1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 65 * ready. The zone is made visible after the ZSD constructor callbacks are 66 * executed. A zone remains in this state until it transitions into 67 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 68 * 69 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 70 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 71 * state. 72 * 73 * ZONE_IS_RUNNING: The zone is open for business: zsched has 74 * successfully started init. A zone remains in this state until 75 * zone_shutdown() is called. 76 * 77 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 78 * killing all processes running in the zone. The zone remains 79 * in this state until there are no more user processes running in the zone. 80 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 81 * Since zone_shutdown() is restartable, it may be called successfully 82 * multiple times for the same zone_t. Setting of the zone's state to 83 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 84 * the zone's status without worrying about it being a moving target. 85 * 86 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 87 * are no more user processes in the zone. The zone remains in this 88 * state until there are no more kernel threads associated with the 89 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 90 * fail. 91 * 92 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 93 * have exited. zone_shutdown() returns. Henceforth it is not possible to 94 * join the zone or create kernel threads therein. 95 * 96 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 97 * remains in this state until zsched exits. Calls to zone_find_by_*() 98 * return NULL from now on. 99 * 100 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 101 * processes or threads doing work on behalf of the zone. The zone is 102 * removed from the list of active zones. zone_destroy() returns, and 103 * the zone can be recreated. 104 * 105 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 106 * callbacks are executed, and all memory associated with the zone is 107 * freed. 108 * 109 * Threads can wait for the zone to enter a requested state by using 110 * zone_status_wait() or zone_status_timedwait() with the desired 111 * state passed in as an argument. Zone state transitions are 112 * uni-directional; it is not possible to move back to an earlier state. 113 * 114 * 115 * Zone-Specific Data: 116 * 117 * Subsystems needing to maintain zone-specific data can store that 118 * data using the ZSD mechanism. This provides a zone-specific data 119 * store, similar to thread-specific data (see pthread_getspecific(3C) 120 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 121 * to register callbacks to be invoked when a zone is created, shut 122 * down, or destroyed. This can be used to initialize zone-specific 123 * data for new zones and to clean up when zones go away. 124 * 125 * 126 * Data Structures: 127 * 128 * The per-zone structure (zone_t) is reference counted, and freed 129 * when all references are released. zone_hold and zone_rele can be 130 * used to adjust the reference count. In addition, reference counts 131 * associated with the cred_t structure are tracked separately using 132 * zone_cred_hold and zone_cred_rele. 133 * 134 * Pointers to active zone_t's are stored in two hash tables; one 135 * for searching by id, the other for searching by name. Lookups 136 * can be performed on either basis, using zone_find_by_id and 137 * zone_find_by_name. Both return zone_t pointers with the zone 138 * held, so zone_rele should be called when the pointer is no longer 139 * needed. Zones can also be searched by path; zone_find_by_path 140 * returns the zone with which a path name is associated (global 141 * zone if the path is not within some other zone's file system 142 * hierarchy). This currently requires iterating through each zone, 143 * so it is slower than an id or name search via a hash table. 144 * 145 * 146 * Locking: 147 * 148 * zonehash_lock: This is a top-level global lock used to protect the 149 * zone hash tables and lists. Zones cannot be created or destroyed 150 * while this lock is held. 151 * zone_status_lock: This is a global lock protecting zone state. 152 * Zones cannot change state while this lock is held. It also 153 * protects the list of kernel threads associated with a zone. 154 * zone_lock: This is a per-zone lock used to protect several fields of 155 * the zone_t (see <sys/zone.h> for details). In addition, holding 156 * this lock means that the zone cannot go away. 157 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 158 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 159 * list (a list of zones in the ZONE_IS_DEAD state). 160 * 161 * Ordering requirements: 162 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 163 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 164 * 165 * Blocking memory allocations are permitted while holding any of the 166 * zone locks. 167 * 168 * 169 * System Call Interface: 170 * 171 * The zone subsystem can be managed and queried from user level with 172 * the following system calls (all subcodes of the primary "zone" 173 * system call): 174 * - zone_create: creates a zone with selected attributes (name, 175 * root path, privileges, resource controls, ZFS datasets) 176 * - zone_enter: allows the current process to enter a zone 177 * - zone_getattr: reports attributes of a zone 178 * - zone_list: lists all zones active in the system 179 * - zone_lookup: looks up zone id based on name 180 * - zone_shutdown: initiates shutdown process (see states above) 181 * - zone_destroy: completes shutdown process (see states above) 182 * 183 */ 184 185 #include <sys/priv_impl.h> 186 #include <sys/cred.h> 187 #include <c2/audit.h> 188 #include <sys/debug.h> 189 #include <sys/file.h> 190 #include <sys/kmem.h> 191 #include <sys/mutex.h> 192 #include <sys/note.h> 193 #include <sys/pathname.h> 194 #include <sys/proc.h> 195 #include <sys/project.h> 196 #include <sys/sysevent.h> 197 #include <sys/task.h> 198 #include <sys/systm.h> 199 #include <sys/types.h> 200 #include <sys/utsname.h> 201 #include <sys/vnode.h> 202 #include <sys/vfs.h> 203 #include <sys/systeminfo.h> 204 #include <sys/policy.h> 205 #include <sys/cred_impl.h> 206 #include <sys/contract_impl.h> 207 #include <sys/contract/process_impl.h> 208 #include <sys/class.h> 209 #include <sys/pool.h> 210 #include <sys/pool_pset.h> 211 #include <sys/pset.h> 212 #include <sys/sysmacros.h> 213 #include <sys/callb.h> 214 #include <sys/vmparam.h> 215 #include <sys/corectl.h> 216 217 #include <sys/door.h> 218 #include <sys/cpuvar.h> 219 220 #include <sys/uadmin.h> 221 #include <sys/session.h> 222 #include <sys/cmn_err.h> 223 #include <sys/modhash.h> 224 #include <sys/nvpair.h> 225 #include <sys/rctl.h> 226 #include <sys/fss.h> 227 #include <sys/zone.h> 228 #include <sys/tsol/label.h> 229 230 /* 231 * cv used to signal that all references to the zone have been released. This 232 * needs to be global since there may be multiple waiters, and the first to 233 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 234 */ 235 static kcondvar_t zone_destroy_cv; 236 /* 237 * Lock used to serialize access to zone_cv. This could have been per-zone, 238 * but then we'd need another lock for zone_destroy_cv, and why bother? 239 */ 240 static kmutex_t zone_status_lock; 241 242 /* 243 * ZSD-related global variables. 244 */ 245 static kmutex_t zsd_key_lock; /* protects the following two */ 246 /* 247 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 248 */ 249 static zone_key_t zsd_keyval = 0; 250 /* 251 * Global list of registered keys. We use this when a new zone is created. 252 */ 253 static list_t zsd_registered_keys; 254 255 int zone_hash_size = 256; 256 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 257 static kmutex_t zonehash_lock; 258 static uint_t zonecount; 259 static id_space_t *zoneid_space; 260 261 /* 262 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 263 * kernel proper runs, and which manages all other zones. 264 * 265 * Although not declared as static, the variable "zone0" should not be used 266 * except for by code that needs to reference the global zone early on in boot, 267 * before it is fully initialized. All other consumers should use 268 * 'global_zone'. 269 */ 270 zone_t zone0; 271 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 272 273 /* 274 * List of active zones, protected by zonehash_lock. 275 */ 276 static list_t zone_active; 277 278 /* 279 * List of destroyed zones that still have outstanding cred references. 