1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 158 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 159 * list (a list of zones in the ZONE_IS_DEAD state). 160 * 161 * Ordering requirements: 162 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 163 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 164 * 165 * Blocking memory allocations are permitted while holding any of the 166 * zone locks. 167 * 168 * 169 * System Call Interface: 170 * 171 * The zone subsystem can be managed and queried from user level with 172 * the following system calls (all subcodes of the primary "zone" 173 * system call): 174 * - zone_create: creates a zone with selected attributes (name, 175 * root path, privileges, resource controls, ZFS datasets) 176 * - zone_enter: allows the current process to enter a zone 177 * - zone_getattr: reports attributes of a zone 178 * - zone_setattr: set attributes of a zone 179 * - zone_boot: set 'init' running for the zone 180 * - zone_list: lists all zones active in the system 181 * - zone_lookup: looks up zone id based on name 182 * - zone_shutdown: initiates shutdown process (see states above) 183 * - zone_destroy: completes shutdown process (see states above) 184 * 185 */ 186 187 #include <sys/priv_impl.h> 188 #include <sys/cred.h> 189 #include <c2/audit.h> 190 #include <sys/debug.h> 191 #include <sys/file.h> 192 #include <sys/kmem.h> 193 #include <sys/mutex.h> 194 #include <sys/note.h> 195 #include <sys/pathname.h> 196 #include <sys/proc.h> 197 #include <sys/project.h> 198 #include <sys/sysevent.h> 199 #include <sys/task.h> 200 #include <sys/systm.h> 201 #include <sys/types.h> 202 #include <sys/utsname.h> 203 #include <sys/vnode.h> 204 #include <sys/vfs.h> 205 #include <sys/systeminfo.h> 206 #include <sys/policy.h> 207 #include <sys/cred_impl.h> 208 #include <sys/contract_impl.h> 209 #include <sys/contract/process_impl.h> 210 #include <sys/class.h> 211 #include <sys/pool.h> 212 #include <sys/pool_pset.h> 213 #include <sys/pset.h> 214 #include <sys/sysmacros.h> 215 #include <sys/callb.h> 216 #include <sys/vmparam.h> 217 #include <sys/corectl.h> 218 #include <sys/ipc_impl.h> 219 220 #include <sys/door.h> 221 #include <sys/cpuvar.h> 222 223 #include <sys/uadmin.h> 224 #include <sys/session.h> 225 #include <sys/cmn_err.h> 226 #include <sys/modhash.h> 227 #include <sys/sunddi.h> 228 #include <sys/nvpair.h> 229 #include <sys/rctl.h> 230 #include <sys/fss.h> 231 #include <sys/zone.h> 232 #include <sys/tsol/label.h> 233 234 /* 235 * cv used to signal that all references to the zone have been released. This 236 * needs to be global since there may be multiple waiters, and the first to 237 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 238 */ 239 static kcondvar_t zone_destroy_cv; 240 /* 241 * Lock used to serialize access to zone_cv. This could have been per-zone, 242 * but then we'd need another lock for zone_destroy_cv, and why bother? 243 */ 244 static kmutex_t zone_status_lock; 245 246 /* 247 * ZSD-related global variables. 248 */ 249 static kmutex_t zsd_key_lock; /* protects the following two */ 250 /* 251 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 252 */ 253 static zone_key_t zsd_keyval = 0; 254 /* 255 * Global list of registered keys. We use this when a new zone is created. 256 */ 257 static list_t zsd_registered_keys; 258 259 int zone_hash_size = 256; 260 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 261 static kmutex_t zonehash_lock; 262 static uint_t zonecount; 263 static id_space_t *zoneid_space; 264 265 /* 266 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 267 * kernel proper runs, and which manages all other zones. 268 * 269 * Although not declared as static, the variable "zone0" should not be used 270 * except for by code that needs to reference the global zone early on in boot, 271 * before it is fully initialized. All other consumers should use 272 * 'global_zone'. 273 */ 274 zone_t zone0; 275 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 276 277 /* 278 * List of active zones, protected by zonehash_lock. 279 */ 280 static list_t zone_active; 281 282 /* 283 * List of destroyed zones that still have outstanding cred references. 284 * Used for debugging. Uses a separate lock to avoid lock ordering 285 * problems in zone_free. 286 */ 287 static list_t zone_deathrow; 288 static kmutex_t zone_deathrow_lock; 289 290 /* number of zones is limited by virtual interface limit in IP */ 291 uint_t maxzones = 8192; 292 293 /* Event channel to sent zone state change notifications */ 294 evchan_t *zone_event_chan; 295 296 /* 297 * This table holds the mapping from kernel zone states to 298 * states visible in the state notification API. 299 * The idea is that we only expose "obvious" states and 300 * do not expose states which are just implementation details. 301 */ 302 const char *zone_status_table[] = { 303 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 304 ZONE_EVENT_READY, /* ready */ 305 ZONE_EVENT_READY, /* booting */ 306 ZONE_EVENT_RUNNING, /* running */ 307 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 308 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 309 ZONE_EVENT_SHUTTING_DOWN, /* down */ 310 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 311 ZONE_EVENT_UNINITIALIZED, /* dead */ 312 }; 313 314 /* 315 * This isn't static so lint doesn't complain. 316 */ 317 rctl_hndl_t rc_zone_cpu_shares; 318 rctl_hndl_t rc_zone_nlwps; 319 rctl_hndl_t rc_zone_shmmax; 320 rctl_hndl_t rc_zone_shmmni; 321 rctl_hndl_t rc_zone_semmni; 322 rctl_hndl_t rc_zone_msgmni; 323 /* 324 * Synchronization primitives used to synchronize between mounts and zone 325 * creation/destruction. 326 */ 327 static int mounts_in_progress; 328 static kcondvar_t mount_cv; 329 static kmutex_t mount_lock; 330 331 const char * const zone_default_initname = "/sbin/init"; 332 static char * const zone_prefix = "/zone/"; 333 334 static int zone_shutdown(zoneid_t zoneid); 335 336 /* 337 * Bump this number when you alter the zone syscall interfaces; this is 338 * because we need to have support for previous API versions in libc 339 * to support patching; libc calls into the kernel to determine this number. 340 * 341 * Version 1 of the API is the version originally shipped with Solaris 10 342 * Version 2 alters the zone_create system call in order to support more 343 * arguments by moving the args into a structure; and to do better 344 * error reporting when zone_create() fails. 345 * Version 3 alters the zone_create system call in order to support the 346 * import of ZFS datasets to zones. 347 * Version 4 alters the zone_create system call in order to support 348 * Trusted Extensions. 349 * Version 5 alters the zone_boot system call, and converts its old 350 * bootargs parameter to be set by the zone_setattr API instead. 351 */ 352 static const int ZONE_SYSCALL_API_VERSION = 5; 353 354 /* 355 * Certain filesystems (such as NFS and autofs) need to know which zone 356 * the mount is being placed in. Because of this, we need to be able to 357 * ensure that a zone isn't in the process of being created such that 358 * nfs_mount() thinks it is in the global zone, while by the time it 359 * gets added the list of mounted zones, it ends up on zoneA's mount 360 * list. 361 * 362 * The following functions: block_mounts()/resume_mounts() and 363 * mount_in_progress()/mount_completed() are used by zones and the VFS 364 * layer (respectively) to synchronize zone creation and new mounts. 365 * 366 * The semantics are like a reader-reader lock such that there may 367 * either be multiple mounts (or zone creations, if that weren't 368 * serialized by zonehash_lock) in progress at the same time, but not 369 * both. 370 * 371 * We use cv's so the user can ctrl-C out of the operation if it's 372 * taking too long. 373 * 374 * The semantics are such that there is unfair bias towards the 375 * "current" operation. This means that zone creations may starve if 376 * there is a rapid succession of new mounts coming in to the system, or 377 * there is a remote possibility that zones will be created at such a 378 * rate that new mounts will not be able to proceed. 379 */ 380 /* 381 * Prevent new mounts from progressing to the point of calling 382 * VFS_MOUNT(). If there are already mounts in this "region", wait for 383 * them to complete. 384 */ 385 static int 386 block_mounts(void) 387 { 388 int retval = 0; 389 390 /* 391 * Since it may block for a long time, block_mounts() shouldn't be 392 * called with zonehash_lock held. 393 */ 394 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 395 mutex_enter(&mount_lock); 396 while (mounts_in_progress > 0) { 397 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 398 goto signaled; 399 } 400 /* 401 * A negative value of mounts_in_progress indicates that mounts 402 * have been blocked by (-mounts_in_progress) different callers. 403 */ 404 mounts_in_progress--; 405 retval = 1; 406 signaled: 407 mutex_exit(&mount_lock); 408 return (retval); 409 } 410 411 /* 412 * The VFS layer may progress with new mounts as far as we're concerned. 413 * Allow them to progress if we were the last obstacle. 414 */ 415 static void 416 resume_mounts(void) 417 { 418 mutex_enter(&mount_lock); 419 if (++mounts_in_progress == 0) 420 cv_broadcast(&mount_cv); 421 mutex_exit(&mount_lock); 422 } 423 424 /* 425 * The VFS layer is busy with a mount; zones should wait until all 426 * mounts are completed to progress. 427 */ 428 void 429 mount_in_progress(void) 430 { 431 mutex_enter(&mount_lock); 432 while (mounts_in_progress < 0) 433 cv_wait(&mount_cv, &mount_lock); 434 mounts_in_progress++; 435 mutex_exit(&mount_lock); 436 } 437 438 /* 439 * VFS is done with one mount; wake up any waiting block_mounts() 440 * callers if this is the last mount. 441 */ 442 void 443 mount_completed(void) 444 { 445 mutex_enter(&mount_lock); 446 if (--mounts_in_progress == 0) 447 cv_broadcast(&mount_cv); 448 mutex_exit(&mount_lock); 449 } 450 451 /* 452 * ZSD routines. 453 * 454 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 455 * defined by the pthread_key_create() and related interfaces. 456 * 457 * Kernel subsystems may register one or more data items and/or 458 * callbacks to be executed when a zone is created, shutdown, or 459 * destroyed. 460 * 461 * Unlike the thread counterpart, destructor callbacks will be executed 462 * even if the data pointer is NULL and/or there are no constructor 463 * callbacks, so it is the responsibility of such callbacks to check for 464 * NULL data values if necessary. 465 * 466 * The locking strategy and overall picture is as follows: 467 * 468 * When someone calls zone_key_create(), a template ZSD entry is added to the 469 * global list "zsd_registered_keys", protected by zsd_key_lock. The 470 * constructor callback is called immediately on all existing zones, and a 471 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 472 * zone_lock). As this operation requires the list of zones, the list of 473 * registered keys, and the per-zone list of ZSD entries to remain constant 474 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 475 * all existing zones, and zsd_key_lock, in that order. Similar locking is 476 * needed when zone_key_delete() is called. It is thus sufficient to hold 477 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 478 * per-zone zone_zsd list. 479 * 480 * Note that this implementation does not make a copy of the ZSD entry if a 481 * constructor callback is not provided. A zone_getspecific() on such an 482 * uninitialized ZSD entry will return NULL. 483 * 484 * When new zones are created constructor callbacks for all registered ZSD 485 * entries will be called. 486 * 487 * The framework does not provide any locking around zone_getspecific() and 488 * zone_setspecific() apart from that needed for internal consistency, so 489 * callers interested in atomic "test-and-set" semantics will need to provide 490 * their own locking. 491 */ 492 void 493 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 494 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 495 { 496 struct zsd_entry *zsdp; 497 struct zsd_entry *t; 498 struct zone *zone; 499 500 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 501 zsdp->zsd_data = NULL; 502 zsdp->zsd_create = create; 503 zsdp->zsd_shutdown = shutdown; 504 zsdp->zsd_destroy = destroy; 505 506 mutex_enter(&zonehash_lock); /* stop the world */ 507 for (zone = list_head(&zone_active); zone != NULL; 508 zone = list_next(&zone_active, zone)) 509 mutex_enter(&zone->zone_lock); /* lock all zones */ 510 511 mutex_enter(&zsd_key_lock); 512 *keyp = zsdp->zsd_key = ++zsd_keyval; 513 ASSERT(zsd_keyval != 0); 514 list_insert_tail(&zsd_registered_keys, zsdp); 515 mutex_exit(&zsd_key_lock); 516 517 if (create != NULL) { 518 for (zone = list_head(&zone_active); zone != NULL; 519 zone = list_next(&zone_active, zone)) { 520 t = kmem_alloc(sizeof (*t), KM_SLEEP); 521 t->zsd_key = *keyp; 522 t->zsd_data = (*create)(zone->zone_id); 523 t->zsd_create = create; 524 t->zsd_shutdown = shutdown; 525 t->zsd_destroy = destroy; 526 list_insert_tail(&zone->zone_zsd, t); 527 } 528 } 529 for (zone = list_head(&zone_active); zone != NULL; 530 zone = list_next(&zone_active, zone)) 531 mutex_exit(&zone->zone_lock); 532 mutex_exit(&zonehash_lock); 533 } 534 535 /* 536 * Helper function to find the zsd_entry associated with the key in the 537 * given list. 538 */ 539 static struct zsd_entry * 540 zsd_find(list_t *l, zone_key_t key) 541 { 542 struct zsd_entry *zsd; 543 544 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 545 if (zsd->zsd_key == key) { 546 /* 547 * Move to head of list to keep list in MRU order. 548 */ 549 if (zsd != list_head(l)) { 550 list_remove(l, zsd); 551 list_insert_head(l, zsd); 552 } 553 return (zsd); 554 } 555 } 556 return (NULL); 557 } 558 559 /* 560 * Function called when a module is being unloaded, or otherwise wishes 561 * to unregister its ZSD key and callbacks. 562 */ 563 int 564 zone_key_delete(zone_key_t key) 565 { 566 struct zsd_entry *zsdp = NULL; 567 zone_t *zone; 568 569 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 570 for (zone = list_head(&zone_active); zone != NULL; 571 zone = list_next(&zone_active, zone)) 572 mutex_enter(&zone->zone_lock); /* lock all zones */ 573 574 mutex_enter(&zsd_key_lock); 575 zsdp = zsd_find(&zsd_registered_keys, key); 576 if (zsdp == NULL) 577 goto notfound; 578 list_remove(&zsd_registered_keys, zsdp); 579 mutex_exit(&zsd_key_lock); 580 581 for (zone = list_head(&zone_active); zone != NULL; 582 zone = list_next(&zone_active, zone)) { 583 struct zsd_entry *del; 584 void *data; 585 586 if (!(zone->zone_flags & ZF_DESTROYED)) { 587 del = zsd_find(&zone->zone_zsd, key); 588 if (del != NULL) { 589 data = del->zsd_data; 590 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 591 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 592 list_remove(&zone->zone_zsd, del); 593 kmem_free(del, sizeof (*del)); 594 } else { 595 data = NULL; 596 } 597 if (zsdp->zsd_shutdown) 598 zsdp->zsd_shutdown(zone->zone_id, data); 599 if (zsdp->zsd_destroy) 600 zsdp->zsd_destroy(zone->zone_id, data); 601 } 602 mutex_exit(&zone->zone_lock); 603 } 604 mutex_exit(&zonehash_lock); 605 kmem_free(zsdp, sizeof (*zsdp)); 606 return (0); 607 608 notfound: 609 mutex_exit(&zsd_key_lock); 610 for (zone = list_head(&zone_active); zone != NULL; 611 zone = list_next(&zone_active, zone)) 612 mutex_exit(&zone->zone_lock); 613 mutex_exit(&zonehash_lock); 614 return (-1); 615 } 616 617 /* 618 * ZSD counterpart of pthread_setspecific(). 619 */ 620 int 621 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 622 { 623 struct zsd_entry *t; 624 struct zsd_entry *zsdp = NULL; 625 626 mutex_enter(&zone->zone_lock); 627 t = zsd_find(&zone->zone_zsd, key); 628 if (t != NULL) { 629 /* 630 * Replace old value with new 631 */ 632 t->zsd_data = (void *)data; 633 mutex_exit(&zone->zone_lock); 634 return (0); 635 } 636 /* 637 * If there was no previous value, go through the list of registered 638 * keys. 639 * 640 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 641 * necessary for shutdown callbacks to be able to execute without fear 642 * of deadlock. 643 */ 644 mutex_enter(&zsd_key_lock); 645 zsdp = zsd_find(&zsd_registered_keys, key); 646 if (zsdp == NULL) { /* Key was not registered */ 647 mutex_exit(&zsd_key_lock); 648 mutex_exit(&zone->zone_lock); 649 return (-1); 650 } 651 652 /* 653 * Add a zsd_entry to this zone, using the template we just retrieved 654 * to initialize the constructor and destructor(s). 655 */ 656 t = kmem_alloc(sizeof (*t), KM_SLEEP); 657 t->zsd_key = key; 658 t->zsd_data = (void *)data; 659 t->zsd_create = zsdp->zsd_create; 660 t->zsd_shutdown = zsdp->zsd_shutdown; 661 t->zsd_destroy = zsdp->zsd_destroy; 662 list_insert_tail(&zone->zone_zsd, t); 663 mutex_exit(&zsd_key_lock); 664 mutex_exit(&zone->zone_lock); 665 return (0); 666 } 667 668 /* 669 * ZSD counterpart of pthread_getspecific(). 