1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_SUNDDI_H 28 #define _SYS_SUNDDI_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Sun Specific DDI definitions 34 */ 35 36 #include <sys/isa_defs.h> 37 #include <sys/dditypes.h> 38 #include <sys/ddipropdefs.h> 39 #include <sys/devops.h> 40 #include <sys/time.h> 41 #include <sys/cmn_err.h> 42 #include <sys/ddidevmap.h> 43 #include <sys/ddi_impldefs.h> 44 #include <sys/ddi_implfuncs.h> 45 #include <sys/ddi_isa.h> 46 #include <sys/model.h> 47 #include <sys/devctl.h> 48 #if defined(__i386) || defined(__amd64) 49 #include <sys/dma_engine.h> 50 #endif 51 #include <sys/sunpm.h> 52 #include <sys/nvpair.h> 53 #include <sys/sysevent.h> 54 #include <sys/thread.h> 55 #include <sys/stream.h> 56 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) 57 #include <asm/sunddi.h> 58 #endif 59 60 #ifdef __cplusplus 61 extern "C" { 62 #endif 63 64 /* 65 * Generic Sun DDI definitions. 66 */ 67 68 #define DDI_SUCCESS (0) /* successful return */ 69 #define DDI_FAILURE (-1) /* unsuccessful return */ 70 #define DDI_NOT_WELL_FORMED (-2) /* A dev_info node is not valid */ 71 #define DDI_EAGAIN (-3) /* not enough interrupt resources */ 72 #define DDI_EINVAL (-4) /* invalid request or arguments */ 73 #define DDI_ENOTSUP (-5) /* operation is not supported */ 74 #define DDI_EPENDING (-6) /* operation or an event is pending */ 75 76 /* 77 * General-purpose DDI error return value definitions 78 */ 79 #define DDI_ENOMEM 1 /* memory not available */ 80 #define DDI_EBUSY 2 /* busy */ 81 #define DDI_ETRANSPORT 3 /* transport down */ 82 #define DDI_ECONTEXT 4 /* context error */ 83 84 85 /* 86 * General DDI sleep/nosleep allocation flags 87 */ 88 #define DDI_SLEEP 0 89 #define DDI_NOSLEEP 1 90 91 /* 92 * The following special nodeid values are reserved for use when creating 93 * nodes ONLY. They specify the attributes of the DDI_NC_PSEUDO class node 94 * being created: 95 * 96 * o DEVI_PSEUDO_NODEID specifics a node without persistence. 97 * o DEVI_SID_NODEID specifies a node with persistence. 98 * 99 * A node with the 'persistent' attribute will not be automatically removed by 100 * the framework in the current implementation - driver.conf nodes are without 101 * persistence. 102 * 103 * The actual nodeid value may be assigned by the framework and may be 104 * different than these special values. Drivers may not make assumptions 105 * about the nodeid value that is actually assigned to the node. 106 */ 107 108 #define DEVI_PSEUDO_NODEID ((int)-1) 109 #define DEVI_SID_NODEID ((int)-2) 110 111 #define DEVI_PSEUDO_NEXNAME "pseudo" 112 #define DEVI_ISA_NEXNAME "isa" 113 #define DEVI_EISA_NEXNAME "eisa" 114 115 /* 116 * ddi_create_minor_node flags 117 */ 118 #define CLONE_DEV 1 /* device is a clone device */ 119 #define PRIVONLY_DEV 0x10 /* policy-based permissions only */ 120 121 /* 122 * Historical values used for the flag field in ddi_create_minor_node. 123 * Future use of flag bits should avoid these fields to keep binary 124 * compatibility 125 * #define GLOBAL_DEV 0x2 126 * #define NODEBOUND_DEV 0x4 127 * #define NODESPECIFIC_DEV 0x6 128 * #define ENUMERATED_DEV 0x8 129 */ 130 131 /* 132 * Device type defines which are used by the 'node_type' element of the 133 * ddi_minor_data structure 134 */ 135 #define DDI_NT_SERIAL "ddi_serial" /* Serial port */ 136 #define DDI_NT_SERIAL_MB "ddi_serial:mb" /* the 'built-in' serial */ 137 /* ports (the old ttya, b */ 138 /* (,c ,d)) */ 139 #define DDI_NT_SERIAL_DO "ddi_serial:dialout" /* dialout ports */ 140 #define DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */ 141 /* ports */ 142 #define DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */ 143 144 /* 145 * *_CHAN disk type devices have channel numbers or target numbers. 146 * (i.e. ipi and scsi devices) 147 */ 148 #define DDI_NT_BLOCK "ddi_block" /* hard disks */ 149 /* 150 * The next define is for block type devices that can possible exist on 151 * a sub-bus like the scsi bus or the ipi channel. The 'disks' program 152 * will pick up on this and create logical names like c0t0d0s0 instead of 153 * c0d0s0 154 */ 155 #define DDI_NT_BLOCK_CHAN "ddi_block:channel" 156 #define DDI_NT_BLOCK_WWN "ddi_block:wwn" 157 #define DDI_NT_CD "ddi_block:cdrom" /* rom drives (cd-rom) */ 158 #define DDI_NT_CD_CHAN "ddi_block:cdrom:channel" /* rom drives (scsi type) */ 159 #define DDI_NT_FD "ddi_block:diskette" /* floppy disks */ 160 161 #define DDI_NT_ENCLOSURE "ddi_enclosure" 162 #define DDI_NT_SCSI_ENCLOSURE "ddi_enclosure:scsi" 163 164 165 #define DDI_NT_TAPE "ddi_byte:tape" /* tape drives */ 166 167 #define DDI_NT_NET "ddi_network" /* DLPI network devices */ 168 169 #define DDI_NT_MAC "ddi_mac" /* MAC devices */ 170 171 #define DDI_NT_DISPLAY "ddi_display" /* display devices */ 172 173 #define DDI_PSEUDO "ddi_pseudo" /* general pseudo devices */ 174 175 #define DDI_NT_AUDIO "ddi_audio" /* audio device */ 176 177 #define DDI_NT_MOUSE "ddi_mouse" /* mouse device */ 178 179 #define DDI_NT_KEYBOARD "ddi_keyboard" /* keyboard device */ 180 181 #define DDI_NT_PARALLEL "ddi_parallel" /* parallel port */ 182 183 #define DDI_NT_PRINTER "ddi_printer" /* printer device */ 184 185 #define DDI_NT_UGEN "ddi_generic:usb" /* USB generic drv */ 186 187 #define DDI_NT_NEXUS "ddi_ctl:devctl" /* nexus drivers */ 188 189 #define DDI_NT_SCSI_NEXUS "ddi_ctl:devctl:scsi" /* nexus drivers */ 190 191 #define DDI_NT_ATTACHMENT_POINT "ddi_ctl:attachment_point" /* attachment pt */ 192 193 #define DDI_NT_SCSI_ATTACHMENT_POINT "ddi_ctl:attachment_point:scsi" 194 /* scsi attachment pt */ 195 #define DDI_NT_PCI_ATTACHMENT_POINT "ddi_ctl:attachment_point:pci" 196 /* PCI attachment pt */ 197 #define DDI_NT_SBD_ATTACHMENT_POINT "ddi_ctl:attachment_point:sbd" 198 /* generic bd attachment pt */ 199 #define DDI_NT_FC_ATTACHMENT_POINT "ddi_ctl:attachment_point:fc" 200 /* FC attachment pt */ 201 #define DDI_NT_USB_ATTACHMENT_POINT "ddi_ctl:attachment_point:usb" 202 /* USB devices */ 203 #define DDI_NT_BLOCK_FABRIC "ddi_block:fabric" 204 /* Fabric Devices */ 205 #define DDI_NT_IB_ATTACHMENT_POINT "ddi_ctl:attachment_point:ib" 206 /* IB devices */ 207 #define DDI_NT_SMARTCARD_READER "ddi_smartcard_reader" /* Smartcard reader */ 208 209 #define DDI_NT_AV_ASYNC "ddi_av:async" /* asynchronous AV device */ 210 #define DDI_NT_AV_ISOCH "ddi_av:isoch" /* isochronous AV device */ 211 212 /* Device types used for agpgart driver related devices */ 213 #define DDI_NT_AGP_PSEUDO "ddi_agp:pseudo" /* agpgart pseudo device */ 214 #define DDI_NT_AGP_MASTER "ddi_agp:master" /* agp master device */ 215 #define DDI_NT_AGP_TARGET "ddi_agp:target" /* agp target device */ 216 #define DDI_NT_AGP_CPUGART "ddi_agp:cpugart" /* amd64 on-cpu gart device */ 217 218 #define DDI_NT_REGACC "ddi_tool_reg" /* tool register access */ 219 #define DDI_NT_INTRCTL "ddi_tool_intr" /* tool intr access */ 220 221 /* 222 * DDI event definitions 223 */ 224 #define EC_DEVFS "EC_devfs" /* Event class devfs */ 225 #define EC_DDI "EC_ddi" /* Event class ddi */ 226 227 /* Class devfs subclasses */ 228 #define ESC_DEVFS_MINOR_CREATE "ESC_devfs_minor_create" 229 #define ESC_DEVFS_MINOR_REMOVE "ESC_devfs_minor_remove" 230 #define ESC_DEVFS_DEVI_ADD "ESC_devfs_devi_add" 231 #define ESC_DEVFS_DEVI_REMOVE "ESC_devfs_devi_remove" 232 #define ESC_DEVFS_INSTANCE_MOD "ESC_devfs_instance_mod" 233 #define ESC_DEVFS_BRANCH_ADD "ESC_devfs_branch_add" 234 #define ESC_DEVFS_BRANCH_REMOVE "ESC_devfs_branch_remove" 235 236 /* Class ddi subclasses */ 237 #define ESC_DDI_INITIATOR_REGISTER "ESC_ddi_initiator_register" 238 #define ESC_DDI_INITIATOR_UNREGISTER "ESC_ddi_initiator_unregister" 239 240 /* DDI/NDI event publisher */ 241 #define EP_DDI SUNW_KERN_PUB"ddi" 242 243 /* 244 * devfs event class attributes 245 * 246 * The following attributes are private to EC_DEVFS event data. 247 */ 248 #define DEVFS_DRIVER_NAME "di.driver" 249 #define DEVFS_INSTANCE "di.instance" 250 #define DEVFS_PATHNAME "di.path" 251 #define DEVFS_DEVI_CLASS "di.devi_class" 252 #define DEVFS_BRANCH_EVENT "di.branch_event" 253 #define DEVFS_MINOR_NAME "mi.name" 254 #define DEVFS_MINOR_NODETYPE "mi.nodetype" 255 #define DEVFS_MINOR_ISCLONE "mi.isclone" 256 #define DEVFS_MINOR_MAJNUM "mi.majorno" 257 #define DEVFS_MINOR_MINORNUM "mi.minorno" 258 259 /* 260 * ddi event class payload 261 * 262 * The following attributes are private to EC_DDI event data. 263 */ 264 #define DDI_DRIVER_NAME "ddi.driver" 265 #define DDI_DRIVER_MAJOR "ddi.major" 266 #define DDI_INSTANCE "ddi.instance" 267 #define DDI_PATHNAME "ddi.path" 268 #define DDI_CLASS "ddi.class" 269 270 /* 271 * Fault-related definitions 272 * 273 * The specific numeric values have been chosen to be ordered, but 274 * not consecutive, to allow for future interpolation if required. 275 */ 276 typedef enum { 277 DDI_SERVICE_LOST = -32, 278 DDI_SERVICE_DEGRADED = -16, 279 DDI_SERVICE_UNAFFECTED = 0, 280 DDI_SERVICE_RESTORED = 16 281 } ddi_fault_impact_t; 282 283 typedef enum { 284 DDI_DATAPATH_FAULT = -32, 285 DDI_DEVICE_FAULT = -16, 286 DDI_EXTERNAL_FAULT = 0 287 } ddi_fault_location_t; 288 289 typedef enum { 290 DDI_DEVSTATE_OFFLINE = -32, 291 DDI_DEVSTATE_DOWN = -16, 292 DDI_DEVSTATE_QUIESCED = 0, 293 DDI_DEVSTATE_DEGRADED = 16, 294 DDI_DEVSTATE_UP = 32 295 } ddi_devstate_t; 296 297 #ifdef _KERNEL 298 299 /* 300 * Common property definitions 301 */ 302 #define DDI_FORCEATTACH "ddi-forceattach" 303 #define DDI_NO_AUTODETACH "ddi-no-autodetach" 304 305 /* 306 * Values that the function supplied to the dev_info 307 * tree traversal functions defined below must return. 308 */ 309 310 /* 311 * Continue search, if appropriate. 312 */ 313 #define DDI_WALK_CONTINUE 0 314 315 /* 316 * Terminate current depth of traversal. That is, terminate 317 * the current traversal of children nodes, but continue 318 * traversing sibling nodes and their children (if any). 319 */ 320 321 #define DDI_WALK_PRUNECHILD -1 322 323 /* 324 * Terminate current width of traversal. That is, terminate 325 * the current traversal of sibling nodes, but continue with 326 * traversing children nodes and their siblings (if appropriate). 327 */ 328 329 #define DDI_WALK_PRUNESIB -2 330 331 /* 332 * Terminate the entire search. 