I/O page cache
1330  */
1331 static void
1332 segspt_purge(struct seg *seg)
1333 {
1334 	seg_ppurge(seg);
1335 }
1336 
1337 static int
1338 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1339 	enum seg_rw rw)
1340 {
1341 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1342 	struct	seg	*sptseg;
1343 	struct	spt_data *sptd;
1344 	pgcnt_t npages, i, free_availrmem = 0;
1345 	int	done = 0;
1346 
1347 #ifdef lint
1348 	addr = addr;
1349 #endif
1350 	sptseg = shmd->shm_sptseg;
1351 	sptd = sptseg->s_data;
1352 	npages = (len >> PAGESHIFT);
1353 	ASSERT(npages);
1354 	ASSERT(sptd->spt_pcachecnt != 0);
1355 	ASSERT(sptd->spt_ppa == pplist);
1356 	ASSERT(npages == btopr(sptd->spt_amp->size));
1357 
1358 	/*
1359 	 * Acquire the lock on the dummy seg and destroy the
1360 	 * ppa array IF this is the last pcachecnt.
1361 	 */
1362 	mutex_enter(&sptd->spt_lock);
1363 	if (--sptd->spt_pcachecnt == 0) {
1364 		for (i = 0; i < npages; i++) {
1365 			if (pplist[i] == NULL) {
1366 				continue;
1367 			}
1368 			if (rw == S_WRITE) {
1369 				hat_setrefmod(pplist[i]);
1370 			} else {
1371 				hat_setref(pplist[i]);
1372 			}
1373 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1374 				(sptd->spt_ppa_lckcnt[i] == 0))
1375 				free_availrmem++;
1376 			page_unlock(pplist[i]);
1377 		}
1378 		if (sptd->spt_flags & SHM_PAGEABLE) {
1379 			mutex_enter(&freemem_lock);
1380 			availrmem += free_availrmem;
1381 			mutex_exit(&freemem_lock);
1382 		}
1383 		/*
1384 		 * Since we want to cach/uncache the entire ISM segment,
1385 		 * we will track the pplist in a segspt specific field
1386 		 * ppa, that is initialized at the time we add an entry to
1387 		 * the cache.
1388 		 */
1389 		ASSERT(sptd->spt_pcachecnt == 0);
1390 		kmem_free(pplist, sizeof (page_t *) * npages);
1391 		sptd->spt_ppa = NULL;
1392 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1393 		done = 1;
1394 	}
1395 	mutex_exit(&sptd->spt_lock);
1396 	/*
1397 	 * Now decrement softlockcnt.
1398 	 */
1399 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1400 
1401 	if (shmd->shm_softlockcnt <= 0) {
1402 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1403 			mutex_enter(&seg->s_as->a_contents);
1404 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1405 				AS_CLRUNMAPWAIT(seg->s_as);
1406 				cv_broadcast(&seg->s_as->a_cv);
1407 			}
1408 			mutex_exit(&seg->s_as->a_contents);
1409 		}
1410 	}
1411 	return (done);
1412 }
1413 
1414 /*
1415  * Do a F_SOFTUNLOCK call over the range requested.
1416  * The range must have already been F_SOFTLOCK'ed.
1417  *
1418  * The calls to acquire and release the anon map lock mutex were
1419  * removed in order to avoid a deadly embrace during a DR
1420  * memory delete operation.  (Eg. DR blocks while waiting for a
1421  * exclusive lock on a page that is being used for kaio; the
1422  * thread that will complete the kaio and call segspt_softunlock
1423  * blocks on the anon map lock; another thread holding the anon
1424  * map lock blocks on another page lock via the segspt_shmfault
1425  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1426  *
1427  * The appropriateness of the removal is based upon the following:
1428  * 1. If we are holding a segment's reader lock and the page is held
1429  * shared, then the corresponding element in anonmap which points to
1430  * anon struct cannot change and there is no need to acquire the
1431  * anonymous map lock.
1432  * 2. Threads in segspt_softunlock have a reader lock on the segment
1433  * and already have the shared page lock, so we are guaranteed that
1434  * the anon map slot cannot change and therefore can call anon_get_ptr()
1435  * without grabbing the anonymous map lock.
1436  * 3. Threads that softlock a shared page break copy-on-write, even if
1437  * its a read.  Thus cow faults can be ignored with respect to soft
1438  * unlocking, since the breaking of cow means that the anon slot(s) will
1439  * not be shared.
1440  */
1441 static void
1442 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1443 	size_t len, enum seg_rw rw)
1444 {
1445 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1446 	struct seg	*sptseg;
1447 	struct spt_data *sptd;
1448 	page_t *pp;
1449 	caddr_t adr;
1450 	struct vnode *vp;
1451 	u_offset_t offset;
1452 	ulong_t anon_index;
1453 	struct anon_map *amp;		/* XXX - for locknest */
1454 	struct anon *ap = NULL;
1455 	pgcnt_t npages;
1456 
1457 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1458 
1459 	sptseg = shmd->shm_sptseg;
1460 	sptd = sptseg->s_data;
1461 
1462 	/*
1463 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1464 	 * and therefore their pages are SE_SHARED locked
1465 	 * for the entire life of the segment.
1466 	 */
1467 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1468 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1469 		goto softlock_decrement;
1470 	}
1471 
1472 	/*
1473 	 * Any thread is free to do a page_find and
1474 	 * page_unlock() on the pages within this seg.
1475 	 *
1476 	 * We are already holding the as->a_lock on the user's
1477 	 * real segment, but we need to hold the a_lock on the
1478 	 * underlying dummy as. This is mostly to satisfy the
1479 	 * underlying HAT layer.
