xref: /titanic_44/usr/src/uts/common/rpc/svc_clts.c (revision 1e4c938b57d1656808e4112127ff1dce3eba5314)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *  Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * Portions of this source code were derived from Berkeley 4.3 BSD
30  * under license from the Regents of the University of California.
31  */
32 
33 /*
34  * svc_clts.c
35  * Server side for RPC in the kernel.
36  *
37  */
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/sysmacros.h>
42 #include <sys/file.h>
43 #include <sys/stream.h>
44 #include <sys/strsun.h>
45 #include <sys/strsubr.h>
46 #include <sys/tihdr.h>
47 #include <sys/tiuser.h>
48 #include <sys/t_kuser.h>
49 #include <sys/fcntl.h>
50 #include <sys/errno.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/cmn_err.h>
54 #include <sys/kstat.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 
58 #include <rpc/types.h>
59 #include <rpc/xdr.h>
60 #include <rpc/auth.h>
61 #include <rpc/clnt.h>
62 #include <rpc/rpc_msg.h>
63 #include <rpc/svc.h>
64 #include <inet/ip.h>
65 
66 /*
67  * Routines exported through ops vector.
68  */
69 static bool_t		svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
70 static bool_t		svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
71 static bool_t		svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
72 static bool_t		svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
73 static void		svc_clts_kdestroy(SVCMASTERXPRT *);
74 static int		svc_clts_kdup(struct svc_req *, caddr_t, int,
75 				struct dupreq **, bool_t *);
76 static void		svc_clts_kdupdone(struct dupreq *, caddr_t,
77 				void (*)(), int, int);
78 static int32_t		*svc_clts_kgetres(SVCXPRT *, int);
79 static void		svc_clts_kclone_destroy(SVCXPRT *);
80 static void		svc_clts_kfreeres(SVCXPRT *);
81 static void		svc_clts_kstart(SVCMASTERXPRT *);
82 static void		svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
83 static void		svc_clts_ktattrs(SVCXPRT *, int, void **);
84 
85 /*
86  * Server transport operations vector.
87  */
88 struct svc_ops svc_clts_op = {
89 	svc_clts_krecv,		/* Get requests */
90 	svc_clts_kgetargs,	/* Deserialize arguments */
91 	svc_clts_ksend,		/* Send reply */
92 	svc_clts_kfreeargs,	/* Free argument data space */
93 	svc_clts_kdestroy,	/* Destroy transport handle */
94 	svc_clts_kdup,		/* Check entry in dup req cache */
95 	svc_clts_kdupdone,	/* Mark entry in dup req cache as done */
96 	svc_clts_kgetres,	/* Get pointer to response buffer */
97 	svc_clts_kfreeres,	/* Destroy pre-serialized response header */
98 	svc_clts_kclone_destroy, /* Destroy a clone xprt */
99 	svc_clts_kstart,	/* Tell `ready-to-receive' to rpcmod */
100 	svc_clts_kclone_xprt,	/* transport specific clone xprt function */
101 	svc_clts_ktattrs	/* Transport specific attributes. */
102 };
103 
104 /*
105  * Transport private data.
106  * Kept in xprt->xp_p2buf.
