1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_SUNDDI_H 28 #define _SYS_SUNDDI_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Sun Specific DDI definitions 34 */ 35 36 #include <sys/isa_defs.h> 37 #include <sys/dditypes.h> 38 #include <sys/ddipropdefs.h> 39 #include <sys/devops.h> 40 #include <sys/time.h> 41 #include <sys/cmn_err.h> 42 #include <sys/ddidevmap.h> 43 #include <sys/ddi_impldefs.h> 44 #include <sys/ddi_implfuncs.h> 45 #include <sys/ddi_isa.h> 46 #include <sys/model.h> 47 #include <sys/devctl.h> 48 #if defined(__i386) || defined(__amd64) 49 #include <sys/dma_engine.h> 50 #endif 51 #include <sys/sunpm.h> 52 #include <sys/nvpair.h> 53 #include <sys/sysevent.h> 54 #include <sys/thread.h> 55 #include <sys/stream.h> 56 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) 57 #include <asm/sunddi.h> 58 #endif 59 60 #ifdef __cplusplus 61 extern "C" { 62 #endif 63 64 /* 65 * Generic Sun DDI definitions. 66 */ 67 68 #define DDI_SUCCESS (0) /* successful return */ 69 #define DDI_FAILURE (-1) /* unsuccessful return */ 70 #define DDI_NOT_WELL_FORMED (-2) /* A dev_info node is not valid */ 71 #define DDI_EAGAIN (-3) /* not enough interrupt resources */ 72 #define DDI_EINVAL (-4) /* invalid request or arguments */ 73 #define DDI_ENOTSUP (-5) /* operation is not supported */ 74 #define DDI_EPENDING (-6) /* operation or an event is pending */ 75 76 /* 77 * General-purpose DDI error return value definitions 78 */ 79 #define DDI_ENOMEM 1 /* memory not available */ 80 #define DDI_EBUSY 2 /* busy */ 81 #define DDI_ETRANSPORT 3 /* transport down */ 82 #define DDI_ECONTEXT 4 /* context error */ 83 84 85 /* 86 * General DDI sleep/nosleep allocation flags 87 */ 88 #define DDI_SLEEP 0 89 #define DDI_NOSLEEP 1 90 91 /* 92 * The following special nodeid values are reserved for use when creating 93 * nodes ONLY. They specify the attributes of the DDI_NC_PSEUDO class node 94 * being created: 95 * 96 * o DEVI_PSEUDO_NODEID specifics a node without persistence. 97 * o DEVI_SID_NODEID specifies a node with persistence. 98 * 99 * A node with the 'persistent' attribute will not be automatically removed by 100 * the framework in the current implementation - driver.conf nodes are without 101 * persistence. 102 * 103 * The actual nodeid value may be assigned by the framework and may be 104 * different than these special values. Drivers may not make assumptions 105 * about the nodeid value that is actually assigned to the node. 106 */ 107 108 #define DEVI_PSEUDO_NODEID ((int)-1) 109 #define DEVI_SID_NODEID ((int)-2) 110 111 #define DEVI_PSEUDO_NEXNAME "pseudo" 112 #define DEVI_ISA_NEXNAME "isa" 113 #define DEVI_EISA_NEXNAME "eisa" 114 115 /* 116 * ddi_create_minor_node flags 117 */ 118 #define CLONE_DEV 1 /* device is a clone device */ 119 #define PRIVONLY_DEV 0x10 /* policy-based permissions only */ 120 121 /* 122 * Historical values used for the flag field in ddi_create_minor_node. 123 * Future use of flag bits should avoid these fields to keep binary 124 * compatibility 125 * #define GLOBAL_DEV 0x2 126 * #define NODEBOUND_DEV 0x4 127 * #define NODESPECIFIC_DEV 0x6 128 * #define ENUMERATED_DEV 0x8 129 */ 130 131 /* 132 * Device type defines which are used by the 'node_type' element of the 133 * ddi_minor_data structure 134 */ 135 #define DDI_NT_SERIAL "ddi_serial" /* Serial port */ 136 #define DDI_NT_SERIAL_MB "ddi_serial:mb" /* the 'built-in' serial */ 137 /* ports (the old ttya, b */ 138 /* (,c ,d)) */ 139 #define DDI_NT_SERIAL_DO "ddi_serial:dialout" /* dialout ports */ 140 #define DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */ 141 /* ports */ 142 #define DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */ 143 144 /* 145 * *_CHAN disk type devices have channel numbers or target numbers. 146 * (i.e. ipi and scsi devices) 147 */ 148 #define DDI_NT_BLOCK "ddi_block" /* hard disks */ 149 /* 150 * The next define is for block type devices that can possible exist on 151 * a sub-bus like the scsi bus or the ipi channel. The 'disks' program 152 * will pick up on this and create logical names like c0t0d0s0 instead of 153 * c0d0s0 154 */ 155 #define DDI_NT_BLOCK_CHAN "ddi_block:channel" 156 #define DDI_NT_BLOCK_WWN "ddi_block:wwn" 157 #define DDI_NT_CD "ddi_block:cdrom" /* rom drives (cd-rom) */ 158 #define DDI_NT_CD_CHAN "ddi_block:cdrom:channel" /* rom drives (scsi type) */ 159 #define DDI_NT_FD "ddi_block:diskette" /* floppy disks */ 160 161 #define DDI_NT_ENCLOSURE "ddi_enclosure" 162 #define DDI_NT_SCSI_ENCLOSURE "ddi_enclosure:scsi" 163 164 165 #define DDI_NT_TAPE "ddi_byte:tape" /* tape drives */ 166 167 #define DDI_NT_NET "ddi_network" /* DLPI network devices */ 168 169 #define DDI_NT_MAC "ddi_mac" /* MAC devices */ 170 171 #define DDI_NT_DISPLAY "ddi_display" /* display devices */ 172 173 #define DDI_PSEUDO "ddi_pseudo" /* general pseudo devices */ 174 175 #define DDI_NT_AUDIO "ddi_audio" /* audio device */ 176 177 #define DDI_NT_MOUSE "ddi_mouse" /* mouse device */ 178 179 #define DDI_NT_KEYBOARD "ddi_keyboard" /* keyboard device */ 180 181 #define DDI_NT_PARALLEL "ddi_parallel" /* parallel port */ 182 183 #define DDI_NT_PRINTER "ddi_printer" /* printer device */ 184 185 #define DDI_NT_UGEN "ddi_generic:usb" /* USB generic drv */ 186 187 #define DDI_NT_NEXUS "ddi_ctl:devctl" /* nexus drivers */ 188 189 #define DDI_NT_SCSI_NEXUS "ddi_ctl:devctl:scsi" /* nexus drivers */ 190 191 #define DDI_NT_ATTACHMENT_POINT "ddi_ctl:attachment_point" /* attachment pt */ 192 193 #define DDI_NT_SCSI_ATTACHMENT_POINT "ddi_ctl:attachment_point:scsi" 194 /* scsi attachment pt */ 195 #define DDI_NT_PCI_ATTACHMENT_POINT "ddi_ctl:attachment_point:pci" 196 /* PCI attachment pt */ 197 #define DDI_NT_SBD_ATTACHMENT_POINT "ddi_ctl:attachment_point:sbd" 198 /* generic bd attachment pt */ 199 #define DDI_NT_FC_ATTACHMENT_POINT "ddi_ctl:attachment_point:fc" 200 /* FC attachment pt */ 201 #define DDI_NT_USB_ATTACHMENT_POINT "ddi_ctl:attachment_point:usb" 202 /* USB devices */ 203 #define DDI_NT_BLOCK_FABRIC "ddi_block:fabric" 204 /* Fabric Devices */ 205 #define DDI_NT_IB_ATTACHMENT_POINT "ddi_ctl:attachment_point:ib" 206 /* IB devices */ 207 #define DDI_NT_SMARTCARD_READER "ddi_smartcard_reader" /* Smartcard reader */ 208 209 #define DDI_NT_AV_ASYNC "ddi_av:async" /* asynchronous AV device */ 210 #define DDI_NT_AV_ISOCH "ddi_av:isoch" /* isochronous AV device */ 211 212 /* Device types used for agpgart driver related devices */ 213 #define DDI_NT_AGP_PSEUDO "ddi_agp:pseudo" /* agpgart pseudo device */ 214 #define DDI_NT_AGP_MASTER "ddi_agp:master" /* agp master device */ 215 #define DDI_NT_AGP_TARGET "ddi_agp:target" /* agp target device */ 216 #define DDI_NT_AGP_CPUGART "ddi_agp:cpugart" /* amd64 on-cpu gart device */ 217 218 #define DDI_NT_REGACC "ddi_tool_reg" /* tool register access */ 219 #define DDI_NT_INTRCTL "ddi_tool_intr" /* tool intr access */ 220 221 /* 222 * DDI event definitions 223 */ 224 #define EC_DEVFS "EC_devfs" /* Event class devfs */ 225 226 /* Class devfs subclasses */ 227 #define ESC_DEVFS_MINOR_CREATE "ESC_devfs_minor_create" 228 #define ESC_DEVFS_MINOR_REMOVE "ESC_devfs_minor_remove" 229 #define ESC_DEVFS_DEVI_ADD "ESC_devfs_devi_add" 230 #define ESC_DEVFS_DEVI_REMOVE "ESC_devfs_devi_remove" 231 #define ESC_DEVFS_INSTANCE_MOD "ESC_devfs_instance_mod" 232 #define ESC_DEVFS_BRANCH_ADD "ESC_devfs_branch_add" 233 #define ESC_DEVFS_BRANCH_REMOVE "ESC_devfs_branch_remove" 234 235 /* DDI/NDI event publisher */ 236 #define EP_DDI SUNW_KERN_PUB"ddi" 237 238 /* 239 * devfs event class attributes 240 * 241 * The following attributes are private to EC_DEVFS 242 * event data. 243 */ 244 #define DEVFS_DRIVER_NAME "di.driver" 245 #define DEVFS_INSTANCE "di.instance" 246 #define DEVFS_PATHNAME "di.path" 247 #define DEVFS_DEVI_CLASS "di.devi_class" 248 #define DEVFS_BRANCH_EVENT "di.branch_event" 249 #define DEVFS_MINOR_NAME "mi.name" 250 #define DEVFS_MINOR_NODETYPE "mi.nodetype" 251 #define DEVFS_MINOR_ISCLONE "mi.isclone" 252 #define DEVFS_MINOR_MAJNUM "mi.majorno" 253 #define DEVFS_MINOR_MINORNUM "mi.minorno" 254 255 /* 256 * Fault-related definitions 257 * 258 * The specific numeric values have been chosen to be ordered, but 259 * not consecutive, to allow for future interpolation if required. 260 */ 261 typedef enum { 262 DDI_SERVICE_LOST = -32, 263 DDI_SERVICE_DEGRADED = -16, 264 DDI_SERVICE_UNAFFECTED = 0, 265 DDI_SERVICE_RESTORED = 16 266 } ddi_fault_impact_t; 267 268 typedef enum { 269 DDI_DATAPATH_FAULT = -32, 270 DDI_DEVICE_FAULT = -16, 271 DDI_EXTERNAL_FAULT = 0 272 } ddi_fault_location_t; 273 274 typedef enum { 275 DDI_DEVSTATE_OFFLINE = -32, 276 DDI_DEVSTATE_DOWN = -16, 277 DDI_DEVSTATE_QUIESCED = 0, 278 DDI_DEVSTATE_DEGRADED = 16, 279 DDI_DEVSTATE_UP = 32 280 } ddi_devstate_t; 281 282 #ifdef _KERNEL 283 284 /* 285 * Common property definitions 286 */ 287 #define DDI_FORCEATTACH "ddi-forceattach" 288 #define DDI_NO_AUTODETACH "ddi-no-autodetach" 289 290 /* 291 * Values that the function supplied to the dev_info 292 * tree traversal functions defined below must return. 293 */ 294 295 /* 296 * Continue search, if appropriate. 297 */ 298 #define DDI_WALK_CONTINUE 0 299 300 /* 301 * Terminate current depth of traversal. That is, terminate 302 * the current traversal of children nodes, but continue 303 * traversing sibling nodes and their children (if any). 304 */ 305 306 #define DDI_WALK_PRUNECHILD -1 307 308 /* 309 * Terminate current width of traversal. That is, terminate 310 * the current traversal of sibling nodes, but continue with 311 * traversing children nodes and their siblings (if appropriate). 312 */ 313 314 #define DDI_WALK_PRUNESIB -2 315 316 /* 317 * Terminate the entire search. 318 */ 319 320 #define DDI_WALK_TERMINATE -3 321 322 /* 323 * Terminate the entire search because an error occurred in function 324 */ 325 #define DDI_WALK_ERROR -4 326 327 /* 328 * Drivers that are prepared to support full driver layering 329 * should create and export a null-valued property of the following 330 * name. 331 * 332 * Such drivers should be prepared to be called with FKLYR in 333 * the 'flag' argument of their open(9E), close(9E) routines, and 334 * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines. 335 * 336 * See ioctl(9E) and ddi_copyin(9F) for details. 