1480 	 */
1481 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1482 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1483 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1484 
1485 	amp = sptd->spt_amp;
1486 	ASSERT(amp != NULL);
1487 	anon_index = seg_page(sptseg, sptseg_addr);
1488 
1489 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1490 		ap = anon_get_ptr(amp->ahp, anon_index++);
1491 		ASSERT(ap != NULL);
1492 		swap_xlate(ap, &vp, &offset);
1493 
1494 		/*
1495 		 * Use page_find() instead of page_lookup() to
1496 		 * find the page since we know that it has a
1497 		 * "shared" lock.
1498 		 */
1499 		pp = page_find(vp, offset);
1500 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1501 		if (pp == NULL) {
1502 			panic("segspt_softunlock: "
1503 			    "addr %p, ap %p, vp %p, off %llx",
1504 			    (void *)adr, (void *)ap, (void *)vp, offset);
1505 			/*NOTREACHED*/
1506 		}
1507 
1508 		if (rw == S_WRITE) {
1509 			hat_setrefmod(pp);
1510 		} else if (rw != S_OTHER) {
1511 			hat_setref(pp);
1512 		}
1513 		page_unlock(pp);
1514 	}
1515 
1516 softlock_decrement:
1517 	npages = btopr(len);
1518 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1519 	if (shmd->shm_softlockcnt == 0) {
1520 		/*
1521 		 * All SOFTLOCKS are gone. Wakeup any waiting
1522 		 * unmappers so they can try again to unmap.
1523 		 * Check for waiters first without the mutex
1524 		 * held so we don't always grab the mutex on
1525 		 * softunlocks.
1526 		 */
1527 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1528 			mutex_enter(&seg->s_as->a_contents);
1529 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1530 				AS_CLRUNMAPWAIT(seg->s_as);
1531 				cv_broadcast(&seg->s_as->a_cv);
1532 			}
1533 			mutex_exit(&seg->s_as->a_contents);
1534 		}
1535 	}
1536 }
1537 
1538 int
1539 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1540 {
1541 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1542 	struct shm_data *shmd;
1543 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1544 	struct spt_data *sptd;
1545 	int error = 0;
1546 
1547 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1548 
1549 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1550 	if (shmd == NULL)
1551 		return (ENOMEM);
1552 
1553 	shmd->shm_sptas = shmd_arg->shm_sptas;
1554 	shmd->shm_amp = shm_amp;
1555 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1556 
1557 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1558 	    NULL, 0, seg->s_size);
1559 
1560 	seg->s_data = (void *)shmd;
1561 	seg->s_ops = &segspt_shmops;
1562 	seg->s_szc = shmd->shm_sptseg->s_szc;
1563 	sptd = shmd->shm_sptseg->s_data;
1564 
1565 	if (sptd->spt_flags & SHM_PAGEABLE) {
1566 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1567 		    KM_NOSLEEP)) == NULL) {
1568 			seg->s_data = (void *)NULL;
1569 			kmem_free(shmd, (sizeof (*shmd)));
1570 			return (ENOMEM);
1571 		}
1572 		shmd->shm_lckpgs = 0;
1573 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1574 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1575 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1576 			    seg->s_size, seg->s_szc)) != 0) {
1577 				kmem_free(shmd->shm_vpage,
1578 					btopr(shm_amp->size));
1579 			}
1580 		}
1581 	} else {
1582 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1583 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1584 				seg->s_size, seg->s_szc);
1585 	}
1586 	if (error) {
1587 		seg->s_szc = 0;
1588 		seg->s_data = (void *)NULL;
1589 		kmem_free(shmd, (sizeof (*shmd)));
1590 	} else {
1591 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1592 		shm_amp->refcnt++;
1593 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1594 	}
1595 	return (error);
1596 }
1597 
1598 int
1599 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1600 {
1601 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1602 	int reclaim = 1;
1603 
1604 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1605 retry:
1606 	if (shmd->shm_softlockcnt > 0) {
1607 		if (reclaim == 1) {
1608 			segspt_purge(seg);
1609 			reclaim = 0;
1610 			goto retry;
1611 		}
1612 		return (EAGAIN);
1613 	}
1614 
1615 	if (ssize != seg->s_size) {
1616 #ifdef DEBUG
1617 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1618 		    ssize, seg->s_size);
1619 #endif
1620 		return (EINVAL);
1621 	}
1622 
1623 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1624 	    NULL, 0);
1625 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1626 
1627 	seg_free(seg);
1628 
1629 	return (0);
1630 }
1631 
1632 void
1633 segspt_shmfree(struct seg *seg)
1634 {
1635 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1636 	struct anon_map *shm_amp = shmd->shm_amp;
1637 
1638 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1639 
1640 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1641 		MC_UNLOCK, NULL, 0);
1642 
1643 	/*
1644 	 * Need to increment refcnt when attaching
1645 	 * and decrement when detaching because of dup().
1646 	 */
1647 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1648 	shm_amp->refcnt--;
1649 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1650 
1651 	if (shmd->shm_vpage) {	/* only for DISM */
1652 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1653 		shmd->shm_vpage = NULL;
1654 	}
1655 	kmem_free(shmd, sizeof (*shmd));
1656 }
1657 
1658 /*ARGSUSED*/
1659 int
1660 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1661 {
1662 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1663 
1664 	/*
1665 	 * Shared page table is more than shared mapping.
1666 	 *  Individual process sharing page tables can't change prot
1667 	 *  because there is only one set of page tables.
1668 	 *  This will be allowed after private page table is
1669 	 *  supported.
