xref: /titanic_44/usr/src/uts/common/vm/seg_kp.c (revision a0e56b0eb1fdc159ff8348ca0e77d884bb7d126b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /*	All Rights Reserved   */
29 
30 /*
31  * Portions of this source code were derived from Berkeley 4.3 BSD
32  * under license from the Regents of the University of California.
33  */
34 
35 #pragma ident	"%Z%%M%	%I%	%E% SMI"
36 
37 /*
38  * segkp is a segment driver that administers the allocation and deallocation
39  * of pageable variable size chunks of kernel virtual address space. Each
40  * allocated resource is page-aligned.
41  *
42  * The user may specify whether the resource should be initialized to 0,
43  * include a redzone, or locked in memory.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/thread.h>
49 #include <sys/param.h>
50 #include <sys/errno.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systm.h>
53 #include <sys/buf.h>
54 #include <sys/mman.h>
55 #include <sys/vnode.h>
56 #include <sys/cmn_err.h>
57 #include <sys/swap.h>
58 #include <sys/tuneable.h>
59 #include <sys/kmem.h>
60 #include <sys/vmem.h>
61 #include <sys/cred.h>
62 #include <sys/dumphdr.h>
63 #include <sys/debug.h>
64 #include <sys/vtrace.h>
65 #include <sys/stack.h>
66 #include <sys/atomic.h>
67 #include <sys/archsystm.h>
68 #include <sys/lgrp.h>
69 
70 #include <vm/as.h>
71 #include <vm/seg.h>
72 #include <vm/seg_kp.h>
73 #include <vm/seg_kmem.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/hat.h>
77 #include <sys/bitmap.h>
78 
79 /*
80  * Private seg op routines
81  */
82 static void	segkp_badop(void);
83 static void	segkp_dump(struct seg *seg);
84 static int	segkp_checkprot(struct seg *seg, caddr_t addr, size_t len,
85 			uint_t prot);
86 static int	segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
87 static int	segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
88 			struct page ***page, enum lock_type type,
89 			enum seg_rw rw);
90 static void	segkp_insert(struct seg *seg, struct segkp_data *kpd);
91 static void	segkp_delete(struct seg *seg, struct segkp_data *kpd);
92 static caddr_t	segkp_get_internal(struct seg *seg, size_t len, uint_t flags,
93 			struct segkp_data **tkpd, struct anon_map *amp);
94 static void	segkp_release_internal(struct seg *seg,
95 			struct segkp_data *kpd, size_t len);
96 static int	segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr,
97 			size_t len, struct segkp_data *kpd, uint_t flags);
98 static int	segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr,
99 			size_t len, struct segkp_data *kpd, uint_t flags);
100 static struct	segkp_data *segkp_find(struct seg *seg, caddr_t vaddr);
101 static int	segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
102 static lgrp_mem_policy_info_t	*segkp_getpolicy(struct seg *seg,
103     caddr_t addr);
104 static int	segkp_capable(struct seg *seg, segcapability_t capability);
105 
106 /*
107  * Lock used to protect the hash table(s) and caches.
108  */
109 static kmutex_t	segkp_lock;
110 
111 /*
112  * The segkp caches
113  */
114 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE];
115 
116 #define	SEGKP_BADOP(t)	(t(*)())segkp_badop
117 
118 /*
119  * When there are fewer than red_minavail bytes left on the stack,
120  * segkp_map_red() will map in the redzone (if called).  5000 seems
121  * to work reasonably well...
122  */
123 long		red_minavail = 5000;
124 
125 /*
126  * will be set to 1 for 32 bit x86 systems only, in startup.c
127  */
128 int	segkp_fromheap = 0;
129 ulong_t *segkp_bitmap;
130 
131 /*
132  * If segkp_map_red() is called with the redzone already mapped and
133  * with less than RED_DEEP_THRESHOLD bytes available on the stack,
134  * then the stack situation has become quite serious;  if much more stack
135  * is consumed, we have the potential of scrogging the next thread/LWP
136  * structure.  To help debug the "can't happen" panics which may
137  * result from this condition, we record lbolt and the calling thread
138  * in red_deep_lbolt and red_deep_thread respectively.
139  */
140 #define	RED_DEEP_THRESHOLD	2000
141 
142 clock_t		red_deep_lbolt;
143 kthread_t	*red_deep_thread;
144 
145 uint32_t	red_nmapped;
146 uint32_t	red_closest = UINT_MAX;
147 uint32_t	red_ndoubles;
148 
149 pgcnt_t anon_segkp_pages_locked;	/* See vm/anon.h */
150 
151 static struct	seg_ops segkp_ops = {
152 	SEGKP_BADOP(int),		/* dup */
153 	SEGKP_BADOP(int),		/* unmap */
154 	SEGKP_BADOP(void),		/* free */
155 	segkp_fault,
156 	SEGKP_BADOP(faultcode_t),	/* faulta */
157 	SEGKP_BADOP(int),		/* setprot */
158 	segkp_checkprot,
159 	segkp_kluster,
160 	SEGKP_BADOP(size_t),		/* swapout */
161 	SEGKP_BADOP(int),		/* sync */
162 	SEGKP_BADOP(size_t),		/* incore */
163 	SEGKP_BADOP(int),		/* lockop */
164 	SEGKP_BADOP(int),		/* getprot */
165 	SEGKP_BADOP(u_offset_t),		/* getoffset */
166 	SEGKP_BADOP(int),		/* gettype */
167 	SEGKP_BADOP(int),		/* getvp */
168 	SEGKP_BADOP(int),		/* advise */
169 	segkp_dump,			/* dump */
170 	segkp_pagelock,			/* pagelock */
171 	SEGKP_BADOP(int),		/* setpgsz */
172 	segkp_getmemid,			/* getmemid */
173 	segkp_getpolicy,		/* getpolicy */
174 	segkp_capable,			/* capable */
175 };
176 
177 
178 static void
179 segkp_badop(void)
180 {
181 	panic("segkp_badop");
182 	/*NOTREACHED*/
183 }
184 
185 static void segkpinit_mem_config(struct seg *);
186 
187 static uint32_t segkp_indel;
188 
189 /*
190  * Allocate the segment specific private data struct and fill it in
191  * with the per kp segment mutex, anon ptr. array and hash table.