333 */ 334 335 #define DDI_WALK_TERMINATE -3 336 337 /* 338 * Terminate the entire search because an error occurred in function 339 */ 340 #define DDI_WALK_ERROR -4 341 342 /* 343 * Drivers that are prepared to support full driver layering 344 * should create and export a null-valued property of the following 345 * name. 346 * 347 * Such drivers should be prepared to be called with FKLYR in 348 * the 'flag' argument of their open(9E), close(9E) routines, and 349 * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines. 350 * 351 * See ioctl(9E) and ddi_copyin(9F) for details. 352 */ 353 #define DDI_KERNEL_IOCTL "ddi-kernel-ioctl" 354 355 /* 356 * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F). 357 */ 358 #define DDI_MODEL_MASK DATAMODEL_MASK /* Note: 0x0FF00000 */ 359 #define DDI_MODEL_ILP32 DATAMODEL_ILP32 360 #define DDI_MODEL_LP64 DATAMODEL_LP64 361 #define DDI_MODEL_NATIVE DATAMODEL_NATIVE 362 #define DDI_MODEL_NONE DATAMODEL_NONE 363 364 /* 365 * Functions and data references which really should be in <sys/ddi.h> 366 */ 367 368 extern int maxphys; 369 extern void minphys(struct buf *); 370 extern int physio(int (*)(struct buf *), struct buf *, dev_t, 371 int, void (*)(struct buf *), struct uio *); 372 extern void disksort(struct diskhd *, struct buf *); 373 374 extern long strtol(const char *, char **, int); 375 extern unsigned long strtoul(const char *, char **, int); 376 extern size_t strlen(const char *) __PURE; 377 extern char *strcpy(char *, const char *); 378 extern char *strncpy(char *, const char *, size_t); 379 /* Need to be consistent with <string.h> C++ definition for strchr() */ 380 #if __cplusplus >= 199711L 381 extern const char *strchr(const char *, int); 382 #ifndef _STRCHR_INLINE 383 #define _STRCHR_INLINE 384 extern "C++" { 385 inline char *strchr(char *__s, int __c) { 386 return (char *)strchr((const char *)__s, __c); 387 } 388 } 389 #endif /* _STRCHR_INLINE */ 390 #else 391 extern char *strchr(const char *, int); 392 #endif /* __cplusplus >= 199711L */ 393 #define DDI_STRSAME(s1, s2) ((*(s1) == *(s2)) && (strcmp((s1), (s2)) == 0)) 394 extern int strcmp(const char *, const char *) __PURE; 395 extern int strncmp(const char *, const char *, size_t) __PURE; 396 extern char *strncat(char *, const char *, size_t); 397 extern size_t strlcat(char *, const char *, size_t); 398 extern size_t strlcpy(char *, const char *, size_t); 399 extern size_t strspn(const char *, const char *); 400 extern int bcmp(const void *, const void *, size_t) __PURE; 401 extern int stoi(char **); 402 extern void numtos(ulong_t, char *); 403 extern void bcopy(const void *, void *, size_t); 404 extern void bzero(void *, size_t); 405 406 extern void *memcpy(void *, const void *, size_t); 407 extern void *memset(void *, int, size_t); 408 extern void *memmove(void *, const void *, size_t); 409 extern int memcmp(const void *, const void *, size_t) __PURE; 410 /* Need to be consistent with <string.h> C++ definition for memchr() */ 411 #if __cplusplus >= 199711L 412 extern const void *memchr(const void *, int, size_t); 413 #ifndef _MEMCHR_INLINE 414 #define _MEMCHR_INLINE 415 extern "C++" { 416 inline void *memchr(void * __s, int __c, size_t __n) { 417 return (void *)memchr((const void *)__s, __c, __n); 418 } 419 } 420 #endif /* _MEMCHR_INLINE */ 421 #else 422 extern void *memchr(const void *, int, size_t); 423 #endif /* __cplusplus >= 199711L */ 424 425 extern int ddi_strtol(const char *, char **, int, long *); 426 extern int ddi_strtoul(const char *, char **, int, unsigned long *); 427 428 /* 429 * ddi_map_regs 430 * 431 * Map in the register set given by rnumber. 432 * The register number determine which register 433 * set will be mapped if more than one exists. 434 * The parent driver gets the information 435 * from parent private data and sets up the 436 * appropriate mappings and returns the kernel 437 * virtual address of the register set in *kaddrp. 438 * The offset specifies an offset into the register 439 * space to start from and len indicates the size 440 * of the area to map. If len and offset are 0 then 441 * the entire space is mapped. It returns DDI_SUCCESS on 442 * success or DDI_FAILURE otherwise. 443 * 444 */ 445 int 446 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 447 off_t offset, off_t len); 448 449 /* 450 * ddi_unmap_regs 451 * 452 * Undo mappings set up by ddi_map_regs. 453 * The register number determines which register 454 * set will be unmapped if more than one exists. 455 * This is provided for drivers preparing 456 * to detach themselves from the system to 457 * allow them to release allocated mappings. 458 * 459 * The kaddrp and len specify the area to be 460 * unmapped. *kaddrp was returned from ddi_map_regs 461 * and len should match what ddi_map_regs was called 462 * with. 463 */ 464 465 void 466 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 467 off_t offset, off_t len); 468 469 int 470 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len, 471 caddr_t *addrp); 472 473 int 474 ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp); 475 476 /* 477 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 478 */ 479 struct regspec * 480 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber); 481 482 int 483 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 484 off_t len, caddr_t *vaddrp); 485 486 int 487 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 488 off_t len, caddr_t *vaddrp); 489 490 #ifdef _LP64 491 492 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p); 493 int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p); 494 int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p); 495 int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p); 496 497 int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val); 498 int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val); 499 int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val); 500 int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val); 501 502 #else /* _ILP32 */ 503 504 int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p); 505 #define ddi_peek8 ddi_peekc 506 507 int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p); 508 #define ddi_peek16 ddi_peeks 509 510 int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p); 511 #define ddi_peek32 ddi_peekl 512 513 int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p); 514 #define ddi_peek64 ddi_peekd 515 516 int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val); 517 #define ddi_poke8 ddi_pokec 518 519 int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val); 520 #define ddi_poke16 ddi_pokes 521 522 int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val); 523 #define ddi_poke32 ddi_pokel 524 525 int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val); 526 #define ddi_poke64 ddi_poked 527 528 #endif /* _LP64 */ 529 530 /* 531 * Peek and poke to and from a uio structure in xfersize pieces, 532 * using the parent nexi. 533 */ 534 int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 535 caddr_t addr, size_t len, uint_t xfersize); 536 537 /* 538 * Pagesize conversions using the parent nexi 539 */ 540 unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes); 541 unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes); 542 unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages); 543 544 /* 545 * There are no more "block" interrupt functions, per se. 546 * All thread of control should be done with MP/MT lockings. 547 * 548 * However, there are certain times in which a driver needs 549 * absolutely a critical guaranteed non-preemptable time 550 * in which to execute a few instructions. 551 * 552 * The following pair of functions attempt to guarantee this, 553 * but they are dangerous to use. That is, use them with 554 * extreme care. They do not guarantee to stop other processors 555 * from executing, but they do guarantee that the caller 556 * of ddi_enter_critical will continue to run until the 557 * caller calls ddi_exit_critical. No intervening DDI functions 558 * may be called between an entry and an exit from a critical 559 * region. 560 * 561 * ddi_enter_critical returns an integer identifier which must 562 * be passed to ddi_exit_critical. 563 * 564 * Be very sparing in the use of these functions since it is 565 * likely that absolutely nothing else can occur in the system 566 * whilst in the critical region. 567 */ 568 569 unsigned int 570 ddi_enter_critical(void); 571 572 void 573 ddi_exit_critical(unsigned int); 574 575 /* 576 * devmap functions 577 */ 578 int 579 devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, 580 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 581 struct cred *cred); 582 583 int 584 ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, 585 off_t len, uint_t prot, uint_t maxprot, uint_t flags, 586 struct cred *cred); 587 588 int 589 devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type, 590 uint_t rw); 591 592 int 593 devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len); 594 595 int 596 devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip, 597 struct devmap_callback_ctl *callback_ops, 598 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 599 uint_t flags, ddi_device_acc_attr_t *accattrp); 600 601 int 602 devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, 603 struct devmap_callback_ctl *callback_ops, 604 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 605 uint_t flags, ddi_device_acc_attr_t *accattrp); 606 607 int 608 devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip, 609 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 610 uint_t flags, ddi_device_acc_attr_t *accattrp); 611 612 int 613 devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip, 614 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 615 uint_t flags, ddi_device_acc_attr_t *accattrp); 616 617 void 618 devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks); 619 620 int 621 devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off, 622 size_t len, uint_t type, uint_t rw); 623 624 int 625 devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, 626 uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t, 627 size_t, uint_t, uint_t)); 628 629 630 void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep); 631 632 void ddi_umem_free(ddi_umem_cookie_t cookie); 633 634 /* 635 * Functions to lock user memory and do repeated I/O or do devmap_umem_setup 636 */ 637 int 638 ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie); 639 640 void 641 ddi_umem_unlock(ddi_umem_cookie_t cookie); 642 643 struct buf * 644 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction, 645 dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag); 646 647 /* 648 * Mapping functions 649 */ 650 int 651 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 652 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp); 653 654 int 655 ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp, 656 off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred, 657 ddi_device_acc_attr_t *accattrp, uint_t rnumber); 658 659 int 660 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr, 661 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 662 663 int 664 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 665 uint_t rnumber, uint_t *hat_flags); 666 667 /* 668 * Property functions: See also, ddipropdefs.h. 669 * In general, the underlying driver MUST be held 670 * to call it's property functions. 