1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 #ifdef __sparc 231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 232 #endif /* __sparc */ 233 234 kernelheap = heap_start; 235 ekernelheap = heap_end; 236 237 #ifdef __sparc 238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 239 /* 240 * Bias heap_lp start address by kmem64_sz to reduce collisions 241 * in 4M kernel TSB between kmem64 area and heap_lp 242 */ 243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 244 if (kmem64_sz <= heap_lp_size / 2) 245 heap_lp_size -= kmem64_sz; 246 heap_lp_base = ekernelheap - heap_lp_size; 247 heap_lp_end = heap_lp_base + heap_lp_size; 248 #endif /* __sparc */ 249 250 /* 251 * If this platform has a 'core' heap area, then the space for 252 * overflow module text should be carved out of the end of that 253 * heap. Otherwise, it gets carved out of the general purpose 254 * heap. 255 */ 256 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 257 if (core_size > 0) { 258 ASSERT(core_size >= HEAPTEXT_SIZE); 259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 260 core_size -= HEAPTEXT_SIZE; 261 } 262 #ifndef __sparc 263 else { 264 ekernelheap -= HEAPTEXT_SIZE; 265 textbase = (uintptr_t)ekernelheap; 266 } 267 #endif 268 269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 271 segkmem_alloc, segkmem_free); 272 273 if (core_size > 0) { 274 heap_core_arena = vmem_create("heap_core", core_start, 275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 276 heap_core_base = core_start; 277 } else { 278 heap_core_arena = heap_arena; 279 heap_core_base = kernelheap; 280 } 281 282 /* 283 * reserve space for the large page heap. If large pages for kernel 284 * heap is enabled large page heap arean will be created later in the 285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 286 * range will be returned back to the heap_arena. 287 */ 288 if (heap_lp_size) { 289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 290 heap_lp_base, heap_lp_end, 291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 292 } 293 294 /* 295 * Remove the already-spoken-for memory range [kernelheap, first_avail). 296 */ 297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 299 300 #ifdef __sparc 301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 303 NULL, NULL, 0, VM_SLEEP); 304 305 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 306 heaptext_parent = NULL; 307 #else /* __sparc */ 308 heap32_arena = heap_core_arena; 309 heaptext_parent = heap_core_arena; 310 #endif /* __sparc */ 311 312 heaptext_arena = vmem_create("heaptext", (void *)textbase, 313 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 314 315 /* 316 * Create a set of arenas for memory with static translations 317 * (e.g. VA -> PA translations cannot change). Since using 318 * kernel pages by physical address implies it isn't safe to 319 * walk across page boundaries, the static_arena quantum must 320 * be PAGESIZE. Any kmem caches that require static memory 321 * should source from static_arena, while direct allocations 322 * should only use static_alloc_arena. 323 */ 324 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 325 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 326 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 327 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 328 0, VM_SLEEP); 329 330 /* 331 * Create an arena for translation data (ptes, hmes, or hblks). 332 * We need an arena for this because hat_memload() is essential 333 * to vmem_populate() (see comments in common/os/vmem.c). 334 * 335 * Note: any kmem cache that allocates from hat_memload_arena 336 * must be created as a KMC_NOHASH cache (i.e. no external slab 337 * and bufctl structures to allocate) so that slab creation doesn't 338 * require anything more than a single vmem_alloc(). 339 */ 340 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 341 hat_memload_alloc, segkmem_free, heap_arena, 0, 342 VM_SLEEP | VMC_POPULATOR); 343 } 344 345 void 346 boot_mapin(caddr_t addr, size_t size) 347 { 348 caddr_t eaddr; 349 page_t *pp; 350 pfn_t pfnum; 351 352 if (page_resv(btop(size), KM_NOSLEEP) == 0) 353 panic("boot_mapin: page_resv failed"); 354 355 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 356 pfnum = va_to_pfn(addr); 357 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 358 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 359 360 /* 361 * must break up any large pages that may have constituent 362 * pages being utilized for BOP_ALLOC()'s before calling 363 * page_numtopp().The locking code (ie. page_reclaim()) 364 * can't handle them 365 */ 366 if (pp->p_szc != 0) 367 page_boot_demote(pp); 368 369 pp = page_numtopp(pfnum, SE_EXCL); 370 if (pp == NULL || PP_ISFREE(pp)) 371 panic("boot_alloc: pp is NULL or free"); 372 373 /* 374 * If the cage is on but doesn't yet contain this page, 375 * mark it as non-relocatable. 