280 * Used for debugging. Uses a separate lock to avoid lock ordering 281 * problems in zone_free. 282 */ 283 static list_t zone_deathrow; 284 static kmutex_t zone_deathrow_lock; 285 286 /* number of zones is limited by virtual interface limit in IP */ 287 uint_t maxzones = 8192; 288 289 /* Event channel to sent zone state change notifications */ 290 evchan_t *zone_event_chan; 291 292 /* 293 * This table holds the mapping from kernel zone states to 294 * states visible in the state notification API. 295 * The idea is that we only expose "obvious" states and 296 * do not expose states which are just implementation details. 297 */ 298 const char *zone_status_table[] = { 299 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 300 ZONE_EVENT_READY, /* ready */ 301 ZONE_EVENT_READY, /* booting */ 302 ZONE_EVENT_RUNNING, /* running */ 303 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 304 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 305 ZONE_EVENT_SHUTTING_DOWN, /* down */ 306 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 307 ZONE_EVENT_UNINITIALIZED, /* dead */ 308 }; 309 310 /* 311 * This isn't static so lint doesn't complain. 312 */ 313 rctl_hndl_t rc_zone_cpu_shares; 314 rctl_hndl_t rc_zone_nlwps; 315 /* 316 * Synchronization primitives used to synchronize between mounts and zone 317 * creation/destruction. 318 */ 319 static int mounts_in_progress; 320 static kcondvar_t mount_cv; 321 static kmutex_t mount_lock; 322 323 const char * const zone_initname = "/sbin/init"; 324 static char * const zone_prefix = "/zone/"; 325 326 static int zone_shutdown(zoneid_t zoneid); 327 328 /* 329 * Bump this number when you alter the zone syscall interfaces; this is 330 * because we need to have support for previous API versions in libc 331 * to support patching; libc calls into the kernel to determine this number. 332 * 333 * Version 1 of the API is the version originally shipped with Solaris 10 334 * Version 2 alters the zone_create system call in order to support more 335 * arguments by moving the args into a structure; and to do better 336 * error reporting when zone_create() fails. 337 * Version 3 alters the zone_create system call in order to support the 338 * import of ZFS datasets to zones. 339 * Version 4 alters the zone_create system call in order to support 340 * Trusted Extensions. 341 */ 342 static const int ZONE_SYSCALL_API_VERSION = 4; 343 344 /* 345 * Certain filesystems (such as NFS and autofs) need to know which zone 346 * the mount is being placed in. Because of this, we need to be able to 347 * ensure that a zone isn't in the process of being created such that 348 * nfs_mount() thinks it is in the global zone, while by the time it 349 * gets added the list of mounted zones, it ends up on zoneA's mount 350 * list. 351 * 352 * The following functions: block_mounts()/resume_mounts() and 353 * mount_in_progress()/mount_completed() are used by zones and the VFS 354 * layer (respectively) to synchronize zone creation and new mounts. 355 * 356 * The semantics are like a reader-reader lock such that there may 357 * either be multiple mounts (or zone creations, if that weren't 358 * serialized by zonehash_lock) in progress at the same time, but not 359 * both. 360 * 361 * We use cv's so the user can ctrl-C out of the operation if it's 362 * taking too long. 363 * 364 * The semantics are such that there is unfair bias towards the 365 * "current" operation. This means that zone creations may starve if 366 * there is a rapid succession of new mounts coming in to the system, or 367 * there is a remote possibility that zones will be created at such a 368 * rate that new mounts will not be able to proceed. 369 */ 370 /* 371 * Prevent new mounts from progressing to the point of calling 372 * VFS_MOUNT(). If there are already mounts in this "region", wait for 373 * them to complete. 374 */ 375 static int 376 block_mounts(void) 377 { 378 int retval = 0; 379 380 /* 381 * Since it may block for a long time, block_mounts() shouldn't be 382 * called with zonehash_lock held. 383 */ 384 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 385 mutex_enter(&mount_lock); 386 while (mounts_in_progress > 0) { 387 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 388 goto signaled; 389 } 390 /* 391 * A negative value of mounts_in_progress indicates that mounts 392 * have been blocked by (-mounts_in_progress) different callers. 393 */ 394 mounts_in_progress--; 395 retval = 1; 396 signaled: 397 mutex_exit(&mount_lock); 398 return (retval); 399 } 400 401 /* 402 * The VFS layer may progress with new mounts as far as we're concerned. 403 * Allow them to progress if we were the last obstacle. 404 */ 405 static void 406 resume_mounts(void) 407 { 408 mutex_enter(&mount_lock); 409 if (++mounts_in_progress == 0) 410 cv_broadcast(&mount_cv); 411 mutex_exit(&mount_lock); 412 } 413 414 /* 415 * The VFS layer is busy with a mount; zones should wait until all 416 * mounts are completed to progress. 417 */ 418 void 419 mount_in_progress(void) 420 { 421 mutex_enter(&mount_lock); 422 while (mounts_in_progress < 0) 423 cv_wait(&mount_cv, &mount_lock); 424 mounts_in_progress++; 425 mutex_exit(&mount_lock); 426 } 427 428 /* 429 * VFS is done with one mount; wake up any waiting block_mounts() 430 * callers if this is the last mount. 431 */ 432 void 433 mount_completed(void) 434 { 435 mutex_enter(&mount_lock); 436 if (--mounts_in_progress == 0) 437 cv_broadcast(&mount_cv); 438 mutex_exit(&mount_lock); 439 } 440 441 /* 442 * ZSD routines. 443 * 444 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 445 * defined by the pthread_key_create() and related interfaces. 446 * 447 * Kernel subsystems may register one or more data items and/or 448 * callbacks to be executed when a zone is created, shutdown, or 449 * destroyed. 450 * 451 * Unlike the thread counterpart, destructor callbacks will be executed 452 * even if the data pointer is NULL and/or there are no constructor 453 * callbacks, so it is the responsibility of such callbacks to check for 454 * NULL data values if necessary. 455 * 456 * The locking strategy and overall picture is as follows: 457 * 458 * When someone calls zone_key_create(), a template ZSD entry is added to the 459 * global list "zsd_registered_keys", protected by zsd_key_lock. The 460 * constructor callback is called immediately on all existing zones, and a 461 * copy of the ZSD entry added to the per-zone zone_zsd list (protected by 462 * zone_lock). As this operation requires the list of zones, the list of 463 * registered keys, and the per-zone list of ZSD entries to remain constant 464 * throughout the entire operation, it must grab zonehash_lock, zone_lock for 465 * all existing zones, and zsd_key_lock, in that order. Similar locking is 466 * needed when zone_key_delete() is called. It is thus sufficient to hold 467 * zsd_key_lock *or* zone_lock to prevent additions to or removals from the 468 * per-zone zone_zsd list. 469 * 470 * Note that this implementation does not make a copy of the ZSD entry if a 471 * constructor callback is not provided. A zone_getspecific() on such an 472 * uninitialized ZSD entry will return NULL. 473 * 474 * When new zones are created constructor callbacks for all registered ZSD 475 * entries will be called. 476 * 477 * The framework does not provide any locking around zone_getspecific() and 478 * zone_setspecific() apart from that needed for internal consistency, so 479 * callers interested in atomic "test-and-set" semantics will need to provide 480 * their own locking. 481 */ 482 void 483 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 484 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 485 { 486 struct zsd_entry *zsdp; 487 struct zsd_entry *t; 488 struct zone *zone; 489 490 zsdp = kmem_alloc(sizeof (*zsdp), KM_SLEEP); 491 zsdp->zsd_data = NULL; 492 zsdp->zsd_create = create; 493 zsdp->zsd_shutdown = shutdown; 494 zsdp->zsd_destroy = destroy; 495 496 mutex_enter(&zonehash_lock); /* stop the world */ 497 for (zone = list_head(&zone_active); zone != NULL; 498 zone = list_next(&zone_active, zone)) 499 mutex_enter(&zone->zone_lock); /* lock all zones */ 500 501 mutex_enter(&zsd_key_lock); 502 *keyp = zsdp->zsd_key = ++zsd_keyval; 503 ASSERT(zsd_keyval != 0); 504 list_insert_tail(&zsd_registered_keys, zsdp); 505 mutex_exit(&zsd_key_lock); 506 507 if (create != NULL) { 508 for (zone = list_head(&zone_active); zone != NULL; 509 zone = list_next(&zone_active, zone)) { 510 t = kmem_alloc(sizeof (*t), KM_SLEEP); 511 t->zsd_key = *keyp; 512 t->zsd_data = (*create)(zone->zone_id); 513 t->zsd_create = create; 514 t->zsd_shutdown = shutdown; 515 t->zsd_destroy = destroy; 516 list_insert_tail(&zone->zone_zsd, t); 517 } 518 } 519 for (zone = list_head(&zone_active); zone != NULL; 520 zone = list_next(&zone_active, zone)) 521 mutex_exit(&zone->zone_lock); 522 mutex_exit(&zonehash_lock); 523 } 524 525 /* 526 * Helper function to find the zsd_entry associated with the key in the 527 * given list. 528 */ 529 static struct zsd_entry * 530 zsd_find(list_t *l, zone_key_t key) 531 { 532 struct zsd_entry *zsd; 533 534 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 535 if (zsd->zsd_key == key) { 536 /* 537 * Move to head of list to keep list in MRU order. 