xref: /titanic_44/usr/src/uts/common/rpc/rpcmod.c (revision 6935f61b0d202f1b87f0234824e4a6ab88c492ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2012 Milan Jurik. All rights reserved.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
29 /*	  All Rights Reserved  	*/
30 
31 /*
32  * Kernel RPC filtering module
33  */
34 
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #include <sys/stropts.h>
39 #include <sys/strsubr.h>
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/tiuser.h>
43 #include <sys/debug.h>
44 #include <sys/signal.h>
45 #include <sys/pcb.h>
46 #include <sys/user.h>
47 #include <sys/errno.h>
48 #include <sys/cred.h>
49 #include <sys/policy.h>
50 #include <sys/inline.h>
51 #include <sys/cmn_err.h>
52 #include <sys/kmem.h>
53 #include <sys/file.h>
54 #include <sys/sysmacros.h>
55 #include <sys/systm.h>
56 #include <sys/t_lock.h>
57 #include <sys/ddi.h>
58 #include <sys/vtrace.h>
59 #include <sys/callb.h>
60 #include <sys/strsun.h>
61 
62 #include <sys/strlog.h>
63 #include <rpc/rpc_com.h>
64 #include <inet/common.h>
65 #include <rpc/types.h>
66 #include <sys/time.h>
67 #include <rpc/xdr.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70 #include <rpc/rpc_msg.h>
71 #include <rpc/clnt.h>
72 #include <rpc/svc.h>
73 #include <rpc/rpcsys.h>
74 #include <rpc/rpc_rdma.h>
75 
76 /*
77  * This is the loadable module wrapper.
78  */
79 #include <sys/conf.h>
80 #include <sys/modctl.h>
81 #include <sys/syscall.h>
82 
83 extern struct streamtab rpcinfo;
84 
85 static struct fmodsw fsw = {
86 	"rpcmod",
87 	&rpcinfo,
88 	D_NEW|D_MP,
89 };
90 
91 /*
92  * Module linkage information for the kernel.
93  */
94 
95 static struct modlstrmod modlstrmod = {
96 	&mod_strmodops, "rpc interface str mod", &fsw
97 };
98 
99 /*
100  * For the RPC system call.
101  */
102 static struct sysent rpcsysent = {
103 	2,
104 	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
105 	rpcsys
106 };
107 
108 static struct modlsys modlsys = {
109 	&mod_syscallops,
110 	"RPC syscall",
111 	&rpcsysent
112 };
113 
114 #ifdef _SYSCALL32_IMPL
115 static struct modlsys modlsys32 = {
116 	&mod_syscallops32,
117 	"32-bit RPC syscall",
118 	&rpcsysent
119 };
120 #endif /* _SYSCALL32_IMPL */
121 
122 static struct modlinkage modlinkage = {
123 	MODREV_1,
124 	{
125 		&modlsys,
126 #ifdef _SYSCALL32_IMPL
127 		&modlsys32,
128 #endif
129 		&modlstrmod,
130 		NULL
131 	}
132 };
133 
134 int
135 _init(void)
136 {
137 	int error = 0;
138 	callb_id_t cid;
139 	int status;
140 
141 	svc_init();
142 	clnt_init();
143 	cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc");
144 
145 	if (error = mod_install(&modlinkage)) {
146 		/*
147 		 * Could not install module, cleanup previous
148 		 * initialization work.
149 		 */
150 		clnt_fini();
151 		if (cid != NULL)
152 			(void) callb_delete(cid);
153 
154 		return (error);
155 	}
156 
157 	/*
158 	 * Load up the RDMA plugins and initialize the stats. Even if the
159 	 * plugins loadup fails, but rpcmod was successfully installed the
160 	 * counters still get initialized.
161 	 */
162 	rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL);
163 	mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL);
164 
165 	cv_init(&rdma_wait.svc_cv, NULL, CV_DEFAULT, NULL);
166 	mutex_init(&rdma_wait.svc_lock, NULL, MUTEX_DEFAULT, NULL);
167 
168 	mt_kstat_init();
169 
170 	/*
171 	 * Get our identification into ldi.  This is used for loading
172 	 * other modules, e.g. rpcib.
173 	 */
174 	status = ldi_ident_from_mod(&modlinkage, &rpcmod_li);
175 	if (status != 0) {
176 		cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status);
177 		rpcmod_li = NULL;
178 	}
179 
180 	return (error);
181 }
182 
183 /*
184  * The unload entry point fails, because we advertise entry points into
185  * rpcmod from the rest of kRPC: rpcmod_release().
186  */
187 int
188 _fini(void)
189 {
190 	return (EBUSY);
191 }
192 
193 int
194 _info(struct modinfo *modinfop)
195 {
196 	return (mod_info(&modlinkage, modinfop));
197 }
198 
199 extern int nulldev();
200 
201 #define	RPCMOD_ID	2049
202 
203 int rmm_open(queue_t *, dev_t *, int, int, cred_t *);
204 int rmm_close(queue_t *, int, cred_t *);
205 
206 /*
207  * To save instructions, since STREAMS ignores the return value
208  * from these functions, they are defined as void here. Kind of icky, but...
209  */
210 void rmm_rput(queue_t *, mblk_t *);
211 void rmm_wput(queue_t *, mblk_t *);
212 void rmm_rsrv(queue_t *);
213 void rmm_wsrv(queue_t *);
214 
215 int rpcmodopen(queue_t *, dev_t *, int, int, cred_t *);
216 int rpcmodclose(queue_t *, int, cred_t *);
217 void rpcmodrput(queue_t *, mblk_t *);
218 void rpcmodwput(queue_t *, mblk_t *);
219 void rpcmodrsrv();
220 void rpcmodwsrv(queue_t *);
221 
222 static	void	rpcmodwput_other(queue_t *, mblk_t *);
223 static	int	mir_close(queue_t *q);
224 static	int	mir_open(queue_t *q, dev_t *devp, int flag, int sflag,
225 		    cred_t *credp);
226 static	void	mir_rput(queue_t *q, mblk_t *mp);
227 static	void	mir_rsrv(queue_t *q);
228 static	void	mir_wput(queue_t *q, mblk_t *mp);
229 static	void	mir_wsrv(queue_t *q);
230 
231 static struct module_info rpcmod_info =
232 	{RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024};
233 
234 /*
235  * Read side has no service procedure.
236  */
237 static struct qinit rpcmodrinit = {
238 	(int (*)())rmm_rput,
239 	(int (*)())rmm_rsrv,
240 	rmm_open,
241 	rmm_close,
242 	nulldev,
243 	&rpcmod_info,
244 	NULL
245 };
246 
247 /*
248  * The write put procedure is simply putnext to conserve stack space.
249  * The write service procedure is not used to queue data, but instead to
250  * synchronize with flow control.
251  */
252 static struct qinit rpcmodwinit = {
253 	(int (*)())rmm_wput,
254 	(int (*)())rmm_wsrv,
255 	rmm_open,
256 	rmm_close,
257 	nulldev,
258 	&rpcmod_info,
259 	NULL
260 };
261 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL };
262 
263 struct xprt_style_ops {
264 	int (*xo_open)();
265 	int (*xo_close)();
266 	void (*xo_wput)();
267 	void (*xo_wsrv)();
268 	void (*xo_rput)();
269 	void (*xo_rsrv)();
270 };
271 
272 static struct xprt_style_ops xprt_clts_ops = {
273 	rpcmodopen,
274 	rpcmodclose,
275 	rpcmodwput,
276 	rpcmodwsrv,
277 	rpcmodrput,
278 	NULL
279 };
280 
281 static struct xprt_style_ops xprt_cots_ops = {
282 	mir_open,
283 	mir_close,
284 	mir_wput,
285 	mir_wsrv,
286 	mir_rput,
287 	mir_rsrv
288 };
289 
290 /*
291  * Per rpcmod "slot" data structure. q->q_ptr points to one of these.
292  */
293 struct rpcm {
294 	void		*rm_krpc_cell;	/* Reserved for use by KRPC */
295 	struct		xprt_style_ops	*rm_ops;
296 	int		rm_type;	/* Client or server side stream */
297 #define	RM_CLOSING	0x1		/* somebody is trying to close slot */
298 	uint_t		rm_state;	/* state of the slot. see above */
299 	uint_t		rm_ref;		/* cnt of external references to slot */
300 	kmutex_t	rm_lock;	/* mutex protecting above fields */
301 	kcondvar_t	rm_cwait;	/* condition for closing */
302 	zoneid_t	rm_zoneid;	/* zone which pushed rpcmod */
303 };
304 
305 struct temp_slot {
306 	void *cell;
307 	struct xprt_style_ops *ops;
308 	int type;
309 	mblk_t *info_ack;
310 	kmutex_t lock;
311 	kcondvar_t wait;
312 };
313 
314 typedef struct mir_s {
315 	void	*mir_krpc_cell;	/* Reserved for KRPC use. This field */
316 					/* must be first in the structure. */
317 	struct xprt_style_ops	*rm_ops;
318 	int	mir_type;		/* Client or server side stream */
319 
320 	mblk_t	*mir_head_mp;		/* RPC msg in progress */
321 		/*
322 		 * mir_head_mp points the first mblk being collected in
323 		 * the current RPC message.  Record headers are removed
324 		 * before data is linked into mir_head_mp.
325 		 */
326 	mblk_t	*mir_tail_mp;		/* Last mblk in mir_head_mp */
327 		/*
328 		 * mir_tail_mp points to the last mblk in the message
329 		 * chain starting at mir_head_mp.  It is only valid
330 		 * if mir_head_mp is non-NULL and is used to add new
331 		 * data blocks to the end of chain quickly.
332 		 */
333 
334 	int32_t	mir_frag_len;		/* Bytes seen in the current frag */
335 		/*
336 		 * mir_frag_len starts at -4 for beginning of each fragment.
337 		 * When this length is negative, it indicates the number of
338 		 * bytes that rpcmod needs to complete the record marker
339 		 * header.  When it is positive or zero, it holds the number
340 		 * of bytes that have arrived for the current fragment and
341 		 * are held in mir_header_mp.
342 		 */
343 
344 	int32_t	mir_frag_header;
345 		/*
346 		 * Fragment header as collected for the current fragment.
347 		 * It holds the last-fragment indicator and the number
348 		 * of bytes in the fragment.
349 		 */
350 
351 	unsigned int
352 		mir_ordrel_pending : 1,	/* Sent T_ORDREL_REQ */
353 		mir_hold_inbound : 1,	/* Hold inbound messages on server */
354 					/* side until outbound flow control */
355 					/* is relieved. */
356 		mir_closing : 1,	/* The stream is being closed */
357 		mir_inrservice : 1,	/* data queued or rd srv proc running */
358 		mir_inwservice : 1,	/* data queued or wr srv proc running */
359 		mir_inwflushdata : 1,	/* flush M_DATAs when srv runs */
360 		/*
361 		 * On client streams, mir_clntreq is 0 or 1; it is set
362 		 * to 1 whenever a new request is sent out (mir_wput)
363 		 * and cleared when the timer fires (mir_timer).  If
364 		 * the timer fires with this value equal to 0, then the
365 		 * stream is considered idle and KRPC is notified.
366 		 */
367 		mir_clntreq : 1,
368 		/*
369 		 * On server streams, stop accepting messages
370 		 */
371 		mir_svc_no_more_msgs : 1,
372 		mir_listen_stream : 1,	/* listen end point */
373 		mir_unused : 1,	/* no longer used */
374 		mir_timer_call : 1,
375 		mir_junk_fill_thru_bit_31 : 21;
376 
377 	int	mir_setup_complete;	/* server has initialized everything */
378 	timeout_id_t mir_timer_id;	/* Timer for idle checks */
379 	clock_t	mir_idle_timeout;	/* Allowed idle time before shutdown */
380 		/*
381 		 * This value is copied from clnt_idle_timeout or
382 		 * svc_idle_timeout during the appropriate ioctl.
383 		 * Kept in milliseconds
384 		 */
385 	clock_t	mir_use_timestamp;	/* updated on client with each use */
386 		/*
387 		 * This value is set to lbolt
388 		 * every time a client stream sends or receives data.
389 		 * Even if the timer message arrives, we don't shutdown
390 		 * client unless:
391 		 *    lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp.
392 		 * This value is kept in HZ.
393 		 */
394 
395 	uint_t	*mir_max_msg_sizep;	/* Reference to sanity check size */
396 		/*
397 		 * This pointer is set to &clnt_max_msg_size or
398 		 * &svc_max_msg_size during the appropriate ioctl.
399 		 */
400 	zoneid_t mir_zoneid;	/* zone which pushed rpcmod */
401 	/* Server-side fields. */
402 	int	mir_ref_cnt;		/* Reference count: server side only */
403 					/* counts the number of references */
404 					/* that a kernel RPC server thread */
405 					/* (see svc_run()) has on this rpcmod */
406 					/* slot. Effectively, it is the */
407 					/* number * of unprocessed messages */
408 					/* that have been passed up to the */
409 					/* KRPC layer */
410 
411 	mblk_t	*mir_svc_pend_mp;	/* Pending T_ORDREL_IND or */
412 					/* T_DISCON_IND */
413 
414 	/*
415 	 * these fields are for both client and server, but for debugging,
416 	 * it is easier to have these last in the structure.