376 */ 377 if (kcage_on && !PP_ISNORELOC(pp)) 378 PP_SETNORELOC(pp); 379 380 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 381 pp->p_lckcnt = 1; 382 #if defined(__x86) 383 page_downgrade(pp); 384 #else 385 page_unlock(pp); 386 #endif 387 } 388 } 389 390 /* 391 * Get pages from boot and hash them into the kernel's vp. 392 * Used after page structs have been allocated, but before segkmem is ready. 393 */ 394 void * 395 boot_alloc(void *inaddr, size_t size, uint_t align) 396 { 397 caddr_t addr = inaddr; 398 399 if (bootops == NULL) 400 prom_panic("boot_alloc: attempt to allocate memory after " 401 "BOP_GONE"); 402 403 size = ptob(btopr(size)); 404 if (BOP_ALLOC(bootops, addr, size, align) != addr) 405 panic("boot_alloc: BOP_ALLOC failed"); 406 boot_mapin((caddr_t)addr, size); 407 return (addr); 408 } 409 410 static void 411 segkmem_badop() 412 { 413 panic("segkmem_badop"); 414 } 415 416 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 417 418 /*ARGSUSED*/ 419 static faultcode_t 420 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 421 enum fault_type type, enum seg_rw rw) 422 { 423 pgcnt_t npages; 424 spgcnt_t pg; 425 page_t *pp; 426 struct vnode *vp = seg->s_data; 427 428 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 429 430 if (seg->s_as != &kas || size > seg->s_size || 431 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 432 panic("segkmem_fault: bad args"); 433 434 /* 435 * If it is one of segkp pages, call segkp_fault. 436 */ 437 if (segkp_bitmap && seg == &kvseg && 438 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 439 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 440 441 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 442 return (FC_NOSUPPORT); 443 444 npages = btopr(size); 445 446 switch (type) { 447 case F_SOFTLOCK: /* lock down already-loaded translations */ 448 for (pg = 0; pg < npages; pg++) { 449 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 450 SE_SHARED); 451 if (pp == NULL) { 452 /* 453 * Hmm, no page. Does a kernel mapping 454 * exist for it? 455 */ 456 if (!hat_probe(kas.a_hat, addr)) { 457 addr -= PAGESIZE; 458 while (--pg >= 0) { 459 pp = page_find(vp, (u_offset_t) 460 (uintptr_t)addr); 461 if (pp) 462 page_unlock(pp); 463 addr -= PAGESIZE; 464 } 465 return (FC_NOMAP); 466 } 467 } 468 addr += PAGESIZE; 469 } 470 if (rw == S_OTHER) 471 hat_reserve(seg->s_as, addr, size); 472 return (0); 473 case F_SOFTUNLOCK: 474 while (npages--) { 475 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 476 if (pp) 477 page_unlock(pp); 478 addr += PAGESIZE; 479 } 480 return (0); 481 default: 482 return (FC_NOSUPPORT); 483 } 484 /*NOTREACHED*/ 485 } 486 487 static int 488 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 489 { 490 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 491 492 if (seg->s_as != &kas || size > seg->s_size || 493 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 494 panic("segkmem_setprot: bad args"); 495 496 /* 497 * If it is one of segkp pages, call segkp. 498 */ 499 if (segkp_bitmap && seg == &kvseg && 500 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 501 return (SEGOP_SETPROT(segkp, addr, size, prot)); 502 503 if (prot == 0) 504 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 505 else 506 hat_chgprot(kas.a_hat, addr, size, prot); 507 return (0); 508 } 509 510 /* 511 * This is a dummy segkmem function overloaded to call segkp 512 * when segkp is under the heap. 513 */ 514 /* ARGSUSED */ 515 static int 516 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 517 { 518 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 519 520 if (seg->s_as != &kas) 521 segkmem_badop(); 522 523 /* 524 * If it is one of segkp pages, call into segkp. 525 */ 526 if (segkp_bitmap && seg == &kvseg && 527 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 528 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 529 530 segkmem_badop(); 531 return (0); 532 } 533 534 /* 535 * This is a dummy segkmem function overloaded to call segkp 536 * when segkp is under the heap. 537 */ 538 /* ARGSUSED */ 539 static int 540 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 541 { 542 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 543 544 if (seg->s_as != &kas) 545 segkmem_badop(); 546 547 /* 548 * If it is one of segkp pages, call into segkp. 