1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_SUNDDI_H 28 #define _SYS_SUNDDI_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Sun Specific DDI definitions 34 */ 35 36 #include <sys/isa_defs.h> 37 #include <sys/dditypes.h> 38 #include <sys/ddipropdefs.h> 39 #include <sys/devops.h> 40 #include <sys/time.h> 41 #include <sys/cmn_err.h> 42 #include <sys/ddidevmap.h> 43 #include <sys/ddi_impldefs.h> 44 #include <sys/ddi_implfuncs.h> 45 #include <sys/ddi_isa.h> 46 #include <sys/model.h> 47 #include <sys/devctl.h> 48 #if defined(__i386) || defined(__amd64) 49 #include <sys/dma_engine.h> 50 #endif 51 #include <sys/sunpm.h> 52 #include <sys/nvpair.h> 53 #include <sys/sysevent.h> 54 #include <sys/thread.h> 55 #include <sys/stream.h> 56 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) 57 #include <asm/sunddi.h> 58 #endif 59 60 #ifdef __cplusplus 61 extern "C" { 62 #endif 63 64 /* 65 * Generic Sun DDI definitions. 66 */ 67 68 #define DDI_SUCCESS (0) /* successful return */ 69 #define DDI_FAILURE (-1) /* unsuccessful return */ 70 #define DDI_NOT_WELL_FORMED (-2) /* A dev_info node is not valid */ 71 #define DDI_EAGAIN (-3) /* not enough interrupt resources */ 72 #define DDI_EINVAL (-4) /* invalid request or arguments */ 73 #define DDI_ENOTSUP (-5) /* operation is not supported */ 74 #define DDI_EPENDING (-6) /* operation or an event is pending */ 75 76 /* 77 * General-purpose DDI error return value definitions 78 */ 79 #define DDI_ENOMEM 1 /* memory not available */ 80 #define DDI_EBUSY 2 /* busy */ 81 #define DDI_ETRANSPORT 3 /* transport down */ 82 #define DDI_ECONTEXT 4 /* context error */ 83 84 85 /* 86 * General DDI sleep/nosleep allocation flags 87 */ 88 #define DDI_SLEEP 0 89 #define DDI_NOSLEEP 1 90 91 /* 92 * The following special nodeid values are reserved for use when creating 93 * nodes ONLY. They specify the attributes of the DDI_NC_PSEUDO class node 94 * being created: 95 * 96 * o DEVI_PSEUDO_NODEID specifics a node without persistence. 97 * o DEVI_SID_NODEID specifies a node with persistence. 98 * 99 * A node with the 'persistent' attribute will not be automatically removed by 100 * the framework in the current implementation - driver.conf nodes are without 101 * persistence. 102 * 103 * The actual nodeid value may be assigned by the framework and may be 104 * different than these special values. Drivers may not make assumptions 105 * about the nodeid value that is actually assigned to the node. 106 */ 107 108 #define DEVI_PSEUDO_NODEID ((int)-1) 109 #define DEVI_SID_NODEID ((int)-2) 110 111 #define DEVI_PSEUDO_NEXNAME "pseudo" 112 #define DEVI_ISA_NEXNAME "isa" 113 #define DEVI_EISA_NEXNAME "eisa" 114 115 /* 116 * ddi_create_minor_node flags 117 */ 118 #define CLONE_DEV 1 /* device is a clone device */ 119 #define PRIVONLY_DEV 0x10 /* policy-based permissions only */ 120 121 /* 122 * Historical values used for the flag field in ddi_create_minor_node. 123 * Future use of flag bits should avoid these fields to keep binary 124 * compatibility 125 * #define GLOBAL_DEV 0x2 126 * #define NODEBOUND_DEV 0x4 127 * #define NODESPECIFIC_DEV 0x6 128 * #define ENUMERATED_DEV 0x8 129 */ 130 131 /* 132 * Device type defines which are used by the 'node_type' element of the 133 * ddi_minor_data structure 134 */ 135 #define DDI_NT_SERIAL "ddi_serial" /* Serial port */ 136 #define DDI_NT_SERIAL_MB "ddi_serial:mb" /* the 'built-in' serial */ 137 /* ports (the old ttya, b */ 138 /* (,c ,d)) */ 139 #define DDI_NT_SERIAL_DO "ddi_serial:dialout" /* dialout ports */ 140 #define DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */ 141 /* ports */ 142 #define DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */ 143 144 /* 145 * *_CHAN disk type devices have channel numbers or target numbers. 146 * (i.e. ipi and scsi devices) 147 */ 148 #define DDI_NT_BLOCK "ddi_block" /* hard disks */ 149 /* 150 * The next define is for block type devices that can possible exist on 151 * a sub-bus like the scsi bus or the ipi channel. The 'disks' program 152 * will pick up on this and create logical names like c0t0d0s0 instead of 153 * c0d0s0 154 */ 155 #define DDI_NT_BLOCK_CHAN "ddi_block:channel" 156 #define DDI_NT_BLOCK_WWN "ddi_block:wwn" 157 #define DDI_NT_CD "ddi_block:cdrom" /* rom drives (cd-rom) */ 158 #define DDI_NT_CD_CHAN "ddi_block:cdrom:channel" /* rom drives (scsi type) */ 159 #define DDI_NT_FD "ddi_block:diskette" /* floppy disks */ 160 161 #define DDI_NT_ENCLOSURE "ddi_enclosure" 162 #define DDI_NT_SCSI_ENCLOSURE "ddi_enclosure:scsi" 163 164 165 #define DDI_NT_TAPE "ddi_byte:tape" /* tape drives */ 166 167 #define DDI_NT_NET "ddi_network" /* DLPI network devices */ 168 169 #define DDI_NT_MAC "ddi_mac" /* MAC devices */ 170 171 #define DDI_NT_DISPLAY "ddi_display" /* display devices */ 172 173 #define DDI_PSEUDO "ddi_pseudo" /* general pseudo devices */ 174 175 #define DDI_NT_AUDIO "ddi_audio" /* audio device */ 176 177 #define DDI_NT_MOUSE "ddi_mouse" /* mouse device */ 178 179 #define DDI_NT_KEYBOARD "ddi_keyboard" /* keyboard device */ 180 181 #define DDI_NT_PARALLEL "ddi_parallel" /* parallel port */ 182 183 #define DDI_NT_PRINTER "ddi_printer" /* printer device */ 184 185 #define DDI_NT_UGEN "ddi_generic:usb" /* USB generic drv */ 186 187 #define DDI_NT_NEXUS "ddi_ctl:devctl" /* nexus drivers */ 188 189 #define DDI_NT_SCSI_NEXUS "ddi_ctl:devctl:scsi" /* nexus drivers */ 190 191 #define DDI_NT_ATTACHMENT_POINT "ddi_ctl:attachment_point" /* attachment pt */ 192 193 #define DDI_NT_SCSI_ATTACHMENT_POINT "ddi_ctl:attachment_point:scsi" 194 /* scsi attachment pt */ 195 #define DDI_NT_PCI_ATTACHMENT_POINT "ddi_ctl:attachment_point:pci" 196 /* PCI attachment pt */ 197 #define DDI_NT_SBD_ATTACHMENT_POINT "ddi_ctl:attachment_point:sbd" 198 /* generic bd attachment pt */ 199 #define DDI_NT_FC_ATTACHMENT_POINT "ddi_ctl:attachment_point:fc" 200 /* FC attachment pt */ 201 #define DDI_NT_USB_ATTACHMENT_POINT "ddi_ctl:attachment_point:usb" 202 /* USB devices */ 203 #define DDI_NT_BLOCK_FABRIC "ddi_block:fabric" 204 /* Fabric Devices */ 205 #define DDI_NT_IB_ATTACHMENT_POINT "ddi_ctl:attachment_point:ib" 206 /* IB devices */ 207 #define DDI_NT_SMARTCARD_READER "ddi_smartcard_reader" /* Smartcard reader */ 208 209 #define DDI_NT_AV_ASYNC "ddi_av:async" /* asynchronous AV device */ 210 #define DDI_NT_AV_ISOCH "ddi_av:isoch" /* isochronous AV device */ 211 212 /* Device types used for agpgart driver related devices */ 213 #define DDI_NT_AGP_PSEUDO "ddi_agp:pseudo" /* agpgart pseudo device */ 214 #define DDI_NT_AGP_MASTER "ddi_agp:master" /* agp master device */ 215 #define DDI_NT_AGP_TARGET "ddi_agp:target" /* agp target device */ 216 #define DDI_NT_AGP_CPUGART "ddi_agp:cpugart" /* amd64 on-cpu gart device */ 217 218 /* 219 * DDI event definitions 220 */ 221 #define EC_DEVFS "EC_devfs" /* Event class devfs */ 222 223 /* Class devfs subclasses */ 224 #define ESC_DEVFS_MINOR_CREATE "ESC_devfs_minor_create" 225 #define ESC_DEVFS_MINOR_REMOVE "ESC_devfs_minor_remove" 226 #define ESC_DEVFS_DEVI_ADD "ESC_devfs_devi_add" 227 #define ESC_DEVFS_DEVI_REMOVE "ESC_devfs_devi_remove" 228 #define ESC_DEVFS_INSTANCE_MOD "ESC_devfs_instance_mod" 229 #define ESC_DEVFS_BRANCH_ADD "ESC_devfs_branch_add" 230 #define ESC_DEVFS_BRANCH_REMOVE "ESC_devfs_branch_remove" 231 232 /* DDI/NDI event publisher */ 233 #define EP_DDI SUNW_KERN_PUB"ddi" 234 235 /* 236 * devfs event class attributes 237 * 238 * The following attributes are private to EC_DEVFS 239 * event data. 240 */ 241 #define DEVFS_DRIVER_NAME "di.driver" 242 #define DEVFS_INSTANCE "di.instance" 243 #define DEVFS_PATHNAME "di.path" 244 #define DEVFS_DEVI_CLASS "di.devi_class" 245 #define DEVFS_BRANCH_EVENT "di.branch_event" 246 #define DEVFS_MINOR_NAME "mi.name" 247 #define DEVFS_MINOR_NODETYPE "mi.nodetype" 248 #define DEVFS_MINOR_ISCLONE "mi.isclone" 249 #define DEVFS_MINOR_MAJNUM "mi.majorno" 250 #define DEVFS_MINOR_MINORNUM "mi.minorno" 251 252 /* 253 * Fault-related definitions 254 * 255 * The specific numeric values have been chosen to be ordered, but 256 * not consecutive, to allow for future interpolation if required. 257 */ 258 typedef enum { 259 DDI_SERVICE_LOST = -32, 260 DDI_SERVICE_DEGRADED = -16, 261 DDI_SERVICE_UNAFFECTED = 0, 262 DDI_SERVICE_RESTORED = 16 263 } ddi_fault_impact_t; 264 265 typedef enum { 266 DDI_DATAPATH_FAULT = -32, 267 DDI_DEVICE_FAULT = -16, 268 DDI_EXTERNAL_FAULT = 0 269 } ddi_fault_location_t; 270 271 typedef enum { 272 DDI_DEVSTATE_OFFLINE = -32, 273 DDI_DEVSTATE_DOWN = -16, 274 DDI_DEVSTATE_QUIESCED = 0, 275 DDI_DEVSTATE_DEGRADED = 16, 276 DDI_DEVSTATE_UP = 32 277 } ddi_devstate_t; 278 279 #ifdef _KERNEL 280 281 /* 282 * Common property definitions 283 */ 284 #define DDI_FORCEATTACH "ddi-forceattach" 285 #define DDI_NO_AUTODETACH "ddi-no-autodetach" 286 287 /* 288 * Values that the function supplied to the dev_info 289 * tree traversal functions defined below must return. 290 */ 291 292 /* 293 * Continue search, if appropriate. 294 */ 295 #define DDI_WALK_CONTINUE 0 296 297 /* 298 * Terminate current depth of traversal. That is, terminate 299 * the current traversal of children nodes, but continue 300 * traversing sibling nodes and their children (if any). 301 */ 302 303 #define DDI_WALK_PRUNECHILD -1 304 305 /* 306 * Terminate current width of traversal. That is, terminate 307 * the current traversal of sibling nodes, but continue with 308 * traversing children nodes and their siblings (if appropriate). 309 */ 310 311 #define DDI_WALK_PRUNESIB -2 312 313 /* 314 * Terminate the entire search. 315 */ 316 317 #define DDI_WALK_TERMINATE -3 318 319 /* 320 * Terminate the entire search because an error occurred in function 321 */ 322 #define DDI_WALK_ERROR -4 323 324 /* 325 * Drivers that are prepared to support full driver layering 326 * should create and export a null-valued property of the following 327 * name. 328 * 329 * Such drivers should be prepared to be called with FKLYR in 330 * the 'flag' argument of their open(9E), close(9E) routines, and 331 * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines. 332 * 333 * See ioctl(9E) and ddi_copyin(9F) for details. 