538 */ 539 if (zsd != list_head(l)) { 540 list_remove(l, zsd); 541 list_insert_head(l, zsd); 542 } 543 return (zsd); 544 } 545 } 546 return (NULL); 547 } 548 549 /* 550 * Function called when a module is being unloaded, or otherwise wishes 551 * to unregister its ZSD key and callbacks. 552 */ 553 int 554 zone_key_delete(zone_key_t key) 555 { 556 struct zsd_entry *zsdp = NULL; 557 zone_t *zone; 558 559 mutex_enter(&zonehash_lock); /* Zone create/delete waits for us */ 560 for (zone = list_head(&zone_active); zone != NULL; 561 zone = list_next(&zone_active, zone)) 562 mutex_enter(&zone->zone_lock); /* lock all zones */ 563 564 mutex_enter(&zsd_key_lock); 565 zsdp = zsd_find(&zsd_registered_keys, key); 566 if (zsdp == NULL) 567 goto notfound; 568 list_remove(&zsd_registered_keys, zsdp); 569 mutex_exit(&zsd_key_lock); 570 571 for (zone = list_head(&zone_active); zone != NULL; 572 zone = list_next(&zone_active, zone)) { 573 struct zsd_entry *del; 574 void *data; 575 576 if (!(zone->zone_flags & ZF_DESTROYED)) { 577 del = zsd_find(&zone->zone_zsd, key); 578 if (del != NULL) { 579 data = del->zsd_data; 580 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 581 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 582 list_remove(&zone->zone_zsd, del); 583 kmem_free(del, sizeof (*del)); 584 } else { 585 data = NULL; 586 } 587 if (zsdp->zsd_shutdown) 588 zsdp->zsd_shutdown(zone->zone_id, data); 589 if (zsdp->zsd_destroy) 590 zsdp->zsd_destroy(zone->zone_id, data); 591 } 592 mutex_exit(&zone->zone_lock); 593 } 594 mutex_exit(&zonehash_lock); 595 kmem_free(zsdp, sizeof (*zsdp)); 596 return (0); 597 598 notfound: 599 mutex_exit(&zsd_key_lock); 600 for (zone = list_head(&zone_active); zone != NULL; 601 zone = list_next(&zone_active, zone)) 602 mutex_exit(&zone->zone_lock); 603 mutex_exit(&zonehash_lock); 604 return (-1); 605 } 606 607 /* 608 * ZSD counterpart of pthread_setspecific(). 609 */ 610 int 611 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 612 { 613 struct zsd_entry *t; 614 struct zsd_entry *zsdp = NULL; 615 616 mutex_enter(&zone->zone_lock); 617 t = zsd_find(&zone->zone_zsd, key); 618 if (t != NULL) { 619 /* 620 * Replace old value with new 621 */ 622 t->zsd_data = (void *)data; 623 mutex_exit(&zone->zone_lock); 624 return (0); 625 } 626 /* 627 * If there was no previous value, go through the list of registered 628 * keys. 629 * 630 * We avoid grabbing zsd_key_lock until we are sure we need it; this is 631 * necessary for shutdown callbacks to be able to execute without fear 632 * of deadlock. 633 */ 634 mutex_enter(&zsd_key_lock); 635 zsdp = zsd_find(&zsd_registered_keys, key); 636 if (zsdp == NULL) { /* Key was not registered */ 637 mutex_exit(&zsd_key_lock); 638 mutex_exit(&zone->zone_lock); 639 return (-1); 640 } 641 642 /* 643 * Add a zsd_entry to this zone, using the template we just retrieved 644 * to initialize the constructor and destructor(s). 645 */ 646 t = kmem_alloc(sizeof (*t), KM_SLEEP); 647 t->zsd_key = key; 648 t->zsd_data = (void *)data; 649 t->zsd_create = zsdp->zsd_create; 650 t->zsd_shutdown = zsdp->zsd_shutdown; 651 t->zsd_destroy = zsdp->zsd_destroy; 652 list_insert_tail(&zone->zone_zsd, t); 653 mutex_exit(&zsd_key_lock); 654 mutex_exit(&zone->zone_lock); 655 return (0); 656 } 657 658 /* 659 * ZSD counterpart of pthread_getspecific(). 660 */ 661 void * 662 zone_getspecific(zone_key_t key, zone_t *zone) 663 { 664 struct zsd_entry *t; 665 void *data; 666 667 mutex_enter(&zone->zone_lock); 668 t = zsd_find(&zone->zone_zsd, key); 669 data = (t == NULL ? NULL : t->zsd_data); 670 mutex_exit(&zone->zone_lock); 671 return (data); 672 } 673 674 /* 675 * Function used to initialize a zone's list of ZSD callbacks and data 676 * when the zone is being created. The callbacks are initialized from 677 * the template list (zsd_registered_keys), and the constructor 678 * callback executed (if one exists). 679 * 680 * This is called before the zone is made publicly available, hence no 681 * need to grab zone_lock. 682 * 683 * Although we grab and release zsd_key_lock, new entries cannot be 684 * added to or removed from the zsd_registered_keys list until we 685 * release zonehash_lock, so there isn't a window for a 686 * zone_key_create() to come in after we've dropped zsd_key_lock but 687 * before the zone is added to the zone list, such that the constructor 688 * callbacks aren't executed for the new zone. 689 */ 690 static void 691 zone_zsd_configure(zone_t *zone) 692 { 693 struct zsd_entry *zsdp; 694 struct zsd_entry *t; 695 zoneid_t zoneid = zone->zone_id; 696 697 ASSERT(MUTEX_HELD(&zonehash_lock)); 698 ASSERT(list_head(&zone->zone_zsd) == NULL); 699 mutex_enter(&zsd_key_lock); 700 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 701 zsdp = list_next(&zsd_registered_keys, zsdp)) { 702 if (zsdp->zsd_create != NULL) { 703 t = kmem_alloc(sizeof (*t), KM_SLEEP); 704 t->zsd_key = zsdp->zsd_key; 705 t->zsd_create = zsdp->zsd_create; 706 t->zsd_data = (*t->zsd_create)(zoneid); 707 t->zsd_shutdown = zsdp->zsd_shutdown; 708 t->zsd_destroy = zsdp->zsd_destroy; 709 list_insert_tail(&zone->zone_zsd, t); 710 } 711 } 712 mutex_exit(&zsd_key_lock); 713 } 714 715 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 716 717 /* 718 * Helper function to execute shutdown or destructor callbacks. 719 */ 720 static void 721 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 722 { 723 struct zsd_entry *zsdp; 724 struct zsd_entry *t; 725 zoneid_t zoneid = zone->zone_id; 726 727 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 728 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 729 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 730 731 mutex_enter(&zone->zone_lock); 732 if (ct == ZSD_DESTROY) { 733 if (zone->zone_flags & ZF_DESTROYED) { 734 /* 735 * Make sure destructors are only called once. 736 */ 737 mutex_exit(&zone->zone_lock); 738 return; 739 } 740 zone->zone_flags |= ZF_DESTROYED; 741 } 742 mutex_exit(&zone->zone_lock); 743 744 /* 745 * Both zsd_key_lock and zone_lock need to be held in order to add or 746 * remove a ZSD key, (either globally as part of 747 * zone_key_create()/zone_key_delete(), or on a per-zone basis, as is 748 * possible through zone_setspecific()), so it's sufficient to hold 749 * zsd_key_lock here. 750 * 751 * This is a good thing, since we don't want to recursively try to grab 752 * zone_lock if a callback attempts to do something like a crfree() or 753 * zone_rele(). 754 */ 755 mutex_enter(&zsd_key_lock); 756 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 757 zsdp = list_next(&zsd_registered_keys, zsdp)) { 758 zone_key_t key = zsdp->zsd_key; 759 760 /* Skip if no callbacks registered */ 761 if (ct == ZSD_SHUTDOWN && zsdp->zsd_shutdown == NULL) 762 continue; 763 if (ct == ZSD_DESTROY && zsdp->zsd_destroy == NULL) 764 continue; 765 /* 766 * Call the callback with the zone-specific data if we can find 767 * any, otherwise with NULL. 768 */ 769 t = zsd_find(&zone->zone_zsd, key); 770 if (t != NULL) { 771 if (ct == ZSD_SHUTDOWN) { 772 t->zsd_shutdown(zoneid, t->zsd_data); 773 } else { 774 ASSERT(ct == ZSD_DESTROY); 775 t->zsd_destroy(zoneid, t->zsd_data); 776 } 777 } else { 778 if (ct == ZSD_SHUTDOWN) { 779 zsdp->zsd_shutdown(zoneid, NULL); 780 } else { 781 ASSERT(ct == ZSD_DESTROY); 782 zsdp->zsd_destroy(zoneid, NULL); 783 } 784 } 785 } 786 mutex_exit(&zsd_key_lock); 787 } 788 789 /* 790 * Called when the zone is going away; free ZSD-related memory, and 791 * destroy the zone_zsd list. 792 */ 793 static void 794 zone_free_zsd(zone_t *zone) 795 { 796 struct zsd_entry *t, *next; 797 798 /* 799 * Free all the zsd_entry's we had on this zone. 800 */ 801 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 802 next = list_next(&zone->zone_zsd, t); 803 list_remove(&zone->zone_zsd, t); 804 kmem_free(t, sizeof (*t)); 805 } 806 list_destroy(&zone->zone_zsd); 807 } 808 809 /* 810 * Frees memory associated with the zone dataset list. 811 */ 812 static void 813 zone_free_datasets(zone_t *zone) 814 { 815 zone_dataset_t *t, *next; 816 817 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 818 next = list_next(&zone->zone_datasets, t); 819 list_remove(&zone->zone_datasets, t); 820 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 821 kmem_free(t, sizeof (*t)); 822 } 823 list_destroy(&zone->zone_datasets); 824 } 825 826 /* 827 * zone.cpu-shares resource control support. 