107  */
108 struct udp_data {
109 	mblk_t	*ud_resp;			/* buffer for response */
110 	mblk_t	*ud_inmp;			/* mblk chain of request */
111 };
112 
113 #define	UD_MAXSIZE	8800
114 #define	UD_INITSIZE	2048
115 
116 /*
117  * Connectionless server statistics
118  */
119 static const struct rpc_clts_server {
120 	kstat_named_t	rscalls;
121 	kstat_named_t	rsbadcalls;
122 	kstat_named_t	rsnullrecv;
123 	kstat_named_t	rsbadlen;
124 	kstat_named_t	rsxdrcall;
125 	kstat_named_t	rsdupchecks;
126 	kstat_named_t	rsdupreqs;
127 } clts_rsstat_tmpl = {
128 	{ "calls",	KSTAT_DATA_UINT64 },
129 	{ "badcalls",	KSTAT_DATA_UINT64 },
130 	{ "nullrecv",	KSTAT_DATA_UINT64 },
131 	{ "badlen",	KSTAT_DATA_UINT64 },
132 	{ "xdrcall",	KSTAT_DATA_UINT64 },
133 	{ "dupchecks",	KSTAT_DATA_UINT64 },
134 	{ "dupreqs",	KSTAT_DATA_UINT64 }
135 };
136 
137 static uint_t clts_rsstat_ndata =
138 	sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
139 
140 #define	CLONE2STATS(clone_xprt)	\
141 	(struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
142 
143 #define	RSSTAT_INCR(stats, x)	\
144 	atomic_add_64(&(stats)->x.value.ui64, 1)
145 
146 /*
147  * Create a transport record.
148  * The transport record, output buffer, and private data structure
149  * are allocated.  The output buffer is serialized into using xdrmem.
150  * There is one transport record per user process which implements a
151  * set of services.
152  */
153 /* ARGSUSED */
154 int
155 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
156     SVCMASTERXPRT **nxprt)
157 {
158 	SVCMASTERXPRT *xprt;
159 	struct rpcstat *rpcstat;
160 
161 	if (nxprt == NULL)
162 		return (EINVAL);
163 
164 	rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
165 	ASSERT(rpcstat != NULL);
166 
167 	xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
168 	xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
169 	xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
170 	xprt->xp_ops = &svc_clts_op;
171 	xprt->xp_msg_size = tinfo->TSDU_size;
172 
173 	xprt->xp_rtaddr.buf = NULL;
174 	xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
175 	xprt->xp_rtaddr.len = 0;
176 
177 	*nxprt = xprt;
178 
179 	return (0);
180 }
181 
182 /*
183  * Destroy a transport record.
184  * Frees the space allocated for a transport record.
185  */
186 static void
187 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
188 {
189 	if (xprt->xp_netid)
190 		kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
191 	if (xprt->xp_addrmask.maxlen)
192 		kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
193 
194 	mutex_destroy(&xprt->xp_req_lock);
195 	mutex_destroy(&xprt->xp_thread_lock);
196 
197 	kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
198 	kmem_free(xprt, sizeof (SVCMASTERXPRT));
199 }
200 
201 /*
202  * Transport-type specific part of svc_xprt_cleanup().
203  * Frees the message buffer space allocated for a clone of a transport record
204  */
205 static void
206 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
207 {
208 	/* LINTED pointer alignment */
209 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
210 
211 	if (ud->ud_resp) {
212 		/*
213 		 * There should not be any left over results buffer.
214 		 */
215 		ASSERT(ud->ud_resp->b_cont == NULL);
216 
217 		/*
218 		 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
219 		 * saved.
220 		 */
221 		freeb(ud->ud_resp);
222 	}
223 	if (ud->ud_inmp)
224 		freemsg(ud->ud_inmp);
225 }
226 
227 /*
228  * svc_tli_kcreate() calls this function at the end to tell
229  * rpcmod that the transport is ready to receive requests.
230  */
231 /* ARGSUSED */
232 static void
233 svc_clts_kstart(SVCMASTERXPRT *xprt)
234 {
235 }
236 
237 static void
238 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
239 {
240 	struct udp_data *ud_src =
241 	    (struct udp_data *)src_xprt->xp_p2buf;
242 	struct udp_data *ud_dst =
243 	    (struct udp_data *)dst_xprt->xp_p2buf;
244 
245 	if (ud_src->ud_resp)
246 		ud_dst->ud_resp = dupb(ud_src->ud_resp);
247 
248 }
249 
250 static void
251 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
252 {
253 	*tattr = NULL;
254 
255 	switch (attrflag) {
256 	case SVC_TATTR_ADDRMASK:
257 		*tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
258 	}
259 }
260 
261 /*
262  * Receive rpc requests.