1670 	 */
1671 /* need to return correct status error? */
1672 	return (0);
1673 }
1674 
1675 
1676 faultcode_t
1677 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1678     size_t len, enum fault_type type, enum seg_rw rw)
1679 {
1680 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1681 	struct  seg		*sptseg = shmd->shm_sptseg;
1682 	struct  as		*curspt = shmd->shm_sptas;
1683 	struct  spt_data 	*sptd = sptseg->s_data;
1684 	pgcnt_t npages;
1685 	size_t  share_sz, size;
1686 	caddr_t segspt_addr, shm_addr;
1687 	page_t  **ppa;
1688 	int	i;
1689 	ulong_t an_idx = 0;
1690 	int	err = 0;
1691 
1692 #ifdef lint
1693 	hat = hat;
1694 #endif
1695 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1696 
1697 	/*
1698 	 * Because of the way spt is implemented
1699 	 * the realsize of the segment does not have to be
1700 	 * equal to the segment size itself. The segment size is
1701 	 * often in multiples of a page size larger than PAGESIZE.
1702 	 * The realsize is rounded up to the nearest PAGESIZE
1703 	 * based on what the user requested. This is a bit of
1704 	 * ungliness that is historical but not easily fixed
1705 	 * without re-designing the higher levels of ISM.
1706 	 */
1707 	ASSERT(addr >= seg->s_base);
1708 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1709 		return (FC_NOMAP);
1710 	/*
1711 	 * For all of the following cases except F_PROT, we need to
1712 	 * make any necessary adjustments to addr and len
1713 	 * and get all of the necessary page_t's into an array called ppa[].
1714 	 *
1715 	 * The code in shmat() forces base addr and len of ISM segment
1716 	 * to be aligned to largest page size supported. Therefore,
1717 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1718 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1719 	 * in large pagesize chunks, or else we will screw up the HAT
1720 	 * layer by calling hat_memload_array() with differing page sizes
1721 	 * over a given virtual range.
1722 	 */
1723 	share_sz = page_get_pagesize(sptseg->s_szc);
1724 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
1725 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_sz);
1726 	npages = btopr(size);
1727 
1728 	/*
1729 	 * Now we need to convert from addr in segshm to addr in segspt.
1730 	 */
1731 	an_idx = seg_page(seg, shm_addr);
1732 	segspt_addr = sptseg->s_base + ptob(an_idx);
1733 
1734 	ASSERT((segspt_addr + ptob(npages)) <=
1735 		(sptseg->s_base + sptd->spt_realsize));
1736 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1737 
1738 	switch (type) {
1739 
1740 	case F_SOFTLOCK:
1741 
1742 		mutex_enter(&freemem_lock);
1743 		if (availrmem < tune.t_minarmem + npages) {
1744 			mutex_exit(&freemem_lock);
1745 			return (FC_MAKE_ERR(ENOMEM));
1746 		} else {
1747 			availrmem -= npages;
1748 		}
1749 		mutex_exit(&freemem_lock);
1750 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1751 		/*
1752 		 * Fall through to the F_INVAL case to load up the hat layer
1753 		 * entries with the HAT_LOAD_LOCK flag.
1754 		 */
1755 		/* FALLTHRU */
1756 	case F_INVAL:
1757 
1758 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1759 			return (FC_NOMAP);
1760 
1761 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1762 
1763 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1764 		if (err != 0) {
1765 			if (type == F_SOFTLOCK) {
1766 				mutex_enter(&freemem_lock);
1767 				availrmem += npages;
1768 				mutex_exit(&freemem_lock);
1769 				atomic_add_long((ulong_t *)(
1770 				    &(shmd->shm_softlockcnt)), -npages);
1771 			}
1772 			goto dism_err;
1773 		}
1774 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1775 		if (type == F_SOFTLOCK) {
1776 
1777 			/*
1778 			 * Load up the translation keeping it
1779 			 * locked and don't unlock the page.
1780 			 */
1781 			hat_memload_array(sptseg->s_as->a_hat, segspt_addr,
1782 			    size, ppa, sptd->spt_prot,
1783 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1784 		} else {
1785 			if (hat == seg->s_as->a_hat) {
1786 
1787 				/*
1788 				 * Migrate pages marked for migration
1789 				 */
1790 				if (lgrp_optimizations())
1791 					page_migrate(seg, shm_addr, ppa,
1792 					    npages);
1793 
1794 				/* CPU HAT */
1795 				hat_memload_array(sptseg->s_as->a_hat,
1796 				    segspt_addr, size, ppa, sptd->spt_prot,
1797 				    HAT_LOAD_SHARE);
1798 			} else {
1799 				/* XHAT. Pass real address */
1800 				hat_memload_array(hat, shm_addr,
1801 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1802 			}
1803 
1804 			/*
1805 			 * And now drop the SE_SHARED lock(s).
1806 			 */
1807 			for (i = 0; i < npages; i++)
1808 				page_unlock(ppa[i]);
1809 		}
1810 
1811 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1812 			if (hat_share(seg->s_as->a_hat, shm_addr,
1813 			    curspt->a_hat, segspt_addr, ptob(npages),
1814 			    seg->s_szc) != 0) {
1815 				panic("hat_share err in DISM fault");
1816 				/* NOTREACHED */
1817 			}
1818 		}
1819 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1820 dism_err:
1821 		kmem_free(ppa, npages * sizeof (page_t *));
1822 		return (err);
1823 
1824 	case F_SOFTUNLOCK:
1825 
1826 		mutex_enter(&freemem_lock);
1827 		availrmem += npages;
1828 		mutex_exit(&freemem_lock);
1829 
1830 		/*
1831 		 * This is a bit ugly, we pass in the real seg pointer,
1832 		 * but the segspt_addr is the virtual address within the
1833 		 * dummy seg.