828 */ 829 /*ARGSUSED*/ 830 static rctl_qty_t 831 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 832 { 833 ASSERT(MUTEX_HELD(&p->p_lock)); 834 return (p->p_zone->zone_shares); 835 } 836 837 /*ARGSUSED*/ 838 static int 839 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 840 rctl_qty_t nv) 841 { 842 ASSERT(MUTEX_HELD(&p->p_lock)); 843 ASSERT(e->rcep_t == RCENTITY_ZONE); 844 if (e->rcep_p.zone == NULL) 845 return (0); 846 847 e->rcep_p.zone->zone_shares = nv; 848 return (0); 849 } 850 851 static rctl_ops_t zone_cpu_shares_ops = { 852 rcop_no_action, 853 zone_cpu_shares_usage, 854 zone_cpu_shares_set, 855 rcop_no_test 856 }; 857 858 /*ARGSUSED*/ 859 static rctl_qty_t 860 zone_lwps_usage(rctl_t *r, proc_t *p) 861 { 862 rctl_qty_t nlwps; 863 zone_t *zone = p->p_zone; 864 865 ASSERT(MUTEX_HELD(&p->p_lock)); 866 867 mutex_enter(&zone->zone_nlwps_lock); 868 nlwps = zone->zone_nlwps; 869 mutex_exit(&zone->zone_nlwps_lock); 870 871 return (nlwps); 872 } 873 874 /*ARGSUSED*/ 875 static int 876 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 877 rctl_qty_t incr, uint_t flags) 878 { 879 rctl_qty_t nlwps; 880 881 ASSERT(MUTEX_HELD(&p->p_lock)); 882 ASSERT(e->rcep_t == RCENTITY_ZONE); 883 if (e->rcep_p.zone == NULL) 884 return (0); 885 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 886 nlwps = e->rcep_p.zone->zone_nlwps; 887 888 if (nlwps + incr > rcntl->rcv_value) 889 return (1); 890 891 return (0); 892 } 893 894 /*ARGSUSED*/ 895 static int 896 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { 897 898 ASSERT(MUTEX_HELD(&p->p_lock)); 899 ASSERT(e->rcep_t == RCENTITY_ZONE); 900 if (e->rcep_p.zone == NULL) 901 return (0); 902 e->rcep_p.zone->zone_nlwps_ctl = nv; 903 return (0); 904 } 905 906 static rctl_ops_t zone_lwps_ops = { 907 rcop_no_action, 908 zone_lwps_usage, 909 zone_lwps_set, 910 zone_lwps_test, 911 }; 912 913 /* 914 * Helper function to brand the zone with a unique ID. 915 */ 916 static void 917 zone_uniqid(zone_t *zone) 918 { 919 static uint64_t uniqid = 0; 920 921 ASSERT(MUTEX_HELD(&zonehash_lock)); 922 zone->zone_uniqid = uniqid++; 923 } 924 925 /* 926 * Returns a held pointer to the "kcred" for the specified zone. 927 */ 928 struct cred * 929 zone_get_kcred(zoneid_t zoneid) 930 { 931 zone_t *zone; 932 cred_t *cr; 933 934 if ((zone = zone_find_by_id(zoneid)) == NULL) 935 return (NULL); 936 cr = zone->zone_kcred; 937 crhold(cr); 938 zone_rele(zone); 939 return (cr); 940 } 941 942 /* 943 * Called very early on in boot to initialize the ZSD list so that 944 * zone_key_create() can be called before zone_init(). It also initializes 945 * portions of zone0 which may be used before zone_init() is called. The 946 * variable "global_zone" will be set when zone0 is fully initialized by 947 * zone_init(). 948 */ 949 void 950 zone_zsd_init(void) 951 { 952 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 953 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 954 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 955 offsetof(struct zsd_entry, zsd_linkage)); 956 list_create(&zone_active, sizeof (zone_t), 957 offsetof(zone_t, zone_linkage)); 958 list_create(&zone_deathrow, sizeof (zone_t), 959 offsetof(zone_t, zone_linkage)); 960 961 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 962 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 963 zone0.zone_shares = 1; 964 zone0.zone_nlwps_ctl = INT_MAX; 965 zone0.zone_name = GLOBAL_ZONENAME; 966 zone0.zone_nodename = utsname.nodename; 967 zone0.zone_domain = srpc_domain; 968 zone0.zone_ref = 1; 969 zone0.zone_id = GLOBAL_ZONEID; 970 zone0.zone_status = ZONE_IS_RUNNING; 971 zone0.zone_rootpath = "/"; 972 zone0.zone_rootpathlen = 2; 973 zone0.zone_psetid = ZONE_PS_INVAL; 974 zone0.zone_ncpus = 0; 975 zone0.zone_ncpus_online = 0; 976 zone0.zone_proc_initpid = 1; 977 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 978 offsetof(struct zsd_entry, zsd_linkage)); 979 list_insert_head(&zone_active, &zone0); 980 981 /* 982 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 983 * to anything meaningful. It is assigned to be 'rootdir' in 984 * vfs_mountroot(). 985 */ 986 zone0.zone_rootvp = NULL; 987 zone0.zone_vfslist = NULL; 988 zone0.zone_bootargs = NULL; 989 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 990 /* 991 * The global zone has all privileges 992 */ 993 priv_fillset(zone0.zone_privset); 994 /* 995 * Add p0 to the global zone 996 */ 997 zone0.zone_zsched = &p0; 998 p0.p_zone = &zone0; 999 } 1000 1001 /* 1002 * Compute a hash value based on the contents of the label and the DOI. The 1003 * hash algorithm is somewhat arbitrary, but is based on the observation that 1004 * humans will likely pick labels that differ by amounts that work out to be 1005 * multiples of the number of hash chains, and thus stirring in some primes 1006 * should help. 1007 */ 1008 static uint_t 1009 hash_bylabel(void *hdata, mod_hash_key_t key) 1010 { 1011 const ts_label_t *lab = (ts_label_t *)key; 1012 const uint32_t *up, *ue; 1013 uint_t hash; 1014 int i; 1015 1016 _NOTE(ARGUNUSED(hdata)); 1017 1018 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1019 /* we depend on alignment of label, but not representation */ 1020 up = (const uint32_t *)&lab->tsl_label; 1021 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1022 i = 1; 1023 while (up < ue) { 1024 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1025 hash += *up + (*up << ((i % 16) + 1)); 1026 up++; 1027 i++; 1028 } 1029 return (hash); 1030 } 1031 1032 /* 1033 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1034 * equal). This may need to be changed if less than / greater than is ever 1035 * needed. 1036 */ 1037 static int 1038 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1039 { 1040 ts_label_t *lab1 = (ts_label_t *)key1; 1041 ts_label_t *lab2 = (ts_label_t *)key2; 1042 1043 return (label_equal(lab1, lab2) ? 0 : 1); 1044 } 1045 1046 /* 1047 * Called by main() to initialize the zones framework. 1048 */ 1049 void 1050 zone_init(void) 1051 { 1052 rctl_dict_entry_t *rde; 1053 rctl_val_t *dval; 1054 rctl_set_t *set; 1055 rctl_alloc_gp_t *gp; 1056 rctl_entity_p_t e; 1057 int res; 1058 1059 ASSERT(curproc == &p0); 1060 1061 /* 1062 * Create ID space for zone IDs. ID 0 is reserved for the 1063 * global zone. 1064 */ 1065 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1066 1067 /* 1068 * Initialize generic zone resource controls, if any. 1069 */ 1070 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1071 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1072 RCTL_GLOBAL_NOBASIC | 1073 RCTL_GLOBAL_COUNT, FSS_MAXSHARES, FSS_MAXSHARES, 1074 &zone_cpu_shares_ops); 1075 1076 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1077 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1078 INT_MAX, INT_MAX, &zone_lwps_ops); 1079 /* 1080 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1081 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1082 */ 1083 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1084 bzero(dval, sizeof (rctl_val_t)); 1085 dval->rcv_value = 1; 1086 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1087 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1088 dval->rcv_action_recip_pid = -1; 1089 1090 rde = rctl_dict_lookup("zone.cpu-shares"); 1091 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1092 1093 /* 1094 * Initialize the ``global zone''. 1095 */ 1096 set = rctl_set_create(); 1097 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1098 mutex_enter(&p0.p_lock); 1099 e.rcep_p.zone = &zone0; 1100 e.rcep_t = RCENTITY_ZONE; 1101 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1102 gp); 1103 1104 zone0.zone_nlwps = p0.p_lwpcnt; 1105 zone0.zone_ntasks = 1; 1106 mutex_exit(&p0.p_lock); 1107 rctl_prealloc_destroy(gp); 1108 /* 1109 * pool_default hasn't been initialized yet, so we let pool_init() take 1110 * care of making the global zone is in the default pool. 1111 */ 1112 1113 /* 1114 * Initialize zone label. 