417 	 */
418 	kmutex_t	mir_mutex;	/* Mutex and condvar for close */
419 	kcondvar_t	mir_condvar;	/* synchronization. */
420 	kcondvar_t	mir_timer_cv;	/* Timer routine sync. */
421 } mir_t;
422 
423 void tmp_rput(queue_t *q, mblk_t *mp);
424 
425 struct xprt_style_ops tmpops = {
426 	NULL,
427 	NULL,
428 	putnext,
429 	NULL,
430 	tmp_rput,
431 	NULL
432 };
433 
434 void
435 tmp_rput(queue_t *q, mblk_t *mp)
436 {
437 	struct temp_slot *t = (struct temp_slot *)(q->q_ptr);
438 	struct T_info_ack *pptr;
439 
440 	switch (mp->b_datap->db_type) {
441 	case M_PCPROTO:
442 		pptr = (struct T_info_ack *)mp->b_rptr;
443 		switch (pptr->PRIM_type) {
444 		case T_INFO_ACK:
445 			mutex_enter(&t->lock);
446 			t->info_ack = mp;
447 			cv_signal(&t->wait);
448 			mutex_exit(&t->lock);
449 			return;
450 		default:
451 			break;
452 		}
453 	default:
454 		break;
455 	}
456 
457 	/*
458 	 * Not an info-ack, so free it. This is ok because we should
459 	 * not be receiving data until the open finishes: rpcmod
460 	 * is pushed well before the end-point is bound to an address.
461 	 */
462 	freemsg(mp);
463 }
464 
465 int
466 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
467 {
468 	mblk_t *bp;
469 	struct temp_slot ts, *t;
470 	struct T_info_ack *pptr;
471 	int error = 0;
472 
473 	ASSERT(q != NULL);
474 	/*
475 	 * Check for re-opens.
476 	 */
477 	if (q->q_ptr) {
478 		TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END,
479 		    "rpcmodopen_end:(%s)", "q->qptr");
480 		return (0);
481 	}
482 
483 	t = &ts;
484 	bzero(t, sizeof (*t));
485 	q->q_ptr = (void *)t;
486 	WR(q)->q_ptr = (void *)t;
487 
488 	/*
489 	 * Allocate the required messages upfront.
490 	 */
491 	if ((bp = allocb_cred(sizeof (struct T_info_req) +
492 	    sizeof (struct T_info_ack), crp, curproc->p_pid)) == NULL) {
493 		return (ENOBUFS);
494 	}
495 
496 	mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL);
497 	cv_init(&t->wait, NULL, CV_DEFAULT, NULL);
498 
499 	t->ops = &tmpops;
500 
501 	qprocson(q);
502 	bp->b_datap->db_type = M_PCPROTO;
503 	*(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ;
504 	bp->b_wptr += sizeof (struct T_info_req);
505 	putnext(WR(q), bp);
506 
507 	mutex_enter(&t->lock);
508 	while (t->info_ack == NULL) {
509 		if (cv_wait_sig(&t->wait, &t->lock) == 0) {
510 			error = EINTR;
511 			break;
512 		}
513 	}
514 	mutex_exit(&t->lock);
515 
516 	if (error)
517 		goto out;
518 
519 	pptr = (struct T_info_ack *)t->info_ack->b_rptr;
520 
521 	if (pptr->SERV_type == T_CLTS) {
522 		if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0)
523 			((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops;
524 	} else {
525 		if ((error = mir_open(q, devp, flag, sflag, crp)) == 0)
526 			((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops;
527 	}
528 
529 out:
530 	if (error)
531 		qprocsoff(q);
532 
533 	freemsg(t->info_ack);
534 	mutex_destroy(&t->lock);
535 	cv_destroy(&t->wait);
536 
537 	return (error);
538 }
539 
540 void
541 rmm_rput(queue_t *q, mblk_t  *mp)
542 {
543 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp);
544 }
545 
546 void
547 rmm_rsrv(queue_t *q)
548 {
549 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q);
550 }
551 
552 void
553 rmm_wput(queue_t *q, mblk_t *mp)
554 {
555 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp);
556 }
557 
558 void
559 rmm_wsrv(queue_t *q)
560 {
561 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q);
562 }
563 
564 int
565 rmm_close(queue_t *q, int flag, cred_t *crp)
566 {
567 	return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp));
568 }
569 
570 static void rpcmod_release(queue_t *, mblk_t *);
571 /*
572  * rpcmodopen -	open routine gets called when the module gets pushed
573  *		onto the stream.
574  */
575 /*ARGSUSED*/
576 int
577 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
578 {
579 	struct rpcm *rmp;
580 
581 	extern void (*rpc_rele)(queue_t *, mblk_t *);
582 
583 	TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:");
584 
585 	/*
586 	 * Initialize entry points to release a rpcmod slot (and an input
587 	 * message if supplied) and to send an output message to the module
588 	 * below rpcmod.
589 	 */
590 	if (rpc_rele == NULL)
591 		rpc_rele = rpcmod_release;
592 
593 	/*
594 	 * Only sufficiently privileged users can use this module, and it
595 	 * is assumed that they will use this module properly, and NOT send
596 	 * bulk data from downstream.
597 	 */
598 	if (secpolicy_rpcmod_open(crp) != 0)
599 		return (EPERM);
600 
601 	/*
602 	 * Allocate slot data structure.
603 	 */
604 	rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP);
605 
606 	mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL);
607 	cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL);
608 	rmp->rm_zoneid = rpc_zoneid();
609 	/*
610 	 * slot type will be set by kRPC client and server ioctl's
611 	 */
612 	rmp->rm_type = 0;
613 
614 	q->q_ptr = (void *)rmp;
615 	WR(q)->q_ptr = (void *)rmp;
616 
617 	TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end");
618 	return (0);
619 }
620 
621 /*
622  * rpcmodclose - This routine gets called when the module gets popped
623  * off of the stream.
624  */
625 /*ARGSUSED*/
626 int
627 rpcmodclose(queue_t *q, int flag, cred_t *crp)
628 {
629 	struct rpcm *rmp;
630 
631 	ASSERT(q != NULL);
632 	rmp = (struct rpcm *)q->q_ptr;
633 
634 	/*
635 	 * Mark our state as closing.
636 	 */
637 	mutex_enter(&rmp->rm_lock);
638 	rmp->rm_state |= RM_CLOSING;
639 
640 	/*
641 	 * Check and see if there are any messages on the queue.  If so, send
642 	 * the messages, regardless whether the downstream module is ready to
643 	 * accept data.
644 	 */
645 	if (rmp->rm_type == RPC_SERVER) {
646 		flushq(q, FLUSHDATA);
647 
648 		qenable(WR(q));
649 
650 		if (rmp->rm_ref) {
651 			mutex_exit(&rmp->rm_lock);
652 			/*
653 			 * call into SVC to clean the queue
654 			 */
655 			svc_queueclean(q);
656 			mutex_enter(&rmp->rm_lock);
657 
658 			/*
659 			 * Block while there are kRPC threads with a reference
660 			 * to this message.
661 			 */
662 			while (rmp->rm_ref)
663 				cv_wait(&rmp->rm_cwait, &rmp->rm_lock);
664 		}
665 
666 		mutex_exit(&rmp->rm_lock);
667 
668 		/*
669 		 * It is now safe to remove this queue from the stream. No kRPC
670 		 * threads have a reference to the stream, and none ever will,
671 		 * because RM_CLOSING is set.
672 		 */
673 		qprocsoff(q);
674 
675 		/* Notify kRPC that this stream is going away. */
676 		svc_queueclose(q);
677 	} else {
678 		mutex_exit(&rmp->rm_lock);
679 		qprocsoff(q);
680 	}
681 
682 	q->q_ptr = NULL;
683 	WR(q)->q_ptr = NULL;
684 	mutex_destroy(&rmp->rm_lock);
685 	cv_destroy(&rmp->rm_cwait);
686 	kmem_free(rmp, sizeof (*rmp));
687 	return (0);
688 }
689 
690 #ifdef	DEBUG
691 int	rpcmod_send_msg_up = 0;
692 int	rpcmod_send_uderr = 0;
693 int	rpcmod_send_dup = 0;
694 int	rpcmod_send_dup_cnt = 0;
695 #endif
696 
697 /*
698  * rpcmodrput -	Module read put procedure.  This is called from
699  *		the module, driver, or stream head downstream.
700  */
701 void
702 rpcmodrput(queue_t *q, mblk_t *mp)
703 {
704 	struct rpcm *rmp;
705 	union T_primitives *pptr;
706 	int hdrsz;
707 
708 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:");
709 
710 	ASSERT(q != NULL);
711 	rmp = (struct rpcm *)q->q_ptr;
712 
713 	if (rmp->rm_type == 0) {
714 		freemsg(mp);
715 		return;
716 	}
717 
718 #ifdef DEBUG
719 	if (rpcmod_send_msg_up > 0) {
720 		mblk_t *nmp = copymsg(mp);
721 		if (nmp) {
722 			putnext(q, nmp);
723 			rpcmod_send_msg_up--;
724 		}
725 	}
726 	if ((rpcmod_send_uderr > 0) && mp->b_datap->db_type == M_PROTO) {
727 		mblk_t *nmp;
728 		struct T_unitdata_ind *data;
729 		struct T_uderror_ind *ud;
730 		int d;
731 		data = (struct T_unitdata_ind *)mp->b_rptr;
732 		if (data->PRIM_type == T_UNITDATA_IND) {
733 			d = sizeof (*ud) - sizeof (*data);
734 			nmp = allocb(mp->b_wptr - mp->b_rptr + d, BPRI_HI);
735 			if (nmp) {
736 				ud = (struct T_uderror_ind *)nmp->b_rptr;
737 				ud->PRIM_type = T_UDERROR_IND;
738 				ud->DEST_length = data->SRC_length;
739 				ud->DEST_offset = data->SRC_offset + d;
740 				ud->OPT_length = data->OPT_length;
741 				ud->OPT_offset = data->OPT_offset + d;
742 				ud->ERROR_type = ENETDOWN;
743 				if (data->SRC_length) {
744 					bcopy(mp->b_rptr +
745 					    data->SRC_offset,
746 					    nmp->b_rptr +
747 					    ud->DEST_offset,
748 					    data->SRC_length);
749 				}
750 				if (data->OPT_length) {
751 					bcopy(mp->b_rptr +
752 					    data->OPT_offset,
753 					    nmp->b_rptr +
754 					    ud->OPT_offset,
755 					    data->OPT_length);
756 				}
757 				nmp->b_wptr += d;
758 				nmp->b_wptr += (mp->b_wptr - mp->b_rptr);
759 				nmp->b_datap->db_type = M_PROTO;
760 				putnext(q, nmp);
761 				rpcmod_send_uderr--;
762 			}
763 		}
764 	}
765 #endif
766 	switch (mp->b_datap->db_type) {
767 	default:
768 		putnext(q, mp);
769 		break;
770 
771 	case M_PROTO:
772 	case M_PCPROTO:
773 		ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t));
774 		pptr = (union T_primitives *)mp->b_rptr;
775 
776 		/*
777 		 * Forward this message to krpc if it is data.
778 		 */
779 		if (pptr->type == T_UNITDATA_IND) {
780 			mblk_t *nmp;
781 
782 		/*
783 		 * Check if the module is being popped.
784 		 */
785 			mutex_enter(&rmp->rm_lock);
786 			if (rmp->rm_state & RM_CLOSING) {
787 				mutex_exit(&rmp->rm_lock);
788 				putnext(q, mp);
789 				break;
790 			}
791 
792 			switch (rmp->rm_type) {
793 			case RPC_CLIENT:
794 				mutex_exit(&rmp->rm_lock);
795 				hdrsz = mp->b_wptr - mp->b_rptr;
796 
797 				/*
798 				 * Make sure the header is sane.
799 				 */
800 				if (hdrsz < TUNITDATAINDSZ ||
801 				    hdrsz < (pptr->unitdata_ind.OPT_length +
802 				    pptr->unitdata_ind.OPT_offset) ||
803 				    hdrsz < (pptr->unitdata_ind.SRC_length +
804 				    pptr->unitdata_ind.SRC_offset)) {
805 					freemsg(mp);
806 					return;
807 				}
808 
809 				/*
810 				 * Call clnt_clts_dispatch_notify, so that it
811 				 * can pass the message to the proper caller.
812 				 * Don't discard the header just yet since the
813 				 * client may need the sender's address.
814 				 */
815 				clnt_clts_dispatch_notify(mp, hdrsz,
816 				    rmp->rm_zoneid);
817 				return;
818 			case RPC_SERVER:
819 				/*
820 				 * rm_krpc_cell is exclusively used by the kRPC
821 				 * CLTS server
822 				 */
823 				if (rmp->rm_krpc_cell) {
824 #ifdef DEBUG
825 					/*
826 					 * Test duplicate request cache and
827 					 * rm_ref count handling by sending a
828 					 * duplicate every so often, if
829 					 * desired.