337 */ 338 #define DDI_KERNEL_IOCTL "ddi-kernel-ioctl" 339 340 /* 341 * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F). 342 */ 343 #define DDI_MODEL_MASK DATAMODEL_MASK /* Note: 0x0FF00000 */ 344 #define DDI_MODEL_ILP32 DATAMODEL_ILP32 345 #define DDI_MODEL_LP64 DATAMODEL_LP64 346 #define DDI_MODEL_NATIVE DATAMODEL_NATIVE 347 #define DDI_MODEL_NONE DATAMODEL_NONE 348 349 /* 350 * Functions and data references which really should be in <sys/ddi.h> 351 */ 352 353 extern int maxphys; 354 extern void minphys(struct buf *); 355 extern int physio(int (*)(struct buf *), struct buf *, dev_t, 356 int, void (*)(struct buf *), struct uio *); 357 extern void disksort(struct diskhd *, struct buf *); 358 359 extern long strtol(const char *, char **, int); 360 extern unsigned long strtoul(const char *, char **, int); 361 extern size_t strlen(const char *) __PURE; 362 extern char *strcpy(char *, const char *); 363 extern char *strncpy(char *, const char *, size_t); 364 /* Need to be consistent with <string.h> C++ definition for strchr() */ 365 #if __cplusplus >= 199711L 366 extern const char *strchr(const char *, int); 367 #ifndef _STRCHR_INLINE 368 #define _STRCHR_INLINE 369 extern "C++" { 370 inline char *strchr(char *__s, int __c) { 371 return (char *)strchr((const char *)__s, __c); 372 } 373 } 374 #endif /* _STRCHR_INLINE */ 375 #else 376 extern char *strchr(const char *, int); 377 #endif /* __cplusplus >= 199711L */ 378 extern int strcmp(const char *, const char *) __PURE; 379 extern int strncmp(const char *, const char *, size_t) __PURE; 380 extern char *strncat(char *, const char *, size_t); 381 extern size_t strlcat(char *, const char *, size_t); 382 extern size_t strlcpy(char *, const char *, size_t); 383 extern size_t strspn(const char *, const char *); 384 extern int bcmp(const void *, const void *, size_t) __PURE; 385 extern int stoi(char **); 386 extern void numtos(ulong_t, char *); 387 extern void bcopy(const void *, void *, size_t); 388 extern void bzero(void *, size_t); 389 390 extern void *memcpy(void *, const void *, size_t); 391 extern void *memset(void *, int, size_t); 392 extern void *memmove(void *, const void *, size_t); 393 extern int memcmp(const void *, const void *, size_t) __PURE; 394 /* Need to be consistent with <string.h> C++ definition for memchr() */ 395 #if __cplusplus >= 199711L 396 extern const void *memchr(const void *, int, size_t); 397 #ifndef _MEMCHR_INLINE 398 #define _MEMCHR_INLINE 399 extern "C++" { 400 inline void *memchr(void * __s, int __c, size_t __n) { 401 return (void *)memchr((const void *)__s, __c, __n); 402 } 403 } 404 #endif /* _MEMCHR_INLINE */ 405 #else 406 extern void *memchr(const void *, int, size_t); 407 #endif /* __cplusplus >= 199711L */ 408 409 extern int ddi_strtol(const char *, char **, int, long *); 410 extern int ddi_strtoul(const char *, char **, int, unsigned long *); 411 412 /* 413 * ddi_map_regs 414 * 415 * Map in the register set given by rnumber. 416 * The register number determine which register 417 * set will be mapped if more than one exists. 418 * The parent driver gets the information 419 * from parent private data and sets up the 420 * appropriate mappings and returns the kernel 421 * virtual address of the register set in *kaddrp. 422 * The offset specifies an offset into the register 423 * space to start from and len indicates the size 424 * of the area to map. If len and offset are 0 then 425 * the entire space is mapped. It returns DDI_SUCCESS on 426 * success or DDI_FAILURE otherwise. 427 * 428 */ 429 int 430 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 431 off_t offset, off_t len); 432 433 /* 434 * ddi_unmap_regs 435 * 436 * Undo mappings set up by ddi_map_regs. 437 * The register number determines which register 438 * set will be unmapped if more than one exists. 439 * This is provided for drivers preparing 440 * to detach themselves from the system to 441 * allow them to release allocated mappings. 442 * 443 * The kaddrp and len specify the area to be 444 * unmapped. *kaddrp was returned from ddi_map_regs 445 * and len should match what ddi_map_regs was called 446 * with. 447 */ 448 449 void 450 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 451 off_t offset, off_t len); 452 453 int 454 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len, 455 caddr_t *addrp); 456 457 int 458 ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp); 459 460 /* 461 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 462 */ 463 struct regspec * 464 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber); 465 466 int 467 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 468 off_t len, caddr_t *vaddrp); 469 470 int 471 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 472 off_t len, caddr_t *vaddrp); 473 474 #ifdef _LP64 475 476 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p); 477 int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p); 478 int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p); 479 int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p); 480 481 int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val); 482 int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val); 483 int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val); 484 int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val); 485 486 #else /* _ILP32 */ 487 488 int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p); 489 #define ddi_peek8 ddi_peekc 490 491 int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p); 492 #define ddi_peek16 ddi_peeks 493 494 int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p); 495 #define ddi_peek32 ddi_peekl 496 497 int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p); 498 #define ddi_peek64 ddi_peekd 499 500 int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val); 501 #define ddi_poke8 ddi_pokec 502 503 int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val); 504 #define ddi_poke16 ddi_pokes 505 506 int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val); 507 #define ddi_poke32 ddi_pokel 508 509 int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val); 510 #define ddi_poke64 ddi_poked 511 512 #endif /* _LP64 */ 513 514 /* 515 * Peek and poke to and from a uio structure in xfersize pieces, 516 * using the parent nexi. 517 */ 518 int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 519 caddr_t addr, size_t len, uint_t xfersize); 520 521 /* 522 * Pagesize conversions using the parent nexi 523 */ 524 unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes); 525 unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes); 526 unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages); 527 528 /* 529 * There are no more "block" interrupt functions, per se. 530 * All thread of control should be done with MP/MT lockings. 531 * 532 * However, there are certain times in which a driver needs 533 * absolutely a critical guaranteed non-preemptable time 534 * in which to execute a few instructions. 535 * 536 * The following pair of functions attempt to guarantee this, 537 * but they are dangerous to use. That is, use them with 538 * extreme care. They do not guarantee to stop other processors 539 * from executing, but they do guarantee that the caller 540 * of ddi_enter_critical will continue to run until the 541 * caller calls ddi_exit_critical. No intervening DDI functions 542 * may be called between an entry and an exit from a critical 543 * region. 544 * 545 * ddi_enter_critical returns an integer identifier which must 546 * be passed to ddi_exit_critical. 547 * 548 * Be very sparing in the use of these functions since it is 549 * likely that absolutely nothing else can occur in the system 550 * whilst in the critical region. 551 */ 552 553 unsigned int 554 ddi_enter_critical(void); 555 556 void 557 ddi_exit_critical(unsigned int); 558 559 /* 560 * devmap functions 561 */ 562 int 563 devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, 564 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 565 struct cred *cred); 566 567 int 568 ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, 569 off_t len, uint_t prot, uint_t maxprot, uint_t flags, 570 struct cred *cred); 571 572 int 573 devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type, 574 uint_t rw); 575 576 int 577 devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len); 578 579 int 580 devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip, 581 struct devmap_callback_ctl *callback_ops, 582 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 583 uint_t flags, ddi_device_acc_attr_t *accattrp); 584 585 int 586 devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, 587 struct devmap_callback_ctl *callback_ops, 588 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 589 uint_t flags, ddi_device_acc_attr_t *accattrp); 590 591 int 592 devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip, 593 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 594 uint_t flags, ddi_device_acc_attr_t *accattrp); 595 596 int 597 devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip, 598 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 599 uint_t flags, ddi_device_acc_attr_t *accattrp); 600 601 void 602 devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks); 603 604 int 605 devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off, 606 size_t len, uint_t type, uint_t rw); 607 608 int 609 devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, 610 uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t, 611 size_t, uint_t, uint_t)); 612 613 614 void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep); 615 616 void ddi_umem_free(ddi_umem_cookie_t cookie); 617 618 /* 619 * Functions to lock user memory and do repeated I/O or do devmap_umem_setup 620 */ 621 int 622 ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie); 623 624 void 625 ddi_umem_unlock(ddi_umem_cookie_t cookie); 626 627 struct buf * 628 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction, 629 dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag); 630 631 /* 632 * Mapping functions 633 */ 634 int 635 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 636 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp); 637 638 int 639 ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp, 640 off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred, 641 ddi_device_acc_attr_t *accattrp, uint_t rnumber); 642 643 int 644 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr, 645 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 646 647 int 648 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 649 uint_t rnumber, uint_t *hat_flags); 650 651 /* 652 * Property functions: See also, ddipropdefs.h. 653 * In general, the underlying driver MUST be held 654 * to call it's property functions. 