1115 * mlp are initialized when tnzonecfg is loaded. 1116 */ 1117 zone0.zone_slabel = l_admin_low; 1118 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1119 label_hold(l_admin_low); 1120 1121 mutex_enter(&zonehash_lock); 1122 zone_uniqid(&zone0); 1123 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1124 1125 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1126 mod_hash_null_valdtor); 1127 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1128 zone_hash_size, mod_hash_null_valdtor); 1129 /* 1130 * maintain zonehashbylabel only for labeled systems 1131 */ 1132 if (is_system_labeled()) 1133 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1134 zone_hash_size, mod_hash_null_keydtor, 1135 mod_hash_null_valdtor, hash_bylabel, NULL, 1136 hash_labelkey_cmp, KM_SLEEP); 1137 zonecount = 1; 1138 1139 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1140 (mod_hash_val_t)&zone0); 1141 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1142 (mod_hash_val_t)&zone0); 1143 if (is_system_labeled()) 1144 (void) mod_hash_insert(zonehashbylabel, 1145 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1146 mutex_exit(&zonehash_lock); 1147 1148 /* 1149 * We avoid setting zone_kcred until now, since kcred is initialized 1150 * sometime after zone_zsd_init() and before zone_init(). 1151 */ 1152 zone0.zone_kcred = kcred; 1153 /* 1154 * The global zone is fully initialized (except for zone_rootvp which 1155 * will be set when the root filesystem is mounted). 1156 */ 1157 global_zone = &zone0; 1158 1159 /* 1160 * Setup an event channel to send zone status change notifications on 1161 */ 1162 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1163 EVCH_CREAT); 1164 1165 if (res) 1166 panic("Sysevent_evc_bind failed during zone setup.\n"); 1167 } 1168 1169 static void 1170 zone_free(zone_t *zone) 1171 { 1172 ASSERT(zone != global_zone); 1173 ASSERT(zone->zone_ntasks == 0); 1174 ASSERT(zone->zone_nlwps == 0); 1175 ASSERT(zone->zone_cred_ref == 0); 1176 ASSERT(zone->zone_kcred == NULL); 1177 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1178 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1179 1180 /* remove from deathrow list */ 1181 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1182 ASSERT(zone->zone_ref == 0); 1183 mutex_enter(&zone_deathrow_lock); 1184 list_remove(&zone_deathrow, zone); 1185 mutex_exit(&zone_deathrow_lock); 1186 } 1187 1188 zone_free_zsd(zone); 1189 zone_free_datasets(zone); 1190 1191 if (zone->zone_rootvp != NULL) 1192 VN_RELE(zone->zone_rootvp); 1193 if (zone->zone_rootpath) 1194 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 1195 if (zone->zone_name != NULL) 1196 kmem_free(zone->zone_name, ZONENAME_MAX); 1197 if (zone->zone_slabel != NULL) 1198 label_rele(zone->zone_slabel); 1199 if (zone->zone_nodename != NULL) 1200 kmem_free(zone->zone_nodename, _SYS_NMLN); 1201 if (zone->zone_domain != NULL) 1202 kmem_free(zone->zone_domain, _SYS_NMLN); 1203 if (zone->zone_privset != NULL) 1204 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 1205 if (zone->zone_rctls != NULL) 1206 rctl_set_free(zone->zone_rctls); 1207 if (zone->zone_bootargs != NULL) 1208 kmem_free(zone->zone_bootargs, ZONEBOOTARGS_MAX); 1209 id_free(zoneid_space, zone->zone_id); 1210 mutex_destroy(&zone->zone_lock); 1211 cv_destroy(&zone->zone_cv); 1212 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 1213 kmem_free(zone, sizeof (zone_t)); 1214 } 1215 1216 /* 1217 * See block comment at the top of this file for information about zone 1218 * status values. 1219 */ 1220 /* 1221 * Convenience function for setting zone status. 1222 */ 1223 static void 1224 zone_status_set(zone_t *zone, zone_status_t status) 1225 { 1226 1227 nvlist_t *nvl = NULL; 1228 ASSERT(MUTEX_HELD(&zone_status_lock)); 1229 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 1230 status >= zone_status_get(zone)); 1231 1232 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 1233 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 1234 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 1235 zone_status_table[status]) || 1236 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 1237 zone_status_table[zone->zone_status]) || 1238 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 1239 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 1240 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 1241 ZONE_EVENT_STATUS_SUBCLASS, 1242 "sun.com", "kernel", nvl, EVCH_SLEEP)) { 1243 #ifdef DEBUG 1244 (void) printf( 1245 "Failed to allocate and send zone state change event.\n"); 1246 #endif 1247 } 1248 nvlist_free(nvl); 1249 1250 zone->zone_status = status; 1251 1252 cv_broadcast(&zone->zone_cv); 1253 } 1254 1255 /* 1256 * Public function to retrieve the zone status. The zone status may 1257 * change after it is retrieved. 1258 */ 1259 zone_status_t 1260 zone_status_get(zone_t *zone) 1261 { 1262 return (zone->zone_status); 1263 } 1264 1265 static int 1266 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 1267 { 1268 char *bootargs = kmem_zalloc(ZONEBOOTARGS_MAX, KM_SLEEP); 1269 size_t len; 1270 int err; 1271 1272 err = copyinstr(zone_bootargs, bootargs, ZONEBOOTARGS_MAX - 1, &len); 1273 if (err != 0) { 1274 kmem_free(bootargs, ZONEBOOTARGS_MAX); 1275 return (err); /* EFAULT or ENAMETOOLONG */ 1276 } 1277 bootargs[len] = '\0'; 1278 1279 ASSERT(zone->zone_bootargs == NULL); 1280 zone->zone_bootargs = bootargs; 1281 return (0); 1282 } 1283 1284 /* 1285 * Block indefinitely waiting for (zone_status >= status) 1286 */ 1287 void 1288 zone_status_wait(zone_t *zone, zone_status_t status) 1289 { 1290 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1291 1292 mutex_enter(&zone_status_lock); 1293 while (zone->zone_status < status) { 1294 cv_wait(&zone->zone_cv, &zone_status_lock); 1295 } 1296 mutex_exit(&zone_status_lock); 1297 } 1298 1299 /* 1300 * Private CPR-safe version of zone_status_wait(). 1301 */ 1302 static void 1303 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 1304 { 1305 callb_cpr_t cprinfo; 1306 1307 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1308 1309 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 1310 str); 1311 mutex_enter(&zone_status_lock); 1312 while (zone->zone_status < status) { 1313 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1314 cv_wait(&zone->zone_cv, &zone_status_lock); 1315 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 1316 } 1317 /* 1318 * zone_status_lock is implicitly released by the following. 1319 */ 1320 CALLB_CPR_EXIT(&cprinfo); 1321 } 1322 1323 /* 1324 * Block until zone enters requested state or signal is received. Return (0) 1325 * if signaled, non-zero otherwise. 1326 */ 1327 int 1328 zone_status_wait_sig(zone_t *zone, zone_status_t status) 1329 { 1330 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1331 1332 mutex_enter(&zone_status_lock); 1333 while (zone->zone_status < status) { 1334 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 1335 mutex_exit(&zone_status_lock); 1336 return (0); 1337 } 1338 } 1339 mutex_exit(&zone_status_lock); 1340 return (1); 1341 } 1342 1343 /* 1344 * Block until the zone enters the requested state or the timeout expires, 1345 * whichever happens first. Return (-1) if operation timed out, time remaining 1346 * otherwise. 1347 */ 1348 clock_t 1349 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 1350 { 1351 clock_t timeleft = 0; 1352 1353 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1354 1355 mutex_enter(&zone_status_lock); 1356 while (zone->zone_status < status && timeleft != -1) { 1357 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 1358 } 1359 mutex_exit(&zone_status_lock); 1360 return (timeleft); 1361 } 1362 1363 /* 1364 * Block until the zone enters the requested state, the current process is 1365 * signaled, or the timeout expires, whichever happens first. Return (-1) if 1366 * operation timed out, 0 if signaled, time remaining otherwise. 1367 */ 1368 clock_t 1369 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 1370 { 1371 clock_t timeleft = tim - lbolt; 1372 1373 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 1374 1375 mutex_enter(&zone_status_lock); 1376 while (zone->zone_status < status) { 1377 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 1378 tim); 1379 if (timeleft <= 0) 1380 break; 1381 } 1382 mutex_exit(&zone_status_lock); 1383 return (timeleft); 1384 } 1385 1386 /* 1387 * Zones have two reference counts: one for references from credential 1388 * structures (zone_cred_ref), and one (zone_ref) for everything else. 1389 * This is so we can allow a zone to be rebooted while there are still 1390 * outstanding cred references, since certain drivers cache dblks (which 1391 * implicitly results in cached creds). We wait for zone_ref to drop to 1392 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 1393 * later freed when the zone_cred_ref drops to 0, though nothing other 1394 * than the zone id and privilege set should be accessed once the zone 1395 * is "dead". 