670 */ 671 void * 672 zone_getspecific(zone_key_t key, zone_t *zone) 673 { 674 struct zsd_entry *t; 675 void *data; 676 677 mutex_enter(&zone->zone_lock); 678 t = zsd_find(&zone->zone_zsd, key); 679 data = (t == NULL ? NULL : t->zsd_data); 680 mutex_exit(&zone->zone_lock); 681 return (data); 682 } 683 684 /* 685 * Function used to initialize a zone's list of ZSD callbacks and data 686 * when the zone is being created. The callbacks are initialized from 687 * the template list (zsd_registered_keys), and the constructor 688 * callback executed (if one exists). 689 * 690 * This is called before the zone is made publicly available, hence no 691 * need to grab zone_lock. 692 * 693 * Although we grab and release zsd_key_lock, new entries cannot be 694 * added to or removed from the zsd_registered_keys list until we 695 * release zonehash_lock, so there isn't a window for a 696 * zone_key_create() to come in after we've dropped zsd_key_lock but 697 * before the zone is added to the zone list, such that the constructor 698 * callbacks aren't executed for the new zone. 699 */ 700 static void 701 zone_zsd_configure(zone_t *zone) 702 { 703 struct zsd_entry *zsdp; 704 struct zsd_entry *t; 705 zoneid_t zoneid = zone->zone_id; 706 707 ASSERT(MUTEX_HELD(&zonehash_lock)); 708 ASSERT(list_head(&zone->zone_zsd) == NULL); 709 mutex_enter(&zsd_key_lock); 710 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 711 zsdp = list_next(&zsd_registered_keys, zsdp)) { 712 if (zsdp->zsd_create != NULL) { 713 t = kmem_alloc(sizeof (*t), KM_SLEEP); 714 t->zsd_key = zsdp->zsd_key; 715 t->zsd_create = zsdp->zsd_create; 716 t->zsd_data = (*t->zsd_create)(zoneid); 717 t->zsd_shutdown = zsdp->zsd_shutdown; 718 t->zsd_destroy = zsdp->zsd_destroy; 719 list_insert_tail(&zone->zone_zsd, t); 720 } 721 } 722 mutex_exit(&zsd_key_lock); 723 } 724 725 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 726 727 /* 728 * Helper function to execute shutdown or destructor callbacks. 729 */ 730 static void 731 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 732 { 733 struct zsd_entry *zsdp; 734 struct zsd_entry *t; 735 zoneid_t zoneid = zone->zone_id; 736 737 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 738 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 739 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 740 741 mutex_enter(&zone->zone_lock); 742 if (ct == ZSD_DESTROY) { 743 if (zone->zone_flags & ZF_DESTROYED) { 744 /* 745 * Make sure destructors are only called once. 746 */ 747 mutex_exit(&zone->zone_lock); 748 return; 749 } 750 zone->zone_flags |= ZF_DESTROYED; 751 } 752 mutex_exit(&zone->zone_lock); 753 754 /* 755 * Both zsd_key_lock and zone_lock need to be held in order to add or 756 * remove a ZSD key, (either globally as part of 757 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 758 * possible through zone_setspecific()), so it's sufficient to hold 759 * zsd_key_lock here. 760 * 761 * This is a good thing, since we don't want to recursively try to grab 762 * zone_lock if a callback attempts to do something like a crfree() or 763 * zone_rele(). 764 */ 765 mutex_enter(&zsd_key_lock); 766 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 767 zsdp = list_next(&zsd_registered_keys, zsdp)) { 768 zone_key_t key = zsdp->zsd_key; 769 770 /* Skip if no callbacks registered */ 771 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 772 continue; 773 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 774 continue; 775 /* 776 * Call the callback with the zone-specific data if we can find 777 * any, otherwise with NULL. 778 */ 779 t = zsd_find(&zone->zone_zsd, key); 780 if (t != NULL) { 781 if (ct == ZSD_SHUTDOWN) { 782 t->zsd_shutdown(zoneid, t->zsd_data); 783 } else { 784 ASSERT(ct == ZSD_DESTROY); 785 t->zsd_destroy(zoneid, t->zsd_data); 786 } 787 } else { 788 if (ct == ZSD_SHUTDOWN) { 789 zsdp->zsd_shutdown(zoneid, NULL); 790 } else { 791 ASSERT(ct == ZSD_DESTROY); 792 zsdp->zsd_destroy(zoneid, NULL); 793 } 794 } 795 } 796 mutex_exit(&zsd_key_lock); 797 } 798 799 /* 800 * Called when the zone is going away; free ZSD-related memory, and 801 * destroy the zone_zsd list. 802 */ 803 static void 804 zone_free_zsd(zone_t *zone) 805 { 806 struct zsd_entry *t, *next; 807 808 /* 809 * Free all the zsd_entry's we had on this zone. 810 */ 811 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 812 next = list_next(&zone->zone_zsd, t); 813 list_remove(&zone->zone_zsd, t); 814 kmem_free(t, sizeof (*t)); 815 } 816 list_destroy(&zone->zone_zsd); 817 } 818 819 /* 820 * Frees memory associated with the zone dataset list. 821 */ 822 static void 823 zone_free_datasets(zone_t *zone) 824 { 825 zone_dataset_t *t, *next; 826 827 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 828 next = list_next(&zone->zone_datasets, t); 829 list_remove(&zone->zone_datasets, t); 830 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 831 kmem_free(t, sizeof (*t)); 832 } 833 list_destroy(&zone->zone_datasets); 834 } 835 836 /* 837 * zone.cpu-shares resource control support. 838 */ 839 /*ARGSUSED*/ 840 static rctl_qty_t 841 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 842 { 843 ASSERT(MUTEX_HELD(&p->p_lock)); 844 return (p->p_zone->zone_shares); 845 } 846 847 /*ARGSUSED*/ 848 static int 849 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 850 rctl_qty_t nv) 851 { 852 ASSERT(MUTEX_HELD(&p->p_lock)); 853 ASSERT(e->rcep_t == RCENTITY_ZONE); 854 if (e->rcep_p.zone == NULL) 855 return (0); 856 857 e->rcep_p.zone->zone_shares = nv; 858 return (0); 859 } 860 861 static rctl_ops_t zone_cpu_shares_ops = { 862 rcop_no_action, 863 zone_cpu_shares_usage, 864 zone_cpu_shares_set, 865 rcop_no_test 866 }; 867 868 /*ARGSUSED*/ 869 static rctl_qty_t 870 zone_lwps_usage(rctl_t *r, proc_t *p) 871 { 872 rctl_qty_t nlwps; 873 zone_t *zone = p->p_zone; 874 875 ASSERT(MUTEX_HELD(&p->p_lock)); 876 877 mutex_enter(&zone->zone_nlwps_lock); 878 nlwps = zone->zone_nlwps; 879 mutex_exit(&zone->zone_nlwps_lock); 880 881 return (nlwps); 882 } 883 884 /*ARGSUSED*/ 885 static int 886 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 887 rctl_qty_t incr, uint_t flags) 888 { 889 rctl_qty_t nlwps; 890 891 ASSERT(MUTEX_HELD(&p->p_lock)); 892 ASSERT(e->rcep_t == RCENTITY_ZONE); 893 if (e->rcep_p.zone == NULL) 894 return (0); 895 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 896 nlwps = e->rcep_p.zone->zone_nlwps; 897 898 if (nlwps + incr > rcntl->rcv_value) 899 return (1); 900 901 return (0); 902 } 903 904 /*ARGSUSED*/ 905 static int 906 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { 907 908 ASSERT(MUTEX_HELD(&p->p_lock)); 909 ASSERT(e->rcep_t == RCENTITY_ZONE); 910 if (e->rcep_p.zone == NULL) 911 return (0); 912 e->rcep_p.zone->zone_nlwps_ctl = nv; 913 return (0); 914 } 915 916 static rctl_ops_t zone_lwps_ops = { 917 rcop_no_action, 918 zone_lwps_usage, 919 zone_lwps_set, 920 zone_lwps_test, 921 }; 922 923 /*ARGSUSED*/ 924 static int 925 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 926 rctl_qty_t incr, uint_t flags) 927 { 928 rctl_qty_t v; 929 ASSERT(MUTEX_HELD(&p->p_lock)); 930 ASSERT(e->rcep_t == RCENTITY_ZONE); 931 v = e->rcep_p.zone->zone_shmmax + incr; 932 if (v > rval->rcv_value) 933 return (1); 934 return (0); 935 } 936 937 static rctl_ops_t zone_shmmax_ops = { 938 rcop_no_action, 939 rcop_no_usage, 940 rcop_no_set, 941 zone_shmmax_test 942 }; 943 944 /*ARGSUSED*/ 945 static int 946 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 947 rctl_qty_t incr, uint_t flags) 948 { 949 rctl_qty_t v; 950 ASSERT(MUTEX_HELD(&p->p_lock)); 951 ASSERT(e->rcep_t == RCENTITY_ZONE); 952 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 953 if (v > rval->rcv_value) 954 return (1); 955 return (0); 956 } 957 958 static rctl_ops_t zone_shmmni_ops = { 959 rcop_no_action, 960 rcop_no_usage, 961 rcop_no_set, 962 zone_shmmni_test 963 }; 964 965 /*ARGSUSED*/ 966 static int 967 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 968 rctl_qty_t incr, uint_t flags) 969 { 970 rctl_qty_t v; 971 ASSERT(MUTEX_HELD(&p->p_lock)); 972 ASSERT(e->rcep_t == RCENTITY_ZONE); 973 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 974 if (v > rval->rcv_value) 975 return (1); 976 return (0); 977 } 978 979 static rctl_ops_t zone_semmni_ops = { 980 rcop_no_action, 981 rcop_no_usage, 982 rcop_no_set, 983 zone_semmni_test 984 }; 985 986 /*ARGSUSED*/ 987 static int 988 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 989 rctl_qty_t incr, uint_t flags) 990 { 991 rctl_qty_t v; 992 ASSERT(MUTEX_HELD(&p->p_lock)); 993 ASSERT(e->rcep_t == RCENTITY_ZONE); 994 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 995 if (v > rval->rcv_value) 996 return (1); 997 return (0); 998 } 999 1000 static rctl_ops_t zone_msgmni_ops = { 1001 rcop_no_action, 1002 rcop_no_usage, 1003 rcop_no_set, 1004 zone_msgmni_test 1005 }; 1006 1007 1008 /* 1009 * Helper function to brand the zone with a unique ID. 1010 */ 1011 static void 1012 zone_uniqid(zone_t *zone) 1013 { 1014 static uint64_t uniqid = 0; 1015 1016 ASSERT(MUTEX_HELD(&zonehash_lock)); 1017 zone->zone_uniqid = uniqid++; 1018 } 1019 1020 /* 1021 * Returns a held pointer to the "kcred" for the specified zone. 1022 */ 1023 struct cred * 1024 zone_get_kcred(zoneid_t zoneid) 1025 { 1026 zone_t *zone; 1027 cred_t *cr; 1028 1029 if ((zone = zone_find_by_id(zoneid)) == NULL) 1030 return (NULL); 1031 cr = zone->zone_kcred; 1032 crhold(cr); 1033 zone_rele(zone); 1034 return (cr); 1035 } 1036 1037 /* 1038 * Called very early on in boot to initialize the ZSD list so that 1039 * zone_key_create() can be called before zone_init(). It also initializes 1040 * portions of zone0 which may be used before zone_init() is called. The 1041 * variable "global_zone" will be set when zone0 is fully initialized by 1042 * zone_init(). 1043 */ 1044 void 1045 zone_zsd_init(void) 1046 { 1047 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1048 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1049 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1050 offsetof(struct zsd_entry, zsd_linkage)); 1051 list_create(&zone_active, sizeof (zone_t), 1052 offsetof(zone_t, zone_linkage)); 1053 list_create(&zone_deathrow, sizeof (zone_t), 1054 offsetof(zone_t, zone_linkage)); 1055 1056 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1057 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1058 zone0.zone_shares = 1; 1059 zone0.zone_nlwps_ctl = INT_MAX; 1060 zone0.zone_shmmax = 0; 1061 zone0.zone_ipc.ipcq_shmmni = 0; 1062 zone0.zone_ipc.ipcq_semmni = 0; 1063 zone0.zone_ipc.ipcq_msgmni = 0; 1064 zone0.zone_name = GLOBAL_ZONENAME; 1065 zone0.zone_nodename = utsname.nodename; 1066 zone0.zone_domain = srpc_domain; 1067 zone0.zone_ref = 1; 1068 zone0.zone_id = GLOBAL_ZONEID; 1069 zone0.zone_status = ZONE_IS_RUNNING; 1070 zone0.zone_rootpath = "/"; 1071 zone0.zone_rootpathlen = 2; 1072 zone0.zone_psetid = ZONE_PS_INVAL; 1073 zone0.zone_ncpus = 0; 1074 zone0.zone_ncpus_online = 0; 1075 zone0.zone_proc_initpid = 1; 1076 zone0.zone_initname = initname; 1077 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1078 offsetof(struct zsd_entry, zsd_linkage)); 1079 list_insert_head(&zone_active, &zone0); 1080 1081 /* 1082 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1083 * to anything meaningful. It is assigned to be 'rootdir' in 1084 * vfs_mountroot(). 1085 */ 1086 zone0.zone_rootvp = NULL; 1087 zone0.zone_vfslist = NULL; 1088 zone0.zone_bootargs = initargs; 1089 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1090 /* 1091 * The global zone has all privileges 1092 */ 1093 priv_fillset(zone0.zone_privset); 1094 /* 1095 * Add p0 to the global zone 1096 */ 1097 zone0.zone_zsched = &p0; 1098 p0.p_zone = &zone0; 1099 } 1100 1101 /* 1102 * Compute a hash value based on the contents of the label and the DOI. The 1103 * hash algorithm is somewhat arbitrary, but is based on the observation that 1104 * humans will likely pick labels that differ by amounts that work out to be 1105 * multiples of the number of hash chains, and thus stirring in some primes 1106 * should help. 1107 */ 1108 static uint_t 1109 hash_bylabel(void *hdata, mod_hash_key_t key) 1110 { 1111 const ts_label_t *lab = (ts_label_t *)key; 1112 const uint32_t *up, *ue; 1113 uint_t hash; 1114 int i; 1115 1116 _NOTE(ARGUNUSED(hdata)); 1117 1118 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1119 /* we depend on alignment of label, but not representation */ 1120 up = (const uint32_t *)&lab->tsl_label; 1121 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1122 i = 1; 1123 while (up < ue) { 1124 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1125 hash += *up + (*up << ((i % 16) + 1)); 1126 up++; 1127 i++; 1128 } 1129 return (hash); 1130 } 1131 1132 /* 1133 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1134 * equal). This may need to be changed if less than / greater than is ever 1135 * needed. 1136 */ 1137 static int 1138 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1139 { 1140 ts_label_t *lab1 = (ts_label_t *)key1; 1141 ts_label_t *lab2 = (ts_label_t *)key2; 1142 1143 return (label_equal(lab1, lab2) ? 0 : 1); 1144 } 1145 1146 /* 1147 * Called by main() to initialize the zones framework. 1148 */ 1149 void 1150 zone_init(void) 1151 { 1152 rctl_dict_entry_t *rde; 1153 rctl_val_t *dval; 1154 rctl_set_t *set; 1155 rctl_alloc_gp_t *gp; 1156 rctl_entity_p_t e; 1157 int res; 1158 1159 ASSERT(curproc == &p0); 1160 1161 /* 1162 * Create ID space for zone IDs. ID 0 is reserved for the 1163 * global zone. 1164 */ 1165 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1166 1167 /* 1168 * Initialize generic zone resource controls, if any. 1169 */ 1170 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1171 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1172 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1173 FSS_MAXSHARES, FSS_MAXSHARES, 1174 &zone_cpu_shares_ops); 1175 1176 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1177 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1178 INT_MAX, INT_MAX, &zone_lwps_ops); 1179 /* 1180 * System V IPC resource controls 1181 */ 1182 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1183 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1184 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1185 1186 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1187 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1188 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1189 1190 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1191 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1192 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1193 1194 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1195 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1196 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1197 1198 /* 1199 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1200 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1201 */ 1202 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1203 bzero(dval, sizeof (rctl_val_t)); 1204 dval->rcv_value = 1; 1205 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1206 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1207 dval->rcv_action_recip_pid = -1; 1208 1209 rde = rctl_dict_lookup("zone.cpu-shares"); 1210 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1211 1212 /* 1213 * Initialize the ``global zone''. 1214 */ 1215 set = rctl_set_create(); 1216 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1217 mutex_enter(&p0.p_lock); 1218 e.rcep_p.zone = &zone0; 1219 e.rcep_t = RCENTITY_ZONE; 1220 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1221 gp); 1222 1223 zone0.zone_nlwps = p0.p_lwpcnt; 1224 zone0.zone_ntasks = 1; 1225 mutex_exit(&p0.p_lock); 1226 rctl_prealloc_destroy(gp); 1227 /* 1228 * pool_default hasn't been initialized yet, so we let pool_init() take 1229 * care of making the global zone is in the default pool. 1230 */ 1231 1232 /* 1233 * Initialize zone label. 1234 * mlp are initialized when tnzonecfg is loaded. 1235 */ 1236 zone0.zone_slabel = l_admin_low; 1237 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1238 label_hold(l_admin_low); 1239 1240 mutex_enter(&zonehash_lock); 1241 zone_uniqid(&zone0); 1242 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1243 1244 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1245 mod_hash_null_valdtor); 1246 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1247 zone_hash_size, mod_hash_null_valdtor); 1248 /* 1249 * maintain zonehashbylabel only for labeled systems 1250 */ 1251 if (is_system_labeled()) 1252 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1253 zone_hash_size, mod_hash_null_keydtor, 1254 mod_hash_null_valdtor, hash_bylabel, NULL, 1255 hash_labelkey_cmp, KM_SLEEP); 1256 zonecount = 1; 1257 1258 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1259 (mod_hash_val_t)&zone0); 1260 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1261 (mod_hash_val_t)&zone0); 1262 if (is_system_labeled()) { 1263 zone0.zone_flags |= ZF_HASHED_LABEL; 1264 (void) mod_hash_insert(zonehashbylabel, 1265 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1266 } 1267 mutex_exit(&zonehash_lock); 1268 1269 /* 1270 * We avoid setting zone_kcred until now, since kcred is initialized 1271 * sometime after zone_zsd_init() and before zone_init(). 