655 */ 656 657 /* 658 * Used to create, modify, and lookup integer properties 659 */ 660 int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 661 char *name, int defvalue); 662 int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 663 char *name, int64_t defvalue); 664 int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 665 char *name, int **data, uint_t *nelements); 666 int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 667 char *name, int64_t **data, uint_t *nelements); 668 int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 669 char *name, int data); 670 int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 671 char *name, int64_t data); 672 int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 673 char *name, int *data, uint_t nelements); 674 int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 675 char *name, int64_t *data, uint_t nelements); 676 /* 677 * Used to create, modify, and lookup string properties 678 */ 679 int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 680 char *name, char **data); 681 int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 682 char *name, char ***data, uint_t *nelements); 683 int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 684 char *name, char *data); 685 int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 686 char *name, char **data, uint_t nelements); 687 688 /* 689 * Used to create, modify, and lookup byte properties 690 */ 691 int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 692 char *name, uchar_t **data, uint_t *nelements); 693 int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 694 char *name, uchar_t *data, uint_t nelements); 695 696 /* 697 * Used to verify the existence of a property or to see if a boolean 698 * property exists. 699 */ 700 int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name); 701 702 /* 703 * Used to free the data returned by the above property routines. 704 */ 705 void ddi_prop_free(void *data); 706 707 /* 708 * nopropop: For internal use in `dummy' cb_prop_op functions only 709 */ 710 711 int 712 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 713 char *name, caddr_t valuep, int *lengthp); 714 715 /* 716 * ddi_prop_op: The basic property operator for drivers. 717 * 718 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 719 * 720 * prop_op valuep 721 * ------ ------ 722 * 723 * PROP_LEN <unused> 724 * 725 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 726 * 727 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 728 * address of allocated buffer, if successful) 729 */ 730 731 int 732 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 733 char *name, caddr_t valuep, int *lengthp); 734 735 /* ddi_prop_op_size: for drivers that implement size in bytes */ 736 int 737 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 738 int mod_flags, char *name, caddr_t valuep, int *lengthp, 739 uint64_t size64); 740 741 /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */ 742 int 743 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 744 int mod_flags, char *name, caddr_t valuep, int *lengthp, 745 uint64_t nblocks64); 746 747 /* 748 * Variable length props... 749 */ 750 751 /* 752 * ddi_getlongprop: Get variable length property len+val into a buffer 753 * allocated by property provider via kmem_alloc. Requester 754 * is responsible for freeing returned property via kmem_free. 755 * 756 * Arguments: 757 * 758 * dev: Input: dev_t of property. 759 * dip: Input: dev_info_t pointer of child. 760 * flags: Input: Possible flag modifiers are: 761 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 762 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 763 * name: Input: name of property. 764 * valuep: Output: Addr of callers buffer pointer. 765 * lengthp:Output: *lengthp will contain prop length on exit. 766 * 767 * Possible Returns: 768 * 769 * DDI_PROP_SUCCESS: Prop found and returned. 770 * DDI_PROP_NOT_FOUND: Prop not found 771 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 772 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 773 */ 774 775 int 776 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 777 char *name, caddr_t valuep, int *lengthp); 778 779 /* 780 * 781 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 782 * buffer. (no memory allocation by provider). 783 * 784 * dev: Input: dev_t of property. 785 * dip: Input: dev_info_t pointer of child. 786 * flags: Input: DDI_PROP_DONTPASS or NULL 787 * name: Input: name of property 788 * valuep: Input: ptr to callers buffer. 789 * lengthp:I/O: ptr to length of callers buffer on entry, 790 * actual length of property on exit. 791 * 792 * Possible returns: 793 * 794 * DDI_PROP_SUCCESS Prop found and returned 795 * DDI_PROP_NOT_FOUND Prop not found 796 * DDI_PROP_UNDEFINED Prop explicitly undefined. 797 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 798 * no value returned, but actual prop 799 * length returned in *lengthp 800 * 801 */ 802 803 int 804 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 805 char *name, caddr_t valuep, int *lengthp); 806 807 /* 808 * Integer/boolean sized props. 809 * 810 * Call is value only... returns found boolean or int sized prop value or 811 * defvalue if prop not found or is wrong length or is explicitly undefined. 812 * Only flag is DDI_PROP_DONTPASS... 813 * 814 * By convention, this interface returns boolean (0) sized properties 815 * as value (int)1. 816 */ 817 818 int 819 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue); 820 821 /* 822 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 823 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 824 */ 825 826 int 827 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp); 828 829 830 /* 831 * Interface to create/modify a managed property on child's behalf... 832 * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep 833 * if no memory available for internal prop structure. Long property 834 * (non integer sized) value references are not copied. 835 * 836 * Define property with DDI_DEV_T_NONE dev_t for properties not associated 837 * with any particular dev_t. Use the same dev_t when modifying or undefining 838 * a property. 839 * 840 * No guarantee on order of property search, so don't mix the same 841 * property name with wildcard and non-wildcard dev_t's. 842 */ 843 844 /* 845 * ddi_prop_create: Define a managed property: 846 */ 847 848 int 849 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 850 char *name, caddr_t value, int length); 851 852 /* 853 * ddi_prop_modify: Modify a managed property value 854 */ 855 856 int 857 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 858 char *name, caddr_t value, int length); 859 860 /* 861 * ddi_prop_remove: Undefine a managed property: 862 */ 863 864 int 865 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name); 866 867 /* 868 * ddi_prop_remove_all: Used before unloading a driver to remove 869 * all properties. (undefines all dev_t's props.) 870 * Also removes `undefined' prop defs. 871 */ 872 873 void 874 ddi_prop_remove_all(dev_info_t *dip); 875 876 877 /* 878 * ddi_prop_undefine: Explicitly undefine a property. Property 879 * searches which match this property return 880 * the error code DDI_PROP_UNDEFINED. 881 * 882 * Use ddi_prop_remove to negate effect of 883 * ddi_prop_undefine 884 */ 885 886 int 887 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name); 888 889 890 /* 891 * The default ddi_bus_prop_op wrapper... 892 */ 893 894 int 895 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 896 ddi_prop_op_t prop_op, int mod_flags, 897 char *name, caddr_t valuep, int *lengthp); 898 899 900 /* 901 * Routines to traverse the tree of dev_info nodes. 902 * The general idea of these functions is to provide 903 * various tree traversal utilities. For each node 904 * that the tree traversal function finds, a caller 905 * supplied function is called with arguments of 906 * the current node and a caller supplied argument. 907 * The caller supplied function should return one 908 * of the integer values defined below which will 909 * indicate to the tree traversal function whether 910 * the traversal should be continued, and if so, how, 911 * or whether the traversal should terminate. 912 */ 913 914 /* 915 * This general-purpose routine traverses the tree of dev_info nodes, 916 * starting from the given node, and calls the given function for each 917 * node that it finds with the current node and the pointer arg (which 918 * can point to a structure of information that the function 919 * needs) as arguments. 920 * 921 * It does the walk a layer at a time, not depth-first. 922 * 923 * The given function must return one of the values defined above. 924 * 925 */ 926 927 void 928 ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *); 929 930 /* 931 * Routines to get at elements of the dev_info structure 932 */ 933 934 /* 935 * ddi_node_name gets the device's 'name' from the device node. 936 * 937 * ddi_binding_name gets the string the OS used to bind the node to a driver, 938 * in certain cases, the binding name may be different from the node name, 939 * if the node name does not name a specific device driver. 940 * 941 * ddi_get_name is a synonym for ddi_binding_name(). 