192  */
193 int
194 segkp_create(struct seg *seg)
195 {
196 	struct segkp_segdata *kpsd;
197 	size_t	np;
198 
199 	ASSERT(seg != NULL && seg->s_as == &kas);
200 	ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock));
201 
202 	if (seg->s_size & PAGEOFFSET) {
203 		panic("Bad segkp size");
204 		/*NOTREACHED*/
205 	}
206 
207 	kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP);
208 
209 	/*
210 	 * Allocate the virtual memory for segkp and initialize it
211 	 */
212 	if (segkp_fromheap) {
213 		np = btop(kvseg.s_size);
214 		segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP);
215 		kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE,
216 		    vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP);
217 	} else {
218 		segkp_bitmap = NULL;
219 		np = btop(seg->s_size);
220 		kpsd->kpsd_arena = vmem_create("segkp", seg->s_base,
221 		    seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE,
222 		    VM_SLEEP);
223 	}
224 
225 	kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE);
226 
227 	kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *),
228 	    KM_SLEEP);
229 	seg->s_data = (void *)kpsd;
230 	seg->s_ops = &segkp_ops;
231 	segkpinit_mem_config(seg);
232 	return (0);
233 }
234 
235 
236 /*
237  * Find a free 'freelist' and initialize it with the appropriate attributes
238  */
239 void *
240 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags)
241 {
242 	int i;
243 
244 	if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED))
245 		return ((void *)-1);
246 
247 	mutex_enter(&segkp_lock);
248 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
249 		if (segkp_cache[i].kpf_inuse)
250 			continue;
251 		segkp_cache[i].kpf_inuse = 1;
252 		segkp_cache[i].kpf_max = maxsize;
253 		segkp_cache[i].kpf_flags = flags;
254 		segkp_cache[i].kpf_seg = seg;
255 		segkp_cache[i].kpf_len = len;
256 		mutex_exit(&segkp_lock);
257 		return ((void *)(uintptr_t)i);
258 	}
259 	mutex_exit(&segkp_lock);
260 	return ((void *)-1);
261 }
262 
263 /*
264  * Free all the cache resources.
265  */
266 void
267 segkp_cache_free(void)
268 {
269 	struct segkp_data *kpd;
270 	struct seg *seg;
271 	int i;
272 
273 	mutex_enter(&segkp_lock);
274 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
275 		if (!segkp_cache[i].kpf_inuse)
276 			continue;
277 		/*
278 		 * Disconnect the freelist and process each element
279 		 */
280 		kpd = segkp_cache[i].kpf_list;
281 		seg = segkp_cache[i].kpf_seg;
282 		segkp_cache[i].kpf_list = NULL;
283 		segkp_cache[i].kpf_count = 0;
284 		mutex_exit(&segkp_lock);
285 
286 		while (kpd != NULL) {
287 			struct segkp_data *next;
288 
289 			next = kpd->kp_next;
290 			segkp_release_internal(seg, kpd, kpd->kp_len);
291 			kpd = next;
292 		}
293 		mutex_enter(&segkp_lock);
294 	}
295 	mutex_exit(&segkp_lock);
296 }
297 
298 /*
299  * There are 2 entries into segkp_get_internal. The first includes a cookie
300  * used to access a pool of cached segkp resources. The second does not
301  * use the cache.
302  */
303 caddr_t
304 segkp_get(struct seg *seg, size_t len, uint_t flags)
305 {
306 	struct segkp_data *kpd = NULL;
307 
308 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
309 		kpd->kp_cookie = -1;
310 		return (stom(kpd->kp_base, flags));
311 	}
312 	return (NULL);
313 }
314 
315 /*
316  * Return a 'cached' segkp address
317  */
318 caddr_t
319 segkp_cache_get(void *cookie)
320 {
321 	struct segkp_cache *freelist = NULL;
322 	struct segkp_data *kpd = NULL;
323 	int index = (int)(uintptr_t)cookie;
324 	struct seg *seg;
325 	size_t len;
326 	uint_t flags;
327 
328 	if (index < 0 || index >= SEGKP_MAX_CACHE)
329 		return (NULL);
330 	freelist = &segkp_cache[index];
331 
332 	mutex_enter(&segkp_lock);
333 	seg = freelist->kpf_seg;
334 	flags = freelist->kpf_flags;
335 	if (freelist->kpf_list != NULL) {
336 		kpd = freelist->kpf_list;
337 		freelist->kpf_list = kpd->kp_next;
338 		freelist->kpf_count--;
339 		mutex_exit(&segkp_lock);
340 		kpd->kp_next = NULL;
341 		segkp_insert(seg, kpd);
342 		return (stom(kpd->kp_base, flags));
343 	}
344 	len = freelist->kpf_len;
345 	mutex_exit(&segkp_lock);
346 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
347 		kpd->kp_cookie = index;
348 		return (stom(kpd->kp_base, flags));
349 	}
350 	return (NULL);
351 }
352 
353 caddr_t
354 segkp_get_withanonmap(
355 	struct seg *seg,
356 	size_t len,
357 	uint_t flags,
358 	struct anon_map *amp)
359 {
360 	struct segkp_data *kpd = NULL;
361 
362 	ASSERT(amp != NULL);
363 	flags |= KPD_HASAMP;
364 	if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) {
365 		kpd->kp_cookie = -1;
366 		return (stom(kpd->kp_base, flags));
367 	}
368 	return (NULL);
369 }
370 
371 /*
372  * This does the real work of segkp allocation.