263  * Pulls a request in off the socket, checks if the packet is intact,
264  * and deserializes the call packet.
265  */
266 static bool_t
267 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
268 {
269 	/* LINTED pointer alignment */
270 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
271 	XDR *xdrs = &clone_xprt->xp_xdrin;
272 	struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
273 	union T_primitives *pptr;
274 	int hdrsz;
275 	cred_t *cr;
276 
277 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
278 	    "svc_clts_krecv_start:");
279 
280 	RSSTAT_INCR(stats, rscalls);
281 
282 	/*
283 	 * The incoming request should start with an M_PROTO message.
284 	 */
285 	if (mp->b_datap->db_type != M_PROTO) {
286 		goto bad;
287 	}
288 
289 	/*
290 	 * The incoming request should be an T_UNITDTA_IND.  There
291 	 * might be other messages coming up the stream, but we can
292 	 * ignore them.
293 	 */
294 	pptr = (union T_primitives *)mp->b_rptr;
295 	if (pptr->type != T_UNITDATA_IND) {
296 		goto bad;
297 	}
298 	/*
299 	 * Do some checking to make sure that the header at least looks okay.
300 	 */
301 	hdrsz = (int)(mp->b_wptr - mp->b_rptr);
302 	if (hdrsz < TUNITDATAINDSZ ||
303 	    hdrsz < (pptr->unitdata_ind.OPT_offset +
304 	    pptr->unitdata_ind.OPT_length) ||
305 	    hdrsz < (pptr->unitdata_ind.SRC_offset +
306 	    pptr->unitdata_ind.SRC_length)) {
307 		goto bad;
308 	}
309 
310 	/*
311 	 * Make sure that the transport provided a usable address.
312 	 */
313 	if (pptr->unitdata_ind.SRC_length <= 0) {
314 		goto bad;
315 	}
316 	/*
317 	 * Point the remote transport address in the service_transport
318 	 * handle at the address in the request.
319 	 */
320 	clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
321 	    pptr->unitdata_ind.SRC_offset;
322 	clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
323 
324 	/*
325 	 * Copy the local transport address in the service_transport
326 	 * handle at the address in the request. We will have only
327 	 * the local IP address in options.
328 	 */
329 	((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
330 	if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
331 		char *dstopt = (char *)mp->b_rptr +
332 		    pptr->unitdata_ind.OPT_offset;
333 		struct T_opthdr *toh = (struct T_opthdr *)dstopt;
334 
335 		if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
336 		    toh->name == IPV6_PKTINFO) {
337 			struct in6_pktinfo *pkti;
338 
339 			dstopt += sizeof (struct T_opthdr);
340 			pkti = (struct in6_pktinfo *)dstopt;
341 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
342 			    = pkti->ipi6_addr;
343 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
344 			    = AF_INET6;
345 		} else if (toh->level == IPPROTO_IP && toh->status == 0 &&
346 		    toh->name == IP_RECVDSTADDR) {
347 			dstopt += sizeof (struct T_opthdr);
348 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
349 			    = *(struct in_addr *)dstopt;
350 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
351 			    = AF_INET;
352 		}
353 	}
354 
355 	/*
356 	 * Save the first mblk which contains the T_unidata_ind in
357 	 * ud_resp.  It will be used to generate the T_unitdata_req
358 	 * during the reply.
359 	 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
360 	 * since we must pass any SCM_UCRED across in order for TX to
361 	 * work. We also make sure any cred_t is carried across.