942 */ 943 char * 944 ddi_get_name(dev_info_t *dip); 945 946 char * 947 ddi_binding_name(dev_info_t *dip); 948 949 const char * 950 ddi_driver_name(dev_info_t *dip); 951 952 major_t 953 ddi_driver_major(dev_info_t *dip); 954 955 major_t 956 ddi_compatible_driver_major(dev_info_t *dip, char **formp); 957 958 char * 959 ddi_node_name(dev_info_t *dip); 960 961 int 962 ddi_get_nodeid(dev_info_t *dip); 963 964 int 965 ddi_get_instance(dev_info_t *dip); 966 967 struct dev_ops * 968 ddi_get_driver(dev_info_t *dip); 969 970 void 971 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo); 972 973 void 974 ddi_set_driver_private(dev_info_t *dip, void *data); 975 976 void * 977 ddi_get_driver_private(dev_info_t *dip); 978 979 /* 980 * ddi_dev_is_needed tells system that a device is about to use a 981 * component. Returns when component is ready. 982 */ 983 int 984 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level); 985 986 /* 987 * check if DDI_SUSPEND may result in power being removed from a device. 988 */ 989 int 990 ddi_removing_power(dev_info_t *dip); 991 992 /* 993 * (Obsolete) power entry point 994 */ 995 int 996 ddi_power(dev_info_t *dip, int cmpt, int level); 997 998 /* 999 * ddi_get_parent requires that the branch of the tree with the 1000 * node be held (ddi_hold_installed_driver) or that the devinfo tree 1001 * lock be held 1002 */ 1003 dev_info_t * 1004 ddi_get_parent(dev_info_t *dip); 1005 1006 /* 1007 * ddi_get_child and ddi_get_next_sibling require that the devinfo 1008 * tree lock be held 1009 */ 1010 dev_info_t * 1011 ddi_get_child(dev_info_t *dip); 1012 1013 dev_info_t * 1014 ddi_get_next_sibling(dev_info_t *dip); 1015 1016 dev_info_t * 1017 ddi_get_next(dev_info_t *dip); 1018 1019 void 1020 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip); 1021 1022 /* 1023 * dev_info manipulation functions 1024 */ 1025 1026 /* 1027 * Add and remove child devices. These are part of the system framework. 1028 * 1029 * ddi_add_child creates a dev_info structure with the passed name, 1030 * nodeid and instance arguments and makes it a child of pdip. Devices 1031 * that are known directly by the hardware have real nodeids; devices 1032 * that are software constructs use the defined DEVI_PSEUDO_NODEID 1033 * for the node id. 1034 * 1035 * ddi_remove_node removes the node from the tree. This fails if this 1036 * child has children. Parent and driver private data should already 1037 * be released (freed) prior to calling this function. If flag is 1038 * non-zero, the child is removed from it's linked list of instances. 1039 */ 1040 dev_info_t * 1041 ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance); 1042 1043 int 1044 ddi_remove_child(dev_info_t *dip, int flag); 1045 1046 /* 1047 * Given the major number for a driver, make sure that dev_info nodes 1048 * are created form the driver's hwconf file, the driver for the named 1049 * device is loaded and attached, as well as any drivers for parent devices. 1050 * Return a pointer to the driver's dev_ops struct with the dev_ops held. 1051 * Note - Callers must release the dev_ops with ddi_rele_driver. 1052 * 1053 * When a driver is held, the branch of the devinfo tree from any of the 1054 * drivers devinfos to the root node are automatically held. This only 1055 * applies to tree traversals up (and back down) the tree following the 1056 * parent pointers. 1057 * 1058 * Use of this interface is discouraged, it may be removed in a future release. 1059 */ 1060 struct dev_ops * 1061 ddi_hold_installed_driver(major_t major); 1062 1063 void 1064 ddi_rele_driver(major_t major); 1065 1066 /* 1067 * Attach and hold the specified instance of a driver. The flags argument 1068 * should be zero. 1069 */ 1070 dev_info_t * 1071 ddi_hold_devi_by_instance(major_t major, int instance, int flags); 1072 1073 void 1074 ddi_release_devi(dev_info_t *); 1075 1076 /* 1077 * Associate a streams queue with a devinfo node 1078 */ 1079 void 1080 ddi_assoc_queue_with_devi(queue_t *, dev_info_t *); 1081 1082 /* 1083 * Given the identifier string passed, make sure that dev_info nodes 1084 * are created form the driver's hwconf file, the driver for the named 1085 * device is loaded and attached, as well as any drivers for parent devices. 1086 * 1087 * Note that the driver is not held and is subject to being removed the instant 1088 * this call completes. You probably really want ddi_hold_installed_driver. 1089 */ 1090 int 1091 ddi_install_driver(char *idstring); 1092 1093 /* 1094 * Routines that return specific nodes 1095 */ 1096 1097 dev_info_t * 1098 ddi_root_node(void); 1099 1100 /* 1101 * Given a name and an instance number, find and return the 1102 * dev_info from the current state of the device tree. 1103 * 1104 * If instance number is -1, return the first named instance. 1105 * 1106 * If attached is 1, exclude all nodes that are < DS_ATTACHED 1107 * 1108 * Requires that the devinfo tree be locked. 1109 * If attached is 1, the driver must be held. 1110 */ 1111 dev_info_t * 1112 ddi_find_devinfo(char *name, int instance, int attached); 1113 1114 /* 1115 * DMA Mapping Setup 1116 * 1117 * The basic interface function is ddi_dma_setup(). This function 1118 * is to designed to allow a DMA mapping to be established to a 1119 * memory object. This function returns DDI_DMA_MAPPED if the 1120 * request was successfully filled. If this occurs, then the 1121 * argument handlep is filled in. This value is the DMA handle 1122 * for the mapping, and is used in a variety of other functions. 1123 * The handle is an opaque handle on the mapping, and no further 1124 * information may be inferred from it by the caller. 1125 * 1126 * Specifics of arguments to ddi_dma_setup: 1127 * 1128 * dip - devinfo pointer, which identifies the base device that wishes 1129 * to establish a dma mapping. The device may either be a leaf device, 1130 * or a device which is both a leaf and a nexus (e.g., a device which 1131 * has a dma engine but no children devices). 1132 * 1133 * dmareqp - pointer to a dma request structure. This structure contains 1134 * all the info necessary to establish the mapping (see <sys/ddidmareq.h>). 1135 * This structure may be impermanent, as its information is copied and 1136 * saved, if necessary, by implementation specific functions. The caller 1137 * is responsible for filling in the dmar_flags, dmar_length, dmar_type, 1138 * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the 1139 * ddi_dma_req structure should neither be examined or modified by the 1140 * caller. 1141 * 1142 * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers 1143 * responsibility to hang on to this handle, because it becomes the token 1144 * used in all other DDI dma functions. If the handle pointer is NULL, 1145 * then no mapping is made, and the call is being used by the caller 1146 * to simply determine whether such a mapping *could* be made. 1147 * 1148 * Discussion of DMA resource callback functions: 1149 * 1150 * If a request could not be filled, it was because either there were 1151 * not enough mapping resources available to satisfy the request, and the 1152 * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not 1153 * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of 1154 * available hardware to map the object. Callers should be prepared to deal 1155 * with all possible returns. It is suggested that the appropriate system 1156 * error number for the DDI_DMA_NOMAPPING returns is EFAULT. 1157 * 1158 * If the caller does not care whether a DMA mapping can be set up now, 1159 * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This 1160 * implies that the caller will appropriately deal with resource 1161 * exhaustion. 1162 * 1163 * If the caller either cannot or does not wish to sleep awaiting mapping 1164 * resources, the caller may specify, via the field dmar_fp, a function to 1165 * call with the argument specified in dmar_arg, when resources might have 1166 * become available. The callback function will be called from interrupt 1167 * context, but in such a fashion to guarantee that spl blocking (in systems 1168 * that use this method of data protection) by the caller will not be 1169 * bypassed. 1170 * 1171 * 1172 * When function specified via dmar_fp is called, it may attempt to try and get 1173 * the mapping again. If it succeeds in getting the mapping, or does not need 1174 * to get the mapping any more, it must return 1. If it tries to get the 1175 * mapping but fails to do so, and it wants to be called back later, it 1176 * must return 0. 1177 * 1178 * Failure to observe this protocol will have unpredictable results. 1179 * 1180 * The callback function must provide its own data structure integrity 1181 * when it is invoked. 1182 */ 1183 1184 int 1185 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 1186 ddi_dma_handle_t *handlep); 1187 1188 /* 1189 * The following three functions are convenience wrappers for ddi_dma_setup(). 1190 */ 1191 1192 int 1193 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 1194 uint_t flags, int (*waitfp)(), caddr_t arg, 1195 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); 1196 1197 int 1198 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 1199 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 1200 ddi_dma_handle_t *handlep); 1201 1202 /* 1203 * Kernel addressability of the DMA object 1204 * 1205 * It might often be very useful to be able to get an IU mapping 1206 * to the object which has DMA active to/from it. In fact, it might 1207 * even really be a requirement. 1208 * 1209 * The cacheability of the object with respect to I/O and I/U caches 1210 * is affected by this function as follows: 1211 * 1212 * If a kernel virtual mapping to the object owned by the handle 1213 * existed already, and is IU cacheable, then the extant mapping 1214 * is locked and returned in kaddrp. By inference, kaddrp will 1215 * be an IU cacheable reference. 1216 * 1217 * If a kernel virtual mapping to the object owned by the handle 1218 * existed already, and is not IU cacheable, then the extant mapping 1219 * is locked and returned in kaddrp. By inference, kaddrp will 1220 * *not* be an IU cacheable reference. 1221 * 1222 * If a kernel virtual mapping to the object owned by the handle 1223 * does not exist already, a mapping will be created that will 1224 * *not* be an IU cacheable reference. 1225 * 1226 * The IO cacheability of the object owned by the handle is ignored 1227 * and unaffected. 