549 */ 550 if (segkp_bitmap && seg == &kvseg && 551 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 552 return (SEGOP_KLUSTER(segkp, addr, delta)); 553 554 segkmem_badop(); 555 return (0); 556 } 557 558 static void 559 segkmem_xdump_range(void *arg, void *start, size_t size) 560 { 561 struct as *as = arg; 562 caddr_t addr = start; 563 caddr_t addr_end = addr + size; 564 565 while (addr < addr_end) { 566 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 567 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 568 dump_addpage(as, addr, pfn); 569 addr += PAGESIZE; 570 dump_timeleft = dump_timeout; 571 } 572 } 573 574 static void 575 segkmem_dump_range(void *arg, void *start, size_t size) 576 { 577 caddr_t addr = start; 578 caddr_t addr_end = addr + size; 579 580 /* 581 * If we are about to start dumping the range of addresses we 582 * carved out of the kernel heap for the large page heap walk 583 * heap_lp_arena to find what segments are actually populated 584 */ 585 if (SEGKMEM_USE_LARGEPAGES && 586 addr == heap_lp_base && addr_end == heap_lp_end && 587 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 588 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 589 segkmem_xdump_range, arg); 590 } else { 591 segkmem_xdump_range(arg, start, size); 592 } 593 } 594 595 static void 596 segkmem_dump(struct seg *seg) 597 { 598 /* 599 * The kernel's heap_arena (represented by kvseg) is a very large 600 * VA space, most of which is typically unused. To speed up dumping 601 * we use vmem_walk() to quickly find the pieces of heap_arena that 602 * are actually in use. We do the same for heap32_arena and 603 * heap_core. 604 * 605 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 606 * may ultimately need to allocate memory. Reentrant walks are 607 * necessarily imperfect snapshots. The kernel heap continues 608 * to change during a live crash dump, for example. For a normal 609 * crash dump, however, we know that there won't be any other threads 610 * messing with the heap. Therefore, at worst, we may fail to dump 611 * the pages that get allocated by the act of dumping; but we will 612 * always dump every page that was allocated when the walk began. 613 * 614 * The other segkmem segments are dense (fully populated), so there's 615 * no need to use this technique when dumping them. 616 * 617 * Note: when adding special dump handling for any new sparsely- 618 * populated segments, be sure to add similar handling to the ::kgrep 619 * code in mdb. 620 */ 621 if (seg == &kvseg) { 622 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 623 segkmem_dump_range, seg->s_as); 624 #ifndef __sparc 625 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 626 segkmem_dump_range, seg->s_as); 627 #endif 628 } else if (seg == &kvseg_core) { 629 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 630 segkmem_dump_range, seg->s_as); 631 } else if (seg == &kvseg32) { 632 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 633 segkmem_dump_range, seg->s_as); 634 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 635 segkmem_dump_range, seg->s_as); 636 } else if (seg == &kzioseg) { 637 /* 638 * We don't want to dump pages attached to kzioseg since they 639 * contain file data from ZFS. If this page's segment is 640 * kzioseg return instead of writing it to the dump device. 641 */ 642 return; 643 } else { 644 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 645 } 646 } 647 648 /* 649 * lock/unlock kmem pages over a given range [addr, addr+len). 650 * Returns a shadow list of pages in ppp. If there are holes 651 * in the range (e.g. some of the kernel mappings do not have 652 * underlying page_ts) returns ENOTSUP so that as_pagelock() 653 * will handle the range via as_fault(F_SOFTLOCK). 654 */ 655 /*ARGSUSED*/ 656 static int 657 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 658 page_t ***ppp, enum lock_type type, enum seg_rw rw) 659 { 660 page_t **pplist, *pp; 661 pgcnt_t npages; 662 spgcnt_t pg; 663 size_t nb; 664 struct vnode *vp = seg->s_data; 665 666 ASSERT(ppp != NULL); 667 668 /* 669 * If it is one of segkp pages, call into segkp. 670 */ 671 if (segkp_bitmap && seg == &kvseg && 672 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 673 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 674 675 if (type == L_PAGERECLAIM) 676 return (ENOTSUP); 677 678 npages = btopr(len); 679 nb = sizeof (page_t *) * npages; 680 681 if (type == L_PAGEUNLOCK) { 682 pplist = *ppp; 683 ASSERT(pplist != NULL); 684 685 for (pg = 0; pg < npages; pg++) { 686 pp = pplist[pg]; 687 page_unlock(pp); 688 } 689 kmem_free(pplist, nb); 690 return (0); 691 } 692 693 ASSERT(type == L_PAGELOCK); 694 695 pplist = kmem_alloc(nb, KM_NOSLEEP); 696 if (pplist == NULL) { 697 *ppp = NULL; 698 return (ENOTSUP); /* take the slow path */ 699 } 700 701 for (pg = 0; pg < npages; pg++) { 702 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 703 if (pp == NULL) { 704 while (--pg >= 0) 705 page_unlock(pplist[pg]); 706 kmem_free(pplist, nb); 707 *ppp = NULL; 708 return (ENOTSUP); 709 } 710 pplist[pg] = pp; 711 addr += PAGESIZE; 712 } 713 714 *ppp = pplist; 715 return (0); 716 } 717 718 /* 719 * This is a dummy segkmem function overloaded to call segkp 720 * when segkp is under the heap. 721 */ 722 /* ARGSUSED */ 723 static int 724 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 725 { 726 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 727 728 if (seg->s_as != &kas) 729 segkmem_badop(); 730 731 /* 732 * If it is one of segkp pages, call into segkp. 