334 */ 335 #define DDI_KERNEL_IOCTL "ddi-kernel-ioctl" 336 337 /* 338 * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F). 339 */ 340 #define DDI_MODEL_MASK DATAMODEL_MASK /* Note: 0x0FF00000 */ 341 #define DDI_MODEL_ILP32 DATAMODEL_ILP32 342 #define DDI_MODEL_LP64 DATAMODEL_LP64 343 #define DDI_MODEL_NATIVE DATAMODEL_NATIVE 344 #define DDI_MODEL_NONE DATAMODEL_NONE 345 346 /* 347 * Functions and data references which really should be in <sys/ddi.h> 348 */ 349 350 extern int maxphys; 351 extern void minphys(struct buf *); 352 extern int physio(int (*)(struct buf *), struct buf *, dev_t, 353 int, void (*)(struct buf *), struct uio *); 354 extern void disksort(struct diskhd *, struct buf *); 355 356 extern long strtol(const char *, char **, int); 357 extern unsigned long strtoul(const char *, char **, int); 358 extern size_t strlen(const char *) __PURE; 359 extern char *strcpy(char *, const char *); 360 extern char *strncpy(char *, const char *, size_t); 361 /* Need to be consistent with <string.h> C++ definition for strchr() */ 362 #if __cplusplus >= 199711L 363 extern const char *strchr(const char *, int); 364 #ifndef _STRCHR_INLINE 365 #define _STRCHR_INLINE 366 extern "C++" { 367 inline char *strchr(char *__s, int __c) { 368 return (char *)strchr((const char *)__s, __c); 369 } 370 } 371 #endif /* _STRCHR_INLINE */ 372 #else 373 extern char *strchr(const char *, int); 374 #endif /* __cplusplus >= 199711L */ 375 extern int strcmp(const char *, const char *) __PURE; 376 extern int strncmp(const char *, const char *, size_t) __PURE; 377 extern char *strncat(char *, const char *, size_t); 378 extern size_t strlcat(char *, const char *, size_t); 379 extern size_t strlcpy(char *, const char *, size_t); 380 extern size_t strspn(const char *, const char *); 381 extern int bcmp(const void *, const void *, size_t) __PURE; 382 extern int stoi(char **); 383 extern void numtos(ulong_t, char *); 384 extern void bcopy(const void *, void *, size_t); 385 extern void bzero(void *, size_t); 386 387 extern void *memcpy(void *, const void *, size_t); 388 extern void *memset(void *, int, size_t); 389 extern void *memmove(void *, const void *, size_t); 390 extern int memcmp(const void *, const void *, size_t) __PURE; 391 /* Need to be consistent with <string.h> C++ definition for memchr() */ 392 #if __cplusplus >= 199711L 393 extern const void *memchr(const void *, int, size_t); 394 #ifndef _MEMCHR_INLINE 395 #define _MEMCHR_INLINE 396 extern "C++" { 397 inline void *memchr(void * __s, int __c, size_t __n) { 398 return (void *)memchr((const void *)__s, __c, __n); 399 } 400 } 401 #endif /* _MEMCHR_INLINE */ 402 #else 403 extern void *memchr(const void *, int, size_t); 404 #endif /* __cplusplus >= 199711L */ 405 406 extern int ddi_strtol(const char *, char **, int, long *); 407 extern int ddi_strtoul(const char *, char **, int, unsigned long *); 408 409 /* 410 * ddi_map_regs 411 * 412 * Map in the register set given by rnumber. 413 * The register number determine which register 414 * set will be mapped if more than one exists. 415 * The parent driver gets the information 416 * from parent private data and sets up the 417 * appropriate mappings and returns the kernel 418 * virtual address of the register set in *kaddrp. 419 * The offset specifies an offset into the register 420 * space to start from and len indicates the size 421 * of the area to map. If len and offset are 0 then 422 * the entire space is mapped. It returns DDI_SUCCESS on 423 * success or DDI_FAILURE otherwise. 424 * 425 */ 426 int 427 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 428 off_t offset, off_t len); 429 430 /* 431 * ddi_unmap_regs 432 * 433 * Undo mappings set up by ddi_map_regs. 434 * The register number determines which register 435 * set will be unmapped if more than one exists. 436 * This is provided for drivers preparing 437 * to detach themselves from the system to 438 * allow them to release allocated mappings. 439 * 440 * The kaddrp and len specify the area to be 441 * unmapped. *kaddrp was returned from ddi_map_regs 442 * and len should match what ddi_map_regs was called 443 * with. 444 */ 445 446 void 447 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, 448 off_t offset, off_t len); 449 450 int 451 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len, 452 caddr_t *addrp); 453 454 int 455 ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp); 456 457 /* 458 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 459 */ 460 struct regspec * 461 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber); 462 463 int 464 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 465 off_t len, caddr_t *vaddrp); 466 467 int 468 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 469 off_t len, caddr_t *vaddrp); 470 471 #ifdef _LP64 472 473 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p); 474 int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p); 475 int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p); 476 int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p); 477 478 int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val); 479 int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val); 480 int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val); 481 int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val); 482 483 #else /* _ILP32 */ 484 485 int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p); 486 #define ddi_peek8 ddi_peekc 487 488 int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p); 489 #define ddi_peek16 ddi_peeks 490 491 int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p); 492 #define ddi_peek32 ddi_peekl 493 494 int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p); 495 #define ddi_peek64 ddi_peekd 496 497 int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val); 498 #define ddi_poke8 ddi_pokec 499 500 int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val); 501 #define ddi_poke16 ddi_pokes 502 503 int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val); 504 #define ddi_poke32 ddi_pokel 505 506 int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val); 507 #define ddi_poke64 ddi_poked 508 509 #endif /* _LP64 */ 510 511 /* 512 * Peek and poke to and from a uio structure in xfersize pieces, 513 * using the parent nexi. 514 */ 515 int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 516 caddr_t addr, size_t len, uint_t xfersize); 517 518 /* 519 * Pagesize conversions using the parent nexi 520 */ 521 unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes); 522 unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes); 523 unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages); 524 525 /* 526 * There are no more "block" interrupt functions, per se. 527 * All thread of control should be done with MP/MT lockings. 528 * 529 * However, there are certain times in which a driver needs 530 * absolutely a critical guaranteed non-preemptable time 531 * in which to execute a few instructions. 532 * 533 * The following pair of functions attempt to guarantee this, 534 * but they are dangerous to use. That is, use them with 535 * extreme care. They do not guarantee to stop other processors 536 * from executing, but they do guarantee that the caller 537 * of ddi_enter_critical will continue to run until the 538 * caller calls ddi_exit_critical. No intervening DDI functions 539 * may be called between an entry and an exit from a critical 540 * region. 541 * 542 * ddi_enter_critical returns an integer identifier which must 543 * be passed to ddi_exit_critical. 544 * 545 * Be very sparing in the use of these functions since it is 546 * likely that absolutely nothing else can occur in the system 547 * whilst in the critical region. 548 */ 549 550 unsigned int 551 ddi_enter_critical(void); 552 553 void 554 ddi_exit_critical(unsigned int); 555 556 /* 557 * devmap functions 558 */ 559 int 560 devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, 561 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 562 struct cred *cred); 563 564 int 565 ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, 566 off_t len, uint_t prot, uint_t maxprot, uint_t flags, 567 struct cred *cred); 568 569 int 570 devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type, 571 uint_t rw); 572 573 int 574 devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len); 575 576 int 577 devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip, 578 struct devmap_callback_ctl *callback_ops, 579 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 580 uint_t flags, ddi_device_acc_attr_t *accattrp); 581 582 int 583 devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, 584 struct devmap_callback_ctl *callback_ops, 585 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 586 uint_t flags, ddi_device_acc_attr_t *accattrp); 587 588 int 589 devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip, 590 uint_t rnumber, offset_t roff, size_t len, uint_t maxprot, 591 uint_t flags, ddi_device_acc_attr_t *accattrp); 592 593 int 594 devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip, 595 ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, 596 uint_t flags, ddi_device_acc_attr_t *accattrp); 597 598 void 599 devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks); 600 601 int 602 devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off, 603 size_t len, uint_t type, uint_t rw); 604 605 int 606 devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len, 607 uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t, 608 size_t, uint_t, uint_t)); 609 610 611 void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep); 612 613 void ddi_umem_free(ddi_umem_cookie_t cookie); 614 615 /* 616 * Functions to lock user memory and do repeated I/O or do devmap_umem_setup 617 */ 618 int 619 ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie); 620 621 void 622 ddi_umem_unlock(ddi_umem_cookie_t cookie); 623 624 struct buf * 625 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction, 626 dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag); 627 628 /* 629 * Mapping functions 630 */ 631 int 632 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 633 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp); 634 635 int 636 ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp, 637 off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred, 638 ddi_device_acc_attr_t *accattrp, uint_t rnumber); 639 640 int 641 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr, 642 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 643 644 int 645 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 646 uint_t rnumber, uint_t *hat_flags); 647 648 /* 649 * Property functions: See also, ddipropdefs.h. 650 * In general, the underlying driver MUST be held 651 * to call it's property functions. 