1228 * 1229 * This function returns the mapping values as describe above. 1230 * 1231 * When the DMA object owned by handle is freed (by ddi_dma_free()- see 1232 * below), any mappings created by ddi_dma_kvaddrp() cease to be valid. 1233 * This will be the convention that drivers must follow, as it will be 1234 * impossible to enforce this programmatically. 1235 */ 1236 1237 int 1238 ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *); 1239 1240 1241 /* 1242 * Device addressability of the DMA object 1243 * 1244 * The handle that identifies an object mapped for DMA is an opaque entity. 1245 * When a device driver wishes to load its dma engine with the appropriate 1246 * values for transferring data to the mapped object, it has to get the 1247 * value. Since the exact shape and form of this address is device specific, 1248 * the value returned is a 'cookie' that each device may then interpret 1249 * as it needs to. See <sys/dditypes.h> for the form of what the DMA cookie 1250 * looks like. 1251 * 1252 * Returns DDI_SUCCESS for successful cookie generation, 1253 * or DDI_FAILURE if it cannot generate the DMA cookie. 1254 */ 1255 1256 int 1257 ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep); 1258 1259 /* 1260 * Given a DMA cookie, return its offset within the object referred to 1261 * by the DMA handle. This is so at the end of a dma transfer, the device 1262 * may take its specific ending address and find out how far into the 1263 * memory object described by the handle the device got. 1264 */ 1265 1266 int 1267 ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp); 1268 1269 /* 1270 * DMA mapping manipulation 1271 * 1272 * It may be desirable or convenient for some devices to allow partial 1273 * mapping of an object for dma. This allows the mapping for DMA of 1274 * arbitrarily large objects since only a portion of the object may 1275 * be mapped for DMA at any point in time. 1276 * 1277 * In order to support this as well as other operations, the paradigm 1278 * of a 'mapping window' is defined here. The object to be mapped has 1279 * attributes of location and length. A window can be established upon 1280 * this object. The window has attributes of offset (from the base mapping 1281 * of the object) and length. It is assumed that length and offset are 1282 * positive with respect to the base of the mapped object. 1283 * 1284 * In order to get support for such a window, the flag DDI_DMA_PARTIAL 1285 * must be set in the request flags when the object is mapped for DMA. 1286 * Each implementation may elect whether or not to support such an 1287 * operation. Each implementation may also choose to ignore the request 1288 * for a PARTIAL mapping and either reject the mapping of the object 1289 * for being too big (DDI_DMA_TOOBIG) or may map the entire object. 1290 * The caller who asks the object to be mapped for DMA will know 1291 * whether a partial mapping has been made by receiving the qualified 1292 * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED. 1293 * All dma window functions will return DDI_FAILURE if the object 1294 * is not mapped partially. 1295 * 1296 * All other DDI dma functions (except ddi_dma_Free) operate *only* on 1297 * the mapped portion of the object. That is, functions such as ddi_dma_sync, 1298 * ddi_dma_segtocookie, and so on, only operate on the currently mapped 1299 * window. 1300 */ 1301 1302 #if defined(__sparc) 1303 1304 /* 1305 * ddi_dma_movwin - Move window from current offset/length to new 1306 * offset/length. Returns DDI_SUCCESS if able to do so, else returns 1307 * DDI_FAILURE if unable to do so, or the new window would be out of bounds 1308 * or the object isn't set up for windows. If length is (off_t) -1, the 1309 * If the optional cp argument is specified, an implicit ddi_dma_htoc 1310 * is done to fill that in. The new offset and length will be returned 1311 * in the arguments *offp and *lenp (resp). 1312 * 1313 * In this implementation, only fixed width windows are used. It is 1314 * recommended that the windowsize should be retrieved via the function 1315 * ddi_dma_curwin (below) and that used to specify new offsets and lengths 1316 * since the window will be fixed at that size and will only move modulo 1317 * winsize. 1318 * 1319 * The caller must guarantee that their device's dma engine is quiescent 1320 * with respect to the current DMA window. 1321 * 1322 * The implementation will try to be rapid with respect to moving a window, 1323 * but since an appropriate ddi_dma_sync() is likely to be done, there 1324 * will be no guaranteed latency. In practice this should not be too 1325 * horrible, but don't depend upon any particular latency. 1326 */ 1327 1328 int 1329 ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *); 1330 1331 #endif 1332 1333 /* 1334 * ddi_dma_curwin - report the current offset/length of the window. 1335 * 1336 * Returns DDI_SUCCESS if offset and length 1337 * successfully established, else DDI_FAILURE. 1338 */ 1339 1340 int 1341 ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp); 1342 1343 /* 1344 * Get next dma window 1345 * 1346 * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to 1347 * the next window within the object. If win is "NULL", a pointer to the 1348 * first window within the object is filled in. 1349 * 1350 * Returns DDI_SUCCESS if successfully filled in the window pointer, 1351 * DDI_DMA_STALE if win does not refer to the currently active 1352 * window, 1353 * DDI_DMA_DONE else there is no next window. 1354 */ 1355 1356 int 1357 ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *); 1358 1359 /* 1360 * Get next segment 1361 * 1362 * ddi_dma_nextseg takes a window and a segment and fills in a pointer to 1363 * the next segment within the window. If seg is "NULL", a pointer to the 1364 * first segment within the window is filled in. 1365 * 1366 * Returns DDI_SUCCESS if successfully filled in the segment pointer, 1367 * DDI_DMA_STALE if win does not refer to the currently active 1368 * window. 1369 * DDI_DMA_DONE else there is no next segment. 1370 */ 1371 1372 int 1373 ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *); 1374 1375 /* 1376 * Segment to cookie 1377 * 1378 * ddi_dma_segtocookie takes a segment and fills in the cookie pointed 1379 * to by cookiep with the appropriate address, length and bus type to be 1380 * used to program the DMA engine. ddi_dma_segtocookie also fills in the 1381 * range within the object (specified by <off, len>) this particular 1382 * segment is mapping. <off, len> are filled in to give some control 1383 * where in the object the current dma transfer is active. 1384 * 1385 * Returns DDI_SUCCESS if successfully filled in all values, 1386 * else DDI_FAILURE 1387 * 1388 * This function is documented as Obsolete and is replaced by 1389 * ddi_dma_nextcookie(9F) 1390 */ 1391 1392 int 1393 ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *); 1394 1395 /* 1396 * Synchronization of I/O with respect to various 1397 * caches and system write buffers. 1398 * 1399 * Done at varying points during an I/O transfer (including at the 1400 * removal of an I/O mapping). 1401 * 1402 * Due to the support of systems with write buffers which may 1403 * not be able to be turned off, this function *must* used at 1404 * any point in which data consistency might be required. 1405 * 1406 * Generally this means that if a memory object has multiple mappings 1407 * (both for I/O, as described by the handle, and the IU, via, e.g. 1408 * a call to ddi_dma_kvaddrp), and one mapping may have been 1409 * used to modify the memory object, this function must be called 1410 * to ensure that the modification of the memory object is 1411 * complete, as well as possibly to inform other mappings of 1412 * the object that any cached references to the object are 1413 * now stale (and flush or invalidate these stale cache references 1414 * as necessary). 1415 * 1416 * The function ddi_dma_sync() provides the general interface with 1417 * respect to this capability. Generally, ddi_dma_free() (below) may 1418 * be used in preference to ddi_dma_sync() as ddi_dma_free() calls 1419 * ddi_dma_sync(). 1420 * 1421 * Returns 0 if all caches that exist and are specified by cache_flags 1422 * are successfully operated on, else -1. 1423 * 1424 * The argument offset specifies an offset into the mapping of the mapped 1425 * object in which to perform the synchronization. It will be silently 1426 * truncated to the granularity of underlying cache line sizes as 1427 * appropriate. 1428 * 1429 * The argument len specifies a length starting from offset in which to 1430 * perform the synchronization. A value of (uint_t) -1 means that the length 1431 * proceeds from offset to the end of the mapping. The length argument 1432 * will silently rounded up to the granularity of underlying cache line 1433 * sizes as appropriate. 1434 * 1435 * The argument flags specifies what to synchronize (the device's view of 1436 * the object or the cpu's view of the object). 1437 * 1438 * Inquiring minds want to know when ddi_dma_sync should be used: 1439 * 1440 * + When an object is mapped for dma, assume that an 1441 * implicit ddi_dma_sync() is done for you. 1442 * 1443 * + When an object is unmapped (ddi_dma_free()), assume 1444 * that an implicit ddi_dma_sync() is done for you. 1445 * 1446 * + At any time between the two times above that the 1447 * memory object may have been modified by either 1448 * the DMA device or a processor and you wish that 1449 * the change be noticed by the master that didn't 1450 * do the modifying. 1451 * 1452 * Clearly, only the third case above requires the use of ddi_dma_sync. 1453 * 1454 * Inquiring minds also want to know which flag to use: 1455 * 1456 * + If you *modify* with a cpu the object, you use 1457 * ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure 1458 * that the DMA device sees the changes you made). 1459 * 1460 * + If you are checking, with the processor, an area 1461 * of the object that the DMA device *may* have modified, 1462 * you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are 1463 * making sure that the processor(s) will see the changes 1464 * that the DMA device may have made). 