362 	 */
363 	if (ud->ud_resp) {
364 		if (ud->ud_resp->b_cont != NULL) {
365 			cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
366 			    "b_cont %p", (void *)ud->ud_resp,
367 			    (void *)ud->ud_resp->b_cont);
368 		}
369 		freeb(ud->ud_resp);
370 	}
371 	/* Move any cred_t to the first mblk in the message */
372 	cr = msg_getcred(mp, NULL);
373 	if (cr != NULL)
374 		mblk_setcred(mp, cr, NOPID);
375 
376 	ud->ud_resp = mp;
377 	mp = mp->b_cont;
378 	ud->ud_resp->b_cont = NULL;
379 
380 	xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
381 
382 	TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
383 	    "xdr_callmsg_start:");
384 	if (! xdr_callmsg(xdrs, msg)) {
385 		TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
386 		    "xdr_callmsg_end:(%S)", "bad");
387 		RSSTAT_INCR(stats, rsxdrcall);
388 		goto bad;
389 	}
390 	TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
391 	    "xdr_callmsg_end:(%S)", "good");
392 
393 	clone_xprt->xp_xid = msg->rm_xid;
394 	ud->ud_inmp = mp;
395 
396 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
397 	    "svc_clts_krecv_end:(%S)", "good");
398 	return (TRUE);
399 
400 bad:
401 	freemsg(mp);
402 	if (ud->ud_resp) {
403 		/*
404 		 * There should not be any left over results buffer.
405 		 */
406 		ASSERT(ud->ud_resp->b_cont == NULL);
407 		freeb(ud->ud_resp);
408 		ud->ud_resp = NULL;
409 	}
410 
411 	RSSTAT_INCR(stats, rsbadcalls);
412 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
413 	    "svc_clts_krecv_end:(%S)", "bad");
414 	return (FALSE);
415 }
416 
417 /*
418  * Send rpc reply.
419  * Serialize the reply packet into the output buffer then
420  * call t_ksndudata to send it.
421  */
422 static bool_t
423 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
424 {
425 	/* LINTED pointer alignment */
426 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
427 	XDR *xdrs = &clone_xprt->xp_xdrout;
428 	int stat = FALSE;
429 	mblk_t *mp;
430 	int msgsz;
431 	struct T_unitdata_req *udreq;
432 	xdrproc_t xdr_results;
433 	caddr_t xdr_location;
434 	bool_t has_args;
435 
436 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
437 	    "svc_clts_ksend_start:");
438 
439 	ASSERT(ud->ud_resp != NULL);
440 
441 	/*
442 	 * If there is a result procedure specified in the reply message,
443 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
444 	 * We need to make sure it won't be processed twice, so we null
445 	 * it for xdr_replymsg here.
446 	 */
447 	has_args = FALSE;
448 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
449 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
450 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
451 			has_args = TRUE;
452 			xdr_location = msg->acpted_rply.ar_results.where;
453 			msg->acpted_rply.ar_results.proc = xdr_void;
454 			msg->acpted_rply.ar_results.where = NULL;
455 		}
456 	}
457 
458 	if (ud->ud_resp->b_cont == NULL) {
459 		/*
460 		 * Allocate an initial mblk for the response data.
461 		 */
462 		while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
463 			if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
464 				TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
465 				    "svc_clts_ksend_end:(%S)", "strwaitbuf");
466 				return (FALSE);
467 			}
468 		}
469 
470 		/*
471 		 * Initialize the XDR decode stream.  Additional mblks
472 		 * will be allocated if necessary.  They will be UD_MAXSIZE
473 		 * sized.
474 		 */
475 		xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
476 
477 		/*
478 		 * Leave some space for protocol headers.