830 					 */
831 					if (rpcmod_send_dup &&
832 					    rpcmod_send_dup_cnt++ %
833 					    rpcmod_send_dup)
834 						nmp = copymsg(mp);
835 					else
836 						nmp = NULL;
837 #endif
838 					/*
839 					 * Raise the reference count on this
840 					 * module to prevent it from being
841 					 * popped before krpc generates the
842 					 * reply.
843 					 */
844 					rmp->rm_ref++;
845 					mutex_exit(&rmp->rm_lock);
846 
847 					/*
848 					 * Submit the message to krpc.
849 					 */
850 					svc_queuereq(q, mp);
851 #ifdef DEBUG
852 					/*
853 					 * Send duplicate if we created one.
854 					 */
855 					if (nmp) {
856 						mutex_enter(&rmp->rm_lock);
857 						rmp->rm_ref++;
858 						mutex_exit(&rmp->rm_lock);
859 						svc_queuereq(q, nmp);
860 					}
861 #endif
862 				} else {
863 					mutex_exit(&rmp->rm_lock);
864 					freemsg(mp);
865 				}
866 				return;
867 			default:
868 				mutex_exit(&rmp->rm_lock);
869 				freemsg(mp);
870 				return;
871 			} /* end switch(rmp->rm_type) */
872 		} else if (pptr->type == T_UDERROR_IND) {
873 			mutex_enter(&rmp->rm_lock);
874 			hdrsz = mp->b_wptr - mp->b_rptr;
875 
876 			/*
877 			 * Make sure the header is sane
878 			 */
879 			if (hdrsz < TUDERRORINDSZ ||
880 			    hdrsz < (pptr->uderror_ind.OPT_length +
881 			    pptr->uderror_ind.OPT_offset) ||
882 			    hdrsz < (pptr->uderror_ind.DEST_length +
883 			    pptr->uderror_ind.DEST_offset)) {
884 				mutex_exit(&rmp->rm_lock);
885 				freemsg(mp);
886 				return;
887 			}
888 
889 			/*
890 			 * In the case where a unit data error has been
891 			 * received, all we need to do is clear the message from
892 			 * the queue.
893 			 */
894 			mutex_exit(&rmp->rm_lock);
895 			freemsg(mp);
896 			RPCLOG(32, "rpcmodrput: unitdata error received at "
897 			    "%ld\n", gethrestime_sec());
898 			return;
899 		} /* end else if (pptr->type == T_UDERROR_IND) */
900 
901 		putnext(q, mp);
902 		break;
903 	} /* end switch (mp->b_datap->db_type) */
904 
905 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END,
906 	    "rpcmodrput_end:");
907 	/*
908 	 * Return codes are not looked at by the STREAMS framework.
909 	 */
910 }
911 
912 /*
913  * write put procedure
914  */
915 void
916 rpcmodwput(queue_t *q, mblk_t *mp)
917 {
918 	struct rpcm	*rmp;
919 
920 	ASSERT(q != NULL);
921 
922 	switch (mp->b_datap->db_type) {
923 		case M_PROTO:
924 		case M_PCPROTO:
925 			break;
926 		default:
927 			rpcmodwput_other(q, mp);
928 			return;
929 	}
930 
931 	/*
932 	 * Check to see if we can send the message downstream.
933 	 */
934 	if (canputnext(q)) {
935 		putnext(q, mp);
936 		return;
937 	}
938 
939 	rmp = (struct rpcm *)q->q_ptr;
940 	ASSERT(rmp != NULL);
941 
942 	/*
943 	 * The first canputnext failed.  Try again except this time with the
944 	 * lock held, so that we can check the state of the stream to see if
945 	 * it is closing.  If either of these conditions evaluate to true
946 	 * then send the meesage.
947 	 */
948 	mutex_enter(&rmp->rm_lock);
949 	if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) {
950 		mutex_exit(&rmp->rm_lock);
951 		putnext(q, mp);
952 	} else {
953 		/*
954 		 * canputnext failed again and the stream is not closing.
955 		 * Place the message on the queue and let the service
956 		 * procedure handle the message.
957 		 */
958 		mutex_exit(&rmp->rm_lock);
959 		(void) putq(q, mp);
960 	}
961 }
962 
963 static void
964 rpcmodwput_other(queue_t *q, mblk_t *mp)
965 {
966 	struct rpcm	*rmp;
967 	struct iocblk	*iocp;
968 
969 	rmp = (struct rpcm *)q->q_ptr;
970 	ASSERT(rmp != NULL);
971 
972 	switch (mp->b_datap->db_type) {
973 		case M_IOCTL:
974 			iocp = (struct iocblk *)mp->b_rptr;
975 			ASSERT(iocp != NULL);
976 			switch (iocp->ioc_cmd) {
977 				case RPC_CLIENT:
978 				case RPC_SERVER:
979 					mutex_enter(&rmp->rm_lock);
980 					rmp->rm_type = iocp->ioc_cmd;
981 					mutex_exit(&rmp->rm_lock);
982 					mp->b_datap->db_type = M_IOCACK;
983 					qreply(q, mp);
984 					return;
985 				default:
986 				/*
987 				 * pass the ioctl downstream and hope someone
988 				 * down there knows how to handle it.
989 				 */
990 					putnext(q, mp);
991 					return;
992 			}
993 		default:
994 			break;
995 	}
996 	/*
997 	 * This is something we definitely do not know how to handle, just
998 	 * pass the message downstream
999 	 */
1000 	putnext(q, mp);
1001 }
1002 
1003 /*
1004  * Module write service procedure. This is called by downstream modules
1005  * for back enabling during flow control.
1006  */
1007 void
1008 rpcmodwsrv(queue_t *q)
1009 {
1010 	struct rpcm	*rmp;
1011 	mblk_t		*mp = NULL;
1012 
1013 	rmp = (struct rpcm *)q->q_ptr;
1014 	ASSERT(rmp != NULL);
1015 
1016 	/*
1017 	 * Get messages that may be queued and send them down stream
1018 	 */
1019 	while ((mp = getq(q)) != NULL) {
1020 		/*
1021 		 * Optimize the service procedure for the server-side, by
1022 		 * avoiding a call to canputnext().
1023 		 */
1024 		if (rmp->rm_type == RPC_SERVER || canputnext(q)) {
1025 			putnext(q, mp);
1026 			continue;
1027 		}
1028 		(void) putbq(q, mp);
1029 		return;
1030 	}
1031 }
1032 
1033 static void
1034 rpcmod_release(queue_t *q, mblk_t *bp)
1035 {
1036 	struct rpcm *rmp;
1037 
1038 	/*
1039 	 * For now, just free the message.
1040 	 */
1041 	if (bp)
1042 		freemsg(bp);
1043 	rmp = (struct rpcm *)q->q_ptr;
1044 
1045 	mutex_enter(&rmp->rm_lock);
1046 	rmp->rm_ref--;
1047 
1048 	if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) {
1049 		cv_broadcast(&rmp->rm_cwait);
1050 	}
1051 
1052 	mutex_exit(&rmp->rm_lock);
1053 }
1054 
1055 /*
1056  * This part of rpcmod is pushed on a connection-oriented transport for use
1057  * by RPC.  It serves to bypass the Stream head, implements
1058  * the record marking protocol, and dispatches incoming RPC messages.
1059  */
1060 
1061 /* Default idle timer values */
1062 #define	MIR_CLNT_IDLE_TIMEOUT	(5 * (60 * 1000L))	/* 5 minutes */
1063 #define	MIR_SVC_IDLE_TIMEOUT	(6 * (60 * 1000L))	/* 6 minutes */
1064 #define	MIR_SVC_ORDREL_TIMEOUT	(10 * (60 * 1000L))	/* 10 minutes */
1065 #define	MIR_LASTFRAG	0x80000000	/* Record marker */
1066 
1067 #define	MIR_SVC_QUIESCED(mir)	\
1068 	(mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0)
1069 
1070 #define	MIR_CLEAR_INRSRV(mir_ptr)	{	\
1071 	(mir_ptr)->mir_inrservice = 0;	\
1072 	if ((mir_ptr)->mir_type == RPC_SERVER &&	\
1073 		(mir_ptr)->mir_closing)	\
1074 		cv_signal(&(mir_ptr)->mir_condvar);	\
1075 }
1076 
1077 /*
1078  * Don't block service procedure (and mir_close) if
1079  * we are in the process of closing.
1080  */
1081 #define	MIR_WCANPUTNEXT(mir_ptr, write_q)	\
1082 	(canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1))
1083 
1084 static int	mir_clnt_dup_request(queue_t *q, mblk_t *mp);
1085 static void	mir_rput_proto(queue_t *q, mblk_t *mp);
1086 static int	mir_svc_policy_notify(queue_t *q, int event);
1087 static void	mir_svc_release(queue_t *wq, mblk_t *mp);
1088 static void	mir_svc_start(queue_t *wq);
1089 static void	mir_svc_idle_start(queue_t *, mir_t *);
1090 static void	mir_svc_idle_stop(queue_t *, mir_t *);
1091 static void	mir_svc_start_close(queue_t *, mir_t *);
1092 static void	mir_clnt_idle_do_stop(queue_t *);
1093 static void	mir_clnt_idle_stop(queue_t *, mir_t *);
1094 static void	mir_clnt_idle_start(queue_t *, mir_t *);
1095 static void	mir_wput(queue_t *q, mblk_t *mp);
1096 static void	mir_wput_other(queue_t *q, mblk_t *mp);
1097 static void	mir_wsrv(queue_t *q);
1098 static	void	mir_disconnect(queue_t *, mir_t *ir);
1099 static	int	mir_check_len(queue_t *, int32_t, mblk_t *);
1100 static	void	mir_timer(void *);
1101 
1102 extern void	(*mir_rele)(queue_t *, mblk_t *);
1103 extern void	(*mir_start)(queue_t *);
1104 extern void	(*clnt_stop_idle)(queue_t *);
1105 
1106 clock_t	clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT;
1107 clock_t	svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT;
1108 
1109 /*
1110  * Timeout for subsequent notifications of idle connection.  This is
1111  * typically used to clean up after a wedged orderly release.
1112  */
1113 clock_t	svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */
1114 
1115 extern	uint_t	*clnt_max_msg_sizep;
1116 extern	uint_t	*svc_max_msg_sizep;
1117 uint_t	clnt_max_msg_size = RPC_MAXDATASIZE;
1118 uint_t	svc_max_msg_size = RPC_MAXDATASIZE;
1119 uint_t	mir_krpc_cell_null;
1120 
1121 static void
1122 mir_timer_stop(mir_t *mir)
1123 {
1124 	timeout_id_t tid;
1125 
1126 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1127 
1128 	/*
1129 	 * Since the mir_mutex lock needs to be released to call
1130 	 * untimeout(), we need to make sure that no other thread
1131 	 * can start/stop the timer (changing mir_timer_id) during
1132 	 * that time.  The mir_timer_call bit and the mir_timer_cv
1133 	 * condition variable are used to synchronize this.  Setting
1134 	 * mir_timer_call also tells mir_timer() (refer to the comments
1135 	 * in mir_timer()) that it does not need to do anything.
1136 	 */
1137 	while (mir->mir_timer_call)
1138 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1139 	mir->mir_timer_call = B_TRUE;
1140 
1141 	if ((tid = mir->mir_timer_id) != 0) {
1142 		mir->mir_timer_id = 0;
1143 		mutex_exit(&mir->mir_mutex);
1144 		(void) untimeout(tid);
1145 		mutex_enter(&mir->mir_mutex);
1146 	}
1147 	mir->mir_timer_call = B_FALSE;
1148 	cv_broadcast(&mir->mir_timer_cv);
1149 }
1150 
1151 static void
1152 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl)
1153 {
1154 	timeout_id_t tid;
1155 
1156 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1157 
1158 	while (mir->mir_timer_call)
1159 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1160 	mir->mir_timer_call = B_TRUE;
1161 
1162 	if ((tid = mir->mir_timer_id) != 0) {
1163 		mutex_exit(&mir->mir_mutex);
1164 		(void) untimeout(tid);
1165 		mutex_enter(&mir->mir_mutex);
1166 	}
1167 	/* Only start the timer when it is not closing. */
1168 	if (!mir->mir_closing) {
1169 		mir->mir_timer_id = timeout(mir_timer, q,
1170 		    MSEC_TO_TICK(intrvl));
1171 	}
1172 	mir->mir_timer_call = B_FALSE;
1173 	cv_broadcast(&mir->mir_timer_cv);
1174 }
1175 
1176 static int
1177 mir_clnt_dup_request(queue_t *q, mblk_t *mp)
1178 {
1179 	mblk_t  *mp1;
1180 	uint32_t  new_xid;
1181 	uint32_t  old_xid;
1182 
1183 	ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex));
1184 	new_xid = BE32_TO_U32(&mp->b_rptr[4]);
1185 	/*
1186 	 * This loop is a bit tacky -- it walks the STREAMS list of
1187 	 * flow-controlled messages.