1465 */ 1466 1467 int 1468 ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags); 1469 1470 /* 1471 * DMA mapping de-allocation 1472 * 1473 * When an I/O transfer completes, the resources required to map the 1474 * object for DMA should be completely released. As a side effect, 1475 * various cache synchronization might need to occur (see above). 1476 * 1477 * Returns DDI_SUCCESS if the all underlying caches are successfully 1478 * flushed, else DDI_FAILURE. 1479 * 1480 */ 1481 1482 int 1483 ddi_dma_free(ddi_dma_handle_t handle); 1484 1485 /* 1486 * Device constraint cognizant kernel memory allocation- consistent access. 1487 * 1488 * IOPB allocation and de-allocation 1489 * 1490 * An IOPB allocation allocates some primary memory such that both 1491 * the kernel and the specified DMA device might be able to access it in a 1492 * non-cacheable (otherwise known as byte-consistent or non-streaming mode) 1493 * fashion. The allocation will obey the beginning alignment and padding 1494 * constraints as specified in the initial limits argument and as subsequently 1495 * modified by intervening parents. The limits argument may be NULL, in 1496 * which case the system picks a reasonable beginning limits. 1497 * 1498 * A kernel virtual address to the allocated primary memory is returned, 1499 * but no DMA mapping to the object is established (drivers must use the 1500 * ddi_dma_map() routines for that). 1501 * 1502 * If no iopb space can be allocated, DDI_FAILURE is returned. 1503 */ 1504 1505 int 1506 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1507 caddr_t *iopbp); 1508 1509 /* 1510 * Deallocate an IOPB kernel virtual mapping. 1511 */ 1512 1513 void 1514 ddi_iopb_free(caddr_t iopb); 1515 1516 /* 1517 * Device constraint cognizant kernel memory allocation- streaming access. 1518 * 1519 * Similar to ddi_iopb_alloc, but for primary memory that is intended 1520 * to be accessed in a streaming fashion. The allocation will obey the 1521 * beginning alignment and padding constraints as specified in the initial 1522 * limits argument and as subsequently modified by intervening parents. 1523 * The limits argument may be NULL, in which case the system picks a 1524 * reasonable beginning limits. 1525 * 1526 * A flags value of 0x1 indicates whether the caller can wait for 1527 * memory to become available. Other bits in the flags argument 1528 * are reserved for future use and must be zero. 1529 * 1530 * Upon return from a successful call, the new real length of 1531 * the allocation is returned (for use in mapping the memory 1532 * later). 1533 */ 1534 1535 int 1536 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1537 uint_t flags, caddr_t *kaddrp, uint_t *real_length); 1538 1539 /* 1540 * Free the memory allocated via ddi_mem_alloc(). 1541 * 1542 * Note that passing an address not allocated via ddi_mem_alloc() 1543 * will panic the system. 1544 */ 1545 1546 void 1547 ddi_mem_free(caddr_t kaddr); 1548 1549 /* 1550 * Dma alignment, minimum transfers sizes, and burst sizes allowed. 1551 * Some with tears, some without. 1552 */ 1553 1554 /* 1555 * Return a copy of the DMA attributes for the given handle. 1556 */ 1557 1558 int 1559 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp); 1560 1561 /* 1562 * Return the allowable DMA burst size for the object mapped by handle. 1563 * The burst sizes will returned in an integer that encodes power 1564 * of two burst sizes that are allowed in bit encoded format. For 1565 * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts 1566 * would be encoded as 0x2f. A transfer that could be allowed as solely 1567 * a halfword (2 byte) transfers would be returned as 0x2. 1568 */ 1569 1570 int 1571 ddi_dma_burstsizes(ddi_dma_handle_t handle); 1572 1573 /* 1574 * Return the required beginning alignment for a transfer and 1575 * the minimum sized effect a transfer would have. The beginning 1576 * alignment will be some power of two. The minimum sized effect 1577 * indicates, for writes, how much of the mapped object will be 1578 * affected by the minimum access and for reads how much of the 1579 * mapped object will accessed. 1580 */ 1581 1582 int 1583 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect); 1584 1585 /* 1586 * Like ddi_dma_devalign, but without having to map the object. 1587 * The object is assumed to be primary memory, and it is assumed 1588 * a minimum effective transfer is also the appropriate alignment 1589 * to be using. The streaming flag, if non-zero, indicates that the 1590 * returned value should be modified to account for streaming mode 1591 * accesses (e.g., with I/O caches enabled). The initial value 1592 * is passed by the requester if it has a dma engine that has 1593 * a minimum cycle constraint (or, for streaming mode, the most 1594 * efficient size). 1595 */ 1596 1597 int 1598 ddi_iomin(dev_info_t *dip, int initial, int streaming); 1599 1600 /* 1601 * Given two DMA limit structures, apply the limitations 1602 * of one to the other, following the rules of limits 1603 * and the wishes of the caller. 1604 * 1605 * The rules of dma limit structures are that you cannot 1606 * make things *less* restrictive as you apply one set 1607 * of limits to another. 1608 * 1609 */ 1610 1611 void 1612 ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier); 1613 1614 /* 1615 * Merge DMA attributes 1616 */ 1617 1618 void 1619 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod); 1620 1621 /* 1622 * Allocate a DMA handle 1623 */ 1624 1625 int 1626 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 1627 int (*waitfp)(caddr_t), caddr_t arg, 1628 ddi_dma_handle_t *handlep); 1629 1630 /* 1631 * Free DMA handle 1632 */ 1633 1634 void 1635 ddi_dma_free_handle(ddi_dma_handle_t *handlep); 1636 1637 /* 1638 * Allocate memory for DMA transfers 1639 */ 1640 1641 int 1642 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 1643 ddi_device_acc_attr_t *accattrp, uint_t xfermodes, 1644 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 1645 size_t *real_length, ddi_acc_handle_t *handlep); 1646 1647 /* 1648 * Free DMA memory 1649 */ 1650 1651 void 1652 ddi_dma_mem_free(ddi_acc_handle_t *hp); 1653 1654 /* 1655 * bind address to a DMA handle 1656 */ 1657 1658 int 1659 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 1660 caddr_t addr, size_t len, uint_t flags, 1661 int (*waitfp)(caddr_t), caddr_t arg, 1662 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1663 1664 /* 1665 * bind buffer to DMA handle 1666 */ 1667 1668 int 1669 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 1670 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 1671 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1672 1673 /* 1674 * unbind mapping object to handle 1675 */ 1676 1677 int 1678 ddi_dma_unbind_handle(ddi_dma_handle_t handle); 1679 1680 /* 1681 * get next DMA cookie 1682 */ 1683 1684 void 1685 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep); 1686 1687 /* 1688 * get number of DMA windows 1689 */ 1690 1691 int 1692 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp); 1693 1694 /* 1695 * get specific DMA window 1696 */ 1697 1698 int 1699 ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp, 1700 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1701 1702 /* 1703 * activate 64 bit SBus support 1704 */ 1705 1706 int 1707 ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes); 1708 1709 /* 1710 * Miscellaneous functions 1711 */ 1712 1713 /* 1714 * ddi_report_dev: Report a successful attach. 1715 */ 1716 1717 void 1718 ddi_report_dev(dev_info_t *dev); 1719 1720 /* 1721 * ddi_dev_regsize 1722 * 1723 * If the device has h/w register(s), report 1724 * the size, in bytes, of the specified one into *resultp. 1725 * 1726 * Returns DDI_FAILURE if there are not registers, 1727 * or the specified register doesn't exist. 1728 */ 1729 1730 int 1731 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp); 1732 1733 /* 1734 * ddi_dev_nregs 1735 * 1736 * If the device has h/w register(s), report 1737 * how many of them that there are into resultp. 1738 * Return DDI_FAILURE if the device has no registers. 1739 */ 1740 1741 int 1742 ddi_dev_nregs(dev_info_t *dev, int *resultp); 1743 1744 /* 1745 * ddi_dev_is_sid 1746 * 1747 * If the device is self-identifying, i.e., 1748 * has already been probed by a smart PROM 1749 * (and thus registers are known to be valid) 1750 * return DDI_SUCCESS, else DDI_FAILURE. 1751 */ 1752 1753 1754 int 1755 ddi_dev_is_sid(dev_info_t *dev); 1756 1757 /* 1758 * ddi_slaveonly 1759 * 1760 * If the device is on a bus that precludes 1761 * the device from being either a dma master or 1762 * a dma slave, return DDI_SUCCESS. 1763 */ 1764 1765 int 1766 ddi_slaveonly(dev_info_t *); 1767 1768 1769 /* 1770 * ddi_dev_affinity 1771 * 1772 * Report, via DDI_SUCCESS, whether there exists 1773 * an 'affinity' between two dev_info_t's. An 1774 * affinity is defined to be either a parent-child, 1775 * or a sibling relationship such that the siblings 1776 * or in the same part of the bus they happen to be 1777 * on. 1778 */ 1779 1780 int 1781 ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb); 1782 1783 1784 /* 1785 * ddi_set_callback 1786 * 1787 * Set a function/arg pair into the callback list identified 1788 * by listid. *listid must always initially start out as zero. 1789 */ 1790 1791 void 1792 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid); 1793 1794 /* 1795 * ddi_run_callback 1796 * 1797 * Run the callback list identified by listid. 