671 */ 672 673 /* 674 * Used to create, modify, and lookup integer properties 675 */ 676 int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 677 char *name, int defvalue); 678 int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 679 char *name, int64_t defvalue); 680 int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 681 char *name, int **data, uint_t *nelements); 682 int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 683 char *name, int64_t **data, uint_t *nelements); 684 int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 685 char *name, int data); 686 int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 687 char *name, int64_t data); 688 int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 689 char *name, int *data, uint_t nelements); 690 int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 691 char *name, int64_t *data, uint_t nelements); 692 /* 693 * Used to create, modify, and lookup string properties 694 */ 695 int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 696 char *name, char **data); 697 int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 698 char *name, char ***data, uint_t *nelements); 699 int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 700 char *name, char *data); 701 int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 702 char *name, char **data, uint_t nelements); 703 704 /* 705 * Used to create, modify, and lookup byte properties 706 */ 707 int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 708 char *name, uchar_t **data, uint_t *nelements); 709 int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 710 char *name, uchar_t *data, uint_t nelements); 711 712 /* 713 * Used to verify the existence of a property or to see if a boolean 714 * property exists. 715 */ 716 int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name); 717 718 /* 719 * Used to free the data returned by the above property routines. 720 */ 721 void ddi_prop_free(void *data); 722 723 /* 724 * nopropop: For internal use in `dummy' cb_prop_op functions only 725 */ 726 727 int 728 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 729 char *name, caddr_t valuep, int *lengthp); 730 731 /* 732 * ddi_prop_op: The basic property operator for drivers. 733 * 734 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 735 * 736 * prop_op valuep 737 * ------ ------ 738 * 739 * PROP_LEN <unused> 740 * 741 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 742 * 743 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 744 * address of allocated buffer, if successful) 745 */ 746 747 int 748 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 749 char *name, caddr_t valuep, int *lengthp); 750 751 /* ddi_prop_op_size: for drivers that implement size in bytes */ 752 int 753 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 754 int mod_flags, char *name, caddr_t valuep, int *lengthp, 755 uint64_t size64); 756 757 /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */ 758 int 759 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 760 int mod_flags, char *name, caddr_t valuep, int *lengthp, 761 uint64_t nblocks64); 762 763 /* 764 * Variable length props... 765 */ 766 767 /* 768 * ddi_getlongprop: Get variable length property len+val into a buffer 769 * allocated by property provider via kmem_alloc. Requester 770 * is responsible for freeing returned property via kmem_free. 771 * 772 * Arguments: 773 * 774 * dev: Input: dev_t of property. 775 * dip: Input: dev_info_t pointer of child. 776 * flags: Input: Possible flag modifiers are: 777 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 778 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 779 * name: Input: name of property. 780 * valuep: Output: Addr of callers buffer pointer. 781 * lengthp:Output: *lengthp will contain prop length on exit. 782 * 783 * Possible Returns: 784 * 785 * DDI_PROP_SUCCESS: Prop found and returned. 786 * DDI_PROP_NOT_FOUND: Prop not found 787 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 788 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 789 */ 790 791 int 792 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 793 char *name, caddr_t valuep, int *lengthp); 794 795 /* 796 * 797 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 798 * buffer. (no memory allocation by provider). 799 * 800 * dev: Input: dev_t of property. 801 * dip: Input: dev_info_t pointer of child. 802 * flags: Input: DDI_PROP_DONTPASS or NULL 803 * name: Input: name of property 804 * valuep: Input: ptr to callers buffer. 805 * lengthp:I/O: ptr to length of callers buffer on entry, 806 * actual length of property on exit. 807 * 808 * Possible returns: 809 * 810 * DDI_PROP_SUCCESS Prop found and returned 811 * DDI_PROP_NOT_FOUND Prop not found 812 * DDI_PROP_UNDEFINED Prop explicitly undefined. 813 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 814 * no value returned, but actual prop 815 * length returned in *lengthp 816 * 817 */ 818 819 int 820 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 821 char *name, caddr_t valuep, int *lengthp); 822 823 /* 824 * Integer/boolean sized props. 825 * 826 * Call is value only... returns found boolean or int sized prop value or 827 * defvalue if prop not found or is wrong length or is explicitly undefined. 828 * Only flag is DDI_PROP_DONTPASS... 829 * 830 * By convention, this interface returns boolean (0) sized properties 831 * as value (int)1. 832 */ 833 834 int 835 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue); 836 837 /* 838 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 839 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 840 */ 841 842 int 843 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp); 844 845 846 /* 847 * Interface to create/modify a managed property on child's behalf... 848 * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep 849 * if no memory available for internal prop structure. Long property 850 * (non integer sized) value references are not copied. 851 * 852 * Define property with DDI_DEV_T_NONE dev_t for properties not associated 853 * with any particular dev_t. Use the same dev_t when modifying or undefining 854 * a property. 855 * 856 * No guarantee on order of property search, so don't mix the same 857 * property name with wildcard and non-wildcard dev_t's. 858 */ 859 860 /* 861 * ddi_prop_create: Define a managed property: 862 */ 863 864 int 865 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 866 char *name, caddr_t value, int length); 867 868 /* 869 * ddi_prop_modify: Modify a managed property value 870 */ 871 872 int 873 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 874 char *name, caddr_t value, int length); 875 876 /* 877 * ddi_prop_remove: Undefine a managed property: 878 */ 879 880 int 881 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name); 882 883 /* 884 * ddi_prop_remove_all: Used before unloading a driver to remove 885 * all properties. (undefines all dev_t's props.) 886 * Also removes `undefined' prop defs. 887 */ 888 889 void 890 ddi_prop_remove_all(dev_info_t *dip); 891 892 893 /* 894 * ddi_prop_undefine: Explicitly undefine a property. Property 895 * searches which match this property return 896 * the error code DDI_PROP_UNDEFINED. 897 * 898 * Use ddi_prop_remove to negate effect of 899 * ddi_prop_undefine 900 */ 901 902 int 903 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name); 904 905 906 /* 907 * The default ddi_bus_prop_op wrapper... 908 */ 909 910 int 911 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 912 ddi_prop_op_t prop_op, int mod_flags, 913 char *name, caddr_t valuep, int *lengthp); 914 915 916 /* 917 * Routines to traverse the tree of dev_info nodes. 918 * The general idea of these functions is to provide 919 * various tree traversal utilities. For each node 920 * that the tree traversal function finds, a caller 921 * supplied function is called with arguments of 922 * the current node and a caller supplied argument. 923 * The caller supplied function should return one 924 * of the integer values defined below which will 925 * indicate to the tree traversal function whether 926 * the traversal should be continued, and if so, how, 927 * or whether the traversal should terminate. 928 */ 929 930 /* 931 * This general-purpose routine traverses the tree of dev_info nodes, 932 * starting from the given node, and calls the given function for each 933 * node that it finds with the current node and the pointer arg (which 934 * can point to a structure of information that the function 935 * needs) as arguments. 936 * 937 * It does the walk a layer at a time, not depth-first. 938 * 939 * The given function must return one of the values defined above. 940 * 941 */ 942 943 void 944 ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *); 945 946 /* 947 * Routines to get at elements of the dev_info structure 948 */ 949 950 /* 951 * ddi_node_name gets the device's 'name' from the device node. 952 * 953 * ddi_binding_name gets the string the OS used to bind the node to a driver, 954 * in certain cases, the binding name may be different from the node name, 955 * if the node name does not name a specific device driver. 