652 */ 653 654 /* 655 * Used to create, modify, and lookup integer properties 656 */ 657 int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 658 char *name, int defvalue); 659 int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 660 char *name, int64_t defvalue); 661 int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 662 char *name, int **data, uint_t *nelements); 663 int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 664 char *name, int64_t **data, uint_t *nelements); 665 int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 666 char *name, int data); 667 int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 668 char *name, int64_t data); 669 int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 670 char *name, int *data, uint_t nelements); 671 int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 672 char *name, int64_t *data, uint_t nelements); 673 /* 674 * Used to create, modify, and lookup string properties 675 */ 676 int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 677 char *name, char **data); 678 int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 679 char *name, char ***data, uint_t *nelements); 680 int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 681 char *name, char *data); 682 int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 683 char *name, char **data, uint_t nelements); 684 685 /* 686 * Used to create, modify, and lookup byte properties 687 */ 688 int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 689 char *name, uchar_t **data, uint_t *nelements); 690 int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 691 char *name, uchar_t *data, uint_t nelements); 692 693 /* 694 * Used to verify the existence of a property or to see if a boolean 695 * property exists. 696 */ 697 int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name); 698 699 /* 700 * Used to free the data returned by the above property routines. 701 */ 702 void ddi_prop_free(void *data); 703 704 /* 705 * nopropop: For internal use in `dummy' cb_prop_op functions only 706 */ 707 708 int 709 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 710 char *name, caddr_t valuep, int *lengthp); 711 712 /* 713 * ddi_prop_op: The basic property operator for drivers. 714 * 715 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 716 * 717 * prop_op valuep 718 * ------ ------ 719 * 720 * PROP_LEN <unused> 721 * 722 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 723 * 724 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 725 * address of allocated buffer, if successful) 726 */ 727 728 int 729 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 730 char *name, caddr_t valuep, int *lengthp); 731 732 /* ddi_prop_op_size: for drivers that implement size in bytes */ 733 int 734 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 735 int mod_flags, char *name, caddr_t valuep, int *lengthp, 736 uint64_t size64); 737 738 /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */ 739 int 740 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 741 int mod_flags, char *name, caddr_t valuep, int *lengthp, 742 uint64_t nblocks64); 743 744 /* 745 * Variable length props... 746 */ 747 748 /* 749 * ddi_getlongprop: Get variable length property len+val into a buffer 750 * allocated by property provider via kmem_alloc. Requester 751 * is responsible for freeing returned property via kmem_free. 752 * 753 * Arguments: 754 * 755 * dev: Input: dev_t of property. 756 * dip: Input: dev_info_t pointer of child. 757 * flags: Input: Possible flag modifiers are: 758 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 759 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 760 * name: Input: name of property. 761 * valuep: Output: Addr of callers buffer pointer. 762 * lengthp:Output: *lengthp will contain prop length on exit. 763 * 764 * Possible Returns: 765 * 766 * DDI_PROP_SUCCESS: Prop found and returned. 767 * DDI_PROP_NOT_FOUND: Prop not found 768 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 769 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 770 */ 771 772 int 773 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 774 char *name, caddr_t valuep, int *lengthp); 775 776 /* 777 * 778 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 779 * buffer. (no memory allocation by provider). 780 * 781 * dev: Input: dev_t of property. 782 * dip: Input: dev_info_t pointer of child. 783 * flags: Input: DDI_PROP_DONTPASS or NULL 784 * name: Input: name of property 785 * valuep: Input: ptr to callers buffer. 786 * lengthp:I/O: ptr to length of callers buffer on entry, 787 * actual length of property on exit. 788 * 789 * Possible returns: 790 * 791 * DDI_PROP_SUCCESS Prop found and returned 792 * DDI_PROP_NOT_FOUND Prop not found 793 * DDI_PROP_UNDEFINED Prop explicitly undefined. 794 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 795 * no value returned, but actual prop 796 * length returned in *lengthp 797 * 798 */ 799 800 int 801 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 802 char *name, caddr_t valuep, int *lengthp); 803 804 /* 805 * Integer/boolean sized props. 806 * 807 * Call is value only... returns found boolean or int sized prop value or 808 * defvalue if prop not found or is wrong length or is explicitly undefined. 809 * Only flag is DDI_PROP_DONTPASS... 810 * 811 * By convention, this interface returns boolean (0) sized properties 812 * as value (int)1. 813 */ 814 815 int 816 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue); 817 818 /* 819 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 820 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 821 */ 822 823 int 824 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp); 825 826 827 /* 828 * Interface to create/modify a managed property on child's behalf... 829 * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep 830 * if no memory available for internal prop structure. Long property 831 * (non integer sized) value references are not copied. 832 * 833 * Define property with DDI_DEV_T_NONE dev_t for properties not associated 834 * with any particular dev_t. Use the same dev_t when modifying or undefining 835 * a property. 836 * 837 * No guarantee on order of property search, so don't mix the same 838 * property name with wildcard and non-wildcard dev_t's. 839 */ 840 841 /* 842 * ddi_prop_create: Define a managed property: 843 */ 844 845 int 846 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 847 char *name, caddr_t value, int length); 848 849 /* 850 * ddi_prop_modify: Modify a managed property value 851 */ 852 853 int 854 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 855 char *name, caddr_t value, int length); 856 857 /* 858 * ddi_prop_remove: Undefine a managed property: 859 */ 860 861 int 862 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name); 863 864 /* 865 * ddi_prop_remove_all: Used before unloading a driver to remove 866 * all properties. (undefines all dev_t's props.) 867 * Also removes `undefined' prop defs. 868 */ 869 870 void 871 ddi_prop_remove_all(dev_info_t *dip); 872 873 874 /* 875 * ddi_prop_undefine: Explicitly undefine a property. Property 876 * searches which match this property return 877 * the error code DDI_PROP_UNDEFINED. 878 * 879 * Use ddi_prop_remove to negate effect of 880 * ddi_prop_undefine 881 */ 882 883 int 884 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name); 885 886 887 /* 888 * The default ddi_bus_prop_op wrapper... 889 */ 890 891 int 892 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 893 ddi_prop_op_t prop_op, int mod_flags, 894 char *name, caddr_t valuep, int *lengthp); 895 896 897 /* 898 * Routines to traverse the tree of dev_info nodes. 899 * The general idea of these functions is to provide 900 * various tree traversal utilities. For each node 901 * that the tree traversal function finds, a caller 902 * supplied function is called with arguments of 903 * the current node and a caller supplied argument. 904 * The caller supplied function should return one 905 * of the integer values defined below which will 906 * indicate to the tree traversal function whether 907 * the traversal should be continued, and if so, how, 908 * or whether the traversal should terminate. 909 */ 910 911 /* 912 * This general-purpose routine traverses the tree of dev_info nodes, 913 * starting from the given node, and calls the given function for each 914 * node that it finds with the current node and the pointer arg (which 915 * can point to a structure of information that the function 916 * needs) as arguments. 917 * 918 * It does the walk a layer at a time, not depth-first. 919 * 920 * The given function must return one of the values defined above. 921 * 922 */ 923 924 void 925 ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *); 926 927 /* 928 * Routines to get at elements of the dev_info structure 929 */ 930 931 /* 932 * ddi_node_name gets the device's 'name' from the device node. 933 * 934 * ddi_binding_name gets the string the OS used to bind the node to a driver, 935 * in certain cases, the binding name may be different from the node name, 936 * if the node name does not name a specific device driver. 937 * 938 * ddi_get_name is a synonym for ddi_binding_name(). 