373  * Return to client base addr. len must be page-aligned. A null value is
374  * returned if there are no more vm resources (e.g. pages, swap). The len
375  * and base recorded in the private data structure include the redzone
376  * and the redzone length (if applicable). If the user requests a redzone
377  * either the first or last page is left unmapped depending whether stacks
378  * grow to low or high memory.
379  *
380  * The client may also specify a no-wait flag. If that is set then the
381  * request will choose a non-blocking path when requesting resources.
382  * The default is make the client wait.
383  */
384 static caddr_t
385 segkp_get_internal(
386 	struct seg *seg,
387 	size_t len,
388 	uint_t flags,
389 	struct segkp_data **tkpd,
390 	struct anon_map *amp)
391 {
392 	struct segkp_segdata	*kpsd = (struct segkp_segdata *)seg->s_data;
393 	struct segkp_data	*kpd;
394 	caddr_t vbase = NULL;	/* always first virtual, may not be mapped */
395 	pgcnt_t np = 0;		/* number of pages in the resource */
396 	pgcnt_t segkpindex;
397 	long i;
398 	caddr_t va;
399 	pgcnt_t pages = 0;
400 	ulong_t anon_idx = 0;
401 	int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
402 	caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base;
403 
404 	if (len & PAGEOFFSET) {
405 		panic("segkp_get: len is not page-aligned");
406 		/*NOTREACHED*/
407 	}
408 
409 	ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL));
410 
411 	/* Only allow KPD_NO_ANON if we are going to lock it down */
412 	if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON)
413 		return (NULL);
414 
415 	if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL)
416 		return (NULL);
417 	/*
418 	 * Fix up the len to reflect the REDZONE if applicable
419 	 */
420 	if (flags & KPD_HASREDZONE)
421 		len += PAGESIZE;
422 	np = btop(len);
423 
424 	vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT);
425 	if (vbase == NULL) {
426 		kmem_free(kpd, sizeof (struct segkp_data));
427 		return (NULL);
428 	}
429 
430 	/* If locking, reserve physical memory */
431 	if (flags & KPD_LOCKED) {
432 		pages = btop(SEGKP_MAPLEN(len, flags));
433 		if (page_resv(pages, kmflag) == 0) {
434 			vmem_free(SEGKP_VMEM(seg), vbase, len);
435 			kmem_free(kpd, sizeof (struct segkp_data));
436 			return (NULL);
437 		}
438 		if ((flags & KPD_NO_ANON) == 0)
439 			atomic_add_long(&anon_segkp_pages_locked, pages);
440 	}
441 
442 	/*
443 	 * Reserve sufficient swap space for this vm resource.  We'll
444 	 * actually allocate it in the loop below, but reserving it
445 	 * here allows us to back out more gracefully than if we
446 	 * had an allocation failure in the body of the loop.
447 	 *
448 	 * Note that we don't need swap space for the red zone page.
449 	 */
450 	if (amp != NULL) {
451 		ASSERT((flags & KPD_NO_ANON) == 0);
452 		/* The reserve has been done and the anon_hdr is separate. */
453 		anon_idx = 0;
454 		kpd->kp_anon_idx = anon_idx;
455 		kpd->kp_anon = amp->ahp;
456 
457 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
458 		    kpd, vbase, len, flags, 1);
459 
460 	} else if ((flags & KPD_NO_ANON) == 0) {
461 		if (anon_resv(SEGKP_MAPLEN(len, flags)) == 0) {
462 			if (flags & KPD_LOCKED) {
463 				atomic_add_long(&anon_segkp_pages_locked,
464 				    -pages);
465 				page_unresv(pages);
466 			}
467 			vmem_free(SEGKP_VMEM(seg), vbase, len);
468 			kmem_free(kpd, sizeof (struct segkp_data));
469 			return (NULL);
470 		}
471 		anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT;
472 		kpd->kp_anon_idx = anon_idx;
473 		kpd->kp_anon = kpsd->kpsd_anon;
474 
475 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
476 		    kpd, vbase, len, flags, 1);
477 	} else {
478 		kpd->kp_anon = NULL;
479 		kpd->kp_anon_idx = 0;
480 	}
481 
482 	/*
483 	 * Allocate page and anon resources for the virtual address range
484 	 * except the redzone
485 	 */
486 	if (segkp_fromheap)
487 		segkpindex = btop((uintptr_t)(vbase - kvseg.s_base));
488 	for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) {
489 		page_t		*pl[2];
490 		struct vnode	*vp;
491 		anoff_t		off;
492 		int		err;
493 		page_t		*pp = NULL;
494 
495 		/*
496 		 * Mark this page to be a segkp page in the bitmap.
497 		 */
498 		if (segkp_fromheap) {
499 			BT_ATOMIC_SET(segkp_bitmap, segkpindex);
500 			segkpindex++;
501 		}
502 
503 		/*
504 		 * If this page is the red zone page, we don't need swap
505 		 * space for it.  Note that we skip over the code that
506 		 * establishes MMU mappings, so that the page remains
507 		 * invalid.
508 		 */
509 		if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i)
510 			continue;
511 
512 		if (kpd->kp_anon != NULL) {
513 			struct anon *ap;
514 
515 			ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i)
516 			    == NULL);
517 			/*
518 			 * Determine the "vp" and "off" of the anon slot.
519 			 */
520 			ap = anon_alloc(NULL, 0);
521 			if (amp != NULL)
522 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
523 			(void) anon_set_ptr(kpd->kp_anon, anon_idx + i,
524 			    ap, ANON_SLEEP);
525 			if (amp != NULL)
526 				ANON_LOCK_EXIT(&amp->a_rwlock);
527 			swap_xlate(ap, &vp, &off);
528 
529 			/*
530 			 * Create a page with the specified identity.  The
531 			 * page is returned with the "shared" lock held.
532 			 */
533 			err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
534 			    NULL, pl, PAGESIZE, seg, va, S_CREATE,
535 			    kcred);
536 			if (err) {
537 				/*
538 				 * XXX - This should not fail.