1798 */ 1799 1800 void 1801 ddi_run_callback(uintptr_t *listid); 1802 1803 /* 1804 * More miscellaneous 1805 */ 1806 1807 int 1808 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 1809 struct pollhead **phpp); 1810 1811 dev_info_t * 1812 nodevinfo(dev_t dev, int otyp); 1813 1814 int 1815 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); 1816 1817 int 1818 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 1819 void *arg, void **result); 1820 1821 int 1822 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd); 1823 1824 int 1825 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 1826 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 1827 1828 int 1829 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1830 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 1831 1832 int 1833 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 1834 ddi_dma_handle_t handle); 1835 1836 int 1837 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1838 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1839 ddi_dma_cookie_t *cp, uint_t *ccountp); 1840 1841 int 1842 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1843 ddi_dma_handle_t handle); 1844 1845 int 1846 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1847 ddi_dma_handle_t handle, off_t off, size_t len, 1848 uint_t cache_flags); 1849 1850 int 1851 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 1852 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1853 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1854 1855 int 1856 ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip, 1857 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 1858 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); 1859 1860 void 1861 ddivoid(); 1862 1863 cred_t * 1864 ddi_get_cred(void); 1865 1866 clock_t 1867 ddi_get_lbolt(void); 1868 1869 time_t 1870 ddi_get_time(void); 1871 1872 pid_t 1873 ddi_get_pid(void); 1874 1875 kt_did_t 1876 ddi_get_kt_did(void); 1877 1878 boolean_t 1879 ddi_can_receive_sig(void); 1880 1881 void 1882 swab(void *src, void *dst, size_t nbytes); 1883 1884 int 1885 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 1886 minor_t minor_num, char *node_type, int flag); 1887 1888 int 1889 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 1890 minor_t minor_num, char *node_type, int flag, 1891 const char *rdpriv, const char *wrpriv, mode_t priv_mode); 1892 1893 void 1894 ddi_remove_minor_node(dev_info_t *dip, char *name); 1895 1896 int 1897 ddi_in_panic(void); 1898 1899 int 1900 ddi_streams_driver(dev_info_t *dip); 1901 1902 /* 1903 * DDI wrappers for ffs and fls 1904 */ 1905 int 1906 ddi_ffs(long mask); 1907 1908 int 1909 ddi_fls(long mask); 1910 1911 /* 1912 * The next five routines comprise generic storage management utilities 1913 * for driver soft state structures. 1914 */ 1915 1916 /* 1917 * Allocate a set of pointers to 'n_items' objects of size 'size' 1918 * bytes. Each pointer is initialized to nil. 'n_items' is a hint i.e. 1919 * zero is allowed. 1920 */ 1921 int 1922 ddi_soft_state_init(void **state_p, size_t size, size_t n_items); 1923 1924 /* 1925 * Allocate a state structure of size 'size' to be associated 1926 * with item 'item'. 1927 */ 1928 int 1929 ddi_soft_state_zalloc(void *state, int item); 1930 1931 /* 1932 * Fetch a pointer to the allocated soft state structure 1933 * corresponding to 'item.' 1934 */ 1935 void * 1936 ddi_get_soft_state(void *state, int item); 1937 1938 /* 1939 * Free the state structure corresponding to 'item.' 1940 */ 1941 void 1942 ddi_soft_state_free(void *state, int item); 1943 1944 /* 1945 * Free the handle, and any associated soft state structures. 1946 */ 1947 void 1948 ddi_soft_state_fini(void **state_p); 1949 1950 /* 1951 * Set the addr field of the name in dip to name 1952 */ 1953 void 1954 ddi_set_name_addr(dev_info_t *dip, char *name); 1955 1956 /* 1957 * Get the address part of the name. 1958 */ 1959 char * 1960 ddi_get_name_addr(dev_info_t *dip); 1961 1962 void 1963 ddi_set_parent_data(dev_info_t *dip, void *pd); 1964 1965 void * 1966 ddi_get_parent_data(dev_info_t *dip); 1967 1968 int 1969 ddi_initchild(dev_info_t *parent, dev_info_t *proto); 1970 1971 int 1972 ddi_uninitchild(dev_info_t *dip); 1973 1974 major_t 1975 ddi_name_to_major(char *name); 1976 1977 char * 1978 ddi_major_to_name(major_t major); 1979 1980 char * 1981 ddi_deviname(dev_info_t *dip, char *name); 1982 1983 char * 1984 ddi_pathname(dev_info_t *dip, char *path); 1985 1986 int 1987 ddi_dev_pathname(dev_t devt, int spec_type, char *name); 1988 1989 dev_t 1990 ddi_pathname_to_dev_t(char *pathname); 1991 1992 /* 1993 * High resolution system timer functions. 1994 * 1995 * These functions are already in the kernel (see sys/time.h). 1996 * The ddi supports the notion of a hrtime_t type and the 1997 * functions gethrtime, hrtadd, hrtsub and hrtcmp. 1998 */ 1999 2000 2001 /* 2002 * Nexus wrapper functions 2003 * 2004 * These functions are for entries in a bus nexus driver's bus_ops 2005 * structure for when the driver doesn't have such a function and 2006 * doesn't wish to prohibit such a function from existing. They 2007 * may also be called to start passing a request up the dev_info 2008 * tree. 2009 */ 2010 2011 /* 2012 * bus_ctl wrapper 2013 */ 2014 2015 int 2016 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v); 2017 2018 /* 2019 * bus_dma_map wrapper 2020 */ 2021 2022 int 2023 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 2024 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 2025 2026 int 2027 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 2028 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 2029 2030 int 2031 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 2032 ddi_dma_handle_t handle); 2033 2034 int 2035 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 2036 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 2037 ddi_dma_cookie_t *cp, uint_t *ccountp); 2038 2039 int 2040 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2041 ddi_dma_handle_t handle); 2042 2043 int 2044 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 2045 ddi_dma_handle_t handle, off_t off, size_t len, 2046 uint_t cache_flags); 2047 2048 int 2049 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 2050 ddi_dma_handle_t handle, uint_t win, off_t *offp, 2051 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 2052 2053 /* 2054 * bus_dma_ctl wrapper 2055 */ 2056 2057 int 2058 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 2059 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, 2060 caddr_t *objp, uint_t flags); 2061 2062 /* 2063 * dvma support for networking drivers 2064 */ 2065 2066 unsigned long 2067 dvma_pagesize(dev_info_t *dip); 2068 2069 int 2070 dvma_reserve(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t pages, 2071 ddi_dma_handle_t *handlep); 2072 2073 void 2074 dvma_release(ddi_dma_handle_t h); 2075 2076 void 2077 dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index, 2078 ddi_dma_cookie_t *cp); 2079 2080 void 2081 dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2082 2083 void 2084 dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2085 2086 /* 2087 * Layered driver support 2088 */ 2089 2090 extern int ddi_copyin(const void *, void *, size_t, int); 2091 extern int ddi_copyout(const void *, void *, size_t, int); 2092 2093 /* 2094 * Send signals to processes 2095 */ 2096 extern void *proc_ref(void); 2097 extern void proc_unref(void *pref); 2098 extern int proc_signal(void *pref, int sig); 2099 2100 /* I/O port access routines */ 2101 extern uint8_t inb(int port); 2102 extern uint16_t inw(int port); 2103 extern uint32_t inl(int port); 2104 extern void repinsb(int port, uint8_t *addr, int count); 2105 extern void repinsw(int port, uint16_t *addr, int count); 2106 extern void repinsd(int port, uint32_t *addr, int count); 2107 extern void outb(int port, uint8_t value); 2108 extern void outw(int port, uint16_t value); 2109 extern void outl(int port, uint32_t value); 2110 extern void repoutsb(int port, uint8_t *addr, int count); 2111 extern void repoutsw(int port, uint16_t *addr, int count); 2112 extern void repoutsd(int port, uint32_t *addr, int count); 2113 2114 /* 2115 * Console bell routines 2116 */ 2117 extern void ddi_ring_console_bell(clock_t duration); 2118 extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration)); 2119 2120 /* 2121 * Fault-related functions 2122 */ 2123 extern int ddi_check_acc_handle(ddi_acc_handle_t); 2124 extern int ddi_check_dma_handle(ddi_dma_handle_t); 2125 extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t, 2126 ddi_fault_location_t, const char *); 2127 extern ddi_devstate_t ddi_get_devstate(dev_info_t *); 2128 2129 /* 2130 * Miscellaneous redefines 2131 */ 2132 #define uiophysio physio 2133 2134 /* 2135 * utilities - "reg" mapping and all common portable data access functions 2136 */ 2137 2138 /* 2139 * error code from ddi_regs_map_setup 2140 */ 2141 2142 #define DDI_REGS_ACC_CONFLICT (-10) 2143 2144 /* 2145 * Device address advance flags 2146 */ 2147 2148 #define DDI_DEV_NO_AUTOINCR 0x0000 2149 #define DDI_DEV_AUTOINCR 0x0001 2150 2151 int 2152 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 2153 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 2154 ddi_acc_handle_t *handle); 2155 2156 void 2157 ddi_regs_map_free(ddi_acc_handle_t *handle); 2158 2159 /* 2160 * these are the prototypes for the common portable data access functions 2161 */ 2162 2163 #ifdef _LP64 2164 2165 uint8_t 2166 ddi_get8(ddi_acc_handle_t handle, uint8_t *addr); 2167 2168 uint16_t 2169 ddi_get16(ddi_acc_handle_t handle, uint16_t *addr); 2170 2171 uint32_t 2172 ddi_get32(ddi_acc_handle_t handle, uint32_t *addr); 2173 2174 uint64_t 2175 ddi_get64(ddi_acc_handle_t handle, uint64_t *addr); 2176 2177 void 2178 ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2179 size_t repcount, uint_t flags); 2180 2181 void 2182 ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2183 size_t repcount, uint_t flags); 2184 2185 void 2186 ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2187 size_t repcount, uint_t flags); 2188 2189 void 2190 ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2191 size_t repcount, uint_t flags); 2192 2193 void 2194 ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2195 2196 void 2197 ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2198 2199 void 2200 ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2201 2202 void 2203 ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2204 2205 void 2206 ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2207 size_t repcount, uint_t flags); 2208 void 2209 ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2210 size_t repcount, uint_t flags); 2211 void 2212 ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2213 size_t repcount, uint_t flags); 2214 