939 */ 940 char * 941 ddi_get_name(dev_info_t *dip); 942 943 char * 944 ddi_binding_name(dev_info_t *dip); 945 946 const char * 947 ddi_driver_name(dev_info_t *dip); 948 949 major_t 950 ddi_driver_major(dev_info_t *dip); 951 952 major_t 953 ddi_compatible_driver_major(dev_info_t *dip, char **formp); 954 955 char * 956 ddi_node_name(dev_info_t *dip); 957 958 int 959 ddi_get_nodeid(dev_info_t *dip); 960 961 int 962 ddi_get_instance(dev_info_t *dip); 963 964 struct dev_ops * 965 ddi_get_driver(dev_info_t *dip); 966 967 void 968 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo); 969 970 void 971 ddi_set_driver_private(dev_info_t *dip, void *data); 972 973 void * 974 ddi_get_driver_private(dev_info_t *dip); 975 976 /* 977 * ddi_dev_is_needed tells system that a device is about to use a 978 * component. Returns when component is ready. 979 */ 980 int 981 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level); 982 983 /* 984 * check if DDI_SUSPEND may result in power being removed from a device. 985 */ 986 int 987 ddi_removing_power(dev_info_t *dip); 988 989 /* 990 * (Obsolete) power entry point 991 */ 992 int 993 ddi_power(dev_info_t *dip, int cmpt, int level); 994 995 /* 996 * ddi_get_parent requires that the branch of the tree with the 997 * node be held (ddi_hold_installed_driver) or that the devinfo tree 998 * lock be held 999 */ 1000 dev_info_t * 1001 ddi_get_parent(dev_info_t *dip); 1002 1003 /* 1004 * ddi_get_child and ddi_get_next_sibling require that the devinfo 1005 * tree lock be held 1006 */ 1007 dev_info_t * 1008 ddi_get_child(dev_info_t *dip); 1009 1010 dev_info_t * 1011 ddi_get_next_sibling(dev_info_t *dip); 1012 1013 dev_info_t * 1014 ddi_get_next(dev_info_t *dip); 1015 1016 void 1017 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip); 1018 1019 /* 1020 * dev_info manipulation functions 1021 */ 1022 1023 /* 1024 * Add and remove child devices. These are part of the system framework. 1025 * 1026 * ddi_add_child creates a dev_info structure with the passed name, 1027 * nodeid and instance arguments and makes it a child of pdip. Devices 1028 * that are known directly by the hardware have real nodeids; devices 1029 * that are software constructs use the defined DEVI_PSEUDO_NODEID 1030 * for the node id. 1031 * 1032 * ddi_remove_node removes the node from the tree. This fails if this 1033 * child has children. Parent and driver private data should already 1034 * be released (freed) prior to calling this function. If flag is 1035 * non-zero, the child is removed from it's linked list of instances. 1036 */ 1037 dev_info_t * 1038 ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance); 1039 1040 int 1041 ddi_remove_child(dev_info_t *dip, int flag); 1042 1043 /* 1044 * Given the major number for a driver, make sure that dev_info nodes 1045 * are created form the driver's hwconf file, the driver for the named 1046 * device is loaded and attached, as well as any drivers for parent devices. 1047 * Return a pointer to the driver's dev_ops struct with the dev_ops held. 1048 * Note - Callers must release the dev_ops with ddi_rele_driver. 1049 * 1050 * When a driver is held, the branch of the devinfo tree from any of the 1051 * drivers devinfos to the root node are automatically held. This only 1052 * applies to tree traversals up (and back down) the tree following the 1053 * parent pointers. 1054 * 1055 * Use of this interface is discouraged, it may be removed in a future release. 1056 */ 1057 struct dev_ops * 1058 ddi_hold_installed_driver(major_t major); 1059 1060 void 1061 ddi_rele_driver(major_t major); 1062 1063 /* 1064 * Attach and hold the specified instance of a driver. The flags argument 1065 * should be zero. 1066 */ 1067 dev_info_t * 1068 ddi_hold_devi_by_instance(major_t major, int instance, int flags); 1069 1070 void 1071 ddi_release_devi(dev_info_t *); 1072 1073 /* 1074 * Associate a streams queue with a devinfo node 1075 */ 1076 void 1077 ddi_assoc_queue_with_devi(queue_t *, dev_info_t *); 1078 1079 /* 1080 * Given the identifier string passed, make sure that dev_info nodes 1081 * are created form the driver's hwconf file, the driver for the named 1082 * device is loaded and attached, as well as any drivers for parent devices. 1083 * 1084 * Note that the driver is not held and is subject to being removed the instant 1085 * this call completes. You probably really want ddi_hold_installed_driver. 1086 */ 1087 int 1088 ddi_install_driver(char *idstring); 1089 1090 /* 1091 * Routines that return specific nodes 1092 */ 1093 1094 dev_info_t * 1095 ddi_root_node(void); 1096 1097 /* 1098 * Given a name and an instance number, find and return the 1099 * dev_info from the current state of the device tree. 1100 * 1101 * If instance number is -1, return the first named instance. 1102 * 1103 * If attached is 1, exclude all nodes that are < DS_ATTACHED 1104 * 1105 * Requires that the devinfo tree be locked. 1106 * If attached is 1, the driver must be held. 1107 */ 1108 dev_info_t * 1109 ddi_find_devinfo(char *name, int instance, int attached); 1110 1111 /* 1112 * DMA Mapping Setup 1113 * 1114 * The basic interface function is ddi_dma_setup(). This function 1115 * is to designed to allow a DMA mapping to be established to a 1116 * memory object. This function returns DDI_DMA_MAPPED if the 1117 * request was successfully filled. If this occurs, then the 1118 * argument handlep is filled in. This value is the DMA handle 1119 * for the mapping, and is used in a variety of other functions. 1120 * The handle is an opaque handle on the mapping, and no further 1121 * information may be inferred from it by the caller. 1122 * 1123 * Specifics of arguments to ddi_dma_setup: 1124 * 1125 * dip - devinfo pointer, which identifies the base device that wishes 1126 * to establish a dma mapping. The device may either be a leaf device, 1127 * or a device which is both a leaf and a nexus (e.g., a device which 1128 * has a dma engine but no children devices). 1129 * 1130 * dmareqp - pointer to a dma request structure. This structure contains 1131 * all the info necessary to establish the mapping (see <sys/ddidmareq.h>). 1132 * This structure may be impermanent, as its information is copied and 1133 * saved, if necessary, by implementation specific functions. The caller 1134 * is responsible for filling in the dmar_flags, dmar_length, dmar_type, 1135 * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the 1136 * ddi_dma_req structure should neither be examined or modified by the 1137 * caller. 1138 * 1139 * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers 1140 * responsibility to hang on to this handle, because it becomes the token 1141 * used in all other DDI dma functions. If the handle pointer is NULL, 1142 * then no mapping is made, and the call is being used by the caller 1143 * to simply determine whether such a mapping *could* be made. 1144 * 1145 * Discussion of DMA resource callback functions: 1146 * 1147 * If a request could not be filled, it was because either there were 1148 * not enough mapping resources available to satisfy the request, and the 1149 * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not 1150 * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of 1151 * available hardware to map the object. Callers should be prepared to deal 1152 * with all possible returns. It is suggested that the appropriate system 1153 * error number for the DDI_DMA_NOMAPPING returns is EFAULT. 1154 * 1155 * If the caller does not care whether a DMA mapping can be set up now, 1156 * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This 1157 * implies that the caller will appropriately deal with resource 1158 * exhaustion. 1159 * 1160 * If the caller either cannot or does not wish to sleep awaiting mapping 1161 * resources, the caller may specify, via the field dmar_fp, a function to 1162 * call with the argument specified in dmar_arg, when resources might have 1163 * become available. The callback function will be called from interrupt 1164 * context, but in such a fashion to guarantee that spl blocking (in systems 1165 * that use this method of data protection) by the caller will not be 1166 * bypassed. 1167 * 1168 * 1169 * When function specified via dmar_fp is called, it may attempt to try and get 1170 * the mapping again. If it succeeds in getting the mapping, or does not need 1171 * to get the mapping any more, it must return 1. If it tries to get the 1172 * mapping but fails to do so, and it wants to be called back later, it 1173 * must return 0. 1174 * 1175 * Failure to observe this protocol will have unpredictable results. 1176 * 1177 * The callback function must provide its own data structure integrity 1178 * when it is invoked. 1179 */ 1180 1181 int 1182 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 1183 ddi_dma_handle_t *handlep); 1184 1185 /* 1186 * The following three functions are convenience wrappers for ddi_dma_setup(). 1187 */ 1188 1189 int 1190 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 1191 uint_t flags, int (*waitfp)(), caddr_t arg, 1192 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep); 1193 1194 int 1195 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 1196 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 1197 ddi_dma_handle_t *handlep); 1198 1199 /* 1200 * Kernel addressability of the DMA object 1201 * 1202 * It might often be very useful to be able to get an IU mapping 1203 * to the object which has DMA active to/from it. In fact, it might 1204 * even really be a requirement. 1205 * 1206 * The cacheability of the object with respect to I/O and I/U caches 1207 * is affected by this function as follows: 1208 * 1209 * If a kernel virtual mapping to the object owned by the handle 1210 * existed already, and is IU cacheable, then the extant mapping 1211 * is locked and returned in kaddrp. By inference, kaddrp will 1212 * be an IU cacheable reference. 1213 * 1214 * If a kernel virtual mapping to the object owned by the handle 1215 * existed already, and is not IU cacheable, then the extant mapping 1216 * is locked and returned in kaddrp. By inference, kaddrp will 1217 * *not* be an IU cacheable reference. 1218 * 1219 * If a kernel virtual mapping to the object owned by the handle 1220 * does not exist already, a mapping will be created that will 1221 * *not* be an IU cacheable reference. 1222 * 1223 * The IO cacheability of the object owned by the handle is ignored 1224 * and unaffected. 1225 * 1226 * This function returns the mapping values as describe above. 