1188 	 */
1189 	if ((mp1 = q->q_first) != NULL) {
1190 		do {
1191 			old_xid = BE32_TO_U32(&mp1->b_rptr[4]);
1192 			if (new_xid == old_xid)
1193 				return (1);
1194 		} while ((mp1 = mp1->b_next) != NULL);
1195 	}
1196 	return (0);
1197 }
1198 
1199 static int
1200 mir_close(queue_t *q)
1201 {
1202 	mir_t	*mir = q->q_ptr;
1203 	mblk_t	*mp;
1204 	bool_t queue_cleaned = FALSE;
1205 
1206 	RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q);
1207 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1208 	mutex_enter(&mir->mir_mutex);
1209 	if ((mp = mir->mir_head_mp) != NULL) {
1210 		mir->mir_head_mp = NULL;
1211 		mir->mir_tail_mp = NULL;
1212 		freemsg(mp);
1213 	}
1214 	/*
1215 	 * Set mir_closing so we get notified when MIR_SVC_QUIESCED()
1216 	 * is TRUE.  And mir_timer_start() won't start the timer again.
1217 	 */
1218 	mir->mir_closing = B_TRUE;
1219 	mir_timer_stop(mir);
1220 
1221 	if (mir->mir_type == RPC_SERVER) {
1222 		flushq(q, FLUSHDATA);	/* Ditch anything waiting on read q */
1223 
1224 		/*
1225 		 * This will prevent more requests from arriving and
1226 		 * will force rpcmod to ignore flow control.
1227 		 */
1228 		mir_svc_start_close(WR(q), mir);
1229 
1230 		while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) {
1231 
1232 			if (mir->mir_ref_cnt && !mir->mir_inrservice &&
1233 			    (queue_cleaned == FALSE)) {
1234 				/*
1235 				 * call into SVC to clean the queue
1236 				 */
1237 				mutex_exit(&mir->mir_mutex);
1238 				svc_queueclean(q);
1239 				queue_cleaned = TRUE;
1240 				mutex_enter(&mir->mir_mutex);
1241 				continue;
1242 			}
1243 
1244 			/*
1245 			 * Bugid 1253810 - Force the write service
1246 			 * procedure to send its messages, regardless
1247 			 * whether the downstream  module is ready
1248 			 * to accept data.
1249 			 */
1250 			if (mir->mir_inwservice == 1)
1251 				qenable(WR(q));
1252 
1253 			cv_wait(&mir->mir_condvar, &mir->mir_mutex);
1254 		}
1255 
1256 		mutex_exit(&mir->mir_mutex);
1257 		qprocsoff(q);
1258 
1259 		/* Notify KRPC that this stream is going away. */
1260 		svc_queueclose(q);
1261 	} else {
1262 		mutex_exit(&mir->mir_mutex);
1263 		qprocsoff(q);
1264 	}
1265 
1266 	mutex_destroy(&mir->mir_mutex);
1267 	cv_destroy(&mir->mir_condvar);
1268 	cv_destroy(&mir->mir_timer_cv);
1269 	kmem_free(mir, sizeof (mir_t));
1270 	return (0);
1271 }
1272 
1273 /*
1274  * This is server side only (RPC_SERVER).
1275  *
1276  * Exit idle mode.
1277  */
1278 static void
1279 mir_svc_idle_stop(queue_t *q, mir_t *mir)
1280 {
1281 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1282 	ASSERT((q->q_flag & QREADR) == 0);
1283 	ASSERT(mir->mir_type == RPC_SERVER);
1284 	RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q);
1285 
1286 	mir_timer_stop(mir);
1287 }
1288 
1289 /*
1290  * This is server side only (RPC_SERVER).
1291  *
1292  * Start idle processing, which will include setting idle timer if the
1293  * stream is not being closed.
1294  */
1295 static void
1296 mir_svc_idle_start(queue_t *q, mir_t *mir)
1297 {
1298 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1299 	ASSERT((q->q_flag & QREADR) == 0);
1300 	ASSERT(mir->mir_type == RPC_SERVER);
1301 	RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q);
1302 
1303 	/*
1304 	 * Don't re-start idle timer if we are closing queues.
1305 	 */
1306 	if (mir->mir_closing) {
1307 		RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n",
1308 		    (void *)q);
1309 
1310 		/*
1311 		 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED()
1312 		 * is true.  When it is true, and we are in the process of
1313 		 * closing the stream, signal any thread waiting in
1314 		 * mir_close().
1315 		 */
1316 		if (mir->mir_inwservice == 0)
1317 			cv_signal(&mir->mir_condvar);
1318 
1319 	} else {
1320 		RPCLOG(16, "mir_svc_idle_start - reset %s timer\n",
1321 		    mir->mir_ordrel_pending ? "ordrel" : "normal");
1322 		/*
1323 		 * Normal condition, start the idle timer.  If an orderly
1324 		 * release has been sent, set the timeout to wait for the
1325 		 * client to close its side of the connection.  Otherwise,
1326 		 * use the normal idle timeout.
1327 		 */
1328 		mir_timer_start(q, mir, mir->mir_ordrel_pending ?
1329 		    svc_ordrel_timeout : mir->mir_idle_timeout);
1330 	}
1331 }
1332 
1333 /* ARGSUSED */
1334 static int
1335 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
1336 {
1337 	mir_t	*mir;
1338 
1339 	RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q);
1340 	/* Set variables used directly by KRPC. */
1341 	if (!mir_rele)
1342 		mir_rele = mir_svc_release;
1343 	if (!mir_start)
1344 		mir_start = mir_svc_start;
1345 	if (!clnt_stop_idle)
1346 		clnt_stop_idle = mir_clnt_idle_do_stop;
1347 	if (!clnt_max_msg_sizep)
1348 		clnt_max_msg_sizep = &clnt_max_msg_size;
1349 	if (!svc_max_msg_sizep)
1350 		svc_max_msg_sizep = &svc_max_msg_size;
1351 
1352 	/* Allocate a zero'ed out mir structure for this stream. */
1353 	mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP);
1354 
1355 	/*
1356 	 * We set hold inbound here so that incoming messages will
1357 	 * be held on the read-side queue until the stream is completely
1358 	 * initialized with a RPC_CLIENT or RPC_SERVER ioctl.  During
1359 	 * the ioctl processing, the flag is cleared and any messages that
1360 	 * arrived between the open and the ioctl are delivered to KRPC.
1361 	 *
1362 	 * Early data should never arrive on a client stream since
1363 	 * servers only respond to our requests and we do not send any.
1364 	 * until after the stream is initialized.  Early data is
1365 	 * very common on a server stream where the client will start
1366 	 * sending data as soon as the connection is made (and this
1367 	 * is especially true with TCP where the protocol accepts the
1368 	 * connection before nfsd or KRPC is notified about it).
1369 	 */
1370 
1371 	mir->mir_hold_inbound = 1;
1372 
1373 	/*
1374 	 * Start the record marker looking for a 4-byte header.  When
1375 	 * this length is negative, it indicates that rpcmod is looking
1376 	 * for bytes to consume for the record marker header.  When it
1377 	 * is positive, it holds the number of bytes that have arrived
1378 	 * for the current fragment and are being held in mir_header_mp.
1379 	 */
1380 
1381 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1382 
1383 	mir->mir_zoneid = rpc_zoneid();
1384 	mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL);
1385 	cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL);
1386 	cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL);
1387 
1388 	q->q_ptr = (char *)mir;
1389 	WR(q)->q_ptr = (char *)mir;
1390 
1391 	/*
1392 	 * We noenable the read-side queue because we don't want it
1393 	 * automatically enabled by putq.  We enable it explicitly
1394 	 * in mir_wsrv when appropriate. (See additional comments on
1395 	 * flow control at the beginning of mir_rsrv.)
1396 	 */
1397 	noenable(q);
1398 
1399 	qprocson(q);
1400 	return (0);
1401 }
1402 
1403 /*
1404  * Read-side put routine for both the client and server side.  Does the
1405  * record marking for incoming RPC messages, and when complete, dispatches
1406  * the message to either the client or server.
1407  */
1408 static void
1409 mir_rput(queue_t *q, mblk_t *mp)
1410 {
1411 	int	excess;
1412 	int32_t	frag_len, frag_header;
1413 	mblk_t	*cont_mp, *head_mp, *tail_mp, *mp1;
1414 	mir_t	*mir = q->q_ptr;
1415 	boolean_t stop_timer = B_FALSE;
1416 
1417 	ASSERT(mir != NULL);
1418 
1419 	/*
1420 	 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER
1421 	 * with the corresponding ioctl, then don't accept
1422 	 * any inbound data.  This should never happen for streams
1423 	 * created by nfsd or client-side KRPC because they are careful
1424 	 * to set the mode of the stream before doing anything else.
1425 	 */
1426 	if (mir->mir_type == 0) {
1427 		freemsg(mp);
1428 		return;
1429 	}
1430 
1431 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1432 
1433 	switch (mp->b_datap->db_type) {
1434 	case M_DATA:
1435 		break;
1436 	case M_PROTO:
1437 	case M_PCPROTO:
1438 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1439 			RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n",
1440 			    (int)MBLKL(mp));
1441 			freemsg(mp);
1442 			return;
1443 		}
1444 		if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) {
1445 			mir_rput_proto(q, mp);
1446 			return;
1447 		}
1448 
1449 		/* Throw away the T_DATA_IND block and continue with data. */
1450 		mp1 = mp;
1451 		mp = mp->b_cont;
1452 		freeb(mp1);
1453 		break;
1454 	case M_SETOPTS:
1455 		/*
1456 		 * If a module on the stream is trying set the Stream head's
1457 		 * high water mark, then set our hiwater to the requested
1458 		 * value.  We are the "stream head" for all inbound
1459 		 * data messages since messages are passed directly to KRPC.
1460 		 */
1461 		if (MBLKL(mp) >= sizeof (struct stroptions)) {
1462 			struct stroptions	*stropts;
1463 
1464 			stropts = (struct stroptions *)mp->b_rptr;
1465 			if ((stropts->so_flags & SO_HIWAT) &&
1466 			    !(stropts->so_flags & SO_BAND)) {
1467 				(void) strqset(q, QHIWAT, 0, stropts->so_hiwat);
1468 			}
1469 		}
1470 		putnext(q, mp);
1471 		return;
1472 	case M_FLUSH:
1473 		RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr);
1474 		RPCLOG(32, "on q 0x%p\n", (void *)q);
1475 		putnext(q, mp);
1476 		return;
1477 	default:
1478 		putnext(q, mp);
1479 		return;
1480 	}
1481 
1482 	mutex_enter(&mir->mir_mutex);
1483 
1484 	/*
1485 	 * If this connection is closing, don't accept any new messages.
1486 	 */
1487 	if (mir->mir_svc_no_more_msgs) {
1488 		ASSERT(mir->mir_type == RPC_SERVER);
1489 		mutex_exit(&mir->mir_mutex);
1490 		freemsg(mp);
1491 		return;
1492 	}
1493 
1494 	/* Get local copies for quicker access. */
1495 	frag_len = mir->mir_frag_len;
1496 	frag_header = mir->mir_frag_header;
1497 	head_mp = mir->mir_head_mp;
1498 	tail_mp = mir->mir_tail_mp;
1499 
1500 	/* Loop, processing each message block in the mp chain separately. */
1501 	do {
1502 		cont_mp = mp->b_cont;
1503 		mp->b_cont = NULL;
1504 
1505 		/*
1506 		 * Drop zero-length mblks to prevent unbounded kernel memory
1507 		 * consumption.
1508 		 */
1509 		if (MBLKL(mp) == 0) {
1510 			freeb(mp);
1511 			continue;
1512 		}
1513 
1514 		/*
1515 		 * If frag_len is negative, we're still in the process of
1516 		 * building frag_header -- try to complete it with this mblk.
1517 		 */
1518 		while (frag_len < 0 && mp->b_rptr < mp->b_wptr) {
1519 			frag_len++;
1520 			frag_header <<= 8;
1521 			frag_header += *mp->b_rptr++;
1522 		}
1523 
1524 		if (MBLKL(mp) == 0 && frag_len < 0) {
1525 			/*
1526 			 * We consumed this mblk while trying to complete the
1527 			 * fragment header.  Free it and move on.
1528 			 */
1529 			freeb(mp);
1530 			continue;
1531 		}
1532 
1533 		ASSERT(frag_len >= 0);
1534 
1535 		/*
1536 		 * Now frag_header has the number of bytes in this fragment
1537 		 * and we're just waiting to collect them all.  Chain our
1538 		 * latest mblk onto the list and see if we now have enough
1539 		 * bytes to complete the fragment.
1540 		 */
1541 		if (head_mp == NULL) {
1542 			ASSERT(tail_mp == NULL);
1543 			head_mp = tail_mp = mp;
1544 		} else {
1545 			tail_mp->b_cont = mp;
1546 			tail_mp = mp;
1547 		}
1548 
1549 		frag_len += MBLKL(mp);
1550 		excess = frag_len - (frag_header & ~MIR_LASTFRAG);
1551 		if (excess < 0) {
1552 			/*
1553 			 * We still haven't received enough data to complete
1554 			 * the fragment, so continue on to the next mblk.