733 */ 734 if (segkp_bitmap && seg == &kvseg && 735 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 736 return (SEGOP_GETMEMID(segkp, addr, memidp)); 737 738 segkmem_badop(); 739 return (0); 740 } 741 742 /*ARGSUSED*/ 743 static lgrp_mem_policy_info_t * 744 segkmem_getpolicy(struct seg *seg, caddr_t addr) 745 { 746 return (NULL); 747 } 748 749 /*ARGSUSED*/ 750 static int 751 segkmem_capable(struct seg *seg, segcapability_t capability) 752 { 753 if (capability == S_CAPABILITY_NOMINFLT) 754 return (1); 755 return (0); 756 } 757 758 static struct seg_ops segkmem_ops = { 759 SEGKMEM_BADOP(int), /* dup */ 760 SEGKMEM_BADOP(int), /* unmap */ 761 SEGKMEM_BADOP(void), /* free */ 762 segkmem_fault, 763 SEGKMEM_BADOP(faultcode_t), /* faulta */ 764 segkmem_setprot, 765 segkmem_checkprot, 766 segkmem_kluster, 767 SEGKMEM_BADOP(size_t), /* swapout */ 768 SEGKMEM_BADOP(int), /* sync */ 769 SEGKMEM_BADOP(size_t), /* incore */ 770 SEGKMEM_BADOP(int), /* lockop */ 771 SEGKMEM_BADOP(int), /* getprot */ 772 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 773 SEGKMEM_BADOP(int), /* gettype */ 774 SEGKMEM_BADOP(int), /* getvp */ 775 SEGKMEM_BADOP(int), /* advise */ 776 segkmem_dump, 777 segkmem_pagelock, 778 SEGKMEM_BADOP(int), /* setpgsz */ 779 segkmem_getmemid, 780 segkmem_getpolicy, /* getpolicy */ 781 segkmem_capable, /* capable */ 782 }; 783 784 int 785 segkmem_zio_create(struct seg *seg) 786 { 787 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 788 seg->s_ops = &segkmem_ops; 789 seg->s_data = &zvp; 790 kas.a_size += seg->s_size; 791 return (0); 792 } 793 794 int 795 segkmem_create(struct seg *seg) 796 { 797 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 798 seg->s_ops = &segkmem_ops; 799 seg->s_data = &kvp; 800 kas.a_size += seg->s_size; 801 return (0); 802 } 803 804 /*ARGSUSED*/ 805 page_t * 806 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 807 { 808 struct seg kseg; 809 int pgflags; 810 struct vnode *vp = arg; 811 812 if (vp == NULL) 813 vp = &kvp; 814 815 kseg.s_as = &kas; 816 pgflags = PG_EXCL; 817 818 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 819 pgflags |= PG_NORELOC; 820 if ((vmflag & VM_NOSLEEP) == 0) 821 pgflags |= PG_WAIT; 822 if (vmflag & VM_PANIC) 823 pgflags |= PG_PANIC; 824 if (vmflag & VM_PUSHPAGE) 825 pgflags |= PG_PUSHPAGE; 826 827 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 828 pgflags, &kseg, addr)); 829 } 830 831 /* 832 * Allocate pages to back the virtual address range [addr, addr + size). 833 * If addr is NULL, allocate the virtual address space as well. 834 */ 835 void * 836 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 837 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 838 { 839 page_t *ppl; 840 caddr_t addr = inaddr; 841 pgcnt_t npages = btopr(size); 842 int allocflag; 843 844 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 845 return (NULL); 846 847 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 848 849 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 850 if (inaddr == NULL) 851 vmem_free(vmp, addr, size); 852 return (NULL); 853 } 854 855 ppl = page_create_func(addr, size, vmflag, pcarg); 856 if (ppl == NULL) { 857 if (inaddr == NULL) 858 vmem_free(vmp, addr, size); 859 page_unresv(npages); 860 return (NULL); 861 } 862 863 /* 864 * Under certain conditions, we need to let the HAT layer know 865 * that it cannot safely allocate memory. Allocations from 866 * the hat_memload vmem arena always need this, to prevent 867 * infinite recursion. 868 * 869 * In addition, the x86 hat cannot safely do memory 870 * allocations while in vmem_populate(), because there 871 * is no simple bound on its usage. 872 */ 873 if (vmflag & VM_MEMLOAD) 874 allocflag = HAT_NO_KALLOC; 875 #if defined(__x86) 876 else if (vmem_is_populator()) 877 allocflag = HAT_NO_KALLOC; 878 #endif 879 else 880 allocflag = 0; 881 882 while (ppl != NULL) { 883 page_t *pp = ppl; 884 page_sub(&ppl, pp); 885 ASSERT(page_iolock_assert(pp)); 886 ASSERT(PAGE_EXCL(pp)); 887 page_io_unlock(pp); 888 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 889 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 890 HAT_LOAD_LOCK | allocflag); 891 pp->p_lckcnt = 1; 892 #if defined(__x86) 893 page_downgrade(pp); 894 #else 895 if (vmflag & SEGKMEM_SHARELOCKED) 896 page_downgrade(pp); 897 else 898 page_unlock(pp); 899 #endif 900 } 901 902 return (addr); 903 } 904 905 static void * 906 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 907 { 908 void *addr; 909 segkmem_gc_list_t *gcp, **prev_gcpp; 910 911 ASSERT(vp != NULL); 912 913 if (kvseg.s_base == NULL) { 914 #ifndef __sparc 915 if (bootops->bsys_alloc == NULL) 916 halt("Memory allocation between bop_alloc() and " 917 "kmem_alloc().