539 				 */
540 				panic("segkp_get: no pages");
541 				/*NOTREACHED*/
542 			}
543 			pp = pl[0];
544 		} else {
545 			ASSERT(page_exists(&kvp,
546 			    (u_offset_t)(uintptr_t)va) == NULL);
547 
548 			if ((pp = page_create_va(&kvp,
549 			    (u_offset_t)(uintptr_t)va, PAGESIZE,
550 			    (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL |
551 			    PG_NORELOC, seg, va)) == NULL) {
552 				/*
553 				 * Legitimize resource; then destroy it.
554 				 * Easier than trying to unwind here.
555 				 */
556 				kpd->kp_flags = flags;
557 				kpd->kp_base = vbase;
558 				kpd->kp_len = len;
559 				segkp_release_internal(seg, kpd, va - vbase);
560 				return (NULL);
561 			}
562 			page_io_unlock(pp);
563 		}
564 
565 		if (flags & KPD_ZERO)
566 			pagezero(pp, 0, PAGESIZE);
567 
568 		/*
569 		 * Load and lock an MMU translation for the page.
570 		 */
571 		hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE),
572 		    ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD));
573 
574 		/*
575 		 * Now, release lock on the page.
576 		 */
577 		if (flags & KPD_LOCKED)
578 			page_downgrade(pp);
579 		else
580 			page_unlock(pp);
581 	}
582 
583 	kpd->kp_flags = flags;
584 	kpd->kp_base = vbase;
585 	kpd->kp_len = len;
586 	segkp_insert(seg, kpd);
587 	*tkpd = kpd;
588 	return (stom(kpd->kp_base, flags));
589 }
590 
591 /*
592  * Release the resource to cache if the pool(designate by the cookie)
593  * has less than the maximum allowable. If inserted in cache,
594  * segkp_delete insures element is taken off of active list.
595  */
596 void
597 segkp_release(struct seg *seg, caddr_t vaddr)
598 {
599 	struct segkp_cache *freelist;
600 	struct segkp_data *kpd = NULL;
601 
602 	if ((kpd = segkp_find(seg, vaddr)) == NULL) {
603 		panic("segkp_release: null kpd");
604 		/*NOTREACHED*/
605 	}
606 
607 	if (kpd->kp_cookie != -1) {
608 		freelist = &segkp_cache[kpd->kp_cookie];
609 		mutex_enter(&segkp_lock);
610 		if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) {
611 			segkp_delete(seg, kpd);
612 			kpd->kp_next = freelist->kpf_list;
613 			freelist->kpf_list = kpd;
614 			freelist->kpf_count++;
615 			mutex_exit(&segkp_lock);
616 			return;
617 		} else {
618 			mutex_exit(&segkp_lock);
619 			kpd->kp_cookie = -1;
620 		}
621 	}
622 	segkp_release_internal(seg, kpd, kpd->kp_len);
623 }
624 
625 /*
626  * Free the entire resource. segkp_unlock gets called with the start of the
627  * mapped portion of the resource. The length is the size of the mapped
628  * portion
629  */
630 static void
631 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len)
632 {
633 	caddr_t		va;
634 	long		i;
635 	long		redzone;
636 	size_t		np;
637 	page_t		*pp;
638 	struct vnode 	*vp;
639 	anoff_t		off;
640 	struct anon	*ap;
641 	pgcnt_t		segkpindex;
642 
643 	ASSERT(kpd != NULL);
644 	ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1);
645 	np = btop(len);
646 
647 	/* Remove from active hash list */
648 	if (kpd->kp_cookie == -1) {
649 		mutex_enter(&segkp_lock);
650 		segkp_delete(seg, kpd);
651 		mutex_exit(&segkp_lock);
652 	}
653 
654 	/*
655 	 * Precompute redzone page index.
656 	 */
657 	redzone = -1;
658 	if (kpd->kp_flags & KPD_HASREDZONE)
659 		redzone = KPD_REDZONE(kpd);
660 
661 
662 	va = kpd->kp_base;
663 
664 	hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT),
665 	    ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
666 	/*
667 	 * Free up those anon resources that are quiescent.
668 	 */
669 	if (segkp_fromheap)
670 		segkpindex = btop((uintptr_t)(va - kvseg.s_base));
671 	for (i = 0; i < np; i++, va += PAGESIZE) {
672 
673 		/*
674 		 * Clear the bit for this page from the bitmap.
675 		 */
676 		if (segkp_fromheap) {
677 			BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex);
678 			segkpindex++;
679 		}
680 
681 		if (i == redzone)
682 			continue;
683 		if (kpd->kp_anon) {
684 			/*
685 			 * Free up anon resources and destroy the
686 			 * associated pages.
687 			 *
688 			 * Release the lock if there is one. Have to get the
689 			 * page to do this, unfortunately.
690 			 */
691 			if (kpd->kp_flags & KPD_LOCKED) {
692 				ap = anon_get_ptr(kpd->kp_anon,
693 				    kpd->kp_anon_idx + i);
694 				swap_xlate(ap, &vp, &off);
695 				/* Find the shared-locked page. */
696 				pp = page_find(vp, (u_offset_t)off);
697 				if (pp == NULL) {
698 					panic("segkp_release: "
699 					    "kp_anon: no page to unlock ");
700 					/*NOTREACHED*/
701 				}
702 				page_unlock(pp);
703 			}
704 			if ((kpd->kp_flags & KPD_HASAMP) == 0) {
705 				anon_free(kpd->kp_anon, kpd->kp_anon_idx + i,
706 				    PAGESIZE);
707 				anon_unresv(PAGESIZE);
708 			}
709 			TRACE_5(TR_FAC_VM,
710 			    TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
711 			    kpd, va, PAGESIZE, 0, 0);
712 		} else {
713 			if (kpd->kp_flags & KPD_LOCKED) {
714 				pp = page_find(&kvp, (u_offset_t)(uintptr_t)va);
715 				if (pp == NULL) {
716 					panic("segkp_release: "
717 					    "no page to unlock");
718 					/*NOTREACHED*/
719 				}
720 				/*
721 				 * We should just upgrade the lock here
722 				 * but there is no upgrade that waits.