1555 			 */
1556 			continue;
1557 		}
1558 
1559 		/*
1560 		 * We've got a complete fragment.  If there are excess bytes,
1561 		 * then they're part of the next fragment's header (of either
1562 		 * this RPC message or the next RPC message).  Split that part
1563 		 * into its own mblk so that we can safely freeb() it when
1564 		 * building frag_header above.
1565 		 */
1566 		if (excess > 0) {
1567 			if ((mp1 = dupb(mp)) == NULL &&
1568 			    (mp1 = copyb(mp)) == NULL) {
1569 				freemsg(head_mp);
1570 				freemsg(cont_mp);
1571 				RPCLOG0(1, "mir_rput: dupb/copyb failed\n");
1572 				mir->mir_frag_header = 0;
1573 				mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1574 				mir->mir_head_mp = NULL;
1575 				mir->mir_tail_mp = NULL;
1576 				mir_disconnect(q, mir);	/* drops mir_mutex */
1577 				return;
1578 			}
1579 
1580 			/*
1581 			 * Relink the message chain so that the next mblk is
1582 			 * the next fragment header, followed by the rest of
1583 			 * the message chain.
1584 			 */
1585 			mp1->b_cont = cont_mp;
1586 			cont_mp = mp1;
1587 
1588 			/*
1589 			 * Data in the new mblk begins at the next fragment,
1590 			 * and data in the old mblk ends at the next fragment.
1591 			 */
1592 			mp1->b_rptr = mp1->b_wptr - excess;
1593 			mp->b_wptr -= excess;
1594 		}
1595 
1596 		/*
1597 		 * Reset frag_len and frag_header for the next fragment.
1598 		 */
1599 		frag_len = -(int32_t)sizeof (uint32_t);
1600 		if (!(frag_header & MIR_LASTFRAG)) {
1601 			/*
1602 			 * The current fragment is complete, but more
1603 			 * fragments need to be processed before we can
1604 			 * pass along the RPC message headed at head_mp.
1605 			 */
1606 			frag_header = 0;
1607 			continue;
1608 		}
1609 		frag_header = 0;
1610 
1611 		/*
1612 		 * We've got a complete RPC message; pass it to the
1613 		 * appropriate consumer.
1614 		 */
1615 		switch (mir->mir_type) {
1616 		case RPC_CLIENT:
1617 			if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) {
1618 				/*
1619 				 * Mark this stream as active.  This marker
1620 				 * is used in mir_timer().
1621 				 */
1622 				mir->mir_clntreq = 1;
1623 				mir->mir_use_timestamp = ddi_get_lbolt();
1624 			} else {
1625 				freemsg(head_mp);
1626 			}
1627 			break;
1628 
1629 		case RPC_SERVER:
1630 			/*
1631 			 * Check for flow control before passing the
1632 			 * message to KRPC.
1633 			 */
1634 			if (!mir->mir_hold_inbound) {
1635 				if (mir->mir_krpc_cell) {
1636 					/*
1637 					 * If the reference count is 0
1638 					 * (not including this request),
1639 					 * then the stream is transitioning
1640 					 * from idle to non-idle.  In this case,
1641 					 * we cancel the idle timer.
1642 					 */
1643 					if (mir->mir_ref_cnt++ == 0)
1644 						stop_timer = B_TRUE;
1645 					if (mir_check_len(q,
1646 					    (int32_t)msgdsize(mp), mp))
1647 						return;
1648 					svc_queuereq(q, head_mp); /* to KRPC */
1649 				} else {
1650 					/*
1651 					 * Count # of times this happens. Should
1652 					 * be never, but experience shows
1653 					 * otherwise.
1654 					 */
1655 					mir_krpc_cell_null++;
1656 					freemsg(head_mp);
1657 				}
1658 			} else {
1659 				/*
1660 				 * If the outbound side of the stream is
1661 				 * flow controlled, then hold this message
1662 				 * until client catches up. mir_hold_inbound
1663 				 * is set in mir_wput and cleared in mir_wsrv.
1664 				 */
1665 				(void) putq(q, head_mp);
1666 				mir->mir_inrservice = B_TRUE;
1667 			}
1668 			break;
1669 		default:
1670 			RPCLOG(1, "mir_rput: unknown mir_type %d\n",
1671 			    mir->mir_type);
1672 			freemsg(head_mp);
1673 			break;
1674 		}
1675 
1676 		/*
1677 		 * Reset the chain since we're starting on a new RPC message.
1678 		 */
1679 		head_mp = tail_mp = NULL;
1680 	} while ((mp = cont_mp) != NULL);
1681 
1682 	/*
1683 	 * Sanity check the message length; if it's too large mir_check_len()
1684 	 * will shutdown the connection, drop mir_mutex, and return non-zero.
1685 	 */
1686 	if (head_mp != NULL && mir->mir_setup_complete &&
1687 	    mir_check_len(q, frag_len, head_mp))
1688 		return;
1689 
1690 	/* Save our local copies back in the mir structure. */
1691 	mir->mir_frag_header = frag_header;
1692 	mir->mir_frag_len = frag_len;
1693 	mir->mir_head_mp = head_mp;
1694 	mir->mir_tail_mp = tail_mp;
1695 
1696 	/*
1697 	 * The timer is stopped after the whole message chain is processed.
1698 	 * The reason is that stopping the timer releases the mir_mutex
1699 	 * lock temporarily.  This means that the request can be serviced
1700 	 * while we are still processing the message chain.  This is not
1701 	 * good.  So we stop the timer here instead.
1702 	 *
1703 	 * Note that if the timer fires before we stop it, it will not
1704 	 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer()
1705 	 * will just return.
1706 	 */
1707 	if (stop_timer) {
1708 		RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because "
1709 		    "ref cnt going to non zero\n", (void *)WR(q));
1710 		mir_svc_idle_stop(WR(q), mir);
1711 	}
1712 	mutex_exit(&mir->mir_mutex);
1713 }
1714 
1715 static void
1716 mir_rput_proto(queue_t *q, mblk_t *mp)
1717 {
1718 	mir_t	*mir = (mir_t *)q->q_ptr;
1719 	uint32_t	type;
1720 	uint32_t reason = 0;
1721 
1722 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1723 
1724 	type = ((union T_primitives *)mp->b_rptr)->type;
1725 	switch (mir->mir_type) {
1726 	case RPC_CLIENT:
1727 		switch (type) {
1728 		case T_DISCON_IND:
1729 			reason = ((struct T_discon_ind *)
1730 			    (mp->b_rptr))->DISCON_reason;
1731 			/*FALLTHROUGH*/
1732 		case T_ORDREL_IND:
1733 			mutex_enter(&mir->mir_mutex);
1734 			if (mir->mir_head_mp) {
1735 				freemsg(mir->mir_head_mp);
1736 				mir->mir_head_mp = (mblk_t *)0;
1737 				mir->mir_tail_mp = (mblk_t *)0;
1738 			}
1739 			/*
1740 			 * We are disconnecting, but not necessarily
1741 			 * closing. By not closing, we will fail to
1742 			 * pick up a possibly changed global timeout value,
1743 			 * unless we store it now.
1744 			 */
1745 			mir->mir_idle_timeout = clnt_idle_timeout;
1746 			mir_clnt_idle_stop(WR(q), mir);
1747 
1748 			/*
1749 			 * Even though we are unconnected, we still
1750 			 * leave the idle timer going on the client. The
1751 			 * reason for is that if we've disconnected due
1752 			 * to a server-side disconnect, reset, or connection
1753 			 * timeout, there is a possibility the client may
1754 			 * retry the RPC request. This retry needs to done on
1755 			 * the same bound address for the server to interpret
1756 			 * it as such. However, we don't want
1757 			 * to wait forever for that possibility. If the
1758 			 * end-point stays unconnected for mir_idle_timeout
1759 			 * units of time, then that is a signal to the
1760 			 * connection manager to give up waiting for the
1761 			 * application (eg. NFS) to send a retry.
1762 			 */
1763 			mir_clnt_idle_start(WR(q), mir);
1764 			mutex_exit(&mir->mir_mutex);
1765 			clnt_dispatch_notifyall(WR(q), type, reason);
1766 			freemsg(mp);
1767 			return;
1768 		case T_ERROR_ACK:
1769 		{
1770 			struct T_error_ack	*terror;
1771 
1772 			terror = (struct T_error_ack *)mp->b_rptr;
1773 			RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p",
1774 			    (void *)q);
1775 			RPCLOG(1, " ERROR_prim: %s,",
1776 			    rpc_tpiprim2name(terror->ERROR_prim));
1777 			RPCLOG(1, " TLI_error: %s,",
1778 			    rpc_tpierr2name(terror->TLI_error));
1779 			RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error);
1780 			if (terror->ERROR_prim == T_DISCON_REQ)  {
1781 				clnt_dispatch_notifyall(WR(q), type, reason);
1782 				freemsg(mp);
1783 				return;
1784 			} else {
1785 				if (clnt_dispatch_notifyconn(WR(q), mp))
1786 					return;
1787 			}
1788 			break;
1789 		}
1790 		case T_OK_ACK:
1791 		{
1792 			struct T_ok_ack	*tok = (struct T_ok_ack *)mp->b_rptr;
1793 
1794 			if (tok->CORRECT_prim == T_DISCON_REQ) {
1795 				clnt_dispatch_notifyall(WR(q), type, reason);
1796 				freemsg(mp);
1797 				return;
1798 			} else {
1799 				if (clnt_dispatch_notifyconn(WR(q), mp))
1800 					return;
1801 			}
1802 			break;
1803 		}
1804 		case T_CONN_CON:
1805 		case T_INFO_ACK:
1806 		case T_OPTMGMT_ACK:
1807 			if (clnt_dispatch_notifyconn(WR(q), mp))
1808 				return;
1809 			break;
1810 		case T_BIND_ACK:
1811 			break;
1812 		default:
1813 			RPCLOG(1, "mir_rput: unexpected message %d "
1814 			    "for KRPC client\n",
1815 			    ((union T_primitives *)mp->b_rptr)->type);
1816 			break;
1817 		}
1818 		break;
1819 
1820 	case RPC_SERVER:
1821 		switch (type) {
1822 		case T_BIND_ACK:
1823 		{
1824 			struct T_bind_ack	*tbind;
1825 
1826 			/*
1827 			 * If this is a listening stream, then shut
1828 			 * off the idle timer.
1829 			 */
1830 			tbind = (struct T_bind_ack *)mp->b_rptr;
1831 			if (tbind->CONIND_number > 0) {
1832 				mutex_enter(&mir->mir_mutex);
1833 				mir_svc_idle_stop(WR(q), mir);
1834 
1835 				/*
1836 				 * mark this as a listen endpoint
1837 				 * for special handling.
1838 				 */
1839 
1840 				mir->mir_listen_stream = 1;
1841 				mutex_exit(&mir->mir_mutex);
1842 			}
1843 			break;
1844 		}
1845 		case T_DISCON_IND:
1846 		case T_ORDREL_IND:
1847 			RPCLOG(16, "mir_rput_proto: got %s indication\n",
1848 			    type == T_DISCON_IND ? "disconnect"
1849 			    : "orderly release");
1850 
1851 			/*
1852 			 * For listen endpoint just pass
1853 			 * on the message.
1854 			 */
1855 
1856 			if (mir->mir_listen_stream)
1857 				break;
1858 
1859 			mutex_enter(&mir->mir_mutex);
1860 
1861 			/*
1862 			 * If client wants to break off connection, record
1863 			 * that fact.
1864 			 */
1865 			mir_svc_start_close(WR(q), mir);
1866 
1867 			/*
1868 			 * If we are idle, then send the orderly release
1869 			 * or disconnect indication to nfsd.
1870 			 */
1871 			if (MIR_SVC_QUIESCED(mir)) {
1872 				mutex_exit(&mir->mir_mutex);
1873 				break;
1874 			}
1875 
1876 			RPCLOG(16, "mir_rput_proto: not idle, so "
1877 			    "disconnect/ord rel indication not passed "
1878 			    "upstream on 0x%p\n", (void *)q);
1879 
1880 			/*
1881 			 * Hold the indication until we get idle
1882 			 * If there already is an indication stored,
1883 			 * replace it if the new one is a disconnect. The
1884 			 * reasoning is that disconnection takes less time
1885 			 * to process, and once a client decides to
1886 			 * disconnect, we should do that.
