1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DTRACE_H 28 #define _SYS_DTRACE_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /* 37 * DTrace Dynamic Tracing Software: Kernel Interfaces 38 * 39 * Note: The contents of this file are private to the implementation of the 40 * Solaris system and DTrace subsystem and are subject to change at any time 41 * without notice. Applications and drivers using these interfaces will fail 42 * to run on future releases. These interfaces should not be used for any 43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 45 */ 46 47 #ifndef _ASM 48 49 #include <sys/types.h> 50 #include <sys/modctl.h> 51 #include <sys/processor.h> 52 #include <sys/systm.h> 53 #include <sys/ctf_api.h> 54 #include <sys/cyclic.h> 55 #include <sys/int_limits.h> 56 57 /* 58 * DTrace Universal Constants and Typedefs 59 */ 60 #define DTRACE_CPUALL -1 /* all CPUs */ 61 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 62 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 63 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 64 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 65 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 66 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 67 #define DTRACE_ARGNONE -1 /* invalid argument index */ 68 69 #define DTRACE_PROVNAMELEN 64 70 #define DTRACE_MODNAMELEN 64 71 #define DTRACE_FUNCNAMELEN 128 72 #define DTRACE_NAMELEN 64 73 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 74 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 75 #define DTRACE_ARGTYPELEN 128 76 77 typedef uint32_t dtrace_id_t; /* probe identifier */ 78 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 79 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 80 typedef uint16_t dtrace_actkind_t; /* action kind */ 81 typedef int64_t dtrace_optval_t; /* option value */ 82 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 83 84 typedef enum dtrace_probespec { 85 DTRACE_PROBESPEC_NONE = -1, 86 DTRACE_PROBESPEC_PROVIDER = 0, 87 DTRACE_PROBESPEC_MOD, 88 DTRACE_PROBESPEC_FUNC, 89 DTRACE_PROBESPEC_NAME 90 } dtrace_probespec_t; 91 92 /* 93 * DTrace Intermediate Format (DIF) 94 * 95 * The following definitions describe the DTrace Intermediate Format (DIF), a 96 * a RISC-like instruction set and program encoding used to represent 97 * predicates and actions that can be bound to DTrace probes. The constants 98 * below defining the number of available registers are suggested minimums; the 99 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 100 * registers provided by the current DTrace implementation. 101 */ 102 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 103 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 104 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 105 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 106 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 107 108 #define DIF_OP_OR 1 /* or r1, r2, rd */ 109 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 110 #define DIF_OP_AND 3 /* and r1, r2, rd */ 111 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 112 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 113 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 114 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 115 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 116 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 117 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 118 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 119 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 120 #define DIF_OP_NOT 13 /* not r1, rd */ 121 #define DIF_OP_MOV 14 /* mov r1, rd */ 122 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 123 #define DIF_OP_TST 16 /* tst r1 */ 124 #define DIF_OP_BA 17 /* ba label */ 125 #define DIF_OP_BE 18 /* be label */ 126 #define DIF_OP_BNE 19 /* bne label */ 127 #define DIF_OP_BG 20 /* bg label */ 128 #define DIF_OP_BGU 21 /* bgu label */ 129 #define DIF_OP_BGE 22 /* bge label */ 130 #define DIF_OP_BGEU 23 /* bgeu label */ 131 #define DIF_OP_BL 24 /* bl label */ 132 #define DIF_OP_BLU 25 /* blu label */ 133 #define DIF_OP_BLE 26 /* ble label */ 134 #define DIF_OP_BLEU 27 /* bleu label */ 135 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 136 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 137 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 138 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 139 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 140 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 141 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 142 #define DIF_OP_RET 35 /* ret rd */ 143 #define DIF_OP_NOP 36 /* nop */ 144 #define DIF_OP_SETX 37 /* setx intindex, rd */ 145 #define DIF_OP_SETS 38 /* sets strindex, rd */ 146 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 147 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 148 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 149 #define DIF_OP_STGS 42 /* stgs var, rs */ 150 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 151 #define DIF_OP_LDTS 44 /* ldts var, rd */ 152 #define DIF_OP_STTS 45 /* stts var, rs */ 153 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 154 #define DIF_OP_CALL 47 /* call subr, rd */ 155 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 156 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 157 #define DIF_OP_POPTS 50 /* popts */ 158 #define DIF_OP_FLUSHTS 51 /* flushts */ 159 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 160 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 161 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 162 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 163 #define DIF_OP_LDLS 56 /* ldls var, rd */ 164 #define DIF_OP_STLS 57 /* stls var, rs */ 165 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 166 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 167 #define DIF_OP_STB 60 /* stb r1, [rd] */ 168 #define DIF_OP_STH 61 /* sth r1, [rd] */ 169 #define DIF_OP_STW 62 /* stw r1, [rd] */ 170 #define DIF_OP_STX 63 /* stx r1, [rd] */ 171 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 172 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 173 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 174 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 175 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 176 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 177 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 178 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 179 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 180 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 181 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 182 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 183 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 184 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 185 186 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 187 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 188 #define DIF_REGISTER_MAX 0xff /* highest register number */ 189 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 190 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 191 192 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 193 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 194 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 195 196 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 197 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 198 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 199 200 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 201 #define DIF_VAR_REGS 0x0001 /* registers array */ 202 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 203 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 204 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 205 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 206 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 207 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 208 #define DIF_VAR_ID 0x0105 /* probe ID */ 209 #define DIF_VAR_ARG0 0x0106 /* first argument */ 210 #define DIF_VAR_ARG1 0x0107 /* second argument */ 211 #define DIF_VAR_ARG2 0x0108 /* third argument */ 212 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 213 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 214 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 215 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 216 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 217 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 218 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 219 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 220 #define DIF_VAR_CALLER 0x0111 /* caller */ 221 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 222 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 223 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 224 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 225 #define DIF_VAR_PID 0x0116 /* process ID */ 226 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 227 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 228 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 229 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 230 231 #define DIF_SUBR_RAND 0 232 #define DIF_SUBR_MUTEX_OWNED 1 233 #define DIF_SUBR_MUTEX_OWNER 2 234 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 235 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 236 #define DIF_SUBR_RW_READ_HELD 5 237 #define DIF_SUBR_RW_WRITE_HELD 6 238 #define DIF_SUBR_RW_ISWRITER 7 239 #define DIF_SUBR_COPYIN 8 240 #define DIF_SUBR_COPYINSTR 9 241 #define DIF_SUBR_SPECULATION 10 242 #define DIF_SUBR_PROGENYOF 11 243 #define DIF_SUBR_STRLEN 12 244 #define DIF_SUBR_COPYOUT 13 245 #define DIF_SUBR_COPYOUTSTR 14 246 #define DIF_SUBR_ALLOCA 15 247 #define DIF_SUBR_BCOPY 16 248 #define DIF_SUBR_COPYINTO 17 249 #define DIF_SUBR_MSGDSIZE 18 250 #define DIF_SUBR_MSGSIZE 19 251 #define DIF_SUBR_GETMAJOR 20 252 #define DIF_SUBR_GETMINOR 21 253 #define DIF_SUBR_DDI_PATHNAME 22 254 #define DIF_SUBR_STRJOIN 23 255 #define DIF_SUBR_LLTOSTR 24 256 #define DIF_SUBR_BASENAME 25 257 #define DIF_SUBR_DIRNAME 26 258 #define DIF_SUBR_CLEANPATH 27 259 #define DIF_SUBR_STRCHR 28 260 #define DIF_SUBR_STRRCHR 29 261 #define DIF_SUBR_STRSTR 30 262 #define DIF_SUBR_STRTOK 31 263 #define DIF_SUBR_SUBSTR 32 264 #define DIF_SUBR_INDEX 33 265 #define DIF_SUBR_RINDEX 34 266 267 #define DIF_SUBR_MAX 34 /* max subroutine value */ 268 269 typedef uint32_t dif_instr_t; 270 271 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 272 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 273 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 274 #define DIF_INSTR_RD(i) ((i) & 0xff) 275 #define DIF_INSTR_RS(i) ((i) & 0xff) 276 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 277 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 278 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 279 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 280 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 281 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 282 283 #define DIF_INSTR_FMT(op, r1, r2, d) \ 284 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 285 286 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 287 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 288 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 289 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 290 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 291 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 292 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 293 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 294 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 295 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 296 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 297 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 298 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 299 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 300 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 301 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 302 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 303 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 304 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 305 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 306 307 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 308 309 /* 310 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 311 * of variables, function and associative array arguments, and the return type 312 * for each DIF object (shown below). It contains a description of the type, 313 * its size in bytes, and a module identifier. 