723 				 */
724 				page_unlock(pp);
725 			}
726 			pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va,
727 			    SE_EXCL);
728 			if (pp != NULL)
729 				page_destroy(pp, 0);
730 		}
731 	}
732 
733 	/* If locked, release physical memory reservation */
734 	if (kpd->kp_flags & KPD_LOCKED) {
735 		pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
736 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
737 			atomic_add_long(&anon_segkp_pages_locked, -pages);
738 		page_unresv(pages);
739 	}
740 
741 	vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len);
742 	kmem_free(kpd, sizeof (struct segkp_data));
743 }
744 
745 /*
746  * segkp_map_red() will check the current frame pointer against the
747  * stack base.  If the amount of stack remaining is questionable
748  * (less than red_minavail), then segkp_map_red() will map in the redzone
749  * and return 1.  Otherwise, it will return 0.  segkp_map_red() can
750  * _only_ be called when:
751  *
752  *   - it is safe to sleep on page_create_va().
753  *   - the caller is non-swappable.
754  *
755  * It is up to the caller to remember whether segkp_map_red() successfully
756  * mapped the redzone, and, if so, to call segkp_unmap_red() at a later
757  * time.  Note that the caller must _remain_ non-swappable until after
758  * calling segkp_unmap_red().
759  *
760  * Currently, this routine is only called from pagefault() (which necessarily
761  * satisfies the above conditions).
762  */
763 #if defined(STACK_GROWTH_DOWN)
764 int
765 segkp_map_red(void)
766 {
767 	uintptr_t fp = STACK_BIAS + (uintptr_t)getfp();
768 #ifndef _LP64
769 	caddr_t stkbase;
770 #endif
771 
772 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
773 
774 	/*
775 	 * Optimize for the common case where we simply return.
776 	 */
777 	if ((curthread->t_red_pp == NULL) &&
778 	    (fp - (uintptr_t)curthread->t_stkbase >= red_minavail))
779 		return (0);
780 
781 #if defined(_LP64)
782 	/*
783 	 * XXX	We probably need something better than this.
784 	 */
785 	panic("kernel stack overflow");
786 	/*NOTREACHED*/
787 #else /* _LP64 */
788 	if (curthread->t_red_pp == NULL) {
789 		page_t *red_pp;
790 		struct seg kseg;
791 
792 		caddr_t red_va = (caddr_t)
793 		    (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) -
794 		    PAGESIZE);
795 
796 		ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) ==
797 		    NULL);
798 
799 		/*
800 		 * Allocate the physical for the red page.
801 		 */
802 		/*
803 		 * No PG_NORELOC here to avoid waits. Unlikely to get
804 		 * a relocate happening in the short time the page exists
805 		 * and it will be OK anyway.
806 		 */
807 
808 		kseg.s_as = &kas;
809 		red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va,
810 		    PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va);
811 		ASSERT(red_pp != NULL);
812 
813 		/*
814 		 * So we now have a page to jam into the redzone...
815 		 */
816 		page_io_unlock(red_pp);
817 
818 		hat_memload(kas.a_hat, red_va, red_pp,
819 		    (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK);
820 		page_downgrade(red_pp);
821 
822 		/*
823 		 * The page is left SE_SHARED locked so we can hold on to
824 		 * the page_t pointer.
825 		 */
826 		curthread->t_red_pp = red_pp;
827 
828 		atomic_add_32(&red_nmapped, 1);
829 		while (fp - (uintptr_t)curthread->t_stkbase < red_closest) {
830 			(void) cas32(&red_closest, red_closest,
831 			    (uint32_t)(fp - (uintptr_t)curthread->t_stkbase));
832 		}
833 		return (1);
834 	}
835 
836 	stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase &
837 	    (uintptr_t)PAGEMASK) - PAGESIZE);
838 
839 	atomic_add_32(&red_ndoubles, 1);
840 
841 	if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) {
842 		/*
843 		 * Oh boy.  We're already deep within the mapped-in
844 		 * redzone page, and the caller is trying to prepare
845 		 * for a deep stack run.  We're running without a
846 		 * redzone right now:  if the caller plows off the
847 		 * end of the stack, it'll plow another thread or
848 		 * LWP structure.  That situation could result in
849 		 * a very hard-to-debug panic, so, in the spirit of
850 		 * recording the name of one's killer in one's own
851 		 * blood, we're going to record lbolt and the calling
852 		 * thread.
853 		 */
854 		red_deep_lbolt = lbolt;
855 		red_deep_thread = curthread;
856 	}
857 
858 	/*
859 	 * If this is a DEBUG kernel, and we've run too deep for comfort, toss.
860 	 */
861 	ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD);
862 	return (0);
863 #endif /* _LP64 */
864 }
865 
866 void
867 segkp_unmap_red(void)
868 {
869 	page_t *pp;
870 	caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase &
871 	    (uintptr_t)PAGEMASK) - PAGESIZE);
872 
873 	ASSERT(curthread->t_red_pp != NULL);
874 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
875 
876 	/*
877 	 * Because we locked the mapping down, we can't simply rely
878 	 * on page_destroy() to clean everything up;  we need to call
879 	 * hat_unload() to explicitly unlock the mapping resources.
880 	 */
881 	hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK);
882 
883 	pp = curthread->t_red_pp;
884 
885 	ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va));
886 
887 	/*
888 	 * Need to upgrade the SE_SHARED lock to SE_EXCL.
889 	 */
890 	if (!page_tryupgrade(pp)) {
891 		/*
892 		 * As there is now wait for upgrade, release the
893 		 * SE_SHARED lock and wait for SE_EXCL.