1272 */ 1273 zone0.zone_kcred = kcred; 1274 /* 1275 * The global zone is fully initialized (except for zone_rootvp which 1276 * will be set when the root filesystem is mounted). 1277 */ 1278 global_zone = &zone0; 1279 1280 /* 1281 * Setup an event channel to send zone status change notifications on 1282 */ 1283 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1284 EVCH_CREAT); 1285 1286 if (res) 1287 panic("Sysevent_evc_bind failed during zone setup.\n"); 1288 } 1289 1290 static void 1291 zone_free(zone_t *zone) 1292 { 1293 ASSERT(zone != global_zone); 1294 ASSERT(zone->zone_ntasks == 0); 1295 ASSERT(zone->zone_nlwps == 0); 1296 ASSERT(zone->zone_cred_ref == 0); 1297 ASSERT(zone->zone_kcred == NULL); 1298 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1299 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1300 1301 /* remove from deathrow list */ 1302 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1303 ASSERT(zone->zone_ref == 0); 1304 mutex_enter(&zone_deathrow_lock); 1305 list_remove(&zone_deathrow, zone); 1306 mutex_exit(&zone_deathrow_lock); 1307 } 1308 1309 zone_free_zsd(zone); 1310 zone_free_datasets(zone); 1311 1312 if (zone->zone_rootvp != NULL) 1313 VN_RELE(zone->zone_rootvp); 1314 if (zone->zone_rootpath) 1315 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1316 if (zone->zone_name != NULL) 1317 kmem_free(zone->zone_name, ZONENAME_MAX); 1318 if (zone->zone_slabel != NULL) 1319 label_rele(zone->zone_slabel); 1320 if (zone->zone_nodename != NULL) 1321 kmem_free(zone->zone_nodename, _SYS_NMLN); 1322 if (zone->zone_domain != NULL) 1323 kmem_free(zone->zone_domain, _SYS_NMLN); 1324 if (zone->zone_privset != NULL) 1325 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1326 if (zone->zone_rctls != NULL) 1327 rctl_set_free(zone->zone_rctls); 1328 if (zone->zone_bootargs != NULL) 1329 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1330 if (zone->zone_initname != NULL) 1331 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1332 id_free(zoneid_space, zone->zone_id); 1333 mutex_destroy(&zone->zone_lock); 1334 cv_destroy(&zone->zone_cv); 1335 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1336 kmem_free(zone, sizeof (zone_t)); 1337 } 1338 1339 /* 1340 * See block comment at the top of this file for information about zone 1341 * status values. 1342 */ 1343 /* 1344 * Convenience function for setting zone status. 1345 */ 1346 static void 1347 zone_status_set(zone_t *zone, zone_status_t status) 1348 { 1349 1350 nvlist_t *nvl = NULL; 1351 ASSERT(MUTEX_HELD(&zone_status_lock)); 1352 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1353 status >= zone_status_get(zone)); 1354 1355 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1356 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1357 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1358 zone_status_table[status]) || 1359 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1360 zone_status_table[zone->zone_status]) || 1361 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1362 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1363 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1364 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1365 #ifdef DEBUG 1366 (void) printf( 1367 "Failed to allocate and send zone state change event.\n"); 1368 #endif 1369 } 1370 nvlist_free(nvl); 1371 1372 zone->zone_status = status; 1373 1374 cv_broadcast(&zone->zone_cv); 1375 } 1376 1377 /* 1378 * Public function to retrieve the zone status. The zone status may 1379 * change after it is retrieved. 1380 */ 1381 zone_status_t 1382 zone_status_get(zone_t *zone) 1383 { 1384 return (zone->zone_status); 1385 } 1386 1387 static int 1388 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1389 { 1390 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 1391 int err = 0; 1392 1393 ASSERT(zone != global_zone); 1394 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 1395 goto done; /* EFAULT or ENAMETOOLONG */ 1396 1397 if (zone->zone_bootargs != NULL) 1398 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 1399 1400 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 1401 (void) strcpy(zone->zone_bootargs, bootargs); 1402 1403 done: 1404 kmem_free(bootargs, BOOTARGS_MAX); 1405 return (err); 1406 } 1407 1408 static int 1409 zone_set_initname(zone_t *zone, const char *zone_initname) 1410 { 1411 char initname[INITNAME_SZ]; 1412 size_t len; 1413 int err = 0; 1414 1415 ASSERT(zone != global_zone); 1416 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 1417 return (err); /* EFAULT or ENAMETOOLONG */ 1418 1419 if (zone->zone_initname != NULL) 1420 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 1421 1422 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 1423 (void) strcpy(zone->zone_initname, initname); 1424 return (0); 1425 } 1426 1427 /* 1428 * Block indefinitely waiting for (zone_status >= status) 1429 */ 1430 void 1431 zone_status_wait(zone_t *zone, zone_status_t status) 1432 { 1433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1434 1435 mutex_enter(&zone_status_lock); 1436 while (zone->zone_status < status) { 1437 cv_wait(&zone->zone_cv, &zone_status_lock); 1438 } 1439 mutex_exit(&zone_status_lock); 1440 } 1441 1442 /* 1443 * Private CPR-safe version of zone_status_wait(). 1444 */ 1445 static void 1446 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1447 { 1448 callb_cpr_t cprinfo; 1449 1450 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1451 1452 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1453 str); 1454 mutex_enter(&zone_status_lock); 1455 while (zone->zone_status < status) { 1456 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1457 cv_wait(&zone->zone_cv, &zone_status_lock); 1458 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1459 } 1460 /* 1461 * zone_status_lock is implicitly released by the following. 1462 */ 1463 CALLB_CPR_EXIT(&cprinfo); 1464 } 1465 1466 /* 1467 * Block until zone enters requested state or signal is received. Return (0) 1468 * if signaled, non-zero otherwise. 1469 */ 1470 int 1471 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1472 { 1473 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1474 1475 mutex_enter(&zone_status_lock); 1476 while (zone->zone_status < status) { 1477 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1478 mutex_exit(&zone_status_lock); 1479 return (0); 1480 } 1481 } 1482 mutex_exit(&zone_status_lock); 1483 return (1); 1484 } 1485 1486 /* 1487 * Block until the zone enters the requested state or the timeout expires, 1488 * whichever happens first. Return (-1) if operation timed out, time remaining 1489 * otherwise. 1490 */ 1491 clock_t 1492 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1493 { 1494 clock_t timeleft = 0; 1495 1496 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1497 1498 mutex_enter(&zone_status_lock); 1499 while (zone->zone_status < status && timeleft != -1) { 1500 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1501 } 1502 mutex_exit(&zone_status_lock); 1503 return (timeleft); 1504 } 1505 1506 /* 1507 * Block until the zone enters the requested state, the current process is 1508 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1509 * operation timed out, 0 if signaled, time remaining otherwise. 1510 */ 1511 clock_t 1512 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1513 { 1514 clock_t timeleft = tim - lbolt; 1515 1516 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1517 1518 mutex_enter(&zone_status_lock); 1519 while (zone->zone_status < status) { 1520 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1521 tim); 1522 if (timeleft <= 0) 1523 break; 1524 } 1525 mutex_exit(&zone_status_lock); 1526 return (timeleft); 1527 } 1528 1529 /* 1530 * Zones have two reference counts: one for references from credential 1531 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1532 * This is so we can allow a zone to be rebooted while there are still 1533 * outstanding cred references, since certain drivers cache dblks (which 1534 * implicitly results in cached creds). We wait for zone_ref to drop to 1535 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1536 * later freed when the zone_cred_ref drops to 0, though nothing other 1537 * than the zone id and privilege set should be accessed once the zone 1538 * is "dead". 1539 * 1540 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1541 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1542 * to 0. This can be useful to flush out other sources of cached creds 1543 * that may be less innocuous than the driver case. 1544 */ 1545 1546 int zone_wait_for_cred = 0; 1547 1548 static void 1549 zone_hold_locked(zone_t *z) 1550 { 1551 ASSERT(MUTEX_HELD(&z->zone_lock)); 1552 z->zone_ref++; 1553 ASSERT(z->zone_ref != 0); 1554 } 1555 1556 void 1557 zone_hold(zone_t *z) 1558 { 1559 mutex_enter(&z->zone_lock); 1560 zone_hold_locked(z); 1561 mutex_exit(&z->zone_lock); 1562 } 1563 1564 /* 1565 * If the non-cred ref count drops to 1 and either the cred ref count 1566 * is 0 or we aren't waiting for cred references, the zone is ready to 1567 * be destroyed. 1568 */ 1569 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1570 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1571 1572 void 1573 zone_rele(zone_t *z) 1574 { 1575 boolean_t wakeup; 1576 1577 mutex_enter(&z->zone_lock); 1578 ASSERT(z->zone_ref != 0); 1579 z->zone_ref--; 1580 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1581 /* no more refs, free the structure */ 1582 mutex_exit(&z->zone_lock); 1583 zone_free(z); 1584 return; 1585 } 1586 /* signal zone_destroy so the zone can finish halting */ 1587 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1588 mutex_exit(&z->zone_lock); 1589 1590 if (wakeup) { 1591 /* 1592 * Grabbing zonehash_lock here effectively synchronizes with 1593 * zone_destroy() to avoid missed signals. 1594 */ 1595 mutex_enter(&zonehash_lock); 1596 cv_broadcast(&zone_destroy_cv); 1597 mutex_exit(&zonehash_lock); 1598 } 1599 } 1600 1601 void 1602 zone_cred_hold(zone_t *z) 1603 { 1604 mutex_enter(&z->zone_lock); 1605 z->zone_cred_ref++; 1606 ASSERT(z->zone_cred_ref != 0); 1607 mutex_exit(&z->zone_lock); 1608 } 1609 1610 void 1611 zone_cred_rele(zone_t *z) 1612 { 1613 boolean_t wakeup; 1614 1615 mutex_enter(&z->zone_lock); 1616 ASSERT(z->zone_cred_ref != 0); 1617 z->zone_cred_ref--; 1618 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1619 /* no more refs, free the structure */ 1620 mutex_exit(&z->zone_lock); 1621 zone_free(z); 1622 return; 1623 } 1624 /* 1625 * If zone_destroy is waiting for the cred references to drain 1626 * out, and they have, signal it. 1627 */ 1628 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1629 zone_status_get(z) >= ZONE_IS_DEAD); 1630 mutex_exit(&z->zone_lock); 1631 1632 if (wakeup) { 1633 /* 1634 * Grabbing zonehash_lock here effectively synchronizes with 1635 * zone_destroy() to avoid missed signals. 1636 */ 1637 mutex_enter(&zonehash_lock); 1638 cv_broadcast(&zone_destroy_cv); 1639 mutex_exit(&zonehash_lock); 1640 } 1641 } 1642 1643 void 1644 zone_task_hold(zone_t *z) 1645 { 1646 mutex_enter(&z->zone_lock); 1647 z->zone_ntasks++; 1648 ASSERT(z->zone_ntasks != 0); 1649 mutex_exit(&z->zone_lock); 1650 } 1651 1652 void 1653 zone_task_rele(zone_t *zone) 1654 { 1655 uint_t refcnt; 1656 1657 mutex_enter(&zone->zone_lock); 1658 ASSERT(zone->zone_ntasks != 0); 1659 refcnt = --zone->zone_ntasks; 1660 if (refcnt > 1) { /* Common case */ 1661 mutex_exit(&zone->zone_lock); 1662 return; 1663 } 1664 zone_hold_locked(zone); /* so we can use the zone_t later */ 1665 mutex_exit(&zone->zone_lock); 1666 if (refcnt == 1) { 1667 /* 1668 * See if the zone is shutting down. 1669 */ 1670 mutex_enter(&zone_status_lock); 1671 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 1672 goto out; 1673 } 1674 1675 /* 1676 * Make sure the ntasks didn't change since we 1677 * dropped zone_lock. 1678 */ 1679 mutex_enter(&zone->zone_lock); 1680 if (refcnt != zone->zone_ntasks) { 1681 mutex_exit(&zone->zone_lock); 1682 goto out; 1683 } 1684 mutex_exit(&zone->zone_lock); 1685 1686 /* 1687 * No more user processes in the zone. The zone is empty. 1688 */ 1689 zone_status_set(zone, ZONE_IS_EMPTY); 1690 goto out; 1691 } 1692 1693 ASSERT(refcnt == 0); 1694 /* 1695 * zsched has exited; the zone is dead. 1696 */ 1697 zone->zone_zsched = NULL; /* paranoia */ 1698 mutex_enter(&zone_status_lock); 1699 zone_status_set(zone, ZONE_IS_DEAD); 1700 out: 1701 mutex_exit(&zone_status_lock); 1702 zone_rele(zone); 1703 } 1704 1705 zoneid_t 1706 getzoneid(void) 1707 { 1708 return (curproc->p_zone->zone_id); 1709 } 1710 1711 /* 1712 * Internal versions of zone_find_by_*(). These don't zone_hold() or 1713 * check the validity of a zone's state. 1714 */ 1715 static zone_t * 1716 zone_find_all_by_id(zoneid_t zoneid) 1717 { 1718 mod_hash_val_t hv; 1719 zone_t *zone = NULL; 1720 1721 ASSERT(MUTEX_HELD(&zonehash_lock)); 1722 1723 if (mod_hash_find(zonehashbyid, 1724 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 1725 zone = (zone_t *)hv; 1726 return (zone); 1727 } 1728 1729 static zone_t * 1730 zone_find_all_by_label(const ts_label_t *label) 1731 { 1732 mod_hash_val_t hv; 1733 zone_t *zone = NULL; 1734 1735 ASSERT(MUTEX_HELD(&zonehash_lock)); 1736 1737 /* 1738 * zonehashbylabel is not maintained for unlabeled systems 1739 */ 1740 if (!is_system_labeled()) 1741 return (NULL); 1742 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 1743 zone = (zone_t *)hv; 1744 return (zone); 1745 } 1746 1747 static zone_t * 1748 zone_find_all_by_name(char *name) 1749 { 1750 mod_hash_val_t hv; 1751 zone_t *zone = NULL; 1752 1753 ASSERT(MUTEX_HELD(&zonehash_lock)); 1754 1755 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 1756 zone = (zone_t *)hv; 1757 return (zone); 1758 } 1759 1760 /* 1761 * Public interface for looking up a zone by zoneid. Only returns the zone if 1762 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 1763 * Caller must call zone_rele() once it is done with the zone. 1764 * 1765 * The zone may begin the zone_destroy() sequence immediately after this 1766 * function returns, but may be safely used until zone_rele() is called. 1767 */ 1768 zone_t * 1769 zone_find_by_id(zoneid_t zoneid) 1770 { 1771 zone_t *zone; 1772 zone_status_t status; 1773 1774 mutex_enter(&zonehash_lock); 1775 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 1776 mutex_exit(&zonehash_lock); 1777 return (NULL); 1778 } 1779 status = zone_status_get(zone); 1780 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1781 /* 1782 * For all practical purposes the zone doesn't exist. 1783 */ 1784 mutex_exit(&zonehash_lock); 1785 return (NULL); 1786 } 1787 zone_hold(zone); 1788 mutex_exit(&zonehash_lock); 1789 return (zone); 1790 } 1791 1792 /* 1793 * Similar to zone_find_by_id, but using zone label as the key. 1794 */ 1795 zone_t * 1796 zone_find_by_label(const ts_label_t *label) 1797 { 1798 zone_t *zone; 1799 zone_status_t status; 1800 1801 mutex_enter(&zonehash_lock); 1802 if ((zone = zone_find_all_by_label(label)) == NULL) { 1803 mutex_exit(&zonehash_lock); 1804 return (NULL); 1805 } 1806 1807 status = zone_status_get(zone); 1808 if (status > ZONE_IS_DOWN) { 1809 /* 1810 * For all practical purposes the zone doesn't exist. 1811 */ 1812 mutex_exit(&zonehash_lock); 1813 return (NULL); 1814 } 1815 zone_hold(zone); 1816 mutex_exit(&zonehash_lock); 1817 return (zone); 1818 } 1819 1820 /* 1821 * Similar to zone_find_by_id, but using zone name as the key. 1822 */ 1823 zone_t * 1824 zone_find_by_name(char *name) 1825 { 1826 zone_t *zone; 1827 zone_status_t status; 1828 1829 mutex_enter(&zonehash_lock); 1830 if ((zone = zone_find_all_by_name(name)) == NULL) { 1831 mutex_exit(&zonehash_lock); 1832 return (NULL); 1833 } 1834 status = zone_status_get(zone); 1835 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1836 /* 1837 * For all practical purposes the zone doesn't exist. 1838 */ 1839 mutex_exit(&zonehash_lock); 1840 return (NULL); 1841 } 1842 zone_hold(zone); 1843 mutex_exit(&zonehash_lock); 1844 return (zone); 1845 } 1846 1847 /* 1848 * Similar to zone_find_by_id(), using the path as a key. For instance, 1849 * if there is a zone "foo" rooted at /foo/root, and the path argument 1850 * is "/foo/root/proc", it will return the held zone_t corresponding to 1851 * zone "foo". 1852 * 1853 * zone_find_by_path() always returns a non-NULL value, since at the 1854 * very least every path will be contained in the global zone. 1855 * 1856 * As with the other zone_find_by_*() functions, the caller is 1857 * responsible for zone_rele()ing the return value of this function. 