479 		 */
480 		(void) XDR_SETPOS(xdrs, 512);
481 		mp->b_rptr += 512;
482 
483 		msg->rm_xid = clone_xprt->xp_xid;
484 
485 		ud->ud_resp->b_cont = mp;
486 
487 		TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
488 		    "xdr_replymsg_start:");
489 		if (!(xdr_replymsg(xdrs, msg) &&
490 		    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
491 		    xdr_results, xdr_location)))) {
492 			TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
493 			    "xdr_replymsg_end:(%S)", "bad");
494 			RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
495 			goto out;
496 		}
497 		TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
498 		    "xdr_replymsg_end:(%S)", "good");
499 
500 	} else if (!(xdr_replymsg_body(xdrs, msg) &&
501 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
502 	    xdr_results, xdr_location)))) {
503 		RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
504 		goto out;
505 	}
506 
507 	msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
508 
509 	if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
510 	    msgsz > clone_xprt->xp_msg_size)) {
511 #ifdef	DEBUG
512 		cmn_err(CE_NOTE,
513 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
514 		    msgsz, clone_xprt->xp_msg_size);
515 #endif
516 		goto out;
517 	}
518 
519 	/*
520 	 * Construct the T_unitdata_req.  We take advantage of the fact that
521 	 * T_unitdata_ind looks just like T_unitdata_req, except for the
522 	 * primitive type.  Reusing it means we preserve the SCM_UCRED, and
523 	 * we must preserve it for TX to work.
524 	 *
525 	 * This has the side effect that we can also pass certain receive-side
526 	 * options like IPV6_PKTINFO back down the send side.  This implies
527 	 * that we can not ASSERT on a non-NULL db_credp when we have send-side
528 	 * options in UDP.
529 	 */
530 	ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
531 	udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
532 	ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
533 	udreq->PRIM_type = T_UNITDATA_REQ;
534 
535 	/*
536 	 * If the local IPv4 transport address is known use it as a source
537 	 * address for the outgoing UDP packet.
538 	 */
539 	if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
540 		struct T_opthdr *opthdr;
541 		in_pktinfo_t *pktinfo;
542 		size_t size;
543 
544 		if (udreq->DEST_length == 0)
545 			udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
546 		else
547 			udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
548 			    udreq->DEST_length);
549 
550 		udreq->OPT_length = sizeof (struct T_opthdr) +
551 		    sizeof (in_pktinfo_t);
552 
553 		size = udreq->OPT_length + udreq->OPT_offset;
554 
555 		/* make sure we have enough space for the option data */
556 		mp = reallocb(ud->ud_resp, size, 1);
557 		if (mp == NULL)
558 			goto out;
559 		ud->ud_resp = mp;
560 		udreq = (struct T_unitdata_req *)mp->b_rptr;
561 
562 		/* set desired option header */
563 		opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
564 		opthdr->len = udreq->OPT_length;
565 		opthdr->level = IPPROTO_IP;
566 		opthdr->name = IP_PKTINFO;
567 
568 		/*
569 		 * 1. set source IP of outbound packet
570 		 * 2. value '0' for index means IP layer uses this as source
571 		 *    address
572 		 */
573 		pktinfo = (in_pktinfo_t *)(opthdr + 1);
574 		(void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
575 		pktinfo->ipi_spec_dst.s_addr =
576 		    ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
577 		pktinfo->ipi_ifindex = 0;
578 
579 		/* adjust the end of active data */
580 		mp->b_wptr = mp->b_rptr + size;
581 	}
582 
583 	put(clone_xprt->xp_wq, ud->ud_resp);
584 	stat = TRUE;
585 	ud->ud_resp = NULL;
586 
587 out:
588 	if (stat == FALSE) {
589 		freemsg(ud->ud_resp);
590 		ud->ud_resp = NULL;
591 	}
592 
593 	/*
594 	 * This is completely disgusting.  If public is set it is
595 	 * a pointer to a structure whose first field is the address
596 	 * of the function to free that structure and any related
597 	 * stuff.  (see rrokfree in nfs_xdr.c).
598 	 */
599 	if (xdrs->x_public) {
600 		/* LINTED pointer alignment */
601 		(**((int (**)())xdrs->x_public))(xdrs->x_public);
602 	}
603 
604 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
605 	    "svc_clts_ksend_end:(%S)", "done");
606 	return (stat);
607 }
608 
609 /*
610  * Deserialize arguments.