894 		 */
895 		page_unlock(pp);
896 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL);
897 		/* pp may be NULL here, hence the test below */
898 	}
899 
900 	/*
901 	 * Destroy the page, with dontfree set to zero (i.e. free it).
902 	 */
903 	if (pp != NULL)
904 		page_destroy(pp, 0);
905 	curthread->t_red_pp = NULL;
906 }
907 #else
908 #error Red stacks only supported with downwards stack growth.
909 #endif
910 
911 /*
912  * Handle a fault on an address corresponding to one of the
913  * resources in the segkp segment.
914  */
915 faultcode_t
916 segkp_fault(
917 	struct hat	*hat,
918 	struct seg	*seg,
919 	caddr_t		vaddr,
920 	size_t		len,
921 	enum fault_type	type,
922 	enum seg_rw rw)
923 {
924 	struct segkp_data	*kpd = NULL;
925 	int			err;
926 
927 	ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock));
928 
929 	/*
930 	 * Sanity checks.
931 	 */
932 	if (type == F_PROT) {
933 		panic("segkp_fault: unexpected F_PROT fault");
934 		/*NOTREACHED*/
935 	}
936 
937 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
938 		return (FC_NOMAP);
939 
940 	mutex_enter(&kpd->kp_lock);
941 
942 	if (type == F_SOFTLOCK) {
943 		ASSERT(!(kpd->kp_flags & KPD_LOCKED));
944 		/*
945 		 * The F_SOFTLOCK case has more stringent
946 		 * range requirements: the given range must exactly coincide
947 		 * with the resource's mapped portion. Note reference to
948 		 * redzone is handled since vaddr would not equal base
949 		 */
950 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
951 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
952 			mutex_exit(&kpd->kp_lock);
953 			return (FC_MAKE_ERR(EFAULT));
954 		}
955 
956 		if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) {
957 			mutex_exit(&kpd->kp_lock);
958 			return (FC_MAKE_ERR(err));
959 		}
960 		kpd->kp_flags |= KPD_LOCKED;
961 		mutex_exit(&kpd->kp_lock);
962 		return (0);
963 	}
964 
965 	if (type == F_INVAL) {
966 		ASSERT(!(kpd->kp_flags & KPD_NO_ANON));
967 
968 		/*
969 		 * Check if we touched the redzone. Somewhat optimistic
970 		 * here if we are touching the redzone of our own stack
971 		 * since we wouldn't have a stack to get this far...
972 		 */
973 		if ((kpd->kp_flags & KPD_HASREDZONE) &&
974 		    btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd))
975 			panic("segkp_fault: accessing redzone");
976 
977 		/*
978 		 * This fault may occur while the page is being F_SOFTLOCK'ed.
979 		 * Return since a 2nd segkp_load is unnecessary and also would
980 		 * result in the page being locked twice and eventually
981 		 * hang the thread_reaper thread.
982 		 */
983 		if (kpd->kp_flags & KPD_LOCKED) {
984 			mutex_exit(&kpd->kp_lock);
985 			return (0);
986 		}
987 
988 		err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags);
989 		mutex_exit(&kpd->kp_lock);
990 		return (err ? FC_MAKE_ERR(err) : 0);
991 	}
992 
993 	if (type == F_SOFTUNLOCK) {
994 		uint_t	flags;
995 
996 		/*
997 		 * Make sure the addr is LOCKED and it has anon backing
998 		 * before unlocking
999 		 */
1000 		if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON) {
1001 			panic("segkp_fault: bad unlock");
1002 			/*NOTREACHED*/
1003 		}
1004 
1005 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
1006 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
1007 			panic("segkp_fault: bad range");
1008 			/*NOTREACHED*/
1009 		}
1010 
1011 		if (rw == S_WRITE)
1012 			flags = kpd->kp_flags | KPD_WRITEDIRTY;
1013 		else
1014 			flags = kpd->kp_flags;
1015 		err = segkp_unlock(hat, seg, vaddr, len, kpd, flags);
1016 		kpd->kp_flags &= ~KPD_LOCKED;
1017 		mutex_exit(&kpd->kp_lock);
1018 		return (err ? FC_MAKE_ERR(err) : 0);
1019 	}
1020 	mutex_exit(&kpd->kp_lock);
1021 	panic("segkp_fault: bogus fault type: %d\n", type);
1022 	/*NOTREACHED*/
1023 }
1024 
1025 /*
1026  * Check that the given protections suffice over the range specified by
1027  * vaddr and len.  For this segment type, the only issue is whether or
1028  * not the range lies completely within the mapped part of an allocated
1029  * resource.
1030  */
1031 /* ARGSUSED */
1032 static int
1033 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot)
1034 {
1035 	struct segkp_data *kpd = NULL;
1036 	caddr_t mbase;
1037 	size_t mlen;
1038 
1039 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
1040 		return (EACCES);
1041 
1042 	mutex_enter(&kpd->kp_lock);
1043 	mbase = stom(kpd->kp_base, kpd->kp_flags);
1044 	mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags);
1045 	if (len > mlen || vaddr < mbase ||
1046 	    ((vaddr + len) > (mbase + mlen))) {
1047 		mutex_exit(&kpd->kp_lock);
1048 		return (EACCES);
1049 	}
1050 	mutex_exit(&kpd->kp_lock);
1051 	return (0);
1052 }
1053 
1054 
1055 /*
1056  * Check to see if it makes sense to do kluster/read ahead to
1057  * addr + delta relative to the mapping at addr.  We assume here
1058  * that delta is a signed PAGESIZE'd multiple (which can be negative).
1059  *
1060  * For seg_u we always "approve" of this action from our standpoint.
1061  */
1062 /*ARGSUSED*/
1063 static int
1064 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
1065 {
1066 	return (0);
1067 }
1068 
1069 /*
1070  * Load and possibly lock intra-slot resources in the range given by
1071  * vaddr and len.