1396 * 1397 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 1398 * to force halt/reboot to block waiting for the zone_cred_ref to drop 1399 * to 0. This can be useful to flush out other sources of cached creds 1400 * that may be less innocuous than the driver case. 1401 */ 1402 1403 int zone_wait_for_cred = 0; 1404 1405 static void 1406 zone_hold_locked(zone_t *z) 1407 { 1408 ASSERT(MUTEX_HELD(&z->zone_lock)); 1409 z->zone_ref++; 1410 ASSERT(z->zone_ref != 0); 1411 } 1412 1413 void 1414 zone_hold(zone_t *z) 1415 { 1416 mutex_enter(&z->zone_lock); 1417 zone_hold_locked(z); 1418 mutex_exit(&z->zone_lock); 1419 } 1420 1421 /* 1422 * If the non-cred ref count drops to 1 and either the cred ref count 1423 * is 0 or we aren't waiting for cred references, the zone is ready to 1424 * be destroyed. 1425 */ 1426 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 1427 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 1428 1429 void 1430 zone_rele(zone_t *z) 1431 { 1432 boolean_t wakeup; 1433 1434 mutex_enter(&z->zone_lock); 1435 ASSERT(z->zone_ref != 0); 1436 z->zone_ref--; 1437 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1438 /* no more refs, free the structure */ 1439 mutex_exit(&z->zone_lock); 1440 zone_free(z); 1441 return; 1442 } 1443 /* signal zone_destroy so the zone can finish halting */ 1444 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 1445 mutex_exit(&z->zone_lock); 1446 1447 if (wakeup) { 1448 /* 1449 * Grabbing zonehash_lock here effectively synchronizes with 1450 * zone_destroy() to avoid missed signals. 1451 */ 1452 mutex_enter(&zonehash_lock); 1453 cv_broadcast(&zone_destroy_cv); 1454 mutex_exit(&zonehash_lock); 1455 } 1456 } 1457 1458 void 1459 zone_cred_hold(zone_t *z) 1460 { 1461 mutex_enter(&z->zone_lock); 1462 z->zone_cred_ref++; 1463 ASSERT(z->zone_cred_ref != 0); 1464 mutex_exit(&z->zone_lock); 1465 } 1466 1467 void 1468 zone_cred_rele(zone_t *z) 1469 { 1470 boolean_t wakeup; 1471 1472 mutex_enter(&z->zone_lock); 1473 ASSERT(z->zone_cred_ref != 0); 1474 z->zone_cred_ref--; 1475 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 1476 /* no more refs, free the structure */ 1477 mutex_exit(&z->zone_lock); 1478 zone_free(z); 1479 return; 1480 } 1481 /* 1482 * If zone_destroy is waiting for the cred references to drain 1483 * out, and they have, signal it. 1484 */ 1485 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 1486 zone_status_get(z) >= ZONE_IS_DEAD); 1487 mutex_exit(&z->zone_lock); 1488 1489 if (wakeup) { 1490 /* 1491 * Grabbing zonehash_lock here effectively synchronizes with 1492 * zone_destroy() to avoid missed signals. 1493 */ 1494 mutex_enter(&zonehash_lock); 1495 cv_broadcast(&zone_destroy_cv); 1496 mutex_exit(&zonehash_lock); 1497 } 1498 } 1499 1500 void 1501 zone_task_hold(zone_t *z) 1502 { 1503 mutex_enter(&z->zone_lock); 1504 z->zone_ntasks++; 1505 ASSERT(z->zone_ntasks != 0); 1506 mutex_exit(&z->zone_lock); 1507 } 1508 1509 void 1510 zone_task_rele(zone_t *zone) 1511 { 1512 uint_t refcnt; 1513 1514 mutex_enter(&zone->zone_lock); 1515 ASSERT(zone->zone_ntasks != 0); 1516 refcnt = --zone->zone_ntasks; 1517 if (refcnt > 1) { /* Common case */ 1518 mutex_exit(&zone->zone_lock); 1519 return; 1520 } 1521 zone_hold_locked(zone); /* so we can use the zone_t later */ 1522 mutex_exit(&zone->zone_lock); 1523 if (refcnt == 1) { 1524 /* 1525 * See if the zone is shutting down. 1526 */ 1527 mutex_enter(&zone_status_lock); 1528 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 1529 goto out; 1530 } 1531 1532 /* 1533 * Make sure the ntasks didn't change since we 1534 * dropped zone_lock. 1535 */ 1536 mutex_enter(&zone->zone_lock); 1537 if (refcnt != zone->zone_ntasks) { 1538 mutex_exit(&zone->zone_lock); 1539 goto out; 1540 } 1541 mutex_exit(&zone->zone_lock); 1542 1543 /* 1544 * No more user processes in the zone. The zone is empty. 1545 */ 1546 zone_status_set(zone, ZONE_IS_EMPTY); 1547 goto out; 1548 } 1549 1550 ASSERT(refcnt == 0); 1551 /* 1552 * zsched has exited; the zone is dead. 1553 */ 1554 zone->zone_zsched = NULL; /* paranoia */ 1555 mutex_enter(&zone_status_lock); 1556 zone_status_set(zone, ZONE_IS_DEAD); 1557 out: 1558 mutex_exit(&zone_status_lock); 1559 zone_rele(zone); 1560 } 1561 1562 zoneid_t 1563 getzoneid(void) 1564 { 1565 return (curproc->p_zone->zone_id); 1566 } 1567 1568 /* 1569 * Internal versions of zone_find_by_*(). These don't zone_hold() or 1570 * check the validity of a zone's state. 1571 */ 1572 static zone_t * 1573 zone_find_all_by_id(zoneid_t zoneid) 1574 { 1575 mod_hash_val_t hv; 1576 zone_t *zone = NULL; 1577 1578 ASSERT(MUTEX_HELD(&zonehash_lock)); 1579 1580 if (mod_hash_find(zonehashbyid, 1581 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 1582 zone = (zone_t *)hv; 1583 return (zone); 1584 } 1585 1586 static zone_t * 1587 zone_find_all_by_label(const ts_label_t *label) 1588 { 1589 mod_hash_val_t hv; 1590 zone_t *zone = NULL; 1591 1592 ASSERT(MUTEX_HELD(&zonehash_lock)); 1593 1594 /* 1595 * zonehashbylabel is not maintained for unlabeled systems 1596 */ 1597 if (!is_system_labeled()) 1598 return (NULL); 1599 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 1600 zone = (zone_t *)hv; 1601 return (zone); 1602 } 1603 1604 static zone_t * 1605 zone_find_all_by_name(char *name) 1606 { 1607 mod_hash_val_t hv; 1608 zone_t *zone = NULL; 1609 1610 ASSERT(MUTEX_HELD(&zonehash_lock)); 1611 1612 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 1613 zone = (zone_t *)hv; 1614 return (zone); 1615 } 1616 1617 /* 1618 * Public interface for looking up a zone by zoneid. Only returns the zone if 1619 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 1620 * Caller must call zone_rele() once it is done with the zone. 1621 * 1622 * The zone may begin the zone_destroy() sequence immediately after this 1623 * function returns, but may be safely used until zone_rele() is called. 1624 */ 1625 zone_t * 1626 zone_find_by_id(zoneid_t zoneid) 1627 { 1628 zone_t *zone; 1629 zone_status_t status; 1630 1631 mutex_enter(&zonehash_lock); 1632 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 1633 mutex_exit(&zonehash_lock); 1634 return (NULL); 1635 } 1636 status = zone_status_get(zone); 1637 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1638 /* 1639 * For all practical purposes the zone doesn't exist. 1640 */ 1641 mutex_exit(&zonehash_lock); 1642 return (NULL); 1643 } 1644 zone_hold(zone); 1645 mutex_exit(&zonehash_lock); 1646 return (zone); 1647 } 1648 1649 /* 1650 * Similar to zone_find_by_id, but using zone label as the key. 1651 */ 1652 zone_t * 1653 zone_find_by_label(const ts_label_t *label) 1654 { 1655 zone_t *zone; 1656 1657 mutex_enter(&zonehash_lock); 1658 if ((zone = zone_find_all_by_label(label)) == NULL) { 1659 mutex_exit(&zonehash_lock); 1660 return (NULL); 1661 } 1662 mutex_enter(&zone_status_lock); 1663 if (zone_status_get(zone) > ZONE_IS_DOWN) { 1664 /* 1665 * For all practical purposes the zone doesn't exist. 1666 */ 1667 mutex_exit(&zone_status_lock); 1668 zone = NULL; 1669 } else { 1670 mutex_exit(&zone_status_lock); 1671 zone_hold(zone); 1672 } 1673 mutex_exit(&zonehash_lock); 1674 return (zone); 1675 } 1676 1677 /* 1678 * Similar to zone_find_by_id, but using zone name as the key. 1679 */ 1680 zone_t * 1681 zone_find_by_name(char *name) 1682 { 1683 zone_t *zone; 1684 zone_status_t status; 1685 1686 mutex_enter(&zonehash_lock); 1687 if ((zone = zone_find_all_by_name(name)) == NULL) { 1688 mutex_exit(&zonehash_lock); 1689 return (NULL); 1690 } 1691 status = zone_status_get(zone); 1692 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1693 /* 1694 * For all practical purposes the zone doesn't exist. 1695 */ 1696 mutex_exit(&zonehash_lock); 1697 return (NULL); 1698 } 1699 zone_hold(zone); 1700 mutex_exit(&zonehash_lock); 1701 return (zone); 1702 } 1703 1704 /* 1705 * Similar to zone_find_by_id(), using the path as a key. For instance, 1706 * if there is a zone "foo" rooted at /foo/root, and the path argument 1707 * is "/foo/root/proc", it will return the held zone_t corresponding to 1708 * zone "foo". 