1834 		 */
1835 		segspt_softunlock(seg, segspt_addr, size, rw);
1836 		return (0);
1837 
1838 	case F_PROT:
1839 
1840 		/*
1841 		 * This takes care of the unusual case where a user
1842 		 * allocates a stack in shared memory and a register
1843 		 * window overflow is written to that stack page before
1844 		 * it is otherwise modified.
1845 		 *
1846 		 * We can get away with this because ISM segments are
1847 		 * always rw. Other than this unusual case, there
1848 		 * should be no instances of protection violations.
1849 		 */
1850 		return (0);
1851 
1852 	default:
1853 #ifdef DEBUG
1854 		panic("segspt_dismfault default type?");
1855 #else
1856 		return (FC_NOMAP);
1857 #endif
1858 	}
1859 }
1860 
1861 
1862 faultcode_t
1863 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1864     size_t len, enum fault_type type, enum seg_rw rw)
1865 {
1866 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1867 	struct seg		*sptseg = shmd->shm_sptseg;
1868 	struct as		*curspt = shmd->shm_sptas;
1869 	struct spt_data 	*sptd   = sptseg->s_data;
1870 	pgcnt_t npages;
1871 	size_t share_size, size;
1872 	caddr_t sptseg_addr, shm_addr;
1873 	page_t *pp, **ppa;
1874 	int	i;
1875 	u_offset_t offset;
1876 	ulong_t anon_index = 0;
1877 	struct vnode *vp;
1878 	struct anon_map *amp;		/* XXX - for locknest */
1879 	struct anon *ap = NULL;
1880 	anon_sync_obj_t cookie;
1881 
1882 #ifdef lint
1883 	hat = hat;
1884 #endif
1885 
1886 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1887 
1888 	if (sptd->spt_flags & SHM_PAGEABLE) {
1889 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
1890 	}
1891 
1892 	/*
1893 	 * Because of the way spt is implemented
1894 	 * the realsize of the segment does not have to be
1895 	 * equal to the segment size itself. The segment size is
1896 	 * often in multiples of a page size larger than PAGESIZE.
1897 	 * The realsize is rounded up to the nearest PAGESIZE
1898 	 * based on what the user requested. This is a bit of
1899 	 * ungliness that is historical but not easily fixed
1900 	 * without re-designing the higher levels of ISM.
1901 	 */
1902 	ASSERT(addr >= seg->s_base);
1903 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1904 		return (FC_NOMAP);
1905 	/*
1906 	 * For all of the following cases except F_PROT, we need to
1907 	 * make any necessary adjustments to addr and len
1908 	 * and get all of the necessary page_t's into an array called ppa[].
1909 	 *
1910 	 * The code in shmat() forces base addr and len of ISM segment
1911 	 * to be aligned to largest page size supported. Therefore,
1912 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1913 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1914 	 * in large pagesize chunks, or else we will screw up the HAT
1915 	 * layer by calling hat_memload_array() with differing page sizes
1916 	 * over a given virtual range.
1917 	 */
1918 	share_size = page_get_pagesize(sptseg->s_szc);
1919 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
1920 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_size);
1921 	npages = btopr(size);
1922 
1923 	/*
1924 	 * Now we need to convert from addr in segshm to addr in segspt.
1925 	 */
1926 	anon_index = seg_page(seg, shm_addr);
1927 	sptseg_addr = sptseg->s_base + ptob(anon_index);
1928 
1929 	/*
1930 	 * And now we may have to adjust npages downward if we have
1931 	 * exceeded the realsize of the segment or initial anon
1932 	 * allocations.
1933 	 */
1934 	if ((sptseg_addr + ptob(npages)) >
1935 	    (sptseg->s_base + sptd->spt_realsize))
1936 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
1937 
1938 	npages = btopr(size);
1939 
1940 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
1941 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
1942 
1943 	switch (type) {
1944 
1945 	case F_SOFTLOCK:
1946 
1947 		/*
1948 		 * availrmem is decremented once during anon_swap_adjust()
1949 		 * and is incremented during the anon_unresv(), which is
1950 		 * called from shm_rm_amp() when the segment is destroyed.
1951 		 */
1952 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1953 		/*
1954 		 * Some platforms assume that ISM pages are SE_SHARED
1955 		 * locked for the entire life of the segment.
1956 		 */
1957 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
1958 			return (0);
1959 		/*
1960 		 * Fall through to the F_INVAL case to load up the hat layer
1961 		 * entries with the HAT_LOAD_LOCK flag.
1962 		 */
1963 
1964 		/* FALLTHRU */
1965 	case F_INVAL:
1966 
1967 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1968 			return (FC_NOMAP);
1969 
1970 		/*
1971 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
1972 		 * may still rely on this call to hat_share(). That
1973 		 * would imply that those hat's can fault on a
1974 		 * HAT_LOAD_LOCK translation, which would seem
1975 		 * contradictory.
1976 		 */
1977 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1978 			if (hat_share(seg->s_as->a_hat, seg->s_base,
1979 			    curspt->a_hat, sptseg->s_base,
1980 			    sptseg->s_size, sptseg->s_szc) != 0) {
1981 				panic("hat_share error in ISM fault");
1982 				/*NOTREACHED*/
1983 			}
1984 			return (0);
1985 		}
1986 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
1987 
1988 		/*
1989 		 * I see no need to lock the real seg,
1990 		 * here, because all of our work will be on the underlying
1991 		 * dummy seg.
1992 		 *
1993 		 * sptseg_addr and npages now account for large pages.