2215 void 2216 ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2217 size_t repcount, uint_t flags); 2218 2219 #else /* _ILP32 */ 2220 2221 uint8_t 2222 ddi_getb(ddi_acc_handle_t handle, uint8_t *addr); 2223 #define ddi_get8 ddi_getb 2224 2225 uint16_t 2226 ddi_getw(ddi_acc_handle_t handle, uint16_t *addr); 2227 #define ddi_get16 ddi_getw 2228 2229 uint32_t 2230 ddi_getl(ddi_acc_handle_t handle, uint32_t *addr); 2231 #define ddi_get32 ddi_getl 2232 2233 uint64_t 2234 ddi_getll(ddi_acc_handle_t handle, uint64_t *addr); 2235 #define ddi_get64 ddi_getll 2236 2237 void 2238 ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2239 size_t repcount, uint_t flags); 2240 #define ddi_rep_get8 ddi_rep_getb 2241 2242 void 2243 ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2244 size_t repcount, uint_t flags); 2245 #define ddi_rep_get16 ddi_rep_getw 2246 2247 void 2248 ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2249 size_t repcount, uint_t flags); 2250 #define ddi_rep_get32 ddi_rep_getl 2251 2252 void 2253 ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2254 size_t repcount, uint_t flags); 2255 #define ddi_rep_get64 ddi_rep_getll 2256 2257 void 2258 ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2259 #define ddi_put8 ddi_putb 2260 2261 void 2262 ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2263 #define ddi_put16 ddi_putw 2264 2265 void 2266 ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2267 #define ddi_put32 ddi_putl 2268 2269 void 2270 ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2271 #define ddi_put64 ddi_putll 2272 2273 void 2274 ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2275 size_t repcount, uint_t flags); 2276 #define ddi_rep_put8 ddi_rep_putb 2277 2278 void 2279 ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2280 size_t repcount, uint_t flags); 2281 #define ddi_rep_put16 ddi_rep_putw 2282 2283 void 2284 ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2285 size_t repcount, uint_t flags); 2286 #define ddi_rep_put32 ddi_rep_putl 2287 2288 void 2289 ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2290 size_t repcount, uint_t flags); 2291 #define ddi_rep_put64 ddi_rep_putll 2292 2293 #endif /* _LP64 */ 2294 2295 /* 2296 * these are special device handling functions 2297 */ 2298 int 2299 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, 2300 size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz); 2301 2302 int 2303 ddi_device_copy( 2304 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 2305 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 2306 size_t bytecount, uint_t dev_datasz); 2307 2308 /* 2309 * these are software byte swapping functions 2310 */ 2311 uint16_t 2312 ddi_swap16(uint16_t value); 2313 2314 uint32_t 2315 ddi_swap32(uint32_t value); 2316 2317 uint64_t 2318 ddi_swap64(uint64_t value); 2319 2320 /* 2321 * these are the prototypes for PCI local bus functions 2322 */ 2323 /* 2324 * PCI power management capabilities reporting in addition to those 2325 * provided by the PCI Power Management Specification. 2326 */ 2327 #define PCI_PM_IDLESPEED 0x1 /* clock for idle dev - cap */ 2328 #define PCI_PM_IDLESPEED_ANY (void *)-1 /* any clock for idle dev */ 2329 #define PCI_PM_IDLESPEED_NONE (void *)-2 /* regular clock for idle dev */ 2330 2331 int 2332 pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle); 2333 2334 void 2335 pci_config_teardown(ddi_acc_handle_t *handle); 2336 2337 #ifdef _LP64 2338 2339 uint8_t 2340 pci_config_get8(ddi_acc_handle_t handle, off_t offset); 2341 2342 uint16_t 2343 pci_config_get16(ddi_acc_handle_t handle, off_t offset); 2344 2345 uint32_t 2346 pci_config_get32(ddi_acc_handle_t handle, off_t offset); 2347 2348 uint64_t 2349 pci_config_get64(ddi_acc_handle_t handle, off_t offset); 2350 2351 void 2352 pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2353 2354 void 2355 pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2356 2357 void 2358 pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2359 2360 void 2361 pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2362 2363 #else /* _ILP32 */ 2364 2365 uint8_t 2366 pci_config_getb(ddi_acc_handle_t handle, off_t offset); 2367 #define pci_config_get8 pci_config_getb 2368 2369 uint16_t 2370 pci_config_getw(ddi_acc_handle_t handle, off_t offset); 2371 #define pci_config_get16 pci_config_getw 2372 2373 uint32_t 2374 pci_config_getl(ddi_acc_handle_t handle, off_t offset); 2375 #define pci_config_get32 pci_config_getl 2376 2377 uint64_t 2378 pci_config_getll(ddi_acc_handle_t handle, off_t offset); 2379 #define pci_config_get64 pci_config_getll 2380 2381 void 2382 pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2383 #define pci_config_put8 pci_config_putb 2384 2385 void 2386 pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2387 #define pci_config_put16 pci_config_putw 2388 2389 void 2390 pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2391 #define pci_config_put32 pci_config_putl 2392 2393 void 2394 pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2395 #define pci_config_put64 pci_config_putll 2396 2397 #endif /* _LP64 */ 2398 2399 int 2400 pci_report_pmcap(dev_info_t *dip, int cap, void *arg); 2401 2402 int 2403 pci_restore_config_regs(dev_info_t *dip); 2404 2405 int 2406 pci_save_config_regs(dev_info_t *dip); 2407 2408 void 2409 pci_ereport_setup(dev_info_t *dip); 2410 2411 void 2412 pci_ereport_teardown(dev_info_t *dip); 2413 2414 void 2415 pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2416 2417 void 2418 pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2419 2420 int 2421 pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, 2422 uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat); 2423 2424 /* 2425 * the prototype for the C Language Type Model inquiry. 2426 */ 2427 model_t ddi_mmap_get_model(void); 2428 model_t ddi_model_convert_from(model_t); 2429 2430 /* 2431 * these are the prototypes for device id functions. 2432 */ 2433 int 2434 ddi_devid_valid(ddi_devid_t devid); 2435 2436 int 2437 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid); 2438 2439 void 2440 ddi_devid_unregister(dev_info_t *dip); 2441 2442 int 2443 ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, 2444 void *id, ddi_devid_t *ret_devid); 2445 2446 size_t 2447 ddi_devid_sizeof(ddi_devid_t devid); 2448 2449 void 2450 ddi_devid_free(ddi_devid_t devid); 2451 2452 int 2453 ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2); 2454 2455 int 2456 ddi_devid_scsi_encode(int version, char *driver_name, 2457 uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len, 2458 uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid); 2459 2460 char 2461 *ddi_devid_to_guid(ddi_devid_t devid); 2462 2463 void 2464 ddi_devid_free_guid(char *guid); 2465 2466 int 2467 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid); 2468 2469 int 2470 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name); 2471 2472 int 2473 ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs, 2474 dev_t **retdevs); 2475 2476 void 2477 ddi_lyr_free_devlist(dev_t *devlist, int ndevs); 2478 2479 char * 2480 ddi_devid_str_encode(ddi_devid_t devid, char *minor_name); 2481 2482 int 2483 ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep); 2484 2485 void 2486 ddi_devid_str_free(char *devidstr); 2487 2488 int 2489 ddi_devid_str_compare(char *id1_str, char *id2_str); 2490 2491 /* 2492 * Event to post to when a devinfo node is removed. 2493 */ 2494 #define DDI_DEVI_REMOVE_EVENT "DDI:DEVI_REMOVE" 2495 #define DDI_DEVI_INSERT_EVENT "DDI:DEVI_INSERT" 2496 #define DDI_DEVI_BUS_RESET_EVENT "DDI:DEVI_BUS_RESET" 2497 #define DDI_DEVI_DEVICE_RESET_EVENT "DDI:DEVI_DEVICE_RESET" 2498 2499 /* 2500 * Invoke bus nexus driver's implementation of the 2501 * (*bus_remove_eventcall)() interface to remove a registered 2502 * callback handler for "event". 2503 */ 2504 int 2505 ddi_remove_event_handler(ddi_callback_id_t id); 2506 2507 /* 2508 * Invoke bus nexus driver's implementation of the 2509 * (*bus_add_eventcall)() interface to register a callback handler 2510 * for "event". 2511 */ 2512 int 2513 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 2514 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 2515 void *arg, ddi_callback_id_t *id); 2516 2517 /* 2518 * Return a handle for event "name" by calling up the device tree 2519 * hierarchy via (*bus_get_eventcookie)() interface until claimed 2520 * by a bus nexus or top of dev_info tree is reached. 2521 */ 2522 int 2523 ddi_get_eventcookie(dev_info_t *dip, char *name, 2524 ddi_eventcookie_t *event_cookiep); 2525 2526 /* 2527 * log a system event 2528 */ 2529 int 2530 ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name, 2531 char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp, 2532 int sleep_flag); 2533 2534 /* 2535 * ddi_log_sysevent() vendors 2536 */ 2537 #define DDI_VENDOR_SUNW "SUNW" 2538 2539 /* 2540 * Opaque task queue handle. 2541 */ 2542 typedef struct ddi_taskq ddi_taskq_t; 2543 2544 /* 2545 * Use default system priority. 2546 */ 2547 #define TASKQ_DEFAULTPRI -1 2548 2549 /* 2550 * Create a task queue 2551 */ 2552 ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name, 2553 int nthreads, pri_t pri, uint_t cflags); 2554 2555 /* 2556 * destroy a task queue 2557 */ 2558 void ddi_taskq_destroy(ddi_taskq_t *tq); 2559 2560 /* 2561 * Dispatch a task to a task queue 2562 */ 2563 int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 2564 void *arg, uint_t dflags); 2565 2566 /* 2567 * Wait for all previously scheduled tasks to complete. 2568 */ 2569 void ddi_taskq_wait(ddi_taskq_t *tq); 2570 2571 /* 2572 * Suspend all task execution. 2573 */ 2574 void ddi_taskq_suspend(ddi_taskq_t *tq); 2575 2576 /* 2577 * Resume task execution. 2578 */ 2579 void ddi_taskq_resume(ddi_taskq_t *tq); 2580 2581 /* 2582 * Is task queue suspended? 2583 */ 2584 boolean_t ddi_taskq_suspended(ddi_taskq_t *tq); 2585 2586 /* 2587 * Parse an interface name of the form <alphanumeric>##<numeric> where 2588 * <numeric> is maximal. 2589 */ 2590 int ddi_parse(const char *, char *, uint_t *); 2591 2592 #endif /* _KERNEL */ 2593 2594 #ifdef __cplusplus 2595 } 2596 #endif 2597 2598 #endif /* _SYS_SUNDDI_H */ 2599