1858 */ 1859 zone_t * 1860 zone_find_by_path(const char *path) 1861 { 1862 zone_t *zone; 1863 zone_t *zret = NULL; 1864 zone_status_t status; 1865 1866 if (path == NULL) { 1867 /* 1868 * Call from rootconf(). 1869 */ 1870 zone_hold(global_zone); 1871 return (global_zone); 1872 } 1873 ASSERT(*path == '/'); 1874 mutex_enter(&zonehash_lock); 1875 for (zone = list_head(&zone_active); zone != NULL; 1876 zone = list_next(&zone_active, zone)) { 1877 if (ZONE_PATH_VISIBLE(path, zone)) 1878 zret = zone; 1879 } 1880 ASSERT(zret != NULL); 1881 status = zone_status_get(zret); 1882 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1883 /* 1884 * Zone practically doesn't exist. 1885 */ 1886 zret = global_zone; 1887 } 1888 zone_hold(zret); 1889 mutex_exit(&zonehash_lock); 1890 return (zret); 1891 } 1892 1893 /* 1894 * Get the number of cpus visible to this zone. The system-wide global 1895 * 'ncpus' is returned if pools are disabled, the caller is in the 1896 * global zone, or a NULL zone argument is passed in. 1897 */ 1898 int 1899 zone_ncpus_get(zone_t *zone) 1900 { 1901 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 1902 1903 return (myncpus != 0 ? myncpus : ncpus); 1904 } 1905 1906 /* 1907 * Get the number of online cpus visible to this zone. The system-wide 1908 * global 'ncpus_online' is returned if pools are disabled, the caller 1909 * is in the global zone, or a NULL zone argument is passed in. 1910 */ 1911 int 1912 zone_ncpus_online_get(zone_t *zone) 1913 { 1914 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 1915 1916 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 1917 } 1918 1919 /* 1920 * Return the pool to which the zone is currently bound. 1921 */ 1922 pool_t * 1923 zone_pool_get(zone_t *zone) 1924 { 1925 ASSERT(pool_lock_held()); 1926 1927 return (zone->zone_pool); 1928 } 1929 1930 /* 1931 * Set the zone's pool pointer and update the zone's visibility to match 1932 * the resources in the new pool. 1933 */ 1934 void 1935 zone_pool_set(zone_t *zone, pool_t *pool) 1936 { 1937 ASSERT(pool_lock_held()); 1938 ASSERT(MUTEX_HELD(&cpu_lock)); 1939 1940 zone->zone_pool = pool; 1941 zone_pset_set(zone, pool->pool_pset->pset_id); 1942 } 1943 1944 /* 1945 * Return the cached value of the id of the processor set to which the 1946 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 1947 * facility is disabled. 1948 */ 1949 psetid_t 1950 zone_pset_get(zone_t *zone) 1951 { 1952 ASSERT(MUTEX_HELD(&cpu_lock)); 1953 1954 return (zone->zone_psetid); 1955 } 1956 1957 /* 1958 * Set the cached value of the id of the processor set to which the zone 1959 * is currently bound. Also update the zone's visibility to match the 1960 * resources in the new processor set. 1961 */ 1962 void 1963 zone_pset_set(zone_t *zone, psetid_t newpsetid) 1964 { 1965 psetid_t oldpsetid; 1966 1967 ASSERT(MUTEX_HELD(&cpu_lock)); 1968 oldpsetid = zone_pset_get(zone); 1969 1970 if (oldpsetid == newpsetid) 1971 return; 1972 /* 1973 * Global zone sees all. 1974 */ 1975 if (zone != global_zone) { 1976 zone->zone_psetid = newpsetid; 1977 if (newpsetid != ZONE_PS_INVAL) 1978 pool_pset_visibility_add(newpsetid, zone); 1979 if (oldpsetid != ZONE_PS_INVAL) 1980 pool_pset_visibility_remove(oldpsetid, zone); 1981 } 1982 /* 1983 * Disabling pools, so we should start using the global values 1984 * for ncpus and ncpus_online. 1985 */ 1986 if (newpsetid == ZONE_PS_INVAL) { 1987 zone->zone_ncpus = 0; 1988 zone->zone_ncpus_online = 0; 1989 } 1990 } 1991 1992 /* 1993 * Walk the list of active zones and issue the provided callback for 1994 * each of them. 1995 * 1996 * Caller must not be holding any locks that may be acquired under 1997 * zonehash_lock. See comment at the beginning of the file for a list of 1998 * common locks and their interactions with zones. 1999 */ 2000 int 2001 zone_walk(int (*cb)(zone_t *, void *), void *data) 2002 { 2003 zone_t *zone; 2004 int ret = 0; 2005 zone_status_t status; 2006 2007 mutex_enter(&zonehash_lock); 2008 for (zone = list_head(&zone_active); zone != NULL; 2009 zone = list_next(&zone_active, zone)) { 2010 /* 2011 * Skip zones that shouldn't be externally visible. 2012 */ 2013 status = zone_status_get(zone); 2014 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2015 continue; 2016 /* 2017 * Bail immediately if any callback invocation returns a 2018 * non-zero value. 2019 */ 2020 ret = (*cb)(zone, data); 2021 if (ret != 0) 2022 break; 2023 } 2024 mutex_exit(&zonehash_lock); 2025 return (ret); 2026 } 2027 2028 static int 2029 zone_set_root(zone_t *zone, const char *upath) 2030 { 2031 vnode_t *vp; 2032 int trycount; 2033 int error = 0; 2034 char *path; 2035 struct pathname upn, pn; 2036 size_t pathlen; 2037 2038 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2039 return (error); 2040 2041 pn_alloc(&pn); 2042 2043 /* prevent infinite loop */ 2044 trycount = 10; 2045 for (;;) { 2046 if (--trycount <= 0) { 2047 error = ESTALE; 2048 goto out; 2049 } 2050 2051 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2052 /* 2053 * VOP_ACCESS() may cover 'vp' with a new 2054 * filesystem, if 'vp' is an autoFS vnode. 2055 * Get the new 'vp' if so. 2056 */ 2057 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 2058 (vp->v_vfsmountedhere == NULL || 2059 (error = traverse(&vp)) == 0)) { 2060 pathlen = pn.pn_pathlen + 2; 2061 path = kmem_alloc(pathlen, KM_SLEEP); 2062 (void) strncpy(path, pn.pn_path, 2063 pn.pn_pathlen + 1); 2064 path[pathlen - 2] = '/'; 2065 path[pathlen - 1] = '\0'; 2066 pn_free(&pn); 2067 pn_free(&upn); 2068 2069 /* Success! */ 2070 break; 2071 } 2072 VN_RELE(vp); 2073 } 2074 if (error != ESTALE) 2075 goto out; 2076 } 2077 2078 ASSERT(error == 0); 2079 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2080 zone->zone_rootpath = path; 2081 zone->zone_rootpathlen = pathlen; 2082 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2083 zone->zone_flags |= ZF_IS_SCRATCH; 2084 return (0); 2085 2086 out: 2087 pn_free(&pn); 2088 pn_free(&upn); 2089 return (error); 2090 } 2091 2092 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2093 ((c) >= 'a' && (c) <= 'z') || \ 2094 ((c) >= 'A' && (c) <= 'Z')) 2095 2096 static int 2097 zone_set_name(zone_t *zone, const char *uname) 2098 { 2099 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2100 size_t len; 2101 int i, err; 2102 2103 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2104 kmem_free(kname, ZONENAME_MAX); 2105 return (err); /* EFAULT or ENAMETOOLONG */ 2106 } 2107 2108 /* must be less than ZONENAME_MAX */ 2109 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2110 kmem_free(kname, ZONENAME_MAX); 2111 return (EINVAL); 2112 } 2113 2114 /* 2115 * Name must start with an alphanumeric and must contain only 2116 * alphanumerics, '-', '_' and '.'. 2117 */ 2118 if (!isalnum(kname[0])) { 2119 kmem_free(kname, ZONENAME_MAX); 2120 return (EINVAL); 2121 } 2122 for (i = 1; i < len - 1; i++) { 2123 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2124 kname[i] != '.') { 2125 kmem_free(kname, ZONENAME_MAX); 2126 return (EINVAL); 2127 } 2128 } 2129 2130 zone->zone_name = kname; 2131 return (0); 2132 } 2133 2134 /* 2135 * Similar to thread_create(), but makes sure the thread is in the appropriate 2136 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2137 */ 2138 /*ARGSUSED*/ 2139 kthread_t * 2140 zthread_create( 2141 caddr_t stk, 2142 size_t stksize, 2143 void (*proc)(), 2144 void *arg, 2145 size_t len, 2146 pri_t pri) 2147 { 2148 kthread_t *t; 2149 zone_t *zone = curproc->p_zone; 2150 proc_t *pp = zone->zone_zsched; 2151 2152 zone_hold(zone); /* Reference to be dropped when thread exits */ 2153 2154 /* 2155 * No-one should be trying to create threads if the zone is shutting 2156 * down and there aren't any kernel threads around. See comment 2157 * in zthread_exit(). 2158 */ 2159 ASSERT(!(zone->zone_kthreads == NULL && 2160 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2161 /* 2162 * Create a thread, but don't let it run until we've finished setting 2163 * things up. 2164 */ 2165 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2166 ASSERT(t->t_forw == NULL); 2167 mutex_enter(&zone_status_lock); 2168 if (zone->zone_kthreads == NULL) { 2169 t->t_forw = t->t_back = t; 2170 } else { 2171 kthread_t *tx = zone->zone_kthreads; 2172 2173 t->t_forw = tx; 2174 t->t_back = tx->t_back; 2175 tx->t_back->t_forw = t; 2176 tx->t_back = t; 2177 } 2178 zone->zone_kthreads = t; 2179 mutex_exit(&zone_status_lock); 2180 2181 mutex_enter(&pp->p_lock); 2182 t->t_proc_flag |= TP_ZTHREAD; 2183 project_rele(t->t_proj); 2184 t->t_proj = project_hold(pp->p_task->tk_proj); 2185 2186 /* 2187 * Setup complete, let it run. 2188 */ 2189 thread_lock(t); 2190 t->t_schedflag |= TS_ALLSTART; 2191 setrun_locked(t); 2192 thread_unlock(t); 2193 2194 mutex_exit(&pp->p_lock); 2195 2196 return (t); 2197 } 2198 2199 /* 2200 * Similar to thread_exit(). Must be called by threads created via 2201 * zthread_exit(). 2202 */ 2203 void 2204 zthread_exit(void) 2205 { 2206 kthread_t *t = curthread; 2207 proc_t *pp = curproc; 2208 zone_t *zone = pp->p_zone; 2209 2210 mutex_enter(&zone_status_lock); 2211 2212 /* 2213 * Reparent to p0 2214 */ 2215 kpreempt_disable(); 2216 mutex_enter(&pp->p_lock); 2217 t->t_proc_flag &= ~TP_ZTHREAD; 2218 t->t_procp = &p0; 2219 hat_thread_exit(t); 2220 mutex_exit(&pp->p_lock); 2221 kpreempt_enable(); 2222 2223 if (t->t_back == t) { 2224 ASSERT(t->t_forw == t); 2225 /* 2226 * If the zone is empty, once the thread count 2227 * goes to zero no further kernel threads can be 2228 * created. This is because if the creator is a process 2229 * in the zone, then it must have exited before the zone 2230 * state could be set to ZONE_IS_EMPTY. 2231 * Otherwise, if the creator is a kernel thread in the 2232 * zone, the thread count is non-zero. 2233 * 2234 * This really means that non-zone kernel threads should 2235 * not create zone kernel threads. 2236 */ 2237 zone->zone_kthreads = NULL; 2238 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2239 zone_status_set(zone, ZONE_IS_DOWN); 2240 } 2241 } else { 2242 t->t_forw->t_back = t->t_back; 2243 t->t_back->t_forw = t->t_forw; 2244 if (zone->zone_kthreads == t) 2245 zone->zone_kthreads = t->t_forw; 2246 } 2247 mutex_exit(&zone_status_lock); 2248 zone_rele(zone); 2249 thread_exit(); 2250 /* NOTREACHED */ 2251 } 2252 2253 static void 2254 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2255 { 2256 vnode_t *oldvp; 2257 2258 /* we're going to hold a reference here to the directory */ 2259 VN_HOLD(vp); 2260 2261 #ifdef C2_AUDIT 2262 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2263 audit_chdirec(vp, vpp); 2264 #endif 2265 2266 mutex_enter(&pp->p_lock); 2267 oldvp = *vpp; 2268 *vpp = vp; 2269 mutex_exit(&pp->p_lock); 2270 if (oldvp != NULL) 2271 VN_RELE(oldvp); 2272 } 2273 2274 /* 2275 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2276 */ 2277 static int 2278 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2279 { 2280 nvpair_t *nvp = NULL; 2281 boolean_t priv_set = B_FALSE; 2282 boolean_t limit_set = B_FALSE; 2283 boolean_t action_set = B_FALSE; 2284 2285 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2286 const char *name; 2287 uint64_t ui64; 2288 2289 name = nvpair_name(nvp); 2290 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2291 return (EINVAL); 2292 (void) nvpair_value_uint64(nvp, &ui64); 2293 if (strcmp(name, "privilege") == 0) { 2294 /* 2295 * Currently only privileged values are allowed, but 2296 * this may change in the future. 2297 */ 2298 if (ui64 != RCPRIV_PRIVILEGED) 2299 return (EINVAL); 2300 rv->rcv_privilege = ui64; 2301 priv_set = B_TRUE; 2302 } else if (strcmp(name, "limit") == 0) { 2303 rv->rcv_value = ui64; 2304 limit_set = B_TRUE; 2305 } else if (strcmp(name, "action") == 0) { 2306 if (ui64 != RCTL_LOCAL_NOACTION && 2307 ui64 != RCTL_LOCAL_DENY) 2308 return (EINVAL); 2309 rv->rcv_flagaction = ui64; 2310 action_set = B_TRUE; 2311 } else { 2312 return (EINVAL); 2313 } 2314 } 2315 2316 if (!(priv_set && limit_set && action_set)) 2317 return (EINVAL); 2318 rv->rcv_action_signal = 0; 2319 rv->rcv_action_recipient = NULL; 2320 rv->rcv_action_recip_pid = -1; 2321 rv->rcv_firing_time = 0; 2322 2323 return (0); 2324 } 2325 2326 /* 2327 * Non-global zone version of start_init. 2328 */ 2329 void 2330 zone_start_init(void) 2331 { 2332 proc_t *p = ttoproc(curthread); 2333 2334 ASSERT(!INGLOBALZONE(curproc)); 2335 2336 /* 2337 * We maintain zone_boot_err so that we can return the cause of the 2338 * failure back to the caller of the zone_boot syscall. 2339 */ 2340 p->p_zone->zone_boot_err = start_init_common(); 2341 2342 mutex_enter(&zone_status_lock); 2343 if (p->p_zone->zone_boot_err != 0) { 2344 /* 2345 * Make sure we are still in the booting state-- we could have 2346 * raced and already be shutting down, or even further along. 2347 */ 2348 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2349 zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN); 2350 mutex_exit(&zone_status_lock); 2351 /* It's gone bad, dispose of the process */ 2352 if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) { 2353 mutex_enter(&p->p_lock); 2354 ASSERT(p->p_flag & SEXITLWPS); 2355 lwp_exit(); 2356 } 2357 } else { 2358 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2359 zone_status_set(p->p_zone, ZONE_IS_RUNNING); 2360 mutex_exit(&zone_status_lock); 2361 /* cause the process to return to userland. */ 2362 lwp_rtt(); 2363 } 2364 } 2365 2366 struct zsched_arg { 2367 zone_t *zone; 2368 nvlist_t *nvlist; 2369 }; 2370 2371 /* 2372 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2373 * anything to do with scheduling, but rather with the fact that 2374 * per-zone kernel threads are parented to zsched, just like regular 2375 * kernel threads are parented to sched (p0). 2376 * 2377 * zsched is also responsible for launching init for the zone. 2378 */ 2379 static void 2380 zsched(void *arg) 2381 { 2382 struct zsched_arg *za = arg; 2383 proc_t *pp = curproc; 2384 proc_t *initp = proc_init; 2385 zone_t *zone = za->zone; 2386 cred_t *cr, *oldcred; 2387 rctl_set_t *set; 2388 rctl_alloc_gp_t *gp; 2389 contract_t *ct = NULL; 2390 task_t *tk, *oldtk; 2391 rctl_entity_p_t e; 2392 kproject_t *pj; 2393 2394 nvlist_t *nvl = za->nvlist; 2395 nvpair_t *nvp = NULL; 2396 2397 bcopy("zsched", u.u_psargs, sizeof ("zsched")); 2398 bcopy("zsched", u.u_comm, sizeof ("zsched")); 2399 u.u_argc = 0; 2400 u.u_argv = NULL; 2401 u.u_envp = NULL; 2402 closeall(P_FINFO(pp)); 2403 2404 /* 2405 * We are this zone's "zsched" process. As the zone isn't generally 2406 * visible yet we don't need to grab any locks before initializing its 2407 * zone_proc pointer. 2408 */ 2409 zone_hold(zone); /* this hold is released by zone_destroy() */ 2410 zone->zone_zsched = pp; 2411 mutex_enter(&pp->p_lock); 2412 pp->p_zone = zone; 2413 mutex_exit(&pp->p_lock); 2414 2415 /* 2416 * Disassociate process from its 'parent'; parent ourselves to init 2417 * (pid 1) and change other values as needed. 2418 */ 2419 sess_create(); 2420 2421 mutex_enter(&pidlock); 2422 proc_detach(pp); 2423 pp->p_ppid = 1; 2424 pp->p_flag |= SZONETOP; 2425 pp->p_ancpid = 1; 2426 pp->p_parent = initp; 2427 pp->p_psibling = NULL; 2428 if (initp->p_child) 2429 initp->p_child->p_psibling = pp; 2430 pp->p_sibling = initp->p_child; 2431 initp->p_child = pp; 2432 2433 /* Decrement what newproc() incremented. */ 2434 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2435 /* 2436 * Our credentials are about to become kcred-like, so we don't care 2437 * about the caller's ruid. 2438 */ 2439 upcount_inc(crgetruid(kcred), zone->zone_id); 2440 mutex_exit(&pidlock); 2441 2442 /* 2443 * getting out of global zone, so decrement lwp counts 2444 */ 2445 pj = pp->p_task->tk_proj; 2446 mutex_enter(&global_zone->zone_nlwps_lock); 2447 pj->kpj_nlwps -= pp->p_lwpcnt; 2448 global_zone->zone_nlwps -= pp->p_lwpcnt; 2449 mutex_exit(&global_zone->zone_nlwps_lock); 2450 2451 /* 2452 * Create and join a new task in project '0' of this zone. 2453 * 2454 * We don't need to call holdlwps() since we know we're the only lwp in 2455 * this process. 2456 * 2457 * task_join() returns with p_lock held. 2458 */ 2459 tk = task_create(0, zone); 2460 mutex_enter(&cpu_lock); 2461 oldtk = task_join(tk, 0); 2462 mutex_exit(&curproc->p_lock); 2463 mutex_exit(&cpu_lock); 2464 task_rele(oldtk); 2465 2466 /* 2467 * add lwp counts to zsched's zone, and increment project's task count 2468 * due to the task created in the above tasksys_settaskid 2469 */ 2470 pj = pp->p_task->tk_proj; 2471 mutex_enter(&zone->zone_nlwps_lock); 2472 pj->kpj_nlwps += pp->p_lwpcnt; 2473 pj->kpj_ntasks += 1; 2474 zone->zone_nlwps += pp->p_lwpcnt; 2475 mutex_exit(&zone->zone_nlwps_lock); 2476 2477 /* 2478 * The process was created by a process in the global zone, hence the 2479 * credentials are wrong. We might as well have kcred-ish credentials. 