1994 		 */
1995 		amp = sptd->spt_amp;
1996 		ASSERT(amp != NULL);
1997 		anon_index = seg_page(sptseg, sptseg_addr);
1998 
1999 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2000 		for (i = 0; i < npages; i++) {
2001 			anon_array_enter(amp, anon_index, &cookie);
2002 			ap = anon_get_ptr(amp->ahp, anon_index++);
2003 			ASSERT(ap != NULL);
2004 			swap_xlate(ap, &vp, &offset);
2005 			anon_array_exit(&cookie);
2006 			pp = page_lookup(vp, offset, SE_SHARED);
2007 			ASSERT(pp != NULL);
2008 			ppa[i] = pp;
2009 		}
2010 		ANON_LOCK_EXIT(&amp->a_rwlock);
2011 		ASSERT(i == npages);
2012 
2013 		/*
2014 		 * We are already holding the as->a_lock on the user's
2015 		 * real segment, but we need to hold the a_lock on the
2016 		 * underlying dummy as. This is mostly to satisfy the
2017 		 * underlying HAT layer.
2018 		 */
2019 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2020 		if (type == F_SOFTLOCK) {
2021 			/*
2022 			 * Load up the translation keeping it
2023 			 * locked and don't unlock the page.
2024 			 */
2025 			hat_memload_array(sptseg->s_as->a_hat, sptseg_addr,
2026 			    ptob(npages), ppa, sptd->spt_prot,
2027 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2028 		} else {
2029 			if (hat == seg->s_as->a_hat) {
2030 
2031 				/*
2032 				 * Migrate pages marked for migration.
2033 				 */
2034 				if (lgrp_optimizations())
2035 					page_migrate(seg, shm_addr, ppa,
2036 					    npages);
2037 
2038 				/* CPU HAT */
2039 				hat_memload_array(sptseg->s_as->a_hat,
2040 				    sptseg_addr, ptob(npages), ppa,
2041 				    sptd->spt_prot, HAT_LOAD_SHARE);
2042 			} else {
2043 				/* XHAT. Pass real address */
2044 				hat_memload_array(hat, shm_addr,
2045 				    ptob(npages), ppa, sptd->spt_prot,
2046 				    HAT_LOAD_SHARE);
2047 			}
2048 
2049 			/*
2050 			 * And now drop the SE_SHARED lock(s).
2051 			 */
2052 			for (i = 0; i < npages; i++)
2053 				page_unlock(ppa[i]);
2054 		}
2055 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2056 
2057 		kmem_free(ppa, sizeof (page_t *) * npages);
2058 		return (0);
2059 	case F_SOFTUNLOCK:
2060 
2061 		/*
2062 		 * This is a bit ugly, we pass in the real seg pointer,
2063 		 * but the sptseg_addr is the virtual address within the
2064 		 * dummy seg.
2065 		 */
2066 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2067 		return (0);
2068 
2069 	case F_PROT:
2070 
2071 		/*
2072 		 * This takes care of the unusual case where a user
2073 		 * allocates a stack in shared memory and a register
2074 		 * window overflow is written to that stack page before
2075 		 * it is otherwise modified.
2076 		 *
2077 		 * We can get away with this because ISM segments are
2078 		 * always rw. Other than this unusual case, there
2079 		 * should be no instances of protection violations.
2080 		 */
2081 		return (0);
2082 
2083 	default:
2084 #ifdef DEBUG
2085 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2086 #endif
2087 		return (FC_NOMAP);
2088 	}
2089 }
2090 
2091 /*ARGSUSED*/
2092 static faultcode_t
2093 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2094 {
2095 	return (0);
2096 }
2097 
2098 /*ARGSUSED*/
2099 static int
2100 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2101 {
2102 	return (0);
2103 }
2104 
2105 /*ARGSUSED*/
2106 static size_t
2107 segspt_shmswapout(struct seg *seg)
2108 {
2109 	return (0);
2110 }
2111 
2112 /*
2113  * duplicate the shared page tables
2114  */
2115 int
2116 segspt_shmdup(struct seg *seg, struct seg *newseg)
2117 {
2118 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2119 	struct anon_map 	*amp = shmd->shm_amp;
2120 	struct shm_data 	*shmd_new;
2121 	struct seg		*spt_seg = shmd->shm_sptseg;
2122 	struct spt_data		*sptd = spt_seg->s_data;
2123 
2124 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2125 
2126 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2127 	newseg->s_data = (void *)shmd_new;
2128 	shmd_new->shm_sptas = shmd->shm_sptas;
2129 	shmd_new->shm_amp = amp;
2130 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2131 	newseg->s_ops = &segspt_shmops;
2132 	newseg->s_szc = seg->s_szc;
2133 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2134 
2135 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2136 	amp->refcnt++;
2137 	ANON_LOCK_EXIT(&amp->a_rwlock);
2138 
2139 	if (sptd->spt_flags & SHM_PAGEABLE) {
2140 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2141 		shmd_new->shm_lckpgs = 0;
2142 	}
2143 	return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2144 	    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size, seg->s_szc));
2145 }
2146 
2147 /*ARGSUSED*/
2148 int
2149 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2150 {
2151 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2152 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2153 
2154 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2155 
2156 	/*
2157 	 * ISM segment is always rw.
2158 	 */
2159 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2160 }
2161 
2162 /*
2163  * Return an array of locked large pages, for empty slots allocate
2164  * private zero-filled anon pages.