956 * 957 * ddi_get_name is a synonym for ddi_binding_name(). 958 */ 959 char * 960 ddi_get_name(dev_info_t *dip); 961 962 char * 963 ddi_binding_name(dev_info_t *dip); 964 965 const char * 966 ddi_driver_name(dev_info_t *dip); 967 968 major_t 969 ddi_driver_major(dev_info_t *dip); 970 971 major_t 972 ddi_compatible_driver_major(dev_info_t *dip, char **formp); 973 974 char * 975 ddi_node_name(dev_info_t *dip); 976 977 int 978 ddi_get_nodeid(dev_info_t *dip); 979 980 int 981 ddi_get_instance(dev_info_t *dip); 982 983 struct dev_ops * 984 ddi_get_driver(dev_info_t *dip); 985 986 void 987 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo); 988 989 void 990 ddi_set_driver_private(dev_info_t *dip, void *data); 991 992 void * 993 ddi_get_driver_private(dev_info_t *dip); 994 995 /* 996 * ddi_dev_is_needed tells system that a device is about to use a 997 * component. Returns when component is ready. 998 */ 999 int 1000 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level); 1001 1002 /* 1003 * check if DDI_SUSPEND may result in power being removed from a device. 1004 */ 1005 int 1006 ddi_removing_power(dev_info_t *dip); 1007 1008 /* 1009 * (Obsolete) power entry point 1010 */ 1011 int 1012 ddi_power(dev_info_t *dip, int cmpt, int level); 1013 1014 /* 1015 * ddi_get_parent requires that the branch of the tree with the 1016 * node be held (ddi_hold_installed_driver) or that the devinfo tree 1017 * lock be held 1018 */ 1019 dev_info_t * 1020 ddi_get_parent(dev_info_t *dip); 1021 1022 /* 1023 * ddi_get_child and ddi_get_next_sibling require that the devinfo 1024 * tree lock be held 1025 */ 1026 dev_info_t * 1027 ddi_get_child(dev_info_t *dip); 1028 1029 dev_info_t * 1030 ddi_get_next_sibling(dev_info_t *dip); 1031 1032 dev_info_t * 1033 ddi_get_next(dev_info_t *dip); 1034 1035 void 1036 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip); 1037 1038 /* 1039 * dev_info manipulation functions 1040 */ 1041 1042 /* 1043 * Add and remove child devices. These are part of the system framework. 1044 * 1045 * ddi_add_child creates a dev_info structure with the passed name, 1046 * nodeid and instance arguments and makes it a child of pdip. Devices 1047 * that are known directly by the hardware have real nodeids; devices 1048 * that are software constructs use the defined DEVI_PSEUDO_NODEID 1049 * for the node id. 1050 * 1051 * ddi_remove_node removes the node from the tree. This fails if this 1052 * child has children. Parent and driver private data should already 1053 * be released (freed) prior to calling this function. If flag is 1054 * non-zero, the child is removed from it's linked list of instances. 1055 */ 1056 dev_info_t * 1057 ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance); 1058 1059 int 1060 ddi_remove_child(dev_info_t *dip, int flag); 1061 1062 /* 1063 * Given the major number for a driver, make sure that dev_info nodes 1064 * are created form the driver's hwconf file, the driver for the named 1065 * device is loaded and attached, as well as any drivers for parent devices. 1066 * Return a pointer to the driver's dev_ops struct with the dev_ops held. 1067 * Note - Callers must release the dev_ops with ddi_rele_driver. 1068 * 1069 * When a driver is held, the branch of the devinfo tree from any of the 1070 * drivers devinfos to the root node are automatically held. This only 1071 * applies to tree traversals up (and back down) the tree following the 1072 * parent pointers. 1073 * 1074 * Use of this interface is discouraged, it may be removed in a future release. 1075 */ 1076 struct dev_ops * 1077 ddi_hold_installed_driver(major_t major); 1078 1079 void 1080 ddi_rele_driver(major_t major); 1081 1082 /* 1083 * Attach and hold the specified instance of a driver. The flags argument 1084 * should be zero. 1085 */ 1086 dev_info_t * 1087 ddi_hold_devi_by_instance(major_t major, int instance, int flags); 1088 1089 void 1090 ddi_release_devi(dev_info_t *); 1091 1092 /* 1093 * Associate a streams queue with a devinfo node 1094 */ 1095 void 1096 ddi_assoc_queue_with_devi(queue_t *, dev_info_t *); 1097 1098 /* 1099 * Given the identifier string passed, make sure that dev_info nodes 1100 * are created form the driver's hwconf file, the driver for the named 1101 * device is loaded and attached, as well as any drivers for parent devices. 1102 * 1103 * Note that the driver is not held and is subject to being removed the instant 1104 * this call completes. You probably really want ddi_hold_installed_driver. 1105 */ 1106 int 1107 ddi_install_driver(char *idstring); 1108 1109 /* 1110 * Routines that return specific nodes 1111 */ 1112 1113 dev_info_t * 1114 ddi_root_node(void); 1115 1116 /* 1117 * Given a name and an instance number, find and return the 1118 * dev_info from the current state of the device tree. 1119 * 1120 * If instance number is -1, return the first named instance. 1121 * 1122 * If attached is 1, exclude all nodes that are < DS_ATTACHED 1123 * 1124 * Requires that the devinfo tree be locked. 1125 * If attached is 1, the driver must be held. 1126 */ 1127 dev_info_t * 1128 ddi_find_devinfo(char *name, int instance, int attached); 1129 1130 /* 1131 * DMA Mapping Setup 1132 * 1133 * The basic interface function is ddi_dma_setup(). This function 1134 * is to designed to allow a DMA mapping to be established to a 1135 * memory object. This function returns DDI_DMA_MAPPED if the 1136 * request was successfully filled. If this occurs, then the 1137 * argument handlep is filled in. This value is the DMA handle 1138 * for the mapping, and is used in a variety of other functions. 1139 * The handle is an opaque handle on the mapping, and no further 1140 * information may be inferred from it by the caller. 1141 * 1142 * Specifics of arguments to ddi_dma_setup: 1143 * 1144 * dip - devinfo pointer, which identifies the base device that wishes 1145 * to establish a dma mapping. The device may either be a leaf device, 1146 * or a device which is both a leaf and a nexus (e.g., a device which 1147 * has a dma engine but no children devices). 1148 * 1149 * dmareqp - pointer to a dma request structure. This structure contains 1150 * all the info necessary to establish the mapping (see <sys/ddidmareq.h>). 1151 * This structure may be impermanent, as its information is copied and 1152 * saved, if necessary, by implementation specific functions. The caller 1153 * is responsible for filling in the dmar_flags, dmar_length, dmar_type, 1154 * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the 1155 * ddi_dma_req structure should neither be examined or modified by the 1156 * caller. 1157 * 1158 * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers 1159 * responsibility to hang on to this handle, because it becomes the token 1160 * used in all other DDI dma functions. If the handle pointer is NULL, 1161 * then no mapping is made, and the call is being used by the caller 1162 * to simply determine whether such a mapping *could* be made. 1163 * 1164 * Discussion of DMA resource callback functions: 1165 * 1166 * If a request could not be filled, it was because either there were 1167 * not enough mapping resources available to satisfy the request, and the 1168 * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not 1169 * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of 1170 * available hardware to map the object. Callers should be prepared to deal 1171 * with all possible returns. It is suggested that the appropriate system 1172 * error number for the DDI_DMA_NOMAPPING returns is EFAULT. 1173 * 1174 * If the caller does not care whether a DMA mapping can be set up now, 1175 * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This 1176 * implies that the caller will appropriately deal with resource 1177 * exhaustion. 1178 * 1179 * If the caller either cannot or does not wish to sleep awaiting mapping 1180 * resources, the caller may specify, via the field dmar_fp, a function to 1181 * call with the argument specified in dmar_arg, when resources might have 1182 * become available. The callback function will be called from interrupt 1183 * context, but in such a fashion to guarantee that spl blocking (in systems 1184 * that use this method of data protection) by the caller will not be 1185 * bypassed. 1186 * 1187 * 1188 * When function specified via dmar_fp is called, it may attempt to try and get 1189 * the mapping again. If it succeeds in getting the mapping, or does not need 1190 * to get the mapping any more, it must return 1. If it tries to get the 1191 * mapping but fails to do so, and it wants to be called back later, it 1192 * must return 0. 1193 * 1194 * Failure to observe this protocol will have unpredictable results. 1195 * 1196 * The callback function must provide its own data structure integrity 1197 * when it is invoked. 1198 */ 1199 1200 int 1201 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 1202 ddi_dma_handle_t *handlep); 1203 1204 /* 1205 * The following three functions are convenience wrappers for ddi_dma_setup(). 1206 */ 1207 1208 int 1209 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 1210 uint_t flags, int (*waitfp)(), caddr_t arg, 1211 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); 1212 1213 int 1214 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 1215 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 1216 ddi_dma_handle_t *handlep); 1217 1218 /* 1219 * Kernel addressability of the DMA object 1220 * 1221 * It might often be very useful to be able to get an IU mapping 1222 * to the object which has DMA active to/from it. In fact, it might 1223 * even really be a requirement. 1224 * 1225 * The cacheability of the object with respect to I/O and I/U caches 1226 * is affected by this function as follows: 1227 * 1228 * If a kernel virtual mapping to the object owned by the handle 1229 * existed already, and is IU cacheable, then the extant mapping 1230 * is locked and returned in kaddrp. By inference, kaddrp will 1231 * be an IU cacheable reference. 1232 * 1233 * If a kernel virtual mapping to the object owned by the handle 1234 * existed already, and is not IU cacheable, then the extant mapping 1235 * is locked and returned in kaddrp. By inference, kaddrp will 1236 * *not* be an IU cacheable reference. 