611  */
612 static bool_t
613 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
614     caddr_t args_ptr)
615 {
616 
617 	/* LINTED pointer alignment */
618 	return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
619 	    xdr_args, args_ptr));
620 
621 }
622 
623 static bool_t
624 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
625     caddr_t args_ptr)
626 {
627 	/* LINTED pointer alignment */
628 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
629 	XDR *xdrs = &clone_xprt->xp_xdrin;
630 	bool_t retval;
631 
632 	if (args_ptr) {
633 		xdrs->x_op = XDR_FREE;
634 		retval = (*xdr_args)(xdrs, args_ptr);
635 	} else
636 		retval = TRUE;
637 
638 	if (ud->ud_inmp) {
639 		freemsg(ud->ud_inmp);
640 		ud->ud_inmp = NULL;
641 	}
642 
643 	return (retval);
644 }
645 
646 static int32_t *
647 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
648 {
649 	/* LINTED pointer alignment */
650 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
651 	XDR *xdrs = &clone_xprt->xp_xdrout;
652 	mblk_t *mp;
653 	int32_t *buf;
654 	struct rpc_msg rply;
655 
656 	/*
657 	 * Allocate an initial mblk for the response data.
658 	 */
659 	while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
660 		if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
661 			return (FALSE);
662 		}
663 	}
664 
665 	mp->b_cont = NULL;
666 
667 	/*
668 	 * Initialize the XDR decode stream.  Additional mblks
669 	 * will be allocated if necessary.  They will be UD_MAXSIZE
670 	 * sized.
671 	 */
672 	xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
673 
674 	/*
675 	 * Leave some space for protocol headers.
676 	 */
677 	(void) XDR_SETPOS(xdrs, 512);
678 	mp->b_rptr += 512;
679 
680 	/*
681 	 * Assume a successful RPC since most of them are.
682 	 */
683 	rply.rm_xid = clone_xprt->xp_xid;
684 	rply.rm_direction = REPLY;
685 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
686 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
687 	rply.acpted_rply.ar_stat = SUCCESS;
688 
689 	if (!xdr_replymsg_hdr(xdrs, &rply)) {
690 		freeb(mp);
691 		return (NULL);
692 	}
693 
694 	buf = XDR_INLINE(xdrs, size);
695 
696 	if (buf == NULL)
697 		freeb(mp);
698 	else
699 		ud->ud_resp->b_cont = mp;
700 
701 	return (buf);
702 }
703 
704 static void
705 svc_clts_kfreeres(SVCXPRT *clone_xprt)
706 {
707 	/* LINTED pointer alignment */
708 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
709 
710 	if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
711 		return;
712 
713 	/*
714 	 * SVC_FREERES() is called whenever the server decides not to
715 	 * send normal reply. Thus, we expect only one mblk to be allocated,
716 	 * because we have not attempted any XDR encoding.
717 	 * If we do any XDR encoding and we get an error, then SVC_REPLY()
718 	 * will freemsg(ud->ud_resp);
719 	 */
720 	ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
721 	freeb(ud->ud_resp->b_cont);
722 	ud->ud_resp->b_cont = NULL;
723 }
724 
725 /*
726  * the dup cacheing routines below provide a cache of non-failure
727  * transaction id's.  rpc service routines can use this to detect
728  * retransmissions and re-send a non-failure response.
729  */
730 
731 /*
732  * MAXDUPREQS is the number of cached items.  It should be adjusted
733  * to the service load so that there is likely to be a response entry
734  * when the first retransmission comes in.
735  */
736 #define	MAXDUPREQS	1024
737 
738 /*
739  * This should be appropriately scaled to MAXDUPREQS.
740  */
741 #define	DRHASHSZ	257
742 
743 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
744 #define	XIDHASH(xid)	((xid) & (DRHASHSZ - 1))
745 #else
746 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
747 #endif
748 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
749 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
750 
751 static int	ndupreqs = 0;
752 int	maxdupreqs = MAXDUPREQS;
753 static kmutex_t dupreq_lock;
754 static struct dupreq *drhashtbl[DRHASHSZ];
755 static int	drhashstat[DRHASHSZ];
756 
757 static void unhash(struct dupreq *);
758 
759 /*
760  * drmru points to the head of a circular linked list in lru order.