1227 * 1228 * When the DMA object owned by handle is freed (by ddi_dma_free()- see 1229 * below), any mappings created by ddi_dma_kvaddrp() cease to be valid. 1230 * This will be the convention that drivers must follow, as it will be 1231 * impossible to enforce this programmatically. 1232 */ 1233 1234 int 1235 ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *); 1236 1237 1238 /* 1239 * Device addressability of the DMA object 1240 * 1241 * The handle that identifies an object mapped for DMA is an opaque entity. 1242 * When a device driver wishes to load its dma engine with the appropriate 1243 * values for transferring data to the mapped object, it has to get the 1244 * value. Since the exact shape and form of this address is device specific, 1245 * the value returned is a 'cookie' that each device may then interpret 1246 * as it needs to. See <sys/dditypes.h> for the form of what the DMA cookie 1247 * looks like. 1248 * 1249 * Returns DDI_SUCCESS for successful cookie generation, 1250 * or DDI_FAILURE if it cannot generate the DMA cookie. 1251 */ 1252 1253 int 1254 ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep); 1255 1256 /* 1257 * Given a DMA cookie, return its offset within the object referred to 1258 * by the DMA handle. This is so at the end of a dma transfer, the device 1259 * may take its specific ending address and find out how far into the 1260 * memory object described by the handle the device got. 1261 */ 1262 1263 int 1264 ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp); 1265 1266 /* 1267 * DMA mapping manipulation 1268 * 1269 * It may be desirable or convenient for some devices to allow partial 1270 * mapping of an object for dma. This allows the mapping for DMA of 1271 * arbitrarily large objects since only a portion of the object may 1272 * be mapped for DMA at any point in time. 1273 * 1274 * In order to support this as well as other operations, the paradigm 1275 * of a 'mapping window' is defined here. The object to be mapped has 1276 * attributes of location and length. A window can be established upon 1277 * this object. The window has attributes of offset (from the base mapping 1278 * of the object) and length. It is assumed that length and offset are 1279 * positive with respect to the base of the mapped object. 1280 * 1281 * In order to get support for such a window, the flag DDI_DMA_PARTIAL 1282 * must be set in the request flags when the object is mapped for DMA. 1283 * Each implementation may elect whether or not to support such an 1284 * operation. Each implementation may also choose to ignore the request 1285 * for a PARTIAL mapping and either reject the mapping of the object 1286 * for being too big (DDI_DMA_TOOBIG) or may map the entire object. 1287 * The caller who asks the object to be mapped for DMA will know 1288 * whether a partial mapping has been made by receiving the qualified 1289 * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED. 1290 * All dma window functions will return DDI_FAILURE if the object 1291 * is not mapped partially. 1292 * 1293 * All other DDI dma functions (except ddi_dma_Free) operate *only* on 1294 * the mapped portion of the object. That is, functions such as ddi_dma_sync, 1295 * ddi_dma_segtocookie, and so on, only operate on the currently mapped 1296 * window. 1297 */ 1298 1299 #if defined(__sparc) 1300 1301 /* 1302 * ddi_dma_movwin - Move window from current offset/length to new 1303 * offset/length. Returns DDI_SUCCESS if able to do so, else returns 1304 * DDI_FAILURE if unable to do so, or the new window would be out of bounds 1305 * or the object isn't set up for windows. If length is (off_t) -1, the 1306 * If the optional cp argument is specified, an implicit ddi_dma_htoc 1307 * is done to fill that in. The new offset and length will be returned 1308 * in the arguments *offp and *lenp (resp). 1309 * 1310 * In this implementation, only fixed width windows are used. It is 1311 * recommended that the windowsize should be retrieved via the function 1312 * ddi_dma_curwin (below) and that used to specify new offsets and lengths 1313 * since the window will be fixed at that size and will only move modulo 1314 * winsize. 1315 * 1316 * The caller must guarantee that their device's dma engine is quiescent 1317 * with respect to the current DMA window. 1318 * 1319 * The implementation will try to be rapid with respect to moving a window, 1320 * but since an appropriate ddi_dma_sync() is likely to be done, there 1321 * will be no guaranteed latency. In practice this should not be too 1322 * horrible, but don't depend upon any particular latency. 1323 */ 1324 1325 int 1326 ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *); 1327 1328 #endif 1329 1330 /* 1331 * ddi_dma_curwin - report the current offset/length of the window. 1332 * 1333 * Returns DDI_SUCCESS if offset and length 1334 * successfully established, else DDI_FAILURE. 1335 */ 1336 1337 int 1338 ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp); 1339 1340 /* 1341 * Get next dma window 1342 * 1343 * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to 1344 * the next window within the object. If win is "NULL", a pointer to the 1345 * first window within the object is filled in. 1346 * 1347 * Returns DDI_SUCCESS if successfully filled in the window pointer, 1348 * DDI_DMA_STALE if win does not refer to the currently active 1349 * window, 1350 * DDI_DMA_DONE else there is no next window. 1351 */ 1352 1353 int 1354 ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *); 1355 1356 /* 1357 * Get next segment 1358 * 1359 * ddi_dma_nextseg takes a window and a segment and fills in a pointer to 1360 * the next segment within the window. If seg is "NULL", a pointer to the 1361 * first segment within the window is filled in. 1362 * 1363 * Returns DDI_SUCCESS if successfully filled in the segment pointer, 1364 * DDI_DMA_STALE if win does not refer to the currently active 1365 * window. 1366 * DDI_DMA_DONE else there is no next segment. 1367 */ 1368 1369 int 1370 ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *); 1371 1372 /* 1373 * Segment to cookie 1374 * 1375 * ddi_dma_segtocookie takes a segment and fills in the cookie pointed 1376 * to by cookiep with the appropriate address, length and bus type to be 1377 * used to program the DMA engine. ddi_dma_segtocookie also fills in the 1378 * range within the object (specified by <off, len>) this particular 1379 * segment is mapping. <off, len> are filled in to give some control 1380 * where in the object the current dma transfer is active. 1381 * 1382 * Returns DDI_SUCCESS if successfully filled in all values, 1383 * else DDI_FAILURE 1384 * 1385 * This function is documented as Obsolete and is replaced by 1386 * ddi_dma_nextcookie(9F) 1387 */ 1388 1389 int 1390 ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *); 1391 1392 /* 1393 * Synchronization of I/O with respect to various 1394 * caches and system write buffers. 1395 * 1396 * Done at varying points during an I/O transfer (including at the 1397 * removal of an I/O mapping). 1398 * 1399 * Due to the support of systems with write buffers which may 1400 * not be able to be turned off, this function *must* used at 1401 * any point in which data consistency might be required. 1402 * 1403 * Generally this means that if a memory object has multiple mappings 1404 * (both for I/O, as described by the handle, and the IU, via, e.g. 1405 * a call to ddi_dma_kvaddrp), and one mapping may have been 1406 * used to modify the memory object, this function must be called 1407 * to ensure that the modification of the memory object is 1408 * complete, as well as possibly to inform other mappings of 1409 * the object that any cached references to the object are 1410 * now stale (and flush or invalidate these stale cache references 1411 * as necessary). 1412 * 1413 * The function ddi_dma_sync() provides the general interface with 1414 * respect to this capability. Generally, ddi_dma_free() (below) may 1415 * be used in preference to ddi_dma_sync() as ddi_dma_free() calls 1416 * ddi_dma_sync(). 1417 * 1418 * Returns 0 if all caches that exist and are specified by cache_flags 1419 * are successfully operated on, else -1. 1420 * 1421 * The argument offset specifies an offset into the mapping of the mapped 1422 * object in which to perform the synchronization. It will be silently 1423 * truncated to the granularity of underlying cache line sizes as 1424 * appropriate. 1425 * 1426 * The argument len specifies a length starting from offset in which to 1427 * perform the synchronization. A value of (uint_t) -1 means that the length 1428 * proceeds from offset to the end of the mapping. The length argument 1429 * will silently rounded up to the granularity of underlying cache line 1430 * sizes as appropriate. 1431 * 1432 * The argument flags specifies what to synchronize (the device's view of 1433 * the object or the cpu's view of the object). 1434 * 1435 * Inquiring minds want to know when ddi_dma_sync should be used: 1436 * 1437 * + When an object is mapped for dma, assume that an 1438 * implicit ddi_dma_sync() is done for you. 1439 * 1440 * + When an object is unmapped (ddi_dma_free()), assume 1441 * that an implicit ddi_dma_sync() is done for you. 1442 * 1443 * + At any time between the two times above that the 1444 * memory object may have been modified by either 1445 * the DMA device or a processor and you wish that 1446 * the change be noticed by the master that didn't 1447 * do the modifying. 1448 * 1449 * Clearly, only the third case above requires the use of ddi_dma_sync. 1450 * 1451 * Inquiring minds also want to know which flag to use: 1452 * 1453 * + If you *modify* with a cpu the object, you use 1454 * ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure 1455 * that the DMA device sees the changes you made). 1456 * 1457 * + If you are checking, with the processor, an area 1458 * of the object that the DMA device *may* have modified, 1459 * you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are 1460 * making sure that the processor(s) will see the changes 1461 * that the DMA device may have made). 