1072  */
1073 static int
1074 segkp_load(
1075 	struct hat *hat,
1076 	struct seg *seg,
1077 	caddr_t vaddr,
1078 	size_t len,
1079 	struct segkp_data *kpd,
1080 	uint_t flags)
1081 {
1082 	caddr_t va;
1083 	caddr_t vlim;
1084 	ulong_t i;
1085 	uint_t lock;
1086 
1087 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1088 
1089 	len = P2ROUNDUP(len, PAGESIZE);
1090 
1091 	/* If locking, reserve physical memory */
1092 	if (flags & KPD_LOCKED) {
1093 		pgcnt_t pages = btop(len);
1094 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1095 			atomic_add_long(&anon_segkp_pages_locked, pages);
1096 		(void) page_resv(pages, KM_SLEEP);
1097 	}
1098 
1099 	/*
1100 	 * Loop through the pages in the given range.
1101 	 */
1102 	va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
1103 	vaddr = va;
1104 	vlim = va + len;
1105 	lock = flags & KPD_LOCKED;
1106 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1107 	for (; va < vlim; va += PAGESIZE, i++) {
1108 		page_t		*pl[2];	/* second element NULL terminator */
1109 		struct vnode    *vp;
1110 		anoff_t		off;
1111 		int		err;
1112 		struct anon	*ap;
1113 
1114 		/*
1115 		 * Summon the page.  If it's not resident, arrange
1116 		 * for synchronous i/o to pull it in.
1117 		 */
1118 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1119 		swap_xlate(ap, &vp, &off);
1120 
1121 		/*
1122 		 * The returned page list will have exactly one entry,
1123 		 * which is returned to us already kept.
1124 		 */
1125 		err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL,
1126 		    pl, PAGESIZE, seg, va, S_READ, kcred);
1127 
1128 		if (err) {
1129 			/*
1130 			 * Back out of what we've done so far.
1131 			 */
1132 			(void) segkp_unlock(hat, seg, vaddr,
1133 			    (va - vaddr), kpd, flags);
1134 			return (err);
1135 		}
1136 
1137 		/*
1138 		 * Load an MMU translation for the page.
1139 		 */
1140 		hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE),
1141 		    lock ? HAT_LOAD_LOCK : HAT_LOAD);
1142 
1143 		if (!lock) {
1144 			/*
1145 			 * Now, release "shared" lock on the page.
1146 			 */
1147 			page_unlock(pl[0]);
1148 		}
1149 	}
1150 	return (0);
1151 }
1152 
1153 /*
1154  * At the very least unload the mmu-translations and unlock the range if locked
1155  * Can be called with the following flag value KPD_WRITEDIRTY which specifies
1156  * any dirty pages should be written to disk.
1157  */
1158 static int
1159 segkp_unlock(
1160 	struct hat *hat,
1161 	struct seg *seg,
1162 	caddr_t vaddr,
1163 	size_t len,
1164 	struct segkp_data *kpd,
1165 	uint_t flags)
1166 {
1167 	caddr_t va;
1168 	caddr_t vlim;
1169 	ulong_t i;
1170 	struct page *pp;
1171 	struct vnode *vp;
1172 	anoff_t off;
1173 	struct anon *ap;
1174 
1175 #ifdef lint
1176 	seg = seg;
1177 #endif /* lint */
1178 
1179 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1180 
1181 	/*
1182 	 * Loop through the pages in the given range. It is assumed
1183 	 * segkp_unlock is called with page aligned base
1184 	 */
1185 	va = vaddr;
1186 	vlim = va + len;
1187 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1188 	hat_unload(hat, va, len,
1189 	    ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
1190 	for (; va < vlim; va += PAGESIZE, i++) {
1191 		/*
1192 		 * Find the page associated with this part of the
1193 		 * slot, tracking it down through its associated swap
1194 		 * space.
1195 		 */
1196 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1197 		swap_xlate(ap, &vp, &off);
1198 
1199 		if (flags & KPD_LOCKED) {
1200 			if ((pp = page_find(vp, off)) == NULL) {
1201 				if (flags & KPD_LOCKED) {
1202 					panic("segkp_softunlock: missing page");
1203 					/*NOTREACHED*/
1204 				}
1205 			}
1206 		} else {
1207 			/*
1208 			 * Nothing to do if the slot is not locked and the
1209 			 * page doesn't exist.
1210 			 */
1211 			if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL)
1212 				continue;
1213 		}
1214 
1215 		/*
1216 		 * If the page doesn't have any translations, is
1217 		 * dirty and not being shared, then push it out
1218 		 * asynchronously and avoid waiting for the
1219 		 * pageout daemon to do it for us.
1220 		 *
1221 		 * XXX - Do we really need to get the "exclusive"
1222 		 * lock via an upgrade?
1223 		 */
1224 		if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) &&
1225 		    hat_ismod(pp) && page_tryupgrade(pp)) {
1226 			/*
1227 			 * Hold the vnode before releasing the page lock to
1228 			 * prevent it from being freed and re-used by some
1229 			 * other thread.
1230 			 */
1231 			VN_HOLD(vp);
1232 			page_unlock(pp);
1233 
1234 			/*
1235 			 * Want most powerful credentials we can get so
1236 			 * use kcred.
1237 			 */
1238 			(void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
1239 			    B_ASYNC | B_FREE, kcred);
1240 			VN_RELE(vp);
1241 		} else {
1242 			page_unlock(pp);
1243 		}
1244 	}
1245 
1246 	/* If unlocking, release physical memory */
1247 	if (flags & KPD_LOCKED) {
1248 		pgcnt_t pages = btopr(len);
1249 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1250 			atomic_add_long(&anon_segkp_pages_locked, -pages);
1251 		page_unresv(pages);
1252 	}
1253 	return (0);
1254 }
1255 
1256 /*
1257  * Insert the kpd in the hash table.