2480 */ 2481 cr = zone->zone_kcred; 2482 crhold(cr); 2483 mutex_enter(&pp->p_crlock); 2484 oldcred = pp->p_cred; 2485 pp->p_cred = cr; 2486 mutex_exit(&pp->p_crlock); 2487 crfree(oldcred); 2488 2489 /* 2490 * Hold credentials again (for thread) 2491 */ 2492 crhold(cr); 2493 2494 /* 2495 * p_lwpcnt can't change since this is a kernel process. 2496 */ 2497 crset(pp, cr); 2498 2499 /* 2500 * Chroot 2501 */ 2502 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2503 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2504 2505 /* 2506 * Initialize zone's rctl set. 2507 */ 2508 set = rctl_set_create(); 2509 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2510 mutex_enter(&pp->p_lock); 2511 e.rcep_p.zone = zone; 2512 e.rcep_t = RCENTITY_ZONE; 2513 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2514 mutex_exit(&pp->p_lock); 2515 rctl_prealloc_destroy(gp); 2516 2517 /* 2518 * Apply the rctls passed in to zone_create(). This is basically a list 2519 * assignment: all of the old values are removed and the new ones 2520 * inserted. That is, if an empty list is passed in, all values are 2521 * removed. 2522 */ 2523 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2524 rctl_dict_entry_t *rde; 2525 rctl_hndl_t hndl; 2526 char *name; 2527 nvlist_t **nvlarray; 2528 uint_t i, nelem; 2529 int error; /* For ASSERT()s */ 2530 2531 name = nvpair_name(nvp); 2532 hndl = rctl_hndl_lookup(name); 2533 ASSERT(hndl != -1); 2534 rde = rctl_dict_lookup_hndl(hndl); 2535 ASSERT(rde != NULL); 2536 2537 for (; /* ever */; ) { 2538 rctl_val_t oval; 2539 2540 mutex_enter(&pp->p_lock); 2541 error = rctl_local_get(hndl, NULL, &oval, pp); 2542 mutex_exit(&pp->p_lock); 2543 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2544 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2545 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2546 break; 2547 mutex_enter(&pp->p_lock); 2548 error = rctl_local_delete(hndl, &oval, pp); 2549 mutex_exit(&pp->p_lock); 2550 ASSERT(error == 0); 2551 } 2552 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2553 ASSERT(error == 0); 2554 for (i = 0; i < nelem; i++) { 2555 rctl_val_t *nvalp; 2556 2557 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2558 error = nvlist2rctlval(nvlarray[i], nvalp); 2559 ASSERT(error == 0); 2560 /* 2561 * rctl_local_insert can fail if the value being 2562 * inserted is a duplicate; this is OK. 2563 */ 2564 mutex_enter(&pp->p_lock); 2565 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2566 kmem_cache_free(rctl_val_cache, nvalp); 2567 mutex_exit(&pp->p_lock); 2568 } 2569 } 2570 /* 2571 * Tell the world that we're done setting up. 2572 * 2573 * At this point we want to set the zone status to ZONE_IS_READY 2574 * and atomically set the zone's processor set visibility. Once 2575 * we drop pool_lock() this zone will automatically get updated 2576 * to reflect any future changes to the pools configuration. 2577 */ 2578 pool_lock(); 2579 mutex_enter(&cpu_lock); 2580 mutex_enter(&zonehash_lock); 2581 zone_uniqid(zone); 2582 zone_zsd_configure(zone); 2583 if (pool_state == POOL_ENABLED) 2584 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2585 mutex_enter(&zone_status_lock); 2586 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2587 zone_status_set(zone, ZONE_IS_READY); 2588 mutex_exit(&zone_status_lock); 2589 mutex_exit(&zonehash_lock); 2590 mutex_exit(&cpu_lock); 2591 pool_unlock(); 2592 2593 /* 2594 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2595 * we launch init, and set the state to running. 2596 */ 2597 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2598 2599 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2600 id_t cid; 2601 2602 /* 2603 * Ok, this is a little complicated. We need to grab the 2604 * zone's pool's scheduling class ID; note that by now, we 2605 * are already bound to a pool if we need to be (zoneadmd 2606 * will have done that to us while we're in the READY 2607 * state). *But* the scheduling class for the zone's 'init' 2608 * must be explicitly passed to newproc, which doesn't 2609 * respect pool bindings. 2610 * 2611 * We hold the pool_lock across the call to newproc() to 2612 * close the obvious race: the pool's scheduling class 2613 * could change before we manage to create the LWP with 2614 * classid 'cid'. 2615 */ 2616 pool_lock(); 2617 cid = pool_get_class(zone->zone_pool); 2618 if (cid == -1) 2619 cid = defaultcid; 2620 2621 /* 2622 * If this fails, zone_boot will ultimately fail. The 2623 * state of the zone will be set to SHUTTING_DOWN-- userland 2624 * will have to tear down the zone, and fail, or try again. 2625 */ 2626 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 2627 minclsyspri - 1, &ct)) != 0) { 2628 mutex_enter(&zone_status_lock); 2629 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 2630 mutex_exit(&zone_status_lock); 2631 } 2632 pool_unlock(); 2633 } 2634 2635 /* 2636 * Wait for zone_destroy() to be called. This is what we spend 2637 * most of our life doing. 2638 */ 2639 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 2640 2641 if (ct) 2642 /* 2643 * At this point the process contract should be empty. 2644 * (Though if it isn't, it's not the end of the world.) 2645 */ 2646 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 2647 2648 /* 2649 * Allow kcred to be freed when all referring processes 2650 * (including this one) go away. We can't just do this in 2651 * zone_free because we need to wait for the zone_cred_ref to 2652 * drop to 0 before calling zone_free, and the existence of 2653 * zone_kcred will prevent that. Thus, we call crfree here to 2654 * balance the crdup in zone_create. The crhold calls earlier 2655 * in zsched will be dropped when the thread and process exit. 2656 */ 2657 crfree(zone->zone_kcred); 2658 zone->zone_kcred = NULL; 2659 2660 exit(CLD_EXITED, 0); 2661 } 2662 2663 /* 2664 * Helper function to determine if there are any submounts of the 2665 * provided path. Used to make sure the zone doesn't "inherit" any 2666 * mounts from before it is created. 2667 */ 2668 static uint_t 2669 zone_mount_count(const char *rootpath) 2670 { 2671 vfs_t *vfsp; 2672 uint_t count = 0; 2673 size_t rootpathlen = strlen(rootpath); 2674 2675 /* 2676 * Holding zonehash_lock prevents race conditions with 2677 * vfs_list_add()/vfs_list_remove() since we serialize with 2678 * zone_find_by_path(). 2679 */ 2680 ASSERT(MUTEX_HELD(&zonehash_lock)); 2681 /* 2682 * The rootpath must end with a '/' 2683 */ 2684 ASSERT(rootpath[rootpathlen - 1] == '/'); 2685 2686 /* 2687 * This intentionally does not count the rootpath itself if that 2688 * happens to be a mount point. 2689 */ 2690 vfs_list_read_lock(); 2691 vfsp = rootvfs; 2692 do { 2693 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 2694 rootpathlen) == 0) 2695 count++; 2696 vfsp = vfsp->vfs_next; 2697 } while (vfsp != rootvfs); 2698 vfs_list_unlock(); 2699 return (count); 2700 } 2701 2702 /* 2703 * Helper function to make sure that a zone created on 'rootpath' 2704 * wouldn't end up containing other zones' rootpaths. 2705 */ 2706 static boolean_t 2707 zone_is_nested(const char *rootpath) 2708 { 2709 zone_t *zone; 2710 size_t rootpathlen = strlen(rootpath); 2711 size_t len; 2712 2713 ASSERT(MUTEX_HELD(&zonehash_lock)); 2714 2715 for (zone = list_head(&zone_active); zone != NULL; 2716 zone = list_next(&zone_active, zone)) { 2717 if (zone == global_zone) 2718 continue; 2719 len = strlen(zone->zone_rootpath); 2720 if (strncmp(rootpath, zone->zone_rootpath, 2721 MIN(rootpathlen, len)) == 0) 2722 return (B_TRUE); 2723 } 2724 return (B_FALSE); 2725 } 2726 2727 static int 2728 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 2729 size_t zone_privssz) 2730 { 2731 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2732 2733 if (zone_privssz < sizeof (priv_set_t)) 2734 return (set_errno(ENOMEM)); 2735 2736 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 2737 kmem_free(privs, sizeof (priv_set_t)); 2738 return (EFAULT); 2739 } 2740 2741 zone->zone_privset = privs; 2742 return (0); 2743 } 2744 2745 /* 2746 * We make creative use of nvlists to pass in rctls from userland. The list is 2747 * a list of the following structures: 2748 * 2749 * (name = rctl_name, value = nvpair_list_array) 2750 * 2751 * Where each element of the nvpair_list_array is of the form: 2752 * 2753 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 2754 * (name = "limit", value = uint64_t), 2755 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 2756 */ 2757 static int 2758 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 2759 { 2760 nvpair_t *nvp = NULL; 2761 nvlist_t *nvl = NULL; 2762 char *kbuf; 2763 int error; 2764 rctl_val_t rv; 2765 2766 *nvlp = NULL; 2767 2768 if (buflen == 0) 2769 return (0); 2770 2771 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2772 return (ENOMEM); 2773 if (copyin(ubuf, kbuf, buflen)) { 2774 error = EFAULT; 2775 goto out; 2776 } 2777 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 2778 /* 2779 * nvl may have been allocated/free'd, but the value set to 2780 * non-NULL, so we reset it here. 2781 */ 2782 nvl = NULL; 2783 error = EINVAL; 2784 goto out; 2785 } 2786 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2787 rctl_dict_entry_t *rde; 2788 rctl_hndl_t hndl; 2789 nvlist_t **nvlarray; 2790 uint_t i, nelem; 2791 char *name; 2792 2793 error = EINVAL; 2794 name = nvpair_name(nvp); 2795 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 2796 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 2797 goto out; 2798 } 2799 if ((hndl = rctl_hndl_lookup(name)) == -1) { 2800 goto out; 2801 } 2802 rde = rctl_dict_lookup_hndl(hndl); 2803 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2804 ASSERT(error == 0); 2805 for (i = 0; i < nelem; i++) { 2806 if (error = nvlist2rctlval(nvlarray[i], &rv)) 2807 goto out; 2808 } 2809 if (rctl_invalid_value(rde, &rv)) { 2810 error = EINVAL; 2811 goto out; 2812 } 2813 } 2814 error = 0; 2815 *nvlp = nvl; 2816 out: 2817 kmem_free(kbuf, buflen); 2818 if (error && nvl != NULL) 2819 nvlist_free(nvl); 2820 return (error); 2821 } 2822 2823 int 2824 zone_create_error(int er_error, int er_ext, int *er_out) { 2825 if (er_out != NULL) { 2826 if (copyout(&er_ext, er_out, sizeof (int))) { 2827 return (set_errno(EFAULT)); 2828 } 2829 } 2830 return (set_errno(er_error)); 2831 } 2832 2833 static int 2834 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 2835 { 2836 ts_label_t *tsl; 2837 bslabel_t blab; 2838 2839 /* Get label from user */ 2840 if (copyin(lab, &blab, sizeof (blab)) != 0) 2841 return (EFAULT); 2842 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 2843 if (tsl == NULL) 2844 return (ENOMEM); 2845 2846 zone->zone_slabel = tsl; 2847 return (0); 2848 } 2849 2850 /* 2851 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 2852 */ 2853 static int 2854 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 2855 { 2856 char *kbuf; 2857 char *dataset, *next; 2858 zone_dataset_t *zd; 2859 size_t len; 2860 2861 if (ubuf == NULL || buflen == 0) 2862 return (0); 2863 2864 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2865 return (ENOMEM); 2866 2867 if (copyin(ubuf, kbuf, buflen) != 0) { 2868 kmem_free(kbuf, buflen); 2869 return (EFAULT); 2870 } 2871 2872 dataset = next = kbuf; 2873 for (;;) { 2874 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 2875 2876 next = strchr(dataset, ','); 2877 2878 if (next == NULL) 2879 len = strlen(dataset); 2880 else 2881 len = next - dataset; 2882 2883 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 2884 bcopy(dataset, zd->zd_dataset, len); 2885 zd->zd_dataset[len] = '\0'; 2886 2887 list_insert_head(&zone->zone_datasets, zd); 2888 2889 if (next == NULL) 2890 break; 2891 2892 dataset = next + 1; 2893 } 2894 2895 kmem_free(kbuf, buflen); 2896 return (0); 2897 } 2898 2899 /* 2900 * System call to create/initialize a new zone named 'zone_name', rooted 2901 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 2902 * and initialized with the zone-wide rctls described in 'rctlbuf', and 2903 * with labeling set by 'match', 'doi', and 'label'. 2904 * 2905 * If extended error is non-null, we may use it to return more detailed 2906 * error information. 2907 */ 2908 static zoneid_t 2909 zone_create(const char *zone_name, const char *zone_root, 2910 const priv_set_t *zone_privs, size_t zone_privssz, 2911 caddr_t rctlbuf, size_t rctlbufsz, 2912 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 2913 int match, uint32_t doi, const bslabel_t *label) 2914 { 2915 struct zsched_arg zarg; 2916 nvlist_t *rctls = NULL; 2917 proc_t *pp = curproc; 2918 zone_t *zone, *ztmp; 2919 zoneid_t zoneid; 2920 int error; 2921 int error2 = 0; 2922 char *str; 2923 cred_t *zkcr; 2924 boolean_t insert_label_hash; 2925 2926 if (secpolicy_zone_config(CRED()) != 0) 2927 return (set_errno(EPERM)); 2928 2929 /* can't boot zone from within chroot environment */ 2930 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 2931 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 2932 extended_error)); 2933 2934 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 2935 zoneid = zone->zone_id = id_alloc(zoneid_space); 2936 zone->zone_status = ZONE_IS_UNINITIALIZED; 2937 zone->zone_pool = pool_default; 2938 zone->zone_pool_mod = gethrtime(); 2939 zone->zone_psetid = ZONE_PS_INVAL; 2940 zone->zone_ncpus = 0; 2941 zone->zone_ncpus_online = 0; 2942 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 2943 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2944 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 2945 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 2946 offsetof(struct zsd_entry, zsd_linkage)); 2947 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 2948 offsetof(zone_dataset_t, zd_linkage)); 2949 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2950 2951 if ((error = zone_set_name(zone, zone_name)) != 0) { 2952 zone_free(zone); 2953 return (zone_create_error(error, 0, extended_error)); 2954 } 2955 2956 if ((error = zone_set_root(zone, zone_root)) != 0) { 2957 zone_free(zone); 2958 return (zone_create_error(error, 0, extended_error)); 2959 } 2960 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 2961 zone_free(zone); 2962 return (zone_create_error(error, 0, extended_error)); 2963 } 2964 2965 /* initialize node name to be the same as zone name */ 2966 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2967 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 2968 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 2969 2970 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2971 zone->zone_domain[0] = '\0'; 2972 zone->zone_shares = 1; 2973 zone->zone_shmmax = 0; 2974 zone->zone_ipc.ipcq_shmmni = 0; 2975 zone->zone_ipc.ipcq_semmni = 0; 2976 zone->zone_ipc.ipcq_msgmni = 0; 2977 zone->zone_bootargs = NULL; 2978 zone->zone_initname = 2979 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 2980 (void) strcpy(zone->zone_initname, zone_default_initname); 2981 2982 /* 2983 * Zsched initializes the rctls. 2984 */ 2985 zone->zone_rctls = NULL; 2986 2987 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 2988 zone_free(zone); 2989 return (zone_create_error(error, 0, extended_error)); 2990 } 2991 2992 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 2993 zone_free(zone); 2994 return (set_errno(error)); 2995 } 2996 2997 /* 2998 * Read in the trusted system parameters: 2999 * match flag and sensitivity label. 3000 */ 3001 zone->zone_match = match; 3002 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3003 error = zone_set_label(zone, label, doi); 3004 if (error != 0) { 3005 zone_free(zone); 3006 return (set_errno(error)); 3007 } 3008 insert_label_hash = B_TRUE; 3009 } else { 3010 /* all zones get an admin_low label if system is not labeled */ 3011 zone->zone_slabel = l_admin_low; 3012 label_hold(l_admin_low); 3013 insert_label_hash = B_FALSE; 3014 } 3015 3016 /* 3017 * Stop all lwps since that's what normally happens as part of fork(). 3018 * This needs to happen before we grab any locks to avoid deadlock 3019 * (another lwp in the process could be waiting for the held lock). 3020 */ 3021 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3022 zone_free(zone); 3023 if (rctls) 3024 nvlist_free(rctls); 3025 return (zone_create_error(error, 0, extended_error)); 3026 } 3027 3028 if (block_mounts() == 0) { 3029 mutex_enter(&pp->p_lock); 3030 if (curthread != pp->p_agenttp) 3031 continuelwps(pp); 3032 mutex_exit(&pp->p_lock); 3033 zone_free(zone); 3034 if (rctls) 3035 nvlist_free(rctls); 3036 return (zone_create_error(error, 0, extended_error)); 3037 } 3038 3039 /* 3040 * Set up credential for kernel access. After this, any errors 3041 * should go through the dance in errout rather than calling 3042 * zone_free directly. 3043 */ 3044 zone->zone_kcred = crdup(kcred); 3045 crsetzone(zone->zone_kcred, zone); 3046 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3047 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3048 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3049 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3050 3051 mutex_enter(&zonehash_lock); 3052 /* 3053 * Make sure zone doesn't already exist. 