1462 */ 1463 1464 int 1465 ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags); 1466 1467 /* 1468 * DMA mapping de-allocation 1469 * 1470 * When an I/O transfer completes, the resources required to map the 1471 * object for DMA should be completely released. As a side effect, 1472 * various cache synchronization might need to occur (see above). 1473 * 1474 * Returns DDI_SUCCESS if the all underlying caches are successfully 1475 * flushed, else DDI_FAILURE. 1476 * 1477 */ 1478 1479 int 1480 ddi_dma_free(ddi_dma_handle_t handle); 1481 1482 /* 1483 * Device constraint cognizant kernel memory allocation- consistent access. 1484 * 1485 * IOPB allocation and de-allocation 1486 * 1487 * An IOPB allocation allocates some primary memory such that both 1488 * the kernel and the specified DMA device might be able to access it in a 1489 * non-cacheable (otherwise known as byte-consistent or non-streaming mode) 1490 * fashion. The allocation will obey the beginning alignment and padding 1491 * constraints as specified in the initial limits argument and as subsequently 1492 * modified by intervening parents. The limits argument may be NULL, in 1493 * which case the system picks a reasonable beginning limits. 1494 * 1495 * A kernel virtual address to the allocated primary memory is returned, 1496 * but no DMA mapping to the object is established (drivers must use the 1497 * ddi_dma_map() routines for that). 1498 * 1499 * If no iopb space can be allocated, DDI_FAILURE is returned. 1500 */ 1501 1502 int 1503 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1504 caddr_t *iopbp); 1505 1506 /* 1507 * Deallocate an IOPB kernel virtual mapping. 1508 */ 1509 1510 void 1511 ddi_iopb_free(caddr_t iopb); 1512 1513 /* 1514 * Device constraint cognizant kernel memory allocation- streaming access. 1515 * 1516 * Similar to ddi_iopb_alloc, but for primary memory that is intended 1517 * to be accessed in a streaming fashion. The allocation will obey the 1518 * beginning alignment and padding constraints as specified in the initial 1519 * limits argument and as subsequently modified by intervening parents. 1520 * The limits argument may be NULL, in which case the system picks a 1521 * reasonable beginning limits. 1522 * 1523 * A flags value of 0x1 indicates whether the caller can wait for 1524 * memory to become available. Other bits in the flags argument 1525 * are reserved for future use and must be zero. 1526 * 1527 * Upon return from a successful call, the new real length of 1528 * the allocation is returned (for use in mapping the memory 1529 * later). 1530 */ 1531 1532 int 1533 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1534 uint_t flags, caddr_t *kaddrp, uint_t *real_length); 1535 1536 /* 1537 * Free the memory allocated via ddi_mem_alloc(). 1538 * 1539 * Note that passing an address not allocated via ddi_mem_alloc() 1540 * will panic the system. 1541 */ 1542 1543 void 1544 ddi_mem_free(caddr_t kaddr); 1545 1546 /* 1547 * Dma alignment, minimum transfers sizes, and burst sizes allowed. 1548 * Some with tears, some without. 1549 */ 1550 1551 /* 1552 * Return a copy of the DMA attributes for the given handle. 1553 */ 1554 1555 int 1556 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp); 1557 1558 /* 1559 * Return the allowable DMA burst size for the object mapped by handle. 1560 * The burst sizes will returned in an integer that encodes power 1561 * of two burst sizes that are allowed in bit encoded format. For 1562 * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts 1563 * would be encoded as 0x2f. A transfer that could be allowed as solely 1564 * a halfword (2 byte) transfers would be returned as 0x2. 1565 */ 1566 1567 int 1568 ddi_dma_burstsizes(ddi_dma_handle_t handle); 1569 1570 /* 1571 * Return the required beginning alignment for a transfer and 1572 * the minimum sized effect a transfer would have. The beginning 1573 * alignment will be some power of two. The minimum sized effect 1574 * indicates, for writes, how much of the mapped object will be 1575 * affected by the minimum access and for reads how much of the 1576 * mapped object will accessed. 1577 */ 1578 1579 int 1580 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect); 1581 1582 /* 1583 * Like ddi_dma_devalign, but without having to map the object. 1584 * The object is assumed to be primary memory, and it is assumed 1585 * a minimum effective transfer is also the appropriate alignment 1586 * to be using. The streaming flag, if non-zero, indicates that the 1587 * returned value should be modified to account for streaming mode 1588 * accesses (e.g., with I/O caches enabled). The initial value 1589 * is passed by the requester if it has a dma engine that has 1590 * a minimum cycle constraint (or, for streaming mode, the most 1591 * efficient size). 1592 */ 1593 1594 int 1595 ddi_iomin(dev_info_t *dip, int initial, int streaming); 1596 1597 /* 1598 * Given two DMA limit structures, apply the limitations 1599 * of one to the other, following the rules of limits 1600 * and the wishes of the caller. 1601 * 1602 * The rules of dma limit structures are that you cannot 1603 * make things *less* restrictive as you apply one set 1604 * of limits to another. 1605 * 1606 */ 1607 1608 void 1609 ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier); 1610 1611 /* 1612 * Merge DMA attributes 1613 */ 1614 1615 void 1616 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod); 1617 1618 /* 1619 * Allocate a DMA handle 1620 */ 1621 1622 int 1623 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 1624 int (*waitfp)(caddr_t), caddr_t arg, 1625 ddi_dma_handle_t *handlep); 1626 1627 /* 1628 * Free DMA handle 1629 */ 1630 1631 void 1632 ddi_dma_free_handle(ddi_dma_handle_t *handlep); 1633 1634 /* 1635 * Allocate memory for DMA transfers 1636 */ 1637 1638 int 1639 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 1640 ddi_device_acc_attr_t *accattrp, uint_t xfermodes, 1641 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 1642 size_t *real_length, ddi_acc_handle_t *handlep); 1643 1644 /* 1645 * Free DMA memory 1646 */ 1647 1648 void 1649 ddi_dma_mem_free(ddi_acc_handle_t *hp); 1650 1651 /* 1652 * bind address to a DMA handle 1653 */ 1654 1655 int 1656 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 1657 caddr_t addr, size_t len, uint_t flags, 1658 int (*waitfp)(caddr_t), caddr_t arg, 1659 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1660 1661 /* 1662 * bind buffer to DMA handle 1663 */ 1664 1665 int 1666 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 1667 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 1668 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1669 1670 /* 1671 * unbind mapping object to handle 1672 */ 1673 1674 int 1675 ddi_dma_unbind_handle(ddi_dma_handle_t handle); 1676 1677 /* 1678 * get next DMA cookie 1679 */ 1680 1681 void 1682 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep); 1683 1684 /* 1685 * get number of DMA windows 1686 */ 1687 1688 int 1689 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp); 1690 1691 /* 1692 * get specific DMA window 1693 */ 1694 1695 int 1696 ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp, 1697 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1698 1699 /* 1700 * activate 64 bit SBus support 1701 */ 1702 1703 int 1704 ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes); 1705 1706 /* 1707 * Miscellaneous functions 1708 */ 1709 1710 /* 1711 * ddi_report_dev: Report a successful attach. 1712 */ 1713 1714 void 1715 ddi_report_dev(dev_info_t *dev); 1716 1717 /* 1718 * ddi_dev_regsize 1719 * 1720 * If the device has h/w register(s), report 1721 * the size, in bytes, of the specified one into *resultp. 1722 * 1723 * Returns DDI_FAILURE if there are not registers, 1724 * or the specified register doesn't exist. 1725 */ 1726 1727 int 1728 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp); 1729 1730 /* 1731 * ddi_dev_nregs 1732 * 1733 * If the device has h/w register(s), report 1734 * how many of them that there are into resultp. 1735 * Return DDI_FAILURE if the device has no registers. 1736 */ 1737 1738 int 1739 ddi_dev_nregs(dev_info_t *dev, int *resultp); 1740 1741 /* 1742 * ddi_dev_is_sid 1743 * 1744 * If the device is self-identifying, i.e., 1745 * has already been probed by a smart PROM 1746 * (and thus registers are known to be valid) 1747 * return DDI_SUCCESS, else DDI_FAILURE. 1748 */ 1749 1750 1751 int 1752 ddi_dev_is_sid(dev_info_t *dev); 1753 1754 /* 1755 * ddi_slaveonly 1756 * 1757 * If the device is on a bus that precludes 1758 * the device from being either a dma master or 1759 * a dma slave, return DDI_SUCCESS. 1760 */ 1761 1762 int 1763 ddi_slaveonly(dev_info_t *); 1764 1765 1766 /* 1767 * ddi_dev_affinity 1768 * 1769 * Report, via DDI_SUCCESS, whether there exists 1770 * an 'affinity' between two dev_info_t's. An 1771 * affinity is defined to be either a parent-child, 1772 * or a sibling relationship such that the siblings 1773 * or in the same part of the bus they happen to be 1774 * on. 1775 */ 1776 1777 int 1778 ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb); 1779 1780 1781 /* 1782 * ddi_set_callback 1783 * 1784 * Set a function/arg pair into the callback list identified 1785 * by listid. *listid must always initially start out as zero. 1786 */ 1787 1788 void 1789 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid); 1790 1791 /* 1792 * ddi_run_callback 1793 * 1794 * Run the callback list identified by listid. 