761  * drmru->dr_next == drlru
762  */
763 struct dupreq *drmru;
764 
765 /*
766  * PSARC 2003/523 Contract Private Interface
767  * svc_clts_kdup
768  * Changes must be reviewed by Solaris File Sharing
769  * Changes must be communicated to contract-2003-523@sun.com
770  *
771  * svc_clts_kdup searches the request cache and returns 0 if the
772  * request is not found in the cache.  If it is found, then it
773  * returns the state of the request (in progress or done) and
774  * the status or attributes that were part of the original reply.
775  *
776  * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
777  * value of the response. In that case, also return in *dupcachedp
778  * whether the response free routine is cached in the dupreq - in which case
779  * the caller should not be freeing it, because it will be done later
780  * in the svc_clts_kdup code when the dupreq is reused.
781  */
782 static int
783 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
784 	bool_t *dupcachedp)
785 {
786 	struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
787 	struct dupreq *dr;
788 	uint32_t xid;
789 	uint32_t drhash;
790 	int status;
791 
792 	xid = REQTOXID(req);
793 	mutex_enter(&dupreq_lock);
794 	RSSTAT_INCR(stats, rsdupchecks);
795 	/*
796 	 * Check to see whether an entry already exists in the cache.
797 	 */
798 	dr = drhashtbl[XIDHASH(xid)];
799 	while (dr != NULL) {
800 		if (dr->dr_xid == xid &&
801 		    dr->dr_proc == req->rq_proc &&
802 		    dr->dr_prog == req->rq_prog &&
803 		    dr->dr_vers == req->rq_vers &&
804 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
805 		    bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
806 		    dr->dr_addr.len) == 0) {
807 			status = dr->dr_status;
808 			if (status == DUP_DONE) {
809 				bcopy(dr->dr_resp.buf, res, size);
810 				if (dupcachedp != NULL)
811 					*dupcachedp = (dr->dr_resfree != NULL);
812 			} else {
813 				dr->dr_status = DUP_INPROGRESS;
814 				*drpp = dr;
815 			}
816 			RSSTAT_INCR(stats, rsdupreqs);
817 			mutex_exit(&dupreq_lock);
818 			return (status);
819 		}
820 		dr = dr->dr_chain;
821 	}
822 
823 	/*
824 	 * There wasn't an entry, either allocate a new one or recycle
825 	 * an old one.
826 	 */
827 	if (ndupreqs < maxdupreqs) {
828 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
829 		if (dr == NULL) {
830 			mutex_exit(&dupreq_lock);
831 			return (DUP_ERROR);
832 		}
833 		dr->dr_resp.buf = NULL;
834 		dr->dr_resp.maxlen = 0;
835 		dr->dr_addr.buf = NULL;
836 		dr->dr_addr.maxlen = 0;
837 		if (drmru) {
838 			dr->dr_next = drmru->dr_next;
839 			drmru->dr_next = dr;
840 		} else {
841 			dr->dr_next = dr;
842 		}
843 		ndupreqs++;
844 	} else {
845 		dr = drmru->dr_next;
846 		while (dr->dr_status == DUP_INPROGRESS) {
847 			dr = dr->dr_next;
848 			if (dr == drmru->dr_next) {
849 				cmn_err(CE_WARN, "svc_clts_kdup no slots free");
850 				mutex_exit(&dupreq_lock);
851 				return (DUP_ERROR);
852 			}
853 		}
854 		unhash(dr);
855 		if (dr->dr_resfree) {
856 			(*dr->dr_resfree)(dr->dr_resp.buf);
857 		}
858 	}
859 	dr->dr_resfree = NULL;
860 	drmru = dr;
861 
862 	dr->dr_xid = REQTOXID(req);
863 	dr->dr_prog = req->rq_prog;
864 	dr->dr_vers = req->rq_vers;
865 	dr->dr_proc = req->rq_proc;
866 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
867 		if (dr->dr_addr.buf != NULL)
868 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
869 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
870 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
871 		    KM_NOSLEEP);