1887 			 */
1888 			if (mir->mir_svc_pend_mp) {
1889 				if (type == T_DISCON_IND) {
1890 					RPCLOG(16, "mir_rput_proto: replacing"
1891 					    " held disconnect/ord rel"
1892 					    " indication with disconnect on"
1893 					    " 0x%p\n", (void *)q);
1894 
1895 					freemsg(mir->mir_svc_pend_mp);
1896 					mir->mir_svc_pend_mp = mp;
1897 				} else {
1898 					RPCLOG(16, "mir_rput_proto: already "
1899 					    "held a disconnect/ord rel "
1900 					    "indication. freeing ord rel "
1901 					    "ind on 0x%p\n", (void *)q);
1902 					freemsg(mp);
1903 				}
1904 			} else
1905 				mir->mir_svc_pend_mp = mp;
1906 
1907 			mutex_exit(&mir->mir_mutex);
1908 			return;
1909 
1910 		default:
1911 			/* nfsd handles server-side non-data messages. */
1912 			break;
1913 		}
1914 		break;
1915 
1916 	default:
1917 		break;
1918 	}
1919 
1920 	putnext(q, mp);
1921 }
1922 
1923 /*
1924  * The server-side read queues are used to hold inbound messages while
1925  * outbound flow control is exerted.  When outbound flow control is
1926  * relieved, mir_wsrv qenables the read-side queue.  Read-side queues
1927  * are not enabled by STREAMS and are explicitly noenable'ed in mir_open.
1928  *
1929  * For the server side,  we have two types of messages queued. The first type
1930  * are messages that are ready to be XDR decoded and and then sent to the
1931  * RPC program's dispatch routine. The second type are "raw" messages that
1932  * haven't been processed, i.e. assembled from rpc record fragements into
1933  * full requests. The only time we will see the second type of message
1934  * queued is if we have a memory allocation failure while processing a
1935  * a raw message. The field mir_first_non_processed_mblk will mark the
1936  * first such raw message. So the flow for server side is:
1937  *
1938  *	- send processed queued messages to kRPC until we run out or find
1939  *	  one that needs additional processing because we were short on memory
1940  *	  earlier
1941  *	- process a message that was deferred because of lack of
1942  *	  memory
1943  *	- continue processing messages until the queue empties or we
1944  *	  have to stop because of lack of memory
1945  *	- during each of the above phase, if the queue is empty and
1946  *	  there are no pending messages that were passed to the RPC
1947  *	  layer, send upstream the pending disconnect/ordrel indication if
1948  *	  there is one
1949  *
1950  * The read-side queue is also enabled by a bufcall callback if dupmsg
1951  * fails in mir_rput.
1952  */
1953 static void
1954 mir_rsrv(queue_t *q)
1955 {
1956 	mir_t	*mir;
1957 	mblk_t	*mp;
1958 	mblk_t	*cmp = NULL;
1959 	boolean_t stop_timer = B_FALSE;
1960 
1961 	mir = (mir_t *)q->q_ptr;
1962 	mutex_enter(&mir->mir_mutex);
1963 
1964 	mp = NULL;
1965 	switch (mir->mir_type) {
1966 	case RPC_SERVER:
1967 		if (mir->mir_ref_cnt == 0)
1968 			mir->mir_hold_inbound = 0;
1969 		if (mir->mir_hold_inbound) {
1970 
1971 			ASSERT(cmp == NULL);
1972 			if (q->q_first == NULL) {
1973 
1974 				MIR_CLEAR_INRSRV(mir);
1975 
1976 				if (MIR_SVC_QUIESCED(mir)) {
1977 					cmp = mir->mir_svc_pend_mp;
1978 					mir->mir_svc_pend_mp = NULL;
1979 				}
1980 			}
1981 
1982 			mutex_exit(&mir->mir_mutex);
1983 
1984 			if (cmp != NULL) {
1985 				RPCLOG(16, "mir_rsrv: line %d: sending a held "
1986 				    "disconnect/ord rel indication upstream\n",
1987 				    __LINE__);
1988 				putnext(q, cmp);
1989 			}
1990 
1991 			return;
1992 		}
1993 		while (mp = getq(q)) {
1994 			if (mir->mir_krpc_cell &&
1995 			    (mir->mir_svc_no_more_msgs == 0)) {
1996 				/*
1997 				 * If we were idle, turn off idle timer since
1998 				 * we aren't idle any more.
1999 				 */
2000 				if (mir->mir_ref_cnt++ == 0)
2001 					stop_timer = B_TRUE;
2002 				if (mir_check_len(q,
2003 				    (int32_t)msgdsize(mp), mp))
2004 					return;
2005 				svc_queuereq(q, mp);
2006 			} else {
2007 				/*
2008 				 * Count # of times this happens. Should be
2009 				 * never, but experience shows otherwise.
2010 				 */
2011 				if (mir->mir_krpc_cell == NULL)
2012 					mir_krpc_cell_null++;
2013 				freemsg(mp);
2014 			}
2015 		}
2016 		break;
2017 	case RPC_CLIENT:
2018 		break;
2019 	default:
2020 		RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type);
2021 
2022 		if (q->q_first == NULL)
2023 			MIR_CLEAR_INRSRV(mir);
2024 
2025 		mutex_exit(&mir->mir_mutex);
2026 
2027 		return;
2028 	}
2029 
2030 	/*
2031 	 * The timer is stopped after all the messages are processed.
2032 	 * The reason is that stopping the timer releases the mir_mutex
2033 	 * lock temporarily.  This means that the request can be serviced
2034 	 * while we are still processing the message queue.  This is not
2035 	 * good.  So we stop the timer here instead.
2036 	 */
2037 	if (stop_timer)  {
2038 		RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref "
2039 		    "cnt going to non zero\n", (void *)WR(q));
2040 		mir_svc_idle_stop(WR(q), mir);
2041 	}
2042 
2043 	if (q->q_first == NULL) {
2044 
2045 		MIR_CLEAR_INRSRV(mir);
2046 
2047 		ASSERT(cmp == NULL);
2048 		if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) {
2049 			cmp = mir->mir_svc_pend_mp;
2050 			mir->mir_svc_pend_mp = NULL;
2051 		}
2052 
2053 		mutex_exit(&mir->mir_mutex);
2054 
2055 		if (cmp != NULL) {
2056 			RPCLOG(16, "mir_rsrv: line %d: sending a held "
2057 			    "disconnect/ord rel indication upstream\n",
2058 			    __LINE__);
2059 			putnext(q, cmp);
2060 		}
2061 
2062 		return;
2063 	}
2064 	mutex_exit(&mir->mir_mutex);
2065 }
2066 
2067 static int mir_svc_policy_fails;
2068 
2069 /*
2070  * Called to send an event code to nfsd/lockd so that it initiates
2071  * connection close.
2072  */
2073 static int
2074 mir_svc_policy_notify(queue_t *q, int event)
2075 {
2076 	mblk_t	*mp;
2077 #ifdef DEBUG
2078 	mir_t *mir = (mir_t *)q->q_ptr;
2079 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2080 #endif
2081 	ASSERT(q->q_flag & QREADR);
2082 
2083 	/*
2084 	 * Create an M_DATA message with the event code and pass it to the
2085 	 * Stream head (nfsd or whoever created the stream will consume it).
2086 	 */
2087 	mp = allocb(sizeof (int), BPRI_HI);
2088 
2089 	if (!mp) {
2090 
2091 		mir_svc_policy_fails++;
2092 		RPCLOG(16, "mir_svc_policy_notify: could not allocate event "
2093 		    "%d\n", event);
2094 		return (ENOMEM);
2095 	}
2096 
2097 	U32_TO_BE32(event, mp->b_rptr);
2098 	mp->b_wptr = mp->b_rptr + sizeof (int);
2099 	putnext(q, mp);
2100 	return (0);
2101 }
2102 
2103 /*
2104  * Server side: start the close phase. We want to get this rpcmod slot in an
2105  * idle state before mir_close() is called.
2106  */
2107 static void
2108 mir_svc_start_close(queue_t *wq, mir_t *mir)
2109 {
2110 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2111 	ASSERT((wq->q_flag & QREADR) == 0);
2112 	ASSERT(mir->mir_type == RPC_SERVER);
2113 
2114 
2115 	/*
2116 	 * Do not accept any more messages.
2117 	 */
2118 	mir->mir_svc_no_more_msgs = 1;
2119 
2120 	/*
2121 	 * Next two statements will make the read service procedure invoke
2122 	 * svc_queuereq() on everything stuck in the streams read queue.
2123 	 * It's not necessary because enabling the write queue will
2124 	 * have the same effect, but why not speed the process along?
2125 	 */
2126 	mir->mir_hold_inbound = 0;
2127 	qenable(RD(wq));
2128 
2129 	/*
2130 	 * Meanwhile force the write service procedure to send the
2131 	 * responses downstream, regardless of flow control.
2132 	 */
2133 	qenable(wq);
2134 }
2135 
2136 /*
2137  * This routine is called directly by KRPC after a request is completed,
2138  * whether a reply was sent or the request was dropped.
2139  */
2140 static void
2141 mir_svc_release(queue_t *wq, mblk_t *mp)
2142 {
2143 	mir_t   *mir = (mir_t *)wq->q_ptr;
2144 	mblk_t	*cmp = NULL;
2145 
2146 	ASSERT((wq->q_flag & QREADR) == 0);
2147 	if (mp)
2148 		freemsg(mp);
2149 
2150 	mutex_enter(&mir->mir_mutex);
2151 
2152 	/*
2153 	 * Start idle processing if this is the last reference.
2154 	 */
2155 	if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) {
2156 		cmp = mir->mir_svc_pend_mp;
2157 		mir->mir_svc_pend_mp = NULL;
2158 	}
2159 
2160 	if (cmp) {
2161 		RPCLOG(16, "mir_svc_release: sending a held "
2162 		    "disconnect/ord rel indication upstream on queue 0x%p\n",
2163 		    (void *)RD(wq));
2164 
2165 		mutex_exit(&mir->mir_mutex);
2166 
2167 		putnext(RD(wq), cmp);
2168 
2169 		mutex_enter(&mir->mir_mutex);
2170 	}
2171 
2172 	/*
2173 	 * Start idle processing if this is the last reference.
2174 	 */
2175 	if (mir->mir_ref_cnt == 1 && mir->mir_inrservice == 0) {
2176 
2177 		RPCLOG(16, "mir_svc_release starting idle timer on 0x%p "
2178 		    "because ref cnt is zero\n", (void *) wq);
2179 
2180 		mir_svc_idle_start(wq, mir);
2181 	}
2182 
2183 	mir->mir_ref_cnt--;
2184 	ASSERT(mir->mir_ref_cnt >= 0);
2185 
2186 	/*
2187 	 * Wake up the thread waiting to close.
2188 	 */
2189 
2190 	if ((mir->mir_ref_cnt == 0) && mir->mir_closing)
2191 		cv_signal(&mir->mir_condvar);
2192 
2193 	mutex_exit(&mir->mir_mutex);
2194 }
2195 
2196 /*
2197  * This routine is called by server-side KRPC when it is ready to
2198  * handle inbound messages on the stream.
2199  */
2200 static void
2201 mir_svc_start(queue_t *wq)
2202 {
2203 	mir_t   *mir = (mir_t *)wq->q_ptr;
2204 
2205 	/*
2206 	 * no longer need to take the mir_mutex because the
2207 	 * mir_setup_complete field has been moved out of
2208 	 * the binary field protected by the mir_mutex.
2209 	 */
2210 
2211 	mir->mir_setup_complete = 1;
2212 	qenable(RD(wq));
2213 }
2214 
2215 /*
2216  * client side wrapper for stopping timer with normal idle timeout.
2217  */
2218 static void
2219 mir_clnt_idle_stop(queue_t *wq, mir_t *mir)
2220 {
2221 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2222 	ASSERT((wq->q_flag & QREADR) == 0);
2223 	ASSERT(mir->mir_type == RPC_CLIENT);
2224 
2225 	mir_timer_stop(mir);
2226 }
2227 
2228 /*
2229  * client side wrapper for stopping timer with normal idle timeout.
2230  */
2231 static void
2232 mir_clnt_idle_start(queue_t *wq, mir_t *mir)
2233 {
2234 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2235 	ASSERT((wq->q_flag & QREADR) == 0);
2236 	ASSERT(mir->mir_type == RPC_CLIENT);
2237 
2238 	mir_timer_start(wq, mir, mir->mir_idle_timeout);
2239 }
2240 
2241 /*
2242  * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on
2243  * end-points that aren't connected.
2244  */
2245 static void
2246 mir_clnt_idle_do_stop(queue_t *wq)
2247 {
2248 	mir_t   *mir = (mir_t *)wq->q_ptr;
2249 
2250 	RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq);
2251 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2252 	mutex_enter(&mir->mir_mutex);
2253 	mir_clnt_idle_stop(wq, mir);
2254 	mutex_exit(&mir->mir_mutex);
2255 }
2256 
2257 /*
2258  * Timer handler.  It handles idle timeout and memory shortage problem.
2259  */
2260 static void
2261 mir_timer(void *arg)
2262 {
2263 	queue_t *wq = (queue_t *)arg;
2264 	mir_t *mir = (mir_t *)wq->q_ptr;
2265 	boolean_t notify;
2266 	clock_t now;
2267 
2268 	mutex_enter(&mir->mir_mutex);
2269 
2270 	/*
2271 	 * mir_timer_call is set only when either mir_timer_[start|stop]
2272 	 * is progressing.  And mir_timer() can only be run while they
2273 	 * are progressing if the timer is being stopped.  So just
2274 	 * return.