314 */ 315 typedef struct dtrace_diftype { 316 uint8_t dtdt_kind; /* type kind (see below) */ 317 uint8_t dtdt_ckind; /* type kind in CTF */ 318 uint8_t dtdt_flags; /* type flags (see below) */ 319 uint8_t dtdt_pad; /* reserved for future use */ 320 uint32_t dtdt_size; /* type size in bytes (unless string) */ 321 } dtrace_diftype_t; 322 323 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 324 #define DIF_TYPE_STRING 1 /* type is a D string */ 325 326 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 327 328 /* 329 * A DTrace Intermediate Format variable record is used to describe each of the 330 * variables referenced by a given DIF object. It contains an integer variable 331 * identifier along with variable scope and properties, as shown below. The 332 * size of this structure must be sizeof (int) aligned. 333 */ 334 typedef struct dtrace_difv { 335 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 336 uint32_t dtdv_id; /* variable reference identifier */ 337 uint8_t dtdv_kind; /* variable kind (see below) */ 338 uint8_t dtdv_scope; /* variable scope (see below) */ 339 uint16_t dtdv_flags; /* variable flags (see below) */ 340 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 341 } dtrace_difv_t; 342 343 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 344 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 345 346 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 347 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 348 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 349 350 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 351 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 352 353 /* 354 * DTrace Actions 355 * 356 * The upper byte determines the class of the action; the low bytes determines 357 * the specific action within that class. The classes of actions are as 358 * follows: 359 * 360 * [ no class ] <= May record process- or kernel-related data 361 * DTRACEACT_PROC <= Only records process-related data 362 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 363 * DTRACEACT_KERNEL <= Only records kernel-related data 364 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 365 * DTRACEACT_SPECULATIVE <= Speculation-related action 366 * DTRACEACT_AGGREGATION <= Aggregating action 367 */ 368 #define DTRACEACT_NONE 0 /* no action */ 369 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 370 #define DTRACEACT_EXIT 2 /* exit() action */ 371 #define DTRACEACT_PRINTF 3 /* printf() action */ 372 #define DTRACEACT_PRINTA 4 /* printa() action */ 373 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 374 375 #define DTRACEACT_PROC 0x0100 376 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 377 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 378 379 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 380 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 381 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 382 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 383 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 384 385 #define DTRACEACT_PROC_CONTROL 0x0300 386 387 #define DTRACEACT_KERNEL 0x0400 388 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 389 390 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 391 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 392 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 393 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 394 395 #define DTRACEACT_SPECULATIVE 0x0600 396 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 397 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 398 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 399 400 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 401 402 #define DTRACEACT_ISDESTRUCTIVE(x) \ 403 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 404 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 405 406 #define DTRACEACT_ISSPECULATIVE(x) \ 407 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 408 409 #define DTRACEACT_ISPRINTFLIKE(x) \ 410 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 411 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 412 413 /* 414 * DTrace Aggregating Actions 415 * 416 * These are functions f(x) for which the following is true: 417 * 418 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 419 * 420 * where x_n is a set of arbitrary data. Aggregating actions are in their own 421 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 422 * for easier processing of the aggregation argument and data payload for a few 423 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 424 */ 425 #define DTRACEACT_AGGREGATION 0x0700 426 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 427 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 428 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 429 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 430 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 431 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 432 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 433 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 434 435 #define DTRACEACT_ISAGG(x) \ 436 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 437 438 #define DTRACE_QUANTIZE_NBUCKETS \ 439 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 440 441 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 442 443 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 444 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 445 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 446 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 447 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 448 449 #define DTRACE_LQUANTIZE_STEPSHIFT 48 450 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 451 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 452 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 453 #define DTRACE_LQUANTIZE_BASESHIFT 0 454 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 455 456 #define DTRACE_LQUANTIZE_STEP(x) \ 457 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 458 DTRACE_LQUANTIZE_STEPSHIFT) 459 460 #define DTRACE_LQUANTIZE_LEVELS(x) \ 461 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 462 DTRACE_LQUANTIZE_LEVELSHIFT) 463 464 #define DTRACE_LQUANTIZE_BASE(x) \ 465 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 466 DTRACE_LQUANTIZE_BASESHIFT) 467 468 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 469 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 470 #define DTRACE_USTACK_ARG(x, y) \ 471 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 472 473 #ifndef _LP64 474 #ifndef _LITTLE_ENDIAN 475 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 476 #else 477 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 478 #endif 479 #else 480 #define DTRACE_PTR(type, name) type *name 481 #endif 482 483 /* 484 * DTrace Object Format (DOF) 485 * 486 * DTrace programs can be persistently encoded in the DOF format so that they 487 * may be embedded in other programs (for example, in an ELF file) or in the 488 * dtrace driver configuration file for use in anonymous tracing. The DOF 489 * format is versioned and extensible so that it can be revised and so that 490 * internal data structures can be modified or extended compatibly. All DOF 491 * structures use fixed-size types, so the 32-bit and 64-bit representations 492 * are identical and consumers can use either data model transparently. 493 * 494 * The file layout is structured as follows: 495 * 496 * +---------------+-------------------+----- ... ----+---- ... ------+ 497 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 498 * | (file header) | (section headers) | section data | section data | 499 * +---------------+-------------------+----- ... ----+---- ... ------+ 500 * |<------------ dof_hdr.dofh_loadsz --------------->| | 501 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 502 * 503 * The file header stores meta-data including a magic number, data model for 504 * the instrumentation, data encoding, and properties of the DIF code within. 505 * The header describes its own size and the size of the section headers. By 506 * convention, an array of section headers follows the file header, and then 507 * the data for all loadable sections and unloadable sections. This permits 508 * consumer code to easily download the headers and all loadable data into the 509 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 510 * 511 * The section headers describe the size, offset, alignment, and section type 512 * for each section. Sections are described using a set of #defines that tell 513 * the consumer what kind of data is expected. Sections can contain links to 514 * other sections by storing a dof_secidx_t, an index into the section header 515 * array, inside of the section data structures. The section header includes 516 * an entry size so that sections with data arrays can grow their structures. 517 * 518 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 519 * are represented themselves as a collection of related DOF sections. This 520 * permits us to change the set of sections associated with a DIFO over time, 521 * and also permits us to encode DIFOs that contain different sets of sections. 522 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 523 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 524 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 525 * 526 * This loose coupling of the file structure (header and sections) to the 527 * structure of the DTrace program itself (ECB descriptions, action 528 * descriptions, and DIFOs) permits activities such as relocation processing 529 * to occur in a single pass without having to understand D program structure. 530 * 531 * Finally, strings are always stored in ELF-style string tables along with a 532 * string table section index and string table offset. Therefore strings in 533 * DOF are always arbitrary-length and not bound to the current implementation. 