3054 * 3055 * If the system and zone are labeled, 3056 * make sure no other zone exists that has the same label. 3057 */ 3058 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3059 (insert_label_hash && 3060 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3061 zone_status_t status; 3062 3063 status = zone_status_get(ztmp); 3064 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3065 error = EEXIST; 3066 else 3067 error = EBUSY; 3068 goto errout; 3069 } 3070 3071 /* 3072 * Don't allow zone creations which would cause one zone's rootpath to 3073 * be accessible from that of another (non-global) zone. 3074 */ 3075 if (zone_is_nested(zone->zone_rootpath)) { 3076 error = EBUSY; 3077 goto errout; 3078 } 3079 3080 ASSERT(zonecount != 0); /* check for leaks */ 3081 if (zonecount + 1 > maxzones) { 3082 error = ENOMEM; 3083 goto errout; 3084 } 3085 3086 if (zone_mount_count(zone->zone_rootpath) != 0) { 3087 error = EBUSY; 3088 error2 = ZE_AREMOUNTS; 3089 goto errout; 3090 } 3091 3092 /* 3093 * Zone is still incomplete, but we need to drop all locks while 3094 * zsched() initializes this zone's kernel process. We 3095 * optimistically add the zone to the hashtable and associated 3096 * lists so a parallel zone_create() doesn't try to create the 3097 * same zone. 3098 */ 3099 zonecount++; 3100 (void) mod_hash_insert(zonehashbyid, 3101 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3102 (mod_hash_val_t)(uintptr_t)zone); 3103 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3104 (void) strcpy(str, zone->zone_name); 3105 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3106 (mod_hash_val_t)(uintptr_t)zone); 3107 if (insert_label_hash) { 3108 (void) mod_hash_insert(zonehashbylabel, 3109 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3110 zone->zone_flags |= ZF_HASHED_LABEL; 3111 } 3112 3113 /* 3114 * Insert into active list. At this point there are no 'hold's 3115 * on the zone, but everyone else knows not to use it, so we can 3116 * continue to use it. zsched() will do a zone_hold() if the 3117 * newproc() is successful. 3118 */ 3119 list_insert_tail(&zone_active, zone); 3120 mutex_exit(&zonehash_lock); 3121 3122 zarg.zone = zone; 3123 zarg.nvlist = rctls; 3124 /* 3125 * The process, task, and project rctls are probably wrong; 3126 * we need an interface to get the default values of all rctls, 3127 * and initialize zsched appropriately. I'm not sure that that 3128 * makes much of a difference, though. 3129 */ 3130 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3131 /* 3132 * We need to undo all globally visible state. 3133 */ 3134 mutex_enter(&zonehash_lock); 3135 list_remove(&zone_active, zone); 3136 if (zone->zone_flags & ZF_HASHED_LABEL) { 3137 ASSERT(zone->zone_slabel != NULL); 3138 (void) mod_hash_destroy(zonehashbylabel, 3139 (mod_hash_key_t)zone->zone_slabel); 3140 } 3141 (void) mod_hash_destroy(zonehashbyname, 3142 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3143 (void) mod_hash_destroy(zonehashbyid, 3144 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3145 ASSERT(zonecount > 1); 3146 zonecount--; 3147 goto errout; 3148 } 3149 3150 /* 3151 * Zone creation can't fail from now on. 3152 */ 3153 3154 /* 3155 * Let the other lwps continue. 3156 */ 3157 mutex_enter(&pp->p_lock); 3158 if (curthread != pp->p_agenttp) 3159 continuelwps(pp); 3160 mutex_exit(&pp->p_lock); 3161 3162 /* 3163 * Wait for zsched to finish initializing the zone. 3164 */ 3165 zone_status_wait(zone, ZONE_IS_READY); 3166 /* 3167 * The zone is fully visible, so we can let mounts progress. 3168 */ 3169 resume_mounts(); 3170 if (rctls) 3171 nvlist_free(rctls); 3172 3173 return (zoneid); 3174 3175 errout: 3176 mutex_exit(&zonehash_lock); 3177 /* 3178 * Let the other lwps continue. 3179 */ 3180 mutex_enter(&pp->p_lock); 3181 if (curthread != pp->p_agenttp) 3182 continuelwps(pp); 3183 mutex_exit(&pp->p_lock); 3184 3185 resume_mounts(); 3186 if (rctls) 3187 nvlist_free(rctls); 3188 /* 3189 * There is currently one reference to the zone, a cred_ref from 3190 * zone_kcred. To free the zone, we call crfree, which will call 3191 * zone_cred_rele, which will call zone_free. 3192 */ 3193 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3194 ASSERT(zone->zone_kcred->cr_ref == 1); 3195 ASSERT(zone->zone_ref == 0); 3196 zkcr = zone->zone_kcred; 3197 zone->zone_kcred = NULL; 3198 crfree(zkcr); /* triggers call to zone_free */ 3199 return (zone_create_error(error, error2, extended_error)); 3200 } 3201 3202 /* 3203 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3204 * the heavy lifting. initname is the path to the program to launch 3205 * at the "top" of the zone; if this is NULL, we use the system default, 3206 * which is stored at zone_default_initname. 3207 */ 3208 static int 3209 zone_boot(zoneid_t zoneid) 3210 { 3211 int err; 3212 zone_t *zone; 3213 3214 if (secpolicy_zone_config(CRED()) != 0) 3215 return (set_errno(EPERM)); 3216 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3217 return (set_errno(EINVAL)); 3218 3219 mutex_enter(&zonehash_lock); 3220 /* 3221 * Look for zone under hash lock to prevent races with calls to 3222 * zone_shutdown, zone_destroy, etc. 3223 */ 3224 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3225 mutex_exit(&zonehash_lock); 3226 return (set_errno(EINVAL)); 3227 } 3228 3229 mutex_enter(&zone_status_lock); 3230 if (zone_status_get(zone) != ZONE_IS_READY) { 3231 mutex_exit(&zone_status_lock); 3232 mutex_exit(&zonehash_lock); 3233 return (set_errno(EINVAL)); 3234 } 3235 zone_status_set(zone, ZONE_IS_BOOTING); 3236 mutex_exit(&zone_status_lock); 3237 3238 zone_hold(zone); /* so we can use the zone_t later */ 3239 mutex_exit(&zonehash_lock); 3240 3241 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3242 zone_rele(zone); 3243 return (set_errno(EINTR)); 3244 } 3245 3246 /* 3247 * Boot (starting init) might have failed, in which case the zone 3248 * will go to the SHUTTING_DOWN state; an appropriate errno will 3249 * be placed in zone->zone_boot_err, and so we return that. 3250 */ 3251 err = zone->zone_boot_err; 3252 zone_rele(zone); 3253 return (err ? set_errno(err) : 0); 3254 } 3255 3256 /* 3257 * Kills all user processes in the zone, waiting for them all to exit 3258 * before returning. 3259 */ 3260 static int 3261 zone_empty(zone_t *zone) 3262 { 3263 int waitstatus; 3264 3265 /* 3266 * We need to drop zonehash_lock before killing all 3267 * processes, otherwise we'll deadlock with zone_find_* 3268 * which can be called from the exit path. 3269 */ 3270 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3271 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3272 ZONE_IS_EMPTY)) == -1) { 3273 killall(zone->zone_id); 3274 } 3275 /* 3276 * return EINTR if we were signaled 3277 */ 3278 if (waitstatus == 0) 3279 return (EINTR); 3280 return (0); 3281 } 3282 3283 /* 3284 * This function implements the policy for zone visibility. 3285 * 3286 * In standard Solaris, a non-global zone can only see itself. 3287 * 3288 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3289 * it dominates. For this test, the label of the global zone is treated as 3290 * admin_high so it is special-cased instead of being checked for dominance. 3291 * 3292 * Returns true if zone attributes are viewable, false otherwise. 3293 */ 3294 static boolean_t 3295 zone_list_access(zone_t *zone) 3296 { 3297 3298 if (curproc->p_zone == global_zone || 3299 curproc->p_zone == zone) { 3300 return (B_TRUE); 3301 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3302 bslabel_t *curproc_label; 3303 bslabel_t *zone_label; 3304 3305 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3306 zone_label = label2bslabel(zone->zone_slabel); 3307 3308 if (zone->zone_id != GLOBAL_ZONEID && 3309 bldominates(curproc_label, zone_label)) { 3310 return (B_TRUE); 3311 } else { 3312 return (B_FALSE); 3313 } 3314 } else { 3315 return (B_FALSE); 3316 } 3317 } 3318 3319 /* 3320 * Systemcall to start the zone's halt sequence. By the time this 3321 * function successfully returns, all user processes and kernel threads 3322 * executing in it will have exited, ZSD shutdown callbacks executed, 3323 * and the zone status set to ZONE_IS_DOWN. 3324 * 3325 * It is possible that the call will interrupt itself if the caller is the 3326 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3327 */ 3328 static int 3329 zone_shutdown(zoneid_t zoneid) 3330 { 3331 int error; 3332 zone_t *zone; 3333 zone_status_t status; 3334 3335 if (secpolicy_zone_config(CRED()) != 0) 3336 return (set_errno(EPERM)); 3337 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3338 return (set_errno(EINVAL)); 3339 3340 /* 3341 * Block mounts so that VFS_MOUNT() can get an accurate view of 3342 * the zone's status with regards to ZONE_IS_SHUTTING down. 3343 * 3344 * e.g. NFS can fail the mount if it determines that the zone 3345 * has already begun the shutdown sequence. 3346 */ 3347 if (block_mounts() == 0) 3348 return (set_errno(EINTR)); 3349 mutex_enter(&zonehash_lock); 3350 /* 3351 * Look for zone under hash lock to prevent races with other 3352 * calls to zone_shutdown and zone_destroy. 3353 */ 3354 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3355 mutex_exit(&zonehash_lock); 3356 resume_mounts(); 3357 return (set_errno(EINVAL)); 3358 } 3359 mutex_enter(&zone_status_lock); 3360 status = zone_status_get(zone); 3361 /* 3362 * Fail if the zone isn't fully initialized yet. 3363 */ 3364 if (status < ZONE_IS_READY) { 3365 mutex_exit(&zone_status_lock); 3366 mutex_exit(&zonehash_lock); 3367 resume_mounts(); 3368 return (set_errno(EINVAL)); 3369 } 3370 /* 3371 * If conditions required for zone_shutdown() to return have been met, 3372 * return success. 3373 */ 3374 if (status >= ZONE_IS_DOWN) { 3375 mutex_exit(&zone_status_lock); 3376 mutex_exit(&zonehash_lock); 3377 resume_mounts(); 3378 return (0); 3379 } 3380 /* 3381 * If zone_shutdown() hasn't been called before, go through the motions. 3382 * If it has, there's nothing to do but wait for the kernel threads to 3383 * drain. 3384 */ 3385 if (status < ZONE_IS_EMPTY) { 3386 uint_t ntasks; 3387 3388 mutex_enter(&zone->zone_lock); 3389 if ((ntasks = zone->zone_ntasks) != 1) { 3390 /* 3391 * There's still stuff running. 3392 */ 3393 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3394 } 3395 mutex_exit(&zone->zone_lock); 3396 if (ntasks == 1) { 3397 /* 3398 * The only way to create another task is through 3399 * zone_enter(), which will block until we drop 3400 * zonehash_lock. The zone is empty. 3401 */ 3402 if (zone->zone_kthreads == NULL) { 3403 /* 3404 * Skip ahead to ZONE_IS_DOWN 3405 */ 3406 zone_status_set(zone, ZONE_IS_DOWN); 3407 } else { 3408 zone_status_set(zone, ZONE_IS_EMPTY); 3409 } 3410 } 3411 } 3412 zone_hold(zone); /* so we can use the zone_t later */ 3413 mutex_exit(&zone_status_lock); 3414 mutex_exit(&zonehash_lock); 3415 resume_mounts(); 3416 3417 if (error = zone_empty(zone)) { 3418 zone_rele(zone); 3419 return (set_errno(error)); 3420 } 3421 /* 3422 * After the zone status goes to ZONE_IS_DOWN this zone will no 3423 * longer be notified of changes to the pools configuration, so 3424 * in order to not end up with a stale pool pointer, we point 3425 * ourselves at the default pool and remove all resource 3426 * visibility. This is especially important as the zone_t may 3427 * languish on the deathrow for a very long time waiting for 3428 * cred's to drain out. 3429 * 3430 * This rebinding of the zone can happen multiple times 3431 * (presumably due to interrupted or parallel systemcalls) 3432 * without any adverse effects. 3433 */ 3434 if (pool_lock_intr() != 0) { 3435 zone_rele(zone); 3436 return (set_errno(EINTR)); 3437 } 3438 if (pool_state == POOL_ENABLED) { 3439 mutex_enter(&cpu_lock); 3440 zone_pool_set(zone, pool_default); 3441 /* 3442 * The zone no longer needs to be able to see any cpus. 3443 */ 3444 zone_pset_set(zone, ZONE_PS_INVAL); 3445 mutex_exit(&cpu_lock); 3446 } 3447 pool_unlock(); 3448 3449 /* 3450 * ZSD shutdown callbacks can be executed multiple times, hence 3451 * it is safe to not be holding any locks across this call. 3452 */ 3453 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3454 3455 mutex_enter(&zone_status_lock); 3456 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3457 zone_status_set(zone, ZONE_IS_DOWN); 3458 mutex_exit(&zone_status_lock); 3459 3460 /* 3461 * Wait for kernel threads to drain. 3462 */ 3463 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3464 zone_rele(zone); 3465 return (set_errno(EINTR)); 3466 } 3467 zone_rele(zone); 3468 return (0); 3469 } 3470 3471 /* 3472 * Systemcall entry point to finalize the zone halt process. The caller 3473 * must have already successfully called zone_shutdown(). 3474 * 3475 * Upon successful completion, the zone will have been fully destroyed: 3476 * zsched will have exited, destructor callbacks executed, and the zone 3477 * removed from the list of active zones. 3478 */ 3479 static int 3480 zone_destroy(zoneid_t zoneid) 3481 { 3482 uint64_t uniqid; 3483 zone_t *zone; 3484 zone_status_t status; 3485 3486 if (secpolicy_zone_config(CRED()) != 0) 3487 return (set_errno(EPERM)); 3488 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3489 return (set_errno(EINVAL)); 3490 3491 mutex_enter(&zonehash_lock); 3492 /* 3493 * Look for zone under hash lock to prevent races with other 3494 * calls to zone_destroy. 3495 */ 3496 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3497 mutex_exit(&zonehash_lock); 3498 return (set_errno(EINVAL)); 3499 } 3500 3501 if (zone_mount_count(zone->zone_rootpath) != 0) { 3502 mutex_exit(&zonehash_lock); 3503 return (set_errno(EBUSY)); 3504 } 3505 mutex_enter(&zone_status_lock); 3506 status = zone_status_get(zone); 3507 if (status < ZONE_IS_DOWN) { 3508 mutex_exit(&zone_status_lock); 3509 mutex_exit(&zonehash_lock); 3510 return (set_errno(EBUSY)); 3511 } else if (status == ZONE_IS_DOWN) { 3512 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3513 } 3514 mutex_exit(&zone_status_lock); 3515 zone_hold(zone); 3516 mutex_exit(&zonehash_lock); 3517 3518 /* 3519 * wait for zsched to exit 3520 */ 3521 zone_status_wait(zone, ZONE_IS_DEAD); 3522 zone_zsd_callbacks(zone, ZSD_DESTROY); 3523 uniqid = zone->zone_uniqid; 3524 zone_rele(zone); 3525 zone = NULL; /* potentially free'd */ 3526 3527 mutex_enter(&zonehash_lock); 3528 for (; /* ever */; ) { 3529 boolean_t unref; 3530 3531 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3532 zone->zone_uniqid != uniqid) { 3533 /* 3534 * The zone has gone away. Necessary conditions 3535 * are met, so we return success. 3536 */ 3537 mutex_exit(&zonehash_lock); 3538 return (0); 3539 } 3540 mutex_enter(&zone->zone_lock); 3541 unref = ZONE_IS_UNREF(zone); 3542 mutex_exit(&zone->zone_lock); 3543 if (unref) { 3544 /* 3545 * There is only one reference to the zone -- that 3546 * added when the zone was added to the hashtables -- 3547 * and things will remain this way until we drop 3548 * zonehash_lock... we can go ahead and cleanup the 3549 * zone. 3550 */ 3551 break; 3552 } 3553 3554 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3555 /* Signaled */ 3556 mutex_exit(&zonehash_lock); 3557 return (set_errno(EINTR)); 3558 } 3559 3560 } 3561 3562 /* 3563 * It is now safe to let the zone be recreated; remove it from the 3564 * lists. The memory will not be freed until the last cred 3565 * reference goes away. 3566 */ 3567 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 3568 zonecount--; 3569 /* remove from active list and hash tables */ 3570 list_remove(&zone_active, zone); 3571 (void) mod_hash_destroy(zonehashbyname, 3572 (mod_hash_key_t)zone->zone_name); 3573 (void) mod_hash_destroy(zonehashbyid, 3574 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3575 if (zone->zone_flags & ZF_HASHED_LABEL) 3576 (void) mod_hash_destroy(zonehashbylabel, 3577 (mod_hash_key_t)zone->zone_slabel); 3578 mutex_exit(&zonehash_lock); 3579 3580 /* 3581 * Release the root vnode; we're not using it anymore. Nor should any 3582 * other thread that might access it exist. 3583 */ 3584 if (zone->zone_rootvp != NULL) { 3585 VN_RELE(zone->zone_rootvp); 3586 zone->zone_rootvp = NULL; 3587 } 3588 3589 /* add to deathrow list */ 3590 mutex_enter(&zone_deathrow_lock); 3591 list_insert_tail(&zone_deathrow, zone); 3592 mutex_exit(&zone_deathrow_lock); 3593 3594 /* 3595 * Drop last reference (which was added by zsched()), this will 3596 * free the zone unless there are outstanding cred references. 3597 */ 3598 zone_rele(zone); 3599 return (0); 3600 } 3601 3602 /* 3603 * Systemcall entry point for zone_getattr(2). 