2165  */
2166 static int
2167 spt_anon_getpages(
2168 	struct seg *sptseg,
2169 	caddr_t sptaddr,
2170 	size_t len,
2171 	page_t *ppa[])
2172 {
2173 	struct  spt_data *sptd = sptseg->s_data;
2174 	struct  anon_map *amp = sptd->spt_amp;
2175 	enum 	seg_rw rw = sptd->spt_prot;
2176 	uint_t	szc = sptseg->s_szc;
2177 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2178 	pgcnt_t	lp_npgs;
2179 	caddr_t	lp_addr, e_sptaddr;
2180 	uint_t	vpprot, ppa_szc = 0;
2181 	struct  vpage *vpage = NULL;
2182 	ulong_t	j, ppa_idx;
2183 	int	err, ierr = 0;
2184 	pgcnt_t	an_idx;
2185 	anon_sync_obj_t cookie;
2186 
2187 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2188 	ASSERT(len != 0);
2189 
2190 	pg_sz = share_sz;
2191 	lp_npgs = btop(pg_sz);
2192 	lp_addr = sptaddr;
2193 	e_sptaddr = sptaddr + len;
2194 	an_idx = seg_page(sptseg, sptaddr);
2195 	ppa_idx = 0;
2196 
2197 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2198 	/*CONSTCOND*/
2199 	while (1) {
2200 		for (; lp_addr < e_sptaddr;
2201 			an_idx += lp_npgs, lp_addr += pg_sz,
2202 			ppa_idx += lp_npgs) {
2203 
2204 			anon_array_enter(amp, an_idx, &cookie);
2205 			ppa_szc = (uint_t)-1;
2206 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2207 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2208 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, kcred);
2209 			anon_array_exit(&cookie);
2210 
2211 			if (ierr != 0) {
2212 				if (ierr > 0) {
2213 					err = FC_MAKE_ERR(ierr);
2214 					goto lpgs_err;
2215 				}
2216 				break;
2217 			}
2218 		}
2219 		if (lp_addr == e_sptaddr) {
2220 			break;
2221 		}
2222 		ASSERT(lp_addr < e_sptaddr);
2223 
2224 		/*
2225 		 * ierr == -1 means we failed to allocate a large page.
2226 		 * so do a size down operation.
2227 		 *
2228 		 * ierr == -2 means some other process that privately shares
2229 		 * pages with this process has allocated a larger page and we
2230 		 * need to retry with larger pages. So do a size up
2231 		 * operation. This relies on the fact that large pages are
2232 		 * never partially shared i.e. if we share any constituent
2233 		 * page of a large page with another process we must share the
2234 		 * entire large page. Note this cannot happen for SOFTLOCK
2235 		 * case, unless current address (lpaddr) is at the beginning
2236 		 * of the next page size boundary because the other process
2237 		 * couldn't have relocated locked pages.
2238 		 */
2239 		ASSERT(ierr == -1 || ierr == -2);
2240 		if (segvn_anypgsz) {
2241 			ASSERT(ierr == -2 || szc != 0);
2242 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2243 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2244 		} else {
2245 			/*
2246 			 * For faults and segvn_anypgsz == 0
2247 			 * we need to be careful not to loop forever
2248 			 * if existing page is found with szc other
2249 			 * than 0 or seg->s_szc. This could be due
2250 			 * to page relocations on behalf of DR or
2251 			 * more likely large page creation. For this
2252 			 * case simply re-size to existing page's szc
2253 			 * if returned by anon_map_getpages().
2254 			 */
2255 			if (ppa_szc == (uint_t)-1) {
2256 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2257 			} else {
2258 				ASSERT(ppa_szc <= sptseg->s_szc);
2259 				ASSERT(ierr == -2 || ppa_szc < szc);
2260 				ASSERT(ierr == -1 || ppa_szc > szc);
2261 				szc = ppa_szc;
2262 			}
2263 		}
2264 		pg_sz = page_get_pagesize(szc);
2265 		lp_npgs = btop(pg_sz);
2266 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2267 	}
2268 	ANON_LOCK_EXIT(&amp->a_rwlock);
2269 	return (0);
2270 
2271 lpgs_err:
2272 	ANON_LOCK_EXIT(&amp->a_rwlock);
2273 	for (j = 0; j < ppa_idx; j++)
2274 		page_unlock(ppa[j]);
2275 	return (err);
2276 }
2277 
2278 int
2279 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2280     page_t **ppa, ulong_t *lockmap, size_t pos)
2281 {
2282 	struct shm_data *shmd = seg->s_data;
2283 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2284 	ulong_t	i;
2285 	int	kernel;
2286 
2287 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2288 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2289 			if (sptd->spt_ppa_lckcnt[anon_index] <
2290 			    (ushort_t)DISM_LOCK_MAX) {
2291 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2292 				    (ushort_t)DISM_LOCK_MAX) {
2293 					cmn_err(CE_WARN,
2294 					    "DISM page lock limit "
2295 					    "reached on DISM offset 0x%lx\n",
2296 					    anon_index << PAGESHIFT);
2297 				}
2298 				kernel = (sptd->spt_ppa &&
2299 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2300 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2301 					/* unlock rest of the pages */
2302 					for (; i < npages; i++)
2303 						page_unlock(ppa[i]);
2304 					sptd->spt_ppa_lckcnt[anon_index]--;
2305 					return (EAGAIN);
2306 				}
2307 				shmd->shm_lckpgs++;
2308 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2309 				if (lockmap != NULL)
2310 					BT_SET(lockmap, pos);
2311 			}
2312 		}
2313 		page_unlock(ppa[i]);
2314 	}
2315 	return (0);
2316 }
2317 
2318 /*ARGSUSED*/
2319 static int
2320 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2321     int attr, int op, ulong_t *lockmap, size_t pos)
2322 {
2323 	struct shm_data *shmd = seg->s_data;
2324 	struct seg	*sptseg = shmd->shm_sptseg;
2325 	struct spt_data *sptd = sptseg->s_data;
2326 	pgcnt_t		npages, a_npages;
2327 	page_t		**ppa;
2328 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2329 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2330 	size_t		a_len;			/* aligned len */
2331 	size_t		share_sz;
2332 	ulong_t		i;
2333 	int		sts = 0;
2334 
2335 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2336 
2337 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2338 		return (0);
2339 	}
2340 
2341 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2342 	an_idx = seg_page(seg, addr);
2343 	npages = btopr(len);
2344 
2345 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2346 		return (ENOMEM);
2347 	}
2348 
2349 	if (op == MC_LOCK) {
2350 		/*
2351 		 * Need to align addr and size request if they are not
2352 		 * aligned so we can always allocate large page(s) however
2353 		 * we only lock what was requested in initial request.