534 */ 535 536 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 537 538 typedef struct dof_hdr { 539 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 540 uint32_t dofh_flags; /* file attribute flags (if any) */ 541 uint32_t dofh_hdrsize; /* size of file header in bytes */ 542 uint32_t dofh_secsize; /* size of section header in bytes */ 543 uint32_t dofh_secnum; /* number of section headers */ 544 uint64_t dofh_secoff; /* file offset of section headers */ 545 uint64_t dofh_loadsz; /* file size of loadable portion */ 546 uint64_t dofh_filesz; /* file size of entire DOF file */ 547 uint64_t dofh_pad; /* reserved for future use */ 548 } dof_hdr_t; 549 550 #define DOF_ID_MAG0 0 /* first byte of magic number */ 551 #define DOF_ID_MAG1 1 /* second byte of magic number */ 552 #define DOF_ID_MAG2 2 /* third byte of magic number */ 553 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 554 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 555 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 556 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 557 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 558 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 559 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 560 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 561 562 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 563 #define DOF_MAG_MAG1 'D' 564 #define DOF_MAG_MAG2 'O' 565 #define DOF_MAG_MAG3 'F' 566 567 #define DOF_MAG_STRING "\177DOF" 568 #define DOF_MAG_STRLEN 4 569 570 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 571 #define DOF_MODEL_ILP32 1 572 #define DOF_MODEL_LP64 2 573 574 #ifdef _LP64 575 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 576 #else 577 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 578 #endif 579 580 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 581 #define DOF_ENCODE_LSB 1 582 #define DOF_ENCODE_MSB 2 583 584 #ifdef _BIG_ENDIAN 585 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 586 #else 587 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 588 #endif 589 590 #define DOF_VERSION_1 1 /* DOF_ID_VERSION */ 591 #define DOF_VERSION DOF_VERSION_1 592 593 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 594 595 typedef uint32_t dof_secidx_t; /* section header table index type */ 596 typedef uint32_t dof_stridx_t; /* string table index type */ 597 598 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 599 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 600 601 typedef struct dof_sec { 602 uint32_t dofs_type; /* section type (see below) */ 603 uint32_t dofs_align; /* section data memory alignment */ 604 uint32_t dofs_flags; /* section flags (if any) */ 605 uint32_t dofs_entsize; /* size of section entry (if table) */ 606 uint64_t dofs_offset; /* offset of section data within file */ 607 uint64_t dofs_size; /* size of section data in bytes */ 608 } dof_sec_t; 609 610 #define DOF_SECT_NONE 0 /* null section */ 611 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 612 #define DOF_SECT_SOURCE 2 /* D program source code */ 613 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 614 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 615 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 616 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 617 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 618 #define DOF_SECT_STRTAB 8 /* string table */ 619 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 620 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 621 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 622 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 623 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 624 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 625 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 626 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 627 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 628 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 629 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 630 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 631 632 #define DOF_SECF_LOAD 1 /* section should be loaded */ 633 634 typedef struct dof_ecbdesc { 635 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 636 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 637 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 638 uint32_t dofe_pad; /* reserved for future use */ 639 uint64_t dofe_uarg; /* user-supplied library argument */ 640 } dof_ecbdesc_t; 641 642 typedef struct dof_probedesc { 643 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 644 dof_stridx_t dofp_provider; /* provider string */ 645 dof_stridx_t dofp_mod; /* module string */ 646 dof_stridx_t dofp_func; /* function string */ 647 dof_stridx_t dofp_name; /* name string */ 648 uint32_t dofp_id; /* probe identifier (or zero) */ 649 } dof_probedesc_t; 650 651 typedef struct dof_actdesc { 652 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 653 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 654 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 655 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 656 uint64_t dofa_arg; /* kind-specific argument */ 657 uint64_t dofa_uarg; /* user-supplied argument */ 658 } dof_actdesc_t; 659 660 typedef struct dof_difohdr { 661 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 662 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 663 } dof_difohdr_t; 664 665 typedef struct dof_relohdr { 666 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 667 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 668 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 669 } dof_relohdr_t; 670 671 typedef struct dof_relodesc { 672 dof_stridx_t dofr_name; /* string name of relocation symbol */ 673 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 674 uint64_t dofr_offset; /* byte offset for relocation */ 675 uint64_t dofr_data; /* additional type-specific data */ 676 } dof_relodesc_t; 677 678 #define DOF_RELO_NONE 0 /* empty relocation entry */ 679 #define DOF_RELO_SETX 1 /* relocate setx value */ 680 681 typedef struct dof_optdesc { 682 uint32_t dofo_option; /* option identifier */ 683 dof_secidx_t dofo_strtab; /* string table, if string option */ 684 uint64_t dofo_value; /* option value or string index */ 685 } dof_optdesc_t; 686 687 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 688 689 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 690 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 691 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 692 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 693 694 typedef struct dof_provider { 695 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 696 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 697 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 698 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 699 dof_stridx_t dofpv_name; /* provider name string */ 700 dof_attr_t dofpv_provattr; /* provider attributes */ 701 dof_attr_t dofpv_modattr; /* module attributes */ 702 dof_attr_t dofpv_funcattr; /* function attributes */ 703 dof_attr_t dofpv_nameattr; /* name attributes */ 704 dof_attr_t dofpv_argsattr; /* args attributes */ 705 } dof_provider_t; 706 707 typedef struct dof_probe { 708 uint64_t dofpr_addr; /* probe base address or offset */ 709 dof_stridx_t dofpr_func; /* probe function string */ 710 dof_stridx_t dofpr_name; /* probe name string */ 711 dof_stridx_t dofpr_nargv; /* native argument type strings */ 712 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 713 uint32_t dofpr_argidx; /* index of first argument mapping */ 714 uint32_t dofpr_offidx; /* index of first offset entry */ 715 uint8_t dofpr_nargc; /* native argument count */ 716 uint8_t dofpr_xargc; /* translated argument count */ 717 uint16_t dofpr_noffs; /* number of offset entries for probe */ 718 uint32_t dofpr_pad; /* reserved for future use */ 719 } dof_probe_t; 720 721 /* 722 * DTrace Intermediate Format Object (DIFO) 723 * 724 * A DIFO is used to store the compiled DIF for a D expression, its return 725 * type, and its string and variable tables. The string table is a single 726 * buffer of character data into which sets instructions and variable 727 * references can reference strings using a byte offset. The variable table 728 * is an array of dtrace_difv_t structures that describe the name and type of 729 * each variable and the id used in the DIF code. This structure is described 730 * above in the DIF section of this header file. The DIFO is used at both 731 * user-level (in the library) and in the kernel, but the structure is never 732 * passed between the two: the DOF structures form the only interface. As a 733 * result, the definition can change depending on the presence of _KERNEL. 734 */ 735 typedef struct dtrace_difo { 736 dif_instr_t *dtdo_buf; /* instruction buffer */ 737 uint64_t *dtdo_inttab; /* integer table (optional) */ 738 char *dtdo_strtab; /* string table (optional) */ 739 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 740 uint_t dtdo_len; /* length of instruction buffer */ 741 uint_t dtdo_intlen; /* length of integer table */ 742 uint_t dtdo_strlen; /* length of string table */ 743 uint_t dtdo_varlen; /* length of variable table */ 744 dtrace_diftype_t dtdo_rtype; /* return type */ 745 uint_t dtdo_refcnt; /* owner reference count */ 746 uint_t dtdo_destructive; /* invokes destructive subroutines */ 747 #ifndef _KERNEL 748 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 749 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 750 uint32_t dtdo_krelen; /* length of krelo table */ 751 uint32_t dtdo_urelen; /* length of urelo table */ 752 #endif 753 } dtrace_difo_t; 754 755 /* 756 * DTrace Enabling Description Structures 757 * 758 * When DTrace is tracking the description of a DTrace enabling entity (probe, 759 * predicate, action, ECB, record, etc.), it does so in a description 760 * structure. These structures all end in "desc", and are used at both 761 * user-level and in the kernel -- but (with the exception of 762 * dtrace_probedesc_t) they are never passed between them. Typically, 763 * user-level will use the description structures when assembling an enabling. 764 * It will then distill those description structures into a DOF object (see 765 * above), and send it into the kernel. The kernel will again use the 766 * description structures to create a description of the enabling as it reads 767 * the DOF. When the description is complete, the enabling will be actually 768 * created -- turning it into the structures that represent the enabling 769 * instead of merely describing it. Not surprisingly, the description 770 * structures bear a strong resemblance to the DOF structures that act as their 771 * conduit. 772 */ 773 struct dtrace_predicate; 774 775 typedef struct dtrace_probedesc { 776 dtrace_id_t dtpd_id; /* probe identifier */ 777 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 778 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 779 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 780 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 781 } dtrace_probedesc_t; 782 783 typedef struct dtrace_repldesc { 784 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 785 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 786 } dtrace_repldesc_t; 787 788 typedef struct dtrace_preddesc { 789 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 790 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 791 } dtrace_preddesc_t; 792 793 typedef struct dtrace_actdesc { 794 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 795 struct dtrace_actdesc *dtad_next; /* next action */ 796 dtrace_actkind_t dtad_kind; /* kind of action */ 797 uint32_t dtad_ntuple; /* number in tuple */ 798 uint64_t dtad_arg; /* action argument */ 799 uint64_t dtad_uarg; /* user argument */ 800 int dtad_refcnt; /* reference count */ 801 } dtrace_actdesc_t; 802 803 typedef struct dtrace_ecbdesc { 804 dtrace_actdesc_t *dted_action; /* action description(s) */ 805 dtrace_preddesc_t dted_pred; /* predicate description */ 806 dtrace_probedesc_t dted_probe; /* probe description */ 807 uint64_t dted_uarg; /* library argument */ 808 int dted_refcnt; /* reference count */ 809 } dtrace_ecbdesc_t; 810 811 /* 812 * DTrace Metadata Description Structures 813 * 814 * DTrace separates the trace data stream from the metadata stream. The only 815 * metadata tokens placed in the data stream are enabled probe identifiers 816 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 817 * to determine the structure of the data, DTrace consumers pass the token to 818 * the kernel, and receive in return a corresponding description of the enabled 819 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 820 * dtrace_aggdesc