1795 */ 1796 1797 void 1798 ddi_run_callback(uintptr_t *listid); 1799 1800 /* 1801 * More miscellaneous 1802 */ 1803 1804 int 1805 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 1806 struct pollhead **phpp); 1807 1808 dev_info_t * 1809 nodevinfo(dev_t dev, int otyp); 1810 1811 int 1812 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); 1813 1814 int 1815 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 1816 void *arg, void **result); 1817 1818 int 1819 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd); 1820 1821 int 1822 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 1823 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 1824 1825 int 1826 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1827 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 1828 1829 int 1830 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 1831 ddi_dma_handle_t handle); 1832 1833 int 1834 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1835 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1836 ddi_dma_cookie_t *cp, uint_t *ccountp); 1837 1838 int 1839 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1840 ddi_dma_handle_t handle); 1841 1842 int 1843 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1844 ddi_dma_handle_t handle, off_t off, size_t len, 1845 uint_t cache_flags); 1846 1847 int 1848 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 1849 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1850 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 1851 1852 int 1853 ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip, 1854 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 1855 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags); 1856 1857 void 1858 ddivoid(); 1859 1860 cred_t * 1861 ddi_get_cred(void); 1862 1863 clock_t 1864 ddi_get_lbolt(void); 1865 1866 time_t 1867 ddi_get_time(void); 1868 1869 pid_t 1870 ddi_get_pid(void); 1871 1872 kt_did_t 1873 ddi_get_kt_did(void); 1874 1875 boolean_t 1876 ddi_can_receive_sig(void); 1877 1878 void 1879 swab(void *src, void *dst, size_t nbytes); 1880 1881 int 1882 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 1883 minor_t minor_num, char *node_type, int flag); 1884 1885 int 1886 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 1887 minor_t minor_num, char *node_type, int flag, 1888 const char *rdpriv, const char *wrpriv, mode_t priv_mode); 1889 1890 void 1891 ddi_remove_minor_node(dev_info_t *dip, char *name); 1892 1893 int 1894 ddi_in_panic(void); 1895 1896 int 1897 ddi_streams_driver(dev_info_t *dip); 1898 1899 /* 1900 * DDI wrappers for ffs and fls 1901 */ 1902 int 1903 ddi_ffs(long mask); 1904 1905 int 1906 ddi_fls(long mask); 1907 1908 /* 1909 * The next five routines comprise generic storage management utilities 1910 * for driver soft state structures. 1911 */ 1912 1913 /* 1914 * Allocate a set of pointers to 'n_items' objects of size 'size' 1915 * bytes. Each pointer is initialized to nil. 'n_items' is a hint i.e. 1916 * zero is allowed. 1917 */ 1918 int 1919 ddi_soft_state_init(void **state_p, size_t size, size_t n_items); 1920 1921 /* 1922 * Allocate a state structure of size 'size' to be associated 1923 * with item 'item'. 1924 */ 1925 int 1926 ddi_soft_state_zalloc(void *state, int item); 1927 1928 /* 1929 * Fetch a pointer to the allocated soft state structure 1930 * corresponding to 'item.' 1931 */ 1932 void * 1933 ddi_get_soft_state(void *state, int item); 1934 1935 /* 1936 * Free the state structure corresponding to 'item.' 1937 */ 1938 void 1939 ddi_soft_state_free(void *state, int item); 1940 1941 /* 1942 * Free the handle, and any associated soft state structures. 1943 */ 1944 void 1945 ddi_soft_state_fini(void **state_p); 1946 1947 /* 1948 * Set the addr field of the name in dip to name 1949 */ 1950 void 1951 ddi_set_name_addr(dev_info_t *dip, char *name); 1952 1953 /* 1954 * Get the address part of the name. 1955 */ 1956 char * 1957 ddi_get_name_addr(dev_info_t *dip); 1958 1959 void 1960 ddi_set_parent_data(dev_info_t *dip, void *pd); 1961 1962 void * 1963 ddi_get_parent_data(dev_info_t *dip); 1964 1965 int 1966 ddi_initchild(dev_info_t *parent, dev_info_t *proto); 1967 1968 int 1969 ddi_uninitchild(dev_info_t *dip); 1970 1971 major_t 1972 ddi_name_to_major(char *name); 1973 1974 char * 1975 ddi_major_to_name(major_t major); 1976 1977 char * 1978 ddi_deviname(dev_info_t *dip, char *name); 1979 1980 char * 1981 ddi_pathname(dev_info_t *dip, char *path); 1982 1983 int 1984 ddi_dev_pathname(dev_t devt, int spec_type, char *name); 1985 1986 dev_t 1987 ddi_pathname_to_dev_t(char *pathname); 1988 1989 /* 1990 * High resolution system timer functions. 1991 * 1992 * These functions are already in the kernel (see sys/time.h). 1993 * The ddi supports the notion of a hrtime_t type and the 1994 * functions gethrtime, hrtadd, hrtsub and hrtcmp. 1995 */ 1996 1997 1998 /* 1999 * Nexus wrapper functions 2000 * 2001 * These functions are for entries in a bus nexus driver's bus_ops 2002 * structure for when the driver doesn't have such a function and 2003 * doesn't wish to prohibit such a function from existing. They 2004 * may also be called to start passing a request up the dev_info 2005 * tree. 2006 */ 2007 2008 /* 2009 * bus_ctl wrapper 2010 */ 2011 2012 int 2013 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v); 2014 2015 /* 2016 * bus_dma_map wrapper 2017 */ 2018 2019 int 2020 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 2021 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep); 2022 2023 int 2024 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 2025 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep); 2026 2027 int 2028 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 2029 ddi_dma_handle_t handle); 2030 2031 int 2032 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 2033 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 2034 ddi_dma_cookie_t *cp, uint_t *ccountp); 2035 2036 int 2037 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2038 ddi_dma_handle_t handle); 2039 2040 int 2041 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 2042 ddi_dma_handle_t handle, off_t off, size_t len, 2043 uint_t cache_flags); 2044 2045 int 2046 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 2047 ddi_dma_handle_t handle, uint_t win, off_t *offp, 2048 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp); 2049 2050 /* 2051 * bus_dma_ctl wrapper 2052 */ 2053 2054 int 2055 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 2056 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, 2057 caddr_t *objp, uint_t flags); 2058 2059 /* 2060 * dvma support for networking drivers 2061 */ 2062 2063 unsigned long 2064 dvma_pagesize(dev_info_t *dip); 2065 2066 int 2067 dvma_reserve(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t pages, 2068 ddi_dma_handle_t *handlep); 2069 2070 void 2071 dvma_release(ddi_dma_handle_t h); 2072 2073 void 2074 dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index, 2075 ddi_dma_cookie_t *cp); 2076 2077 void 2078 dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2079 2080 void 2081 dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type); 2082 2083 /* 2084 * Layered driver support 2085 */ 2086 2087 extern int ddi_copyin(const void *, void *, size_t, int); 2088 extern int ddi_copyout(const void *, void *, size_t, int); 2089 2090 /* 2091 * Send signals to processes 2092 */ 2093 extern void *proc_ref(void); 2094 extern void proc_unref(void *pref); 2095 extern int proc_signal(void *pref, int sig); 2096 2097 /* I/O port access routines */ 2098 extern uint8_t inb(int port); 2099 extern uint16_t inw(int port); 2100 extern uint32_t inl(int port); 2101 extern void repinsb(int port, uint8_t *addr, int count); 2102 extern void repinsw(int port, uint16_t *addr, int count); 2103 extern void repinsd(int port, uint32_t *addr, int count); 2104 extern void outb(int port, uint8_t value); 2105 extern void outw(int port, uint16_t value); 2106 extern void outl(int port, uint32_t value); 2107 extern void repoutsb(int port, uint8_t *addr, int count); 2108 extern void repoutsw(int port, uint16_t *addr, int count); 2109 extern void repoutsd(int port, uint32_t *addr, int count); 2110 2111 /* 2112 * Console bell routines 2113 */ 2114 extern void ddi_ring_console_bell(clock_t duration); 2115 extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration)); 2116 2117 /* 2118 * Fault-related functions 2119 */ 2120 extern int ddi_check_acc_handle(ddi_acc_handle_t); 2121 extern int ddi_check_dma_handle(ddi_dma_handle_t); 2122 extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t, 2123 ddi_fault_location_t, const char *); 2124 extern ddi_devstate_t ddi_get_devstate(dev_info_t *); 2125 2126 /* 2127 * Miscellaneous redefines 2128 */ 2129 #define uiophysio physio 2130 2131 /* 2132 * utilities - "reg" mapping and all common portable data access functions 2133 */ 2134 2135 /* 2136 * error code from ddi_regs_map_setup 2137 */ 2138 2139 #define DDI_REGS_ACC_CONFLICT (-10) 2140 2141 /* 2142 * Device address advance flags 2143 */ 2144 2145 #define DDI_DEV_NO_AUTOINCR 0x0000 2146 #define DDI_DEV_AUTOINCR 0x0001 2147 2148 int 2149 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 2150 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 2151 ddi_acc_handle_t *handle); 2152 2153 void 2154 ddi_regs_map_free(ddi_acc_handle_t *handle); 2155 2156 /* 2157 * these are the prototypes for the common portable data access functions 2158 */ 2159 2160 #ifdef _LP64 2161 2162 uint8_t 2163 ddi_get8(ddi_acc_handle_t handle, uint8_t *addr); 2164 2165 uint16_t 2166 ddi_get16(ddi_acc_handle_t handle, uint16_t *addr); 2167 2168 uint32_t 2169 ddi_get32(ddi_acc_handle_t handle, uint32_t *addr); 2170 2171 uint64_t 2172 ddi_get64(ddi_acc_handle_t handle, uint64_t *addr); 2173 2174 void 2175 ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2176 size_t repcount, uint_t flags); 2177 2178 void 2179 ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2180 size_t repcount, uint_t flags); 2181 2182 void 2183 ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2184 size_t repcount, uint_t flags); 2185 2186 void 2187 ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2188 size_t repcount, uint_t flags); 2189 2190 void 2191 ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2192 2193 void 2194 ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2195 2196 void 2197 ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2198 2199 void 2200 ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2201 2202 void 2203 ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2204 size_t repcount, uint_t flags); 2205 void 2206 ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2207 size_t repcount, uint_t flags); 2208 void 2209 ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2210 size_t repcount, uint_t flags); 2211 2212 void 2213 ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2214 size_t