\n"); 918 #endif 919 920 /* 921 * There's not a lot of memory to go around during boot, 922 * so recycle it if we can. 923 */ 924 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 925 prev_gcpp = &gcp->gc_next) { 926 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 927 *prev_gcpp = gcp->gc_next; 928 return (gcp); 929 } 930 } 931 932 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 933 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 934 panic("segkmem_alloc: boot_alloc failed"); 935 return (addr); 936 } 937 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 938 segkmem_page_create, vp)); 939 } 940 941 void * 942 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 943 { 944 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 945 } 946 947 void * 948 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 949 { 950 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 951 } 952 953 /* 954 * Any changes to this routine must also be carried over to 955 * devmap_free_pages() in the seg_dev driver. This is because 956 * we currently don't have a special kernel segment for non-paged 957 * kernel memory that is exported by drivers to user space. 958 */ 959 static void 960 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp) 961 { 962 page_t *pp; 963 caddr_t addr = inaddr; 964 caddr_t eaddr; 965 pgcnt_t npages = btopr(size); 966 967 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 968 ASSERT(vp != NULL); 969 970 if (kvseg.s_base == NULL) { 971 segkmem_gc_list_t *gc = inaddr; 972 gc->gc_arena = vmp; 973 gc->gc_size = size; 974 gc->gc_next = segkmem_gc_list; 975 segkmem_gc_list = gc; 976 return; 977 } 978 979 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 980 981 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 982 #if defined(__x86) 983 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 984 if (pp == NULL) 985 panic("segkmem_free: page not found"); 986 if (!page_tryupgrade(pp)) { 987 /* 988 * Some other thread has a sharelock. Wait for 989 * it to drop the lock so we can free this page. 990 */ 991 page_unlock(pp); 992 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 993 SE_EXCL); 994 } 995 #else 996 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 997 #endif 998 if (pp == NULL) 999 panic("segkmem_free: page not found"); 1000 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1001 pp->p_lckcnt = 0; 1002 page_destroy(pp, 0); 1003 } 1004 page_unresv(npages); 1005 1006 if (vmp != NULL) 1007 vmem_free(vmp, inaddr, size); 1008 1009 } 1010 1011 void 1012 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1013 { 1014 segkmem_free_vn(vmp, inaddr, size, &kvp); 1015 } 1016 1017 void 1018 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1019 { 1020 segkmem_free_vn(vmp, inaddr, size, &zvp); 1021 } 1022 1023 void 1024 segkmem_gc(void) 1025 { 1026 ASSERT(kvseg.s_base != NULL); 1027 while (segkmem_gc_list != NULL) { 1028 segkmem_gc_list_t *gc = segkmem_gc_list; 1029 segkmem_gc_list = gc->gc_next; 1030 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1031 } 1032 } 1033 1034 /* 1035 * Legacy entry points from here to end of file. 1036 */ 1037 void 1038 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1039 pfn_t pfn, uint_t flags) 1040 { 1041 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1042 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1043 flags | HAT_LOAD_LOCK); 1044 } 1045 1046 void 1047 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1048 { 1049 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1050 } 1051 1052 void * 1053 kmem_getpages(pgcnt_t npages, int kmflag) 1054 { 1055 return (kmem_alloc(ptob(npages), kmflag)); 1056 } 1057 1058 void 1059 kmem_freepages(void *addr, pgcnt_t npages) 1060 { 1061 kmem_free(addr, ptob(npages)); 1062 } 1063 1064 /* 1065 * segkmem_page_create_large() allocates a large page to be used for the kmem 1066 * caches. If kpr is enabled we ask for a relocatable page unless requested 1067 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1068 */ 1069 static page_t * 1070 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1071 { 1072 int pgflags; 1073 1074 pgflags = PG_EXCL; 1075 1076 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1077 pgflags |= PG_NORELOC; 1078 if (!(vmflag & VM_NOSLEEP)) 1079 pgflags |= PG_WAIT; 1080 if (vmflag & VM_PUSHPAGE) 1081 pgflags |= PG_PUSHPAGE; 1082 1083 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1084 pgflags, &kvseg, addr, arg)); 1085 } 1086 1087 /* 1088 * Allocate a large page to back the virtual address range 1089 * [addr, addr + size). If addr is NULL, allocate the virtual address 1090 * space as well. 1091 */ 1092 static void * 1093 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1094 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1095 void *pcarg) 1096 { 1097 caddr_t addr = inaddr, pa; 1098 size_t lpsize = segkmem_lpsize; 1099 pgcnt_t npages = btopr(size); 1100 pgcnt_t nbpages = btop(lpsize); 1101 pgcnt_t nlpages = size >> segkmem_lpshift; 1102 size_t ppasize = nbpages * sizeof (page_t *); 1103 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1104 int i; 1105 1106 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1107 return (NULL); 1108 } 1109 1110 /* 1111 * allocate an array we need for hat_memload_array. 