2275 	 */
2276 	if (mir->mir_timer_call) {
2277 		mutex_exit(&mir->mir_mutex);
2278 		return;
2279 	}
2280 	mir->mir_timer_id = 0;
2281 
2282 	switch (mir->mir_type) {
2283 	case RPC_CLIENT:
2284 
2285 		/*
2286 		 * For clients, the timer fires at clnt_idle_timeout
2287 		 * intervals.  If the activity marker (mir_clntreq) is
2288 		 * zero, then the stream has been idle since the last
2289 		 * timer event and we notify KRPC.  If mir_clntreq is
2290 		 * non-zero, then the stream is active and we just
2291 		 * restart the timer for another interval.  mir_clntreq
2292 		 * is set to 1 in mir_wput for every request passed
2293 		 * downstream.
2294 		 *
2295 		 * If this was a memory shortage timer reset the idle
2296 		 * timeout regardless; the mir_clntreq will not be a
2297 		 * valid indicator.
2298 		 *
2299 		 * The timer is initially started in mir_wput during
2300 		 * RPC_CLIENT ioctl processing.
2301 		 *
2302 		 * The timer interval can be changed for individual
2303 		 * streams with the ND variable "mir_idle_timeout".
2304 		 */
2305 		now = ddi_get_lbolt();
2306 		if (mir->mir_clntreq > 0 && mir->mir_use_timestamp +
2307 		    MSEC_TO_TICK(mir->mir_idle_timeout) - now >= 0) {
2308 			clock_t tout;
2309 
2310 			tout = mir->mir_idle_timeout -
2311 			    TICK_TO_MSEC(now - mir->mir_use_timestamp);
2312 			if (tout < 0)
2313 				tout = 1000;
2314 #if 0
2315 			printf("mir_timer[%d < %d + %d]: reset client timer "
2316 			    "to %d (ms)\n", TICK_TO_MSEC(now),
2317 			    TICK_TO_MSEC(mir->mir_use_timestamp),
2318 			    mir->mir_idle_timeout, tout);
2319 #endif
2320 			mir->mir_clntreq = 0;
2321 			mir_timer_start(wq, mir, tout);
2322 			mutex_exit(&mir->mir_mutex);
2323 			return;
2324 		}
2325 #if 0
2326 printf("mir_timer[%d]: doing client timeout\n", now / hz);
2327 #endif
2328 		/*
2329 		 * We are disconnecting, but not necessarily
2330 		 * closing. By not closing, we will fail to
2331 		 * pick up a possibly changed global timeout value,
2332 		 * unless we store it now.
2333 		 */
2334 		mir->mir_idle_timeout = clnt_idle_timeout;
2335 		mir_clnt_idle_start(wq, mir);
2336 
2337 		mutex_exit(&mir->mir_mutex);
2338 		/*
2339 		 * We pass T_ORDREL_REQ as an integer value
2340 		 * to KRPC as the indication that the stream
2341 		 * is idle.  This is not a T_ORDREL_REQ message,
2342 		 * it is just a convenient value since we call
2343 		 * the same KRPC routine for T_ORDREL_INDs and
2344 		 * T_DISCON_INDs.
2345 		 */
2346 		clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0);
2347 		return;
2348 
2349 	case RPC_SERVER:
2350 
2351 		/*
2352 		 * For servers, the timer is only running when the stream
2353 		 * is really idle or memory is short.  The timer is started
2354 		 * by mir_wput when mir_type is set to RPC_SERVER and
2355 		 * by mir_svc_idle_start whenever the stream goes idle
2356 		 * (mir_ref_cnt == 0).  The timer is cancelled in
2357 		 * mir_rput whenever a new inbound request is passed to KRPC
2358 		 * and the stream was previously idle.
2359 		 *
2360 		 * The timer interval can be changed for individual
2361 		 * streams with the ND variable "mir_idle_timeout".
2362 		 *
2363 		 * If the stream is not idle do nothing.
2364 		 */
2365 		if (!MIR_SVC_QUIESCED(mir)) {
2366 			mutex_exit(&mir->mir_mutex);
2367 			return;
2368 		}
2369 
2370 		notify = !mir->mir_inrservice;
2371 		mutex_exit(&mir->mir_mutex);
2372 
2373 		/*
2374 		 * If there is no packet queued up in read queue, the stream
2375 		 * is really idle so notify nfsd to close it.
2376 		 */
2377 		if (notify) {
2378 			RPCLOG(16, "mir_timer: telling stream head listener "
2379 			    "to close stream (0x%p)\n", (void *) RD(wq));
2380 			(void) mir_svc_policy_notify(RD(wq), 1);
2381 		}
2382 		return;
2383 	default:
2384 		RPCLOG(1, "mir_timer: unexpected mir_type %d\n",
2385 		    mir->mir_type);
2386 		mutex_exit(&mir->mir_mutex);
2387 		return;
2388 	}
2389 }
2390 
2391 /*
2392  * Called by the RPC package to send either a call or a return, or a
2393  * transport connection request.  Adds the record marking header.
2394  */
2395 static void
2396 mir_wput(queue_t *q, mblk_t *mp)
2397 {
2398 	uint_t	frag_header;
2399 	mir_t	*mir = (mir_t *)q->q_ptr;
2400 	uchar_t	*rptr = mp->b_rptr;
2401 
2402 	if (!mir) {
2403 		freemsg(mp);
2404 		return;
2405 	}
2406 
2407 	if (mp->b_datap->db_type != M_DATA) {
2408 		mir_wput_other(q, mp);
2409 		return;
2410 	}
2411 
2412 	if (mir->mir_ordrel_pending == 1) {
2413 		freemsg(mp);
2414 		RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n",
2415 		    (void *)q);
2416 		return;
2417 	}
2418 
2419 	frag_header = (uint_t)DLEN(mp);
2420 	frag_header |= MIR_LASTFRAG;
2421 
2422 	/* Stick in the 4 byte record marking header. */
2423 	if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) ||
2424 	    !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) {
2425 		/*
2426 		 * Since we know that M_DATA messages are created exclusively
2427 		 * by KRPC, we expect that KRPC will leave room for our header
2428 		 * and 4 byte align which is normal for XDR.
2429 		 * If KRPC (or someone else) does not cooperate, then we
2430 		 * just throw away the message.
2431 		 */
2432 		RPCLOG(1, "mir_wput: KRPC did not leave space for record "
2433 		    "fragment header (%d bytes left)\n",
2434 		    (int)(rptr - mp->b_datap->db_base));
2435 		freemsg(mp);
2436 		return;
2437 	}
2438 	rptr -= sizeof (uint32_t);
2439 	*(uint32_t *)rptr = htonl(frag_header);
2440 	mp->b_rptr = rptr;
2441 
2442 	mutex_enter(&mir->mir_mutex);
2443 	if (mir->mir_type == RPC_CLIENT) {
2444 		/*
2445 		 * For the client, set mir_clntreq to indicate that the
2446 		 * connection is active.
2447 		 */
2448 		mir->mir_clntreq = 1;
2449 		mir->mir_use_timestamp = ddi_get_lbolt();
2450 	}
2451 
2452 	/*
2453 	 * If we haven't already queued some data and the downstream module
2454 	 * can accept more data, send it on, otherwise we queue the message
2455 	 * and take other actions depending on mir_type.
2456 	 */
2457 	if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) {
2458 		mutex_exit(&mir->mir_mutex);
2459 
2460 		/*
2461 		 * Now we pass the RPC message downstream.
2462 		 */
2463 		putnext(q, mp);
2464 		return;
2465 	}
2466 
2467 	switch (mir->mir_type) {
2468 	case RPC_CLIENT:
2469 		/*
2470 		 * Check for a previous duplicate request on the
2471 		 * queue.  If there is one, then we throw away
2472 		 * the current message and let the previous one
2473 		 * go through.  If we can't find a duplicate, then
2474 		 * send this one.  This tap dance is an effort
2475 		 * to reduce traffic and processing requirements
2476 		 * under load conditions.
2477 		 */
2478 		if (mir_clnt_dup_request(q, mp)) {
2479 			mutex_exit(&mir->mir_mutex);
2480 			freemsg(mp);
2481 			return;
2482 		}
2483 		break;
2484 	case RPC_SERVER:
2485 		/*
2486 		 * Set mir_hold_inbound so that new inbound RPC
2487 		 * messages will be held until the client catches
2488 		 * up on the earlier replies.  This flag is cleared
2489 		 * in mir_wsrv after flow control is relieved;
2490 		 * the read-side queue is also enabled at that time.
2491 		 */
2492 		mir->mir_hold_inbound = 1;
2493 		break;
2494 	default:
2495 		RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type);
2496 		break;
2497 	}
2498 	mir->mir_inwservice = 1;
2499 	(void) putq(q, mp);
2500 	mutex_exit(&mir->mir_mutex);
2501 }
2502 
2503 static void
2504 mir_wput_other(queue_t *q, mblk_t *mp)
2505 {
2506 	mir_t	*mir = (mir_t *)q->q_ptr;
2507 	struct iocblk	*iocp;
2508 	uchar_t	*rptr = mp->b_rptr;
2509 	bool_t	flush_in_svc = FALSE;
2510 
2511 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2512 	switch (mp->b_datap->db_type) {
2513 	case M_IOCTL:
2514 		iocp = (struct iocblk *)rptr;
2515 		switch (iocp->ioc_cmd) {
2516 		case RPC_CLIENT:
2517 			mutex_enter(&mir->mir_mutex);
2518 			if (mir->mir_type != 0 &&
2519 			    mir->mir_type != iocp->ioc_cmd) {
2520 ioc_eperm:
2521 				mutex_exit(&mir->mir_mutex);
2522 				iocp->ioc_error = EPERM;
2523 				iocp->ioc_count = 0;
2524 				mp->b_datap->db_type = M_IOCACK;
2525 				qreply(q, mp);
2526 				return;
2527 			}
2528 
2529 			mir->mir_type = iocp->ioc_cmd;
2530 
2531 			/*
2532 			 * Clear mir_hold_inbound which was set to 1 by
2533 			 * mir_open.  This flag is not used on client
2534 			 * streams.
2535 			 */
2536 			mir->mir_hold_inbound = 0;
2537 			mir->mir_max_msg_sizep = &clnt_max_msg_size;
2538 
2539 			/*
2540 			 * Start the idle timer.  See mir_timer() for more
2541 			 * information on how client timers work.
2542 			 */
2543 			mir->mir_idle_timeout = clnt_idle_timeout;
2544 			mir_clnt_idle_start(q, mir);
2545 			mutex_exit(&mir->mir_mutex);
2546 
2547 			mp->b_datap->db_type = M_IOCACK;
2548 			qreply(q, mp);
2549 			return;
2550 		case RPC_SERVER:
2551 			mutex_enter(&mir->mir_mutex);
2552 			if (mir->mir_type != 0 &&
2553 			    mir->mir_type != iocp->ioc_cmd)
2554 				goto ioc_eperm;
2555 
2556 			/*
2557 			 * We don't clear mir_hold_inbound here because
2558 			 * mir_hold_inbound is used in the flow control
2559 			 * model. If we cleared it here, then we'd commit
2560 			 * a small violation to the model where the transport
2561 			 * might immediately block downstream flow.
2562 			 */
2563 
2564 			mir->mir_type = iocp->ioc_cmd;
2565 			mir->mir_max_msg_sizep = &svc_max_msg_size;
2566 
2567 			/*
2568 			 * Start the idle timer.  See mir_timer() for more
2569 			 * information on how server timers work.
2570 			 *
2571 			 * Note that it is important to start the idle timer
2572 			 * here so that connections time out even if we
2573 			 * never receive any data on them.
2574 			 */
2575 			mir->mir_idle_timeout = svc_idle_timeout;
2576 			RPCLOG(16, "mir_wput_other starting idle timer on 0x%p "
2577 			    "because we got RPC_SERVER ioctl\n", (void *)q);
2578 			mir_svc_idle_start(q, mir);
2579 			mutex_exit(&mir->mir_mutex);
2580 
2581 			mp->b_datap->db_type = M_IOCACK;
2582 			qreply(q, mp);
2583 			return;
2584 		default:
2585 			break;
2586 		}
2587 		break;
2588 
2589 	case M_PROTO:
2590 		if (mir->mir_type == RPC_CLIENT) {
2591 			/*
2592 			 * We are likely being called from the context of a
2593 			 * service procedure. So we need to enqueue. However
2594 			 * enqueing may put our message behind data messages.
2595 			 * So flush the data first.