structure). Both of these structures are expressed in terms 821 * of record descriptions (via the dtrace_recdesc structure) that describe the 822 * exact structure of the data. Some record descriptions may also contain a 823 * format identifier; this additional bit of metadata can be retrieved from the 824 * kernel, for which a format description is returned via the dtrace_fmtdesc 825 * structure. Note that all four of these structures must be bitness-neutral 826 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 827 */ 828 typedef struct dtrace_recdesc { 829 dtrace_actkind_t dtrd_action; /* kind of action */ 830 uint32_t dtrd_size; /* size of record */ 831 uint32_t dtrd_offset; /* offset in ECB's data */ 832 uint16_t dtrd_alignment; /* required alignment */ 833 uint16_t dtrd_format; /* format, if any */ 834 uint64_t dtrd_arg; /* action argument */ 835 uint64_t dtrd_uarg; /* user argument */ 836 } dtrace_recdesc_t; 837 838 typedef struct dtrace_eprobedesc { 839 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 840 dtrace_id_t dtepd_probeid; /* probe ID */ 841 uint64_t dtepd_uarg; /* library argument */ 842 uint32_t dtepd_size; /* total size */ 843 int dtepd_nrecs; /* number of records */ 844 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 845 } dtrace_eprobedesc_t; 846 847 typedef struct dtrace_aggdesc { 848 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 849 int dtagd_flags; /* not filled in by kernel */ 850 dtrace_aggid_t dtagd_id; /* aggregation ID */ 851 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 852 uint32_t dtagd_size; /* size in bytes */ 853 int dtagd_nrecs; /* number of records */ 854 uint32_t dtagd_pad; /* explicit padding */ 855 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 856 } dtrace_aggdesc_t; 857 858 typedef struct dtrace_fmtdesc { 859 DTRACE_PTR(char, dtfd_string); /* format string */ 860 int dtfd_length; /* length of format string */ 861 uint16_t dtfd_format; /* format identifier */ 862 } dtrace_fmtdesc_t; 863 864 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 865 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 866 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 867 868 #define DTRACE_SIZEOF_AGGDESC(desc) \ 869 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 870 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 871 872 /* 873 * DTrace Option Interface 874 * 875 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 876 * in a DOF image. The dof_optdesc structure contains an option identifier and 877 * an option value. The valid option identifiers are found below; the mapping 878 * between option identifiers and option identifying strings is maintained at 879 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 880 * following are potentially valid option values: all positive integers, zero 881 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 882 * predefined tokens as their values; these are defined with 883 * DTRACEOPT_{option}_{token}. 884 */ 885 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 886 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 887 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 888 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 889 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 890 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 891 #define DTRACEOPT_STRSIZE 6 /* string size */ 892 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 893 #define DTRACEOPT_CPU 8 /* CPU to trace */ 894 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 895 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 896 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 897 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 898 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 899 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 900 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 901 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 902 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 903 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 904 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 905 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 906 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 907 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 908 #define DTRACEOPT_MAX 23 /* number of options */ 909 910 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 911 912 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 913 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 914 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 915 916 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 917 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 918 919 /* 920 * DTrace Buffer Interface 921 * 922 * In order to get a snapshot of the principal or aggregation buffer, 923 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 924 * structure. This describes which CPU user-level is interested in, and 925 * where user-level wishes the kernel to snapshot the buffer to (the 926 * dtbd_data field). The kernel uses the same structure to pass back some 927 * information regarding the buffer: the size of data actually copied out, the 928 * number of drops, the number of errors, and the offset of the oldest record. 929 * If the buffer policy is a "switch" policy, taking a snapshot of the 930 * principal buffer has the additional effect of switching the active and 931 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 932 * the additional effect of switching the active and inactive buffers. 933 */ 934 typedef struct dtrace_bufdesc { 935 uint64_t dtbd_size; /* size of buffer */ 936 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 937 uint32_t dtbd_errors; /* number of errors */ 938 uint64_t dtbd_drops; /* number of drops */ 939 DTRACE_PTR(char, dtbd_data); /* data */ 940 uint64_t dtbd_oldest; /* offset of oldest record */ 941 } dtrace_bufdesc_t; 942 943 /* 944 * DTrace Status 945 * 946 * The status of DTrace is relayed via the dtrace_status structure. This 947 * structure contains members to count drops other than the capacity drops 948 * available via the buffer interface (see above). This consists of dynamic 949 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 950 * speculative drops (including capacity speculative drops, drops due to busy 951 * speculative buffers and drops due to unavailable speculative buffers). 952 * Additionally, the status structure contains a field to indicate the number 953 * of "fill"-policy buffers have been filled and a boolean field to indicate 954 * that exit() has been called. If the dtst_exiting field is non-zero, no 955 * further data will be generated until tracing is stopped (at which time any 956 * enablings of the END action will be processed); if user-level sees that 957 * this field is non-zero, tracing should be stopped as soon as possible. 958 */ 959 typedef struct dtrace_status { 960 uint64_t dtst_dyndrops; /* dynamic drops */ 961 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 962 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 963 uint64_t dtst_specdrops; /* speculative drops */ 964 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 965 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 966 uint64_t dtst_errors; /* total errors */ 967 uint64_t dtst_filled; /* number of filled bufs */ 968 char dtst_killed; /* non-zero if killed */ 969 char dtst_exiting; /* non-zero if exit() called */ 970 char dtst_pad[6]; /* pad out to 64-bit align */ 971 } dtrace_status_t; 972 973 /* 974 * DTrace Configuration 975 * 976 * User-level may need to understand some elements of the kernel DTrace 977 * configuration in order to generate correct DIF. This information is 978 * conveyed via the dtrace_conf structure. 979 */ 980 typedef struct dtrace_conf { 981 uint_t dtc_difversion; /* supported DIF version */ 982 uint_t dtc_difintregs; /* # of DIF integer registers */ 983 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 984 uint_t dtc_ctfmodel; /* CTF data model */ 985 uint_t dtc_pad[8]; /* reserved for future use */ 986 } dtrace_conf_t; 987 988 /* 989 * DTrace Faults 990 * 991 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 992 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 993 * postprocessing at user-level. Probe processing faults induce an ERROR 994 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 995 * the error condition using thse symbolic labels. 996 */ 997 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 998 #define DTRACEFLT_BADADDR 1 /* Bad address */ 999 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1000 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1001 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1002 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1003 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1004 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1005 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1006 1007 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1008 1009 /* 1010 * DTrace Argument Types 1011 * 1012 * Because it would waste both space and time, argument types do not reside 1013 * with the probe. In order to determine argument types for args[X] 1014 * variables, the D compiler queries for argument types on a probe-by-probe 1015 * basis. (This optimizes for the common case that arguments are either not 1016 * used or used in an untyped fashion.) Typed arguments are specified with a 1017 * string of the type name in the dtragd_native member of the argument 1018 * description structure. Typed arguments may be further translated to types 1019 * of greater stability; the provider indicates such a translated argument by 1020 * filling in the dtargd_xlate member with the string of the translated type. 1021 * Finally, the provider may indicate which argument value a given argument 1022 * maps to by setting the dtargd_mapping member -- allowing a single argument 1023 * to map to multiple args[X] variables. 1024 */ 1025 typedef struct dtrace_argdesc { 1026 dtrace_id_t dtargd_id; /* probe identifier */ 1027 int dtargd_ndx; /* arg number (-1 iff none) */ 1028 int dtargd_mapping; /* value mapping */ 1029 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1030 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1031 } dtrace_argdesc_t; 1032 1033 /* 1034 * DTrace Stability Attributes 1035 * 1036 * Each DTrace provider advertises the name and data stability of each of its 1037 * probe description components, as well as its architectural dependencies. 