2354 		 */
2355 		share_sz = page_get_pagesize(sptseg->s_szc);
2356 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2357 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2358 				share_sz);
2359 		a_npages = btop(a_len);
2360 		a_an_idx = seg_page(seg, a_addr);
2361 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2362 		ppa_idx = an_idx - a_an_idx;
2363 
2364 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2365 			KM_NOSLEEP)) == NULL) {
2366 			return (ENOMEM);
2367 		}
2368 
2369 		/*
2370 		 * Don't cache any new pages for IO and
2371 		 * flush any cached pages.
2372 		 */
2373 		mutex_enter(&sptd->spt_lock);
2374 		if (sptd->spt_ppa != NULL)
2375 			sptd->spt_flags |= DISM_PPA_CHANGED;
2376 
2377 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2378 		if (sts != 0) {
2379 			mutex_exit(&sptd->spt_lock);
2380 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2381 			return (sts);
2382 		}
2383 
2384 		sts = spt_lockpages(seg, an_idx, npages,
2385 		    &ppa[ppa_idx], lockmap, pos);
2386 		/*
2387 		 * unlock remaining pages for requests which are not
2388 		 * aligned or not in 4 M chunks
2389 		 */
2390 		for (i = 0; i < ppa_idx; i++)
2391 			page_unlock(ppa[i]);
2392 		for (i = ppa_idx + npages; i < a_npages; i++)
2393 			page_unlock(ppa[i]);
2394 		if (sptd->spt_ppa != NULL)
2395 			sptd->spt_flags |= DISM_PPA_CHANGED;
2396 		mutex_exit(&sptd->spt_lock);
2397 
2398 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2399 
2400 	} else if (op == MC_UNLOCK) { /* unlock */
2401 		struct anon_map *amp;
2402 		struct anon 	*ap;
2403 		struct vnode 	*vp;
2404 		u_offset_t 	off;
2405 		struct page	*pp;
2406 		int		kernel;
2407 		anon_sync_obj_t cookie;
2408 
2409 		amp = sptd->spt_amp;
2410 		mutex_enter(&sptd->spt_lock);
2411 		if (shmd->shm_lckpgs == 0) {
2412 			mutex_exit(&sptd->spt_lock);
2413 			return (0);
2414 		}
2415 		/*
2416 		 * Don't cache new IO pages.
2417 		 */
2418 		if (sptd->spt_ppa != NULL)
2419 			sptd->spt_flags |= DISM_PPA_CHANGED;
2420 
2421 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2422 		for (i = 0; i < npages; i++, an_idx++) {
2423 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2424 				anon_array_enter(amp, an_idx, &cookie);
2425 				ap = anon_get_ptr(amp->ahp, an_idx);
2426 				ASSERT(ap);
2427 				ASSERT(sptd->spt_ppa_lckcnt[an_idx] > 0);
2428 
2429 				swap_xlate(ap, &vp, &off);
2430 				anon_array_exit(&cookie);
2431 				pp = page_lookup(vp, off, SE_SHARED);
2432 				ASSERT(pp);
2433 				/*
2434 				 * the availrmem is decremented only for
2435 				 * pages which are not in seg pcache,
2436 				 * for pages in seg pcache availrmem was
2437 				 * decremented in _dismpagelock() (if
2438 				 * they were not locked here)
2439 				 */
2440 				kernel = (sptd->spt_ppa &&
2441 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2442 				page_pp_unlock(pp, 0, kernel);
2443 				page_unlock(pp);
2444 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2445 				sptd->spt_ppa_lckcnt[an_idx]--;
2446 				shmd->shm_lckpgs--;
2447 			}
2448 		}
2449 		ANON_LOCK_EXIT(&amp->a_rwlock);
2450 		if (sptd->spt_ppa != NULL)
2451 			sptd->spt_flags |= DISM_PPA_CHANGED;
2452 		mutex_exit(&sptd->spt_lock);
2453 	}
2454 	return (sts);
2455 }
2456 
2457 /*ARGSUSED*/
2458 int
2459 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2460 {
2461 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2462 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2463 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2464 
2465 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2466 
2467 	/*
2468 	 * ISM segment is always rw.