repcount, uint_t flags); 2215 2216 #else /* _ILP32 */ 2217 2218 uint8_t 2219 ddi_getb(ddi_acc_handle_t handle, uint8_t *addr); 2220 #define ddi_get8 ddi_getb 2221 2222 uint16_t 2223 ddi_getw(ddi_acc_handle_t handle, uint16_t *addr); 2224 #define ddi_get16 ddi_getw 2225 2226 uint32_t 2227 ddi_getl(ddi_acc_handle_t handle, uint32_t *addr); 2228 #define ddi_get32 ddi_getl 2229 2230 uint64_t 2231 ddi_getll(ddi_acc_handle_t handle, uint64_t *addr); 2232 #define ddi_get64 ddi_getll 2233 2234 void 2235 ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2236 size_t repcount, uint_t flags); 2237 #define ddi_rep_get8 ddi_rep_getb 2238 2239 void 2240 ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2241 size_t repcount, uint_t flags); 2242 #define ddi_rep_get16 ddi_rep_getw 2243 2244 void 2245 ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2246 size_t repcount, uint_t flags); 2247 #define ddi_rep_get32 ddi_rep_getl 2248 2249 void 2250 ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2251 size_t repcount, uint_t flags); 2252 #define ddi_rep_get64 ddi_rep_getll 2253 2254 void 2255 ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value); 2256 #define ddi_put8 ddi_putb 2257 2258 void 2259 ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value); 2260 #define ddi_put16 ddi_putw 2261 2262 void 2263 ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value); 2264 #define ddi_put32 ddi_putl 2265 2266 void 2267 ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value); 2268 #define ddi_put64 ddi_putll 2269 2270 void 2271 ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, 2272 size_t repcount, uint_t flags); 2273 #define ddi_rep_put8 ddi_rep_putb 2274 2275 void 2276 ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr, 2277 size_t repcount, uint_t flags); 2278 #define ddi_rep_put16 ddi_rep_putw 2279 2280 void 2281 ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr, 2282 size_t repcount, uint_t flags); 2283 #define ddi_rep_put32 ddi_rep_putl 2284 2285 void 2286 ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr, 2287 size_t repcount, uint_t flags); 2288 #define ddi_rep_put64 ddi_rep_putll 2289 2290 #endif /* _LP64 */ 2291 2292 /* 2293 * these are special device handling functions 2294 */ 2295 int 2296 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, 2297 size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz); 2298 2299 int 2300 ddi_device_copy( 2301 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 2302 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 2303 size_t bytecount, uint_t dev_datasz); 2304 2305 /* 2306 * these are software byte swapping functions 2307 */ 2308 uint16_t 2309 ddi_swap16(uint16_t value); 2310 2311 uint32_t 2312 ddi_swap32(uint32_t value); 2313 2314 uint64_t 2315 ddi_swap64(uint64_t value); 2316 2317 /* 2318 * these are the prototypes for PCI local bus functions 2319 */ 2320 /* 2321 * PCI power management capabilities reporting in addition to those 2322 * provided by the PCI Power Management Specification. 2323 */ 2324 #define PCI_PM_IDLESPEED 0x1 /* clock for idle dev - cap */ 2325 #define PCI_PM_IDLESPEED_ANY (void *)-1 /* any clock for idle dev */ 2326 #define PCI_PM_IDLESPEED_NONE (void *)-2 /* regular clock for idle dev */ 2327 2328 int 2329 pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle); 2330 2331 void 2332 pci_config_teardown(ddi_acc_handle_t *handle); 2333 2334 #ifdef _LP64 2335 2336 uint8_t 2337 pci_config_get8(ddi_acc_handle_t handle, off_t offset); 2338 2339 uint16_t 2340 pci_config_get16(ddi_acc_handle_t handle, off_t offset); 2341 2342 uint32_t 2343 pci_config_get32(ddi_acc_handle_t handle, off_t offset); 2344 2345 uint64_t 2346 pci_config_get64(ddi_acc_handle_t handle, off_t offset); 2347 2348 void 2349 pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2350 2351 void 2352 pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2353 2354 void 2355 pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2356 2357 void 2358 pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2359 2360 #else /* _ILP32 */ 2361 2362 uint8_t 2363 pci_config_getb(ddi_acc_handle_t handle, off_t offset); 2364 #define pci_config_get8 pci_config_getb 2365 2366 uint16_t 2367 pci_config_getw(ddi_acc_handle_t handle, off_t offset); 2368 #define pci_config_get16 pci_config_getw 2369 2370 uint32_t 2371 pci_config_getl(ddi_acc_handle_t handle, off_t offset); 2372 #define pci_config_get32 pci_config_getl 2373 2374 uint64_t 2375 pci_config_getll(ddi_acc_handle_t handle, off_t offset); 2376 #define pci_config_get64 pci_config_getll 2377 2378 void 2379 pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value); 2380 #define pci_config_put8 pci_config_putb 2381 2382 void 2383 pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value); 2384 #define pci_config_put16 pci_config_putw 2385 2386 void 2387 pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value); 2388 #define pci_config_put32 pci_config_putl 2389 2390 void 2391 pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value); 2392 #define pci_config_put64 pci_config_putll 2393 2394 #endif /* _LP64 */ 2395 2396 int 2397 pci_report_pmcap(dev_info_t *dip, int cap, void *arg); 2398 2399 int 2400 pci_restore_config_regs(dev_info_t *dip); 2401 2402 int 2403 pci_save_config_regs(dev_info_t *dip); 2404 2405 void 2406 pci_ereport_setup(dev_info_t *dip); 2407 2408 void 2409 pci_ereport_teardown(dev_info_t *dip); 2410 2411 void 2412 pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2413 2414 void 2415 pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status); 2416 2417 int 2418 pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, 2419 uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat); 2420 2421 /* 2422 * the prototype for the C Language Type Model inquiry. 2423 */ 2424 model_t ddi_mmap_get_model(void); 2425 model_t ddi_model_convert_from(model_t); 2426 2427 /* 2428 * these are the prototypes for device id functions. 2429 */ 2430 int 2431 ddi_devid_valid(ddi_devid_t devid); 2432 2433 int 2434 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid); 2435 2436 void 2437 ddi_devid_unregister(dev_info_t *dip); 2438 2439 int 2440 ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, 2441 void *id, ddi_devid_t *ret_devid); 2442 2443 size_t 2444 ddi_devid_sizeof(ddi_devid_t devid); 2445 2446 void 2447 ddi_devid_free(ddi_devid_t devid); 2448 2449 int 2450 ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2); 2451 2452 int 2453 ddi_devid_scsi_encode(int version, char *driver_name, 2454 uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len, 2455 uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid); 2456 2457 char 2458 *ddi_devid_to_guid(ddi_devid_t devid); 2459 2460 void 2461 ddi_devid_free_guid(char *guid); 2462 2463 int 2464 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid); 2465 2466 int 2467 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name); 2468 2469 int 2470 ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs, 2471 dev_t **retdevs); 2472 2473 void 2474 ddi_lyr_free_devlist(dev_t *devlist, int ndevs); 2475 2476 char * 2477 ddi_devid_str_encode(ddi_devid_t devid, char *minor_name); 2478 2479 int 2480 ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep); 2481 2482 void 2483 ddi_devid_str_free(char *devidstr); 2484 2485 int 2486 ddi_devid_str_compare(char *id1_str, char *id2_str); 2487 2488 /* 2489 * Event to post to when a devinfo node is removed. 2490 */ 2491 #define DDI_DEVI_REMOVE_EVENT "DDI:DEVI_REMOVE" 2492 #define DDI_DEVI_INSERT_EVENT "DDI:DEVI_INSERT" 2493 #define DDI_DEVI_BUS_RESET_EVENT "DDI:DEVI_BUS_RESET" 2494 #define DDI_DEVI_DEVICE_RESET_EVENT "DDI:DEVI_DEVICE_RESET" 2495 2496 /* 2497 * Invoke bus nexus driver's implementation of the 2498 * (*bus_remove_eventcall)() interface to remove a registered 2499 * callback handler for "event". 2500 */ 2501 int 2502 ddi_remove_event_handler(ddi_callback_id_t id); 2503 2504 /* 2505 * Invoke bus nexus driver's implementation of the 2506 * (*bus_add_eventcall)() interface to register a callback handler 2507 * for "event". 2508 */ 2509 int 2510 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 2511 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 2512 void *arg, ddi_callback_id_t *id); 2513 2514 /* 2515 * Return a handle for event "name" by calling up the device tree 2516 * hierarchy via (*bus_get_eventcookie)() interface until claimed 2517 * by a bus nexus or top of dev_info tree is reached. 2518 */ 2519 int 2520 ddi_get_eventcookie(dev_info_t *dip, char *name, 2521 ddi_eventcookie_t *event_cookiep); 2522 2523 /* 2524 * log a system event 2525 */ 2526 int 2527 ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name, 2528 char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp, 2529 int sleep_flag); 2530 2531 /* 2532 * ddi_log_sysevent() vendors 2533 */ 2534 #define DDI_VENDOR_SUNW "SUNW" 2535 2536 /* 2537 * Opaque task queue handle. 2538 */ 2539 typedef struct ddi_taskq ddi_taskq_t; 2540 2541 /* 2542 * Use default system priority. 2543 */ 2544 #define TASKQ_DEFAULTPRI -1 2545 2546 /* 2547 * Create a task queue 2548 */ 2549 ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name, 2550 int nthreads, pri_t pri, uint_t cflags); 2551 2552 /* 2553 * destroy a task queue 2554 */ 2555 void ddi_taskq_destroy(ddi_taskq_t *tq); 2556 2557 /* 2558 * Dispatch a task to a task queue 2559 */ 2560 int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 2561 void *arg, uint_t dflags); 2562 2563 /* 2564 * Wait for all previously scheduled tasks to complete. 2565 */ 2566 void ddi_taskq_wait(ddi_taskq_t *tq); 2567 2568 /* 2569 * Suspend all task execution. 2570 */ 2571 void ddi_taskq_suspend(ddi_taskq_t *tq); 2572 2573 /* 2574 * Resume task execution. 2575 */ 2576 void ddi_taskq_resume(ddi_taskq_t *tq); 2577 2578 /* 2579 * Is task queue suspended? 2580 */ 2581 boolean_t ddi_taskq_suspended(ddi_taskq_t *tq); 2582 2583 /* 2584 * Parse an interface name of the form <alphanumeric>##<numeric> where 2585 * <numeric> is maximal. 2586 */ 2587 int ddi_parse(const char *, char *, uint_t *); 2588 2589 #endif /* _KERNEL */ 2590 2591 #ifdef __cplusplus 2592 } 2593 #endif 2594 2595 #endif /* _SYS_SUNDDI_H */ 2596