1038 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1039 * order to compute the properties of an input program and report them. 1040 */ 1041 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1042 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1043 1044 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1045 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1046 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1047 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1048 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1049 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1050 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1051 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1052 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1053 1054 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1055 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1056 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1057 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1058 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1059 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1060 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1061 1062 #define DTRACE_PRIV_NONE 0x0000 1063 #define DTRACE_PRIV_KERNEL 0x0001 1064 #define DTRACE_PRIV_USER 0x0002 1065 #define DTRACE_PRIV_PROC 0x0004 1066 #define DTRACE_PRIV_OWNER 0x0008 1067 1068 #define DTRACE_PRIV_ALL \ 1069 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1070 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER) 1071 1072 typedef struct dtrace_ppriv { 1073 uint32_t dtpp_flags; /* privilege flags */ 1074 uid_t dtpp_uid; /* user ID */ 1075 } dtrace_ppriv_t; 1076 1077 typedef struct dtrace_attribute { 1078 dtrace_stability_t dtat_name; /* entity name stability */ 1079 dtrace_stability_t dtat_data; /* entity data stability */ 1080 dtrace_class_t dtat_class; /* entity data dependency */ 1081 } dtrace_attribute_t; 1082 1083 typedef struct dtrace_pattr { 1084 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1085 dtrace_attribute_t dtpa_mod; /* module attributes */ 1086 dtrace_attribute_t dtpa_func; /* function attributes */ 1087 dtrace_attribute_t dtpa_name; /* name attributes */ 1088 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1089 } dtrace_pattr_t; 1090 1091 typedef struct dtrace_providerdesc { 1092 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1093 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1094 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1095 } dtrace_providerdesc_t; 1096 1097 /* 1098 * DTrace Pseudodevice Interface 1099 * 1100 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1101 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1102 * DTrace. 1103 */ 1104 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1105 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1106 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1107 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1108 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1109 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1110 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1111 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1112 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1113 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1114 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1115 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1116 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1117 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1118 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1119 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1120 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1121 1122 /* 1123 * DTrace Helpers 1124 * 1125 * In general, DTrace establishes probes in processes and takes actions on 1126 * processes without knowing their specific user-level structures. Instead of 1127 * existing in the framework, process-specific knowledge is contained by the 1128 * enabling D program -- which can apply process-specific knowledge by making 1129 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1130 * operate on user-level data. However, there may exist some specific probes 1131 * of particular semantic relevance that the application developer may wish to 1132 * explicitly export. For example, an application may wish to export a probe 1133 * at the point that it begins and ends certain well-defined transactions. In 1134 * addition to providing probes, programs may wish to offer assistance for 1135 * certain actions. For example, in highly dynamic environments (e.g., Java), 1136 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1137 * names (the translation from instruction addresses to corresponding symbol 1138 * names may only be possible in situ); these environments may wish to define 1139 * a series of actions to be applied in situ to obtain a meaningful stack 1140 * trace. 1141 * 1142 * These two mechanisms -- user-level statically defined tracing and assisting 1143 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1144 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1145 * providers, probes and their arguments. If a helper wishes to provide 1146 * action assistance, probe descriptions and corresponding DIF actions may be 1147 * specified in the helper DOF. For such helper actions, however, the probe 1148 * description describes the specific helper: all DTrace helpers have the 1149 * provider name "dtrace" and the module name "helper", and the name of the 1150 * helper is contained in the function name (for example, the ustack() helper 1151 * is named "ustack"). Any helper-specific name may be contained in the name 1152 * (for example, if a helper were to have a constructor, it might be named 1153 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1154 * action that they are helping is taken. Helper actions may only return DIF 1155 * expressions, and may only call the following subroutines: 1156 * 1157 * alloca() <= Allocates memory out of the consumer's scratch space 1158 * bcopy() <= Copies memory to scratch space 1159 * copyin() <= Copies memory from user-level into consumer's scratch 1160 * copyinto() <= Copies memory into a specific location in scratch 1161 * copyinstr() <= Copies a string into a specific location in scratch 1162 * 1163 * Helper actions may only access the following built-in variables: 1164 * 1165 * curthread <= Current kthread_t pointer 1166 * tid <= Current thread identifier 1167 * pid <= Current process identifier 1168 * execname <= Current executable name 1169 * 1170 * Helper actions may not manipulate or allocate dynamic variables, but they 1171 * may have clause-local and statically-allocated global variables. The 1172 * helper action variable state is specific to the helper action -- variables 1173 * used by the helper action may not be accessed outside of the helper 1174 * action, and the helper action may not access variables that like outside 1175 * of it. Helper actions may not load from kernel memory at-large; they are 1176 * restricting to loading current user state (via copyin() and variants) and 1177 * scratch space. As with probe enablings, helper actions are executed in 1178 * program order. The result of the helper action is the result of the last 1179 * executing helper expression. 1180 * 1181 * Helpers -- composed of either providers/probes or probes/actions (or both) 1182 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1183 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1184 * encapsulates the name and base address of the user-level library or 1185 * executable publishing the helpers and probes as well as the DOF that 1186 * contains the definitions of those helpers and probes. 1187 * 1188 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1189 * helpers and should no longer be used. No other ioctls are valid on the 1190 * helper minor node. 1191 */ 1192 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1193 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1194 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1195 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1196 1197 typedef struct dof_helper { 1198 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1199 uint64_t dofhp_addr; /* base address of object */ 1200 uint64_t dofhp_dof; /* address of helper DOF */ 1201 } dof_helper_t; 1202 1203 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1204 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1205 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1206 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1207 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1208 1209 #ifdef _KERNEL 1210 1211 /* 1212 * DTrace Provider API 1213 * 1214 * The following functions are implemented by the DTrace framework and are 1215 * used to implement separate in-kernel DTrace providers. Common functions 1216 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1217 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1218 * 1219 * The provider API has two halves: the API that the providers consume from 1220 * DTrace, and the API that providers make available to DTrace. 1221 * 1222 * 1 Framework-to-Provider API 1223 * 1224 * 1.1 Overview 1225 * 1226 * The Framework-to-Provider API is represented by the dtrace_pops structure 1227 * that the provider passes to the framework when registering itself. This 1228 * structure consists of the following members: 1229 * 1230 * dtps_provide() <-- Provide all probes, all modules 1231 * dtps_provide_module() <-- Provide all probes in specified module 1232 * dtps_enable() <-- Enable specified probe 1233 * dtps_disable() <-- Disable specified probe 1234 * dtps_suspend() <-- Suspend specified probe 1235 * dtps_resume() <-- Resume specified probe 1236 * dtps_getargdesc() <-- Get the argument description for args[X] 1237 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1238 * dtps_usermode() <-- Find out if the probe was fired in user mode 1239 * dtps_destroy() <-- Destroy all state associated with this probe 1240 * 1241 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1242 * 1243 * 1.2.1 Overview 1244 * 1245 * Called to indicate that the provider should provide all probes. If the 1246 * specified description is non-NULL, dtps_provide() is being called because 1247 * no probe matched a specified probe -- if the provider has the ability to 1248 * create custom probes, it may wish to create a probe that matches the 1249 * specified description. 1250 * 1251 * 1.2.2 Arguments and notes 1252 * 1253 * The first argument is the cookie as passed to dtrace_register(). The 1254 * second argument is a pointer to a probe description that the provider may 1255 * wish to consider when creating custom probes. The provider is expected to 1256 * call back into the DTrace framework via dtrace_probe_create() to create 1257 * any necessary probes. dtps_provide() may be called even if the provider 1258 * has made available all probes; the provider should check the return value 1259 * of dtrace_probe_create() to handle this case. Note that the provider need 1260 * not implement both dtps_provide() and dtps_provide_module(); see 1261 * "Arguments and Notes" for dtrace_register(), below. 1262 * 1263 * 1.2.3 Return value 1264 * 1265 * None. 1266 * 1267 * 1.2.4 Caller's context 1268 * 1269 * dtps_provide() is typically called from open() or ioctl() context, but may 1270 * be called from other contexts as well. The DTrace framework is locked in 1271 * such a way that providers may not register or unregister. This means that 1272 * the provider may not call any DTrace API that affects its registration with 1273 * the framework, including dtrace_register(), dtrace_unregister(), 1274 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1275 * that the provider may (and indeed, is expected to) call probe-related 1276 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1277 * and dtrace_probe_arg(). 1278 * 1279 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1280 * 1281 * 1.3.1 Overview 1282 * 1283 * Called to indicate that the provider should provide all probes in the 1284 * specified module. 1285 * 1286 * 1.3.2 Arguments and notes 1287 * 1288 * The first argument is the cookie as passed to dtrace_register(). The 1289 * second argument is a pointer to a modctl structure that indicates the 1290 * module for which probes should be created. 1291 * 1292 * 1.3.3 Return value 1293 * 1294 * None. 1295 * 1296 * 1.3.4 Caller's context 1297 * 1298 * dtps_provide_module() may be called from open() or ioctl() context, but 1299 * may also be called from a module loading context. mod_lock is held, and 1300 * the DTrace framework is locked in such a way that providers may not 1301 * register or unregister. This means that the provider may not call any 1302 * DTrace API that affects its registration with the framework, including 1303 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1304 * dtrace_condense(). However, the context is such that the provider may (and 1305 * indeed, is expected to) call probe-related DTrace routines, including 1306 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1307 * that the provider need not implement both dtps_provide() and 1308 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1309 * below. 