1709 * 1710 * zone_find_by_path() always returns a non-NULL value, since at the 1711 * very least every path will be contained in the global zone. 1712 * 1713 * As with the other zone_find_by_*() functions, the caller is 1714 * responsible for zone_rele()ing the return value of this function. 1715 */ 1716 zone_t * 1717 zone_find_by_path(const char *path) 1718 { 1719 zone_t *zone; 1720 zone_t *zret = NULL; 1721 zone_status_t status; 1722 1723 if (path == NULL) { 1724 /* 1725 * Call from rootconf(). 1726 */ 1727 zone_hold(global_zone); 1728 return (global_zone); 1729 } 1730 ASSERT(*path == '/'); 1731 mutex_enter(&zonehash_lock); 1732 for (zone = list_head(&zone_active); zone != NULL; 1733 zone = list_next(&zone_active, zone)) { 1734 if (ZONE_PATH_VISIBLE(path, zone)) 1735 zret = zone; 1736 } 1737 ASSERT(zret != NULL); 1738 status = zone_status_get(zret); 1739 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 1740 /* 1741 * Zone practically doesn't exist. 1742 */ 1743 zret = global_zone; 1744 } 1745 zone_hold(zret); 1746 mutex_exit(&zonehash_lock); 1747 return (zret); 1748 } 1749 1750 /* 1751 * Get the number of cpus visible to this zone. The system-wide global 1752 * 'ncpus' is returned if pools are disabled, the caller is in the 1753 * global zone, or a NULL zone argument is passed in. 1754 */ 1755 int 1756 zone_ncpus_get(zone_t *zone) 1757 { 1758 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 1759 1760 return (myncpus != 0 ? myncpus : ncpus); 1761 } 1762 1763 /* 1764 * Get the number of online cpus visible to this zone. The system-wide 1765 * global 'ncpus_online' is returned if pools are disabled, the caller 1766 * is in the global zone, or a NULL zone argument is passed in. 1767 */ 1768 int 1769 zone_ncpus_online_get(zone_t *zone) 1770 { 1771 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 1772 1773 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 1774 } 1775 1776 /* 1777 * Return the pool to which the zone is currently bound. 1778 */ 1779 pool_t * 1780 zone_pool_get(zone_t *zone) 1781 { 1782 ASSERT(pool_lock_held()); 1783 1784 return (zone->zone_pool); 1785 } 1786 1787 /* 1788 * Set the zone's pool pointer and update the zone's visibility to match 1789 * the resources in the new pool. 1790 */ 1791 void 1792 zone_pool_set(zone_t *zone, pool_t *pool) 1793 { 1794 ASSERT(pool_lock_held()); 1795 ASSERT(MUTEX_HELD(&cpu_lock)); 1796 1797 zone->zone_pool = pool; 1798 zone_pset_set(zone, pool->pool_pset->pset_id); 1799 } 1800 1801 /* 1802 * Return the cached value of the id of the processor set to which the 1803 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 1804 * facility is disabled. 1805 */ 1806 psetid_t 1807 zone_pset_get(zone_t *zone) 1808 { 1809 ASSERT(MUTEX_HELD(&cpu_lock)); 1810 1811 return (zone->zone_psetid); 1812 } 1813 1814 /* 1815 * Set the cached value of the id of the processor set to which the zone 1816 * is currently bound. Also update the zone's visibility to match the 1817 * resources in the new processor set. 1818 */ 1819 void 1820 zone_pset_set(zone_t *zone, psetid_t newpsetid) 1821 { 1822 psetid_t oldpsetid; 1823 1824 ASSERT(MUTEX_HELD(&cpu_lock)); 1825 oldpsetid = zone_pset_get(zone); 1826 1827 if (oldpsetid == newpsetid) 1828 return; 1829 /* 1830 * Global zone sees all. 1831 */ 1832 if (zone != global_zone) { 1833 zone->zone_psetid = newpsetid; 1834 if (newpsetid != ZONE_PS_INVAL) 1835 pool_pset_visibility_add(newpsetid, zone); 1836 if (oldpsetid != ZONE_PS_INVAL) 1837 pool_pset_visibility_remove(oldpsetid, zone); 1838 } 1839 /* 1840 * Disabling pools, so we should start using the global values 1841 * for ncpus and ncpus_online. 1842 */ 1843 if (newpsetid == ZONE_PS_INVAL) { 1844 zone->zone_ncpus = 0; 1845 zone->zone_ncpus_online = 0; 1846 } 1847 } 1848 1849 /* 1850 * Walk the list of active zones and issue the provided callback for 1851 * each of them. 1852 * 1853 * Caller must not be holding any locks that may be acquired under 1854 * zonehash_lock. See comment at the beginning of the file for a list of 1855 * common locks and their interactions with zones. 1856 */ 1857 int 1858 zone_walk(int (*cb)(zone_t *, void *), void *data) 1859 { 1860 zone_t *zone; 1861 int ret = 0; 1862 zone_status_t status; 1863 1864 mutex_enter(&zonehash_lock); 1865 for (zone = list_head(&zone_active); zone != NULL; 1866 zone = list_next(&zone_active, zone)) { 1867 /* 1868 * Skip zones that shouldn't be externally visible. 1869 */ 1870 status = zone_status_get(zone); 1871 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 1872 continue; 1873 /* 1874 * Bail immediately if any callback invocation returns a 1875 * non-zero value. 1876 */ 1877 ret = (*cb)(zone, data); 1878 if (ret != 0) 1879 break; 1880 } 1881 mutex_exit(&zonehash_lock); 1882 return (ret); 1883 } 1884 1885 static int 1886 zone_set_root(zone_t *zone, const char *upath) 1887 { 1888 vnode_t *vp; 1889 int trycount; 1890 int error = 0; 1891 char *path; 1892 struct pathname upn, pn; 1893 size_t pathlen; 1894 1895 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 1896 return (error); 1897 1898 pn_alloc(&pn); 1899 1900 /* prevent infinite loop */ 1901 trycount = 10; 1902 for (;;) { 1903 if (--trycount <= 0) { 1904 error = ESTALE; 1905 goto out; 1906 } 1907 1908 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 1909 /* 1910 * VOP_ACCESS() may cover 'vp' with a new 1911 * filesystem, if 'vp' is an autoFS vnode. 1912 * Get the new 'vp' if so. 1913 */ 1914 if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED())) == 0 && 1915 (vp->v_vfsmountedhere == NULL || 1916 (error = traverse(&vp)) == 0)) { 1917 pathlen = pn.pn_pathlen + 2; 1918 path = kmem_alloc(pathlen, KM_SLEEP); 1919 (void) strncpy(path, pn.pn_path, 1920 pn.pn_pathlen + 1); 1921 path[pathlen - 2] = '/'; 1922 path[pathlen - 1] = '\0'; 1923 pn_free(&pn); 1924 pn_free(&upn); 1925 1926 /* Success! */ 1927 break; 1928 } 1929 VN_RELE(vp); 1930 } 1931 if (error != ESTALE) 1932 goto out; 1933 } 1934 1935 ASSERT(error == 0); 1936 zone->zone_rootvp = vp; /* we hold a reference to vp */ 1937 zone->zone_rootpath = path; 1938 zone->zone_rootpathlen = pathlen; 1939 return (0); 1940 1941 out: 1942 pn_free(&pn); 1943 pn_free(&upn); 1944 return (error); 1945 } 1946 1947 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 1948 ((c) >= 'a' && (c) <= 'z') || \ 1949 ((c) >= 'A' && (c) <= 'Z')) 1950 1951 static int 1952 zone_set_name(zone_t *zone, const char *uname) 1953 { 1954 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 1955 size_t len; 1956 int i, err; 1957 1958 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 1959 kmem_free(kname, ZONENAME_MAX); 1960 return (err); /* EFAULT or ENAMETOOLONG */ 1961 } 1962 1963 /* must be less than ZONENAME_MAX */ 1964 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 1965 kmem_free(kname, ZONENAME_MAX); 1966 return (EINVAL); 1967 } 1968 1969 /* 1970 * Name must start with an alphanumeric and must contain only 1971 * alphanumerics, '-', '_' and '.'. 1972 */ 1973 if (!isalnum(kname[0])) { 1974 kmem_free(kname, ZONENAME_MAX); 1975 return (EINVAL); 1976 } 1977 for (i = 1; i < len - 1; i++) { 1978 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 1979 kname[i] != '.') { 1980 kmem_free(kname, ZONENAME_MAX); 1981 return (EINVAL); 1982 } 1983 } 1984 1985 zone->zone_name = kname; 1986 return (0); 1987 } 1988 1989 /* 1990 * Similar to thread_create(), but makes sure the thread is in the appropriate 1991 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 1992 */ 1993 /*ARGSUSED*/ 1994 kthread_t * 1995 zthread_create( 1996 caddr_t stk, 1997 size_t stksize, 1998 void (*proc)(), 1999 void *arg, 2000 size_t len, 2001 pri_t pri) 2002 { 2003 kthread_t *t; 2004 zone_t *zone = curproc->p_zone; 2005 proc_t *pp = zone->zone_zsched; 2006 2007 zone_hold(zone); /* Reference to be dropped when thread exits */ 2008 2009 /* 2010 * No-one should be trying to create threads if the zone is shutting 2011 * down and there aren't any kernel threads around. See comment 2012 * in zthread_exit(). 2013 */ 2014 ASSERT(!(zone->zone_kthreads == NULL && 2015 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2016 /* 2017 * Create a thread, but don't let it run until we've finished setting 2018 * things up. 2019 */ 2020 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2021 ASSERT(t->t_forw == NULL); 2022 mutex_enter(&zone_status_lock); 2023 if (zone->zone_kthreads == NULL) { 2024 t->t_forw = t->t_back = t; 2025 } else { 2026 kthread_t *tx = zone->zone_kthreads; 2027 2028 t->t_forw = tx; 2029 t->t_back = tx->t_back; 2030 tx->t_back->t_forw = t; 2031 tx->t_back = t; 2032 } 2033 zone->zone_kthreads = t; 2034 mutex_exit(&zone_status_lock); 2035 2036 mutex_enter(&pp->p_lock); 2037 t->t_proc_flag |= TP_ZTHREAD; 2038 project_rele(t->t_proj); 2039 t->t_proj = project_hold(pp->p_task->tk_proj); 2040 2041 /* 2042 * Setup complete, let it run. 2043 */ 2044 thread_lock(t); 2045 t->t_schedflag |= TS_ALLSTART; 2046 setrun_locked(t); 2047 thread_unlock(t); 2048 2049 mutex_exit(&pp->p_lock); 2050 2051 return (t); 2052 } 2053 2054 /* 2055 * Similar to thread_exit(). Must be called by threads created via 2056 * zthread_exit(). 