1237 * 1238 * If a kernel virtual mapping to the object owned by the handle 1239 * does not exist already, a mapping will be created that will 1240 * *not* be an IU cacheable reference. 1241 * 1242 * The IO cacheability of the object owned by the handle is ignored 1243 * and unaffected. 1244 * 1245 * This function returns the mapping values as describe above. 1246 * 1247 * When the DMA object owned by handle is freed (by ddi_dma_free()- see 1248 * below), any mappings created by ddi_dma_kvaddrp() cease to be valid. 1249 * This will be the convention that drivers must follow, as it will be 1250 * impossible to enforce this programmatically. 1251 */ 1252 1253 int 1254 ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *); 1255 1256 1257 /* 1258 * Device addressability of the DMA object 1259 * 1260 * The handle that identifies an object mapped for DMA is an opaque entity. 1261 * When a device driver wishes to load its dma engine with the appropriate 1262 * values for transferring data to the mapped object, it has to get the 1263 * value. Since the exact shape and form of this address is device specific, 1264 * the value returned is a 'cookie' that each device may then interpret 1265 * as it needs to. See <sys/dditypes.h> for the form of what the DMA cookie 1266 * looks like. 1267 * 1268 * Returns DDI_SUCCESS for successful cookie generation, 1269 * or DDI_FAILURE if it cannot generate the DMA cookie. 1270 */ 1271 1272 int 1273 ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep); 1274 1275 /* 1276 * Given a DMA cookie, return its offset within the object referred to 1277 * by the DMA handle. This is so at the end of a dma transfer, the device 1278 * may take its specific ending address and find out how far into the 1279 * memory object described by the handle the device got. 1280 */ 1281 1282 int 1283 ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp); 1284 1285 /* 1286 * DMA mapping manipulation 1287 * 1288 * It may be desirable or convenient for some devices to allow partial 1289 * mapping of an object for dma. This allows the mapping for DMA of 1290 * arbitrarily large objects since only a portion of the object may 1291 * be mapped for DMA at any point in time. 1292 * 1293 * In order to support this as well as other operations, the paradigm 1294 * of a 'mapping window' is defined here. The object to be mapped has 1295 * attributes of location and length. A window can be established upon 1296 * this object. The window has attributes of offset (from the base mapping 1297 * of the object) and length. It is assumed that length and offset are 1298 * positive with respect to the base of the mapped object. 1299 * 1300 * In order to get support for such a window, the flag DDI_DMA_PARTIAL 1301 * must be set in the request flags when the object is mapped for DMA. 1302 * Each implementation may elect whether or not to support such an 1303 * operation. Each implementation may also choose to ignore the request 1304 * for a PARTIAL mapping and either reject the mapping of the object 1305 * for being too big (DDI_DMA_TOOBIG) or may map the entire object. 1306 * The caller who asks the object to be mapped for DMA will know 1307 * whether a partial mapping has been made by receiving the qualified 1308 * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED. 1309 * All dma window functions will return DDI_FAILURE if the object 1310 * is not mapped partially. 1311 * 1312 * All other DDI dma functions (except ddi_dma_Free) operate *only* on 1313 * the mapped portion of the object. That is, functions such as ddi_dma_sync, 1314 * ddi_dma_segtocookie, and so on, only operate on the currently mapped 1315 * window. 1316 */ 1317 1318 #if defined(__sparc) 1319 1320 /* 1321 * ddi_dma_movwin - Move window from current offset/length to new 1322 * offset/length. Returns DDI_SUCCESS if able to do so, else returns 1323 * DDI_FAILURE if unable to do so, or the new window would be out of bounds 1324 * or the object isn't set up for windows. If length is (off_t) -1, the 1325 * If the optional cp argument is specified, an implicit ddi_dma_htoc 1326 * is done to fill that in. The new offset and length will be returned 1327 * in the arguments *offp and *lenp (resp). 1328 * 1329 * In this implementation, only fixed width windows are used. It is 1330 * recommended that the windowsize should be retrieved via the function 1331 * ddi_dma_curwin (below) and that used to specify new offsets and lengths 1332 * since the window will be fixed at that size and will only move modulo 1333 * winsize. 1334 * 1335 * The caller must guarantee that their device's dma engine is quiescent 1336 * with respect to the current DMA window. 1337 * 1338 * The implementation will try to be rapid with respect to moving a window, 1339 * but since an appropriate ddi_dma_sync() is likely to be done, there 1340 * will be no guaranteed latency. In practice this should not be too 1341 * horrible, but don't depend upon any particular latency. 1342 */ 1343 1344 int 1345 ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *); 1346 1347 #endif 1348 1349 /* 1350 * ddi_dma_curwin - report the current offset/length of the window. 1351 * 1352 * Returns DDI_SUCCESS if offset and length 1353 * successfully established, else DDI_FAILURE. 1354 */ 1355 1356 int 1357 ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp); 1358 1359 /* 1360 * Get next dma window 1361 * 1362 * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to 1363 * the next window within the object. If win is "NULL", a pointer to the 1364 * first window within the object is filled in. 1365 * 1366 * Returns DDI_SUCCESS if successfully filled in the window pointer, 1367 * DDI_DMA_STALE if win does not refer to the currently active 1368 * window, 1369 * DDI_DMA_DONE else there is no next window. 1370 */ 1371 1372 int 1373 ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *); 1374 1375 /* 1376 * Get next segment 1377 * 1378 * ddi_dma_nextseg takes a window and a segment and fills in a pointer to 1379 * the next segment within the window. If seg is "NULL", a pointer to the 1380 * first segment within the window is filled in. 1381 * 1382 * Returns DDI_SUCCESS if successfully filled in the segment pointer, 1383 * DDI_DMA_STALE if win does not refer to the currently active 1384 * window. 1385 * DDI_DMA_DONE else there is no next segment. 1386 */ 1387 1388 int 1389 ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *); 1390 1391 /* 1392 * Segment to cookie 1393 * 1394 * ddi_dma_segtocookie takes a segment and fills in the cookie pointed 1395 * to by cookiep with the appropriate address, length and bus type to be 1396 * used to program the DMA engine. ddi_dma_segtocookie also fills in the 1397 * range within the object (specified by <off, len>) this particular 1398 * segment is mapping. <off, len> are filled in to give some control 1399 * where in the object the current dma transfer is active. 1400 * 1401 * Returns DDI_SUCCESS if successfully filled in all values, 1402 * else DDI_FAILURE 1403 * 1404 * This function is documented as Obsolete and is replaced by 1405 * ddi_dma_nextcookie(9F) 1406 */ 1407 1408 int 1409 ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *); 1410 1411 /* 1412 * Synchronization of I/O with respect to various 1413 * caches and system write buffers. 1414 * 1415 * Done at varying points during an I/O transfer (including at the 1416 * removal of an I/O mapping). 1417 * 1418 * Due to the support of systems with write buffers which may 1419 * not be able to be turned off, this function *must* used at 1420 * any point in which data consistency might be required. 1421 * 1422 * Generally this means that if a memory object has multiple mappings 1423 * (both for I/O, as described by the handle, and the IU, via, e.g. 1424 * a call to ddi_dma_kvaddrp), and one mapping may have been 1425 * used to modify the memory object, this function must be called 1426 * to ensure that the modification of the memory object is 1427 * complete, as well as possibly to inform other mappings of 1428 * the object that any cached references to the object are 1429 * now stale (and flush or invalidate these stale cache references 1430 * as necessary). 1431 * 1432 * The function ddi_dma_sync() provides the general interface with 1433 * respect to this capability. Generally, ddi_dma_free() (below) may 1434 * be used in preference to ddi_dma_sync() as ddi_dma_free() calls 1435 * ddi_dma_sync(). 1436 * 1437 * Returns 0 if all caches that exist and are specified by cache_flags 1438 * are successfully operated on, else -1. 1439 * 1440 * The argument offset specifies an offset into the mapping of the mapped 1441 * object in which to perform the synchronization. It will be silently 1442 * truncated to the granularity of underlying cache line sizes as 1443 * appropriate. 1444 * 1445 * The argument len specifies a length starting from offset in which to 1446 * perform the synchronization. A value of (uint_t) -1 means that the length 1447 * proceeds from offset to the end of the mapping. The length argument 1448 * will silently rounded up to the granularity of underlying cache line 1449 * sizes as appropriate. 1450 * 1451 * The argument flags specifies what to synchronize (the device's view of 1452 * the object or the cpu's view of the object). 1453 * 1454 * Inquiring minds want to know when ddi_dma_sync should be used: 1455 * 1456 * + When an object is mapped for dma, assume that an 1457 * implicit ddi_dma_sync() is done for you. 1458 * 1459 * + When an object is unmapped (ddi_dma_free()), assume 1460 * that an implicit ddi_dma_sync() is done for you. 1461 * 1462 * + At any time between the two times above that the 1463 * memory object may have been modified by either 1464 * the DMA device or a processor and you wish that 1465 * the change be noticed by the master that didn't 1466 * do the modifying. 1467 * 1468 * Clearly, only the third case above requires the use of ddi_dma_sync. 1469 * 1470 * Inquiring minds also want to know which flag to use: 1471 * 1472 * + If you *modify* with a cpu the object, you use 1473 * ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure 1474 * that the DMA device sees the changes you made). 