1310 * 1311 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1312 * 1313 * 1.4.1 Overview 1314 * 1315 * Called to enable the specified probe. 1316 * 1317 * 1.4.2 Arguments and notes 1318 * 1319 * The first argument is the cookie as passed to dtrace_register(). The 1320 * second argument is the identifier of the probe to be enabled. The third 1321 * argument is the probe argument as passed to dtrace_probe_create(). 1322 * dtps_enable() will be called when a probe transitions from not being 1323 * enabled at all to having one or more ECB. The number of ECBs associated 1324 * with the probe may change without subsequent calls into the provider. 1325 * When the number of ECBs drops to zero, the provider will be explicitly 1326 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1327 * be called for a probe identifier that hasn't been explicitly enabled via 1328 * dtps_enable(). 1329 * 1330 * 1.4.3 Return value 1331 * 1332 * None. 1333 * 1334 * 1.4.4 Caller's context 1335 * 1336 * The DTrace framework is locked in such a way that it may not be called 1337 * back into at all. cpu_lock is held. mod_lock is not held and may not 1338 * be acquired. 1339 * 1340 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1341 * 1342 * 1.5.1 Overview 1343 * 1344 * Called to disable the specified probe. 1345 * 1346 * 1.5.2 Arguments and notes 1347 * 1348 * The first argument is the cookie as passed to dtrace_register(). The 1349 * second argument is the identifier of the probe to be disabled. The third 1350 * argument is the probe argument as passed to dtrace_probe_create(). 1351 * dtps_disable() will be called when a probe transitions from being enabled 1352 * to having zero ECBs. dtrace_probe() should never be called for a probe 1353 * identifier that has been explicitly enabled via dtps_disable(). 1354 * 1355 * 1.5.3 Return value 1356 * 1357 * None. 1358 * 1359 * 1.5.4 Caller's context 1360 * 1361 * The DTrace framework is locked in such a way that it may not be called 1362 * back into at all. cpu_lock is held. mod_lock is not held and may not 1363 * be acquired. 1364 * 1365 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1366 * 1367 * 1.6.1 Overview 1368 * 1369 * Called to suspend the specified enabled probe. This entry point is for 1370 * providers that may need to suspend some or all of their probes when CPUs 1371 * are being powered on or when the boot monitor is being entered for a 1372 * prolonged period of time. 1373 * 1374 * 1.6.2 Arguments and notes 1375 * 1376 * The first argument is the cookie as passed to dtrace_register(). The 1377 * second argument is the identifier of the probe to be suspended. The 1378 * third argument is the probe argument as passed to dtrace_probe_create(). 1379 * dtps_suspend will only be called on an enabled probe. Providers that 1380 * provide a dtps_suspend entry point will want to take roughly the action 1381 * that it takes for dtps_disable. 1382 * 1383 * 1.6.3 Return value 1384 * 1385 * None. 1386 * 1387 * 1.6.4 Caller's context 1388 * 1389 * Interrupts are disabled. The DTrace framework is in a state such that the 1390 * specified probe cannot be disabled or destroyed for the duration of 1391 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1392 * little latitude; the provider is expected to do no more than a store to 1393 * memory. 1394 * 1395 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1396 * 1397 * 1.7.1 Overview 1398 * 1399 * Called to resume the specified enabled probe. This entry point is for 1400 * providers that may need to resume some or all of their probes after the 1401 * completion of an event that induced a call to dtps_suspend(). 1402 * 1403 * 1.7.2 Arguments and notes 1404 * 1405 * The first argument is the cookie as passed to dtrace_register(). The 1406 * second argument is the identifier of the probe to be resumed. The 1407 * third argument is the probe argument as passed to dtrace_probe_create(). 1408 * dtps_resume will only be called on an enabled probe. Providers that 1409 * provide a dtps_resume entry point will want to take roughly the action 1410 * that it takes for dtps_enable. 1411 * 1412 * 1.7.3 Return value 1413 * 1414 * None. 1415 * 1416 * 1.7.4 Caller's context 1417 * 1418 * Interrupts are disabled. The DTrace framework is in a state such that the 1419 * specified probe cannot be disabled or destroyed for the duration of 1420 * dtps_resume(). As interrupts are disabled, the provider is afforded 1421 * little latitude; the provider is expected to do no more than a store to 1422 * memory. 1423 * 1424 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1425 * dtrace_argdesc_t *desc) 1426 * 1427 * 1.8.1 Overview 1428 * 1429 * Called to retrieve the argument description for an args[X] variable. 1430 * 1431 * 1.8.2 Arguments and notes 1432 * 1433 * The first argument is the cookie as passed to dtrace_register(). The 1434 * second argument is the identifier of the current probe. The third 1435 * argument is the probe argument as passed to dtrace_probe_create(). The 1436 * fourth argument is a pointer to the argument description. This 1437 * description is both an input and output parameter: it contains the 1438 * index of the desired argument in the dtargd_ndx field, and expects 1439 * the other fields to be filled in upon return. If there is no argument 1440 * corresponding to the specified index, the dtargd_ndx field should be set 1441 * to DTRACE_ARGNONE. 1442 * 1443 * 1.8.3 Return value 1444 * 1445 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1446 * members of the dtrace_argdesc_t structure are all output values. 1447 * 1448 * 1.8.4 Caller's context 1449 * 1450 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1451 * the DTrace framework is locked in such a way that providers may not 1452 * register or unregister. This means that the provider may not call any 1453 * DTrace API that affects its registration with the framework, including 1454 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1455 * dtrace_condense(). 1456 * 1457 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1458 * int argno, int aframes) 1459 * 1460 * 1.9.1 Overview 1461 * 1462 * Called to retrieve a value for an argX or args[X] variable. 1463 * 1464 * 1.9.2 Arguments and notes 1465 * 1466 * The first argument is the cookie as passed to dtrace_register(). The 1467 * second argument is the identifier of the current probe. The third 1468 * argument is the probe argument as passed to dtrace_probe_create(). The 1469 * fourth argument is the number of the argument (the X in the example in 1470 * 1.9.1). The fifth argument is the number of stack frames that were used 1471 * to get from the actual place in the code that fired the probe to 1472 * dtrace_probe() itself, the so-called artificial frames. This argument may 1473 * be used to descend an appropriate number of frames to find the correct 1474 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1475 * function is used. 1476 * 1477 * 1.9.3 Return value 1478 * 1479 * The value of the argument. 1480 * 1481 * 1.9.4 Caller's context 1482 * 1483 * This is called from within dtrace_probe() meaning that interrupts 1484 * are disabled. No locks should be taken within this entry point. 1485 * 1486 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1487 * 1488 * 1.10.1 Overview 1489 * 1490 * Called to determine if the probe was fired in a user context. 1491 * 1492 * 1.10.2 Arguments and notes 1493 * 1494 * The first argument is the cookie as passed to dtrace_register(). The 1495 * second argument is the identifier of the current probe. The third 1496 * argument is the probe argument as passed to dtrace_probe_create(). This 1497 * entry point must not be left NULL for providers whose probes allow for 1498 * mixed mode tracing, that is to say those probes that can fire during 1499 * kernel- _or_ user-mode execution 1500 * 1501 * 1.10.3 Return value 1502 * 1503 * A boolean value. 1504 * 1505 * 1.10.4 Caller's context 1506 * 1507 * This is called from within dtrace_probe() meaning that interrupts 1508 * are disabled. No locks should be taken within this entry point. 1509 * 1510 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1511 * 1512 * 1.11.1 Overview 1513 * 1514 * Called to destroy the specified probe. 1515 * 1516 * 1.11.2 Arguments and notes 1517 * 1518 * The first argument is the cookie as passed to dtrace_register(). The 1519 * second argument is the identifier of the probe to be destroyed. The third 1520 * argument is the probe argument as passed to dtrace_probe_create(). The 1521 * provider should free all state associated with the probe. The framework 1522 * guarantees that dtps_destroy() is only called for probes that have either 1523 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1524 * Once dtps_disable() has been called for a probe, no further call will be 1525 * made specifying the probe. 1526 * 1527 * 1.11.3 Return value 1528 * 1529 * None. 1530 * 1531 * 1.11.4 Caller's context 1532 * 1533 * The DTrace framework is locked in such a way that it may not be called 1534 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1535 * acquired. 1536 * 1537 * 1538 * 2 Provider-to-Framework API 1539 * 1540 * 2.1 Overview 1541 * 1542 * The Provider-to-Framework API provides the mechanism for the provider to 1543 * register itself with the DTrace framework, to create probes, to lookup 1544 * probes and (most importantly) to fire probes. The Provider-to-Framework 1545 * consists of: 1546 * 1547 * dtrace_register() <-- Register a provider with the DTrace framework 1548 * dtrace_unregister() <-- Remove a provider's DTrace registration 1549 * dtrace_invalidate() <-- Invalidate the specified provider 1550 * dtrace_condense() <-- Remove a provider's unenabled probes 1551 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1552 * dtrace_probe_create() <-- Create a DTrace probe 1553 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1554 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1555 * dtrace_probe() <-- Fire the specified probe 1556 * 1557 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1558 * uint32_t priv, uid_t uid, const dtrace_pops_t *pops, void *arg, 1559 * dtrace_provider_id_t *idp) 1560 * 1561 * 2.2.1 Overview 1562 * 1563 * dtrace_register() registers the calling provider with the DTrace 1564 * framework. It should generally be called by DTrace providers in their 1565 * attach(9E) entry point. 1566 * 1567 * 2.2.2 Arguments and Notes 1568 * 1569 * The first argument is the name of the provider. The second argument is a 1570 * pointer to the stability attributes for the provider. The third argument 1571 * is the privilege flags for the provider, and must be some combination of: 1572 * 1573 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1574 * 1575 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1576 * enable probes from this provider 1577 * 1578 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1579 * enable probes from this provider 1580 * 1581 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1582 * may enable probes from this provider 1583 * 1584 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1585 * the privilege requirements above. These probes 1586 * require either (a) a user ID matching the user 1587 * ID passed as the fourth argument to 1588 * dtrace_register() or (b) the PRIV_PROC_OWNER 1589 * privilege. 1590 * 1591 * Note that these flags designate the _visibility_ of the probes, not 1592 * the conditions under which they may or may not fire. 1593 * 1594 * The fourth argument is a user ID that is associated with the provider. 1595 * This argument should be 0 if the privilege flags don't include 1596 * DTRACE_PRIV_OWNER. 