3604 */ 3605 static ssize_t 3606 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3607 { 3608 size_t size; 3609 int error = 0, err; 3610 zone_t *zone; 3611 char *zonepath; 3612 char *outstr; 3613 zone_status_t zone_status; 3614 pid_t initpid; 3615 boolean_t global = (curproc->p_zone == global_zone); 3616 boolean_t curzone = (curproc->p_zone->zone_id == zoneid); 3617 3618 mutex_enter(&zonehash_lock); 3619 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3620 mutex_exit(&zonehash_lock); 3621 return (set_errno(EINVAL)); 3622 } 3623 zone_status = zone_status_get(zone); 3624 if (zone_status < ZONE_IS_READY) { 3625 mutex_exit(&zonehash_lock); 3626 return (set_errno(EINVAL)); 3627 } 3628 zone_hold(zone); 3629 mutex_exit(&zonehash_lock); 3630 3631 /* 3632 * If not in the global zone, don't show information about other zones, 3633 * unless the system is labeled and the local zone's label dominates 3634 * the other zone. 3635 */ 3636 if (!zone_list_access(zone)) { 3637 zone_rele(zone); 3638 return (set_errno(EINVAL)); 3639 } 3640 3641 switch (attr) { 3642 case ZONE_ATTR_ROOT: 3643 if (global) { 3644 /* 3645 * Copy the path to trim the trailing "/" (except for 3646 * the global zone). 3647 */ 3648 if (zone != global_zone) 3649 size = zone->zone_rootpathlen - 1; 3650 else 3651 size = zone->zone_rootpathlen; 3652 zonepath = kmem_alloc(size, KM_SLEEP); 3653 bcopy(zone->zone_rootpath, zonepath, size); 3654 zonepath[size - 1] = '\0'; 3655 } else { 3656 if (curzone || !is_system_labeled()) { 3657 /* 3658 * Caller is not in the global zone. 3659 * if the query is on the current zone 3660 * or the system is not labeled, 3661 * just return faked-up path for current zone. 3662 */ 3663 zonepath = "/"; 3664 size = 2; 3665 } else { 3666 /* 3667 * Return related path for current zone. 3668 */ 3669 int prefix_len = strlen(zone_prefix); 3670 int zname_len = strlen(zone->zone_name); 3671 3672 size = prefix_len + zname_len + 1; 3673 zonepath = kmem_alloc(size, KM_SLEEP); 3674 bcopy(zone_prefix, zonepath, prefix_len); 3675 bcopy(zone->zone_name, zonepath + 3676 prefix_len, zname_len); 3677 zonepath[size - 1] = '\0'; 3678 } 3679 } 3680 if (bufsize > size) 3681 bufsize = size; 3682 if (buf != NULL) { 3683 err = copyoutstr(zonepath, buf, bufsize, NULL); 3684 if (err != 0 && err != ENAMETOOLONG) 3685 error = EFAULT; 3686 } 3687 if (global || (is_system_labeled() && !curzone)) 3688 kmem_free(zonepath, size); 3689 break; 3690 3691 case ZONE_ATTR_NAME: 3692 size = strlen(zone->zone_name) + 1; 3693 if (bufsize > size) 3694 bufsize = size; 3695 if (buf != NULL) { 3696 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 3697 if (err != 0 && err != ENAMETOOLONG) 3698 error = EFAULT; 3699 } 3700 break; 3701 3702 case ZONE_ATTR_STATUS: 3703 /* 3704 * Since we're not holding zonehash_lock, the zone status 3705 * may be anything; leave it up to userland to sort it out. 3706 */ 3707 size = sizeof (zone_status); 3708 if (bufsize > size) 3709 bufsize = size; 3710 zone_status = zone_status_get(zone); 3711 if (buf != NULL && 3712 copyout(&zone_status, buf, bufsize) != 0) 3713 error = EFAULT; 3714 break; 3715 case ZONE_ATTR_PRIVSET: 3716 size = sizeof (priv_set_t); 3717 if (bufsize > size) 3718 bufsize = size; 3719 if (buf != NULL && 3720 copyout(zone->zone_privset, buf, bufsize) != 0) 3721 error = EFAULT; 3722 break; 3723 case ZONE_ATTR_UNIQID: 3724 size = sizeof (zone->zone_uniqid); 3725 if (bufsize > size) 3726 bufsize = size; 3727 if (buf != NULL && 3728 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 3729 error = EFAULT; 3730 break; 3731 case ZONE_ATTR_POOLID: 3732 { 3733 pool_t *pool; 3734 poolid_t poolid; 3735 3736 if (pool_lock_intr() != 0) { 3737 error = EINTR; 3738 break; 3739 } 3740 pool = zone_pool_get(zone); 3741 poolid = pool->pool_id; 3742 pool_unlock(); 3743 size = sizeof (poolid); 3744 if (bufsize > size) 3745 bufsize = size; 3746 if (buf != NULL && copyout(&poolid, buf, size) != 0) 3747 error = EFAULT; 3748 } 3749 break; 3750 case ZONE_ATTR_SLBL: 3751 size = sizeof (bslabel_t); 3752 if (bufsize > size) 3753 bufsize = size; 3754 if (zone->zone_slabel == NULL) 3755 error = EINVAL; 3756 else if (buf != NULL && 3757 copyout(label2bslabel(zone->zone_slabel), buf, 3758 bufsize) != 0) 3759 error = EFAULT; 3760 break; 3761 case ZONE_ATTR_INITPID: 3762 size = sizeof (initpid); 3763 if (bufsize > size) 3764 bufsize = size; 3765 initpid = zone->zone_proc_initpid; 3766 if (initpid == -1) { 3767 error = ESRCH; 3768 break; 3769 } 3770 if (buf != NULL && 3771 copyout(&initpid, buf, bufsize) != 0) 3772 error = EFAULT; 3773 break; 3774 case ZONE_ATTR_INITNAME: 3775 size = strlen(zone->zone_initname) + 1; 3776 if (bufsize > size) 3777 bufsize = size; 3778 if (buf != NULL) { 3779 err = copyoutstr(zone->zone_initname, buf, bufsize, 3780 NULL); 3781 if (err != 0 && err != ENAMETOOLONG) 3782 error = EFAULT; 3783 } 3784 break; 3785 case ZONE_ATTR_BOOTARGS: 3786 if (zone->zone_bootargs == NULL) 3787 outstr = ""; 3788 else 3789 outstr = zone->zone_bootargs; 3790 size = strlen(outstr) + 1; 3791 if (bufsize > size) 3792 bufsize = size; 3793 if (buf != NULL) { 3794 err = copyoutstr(outstr, buf, bufsize, NULL); 3795 if (err != 0 && err != ENAMETOOLONG) 3796 error = EFAULT; 3797 } 3798 break; 3799 default: 3800 error = EINVAL; 3801 } 3802 zone_rele(zone); 3803 3804 if (error) 3805 return (set_errno(error)); 3806 return ((ssize_t)size); 3807 } 3808 3809 /* 3810 * Systemcall entry point for zone_setattr(2). 3811 */ 3812 /*ARGSUSED*/ 3813 static int 3814 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3815 { 3816 zone_t *zone; 3817 zone_status_t zone_status; 3818 int err; 3819 3820 if (secpolicy_zone_config(CRED()) != 0) 3821 return (set_errno(EPERM)); 3822 3823 /* 3824 * At present, attributes can only be set on non-running, 3825 * non-global zones. 3826 */ 3827 if (zoneid == GLOBAL_ZONEID) { 3828 return (set_errno(EINVAL)); 3829 } 3830 3831 mutex_enter(&zonehash_lock); 3832 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3833 mutex_exit(&zonehash_lock); 3834 return (set_errno(EINVAL)); 3835 } 3836 zone_hold(zone); 3837 mutex_exit(&zonehash_lock); 3838 3839 zone_status = zone_status_get(zone); 3840 if (zone_status > ZONE_IS_READY) 3841 goto done; 3842 3843 switch (attr) { 3844 case ZONE_ATTR_INITNAME: 3845 err = zone_set_initname(zone, (const char *)buf); 3846 break; 3847 case ZONE_ATTR_BOOTARGS: 3848 err = zone_set_bootargs(zone, (const char *)buf); 3849 break; 3850 default: 3851 err = EINVAL; 3852 } 3853 3854 done: 3855 zone_rele(zone); 3856 return (err != 0 ? set_errno(err) : 0); 3857 } 3858 3859 /* 3860 * Return zero if the process has at least one vnode mapped in to its 3861 * address space which shouldn't be allowed to change zones. 3862 */ 3863 static int 3864 as_can_change_zones(void) 3865 { 3866 proc_t *pp = curproc; 3867 struct seg *seg; 3868 struct as *as = pp->p_as; 3869 vnode_t *vp; 3870 int allow = 1; 3871 3872 ASSERT(pp->p_as != &kas); 3873 AS_LOCK_ENTER(&as, &as->a_lock, RW_READER); 3874 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 3875 /* 3876 * if we can't get a backing vnode for this segment then skip 3877 * it. 3878 */ 3879 vp = NULL; 3880 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 3881 continue; 3882 if (!vn_can_change_zones(vp)) { /* bail on first match */ 3883 allow = 0; 3884 break; 3885 } 3886 } 3887 AS_LOCK_EXIT(&as, &as->a_lock); 3888 return (allow); 3889 } 3890 3891 /* 3892 * Systemcall entry point for zone_enter(). 3893 * 3894 * The current process is injected into said zone. In the process 3895 * it will change its project membership, privileges, rootdir/cwd, 3896 * zone-wide rctls, and pool association to match those of the zone. 3897 * 3898 * The first zone_enter() called while the zone is in the ZONE_IS_READY 3899 * state will transition it to ZONE_IS_RUNNING. Processes may only 3900 * enter a zone that is "ready" or "running". 3901 */ 3902 static int 3903 zone_enter(zoneid_t zoneid) 3904 { 3905 zone_t *zone; 3906 vnode_t *vp; 3907 proc_t *pp = curproc; 3908 contract_t *ct; 3909 cont_process_t *ctp; 3910 task_t *tk, *oldtk; 3911 kproject_t *zone_proj0; 3912 cred_t *cr, *newcr; 3913 pool_t *oldpool, *newpool; 3914 sess_t *sp; 3915 uid_t uid; 3916 zone_status_t status; 3917 int err = 0; 3918 rctl_entity_p_t e; 3919 3920 if (secpolicy_zone_config(CRED()) != 0) 3921 return (set_errno(EPERM)); 3922 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3923 return (set_errno(EINVAL)); 3924 3925 /* 3926 * Stop all lwps so we don't need to hold a lock to look at 3927 * curproc->p_zone. This needs to happen before we grab any 3928 * locks to avoid deadlock (another lwp in the process could 3929 * be waiting for the held lock). 3930 */ 3931 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 3932 return (set_errno(EINTR)); 3933 3934 /* 3935 * Make sure we're not changing zones with files open or mapped in 3936 * to our address space which shouldn't be changing zones. 3937 */ 3938 if (!files_can_change_zones()) { 3939 err = EBADF; 3940 goto out; 3941 } 3942 if (!as_can_change_zones()) { 3943 err = EFAULT; 3944 goto out; 3945 } 3946 3947 mutex_enter(&zonehash_lock); 3948 if (pp->p_zone != global_zone) { 3949 mutex_exit(&zonehash_lock); 3950 err = EINVAL; 3951 goto out; 3952 } 3953 3954 zone = zone_find_all_by_id(zoneid); 3955 if (zone == NULL) { 3956 mutex_exit(&zonehash_lock); 3957 err = EINVAL; 3958 goto out; 3959 } 3960 3961 /* 3962 * To prevent processes in a zone from holding contracts on 3963 * extrazonal resources, and to avoid process contract 3964 * memberships which span zones, contract holders and processes 3965 * which aren't the sole members of their encapsulating process 3966 * contracts are not allowed to zone_enter. 3967 */ 3968 ctp = pp->p_ct_process; 3969 ct = &ctp->conp_contract; 3970 mutex_enter(&ct->ct_lock); 3971 mutex_enter(&pp->p_lock); 3972 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 3973 mutex_exit(&pp->p_lock); 3974 mutex_exit(&ct->ct_lock); 3975 mutex_exit(&zonehash_lock); 3976 pool_unlock(); 3977 err = EINVAL; 3978 goto out; 3979 } 3980 3981 /* 3982 * Moreover, we don't allow processes whose encapsulating 3983 * process contracts have inherited extrazonal contracts. 3984 * While it would be easier to eliminate all process contracts 3985 * with inherited contracts, we need to be able to give a 3986 * restarted init (or other zone-penetrating process) its 3987 * predecessor's contracts. 3988 */ 3989 if (ctp->conp_ninherited != 0) { 3990 contract_t *next; 3991 for (next = list_head(&ctp->conp_inherited); next; 3992 next = list_next(&ctp->conp_inherited, next)) { 3993 if (contract_getzuniqid(next) != zone->zone_uniqid) { 3994 mutex_exit(&pp->p_lock); 3995 mutex_exit(&ct->ct_lock); 3996 mutex_exit(&zonehash_lock); 3997 pool_unlock(); 3998 err = EINVAL; 3999 goto out; 4000 } 4001 } 4002 } 4003 mutex_exit(&pp->p_lock); 4004 mutex_exit(&ct->ct_lock); 4005 4006 status = zone_status_get(zone); 4007 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4008 /* 4009 * Can't join 4010 */ 4011 mutex_exit(&zonehash_lock); 4012 err = EINVAL; 4013 goto out; 4014 } 4015 4016 /* 4017 * Make sure new priv set is within the permitted set for caller 4018 */ 4019 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 4020 mutex_exit(&zonehash_lock); 4021 err = EPERM; 4022 goto out; 4023 } 4024 /* 4025 * We want to momentarily drop zonehash_lock while we optimistically 4026 * bind curproc to the pool it should be running in. This is safe 4027 * since the zone can't disappear (we have a hold on it). 4028 */ 4029 zone_hold(zone); 4030 mutex_exit(&zonehash_lock); 4031 4032 /* 4033 * Grab pool_lock to keep the pools configuration from changing 4034 * and to stop ourselves from getting rebound to another pool 4035 * until we join the zone. 4036 */ 4037 if (pool_lock_intr() != 0) { 4038 zone_rele(zone); 4039 err = EINTR; 4040 goto out; 4041 } 4042 ASSERT(secpolicy_pool(CRED()) == 0); 4043 /* 4044 * Bind ourselves to the pool currently associated with the zone. 4045 */ 4046 oldpool = curproc->p_pool; 4047 newpool = zone_pool_get(zone); 4048 if (pool_state == POOL_ENABLED && newpool != oldpool && 4049 (err = pool_do_bind(newpool, P_PID, P_MYID, 4050 POOL_BIND_ALL)) != 0) { 4051 pool_unlock(); 4052 zone_rele(zone); 4053 goto out; 4054 } 4055 4056 /* 4057 * Grab cpu_lock now; we'll need it later when we call 4058 * task_join(). 4059 */ 4060 mutex_enter(&cpu_lock); 4061 mutex_enter(&zonehash_lock); 4062 /* 4063 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 4064 */ 4065 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 4066 /* 4067 * Can't join anymore. 4068 */ 4069 mutex_exit(&zonehash_lock); 4070 mutex_exit(&cpu_lock); 4071 if (pool_state == POOL_ENABLED && 4072 newpool != oldpool) 4073 (void) pool_do_bind(oldpool, P_PID, P_MYID, 4074 POOL_BIND_ALL); 4075 pool_unlock(); 4076 zone_rele(zone); 4077 err = EINVAL; 4078 goto out; 4079 } 4080 4081 mutex_enter(&pp->p_lock); 4082 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 4083 /* verify that we do not exceed and task or lwp limits */ 4084 mutex_enter(&zone->zone_nlwps_lock); 4085 /* add new lwps to zone and zone's proj0 */ 4086 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 4087 zone->zone_nlwps += pp->p_lwpcnt; 4088 /* add 1 task to zone's proj0 */ 4089 zone_proj0->kpj_ntasks += 1; 4090 mutex_exit(&pp->p_lock); 4091 mutex_exit(&zone->zone_nlwps_lock); 4092 4093 /* remove lwps from proc's old zone and old project */ 4094 mutex_enter(&pp->p_zone->zone_nlwps_lock); 4095 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 4096 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 4097 mutex_exit(&pp->p_zone->zone_nlwps_lock); 4098 4099 /* 4100 * Joining the zone cannot fail from now on. 4101 * 4102 * This means that a lot of the following code can be commonized and 4103 * shared with zsched(). 4104 */ 4105 4106 /* 4107 * Reset the encapsulating process contract's zone. 4108 */ 4109 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 4110 contract_setzuniqid(ct, zone->zone_uniqid); 4111 4112 /* 4113 * Create a new task and associate the process with the project keyed 4114 * by (projid,zoneid). 4115 * 4116 * We might as well be in project 0; the global zone's projid doesn't 4117 * make much sense in a zone anyhow. 4118 * 4119 * This also increments zone_ntasks, and returns with p_lock held. 4120 */ 4121 tk = task_create(0, zone); 4122 oldtk = task_join(tk, 0); 4123 mutex_exit(&cpu_lock); 4124 4125 pp->p_flag |= SZONETOP; 4126 pp->p_zone = zone; 4127 4128 /* 4129 * call RCTLOP_SET functions on this proc 4130 */ 4131 e.rcep_p.zone = zone; 4132 e.rcep_t = RCENTITY_ZONE; 4133 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 4134 RCD_CALLBACK); 4135 mutex_exit(&pp->p_lock); 4136 4137 /* 4138 * We don't need to hold any of zsched's locks here; not only do we know 4139 * the process and zone aren't going away, we know its session isn't 4140 * changing either. 4141 * 4142 * By joining zsched's session here, we mimic the behavior in the 4143 * global zone of init's sid being the pid of sched. We extend this 4144 * to all zlogin-like zone_enter()'ing processes as well. 4145 */ 4146 mutex_enter(&pidlock); 4147 sp = zone->zone_zsched->p_sessp; 4148 SESS_HOLD(sp); 4149 mutex_enter(&pp->p_lock); 4150 pgexit(pp); 4151 SESS_RELE(pp->p_sessp); 4152 pp->p_sessp = sp; 4153 pgjoin(pp, zone->zone_zsched->p_pidp); 4154 mutex_exit(&pp->p_lock); 4155 mutex_exit(&pidlock); 4156 4157 mutex_exit(&zonehash_lock); 4158 /* 4159 * We're firmly in the zone; let pools progress. 4160 */ 4161 pool_unlock(); 4162 task_rele(oldtk); 4163 /* 4164 * We don't need to retain a hold on the zone since we already 4165 * incremented zone_ntasks, so the zone isn't going anywhere. 4166 */ 4167 zone_rele(zone); 4168 4169 /* 4170 * Chroot 4171 */ 4172 vp = zone->zone_rootvp; 4173 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 4174 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 4175 4176 /* 4177 * Change process credentials 4178 */ 4179 newcr = cralloc(); 4180 mutex_enter(&pp->p_crlock); 4181 cr = pp->p_cred; 4182 crcopy_to(cr, newcr); 4183 crsetzone(newcr, zone); 4184 pp->p_cred = newcr; 4185 4186 /* 4187 * Restrict all process privilege sets to zone limit 4188 */ 4189 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 4190 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 4191 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 4192 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 4193 mutex_exit(&pp->p_crlock); 4194 crset(pp, newcr); 4195 4196 /* 4197 * Adjust upcount to reflect zone entry. 4198 */ 4199 uid = crgetruid(newcr); 4200 mutex_enter(&pidlock); 4201 upcount_dec(uid, GLOBAL_ZONEID); 4202 upcount_inc(uid, zoneid); 4203 mutex_exit(&pidlock); 4204 4205 /* 4206 * Set up core file path and content. 4207 */ 4208 set_core_defaults(); 4209 4210 out: 4211 /* 4212 * Let the other lwps continue. 4213 */ 4214 mutex_enter(&pp->p_lock); 4215 if (curthread != pp->p_agenttp) 4216 continuelwps(pp); 4217 mutex_exit(&pp->p_lock); 4218 4219 return (err != 0 ? set_errno(err) : 0); 4220 } 4221 4222 /* 4223 * Systemcall entry point for zone_list(2). 4224 * 4225 * Processes running in a (non-global) zone only see themselves. 4226 * On labeled systems, they see all zones whose label they dominate. 