872 		if (dr->dr_addr.buf == NULL) {
873 			dr->dr_addr.maxlen = 0;
874 			dr->dr_status = DUP_DROP;
875 			mutex_exit(&dupreq_lock);
876 			return (DUP_ERROR);
877 		}
878 	}
879 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
880 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
881 	if (dr->dr_resp.maxlen < size) {
882 		if (dr->dr_resp.buf != NULL)
883 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
884 		dr->dr_resp.maxlen = (unsigned int)size;
885 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
886 		if (dr->dr_resp.buf == NULL) {
887 			dr->dr_resp.maxlen = 0;
888 			dr->dr_status = DUP_DROP;
889 			mutex_exit(&dupreq_lock);
890 			return (DUP_ERROR);
891 		}
892 	}
893 	dr->dr_status = DUP_INPROGRESS;
894 
895 	drhash = (uint32_t)DRHASH(dr);
896 	dr->dr_chain = drhashtbl[drhash];
897 	drhashtbl[drhash] = dr;
898 	drhashstat[drhash]++;
899 	mutex_exit(&dupreq_lock);
900 	*drpp = dr;
901 	return (DUP_NEW);
902 }
903 
904 /*
905  * PSARC 2003/523 Contract Private Interface
906  * svc_clts_kdupdone
907  * Changes must be reviewed by Solaris File Sharing
908  * Changes must be communicated to contract-2003-523@sun.com
909  *
910  * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
911  * and stores the response.
912  */
913 static void
914 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
915 	int size, int status)
916 {
917 
918 	ASSERT(dr->dr_resfree == NULL);
919 	if (status == DUP_DONE) {
920 		bcopy(res, dr->dr_resp.buf, size);
921 		dr->dr_resfree = dis_resfree;
922 	}
923 	dr->dr_status = status;
924 }
925 
926 /*
927  * This routine expects that the mutex, dupreq_lock, is already held.
928  */
929 static void
930 unhash(struct dupreq *dr)
931 {
932 	struct dupreq *drt;
933 	struct dupreq *drtprev = NULL;
934 	uint32_t drhash;
935 
936 	ASSERT(MUTEX_HELD(&dupreq_lock));
937 
938 	drhash = (uint32_t)DRHASH(dr);
939 	drt = drhashtbl[drhash];
940 	while (drt != NULL) {
941 		if (drt == dr) {
942 			drhashstat[drhash]--;
943 			if (drtprev == NULL) {
944 				drhashtbl[drhash] = drt->dr_chain;
945 			} else {
946 				drtprev->dr_chain = drt->dr_chain;
947 			}
948 			return;
949 		}
950 		drtprev = drt;
951 		drt = drt->dr_chain;
952 	}
953 }
954 
955 void
956 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
957 {
958 	kstat_t *ksp;
959 	kstat_named_t *knp;
960 
961 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
962 	    (const kstat_named_t *)&clts_rsstat_tmpl,
963 	    sizeof (clts_rsstat_tmpl));
964 	/*
965 	 * Backwards compatibility for old kstat clients
966 	 */
967 	ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
968 	    KSTAT_TYPE_NAMED, clts_rsstat_ndata,
969 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
970 	if (ksp) {
971 		ksp->ks_data = knp;
972 		kstat_install(ksp);
973 	}
974 	*statsp = (struct rpc_clts_server *)knp;
975 }
976 
977 void
978 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
979 {
980 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
981 	kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
982 	kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
983 }
984 
985 void
986 svc_clts_init()
987 {
988 	/*
989 	 * Check to make sure that the clts private data will fit into
990 	 * the stack buffer allocated by svc_run.  The compiler should
991 	 * remove this check, but it's a safety net if the udp_data
992 	 * structure ever changes.
993 	 */
994 	/*CONSTANTCONDITION*/
995 	ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
996 
997 	mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
998 }
999