2469 	 */
2470 	while (--pgno >= 0)
2471 		*protv++ = sptd->spt_prot;
2472 	return (0);
2473 }
2474 
2475 /*ARGSUSED*/
2476 u_offset_t
2477 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2478 {
2479 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2480 
2481 	/* Offset does not matter in ISM memory */
2482 
2483 	return ((u_offset_t)0);
2484 }
2485 
2486 /* ARGSUSED */
2487 int
2488 segspt_shmgettype(struct seg *seg, caddr_t addr)
2489 {
2490 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2491 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2492 
2493 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2494 
2495 	/*
2496 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2497 	 * reserved for DISM
2498 	 */
2499 	return (MAP_SHARED |
2500 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2501 }
2502 
2503 /*ARGSUSED*/
2504 int
2505 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2506 {
2507 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2508 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2509 
2510 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2511 
2512 	*vpp = sptd->spt_vp;
2513 	return (0);
2514 }
2515 
2516 /*ARGSUSED*/
2517 static int
2518 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2519 {
2520 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2521 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2522 	struct anon_map	*amp;
2523 	pgcnt_t		pg_idx;
2524 
2525 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2526 
2527 	if (behav == MADV_FREE) {
2528 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2529 			return (0);
2530 
2531 		amp = sptd->spt_amp;
2532 		pg_idx = seg_page(seg, addr);
2533 
2534 		mutex_enter(&sptd->spt_lock);
2535 		if (sptd->spt_ppa != NULL)
2536 			sptd->spt_flags |= DISM_PPA_CHANGED;
2537 		mutex_exit(&sptd->spt_lock);
2538 
2539 		/*
2540 		 * Purge all DISM cached pages
2541 		 */
2542 		seg_ppurge_seg(segspt_reclaim);
2543 
2544 		mutex_enter(&sptd->spt_lock);
2545 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2546 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2547 		ANON_LOCK_EXIT(&amp->a_rwlock);
2548 		mutex_exit(&sptd->spt_lock);
2549 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2550 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2551 		int			already_set;
2552 		ulong_t			anon_index;
2553 		lgrp_mem_policy_t	policy;
2554 		caddr_t			shm_addr;
2555 		size_t			share_size;
2556 		size_t			size;
2557 		struct seg		*sptseg = shmd->shm_sptseg;
2558 		caddr_t			sptseg_addr;
2559 
2560 		/*
2561 		 * Align address and length to page size of underlying segment
2562 		 */
2563 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2564 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2565 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2566 		    share_size);
2567 
2568 		amp = shmd->shm_amp;
2569 		anon_index = seg_page(seg, shm_addr);
2570 
2571 		/*
2572 		 * And now we may have to adjust size downward if we have
2573 		 * exceeded the realsize of the segment or initial anon
2574 		 * allocations.
2575 		 */
2576 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2577 		if ((sptseg_addr + size) >
2578 		    (sptseg->s_base + sptd->spt_realsize))
2579 			size = (sptseg->s_base + sptd->spt_realsize) -
2580 			    sptseg_addr;
2581 
2582 		/*
2583 		 * Set memory allocation policy for this segment
2584 		 */
2585 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2586 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2587 		    NULL, 0, len);
2588 
2589 		/*
2590 		 * If random memory allocation policy set already,
2591 		 * don't bother reapplying it.
2592 		 */
2593 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2594 			return (0);
2595 
2596 		/*
2597 		 * Mark any existing pages in the given range for
2598 		 * migration, flushing the I/O page cache, and using
2599 		 * underlying segment to calculate anon index and get
2600 		 * anonmap and vnode pointer from
2601 		 */
2602 		if (shmd->shm_softlockcnt > 0)
2603 			segspt_purge(seg);
2604 
2605 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2606 	}
2607 
2608 	return (0);
2609 }
2610 
2611 /*ARGSUSED*/
2612 void
2613 segspt_shmdump(struct seg *seg)
2614 {
2615 	/* no-op for ISM segment */
2616 }
2617 
2618 /*ARGSUSED*/
2619 static faultcode_t
2620 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2621 {
2622 	return (ENOTSUP);
2623 }
2624 
2625 /*
2626  * get a memory ID for an addr in a given segment
2627  */
2628 static int
2629 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2630 {
2631 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2632 	struct anon 	*ap;
2633 	size_t		anon_index;
2634 	struct anon_map	*amp = shmd->shm_amp;
2635 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2636 	struct seg	*sptseg = shmd->shm_sptseg;
2637 	anon_sync_obj_t	cookie;
2638 
2639 	anon_index = seg_page(seg, addr);
2640 
2641 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2642 		return (EFAULT);
2643 	}
2644 
2645 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2646 	anon_array_enter(amp, anon_index, &cookie);
2647 	ap = anon_get_ptr(amp->ahp, anon_index);
2648 	if (ap == NULL) {
2649 		struct page *pp;
2650 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2651 
2652 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2653 		if (pp == NULL) {
2654 			anon_array_exit(&cookie);
2655 			ANON_LOCK_EXIT(&amp->a_rwlock);
2656 			return (ENOMEM);
2657 		}
2658 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2659 		page_unlock(pp);
2660 	}
2661 	anon_array_exit(&cookie);
2662 	ANON_LOCK_EXIT(&amp->a_rwlock);
2663 	memidp->val[0] = (uintptr_t)ap;
2664 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2665 	return (0);
2666 }
2667 
2668 /*
2669  * Get memory allocation policy info for specified address in given segment
2670  */
2671 static lgrp_mem_policy_info_t *
2672 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2673 {
2674 	struct anon_map		*amp;
2675 	ulong_t			anon_index;
2676 	lgrp_mem_policy_info_t	*policy_info;
2677 	struct shm_data		*shm_data;
2678 
2679 	ASSERT(seg != NULL);
2680 
2681 	/*
2682 	 * Get anon_map from segshm
2683 	 *
2684 	 * Assume that no lock needs to be held on anon_map, since
2685 	 * it should be protected by its reference count which must be
2686 	 * nonzero for an existing segment
2687 	 * Need to grab readers lock on policy tree though
2688 	 */
2689 	shm_data = (struct shm_data *)seg->s_data;
2690 	if (shm_data == NULL)
2691 		return (NULL);
2692 	amp = shm_data->shm_amp;
2693 	ASSERT(amp->refcnt != 0);
2694 
2695 	/*
2696 	 * Get policy info
2697 	 *
2698 	 * Assume starting anon index of 0
2699 	 */
2700 	anon_index = seg_page(seg, addr);
2701 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2702 
2703 	return (policy_info);
2704 }
2705 
2706 /*ARGSUSED*/
2707 static int
2708 segspt_shmcapable(struct seg *seg, segcapability_t capability)
2709 {
2710 	return (0);
2711 }
2712