1597 * 1598 * The fifth argument is a DTrace provider operations vector, which provides 1599 * the implementation for the Framework-to-Provider API. (See Section 1, 1600 * above.) This must be non-NULL, and each member must be non-NULL. The 1601 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1602 * members (if the provider so desires, _one_ of these members may be left 1603 * NULL -- denoting that the provider only implements the other) and (2) 1604 * the dtps_suspend() and dtps_resume() members, which must either both be 1605 * NULL or both be non-NULL. 1606 * 1607 * The sixth argument is a cookie to be specified as the first argument for 1608 * each function in the Framework-to-Provider API. This argument may have 1609 * any value. 1610 * 1611 * The final argument is a pointer to dtrace_provider_id_t. If 1612 * dtrace_register() successfully completes, the provider identifier will be 1613 * stored in the memory pointed to be this argument. This argument must be 1614 * non-NULL. 1615 * 1616 * 2.2.3 Return value 1617 * 1618 * On success, dtrace_register() returns 0 and stores the new provider's 1619 * identifier into the memory pointed to by the idp argument. On failure, 1620 * dtrace_register() returns an errno: 1621 * 1622 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1623 * This may because a parameter that must be non-NULL was NULL, 1624 * because the name was invalid (either empty or an illegal 1625 * provider name) or because the attributes were invalid. 1626 * 1627 * No other failure code is returned. 1628 * 1629 * 2.2.4 Caller's context 1630 * 1631 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1632 * hold no locks across dtrace_register() that may also be acquired by 1633 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1634 * 1635 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1636 * 1637 * 2.3.1 Overview 1638 * 1639 * Unregisters the specified provider from the DTrace framework. It should 1640 * generally be called by DTrace providers in their detach(9E) entry point. 1641 * 1642 * 2.3.2 Arguments and Notes 1643 * 1644 * The only argument is the provider identifier, as returned from a 1645 * successful call to dtrace_register(). As a result of calling 1646 * dtrace_unregister(), the DTrace framework will call back into the provider 1647 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1648 * completes, however, the DTrace framework will no longer make calls through 1649 * the Framework-to-Provider API. 1650 * 1651 * 2.3.3 Return value 1652 * 1653 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1654 * returns an errno: 1655 * 1656 * EBUSY There are currently processes that have the DTrace pseudodevice 1657 * open, or there exists an anonymous enabling that hasn't yet 1658 * been claimed. 1659 * 1660 * No other failure code is returned. 1661 * 1662 * 2.3.4 Caller's context 1663 * 1664 * Because a call to dtrace_unregister() may induce calls through the 1665 * Framework-to-Provider API, the caller may not hold any lock across 1666 * dtrace_register() that is also acquired in any of the Framework-to- 1667 * Provider API functions. Additionally, mod_lock may not be held. 1668 * 1669 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1670 * 1671 * 2.4.1 Overview 1672 * 1673 * Invalidates the specified provider. All subsequent probe lookups for the 1674 * specified provider will fail, but its probes will not be removed. 1675 * 1676 * 2.4.2 Arguments and note 1677 * 1678 * The only argument is the provider identifier, as returned from a 1679 * successful call to dtrace_register(). In general, a provider's probes 1680 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1681 * an entire provider, regardless of whether or not probes are enabled or 1682 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1683 * probes from firing -- it will merely prevent any new enablings of the 1684 * provider's probes. 1685 * 1686 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1687 * 1688 * 2.5.1 Overview 1689 * 1690 * Removes all the unenabled probes for the given provider. This function is 1691 * not unlike dtrace_unregister(), except that it doesn't remove the 1692 * provider just as many of its associated probes as it can. 1693 * 1694 * 2.5.2 Arguments and Notes 1695 * 1696 * As with dtrace_unregister(), the sole argument is the provider identifier 1697 * as returned from a successful call to dtrace_register(). As a result of 1698 * calling dtrace_condense(), the DTrace framework will call back into the 1699 * given provider's dtps_destroy() entry point for each of the provider's 1700 * unenabled probes. 1701 * 1702 * 2.5.3 Return value 1703 * 1704 * Currently, dtrace_condense() always returns 0. However, consumers of this 1705 * function should check the return value as appropriate; its behavior may 1706 * change in the future. 1707 * 1708 * 2.5.4 Caller's context 1709 * 1710 * As with dtrace_unregister(), the caller may not hold any lock across 1711 * dtrace_condense() that is also acquired in the provider's entry points. 1712 * Also, mod_lock may not be held. 1713 * 1714 * 2.6 int dtrace_attached() 1715 * 1716 * 2.6.1 Overview 1717 * 1718 * Indicates whether or not DTrace has attached. 1719 * 1720 * 2.6.2 Arguments and Notes 1721 * 1722 * For most providers, DTrace makes initial contact beyond registration. 1723 * That is, once a provider has registered with DTrace, it waits to hear 1724 * from DTrace to create probes. However, some providers may wish to 1725 * proactively create probes without first being told by DTrace to do so. 1726 * If providers wish to do this, they must first call dtrace_attached() to 1727 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1728 * the provider must not make any other Provider-to-Framework API call. 1729 * 1730 * 2.6.3 Return value 1731 * 1732 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1733 * 1734 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1735 * const char *func, const char *name, int aframes, void *arg) 1736 * 1737 * 2.7.1 Overview 1738 * 1739 * Creates a probe with specified module name, function name, and name. 1740 * 1741 * 2.7.2 Arguments and Notes 1742 * 1743 * The first argument is the provider identifier, as returned from a 1744 * successful call to dtrace_register(). The second, third, and fourth 1745 * arguments are the module name, function name, and probe name, 1746 * respectively. Of these, module name and function name may both be NULL 1747 * (in which case the probe is considered to be unanchored), or they may both 1748 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1749 * string. 1750 * 1751 * The fifth argument is the number of artificial stack frames that will be 1752 * found on the stack when dtrace_probe() is called for the new probe. These 1753 * artificial frames will be automatically be pruned should the stack() or 1754 * stackdepth() functions be called as part of one of the probe's ECBs. If 1755 * the parameter doesn't add an artificial frame, this parameter should be 1756 * zero. 1757 * 1758 * The final argument is a probe argument that will be passed back to the 1759 * provider when a probe-specific operation is called. (e.g., via 1760 * dtps_enable(), dtps_disable(), etc.) 1761 * 1762 * Note that it is up to the provider to be sure that the probe that it 1763 * creates does not already exist -- if the provider is unsure of the probe's 1764 * existence, it should assure its absence with dtrace_probe_lookup() before 1765 * calling dtrace_probe_create(). 1766 * 1767 * 2.7.3 Return value 1768 * 1769 * dtrace_probe_create() always succeeds, and always returns the identifier 1770 * of the newly-created probe. 1771 * 1772 * 2.7.4 Caller's context 1773 * 1774 * While dtrace_probe_create() is generally expected to be called from 1775 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1776 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1777 * 1778 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1779 * const char *func, const char *name) 1780 * 1781 * 2.8.1 Overview 1782 * 1783 * Looks up a probe based on provdider and one or more of module name, 1784 * function name and probe name. 1785 * 1786 * 2.8.2 Arguments and Notes 1787 * 1788 * The first argument is the provider identifier, as returned from a 1789 * successful call to dtrace_register(). The second, third, and fourth 1790 * arguments are the module name, function name, and probe name, 1791 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1792 * the identifier of the first probe that is provided by the specified 1793 * provider and matches all of the non-NULL matching criteria. 1794 * dtrace_probe_lookup() is generally used by a provider to be check the 1795 * existence of a probe before creating it with dtrace_probe_create(). 1796 * 1797 * 2.8.3 Return value 1798 * 1799 * If the probe exists, returns its identifier. If the probe does not exist, 1800 * return DTRACE_IDNONE. 1801 * 1802 * 2.8.4 Caller's context 1803 * 1804 * While dtrace_probe_lookup() is generally expected to be called from 1805 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1806 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1807 * 1808 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1809 * 1810 * 2.9.1 Overview 1811 * 1812 * Returns the probe argument associated with the specified probe. 1813 * 1814 * 2.9.2 Arguments and Notes 1815 * 1816 * The first argument is the provider identifier, as returned from a 1817 * successful call to dtrace_register(). The second argument is a probe 1818 * identifier, as returned from dtrace_probe_lookup() or 1819 * dtrace_probe_create(). This is useful if a probe has multiple 1820 * provider-specific components to it: the provider can create the probe 1821 * once with provider-specific state, and then add to the state by looking 1822 * up the probe based on probe identifier. 1823 * 1824 * 2.9.3 Return value 1825 * 1826 * Returns the argument associated with the specified probe. If the 1827 * specified probe does not exist, or if the specified probe is not provided 1828 * by the specified provider, NULL is returned. 1829 * 1830 * 2.9.4 Caller's context 1831 * 1832 * While dtrace_probe_arg() is generally expected to be called from 1833 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1834 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1835 * 1836 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1837 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1838 * 1839 * 2.10.1 Overview 1840 * 1841 * The epicenter of DTrace: fires the specified probes with the specified 1842 * arguments. 1843 * 1844 * 2.10.2 Arguments and Notes 1845 * 1846 * The first argument is a probe identifier as returned by 1847 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1848 * arguments are the values to which the D variables "arg0" through "arg4" 1849 * will be mapped. 1850 * 1851 * dtrace_probe() should be called whenever the specified probe has fired -- 1852 * however the provider defines it. 1853 * 1854 * 2.10.3 Return value 1855 * 1856 * None. 1857 * 1858 * 2.10.4 Caller's context 1859 * 1860 * dtrace_probe() may be called in virtually any context: kernel, user, 1861 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1862 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1863 * that must be afforded to DTrace is the ability to make calls within 1864 * itself (and to its in-kernel subroutines) and the ability to access 1865 * arbitrary (but mapped) memory. On some platforms, this constrains 1866 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1867 * from any context in which TL is greater than zero. dtrace_probe() may 1868 * also not be called from any routine which may be called by dtrace_probe() 1869 * -- which includes functions in the DTrace framework and some in-kernel 1870 * DTrace subroutines. All such functions "dtrace_"; providers that 1871 * instrument the kernel arbitrarily should be sure to not instrument these 1872 * routines. 