2596 			 */
2597 			flush_in_svc = TRUE;
2598 		}
2599 		if ((mp->b_wptr - rptr) < sizeof (uint32_t) ||
2600 		    !IS_P2ALIGNED(rptr, sizeof (uint32_t)))
2601 			break;
2602 
2603 		switch (((union T_primitives *)rptr)->type) {
2604 		case T_DATA_REQ:
2605 			/* Don't pass T_DATA_REQ messages downstream. */
2606 			freemsg(mp);
2607 			return;
2608 		case T_ORDREL_REQ:
2609 			RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n",
2610 			    (void *)q);
2611 			mutex_enter(&mir->mir_mutex);
2612 			if (mir->mir_type != RPC_SERVER) {
2613 				/*
2614 				 * We are likely being called from
2615 				 * clnt_dispatch_notifyall(). Sending
2616 				 * a T_ORDREL_REQ will result in
2617 				 * a some kind of _IND message being sent,
2618 				 * will be another call to
2619 				 * clnt_dispatch_notifyall(). To keep the stack
2620 				 * lean, queue this message.
2621 				 */
2622 				mir->mir_inwservice = 1;
2623 				(void) putq(q, mp);
2624 				mutex_exit(&mir->mir_mutex);
2625 				return;
2626 			}
2627 
2628 			/*
2629 			 * Mark the structure such that we don't accept any
2630 			 * more requests from client. We could defer this
2631 			 * until we actually send the orderly release
2632 			 * request downstream, but all that does is delay
2633 			 * the closing of this stream.
2634 			 */
2635 			RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ "
2636 			    " so calling mir_svc_start_close\n", (void *)q);
2637 
2638 			mir_svc_start_close(q, mir);
2639 
2640 			/*
2641 			 * If we have sent down a T_ORDREL_REQ, don't send
2642 			 * any more.
2643 			 */
2644 			if (mir->mir_ordrel_pending) {
2645 				freemsg(mp);
2646 				mutex_exit(&mir->mir_mutex);
2647 				return;
2648 			}
2649 
2650 			/*
2651 			 * If the stream is not idle, then we hold the
2652 			 * orderly release until it becomes idle.  This
2653 			 * ensures that KRPC will be able to reply to
2654 			 * all requests that we have passed to it.
2655 			 *
2656 			 * We also queue the request if there is data already
2657 			 * queued, because we cannot allow the T_ORDREL_REQ
2658 			 * to go before data. When we had a separate reply
2659 			 * count, this was not a problem, because the
2660 			 * reply count was reconciled when mir_wsrv()
2661 			 * completed.
2662 			 */
2663 			if (!MIR_SVC_QUIESCED(mir) ||
2664 			    mir->mir_inwservice == 1) {
2665 				mir->mir_inwservice = 1;
2666 				(void) putq(q, mp);
2667 
2668 				RPCLOG(16, "mir_wput_other: queuing "
2669 				    "T_ORDREL_REQ on 0x%p\n", (void *)q);
2670 
2671 				mutex_exit(&mir->mir_mutex);
2672 				return;
2673 			}
2674 
2675 			/*
2676 			 * Mark the structure so that we know we sent
2677 			 * an orderly release request, and reset the idle timer.
2678 			 */
2679 			mir->mir_ordrel_pending = 1;
2680 
2681 			RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start"
2682 			    " on 0x%p because we got T_ORDREL_REQ\n",
2683 			    (void *)q);
2684 
2685 			mir_svc_idle_start(q, mir);
2686 			mutex_exit(&mir->mir_mutex);
2687 
2688 			/*
2689 			 * When we break, we will putnext the T_ORDREL_REQ.
2690 			 */
2691 			break;
2692 
2693 		case T_CONN_REQ:
2694 			mutex_enter(&mir->mir_mutex);
2695 			if (mir->mir_head_mp != NULL) {
2696 				freemsg(mir->mir_head_mp);
2697 				mir->mir_head_mp = NULL;
2698 				mir->mir_tail_mp = NULL;
2699 			}
2700 			mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2701 			/*
2702 			 * Restart timer in case mir_clnt_idle_do_stop() was
2703 			 * called.
2704 			 */
2705 			mir->mir_idle_timeout = clnt_idle_timeout;
2706 			mir_clnt_idle_stop(q, mir);
2707 			mir_clnt_idle_start(q, mir);
2708 			mutex_exit(&mir->mir_mutex);
2709 			break;
2710 
2711 		default:
2712 			/*
2713 			 * T_DISCON_REQ is one of the interesting default
2714 			 * cases here. Ideally, an M_FLUSH is done before
2715 			 * T_DISCON_REQ is done. However, that is somewhat
2716 			 * cumbersome for clnt_cots.c to do. So we queue
2717 			 * T_DISCON_REQ, and let the service procedure
2718 			 * flush all M_DATA.
2719 			 */
2720 			break;
2721 		}
2722 		/* fallthru */;
2723 	default:
2724 		if (mp->b_datap->db_type >= QPCTL) {
2725 			if (mp->b_datap->db_type == M_FLUSH) {
2726 				if (mir->mir_type == RPC_CLIENT &&
2727 				    *mp->b_rptr & FLUSHW) {
2728 					RPCLOG(32, "mir_wput_other: flushing "
2729 					    "wq 0x%p\n", (void *)q);
2730 					if (*mp->b_rptr & FLUSHBAND) {
2731 						flushband(q, *(mp->b_rptr + 1),
2732 						    FLUSHDATA);
2733 					} else {
2734 						flushq(q, FLUSHDATA);
2735 					}
2736 				} else {
2737 					RPCLOG(32, "mir_wput_other: ignoring "
2738 					    "M_FLUSH on wq 0x%p\n", (void *)q);
2739 				}
2740 			}
2741 			break;
2742 		}
2743 
2744 		mutex_enter(&mir->mir_mutex);
2745 		if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) {
2746 			mutex_exit(&mir->mir_mutex);
2747 			break;
2748 		}
2749 		mir->mir_inwservice = 1;
2750 		mir->mir_inwflushdata = flush_in_svc;
2751 		(void) putq(q, mp);
2752 		mutex_exit(&mir->mir_mutex);
2753 		qenable(q);
2754 
2755 		return;
2756 	}
2757 	putnext(q, mp);
2758 }
2759 
2760 static void
2761 mir_wsrv(queue_t *q)
2762 {
2763 	mblk_t	*mp;
2764 	mir_t	*mir;
2765 	bool_t flushdata;
2766 
2767 	mir = (mir_t *)q->q_ptr;
2768 	mutex_enter(&mir->mir_mutex);
2769 
2770 	flushdata = mir->mir_inwflushdata;
2771 	mir->mir_inwflushdata = 0;
2772 
2773 	while (mp = getq(q)) {
2774 		if (mp->b_datap->db_type == M_DATA) {
2775 			/*
2776 			 * Do not send any more data if we have sent
2777 			 * a T_ORDREL_REQ.
2778 			 */
2779 			if (flushdata || mir->mir_ordrel_pending == 1) {
2780 				freemsg(mp);
2781 				continue;
2782 			}
2783 
2784 			/*
2785 			 * Make sure that the stream can really handle more
2786 			 * data.
2787 			 */
2788 			if (!MIR_WCANPUTNEXT(mir, q)) {
2789 				(void) putbq(q, mp);
2790 				mutex_exit(&mir->mir_mutex);
2791 				return;
2792 			}
2793 
2794 			/*
2795 			 * Now we pass the RPC message downstream.
2796 			 */
2797 			mutex_exit(&mir->mir_mutex);
2798 			putnext(q, mp);
2799 			mutex_enter(&mir->mir_mutex);
2800 			continue;
2801 		}
2802 
2803 		/*
2804 		 * This is not an RPC message, pass it downstream
2805 		 * (ignoring flow control) if the server side is not sending a
2806 		 * T_ORDREL_REQ downstream.
2807 		 */
2808 		if (mir->mir_type != RPC_SERVER ||
2809 		    ((union T_primitives *)mp->b_rptr)->type !=
2810 		    T_ORDREL_REQ) {
2811 			mutex_exit(&mir->mir_mutex);
2812 			putnext(q, mp);
2813 			mutex_enter(&mir->mir_mutex);
2814 			continue;
2815 		}
2816 
2817 		if (mir->mir_ordrel_pending == 1) {
2818 			/*
2819 			 * Don't send two T_ORDRELs
2820 			 */
2821 			freemsg(mp);
2822 			continue;
2823 		}
2824 
2825 		/*
2826 		 * Mark the structure so that we know we sent an orderly
2827 		 * release request.  We will check to see slot is idle at the
2828 		 * end of this routine, and if so, reset the idle timer to
2829 		 * handle orderly release timeouts.
2830 		 */
2831 		mir->mir_ordrel_pending = 1;
2832 		RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n",
2833 		    (void *)q);
2834 		/*
2835 		 * Send the orderly release downstream. If there are other
2836 		 * pending replies we won't be able to send them.  However,
2837 		 * the only reason we should send the orderly release is if
2838 		 * we were idle, or if an unusual event occurred.
2839 		 */
2840 		mutex_exit(&mir->mir_mutex);
2841 		putnext(q, mp);
2842 		mutex_enter(&mir->mir_mutex);
2843 	}
2844 
2845 	if (q->q_first == NULL)
2846 		/*
2847 		 * If we call mir_svc_idle_start() below, then
2848 		 * clearing mir_inwservice here will also result in
2849 		 * any thread waiting in mir_close() to be signaled.
2850 		 */
2851 		mir->mir_inwservice = 0;
2852 
2853 	if (mir->mir_type != RPC_SERVER) {
2854 		mutex_exit(&mir->mir_mutex);
2855 		return;
2856 	}
2857 
2858 	/*
2859 	 * If idle we call mir_svc_idle_start to start the timer (or wakeup
2860 	 * a close). Also make sure not to start the idle timer on the
2861 	 * listener stream. This can cause nfsd to send an orderly release
2862 	 * command on the listener stream.
2863 	 */
2864 	if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) {
2865 		RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p "
2866 		    "because mir slot is idle\n", (void *)q);
2867 		mir_svc_idle_start(q, mir);
2868 	}
2869 
2870 	/*
2871 	 * If outbound flow control has been relieved, then allow new
2872 	 * inbound requests to be processed.
2873 	 */
2874 	if (mir->mir_hold_inbound) {
2875 		mir->mir_hold_inbound = 0;
2876 		qenable(RD(q));
2877 	}
2878 	mutex_exit(&mir->mir_mutex);
2879 }
2880 
2881 static void
2882 mir_disconnect(queue_t *q, mir_t *mir)
2883 {
2884 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2885 
2886 	switch (mir->mir_type) {
2887 	case RPC_CLIENT:
2888 		/*
2889 		 * We are disconnecting, but not necessarily
2890 		 * closing. By not closing, we will fail to
2891 		 * pick up a possibly changed global timeout value,
2892 		 * unless we store it now.
2893 		 */
2894 		mir->mir_idle_timeout = clnt_idle_timeout;
2895 		mir_clnt_idle_start(WR(q), mir);
2896 		mutex_exit(&mir->mir_mutex);
2897 
2898 		/*
2899 		 * T_DISCON_REQ is passed to KRPC as an integer value
2900 		 * (this is not a TPI message).  It is used as a
2901 		 * convenient value to indicate a sanity check
2902 		 * failure -- the same KRPC routine is also called
2903 		 * for T_DISCON_INDs and T_ORDREL_INDs.
2904 		 */
2905 		clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0);
2906 		break;
2907 
2908 	case RPC_SERVER:
2909 		mir->mir_svc_no_more_msgs = 1;
2910 		mir_svc_idle_stop(WR(q), mir);
2911 		mutex_exit(&mir->mir_mutex);
2912 		RPCLOG(16, "mir_disconnect: telling "
2913 		    "stream head listener to disconnect stream "
2914 		    "(0x%p)\n", (void *) q);
2915 		(void) mir_svc_policy_notify(q, 2);
2916 		break;
2917 
2918 	default:
2919 		mutex_exit(&mir->mir_mutex);
2920 		break;
2921 	}
2922 }
2923 
2924 /*
2925  * Sanity check the message length, and if it's too large, shutdown the
2926  * connection.  Returns 1 if the connection is shutdown; 0 otherwise.
2927  */
2928 static int
2929 mir_check_len(queue_t *q, int32_t frag_len, mblk_t *head_mp)
2930 {
2931 	mir_t *mir = q->q_ptr;
2932 	uint_t maxsize = 0;
2933 
2934 	if (mir->mir_max_msg_sizep != NULL)
2935 		maxsize = *mir->mir_max_msg_sizep;
2936 
2937 	if (maxsize == 0 || frag_len <= (int)maxsize)
2938 		return (0);
2939 
2940 	freemsg(head_mp);
2941 	mir->mir_head_mp = NULL;
2942 	mir->mir_tail_mp = NULL;
2943 	mir->mir_frag_header = 0;
2944 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2945 	if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) {
2946 		cmn_err(CE_NOTE,
2947 		    "KRPC: record fragment from %s of size(%d) exceeds "
2948 		    "maximum (%u). Disconnecting",
2949 		    (mir->mir_type == RPC_CLIENT) ? "server" :
2950 		    (mir->mir_type == RPC_SERVER) ? "client" :
2951 		    "test tool", frag_len, maxsize);
2952 	}
2953 
2954 	mir_disconnect(q, mir);
2955 	return (1);
2956 }
2957