1475 * 1476 * + If you are checking, with the processor, an area 1477 * of the object that the DMA device *may* have modified, 1478 * you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are 1479 * making sure that the processor(s) will see the changes 1480 * that the DMA device may have made). 1481 */ 1482 1483 int 1484 ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags); 1485 1486 /* 1487 * DMA mapping de-allocation 1488 * 1489 * When an I/O transfer completes, the resources required to map the 1490 * object for DMA should be completely released. As a side effect, 1491 * various cache synchronization might need to occur (see above). 1492 * 1493 * Returns DDI_SUCCESS if the all underlying caches are successfully 1494 * flushed, else DDI_FAILURE. 1495 * 1496 */ 1497 1498 int 1499 ddi_dma_free(ddi_dma_handle_t handle); 1500 1501 /* 1502 * Device constraint cognizant kernel memory allocation- consistent access. 1503 * 1504 * IOPB allocation and de-allocation 1505 * 1506 * An IOPB allocation allocates some primary memory such that both 1507 * the kernel and the specified DMA device might be able to access it in a 1508 * non-cacheable (otherwise known as byte-consistent or non-streaming mode) 1509 * fashion. The allocation will obey the beginning alignment and padding 1510 * constraints as specified in the initial limits argument and as subsequently 1511 * modified by intervening parents. The limits argument may be NULL, in 1512 * which case the system picks a reasonable beginning limits. 1513 * 1514 * A kernel virtual address to the allocated primary memory is returned, 1515 * but no DMA mapping to the object is established (drivers must use the 1516 * ddi_dma_map() routines for that). 1517 * 1518 * If no iopb space can be allocated, DDI_FAILURE is returned. 1519 */ 1520 1521 int 1522 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1523 caddr_t *iopbp); 1524 1525 /* 1526 * Deallocate an IOPB kernel virtual mapping. 1527 */ 1528 1529 void 1530 ddi_iopb_free(caddr_t iopb); 1531 1532 /* 1533 * Device constraint cognizant kernel memory allocation- streaming access. 1534 * 1535 * Similar to ddi_iopb_alloc, but for primary memory that is intended 1536 * to be accessed in a streaming fashion. The allocation will obey the 1537 * beginning alignment and padding constraints as specified in the initial 1538 * limits argument and as subsequently modified by intervening parents. 1539 * The limits argument may be NULL, in which case the system picks a 1540 * reasonable beginning limits. 1541 * 1542 * A flags value of 0x1 indicates whether the caller can wait for 1543 * memory to become available. Other bits in the flags argument 1544 * are reserved for future use and must be zero. 1545 * 1546 * Upon return from a successful call, the new real length of 1547 * the allocation is returned (for use in mapping the memory 1548 * later). 1549 */ 1550 1551 int 1552 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1553 uint_t flags, caddr_t *kaddrp, uint_t *real_length); 1554 1555 /* 1556 * Free the memory allocated via ddi_mem_alloc(). 1557 * 1558 * Note that passing an address not allocated via ddi_mem_alloc() 1559 * will panic the system. 1560 */ 1561 1562 void 1563 ddi_mem_free(caddr_t kaddr); 1564 1565 /* 1566 * Dma alignment, minimum transfers sizes, and burst sizes allowed. 1567 * Some with tears, some without. 1568 */ 1569 1570 /* 1571 * Return a copy of the DMA attributes for the given handle. 1572 */ 1573 1574 int 1575 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp); 1576 1577 /* 1578 * Return the allowable DMA burst size for the object mapped by handle. 1579 * The burst sizes will returned in an integer that encodes power 1580 * of two burst sizes that are allowed in bit encoded format. For 1581 * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts 1582 * would be encoded as 0x2f. A transfer that could be allowed as solely 1583 * a halfword (2 byte) transfers would be returned as 0x2. 1584 */ 1585 1586 int 1587 ddi_dma_burstsizes(ddi_dma_handle_t handle); 1588 1589 /* 1590 * Return the required beginning alignment for a transfer and 1591 * the minimum sized effect a transfer would have. The beginning 1592 * alignment will be some power of two. The minimum sized effect 1593 * indicates, for writes, how much of the mapped object will be 1594 * affected by the minimum access and for reads how much of the 1595 * mapped object will accessed. 1596 */ 1597 1598 int 1599 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect); 1600 1601 /* 1602 * Like ddi_dma_devalign, but without having to map the object. 1603 * The object is assumed to be primary memory, and it is assumed 1604 * a minimum effective transfer is also the appropriate alignment 1605 * to be using. The streaming flag, if non-zero, indicates that the 1606 * returned value should be modified to account for streaming mode 1607 * accesses (e.g., with I/O caches enabled). The initial value 1608 * is passed by the requester if it has a dma engine that has 1609 * a minimum cycle constraint (or, for streaming mode, the most 1610 * efficient size). 1611 */ 1612 1613 int 1614 ddi_iomin(dev_info_t *dip, int initial, int streaming); 1615 1616 /* 1617 * Given two DMA limit structures, apply the limitations 1618 * of one to the other, following the rules of limits 1619 * and the wishes of the caller. 1620 * 1621 * The rules of dma limit structures are that you cannot 1622 * make things *less* restrictive as you apply one set 1623 * of limits to another. 1624 * 1625 */ 1626 1627 void 1628 ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier); 1629 1630 /* 1631 * Merge DMA attributes 1632 */ 1633 1634 void 1635 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod); 1636 1637 /* 1638 * Allocate a DMA handle 1639 */ 1640 1641 int 1642 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 1643 int (*waitfp)(caddr_t), caddr_t arg, 1644 ddi_dma_handle_t *handlep); 1645 1646 /* 1647 * Free DMA handle 1648 */ 1649 1650 void 1651 ddi_dma_free_handle(ddi_dma_handle_t *handlep); 1652 1653 /* 1654 * Allocate memory for DMA transfers 1655 */ 1656 1657 int 1658 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 1659 ddi_device_acc_attr_t *accattrp, uint_t xfermodes, 1660 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 1661 size_t *real_length, ddi_acc_handle_t *handlep); 1662 1663 /* 1664 * Free DMA memory 1665 */ 1666 1667 void 1668 ddi_dma_mem_free(ddi_acc_handle_t *hp); 1669 1670 /* 1671 * bind address to a DMA handle 1672 */ 1673 1674 int 1675 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 1676 caddr_t addr, size_t len, uint_t flags, 1677 int (*waitfp)(caddr_t), caddr_t arg, 1678 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1679 1680 /* 1681 * bind buffer to DMA handle 1682 */ 1683 1684 int 1685 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 1686 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 1687 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1688 1689 /* 1690 * unbind mapping object to handle 1691 */ 1692 1693 int 1694 ddi_dma_unbind_handle(ddi_dma_handle_t handle); 1695 1696 /* 1697 * get next DMA cookie 1698 */ 1699 1700 void 1701 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep); 1702 1703 /* 1704 * get number of DMA windows 1705 */ 1706 1707 int 1708 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp); 1709 1710 /* 1711 * get specific DMA window 1712 */ 1713 1714 int 1715 ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp, 1716 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1717 1718 /* 1719 * activate 64 bit SBus support 1720 */ 1721 1722 int 1723 ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes); 1724 1725 /* 1726 * Miscellaneous functions 1727 */ 1728 1729 /* 1730 * ddi_report_dev: Report a successful attach. 1731 */ 1732 1733 void 1734 ddi_report_dev(dev_info_t *dev); 1735 1736 /* 1737 * ddi_dev_regsize 1738 * 1739 * If the device has h/w register(s), report 1740 * the size, in bytes, of the specified one into *resultp. 1741 * 1742 * Returns DDI_FAILURE if there are not registers, 1743 * or the specified register doesn't exist. 1744 */ 1745 1746 int 1747 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp); 1748 1749 /* 1750 * ddi_dev_nregs 1751 * 1752 * If the device has h/w register(s), report 1753 * how many of them that there are into resultp. 1754 * Return DDI_FAILURE if the device has no registers. 1755 */ 1756 1757 int 1758 ddi_dev_nregs(dev_info_t *dev, int *resultp); 1759 1760 /* 1761 * ddi_dev_is_sid 1762 * 1763 * If the device is self-identifying, i.e., 1764 * has already been probed by a smart PROM 1765 * (and thus registers are known to be valid) 1766 * return DDI_SUCCESS, else DDI_FAILURE. 1767 */ 1768 1769 1770 int 1771 ddi_dev_is_sid(dev_info_t *dev); 1772 1773 /* 1774 * ddi_slaveonly 1775 * 1776 * If the device is on a bus that precludes 1777 * the device from being either a dma master or 1778 * a dma slave, return DDI_SUCCESS. 1779 */ 1780 1781 int 1782 ddi_slaveonly(dev_info_t *); 1783 1784 1785 /* 1786 * ddi_dev_affinity 1787 * 1788 * Report, via DDI_SUCCESS, whether there exists 1789 * an 'affinity' between two dev_info_t's. An 1790 * affinity is defined to be either a parent-child, 1791 * or a sibling relationship such that the siblings 1792 * or in the same part of the bus they happen to be 1793 * on. 1794 */ 1795 1796 int 1797 ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb); 1798 1799 1800 /* 1801 * ddi_set_callback 1802 * 1803 * Set a function/arg pair into the callback list identified 1804 * by listid. *listid must always initially start out as zero. 1805 */ 1806 1807 void 1808 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid); 1809 1810 /* 1811 * ddi_run_callback 1812 * 1813 * Run the callback list identified by listid. 