1873 */ 1874 typedef struct dtrace_pops { 1875 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 1876 void (*dtps_provide_module)(void *arg, struct modctl *mp); 1877 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 1878 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 1879 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 1880 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 1881 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 1882 dtrace_argdesc_t *desc); 1883 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 1884 int argno, int aframes); 1885 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 1886 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 1887 } dtrace_pops_t; 1888 1889 typedef uintptr_t dtrace_provider_id_t; 1890 1891 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 1892 uid_t, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 1893 extern int dtrace_unregister(dtrace_provider_id_t); 1894 extern int dtrace_condense(dtrace_provider_id_t); 1895 extern void dtrace_invalidate(dtrace_provider_id_t); 1896 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 1897 const char *, const char *); 1898 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 1899 const char *, const char *, int, void *); 1900 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 1901 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 1902 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 1903 1904 /* 1905 * DTrace Meta Provider API 1906 * 1907 * The following functions are implemented by the DTrace framework and are 1908 * used to implement meta providers. Meta providers plug into the DTrace 1909 * framework and are used to instantiate new providers on the fly. At 1910 * present, there is only one type of meta provider and only one meta 1911 * provider may be registered with the DTrace framework at a time. The 1912 * sole meta provider type provides user-land static tracing facilities 1913 * by taking meta probe descriptions and adding a corresponding provider 1914 * into the DTrace framework. 1915 * 1916 * 1 Framework-to-Provider 1917 * 1918 * 1.1 Overview 1919 * 1920 * The Framework-to-Provider API is represented by the dtrace_mops structure 1921 * that the meta provider passes to the framework when registering itself as 1922 * a meta provider. This structure consists of the following members: 1923 * 1924 * dtms_create_probe() <-- Add a new probe to a created provider 1925 * dtms_provide_pid() <-- Create a new provider for a given process 1926 * dtms_remove_pid() <-- Remove a previously created provider 1927 * 1928 * 1.2 void dtms_create_probe(void *arg, void *parg, 1929 * dtrace_helper_probedesc_t *probedesc); 1930 * 1931 * 1.2.1 Overview 1932 * 1933 * Called by the DTrace framework to create a new probe in a provider 1934 * created by this meta provider. 1935 * 1936 * 1.2.2 Arguments and notes 1937 * 1938 * The first argument is the cookie as passed to dtrace_meta_register(). 1939 * The second argument is the provider cookie for the associated provider; 1940 * this is obtained from the return value of dtms_provide_pid(). The third 1941 * argument is the helper probe description. 1942 * 1943 * 1.2.3 Return value 1944 * 1945 * None 1946 * 1947 * 1.2.4 Caller's context 1948 * 1949 * dtms_create_probe() is called from either ioctl() or module load context. 1950 * The DTrace framework is locked in such a way that meta providers may not 1951 * register or unregister. This means that the meta provider cannot call 1952 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 1953 * such that the provider may (and is expected to) call provider-related 1954 * DTrace provider APIs including dtrace_probe_create(). 1955 * 1956 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 1957 * pid_t pid) 1958 * 1959 * 1.3.1 Overview 1960 * 1961 * Called by the DTrace framework to instantiate a new provider given the 1962 * description of the provider and probes in the mprov argument. The 1963 * meta provider should call dtrace_register() to insert the new provider 1964 * into the DTrace framework. 1965 * 1966 * 1.3.2 Arguments and notes 1967 * 1968 * The first argument is the cookie as passed to dtrace_meta_register(). 1969 * The second argument is a pointer to a structure describing the new 1970 * helper provider. The third argument is the process identifier for 1971 * process associated with this new provider. Note that the name of the 1972 * provider as passed to dtrace_register() should be the contatenation of 1973 * the dtmpb_provname member of the mprov argument and the processs 1974 * identifier as a string. 1975 * 1976 * 1.3.3 Return value 1977 * 1978 * The cookie for the provider that the meta provider creates. This is 1979 * the same value that it passed to dtrace_register(). 1980 * 1981 * 1.3.4 Caller's context 1982 * 1983 * dtms_provide_pid() is called from either ioctl() or module load context. 1984 * The DTrace framework is locked in such a way that meta providers may not 1985 * register or unregister. This means that the meta provider cannot call 1986 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 1987 * is such that the provider may -- and is expected to -- call 1988 * provider-related DTrace provider APIs including dtrace_register(). 1989 * 1990 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 1991 * pid_t pid) 1992 * 1993 * 1.4.1 Overview 1994 * 1995 * Called by the DTrace framework to remove a provider that had previously 1996 * been instantiated via the dtms_provide_pid() entry point. The meta 1997 * provider need not remove the provider immediately, but this entry 1998 * point indicates that the provider should be removed as soon as possible 1999 * using the dtrace_unregister() API. 2000 * 2001 * 1.4.2 Arguments and notes 2002 * 2003 * The first argument is the cookie as passed to dtrace_meta_register(). 2004 * The second argument is a pointer to a structure describing the helper 2005 * provider. The third argument is the process identifier for process 2006 * associated with this new provider. 2007 * 2008 * 1.4.3 Return value 2009 * 2010 * None 2011 * 2012 * 1.4.4 Caller's context 2013 * 2014 * dtms_remove_pid() is called from either ioctl() or exit() context. 2015 * The DTrace framework is locked in such a way that meta providers may not 2016 * register or unregister. This means that the meta provider cannot call 2017 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2018 * is such that the provider may -- and is expected to -- call 2019 * provider-related DTrace provider APIs including dtrace_unregister(). 2020 */ 2021 typedef struct dtrace_helper_probedesc { 2022 char *dthpb_mod; /* probe module */ 2023 char *dthpb_func; /* probe function */ 2024 char *dthpb_name; /* probe name */ 2025 uint64_t dthpb_base; /* base address */ 2026 uint32_t *dthpb_offs; /* offsets array */ 2027 uint32_t dthpb_noffs; /* offsets count */ 2028 uint8_t *dthpb_args; /* argument mapping array */ 2029 uint8_t dthpb_xargc; /* translated argument count */ 2030 uint8_t dthpb_nargc; /* native argument count */ 2031 char *dthpb_xtypes; /* translated types strings */ 2032 char *dthpb_ntypes; /* native types strings */ 2033 } dtrace_helper_probedesc_t; 2034 2035 typedef struct dtrace_helper_provdesc { 2036 char *dthpv_provname; /* provider name */ 2037 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2038 } dtrace_helper_provdesc_t; 2039 2040 typedef struct dtrace_mops { 2041 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2042 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2043 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2044 } dtrace_mops_t; 2045 2046 typedef uintptr_t dtrace_meta_provider_id_t; 2047 2048 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2049 dtrace_meta_provider_id_t *); 2050 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2051 2052 /* 2053 * DTrace Kernel Hooks 2054 * 2055 * The following functions are implemented by the base kernel and form a set of 2056 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2057 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2058 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2059 */ 2060 2061 typedef enum dtrace_vtime_state { 2062 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2063 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2064 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2065 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2066 } dtrace_vtime_state_t; 2067 2068 extern dtrace_vtime_state_t dtrace_vtime_active; 2069 extern void dtrace_vtime_switch(kthread_t *next); 2070 extern void dtrace_vtime_enable_tnf(void); 2071 extern void dtrace_vtime_disable_tnf(void); 2072 extern void dtrace_vtime_enable(void); 2073 extern void dtrace_vtime_disable(void); 2074 2075 struct regs; 2076 2077 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2078 extern int (*dtrace_fasttrap_probe_ptr)(struct regs *); 2079 extern int (*dtrace_return_probe_ptr)(struct regs *); 2080 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2081 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2082 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2083 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2084 2085 typedef uintptr_t dtrace_icookie_t; 2086 typedef void (*dtrace_xcall_t)(void *); 2087 2088 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2089 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2090 2091 extern void dtrace_membar_producer(void); 2092 extern void dtrace_membar_consumer(void); 2093 2094 extern void (*dtrace_cpu_init)(processorid_t); 2095 extern void (*dtrace_modload)(struct modctl *); 2096 extern void (*dtrace_modunload)(struct modctl *); 2097 extern void (*dtrace_helpers_cleanup)(); 2098 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2099 extern void (*dtrace_cpustart_init)(); 2100 extern void (*dtrace_cpustart_fini)(); 2101 2102 extern void (*dtrace_kreloc_init)(); 2103 extern void (*dtrace_kreloc_fini)(); 2104 2105 extern void (*dtrace_debugger_init)(); 2106 extern void (*dtrace_debugger_fini)(); 2107 extern dtrace_cacheid_t dtrace_predcache_id; 2108 2109 extern hrtime_t dtrace_gethrtime(void); 2110 extern void dtrace_sync(void); 2111 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2112 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2113 extern void dtrace_vpanic(const char *, __va_list); 2114 extern void dtrace_panic(const char *, ...); 2115 2116 extern int dtrace_safe_defer_signal(void); 2117 extern void dtrace_safe_synchronous_signal(void); 2118 2119 #if defined(__i386) || defined(__amd64) 2120 extern int dtrace_instr_size(uchar_t *instr); 2121 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2122 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2123 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2124 extern void dtrace_invop_callsite(void); 2125 #endif 2126 2127 #ifdef __sparc 2128 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2129 extern void dtrace_getfsr(uint64_t *); 2130 #endif 2131 2132 #define DTRACE_CPUFLAG_ISSET(flag) \ 2133 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2134 2135 #define DTRACE_CPUFLAG_SET(flag) \ 2136 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2137 2138 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2139 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2140 2141 #endif /* _KERNEL */ 2142 2143 #endif /* _ASM */ 2144 2145 #if defined(__i386) || defined(__amd64) 2146 2147 #define DTRACE_INVOP_PUSHL_EBP 1 2148 #define DTRACE_INVOP_POPL_EBP 2 2149 #define DTRACE_INVOP_LEAVE 3 2150 #define DTRACE_INVOP_NOP 4 2151 #define DTRACE_INVOP_RET 5 2152 2153 #endif 2154 2155 #ifdef __cplusplus 2156 } 2157 #endif 2158 2159 #endif /* _SYS_DTRACE_H */ 2160