4227 */ 4228 static int 4229 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4230 { 4231 zoneid_t *zoneids; 4232 zone_t *zone, *myzone; 4233 uint_t user_nzones, real_nzones; 4234 uint_t domi_nzones; 4235 int error; 4236 4237 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4238 return (set_errno(EFAULT)); 4239 4240 myzone = curproc->p_zone; 4241 if (myzone != global_zone) { 4242 bslabel_t *mybslab; 4243 4244 if (!is_system_labeled()) { 4245 /* just return current zone */ 4246 real_nzones = domi_nzones = 1; 4247 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4248 zoneids[0] = myzone->zone_id; 4249 } else { 4250 /* return all zones that are dominated */ 4251 mutex_enter(&zonehash_lock); 4252 real_nzones = zonecount; 4253 domi_nzones = 0; 4254 if (real_nzones > 0) { 4255 zoneids = kmem_alloc(real_nzones * 4256 sizeof (zoneid_t), KM_SLEEP); 4257 mybslab = label2bslabel(myzone->zone_slabel); 4258 for (zone = list_head(&zone_active); 4259 zone != NULL; 4260 zone = list_next(&zone_active, zone)) { 4261 if (zone->zone_id == GLOBAL_ZONEID) 4262 continue; 4263 if (zone != myzone && 4264 (zone->zone_flags & ZF_IS_SCRATCH)) 4265 continue; 4266 /* 4267 * Note that a label always dominates 4268 * itself, so myzone is always included 4269 * in the list. 4270 */ 4271 if (bldominates(mybslab, 4272 label2bslabel(zone->zone_slabel))) { 4273 zoneids[domi_nzones++] = 4274 zone->zone_id; 4275 } 4276 } 4277 } 4278 mutex_exit(&zonehash_lock); 4279 } 4280 } else { 4281 mutex_enter(&zonehash_lock); 4282 real_nzones = zonecount; 4283 domi_nzones = 0; 4284 if (real_nzones > 0) { 4285 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4286 KM_SLEEP); 4287 for (zone = list_head(&zone_active); zone != NULL; 4288 zone = list_next(&zone_active, zone)) 4289 zoneids[domi_nzones++] = zone->zone_id; 4290 ASSERT(domi_nzones == real_nzones); 4291 } 4292 mutex_exit(&zonehash_lock); 4293 } 4294 4295 /* 4296 * If user has allocated space for fewer entries than we found, then 4297 * return only up to his limit. Either way, tell him exactly how many 4298 * we found. 4299 */ 4300 if (domi_nzones < user_nzones) 4301 user_nzones = domi_nzones; 4302 error = 0; 4303 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4304 error = EFAULT; 4305 } else if (zoneidlist != NULL && user_nzones != 0) { 4306 if (copyout(zoneids, zoneidlist, 4307 user_nzones * sizeof (zoneid_t)) != 0) 4308 error = EFAULT; 4309 } 4310 4311 if (real_nzones > 0) 4312 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4313 4314 if (error != 0) 4315 return (set_errno(error)); 4316 else 4317 return (0); 4318 } 4319 4320 /* 4321 * Systemcall entry point for zone_lookup(2). 4322 * 4323 * Non-global zones are only able to see themselves and (on labeled systems) 4324 * the zones they dominate. 4325 */ 4326 static zoneid_t 4327 zone_lookup(const char *zone_name) 4328 { 4329 char *kname; 4330 zone_t *zone; 4331 zoneid_t zoneid; 4332 int err; 4333 4334 if (zone_name == NULL) { 4335 /* return caller's zone id */ 4336 return (getzoneid()); 4337 } 4338 4339 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4340 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4341 kmem_free(kname, ZONENAME_MAX); 4342 return (set_errno(err)); 4343 } 4344 4345 mutex_enter(&zonehash_lock); 4346 zone = zone_find_all_by_name(kname); 4347 kmem_free(kname, ZONENAME_MAX); 4348 /* 4349 * In a non-global zone, can only lookup global and own name. 4350 * In Trusted Extensions zone label dominance rules apply. 4351 */ 4352 if (zone == NULL || 4353 zone_status_get(zone) < ZONE_IS_READY || 4354 !zone_list_access(zone)) { 4355 mutex_exit(&zonehash_lock); 4356 return (set_errno(EINVAL)); 4357 } else { 4358 zoneid = zone->zone_id; 4359 mutex_exit(&zonehash_lock); 4360 return (zoneid); 4361 } 4362 } 4363 4364 static int 4365 zone_version(int *version_arg) 4366 { 4367 int version = ZONE_SYSCALL_API_VERSION; 4368 4369 if (copyout(&version, version_arg, sizeof (int)) != 0) 4370 return (set_errno(EFAULT)); 4371 return (0); 4372 } 4373 4374 /* ARGSUSED */ 4375 long 4376 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4377 { 4378 zone_def zs; 4379 4380 switch (cmd) { 4381 case ZONE_CREATE: 4382 if (get_udatamodel() == DATAMODEL_NATIVE) { 4383 if (copyin(arg1, &zs, sizeof (zone_def))) { 4384 return (set_errno(EFAULT)); 4385 } 4386 } else { 4387 #ifdef _SYSCALL32_IMPL 4388 zone_def32 zs32; 4389 4390 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 4391 return (set_errno(EFAULT)); 4392 } 4393 zs.zone_name = 4394 (const char *)(unsigned long)zs32.zone_name; 4395 zs.zone_root = 4396 (const char *)(unsigned long)zs32.zone_root; 4397 zs.zone_privs = 4398 (const struct priv_set *) 4399 (unsigned long)zs32.zone_privs; 4400 zs.zone_privssz = zs32.zone_privssz; 4401 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 4402 zs.rctlbufsz = zs32.rctlbufsz; 4403 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 4404 zs.zfsbufsz = zs32.zfsbufsz; 4405 zs.extended_error = 4406 (int *)(unsigned long)zs32.extended_error; 4407 zs.match = zs32.match; 4408 zs.doi = zs32.doi; 4409 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 4410 #else 4411 panic("get_udatamodel() returned bogus result\n"); 4412 #endif 4413 } 4414 4415 return (zone_create(zs.zone_name, zs.zone_root, 4416 zs.zone_privs, zs.zone_privssz, 4417 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 4418 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 4419 zs.extended_error, zs.match, zs.doi, 4420 zs.label)); 4421 case ZONE_BOOT: 4422 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 4423 case ZONE_DESTROY: 4424 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 4425 case ZONE_GETATTR: 4426 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 4427 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4428 case ZONE_SETATTR: 4429 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 4430 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4431 case ZONE_ENTER: 4432 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 4433 case ZONE_LIST: 4434 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 4435 case ZONE_SHUTDOWN: 4436 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 4437 case ZONE_LOOKUP: 4438 return (zone_lookup((const char *)arg1)); 4439 case ZONE_VERSION: 4440 return (zone_version((int *)arg1)); 4441 default: 4442 return (set_errno(EINVAL)); 4443 } 4444 } 4445 4446 struct zarg { 4447 zone_t *zone; 4448 zone_cmd_arg_t arg; 4449 }; 4450 4451 static int 4452 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 4453 { 4454 char *buf; 4455 size_t buflen; 4456 int error; 4457 4458 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 4459 buf = kmem_alloc(buflen, KM_SLEEP); 4460 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 4461 error = door_ki_open(buf, doorp); 4462 kmem_free(buf, buflen); 4463 return (error); 4464 } 4465 4466 static void 4467 zone_release_door(door_handle_t *doorp) 4468 { 4469 door_ki_rele(*doorp); 4470 *doorp = NULL; 4471 } 4472 4473 static void 4474 zone_ki_call_zoneadmd(struct zarg *zargp) 4475 { 4476 door_handle_t door = NULL; 4477 door_arg_t darg, save_arg; 4478 char *zone_name; 4479 size_t zone_namelen; 4480 zoneid_t zoneid; 4481 zone_t *zone; 4482 zone_cmd_arg_t arg; 4483 uint64_t uniqid; 4484 size_t size; 4485 int error; 4486 int retry; 4487 4488 zone = zargp->zone; 4489 arg = zargp->arg; 4490 kmem_free(zargp, sizeof (*zargp)); 4491 4492 zone_namelen = strlen(zone->zone_name) + 1; 4493 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 4494 bcopy(zone->zone_name, zone_name, zone_namelen); 4495 zoneid = zone->zone_id; 4496 uniqid = zone->zone_uniqid; 4497 /* 4498 * zoneadmd may be down, but at least we can empty out the zone. 4499 * We can ignore the return value of zone_empty() since we're called 4500 * from a kernel thread and know we won't be delivered any signals. 4501 */ 4502 ASSERT(curproc == &p0); 4503 (void) zone_empty(zone); 4504 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 4505 zone_rele(zone); 4506 4507 size = sizeof (arg); 4508 darg.rbuf = (char *)&arg; 4509 darg.data_ptr = (char *)&arg; 4510 darg.rsize = size; 4511 darg.data_size = size; 4512 darg.desc_ptr = NULL; 4513 darg.desc_num = 0; 4514 4515 save_arg = darg; 4516 /* 4517 * Since we're not holding a reference to the zone, any number of 4518 * things can go wrong, including the zone disappearing before we get a 4519 * chance to talk to zoneadmd. 4520 */ 4521 for (retry = 0; /* forever */; retry++) { 4522 if (door == NULL && 4523 (error = zone_lookup_door(zone_name, &door)) != 0) { 4524 goto next; 4525 } 4526 ASSERT(door != NULL); 4527 4528 if ((error = door_ki_upcall(door, &darg)) == 0) { 4529 break; 4530 } 4531 switch (error) { 4532 case EINTR: 4533 /* FALLTHROUGH */ 4534 case EAGAIN: /* process may be forking */ 4535 /* 4536 * Back off for a bit 4537 */ 4538 break; 4539 case EBADF: 4540 zone_release_door(&door); 4541 if (zone_lookup_door(zone_name, &door) != 0) { 4542 /* 4543 * zoneadmd may be dead, but it may come back to 4544 * life later. 4545 */ 4546 break; 4547 } 4548 break; 4549 default: 4550 cmn_err(CE_WARN, 4551 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 4552 error); 4553 goto out; 4554 } 4555 next: 4556 /* 4557 * If this isn't the same zone_t that we originally had in mind, 4558 * then this is the same as if two kadmin requests come in at 4559 * the same time: the first one wins. This means we lose, so we 4560 * bail. 4561 */ 4562 if ((zone = zone_find_by_id(zoneid)) == NULL) { 4563 /* 4564 * Problem is solved. 4565 */ 4566 break; 4567 } 4568 if (zone->zone_uniqid != uniqid) { 4569 /* 4570 * zoneid recycled 4571 */ 4572 zone_rele(zone); 4573 break; 4574 } 4575 /* 4576 * We could zone_status_timedwait(), but there doesn't seem to 4577 * be much point in doing that (plus, it would mean that 4578 * zone_free() isn't called until this thread exits). 4579 */ 4580 zone_rele(zone); 4581 delay(hz); 4582 darg = save_arg; 4583 } 4584 out: 4585 if (door != NULL) { 4586 zone_release_door(&door); 4587 } 4588 kmem_free(zone_name, zone_namelen); 4589 thread_exit(); 4590 } 4591 4592 /* 4593 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 4594 * kadmin(). The caller is a process in the zone. 4595 * 4596 * In order to shutdown the zone, we will hand off control to zoneadmd 4597 * (running in the global zone) via a door. We do a half-hearted job at 4598 * killing all processes in the zone, create a kernel thread to contact 4599 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 4600 * a form of generation number used to let zoneadmd (as well as 4601 * zone_destroy()) know exactly which zone they're re talking about. 4602 */ 4603 int 4604 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 4605 { 4606 struct zarg *zargp; 4607 zone_cmd_t zcmd; 4608 zone_t *zone; 4609 4610 zone = curproc->p_zone; 4611 ASSERT(getzoneid() != GLOBAL_ZONEID); 4612 4613 switch (cmd) { 4614 case A_SHUTDOWN: 4615 switch (fcn) { 4616 case AD_HALT: 4617 case AD_POWEROFF: 4618 zcmd = Z_HALT; 4619 break; 4620 case AD_BOOT: 4621 zcmd = Z_REBOOT; 4622 break; 4623 case AD_IBOOT: 4624 case AD_SBOOT: 4625 case AD_SIBOOT: 4626 case AD_NOSYNC: 4627 return (ENOTSUP); 4628 default: 4629 return (EINVAL); 4630 } 4631 break; 4632 case A_REBOOT: 4633 zcmd = Z_REBOOT; 4634 break; 4635 case A_FTRACE: 4636 case A_REMOUNT: 4637 case A_FREEZE: 4638 case A_DUMP: 4639 return (ENOTSUP); 4640 default: 4641 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 4642 return (EINVAL); 4643 } 4644 4645 if (secpolicy_zone_admin(credp, B_FALSE)) 4646 return (EPERM); 4647 mutex_enter(&zone_status_lock); 4648 4649 /* 4650 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 4651 * is in the zone. 4652 */ 4653 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 4654 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 4655 /* 4656 * This zone is already on its way down. 4657 */ 4658 mutex_exit(&zone_status_lock); 4659 return (0); 4660 } 4661 /* 4662 * Prevent future zone_enter()s 4663 */ 4664 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4665 mutex_exit(&zone_status_lock); 4666 4667 /* 4668 * Kill everyone now and call zoneadmd later. 4669 * zone_ki_call_zoneadmd() will do a more thorough job of this 4670 * later. 4671 */ 4672 killall(zone->zone_id); 4673 /* 4674 * Now, create the thread to contact zoneadmd and do the rest of the 4675 * work. This thread can't be created in our zone otherwise 4676 * zone_destroy() would deadlock. 4677 */ 4678 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 4679 zargp->arg.cmd = zcmd; 4680 zargp->arg.uniqid = zone->zone_uniqid; 4681 zargp->zone = zone; 4682 (void) strcpy(zargp->arg.locale, "C"); 4683 /* mdep was already copied in for us by uadmin */ 4684 if (mdep != NULL) 4685 (void) strlcpy(zargp->arg.bootbuf, mdep, 4686 sizeof (zargp->arg.bootbuf)); 4687 zone_hold(zone); 4688 4689 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 4690 TS_RUN, minclsyspri); 4691 exit(CLD_EXITED, 0); 4692 4693 return (EINVAL); 4694 } 4695 4696 /* 4697 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 4698 * status to ZONE_IS_SHUTTING_DOWN. 4699 */ 4700 void 4701 zone_shutdown_global(void) 4702 { 4703 ASSERT(curproc->p_zone == global_zone); 4704 4705 mutex_enter(&zone_status_lock); 4706 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 4707 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 4708 mutex_exit(&zone_status_lock); 4709 } 4710 4711 /* 4712 * Returns true if the named dataset is visible in the current zone. 4713 * The 'write' parameter is set to 1 if the dataset is also writable. 4714 */ 4715 int 4716 zone_dataset_visible(const char *dataset, int *write) 4717 { 4718 zone_dataset_t *zd; 4719 size_t len; 4720 zone_t *zone = curproc->p_zone; 4721 4722 if (dataset[0] == '\0') 4723 return (0); 4724 4725 /* 4726 * Walk the list once, looking for datasets which match exactly, or 4727 * specify a dataset underneath an exported dataset. If found, return 4728 * true and note that it is writable. 4729 */ 4730 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4731 zd = list_next(&zone->zone_datasets, zd)) { 4732 4733 len = strlen(zd->zd_dataset); 4734 if (strlen(dataset) >= len && 4735 bcmp(dataset, zd->zd_dataset, len) == 0 && 4736 (dataset[len] == '\0' || dataset[len] == '/' || 4737 dataset[len] == '@')) { 4738 if (write) 4739 *write = 1; 4740 return (1); 4741 } 4742 } 4743 4744 /* 4745 * Walk the list a second time, searching for datasets which are parents 4746 * of exported datasets. These should be visible, but read-only. 4747 * 4748 * Note that we also have to support forms such as 'pool/dataset/', with 4749 * a trailing slash. 4750 */ 4751 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4752 zd = list_next(&zone->zone_datasets, zd)) { 4753 4754 len = strlen(dataset); 4755 if (dataset[len - 1] == '/') 4756 len--; /* Ignore trailing slash */ 4757 if (len < strlen(zd->zd_dataset) && 4758 bcmp(dataset, zd->zd_dataset, len) == 0 && 4759 zd->zd_dataset[len] == '/') { 4760 if (write) 4761 *write = 0; 4762 return (1); 4763 } 4764 } 4765 4766 return (0); 4767 } 4768 4769 /* 4770 * zone_find_by_any_path() - 4771 * 4772 * kernel-private routine similar to zone_find_by_path(), but which 4773 * effectively compares against zone paths rather than zonerootpath 4774 * (i.e., the last component of zonerootpaths, which should be "root/", 4775 * are not compared.) This is done in order to accurately identify all 4776 * paths, whether zone-visible or not, including those which are parallel 4777 * to /root/, such as /dev/, /home/, etc... 4778 * 4779 * If the specified path does not fall under any zone path then global 4780 * zone is returned. 4781 * 4782 * The treat_abs parameter indicates whether the path should be treated as 4783 * an absolute path although it does not begin with "/". (This supports 4784 * nfs mount syntax such as host:any/path.) 4785 * 4786 * The caller is responsible for zone_rele of the returned zone. 4787 */ 4788 zone_t * 4789 zone_find_by_any_path(const char *path, boolean_t treat_abs) 4790 { 4791 zone_t *zone; 4792 int path_offset = 0; 4793 4794 if (path == NULL) { 4795 zone_hold(global_zone); 4796 return (global_zone); 4797 } 4798 4799 if (*path != '/') { 4800 ASSERT(treat_abs); 4801 path_offset = 1; 4802 } 4803 4804 mutex_enter(&zonehash_lock); 4805 for (zone = list_head(&zone_active); zone != NULL; 4806 zone = list_next(&zone_active, zone)) { 4807 char *c; 4808 size_t pathlen; 4809 char *rootpath_start; 4810 4811 if (zone == global_zone) /* skip global zone */ 4812 continue; 4813 4814 /* scan backwards to find start of last component */ 4815 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 4816 do { 4817 c--; 4818 } while (*c != '/'); 4819 4820 pathlen = c - zone->zone_rootpath + 1 - path_offset; 4821 rootpath_start = (zone->zone_rootpath + path_offset); 4822 if (strncmp(path, rootpath_start, pathlen) == 0) 4823 break; 4824 } 4825 if (zone == NULL) 4826 zone = global_zone; 4827 zone_hold(zone); 4828 mutex_exit(&zonehash_lock); 4829 return (zone); 4830 } 4831