1258  */
1259 static void
1260 segkp_insert(struct seg *seg, struct segkp_data *kpd)
1261 {
1262 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1263 	int index;
1264 
1265 	/*
1266 	 * Insert the kpd based on the address that will be returned
1267 	 * via segkp_release.
1268 	 */
1269 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1270 	mutex_enter(&segkp_lock);
1271 	kpd->kp_next = kpsd->kpsd_hash[index];
1272 	kpsd->kpsd_hash[index] = kpd;
1273 	mutex_exit(&segkp_lock);
1274 }
1275 
1276 /*
1277  * Remove kpd from the hash table.
1278  */
1279 static void
1280 segkp_delete(struct seg *seg, struct segkp_data *kpd)
1281 {
1282 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1283 	struct segkp_data **kpp;
1284 	int index;
1285 
1286 	ASSERT(MUTEX_HELD(&segkp_lock));
1287 
1288 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1289 	for (kpp = &kpsd->kpsd_hash[index];
1290 	    *kpp != NULL; kpp = &((*kpp)->kp_next)) {
1291 		if (*kpp == kpd) {
1292 			*kpp = kpd->kp_next;
1293 			return;
1294 		}
1295 	}
1296 	panic("segkp_delete: unable to find element to delete");
1297 	/*NOTREACHED*/
1298 }
1299 
1300 /*
1301  * Find the kpd associated with a vaddr.
1302  *
1303  * Most of the callers of segkp_find will pass the vaddr that
1304  * hashes to the desired index, but there are cases where
1305  * this is not true in which case we have to (potentially) scan
1306  * the whole table looking for it. This should be very rare
1307  * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the
1308  * middle of the segkp_data region).
1309  */
1310 static struct segkp_data *
1311 segkp_find(struct seg *seg, caddr_t vaddr)
1312 {
1313 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1314 	struct segkp_data *kpd;
1315 	int	i;
1316 	int	stop;
1317 
1318 	i = stop = SEGKP_HASH(vaddr);
1319 	mutex_enter(&segkp_lock);
1320 	do {
1321 		for (kpd = kpsd->kpsd_hash[i]; kpd != NULL;
1322 						kpd = kpd->kp_next) {
1323 			if (vaddr >= kpd->kp_base &&
1324 			    vaddr < kpd->kp_base + kpd->kp_len) {
1325 				mutex_exit(&segkp_lock);
1326 				return (kpd);
1327 			}
1328 		}
1329 		if (--i < 0)
1330 			i = SEGKP_HASHSZ - 1;	/* Wrap */
1331 	} while (i != stop);
1332 	mutex_exit(&segkp_lock);
1333 	return (NULL);		/* Not found */
1334 }
1335 
1336 /*
1337  * returns size of swappable area.
1338  */
1339 size_t
1340 swapsize(caddr_t v)
1341 {
1342 	struct segkp_data *kpd;
1343 
1344 	if ((kpd = segkp_find(segkp, v)) != NULL)
1345 		return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
1346 	else
1347 		return (NULL);
1348 }
1349 
1350 /*
1351  * Dump out all the active segkp pages
1352  */
1353 static void
1354 segkp_dump(struct seg *seg)
1355 {
1356 	int i;
1357 	struct segkp_data *kpd;
1358 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1359 
1360 	for (i = 0; i < SEGKP_HASHSZ; i++) {
1361 		for (kpd = kpsd->kpsd_hash[i];
1362 		    kpd != NULL; kpd = kpd->kp_next) {
1363 			pfn_t pfn;
1364 			caddr_t addr;
1365 			caddr_t eaddr;
1366 
1367 			addr = kpd->kp_base;
1368 			eaddr = addr + kpd->kp_len;
1369 			while (addr < eaddr) {
1370 				ASSERT(seg->s_as == &kas);
1371 				pfn = hat_getpfnum(seg->s_as->a_hat, addr);
1372 				if (pfn != PFN_INVALID)
1373 					dump_addpage(seg->s_as, addr, pfn);
1374 				addr += PAGESIZE;
1375 				dump_timeleft = dump_timeout;
1376 			}
1377 		}
1378 	}
1379 }
1380 
1381 /*ARGSUSED*/
1382 static int
1383 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
1384     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1385 {
1386 	return (ENOTSUP);
1387 }
1388 
1389 /*ARGSUSED*/
1390 static int
1391 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
1392 {
1393 	return (ENODEV);
1394 }
1395 
1396 /*ARGSUSED*/
1397 static lgrp_mem_policy_info_t	*
1398 segkp_getpolicy(struct seg *seg, caddr_t addr)
1399 {
1400 	return (NULL);
1401 }
1402 
1403 /*ARGSUSED*/
1404 static int
1405 segkp_capable(struct seg *seg, segcapability_t capability)
1406 {
1407 	return (0);
1408 }
1409 
1410 #include <sys/mem_config.h>
1411 
1412 /*ARGSUSED*/
1413 static void
1414 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages)
1415 {}
1416 
1417 /*
1418  * During memory delete, turn off caches so that pages are not held.
1419  * A better solution may be to unlock the pages while they are
1420  * in the cache so that they may be collected naturally.
1421  */
1422 
1423 /*ARGSUSED*/
1424 static int
1425 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages)
1426 {
1427 	atomic_add_32(&segkp_indel, 1);
1428 	segkp_cache_free();
1429 	return (0);
1430 }
1431 
1432 /*ARGSUSED*/
1433 static void
1434 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
1435 {
1436 	atomic_add_32(&segkp_indel, -1);
1437 }
1438 
1439 static kphysm_setup_vector_t segkp_mem_config_vec = {
1440 	KPHYSM_SETUP_VECTOR_VERSION,
1441 	segkp_mem_config_post_add,
1442 	segkp_mem_config_pre_del,
1443 	segkp_mem_config_post_del,
1444 };
1445 
1446 static void
1447 segkpinit_mem_config(struct seg *seg)
1448 {
1449 	int ret;
1450 
1451 	ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg);
1452 	ASSERT(ret == 0);
1453 }
1454