1112 * we use a separate arena to avoid recursion. 1113 * we will not need this array when hat_memload_array learns pp++ 1114 */ 1115 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1116 goto fail_array_alloc; 1117 } 1118 1119 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1120 goto fail_vmem_alloc; 1121 1122 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1123 1124 /* create all the pages */ 1125 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1126 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1127 goto fail_page_create; 1128 page_list_concat(&pplist, &pp); 1129 } 1130 1131 /* at this point we have all the resource to complete the request */ 1132 while ((rootpp = pplist) != NULL) { 1133 for (i = 0; i < nbpages; i++) { 1134 ASSERT(pplist != NULL); 1135 pp = pplist; 1136 page_sub(&pplist, pp); 1137 ASSERT(page_iolock_assert(pp)); 1138 page_io_unlock(pp); 1139 ppa[i] = pp; 1140 } 1141 /* 1142 * Load the locked entry. It's OK to preload the entry into the 1143 * TSB since we now support large mappings in the kernel TSB. 1144 */ 1145 hat_memload_array(kas.a_hat, 1146 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1147 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1148 HAT_LOAD_LOCK); 1149 1150 for (--i; i >= 0; --i) { 1151 ppa[i]->p_lckcnt = 1; 1152 page_unlock(ppa[i]); 1153 } 1154 } 1155 1156 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1157 return (addr); 1158 1159 fail_page_create: 1160 while ((rootpp = pplist) != NULL) { 1161 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1162 ASSERT(pp != NULL); 1163 page_sub(&pplist, pp); 1164 ASSERT(page_iolock_assert(pp)); 1165 page_io_unlock(pp); 1166 } 1167 page_destroy_pages(rootpp); 1168 } 1169 1170 if (inaddr == NULL) 1171 vmem_free(vmp, addr, size); 1172 1173 fail_vmem_alloc: 1174 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1175 1176 fail_array_alloc: 1177 page_unresv(npages); 1178 1179 return (NULL); 1180 } 1181 1182 static void 1183 segkmem_free_one_lp(caddr_t addr, size_t size) 1184 { 1185 page_t *pp, *rootpp = NULL; 1186 pgcnt_t pgs_left = btopr(size); 1187 1188 ASSERT(size == segkmem_lpsize); 1189 1190 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1191 1192 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1193 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1194 if (pp == NULL) 1195 panic("segkmem_free_one_lp: page not found"); 1196 ASSERT(PAGE_EXCL(pp)); 1197 pp->p_lckcnt = 0; 1198 if (rootpp == NULL) 1199 rootpp = pp; 1200 } 1201 ASSERT(rootpp != NULL); 1202 page_destroy_pages(rootpp); 1203 1204 /* page_unresv() is done by the caller */ 1205 } 1206 1207 /* 1208 * This function is called to import new spans into the vmem arenas like 1209 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1210 * spans from large page arena - kmem_lp_arena. In order to do this it might 1211 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1212 * it was not able to satisfy the upgraded request it then calls regular 1213 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1214 */ 1215 /*ARGSUSED*/ 1216 void * 1217 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1218 { 1219 size_t size; 1220 kthread_t *t = curthread; 1221 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1222 1223 ASSERT(sizep != NULL); 1224 1225 size = *sizep; 1226 1227 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1228 !(vmflag & SEGKMEM_SHARELOCKED)) { 1229 1230 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1231 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1232 void *addr = NULL; 1233 ulong_t *lpthrtp = &lpcb->lp_throttle; 1234 ulong_t lpthrt = *lpthrtp; 1235 int dowakeup = 0; 1236 int doalloc = 1; 1237 1238 ASSERT(kmem_lp_arena != NULL); 1239 ASSERT(asize >= size); 1240 1241 if (lpthrt != 0) { 1242 /* try to update the throttle value */ 1243 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1244 if (lpthrt >= segkmem_lpthrottle_max) { 1245 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1246 segkmem_lpthrottle_max / 4); 1247 } 1248 1249 /* 1250 * when we get above throttle start do an exponential 1251 * backoff at trying large pages and reaping 1252 */ 1253 if (lpthrt > segkmem_lpthrottle_start && 1254 (lpthrt & (lpthrt - 1))) { 1255 lpcb->allocs_throttled++; 1256 lpthrt--; 1257 if ((lpthrt & (lpthrt - 1)) == 0) 1258 kmem_reap(); 1259 return (segkmem_alloc(vmp, size, vmflag)); 1260 } 1261 } 1262 1263 if (!