1814 */ 1815 1816 void 1817 ddi_run_callback(uintptr_t *listid); 1818 1819 /* 1820 * More miscellaneous 1821 */ 1822 1823 int 1824 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 1825 struct pollhead **phpp); 1826 1827 dev_info_t * 1828 nodevinfo(dev_t dev, int otyp); 1829 1830 int 1831 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); 1832 1833 int 1834 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 1835 void *arg, void **result); 1836 1837 int 1838 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd); 1839 1840 int 1841 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 1842 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 1843 1844 int 1845 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1846 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 1847 1848 int 1849 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 1850 ddi_dma_handle_t handle); 1851 1852 int 1853 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1854 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1855 ddi_dma_cookie_t *cp, uint_t *ccountp); 1856 1857 int 1858 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1859 ddi_dma_handle_t handle); 1860 1861 int 1862 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1863 ddi_dma_handle_t handle, off_t off, size_t len, 1864 uint_t cache_flags); 1865 1866 int 1867 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 1868 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1869 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1870 1871 int 1872 ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip, 1873 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 1874 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); 1875 1876 void 1877 ddivoid(); 1878 1879 cred_t * 1880 ddi_get_cred(void); 1881 1882 clock_t 1883 ddi_get_lbolt(void); 1884 1885 time_t 1886 ddi_get_time(void); 1887 1888 pid_t 1889 ddi_get_pid(void); 1890 1891 kt_did_t 1892 ddi_get_kt_did(void); 1893 1894 boolean_t 1895 ddi_can_receive_sig(void); 1896 1897 void 1898 swab(void *src, void *dst, size_t nbytes); 1899 1900 int 1901 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 1902 minor_t minor_num, char *node_type, int flag); 1903 1904 int 1905 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 1906 minor_t minor_num, char *node_type, int flag, 1907 const char *rdpriv, const char *wrpriv, mode_t priv_mode); 1908 1909 void 1910 ddi_remove_minor_node(dev_info_t *dip, char *name); 1911 1912 int 1913 ddi_in_panic(void); 1914 1915 int 1916 ddi_streams_driver(dev_info_t *dip); 1917 1918 /* 1919 * DDI wrappers for ffs and fls 1920 */ 1921 int 1922 ddi_ffs(long mask); 1923 1924 int 1925 ddi_fls(long mask); 1926 1927 /* 1928 * The next five routines comprise generic storage management utilities 1929 * for driver soft state structures. 1930 */ 1931 1932 /* 1933 * Allocate a set of pointers to 'n_items' objects of size 'size' 1934 * bytes. Each pointer is initialized to nil. 'n_items' is a hint i.e. 1935 * zero is allowed. 1936 */ 1937 int 1938 ddi_soft_state_init(void **state_p, size_t size, size_t n_items); 1939 1940 /* 1941 * Allocate a state structure of size 'size' to be associated 1942 * with item 'item'. 1943 */ 1944 int 1945 ddi_soft_state_zalloc(void *state, int item); 1946 1947 /* 1948 * Fetch a pointer to the allocated soft state structure 1949 * corresponding to 'item.' 1950 */ 1951 void * 1952 ddi_get_soft_state(void *state, int item); 1953 1954 /* 1955 * Free the state structure corresponding to 'item.' 1956 */ 1957 void 1958 ddi_soft_state_free(void *state, int item); 1959 1960 /* 1961 * Free the handle, and any associated soft state structures. 1962 */ 1963 void 1964 ddi_soft_state_fini(void **state_p); 1965 1966 /* 1967 * Set the addr field of the name in dip to name 1968 */ 1969 void 1970 ddi_set_name_addr(dev_info_t *dip, char *name); 1971 1972 /* 1973 * Get the address part of the name. 1974 */ 1975 char * 1976 ddi_get_name_addr(dev_info_t *dip); 1977 1978 void 1979 ddi_set_parent_data(dev_info_t *dip, void *pd); 1980 1981 void * 1982 ddi_get_parent_data(dev_info_t *dip); 1983 1984 int 1985 ddi_initchild(dev_info_t *parent, dev_info_t *proto); 1986 1987 int 1988 ddi_uninitchild(dev_info_t *dip); 1989 1990 major_t 1991 ddi_name_to_major(char *name); 1992 1993 char * 1994 ddi_major_to_name(major_t major); 1995 1996 char * 1997 ddi_deviname(dev_info_t *dip, char *name); 1998 1999 char * 2000 ddi_pathname(dev_info_t *dip, char *path); 2001 2002 int 2003 ddi_dev_pathname(dev_t devt, int spec_type, char *name); 2004 2005 dev_t 2006 ddi_pathname_to_dev_t(char *pathname); 2007 2008 /* 2009 * High resolution system timer functions. 2010 * 2011 * These functions are already in the kernel (see sys/time.h). 2012 * The ddi supports the notion of a hrtime_t type and the 2013 * functions gethrtime, hrtadd, hrtsub and hrtcmp. 2014 */ 2015 2016 2017 /* 2018 * Nexus wrapper functions 2019 * 2020 * These functions are for entries in a bus nexus driver's bus_ops 2021 * structure for when the driver doesn't have such a function and 2022 * doesn't wish to prohibit such a function from existing. They 2023 * may also be called to start passing a request up the dev_info 2024 * tree. 2025 */ 2026 2027 /* 2028 * bus_ctl wrapper 2029 */ 2030 2031 int 2032 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v); 2033 2034 /* 2035 * bus_dma_map wrapper 2036 */ 2037 2038 int 2039 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 2040 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 2041 2042 int 2043 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 2044 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 2045 2046 int 2047 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 2048 ddi_dma_handle_t handle); 2049 2050 int 2051 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 2052 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 2053 ddi_dma_cookie_t *cp, uint_t *ccountp); 2054 2055 int 2056 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2057 ddi_dma_handle_t handle); 2058 2059 int 2060 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 2061 ddi_dma_handle_t handle, off_t off, size_t len, 2062 uint_t cache_flags); 2063 2064 int 2065 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 2066 ddi_dma_handle_t handle, uint_t win, off_t *offp, 2067 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 2068 2069 /* 2070 * bus_dma_ctl wrapper 2071 */ 2072 2073 int 2074 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 2075 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, 2076 caddr_t *objp, uint_t flags); 2077 2078 /* 2079 * dvma support for networking drivers 2080 */ 2081 2082 unsigned long 2083 dvma_pagesize(dev_info_t *dip); 2084 2085 int 2086 dvma_reserve(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t pages, 2087 ddi_dma_handle_t *handlep); 2088 2089 void 2090 dvma_release(ddi_dma_handle_t h); 2091 2092 void 2093 dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index, 2094 ddi_dma_cookie_t *cp); 2095 2096 void 2097 dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2098 2099 void 2100 dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2101 2102 /* 2103 * Layered driver support 2104 */ 2105 2106 extern int ddi_copyin(const void *, void *, size_t, int); 2107 extern int ddi_copyout(const void *, void *, size_t, int); 2108 2109 /* 2110 * Send signals to processes 2111 */ 2112 extern void *proc_ref(void); 2113 extern void proc_unref(void *pref); 2114 extern int proc_signal(void *pref, int sig); 2115 2116 /* I/O port access routines */ 2117 extern uint8_t inb(int port); 2118 extern uint16_t inw(int port); 2119 extern uint32_t inl(int port); 2120 extern void repinsb(int port, uint8_t *addr, int count); 2121 extern void repinsw(int port, uint16_t *addr, int count); 2122 extern void repinsd(int port, uint32_t *addr, int count); 2123 extern void outb(int port, uint8_t value); 2124 extern void outw(int port, uint16_t value); 2125 extern void outl(int port, uint32_t value); 2126 extern void repoutsb(int port, uint8_t *addr, int count); 2127 extern void repoutsw(int port, uint16_t *addr, int count); 2128 extern void repoutsd(int port, uint32_t *addr, int count); 2129 2130 /* 2131 * Console bell routines 2132 */ 2133 extern void ddi_ring_console_bell(clock_t duration); 2134 extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration)); 2135 2136 /* 2137 * Fault-related functions 2138 */ 2139 extern int ddi_check_acc_handle(ddi_acc_handle_t); 2140 extern int ddi_check_dma_handle(ddi_dma_handle_t); 2141 extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t, 2142 ddi_fault_location_t, const char *); 2143 extern ddi_devstate_t ddi_get_devstate(dev_info_t *); 2144 2145 /* 2146 * Miscellaneous redefines 2147 */ 2148 #define uiophysio physio 2149 2150 /* 2151 * utilities - "reg" mapping and all common portable data access functions 2152 */ 2153 2154 /* 2155 * error code from ddi_regs_map_setup 2156 */ 2157 2158 #define DDI_REGS_ACC_CONFLICT (-10) 2159 2160 /* 2161 * Device address advance flags 2162 */ 2163 2164 #define DDI_DEV_NO_AUTOINCR 0x0000 2165 #define DDI_DEV_AUTOINCR 0x0001 2166 2167 int 2168 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 2169 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 2170 ddi_acc_handle_t *handle); 2171 2172 void 2173 ddi_regs_map_free(ddi_acc_handle_t *handle); 2174 2175 /* 2176 * these are the prototypes for the common portable data access functions 2177 */ 2178 2179 #ifdef _LP64 2180 2181 uint8_t 2182 ddi_get8(ddi_acc_handle_t handle, uint8_t *addr); 2183 2184 uint16_t 2185 ddi_get16(ddi_acc_handle_t handle, uint16_t *addr); 2186 2187 uint32_t 2188 ddi_get32(ddi_acc_handle_t handle, uint32_t *addr); 2189 2190 uint64_t 2191 ddi_get64(ddi_acc_handle_t handle, uint64_t *addr); 2192 2193 void 2194 ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2195 size_t repcount, uint_t flags); 2196 2197 void 2198 ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2199 size_t repcount, uint_t flags); 2200 2201 void 2202 ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2203 size_t repcount, uint_t flags); 2204 2205 void 2206 ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2207 size_t repcount, uint_t flags); 2208 2209 void 2210 ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2211 2212 void 2213 ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2214 2215 void 2216 ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2217 2218 void 2219 ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2220 2221 void 2222 ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2223 size_t repcount, uint_t flags); 2224 void 2225 ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2226 size_t repcount, uint_t flags); 2227 void 2228 ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2229 size_t repcount, uint_t flags); 2230 2231 void 2232 ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2233 size_t repcount, uint_t flags); 2234 2235 #else /* _ILP32 */ 2236 2237 uint8_t 2238 ddi_getb(ddi_acc_handle_t handle, uint8_t *addr); 2239 #define ddi_get8 ddi_getb 2240 2241 uint16_t 2242 ddi_getw(ddi_acc_handle_t handle, uint16_t *addr); 2243 #define ddi_get16 ddi_getw 2244 2245 uint32_t 2246 ddi_getl(ddi_acc_handle_t handle, uint32_t *addr); 2247 #define ddi_get32 ddi_getl 2248 2249 uint64_t 2250 ddi_getll(ddi_acc_handle_t handle, uint64_t *addr); 2251 #define ddi_get64 ddi_getll 2252 2253 void 2254 ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2255 size_t repcount, uint_t flags); 2256 #define ddi_rep_get8 ddi_rep_getb 2257 2258 void 2259 ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2260 size_t repcount, uint_t flags); 2261 #define ddi_rep_get16 ddi_rep_getw 2262 2263 void 2264 ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2265 size_t repcount, uint_t flags); 2266 #define ddi_rep_get32 ddi_rep_getl 2267 2268 void 2269 ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2270 size_t repcount, uint_t flags); 2271 #define ddi_rep_get64 ddi_rep_getll 2272 2273 void 2274 ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2275 #define ddi_put8 ddi_putb 2276 2277 void 2278 ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2279 #define ddi_put16 ddi_putw 2280 2281 void 2282 ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2283 #define ddi_put32 ddi_putl 2284 2285 void 2286 ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2287 #define ddi_put64 ddi_putll 2288 2289 void 2290 ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2291 size_t repcount, uint_t flags); 2292 #define ddi_rep_put8 ddi_rep_putb 2293 2294 void 2295 ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2296 size_t repcount, uint_t flags); 2297 #define ddi_rep_put16 ddi_rep_putw 2298 2299 void 2300 ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2301 size_t repcount, uint_t flags); 2302 #define ddi_rep_put32 ddi_rep_putl 2303 2304 void 2305 ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2306 size_t repcount, uint_t flags); 2307 #define ddi_rep_put64 ddi_rep_putll 2308 2309 #endif /* _LP64 */ 2310 2311 /* 2312 * these are special device handling functions 2313 */ 2314 int 2315 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, 2316 size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz); 2317 2318 int 2319 ddi_device_copy( 2320 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 2321 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 2322 size_t bytecount, uint_t dev_datasz); 2323 2324 /* 2325 * these are software byte swapping functions 2326 */ 2327 uint16_t 2328 ddi_swap16(uint16_t value); 2329 2330 uint32_t 2331 ddi_swap32(uint32_t value); 2332 2333 uint64_t 2334 ddi_swap64(uint64_t value); 2335 2336 /* 2337 * these are the prototypes for PCI local bus functions 2338 */ 2339 /* 2340 * PCI power management capabilities reporting in addition to those 2341 * provided by the PCI Power Management Specification. 2342 */ 2343 #define PCI_PM_IDLESPEED 0x1 /* clock for idle dev - cap */ 2344 #define PCI_PM_IDLESPEED_ANY (void *)-1 /* any clock for idle dev */ 2345 #define PCI_PM_IDLESPEED_NONE (void *)-2 /* regular clock for idle dev */ 2346 2347 int 2348 pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle); 2349 2350 void 2351 pci_config_teardown(ddi_acc_handle_t *handle); 2352 2353 #ifdef _LP64 2354 2355 uint8_t 2356 pci_config_get8(ddi_acc_handle_t handle, off_t offset); 2357 2358 uint16_t 2359 pci_config_get16(ddi_acc_handle_t handle, off_t offset); 2360 2361 uint32_t 2362 pci_config_get32(ddi_acc_handle_t handle, off_t offset); 2363 2364 uint64_t 2365 pci_config_get64(ddi_acc_handle_t handle, off_t offset); 2366 2367 void 2368 pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2369 2370 void 2371 pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2372 2373 void 2374 pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2375 2376 void 2377 pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2378 2379 #else /* _ILP32 */ 2380 2381 uint8_t 2382 pci_config_getb(ddi_acc_handle_t handle, off_t offset); 2383 #define pci_config_get8 pci_config_getb 2384 2385 uint16_t 2386 pci_config_getw(ddi_acc_handle_t handle, off_t offset); 2387 #define pci_config_get16 pci_config_getw 2388 2389 uint32_t 2390 pci_config_getl(ddi_acc_handle_t handle, off_t offset); 2391 #define pci_config_get32 pci_config_getl 2392 2393 uint64_t 2394 pci_config_getll(ddi_acc_handle_t handle, off_t offset); 2395 #define pci_config_get64 pci_config_getll 2396 2397 void 2398 pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2399 #define pci_config_put8 pci_config_putb 2400 2401 void 2402 pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2403 #define pci_config_put16 pci_config_putw 2404 2405 void 2406 pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2407 #define pci_config_put32 pci_config_putl 2408 2409 void 2410 pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2411 #define pci_config_put64 pci_config_putll 2412 2413 #endif /* _LP64 */ 2414 2415 int 2416 pci_report_pmcap(dev_info_t *dip, int cap, void *arg); 2417 2418 int 2419 pci_restore_config_regs(dev_info_t *dip); 2420 2421 int 2422 pci_save_config_regs(dev_info_t *dip); 2423 2424 void 2425 pci_ereport_setup(dev_info_t *dip); 2426 2427 void 2428 pci_ereport_teardown(dev_info_t *dip); 2429 2430 void 2431 pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2432 2433 void 2434 pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2435 2436 int 2437 pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, 2438 uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat); 2439 2440 /* 2441 * the prototype for the C Language Type Model inquiry. 2442 */ 2443 model_t ddi_mmap_get_model(void); 2444 model_t ddi_model_convert_from(model_t); 2445 2446 /* 2447 * these are the prototypes for device id functions. 2448 */ 2449 int 2450 ddi_devid_valid(ddi_devid_t devid); 2451 2452 int 2453 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid); 2454 2455 void 2456 ddi_devid_unregister(dev_info_t *dip); 2457 2458 int 2459 ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, 2460 void *id, ddi_devid_t *ret_devid); 2461 2462 size_t 2463 ddi_devid_sizeof(ddi_devid_t devid); 2464 2465 void 2466 ddi_devid_free(ddi_devid_t devid); 2467 2468 int 2469 ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2); 2470 2471 int 2472 ddi_devid_scsi_encode(int version, char *driver_name, 2473 uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len, 2474 uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid); 2475 2476 char 2477 *ddi_devid_to_guid(ddi_devid_t devid); 2478 2479 void 2480 ddi_devid_free_guid(char *guid); 2481 2482 int 2483 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid); 2484 2485 int 2486 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name); 2487 2488 int 2489 ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs, 2490 dev_t **retdevs); 2491 2492 void 2493 ddi_lyr_free_devlist(dev_t *devlist, int ndevs); 2494 2495 char * 2496 ddi_devid_str_encode(ddi_devid_t devid, char *minor_name); 2497 2498 int 2499 ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep); 2500 2501 void 2502 ddi_devid_str_free(char *devidstr); 2503 2504 int 2505 ddi_devid_str_compare(char *id1_str, char *id2_str); 2506 2507 /* 2508 * Event to post to when a devinfo node is removed. 2509 */ 2510 #define DDI_DEVI_REMOVE_EVENT "DDI:DEVI_REMOVE" 2511 #define DDI_DEVI_INSERT_EVENT "DDI:DEVI_INSERT" 2512 #define DDI_DEVI_BUS_RESET_EVENT "DDI:DEVI_BUS_RESET" 2513 #define DDI_DEVI_DEVICE_RESET_EVENT "DDI:DEVI_DEVICE_RESET" 2514 2515 /* 2516 * Invoke bus nexus driver's implementation of the 2517 * (*bus_remove_eventcall)() interface to remove a registered 2518 * callback handler for "event". 2519 */ 2520 int 2521 ddi_remove_event_handler(ddi_callback_id_t id); 2522 2523 /* 2524 * Invoke bus nexus driver's implementation of the 2525 * (*bus_add_eventcall)() interface to register a callback handler 2526 * for "event". 2527 */ 2528 int 2529 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 2530 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 2531 void *arg, ddi_callback_id_t *id); 2532 2533 /* 2534 * Return a handle for event "name" by calling up the device tree 2535 * hierarchy via (*bus_get_eventcookie)() interface until claimed 2536 * by a bus nexus or top of dev_info tree is reached. 2537 */ 2538 int 2539 ddi_get_eventcookie(dev_info_t *dip, char *name, 2540 ddi_eventcookie_t *event_cookiep); 2541 2542 /* 2543 * log a system event 2544 */ 2545 int 2546 ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name, 2547 char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp, 2548 int sleep_flag); 2549 2550 /* 2551 * ddi_log_sysevent() vendors 2552 */ 2553 #define DDI_VENDOR_SUNW "SUNW" 2554 2555 /* 2556 * Opaque task queue handle. 2557 */ 2558 typedef struct ddi_taskq ddi_taskq_t; 2559 2560 /* 2561 * Use default system priority. 2562 */ 2563 #define TASKQ_DEFAULTPRI -1 2564 2565 /* 2566 * Create a task queue 2567 */ 2568 ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name, 2569 int nthreads, pri_t pri, uint_t cflags); 2570 2571 /* 2572 * destroy a task queue 2573 */ 2574 void ddi_taskq_destroy(ddi_taskq_t *tq); 2575 2576 /* 2577 * Dispatch a task to a task queue 2578 */ 2579 int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 2580 void *arg, uint_t dflags); 2581 2582 /* 2583 * Wait for all previously scheduled tasks to complete. 2584 */ 2585 void ddi_taskq_wait(ddi_taskq_t *tq); 2586 2587 /* 2588 * Suspend all task execution. 2589 */ 2590 void ddi_taskq_suspend(ddi_taskq_t *tq); 2591 2592 /* 2593 * Resume task execution. 2594 */ 2595 void ddi_taskq_resume(ddi_taskq_t *tq); 2596 2597 /* 2598 * Is task queue suspended? 2599 */ 2600 boolean_t ddi_taskq_suspended(ddi_taskq_t *tq); 2601 2602 /* 2603 * Parse an interface name of the form <alphanumeric>##<numeric> where 2604 * <numeric> is maximal. 2605 */ 2606 int ddi_parse(const char *, char *, uint_t *); 2607 2608 #endif /* _KERNEL */ 2609 2610 #ifdef __cplusplus 2611 } 2612 #endif 2613 2614 #endif /* _SYS_SUNDDI_H */ 2615