(vmflag & VM_NOSLEEP) && 1264 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1265 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1266 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1267 1268 /* 1269 * we are low on free memory in kmem_lp_arena 1270 * we let only one guy to allocate heap_lp 1271 * quantum size chunk that everybody is going to 1272 * share 1273 */ 1274 mutex_enter(&lpcb->lp_lock); 1275 1276 if (lpcb->lp_wait) { 1277 1278 /* we are not the first one - wait */ 1279 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1280 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1281 kmemlp_qnt) { 1282 doalloc = 0; 1283 } 1284 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1285 kmemlp_qnt) { 1286 1287 /* 1288 * we are the first one, make sure we import 1289 * a large page 1290 */ 1291 if (asize == kmemlp_qnt) 1292 asize += kmemlp_qnt; 1293 dowakeup = 1; 1294 lpcb->lp_wait = 1; 1295 } 1296 1297 mutex_exit(&lpcb->lp_lock); 1298 } 1299 1300 /* 1301 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1302 * large pages are not available. In that case this allocation 1303 * attempt will fail and we will retry allocation with small 1304 * pages. We also do not want to panic if this allocation fails 1305 * because we are going to retry. 1306 */ 1307 if (doalloc) { 1308 addr = vmem_alloc(kmem_lp_arena, asize, 1309 (vmflag | VM_ABORT) & ~VM_PANIC); 1310 1311 if (dowakeup) { 1312 mutex_enter(&lpcb->lp_lock); 1313 ASSERT(lpcb->lp_wait != 0); 1314 lpcb->lp_wait = 0; 1315 cv_broadcast(&lpcb->lp_cv); 1316 mutex_exit(&lpcb->lp_lock); 1317 } 1318 } 1319 1320 if (addr != NULL) { 1321 *sizep = asize; 1322 *lpthrtp = 0; 1323 return (addr); 1324 } 1325 1326 if (vmflag & VM_NOSLEEP) 1327 lpcb->nosleep_allocs_failed++; 1328 else 1329 lpcb->sleep_allocs_failed++; 1330 lpcb->alloc_bytes_failed += size; 1331 1332 /* if large page throttling is not started yet do it */ 1333 if (segkmem_use_lpthrottle && lpthrt == 0) { 1334 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1335 } 1336 } 1337 return (segkmem_alloc(vmp, size, vmflag)); 1338 } 1339 1340 void 1341 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1342 { 1343 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1344 segkmem_free(vmp, inaddr, size); 1345 } else { 1346 vmem_free(kmem_lp_arena, inaddr, size); 1347 } 1348 } 1349 1350 /* 1351 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1352 * into kmem_lp arena. In the process it maps the imported segment with 1353 * large pages 1354 */ 1355 static void * 1356 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1357 { 1358 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1359 void *addr; 1360 1361 ASSERT(size != 0); 1362 ASSERT(vmp == heap_lp_arena); 1363 1364 /* do not allow large page heap grow beyound limits */ 1365 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1366 lpcb->allocs_limited++; 1367 return (NULL); 1368 } 1369 1370 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1371 segkmem_page_create_large, NULL); 1372 return (addr); 1373 } 1374 1375 /* 1376 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1377 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1378 * large pages used to map it. 1379 */ 1380 static void 1381 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1382 { 1383 pgcnt_t nlpages = size >> segkmem_lpshift; 1384 size_t lpsize = segkmem_lpsize; 1385 caddr_t addr = inaddr; 1386 pgcnt_t npages = btopr(size); 1387 int i; 1388 1389 ASSERT(vmp == heap_lp_arena); 1390 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1391 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1392 1393 for (i = 0; i < nlpages; i++) { 1394 segkmem_free_one_lp(addr, lpsize); 1395 addr += lpsize; 1396 } 1397 1398 page_unresv(npages); 1399 1400 vmem_free(vmp, inaddr, size); 1401 } 1402 1403 /* 1404 * This function is called at system boot time by kmem_init right after 1405 * /etc/system file has been read. It checks based on hardware configuration 1406 * and /etc/system settings if system is going to use large pages. The 1407 * initialiazation necessary to actually start using large pages 1408 * happens later in the process after segkmem_heap_lp_init() is called. 1409 */ 1410 int 1411 segkmem_lpsetup() 1412 { 1413 int use_large_pages = 0; 1414 1415 #ifdef __sparc 1416 1417 size_t memtotal = physmem * PAGESIZE; 1418 1419 if (heap_lp_base == NULL) { 1420 segkmem_lpsize = PAGESIZE; 1421 return (0); 1422 } 1423 1424 /* get a platform dependent value of large page size for kernel heap */ 1425 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1426 1427 if (segkmem_lpsize <= PAGESIZE) { 1428 /* 1429 * put virtual space reserved for the large page kernel 1430 * back to the regular heap 1431 */ 1432 vmem_xfree(heap_arena, heap_lp_base, 1433 heap_lp_end - heap_lp_base); 1434 heap_lp_base = NULL; 1435 heap_lp_end = NULL; 1436 segkmem_lpsize = PAGESIZE; 1437 return (0); 1438 } 1439 1440 /* set heap_lp quantum if necessary */ 1441 if (segkmem_heaplp_quantum == 0 || 1442 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1443 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1444 segkmem_heaplp_quantum = segkmem_lpsize; 1445 } 1446 1447 /* set kmem_lp quantum if necessary */ 1448 if (segkmem_kmemlp_quantum == 0 || 1449 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1450 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1451 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1452 } 1453 1454 /* set total amount of memory allowed for large page kernel heap */ 1455 if (segkmem_kmemlp_max == 0) { 1456 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1457 segkmem_kmemlp_pcnt = 12; 1458 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1459 } 1460 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1461 segkmem_heaplp_quantum); 1462 1463 /* fix lp kmem preallocation request if necesssary */ 1464 if (segkmem_kmemlp_min) { 1465 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1466 segkmem_heaplp_quantum); 1467 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1468 segkmem_kmemlp_min = segkmem_kmemlp_max; 1469 } 1470 1471 use_large_pages = 1; 1472 segkmem_lpszc = page_szc(segkmem_lpsize); 1473 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1474 1475 #endif 1476 return (use_large_pages); 1477 } 1478 1479 void 1480 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1481 { 1482 ASSERT(zio_mem_base != NULL); 1483 ASSERT(zio_mem_size != 0); 1484 1485 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1486 NULL, NULL, NULL, 0, VM_SLEEP); 1487 1488 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1489 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1490 1491 ASSERT(zio_arena != NULL); 1492 ASSERT(zio_alloc_arena != NULL); 1493 } 1494 1495 #ifdef __sparc 1496 1497 1498 static void * 1499 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1500 { 1501 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1502 void *addr; 1503 1504 if (ppaquantum <= PAGESIZE) 1505 return (segkmem_alloc(vmp, size, vmflag)); 1506 1507 ASSERT((size & (ppaquantum - 1)) == 0); 1508 1509 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1510 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1511 segkmem_page_create, NULL) == NULL) { 1512 vmem_xfree(vmp, addr, size); 1513 addr = NULL; 1514 } 1515 1516 return (addr); 1517 } 1518 1519 static void 1520 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1521 { 1522 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1523 1524 ASSERT(addr != NULL); 1525 1526 if (ppaquantum <= PAGESIZE) { 1527 segkmem_free(vmp, addr, size); 1528 } else { 1529 segkmem_free(NULL, addr, size); 1530 vmem_xfree(vmp, addr, size); 1531 } 1532 } 1533 1534 void 1535 segkmem_heap_lp_init() 1536 { 1537 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1538 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1539 size_t lpsize = segkmem_lpsize; 1540 size_t ppaquantum; 1541 void *addr; 1542 1543 if (segkmem_lpsize <= PAGESIZE) { 1544 ASSERT(heap_lp_base == NULL); 1545 ASSERT(heap_lp_end == NULL); 1546 return; 1547 } 1548 1549 ASSERT(segkmem_heaplp_quantum >= lpsize); 1550 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1551 ASSERT(lpcb->lp_uselp == 0); 1552 ASSERT(heap_lp_base != NULL); 1553 ASSERT(heap_lp_end != NULL); 1554 ASSERT(heap_lp_base < heap_lp_end); 1555 ASSERT(heap_lp_arena == NULL); 1556 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1557 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1558 1559 /* create large page heap arena */ 1560 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1561 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1562 1563 ASSERT(heap_lp_arena != NULL); 1564 1565 /* This arena caches memory already mapped by large pages */ 1566 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1567 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1568 1569 ASSERT(kmem_lp_arena != NULL); 1570 1571 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1572 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1573 1574 /* 1575 * this arena is used for the array of page_t pointers necessary 1576 * to call hat_mem_load_array 1577 */ 1578 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1579 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1580 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1581 VM_SLEEP); 1582 1583 ASSERT(segkmem_ppa_arena != NULL); 1584 1585 /* prealloacate some memory for the lp kernel heap */ 1586 if (segkmem_kmemlp_min) { 1587 1588 ASSERT(P2PHASE(segkmem_kmemlp_min, 1589 segkmem_heaplp_quantum) == 0); 1590 1591 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1592 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1593 1594 addr = vmem_add(kmem_lp_arena, addr, 1595 segkmem_kmemlp_min, VM_SLEEP); 1596 ASSERT(addr != NULL); 1597 } 1598 } 1599 1600 lpcb->lp_uselp = 1; 1601 } 1602 1603 #endif 1604