2057 */ 2058 void 2059 zthread_exit(void) 2060 { 2061 kthread_t *t = curthread; 2062 proc_t *pp = curproc; 2063 zone_t *zone = pp->p_zone; 2064 2065 mutex_enter(&zone_status_lock); 2066 2067 /* 2068 * Reparent to p0 2069 */ 2070 kpreempt_disable(); 2071 mutex_enter(&pp->p_lock); 2072 t->t_proc_flag &= ~TP_ZTHREAD; 2073 t->t_procp = &p0; 2074 hat_thread_exit(t); 2075 mutex_exit(&pp->p_lock); 2076 kpreempt_enable(); 2077 2078 if (t->t_back == t) { 2079 ASSERT(t->t_forw == t); 2080 /* 2081 * If the zone is empty, once the thread count 2082 * goes to zero no further kernel threads can be 2083 * created. This is because if the creator is a process 2084 * in the zone, then it must have exited before the zone 2085 * state could be set to ZONE_IS_EMPTY. 2086 * Otherwise, if the creator is a kernel thread in the 2087 * zone, the thread count is non-zero. 2088 * 2089 * This really means that non-zone kernel threads should 2090 * not create zone kernel threads. 2091 */ 2092 zone->zone_kthreads = NULL; 2093 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 2094 zone_status_set(zone, ZONE_IS_DOWN); 2095 } 2096 } else { 2097 t->t_forw->t_back = t->t_back; 2098 t->t_back->t_forw = t->t_forw; 2099 if (zone->zone_kthreads == t) 2100 zone->zone_kthreads = t->t_forw; 2101 } 2102 mutex_exit(&zone_status_lock); 2103 zone_rele(zone); 2104 thread_exit(); 2105 /* NOTREACHED */ 2106 } 2107 2108 static void 2109 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 2110 { 2111 vnode_t *oldvp; 2112 2113 /* we're going to hold a reference here to the directory */ 2114 VN_HOLD(vp); 2115 2116 #ifdef C2_AUDIT 2117 if (audit_active) /* update abs cwd/root path see c2audit.c */ 2118 audit_chdirec(vp, vpp); 2119 #endif 2120 2121 mutex_enter(&pp->p_lock); 2122 oldvp = *vpp; 2123 *vpp = vp; 2124 mutex_exit(&pp->p_lock); 2125 if (oldvp != NULL) 2126 VN_RELE(oldvp); 2127 } 2128 2129 /* 2130 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 2131 */ 2132 static int 2133 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 2134 { 2135 nvpair_t *nvp = NULL; 2136 boolean_t priv_set = B_FALSE; 2137 boolean_t limit_set = B_FALSE; 2138 boolean_t action_set = B_FALSE; 2139 2140 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2141 const char *name; 2142 uint64_t ui64; 2143 2144 name = nvpair_name(nvp); 2145 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 2146 return (EINVAL); 2147 (void) nvpair_value_uint64(nvp, &ui64); 2148 if (strcmp(name, "privilege") == 0) { 2149 /* 2150 * Currently only privileged values are allowed, but 2151 * this may change in the future. 2152 */ 2153 if (ui64 != RCPRIV_PRIVILEGED) 2154 return (EINVAL); 2155 rv->rcv_privilege = ui64; 2156 priv_set = B_TRUE; 2157 } else if (strcmp(name, "limit") == 0) { 2158 rv->rcv_value = ui64; 2159 limit_set = B_TRUE; 2160 } else if (strcmp(name, "action") == 0) { 2161 if (ui64 != RCTL_LOCAL_NOACTION && 2162 ui64 != RCTL_LOCAL_DENY) 2163 return (EINVAL); 2164 rv->rcv_flagaction = ui64; 2165 action_set = B_TRUE; 2166 } else { 2167 return (EINVAL); 2168 } 2169 } 2170 2171 if (!(priv_set && limit_set && action_set)) 2172 return (EINVAL); 2173 rv->rcv_action_signal = 0; 2174 rv->rcv_action_recipient = NULL; 2175 rv->rcv_action_recip_pid = -1; 2176 rv->rcv_firing_time = 0; 2177 2178 return (0); 2179 } 2180 2181 void 2182 zone_icode(void) 2183 { 2184 proc_t *p = ttoproc(curthread); 2185 struct core_globals *cg; 2186 2187 /* 2188 * For all purposes (ZONE_ATTR_INITPID and restart_init), 2189 * storing just the pid of init is sufficient. 2190 */ 2191 p->p_zone->zone_proc_initpid = p->p_pid; 2192 2193 /* 2194 * Allocate user address space and stack segment 2195 */ 2196 2197 p->p_cstime = p->p_stime = p->p_cutime = p->p_utime = 0; 2198 p->p_usrstack = (caddr_t)USRSTACK32; 2199 p->p_model = DATAMODEL_ILP32; 2200 p->p_stkprot = PROT_ZFOD & ~PROT_EXEC; 2201 p->p_datprot = PROT_ZFOD & ~PROT_EXEC; 2202 p->p_stk_ctl = INT32_MAX; 2203 2204 p->p_as = as_alloc(); 2205 p->p_as->a_userlimit = (caddr_t)USERLIMIT32; 2206 (void) hat_setup(p->p_as->a_hat, HAT_INIT); 2207 2208 cg = zone_getspecific(core_zone_key, p->p_zone); 2209 ASSERT(cg != NULL); 2210 corectl_path_hold(cg->core_default_path); 2211 corectl_content_hold(cg->core_default_content); 2212 p->p_corefile = cg->core_default_path; 2213 p->p_content = cg->core_default_content; 2214 2215 init_mstate(curthread, LMS_SYSTEM); 2216 2217 p->p_zone->zone_boot_err = exec_init(zone_initname, 0, 2218 p->p_zone->zone_bootargs); 2219 2220 mutex_enter(&zone_status_lock); 2221 if (p->p_zone->zone_boot_err != 0) { 2222 /* 2223 * Make sure we are still in the booting state-- we could have 2224 * raced and already be shutting down, or even further along. 2225 */ 2226 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2227 zone_status_set(p->p_zone, ZONE_IS_SHUTTING_DOWN); 2228 mutex_exit(&zone_status_lock); 2229 /* It's gone bad, dispose of the process */ 2230 if (proc_exit(CLD_EXITED, p->p_zone->zone_boot_err) != 0) { 2231 mutex_enter(&p->p_lock); 2232 ASSERT(p->p_flag & SEXITLWPS); 2233 lwp_exit(); 2234 } 2235 } else { 2236 if (zone_status_get(p->p_zone) == ZONE_IS_BOOTING) 2237 zone_status_set(p->p_zone, ZONE_IS_RUNNING); 2238 mutex_exit(&zone_status_lock); 2239 /* cause the process to return to userland. */ 2240 lwp_rtt(); 2241 } 2242 } 2243 2244 struct zsched_arg { 2245 zone_t *zone; 2246 nvlist_t *nvlist; 2247 }; 2248 2249 /* 2250 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 2251 * anything to do with scheduling, but rather with the fact that 2252 * per-zone kernel threads are parented to zsched, just like regular 2253 * kernel threads are parented to sched (p0). 2254 * 2255 * zsched is also responsible for launching init for the zone. 2256 */ 2257 static void 2258 zsched(void *arg) 2259 { 2260 struct zsched_arg *za = arg; 2261 proc_t *pp = curproc; 2262 proc_t *initp = proc_init; 2263 zone_t *zone = za->zone; 2264 cred_t *cr, *oldcred; 2265 rctl_set_t *set; 2266 rctl_alloc_gp_t *gp; 2267 contract_t *ct = NULL; 2268 task_t *tk, *oldtk; 2269 rctl_entity_p_t e; 2270 kproject_t *pj; 2271 2272 nvlist_t *nvl = za->nvlist; 2273 nvpair_t *nvp = NULL; 2274 2275 bcopy("zsched", u.u_psargs, sizeof ("zsched")); 2276 bcopy("zsched", u.u_comm, sizeof ("zsched")); 2277 u.u_argc = 0; 2278 u.u_argv = NULL; 2279 u.u_envp = NULL; 2280 closeall(P_FINFO(pp)); 2281 2282 /* 2283 * We are this zone's "zsched" process. As the zone isn't generally 2284 * visible yet we don't need to grab any locks before initializing its 2285 * zone_proc pointer. 2286 */ 2287 zone_hold(zone); /* this hold is released by zone_destroy() */ 2288 zone->zone_zsched = pp; 2289 mutex_enter(&pp->p_lock); 2290 pp->p_zone = zone; 2291 mutex_exit(&pp->p_lock); 2292 2293 /* 2294 * Disassociate process from its 'parent'; parent ourselves to init 2295 * (pid 1) and change other values as needed. 2296 */ 2297 sess_create(); 2298 2299 mutex_enter(&pidlock); 2300 proc_detach(pp); 2301 pp->p_ppid = 1; 2302 pp->p_flag |= SZONETOP; 2303 pp->p_ancpid = 1; 2304 pp->p_parent = initp; 2305 pp->p_psibling = NULL; 2306 if (initp->p_child) 2307 initp->p_child->p_psibling = pp; 2308 pp->p_sibling = initp->p_child; 2309 initp->p_child = pp; 2310 2311 /* Decrement what newproc() incremented. */ 2312 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 2313 /* 2314 * Our credentials are about to become kcred-like, so we don't care 2315 * about the caller's ruid. 2316 */ 2317 upcount_inc(crgetruid(kcred), zone->zone_id); 2318 mutex_exit(&pidlock); 2319 2320 /* 2321 * getting out of global zone, so decrement lwp counts 2322 */ 2323 pj = pp->p_task->tk_proj; 2324 mutex_enter(&global_zone->zone_nlwps_lock); 2325 pj->kpj_nlwps -= pp->p_lwpcnt; 2326 global_zone->zone_nlwps -= pp->p_lwpcnt; 2327 mutex_exit(&global_zone->zone_nlwps_lock); 2328 2329 /* 2330 * Create and join a new task in project '0' of this zone. 2331 * 2332 * We don't need to call holdlwps() since we know we're the only lwp in 2333 * this process. 2334 * 2335 * task_join() returns with p_lock held. 2336 */ 2337 tk = task_create(0, zone); 2338 mutex_enter(&cpu_lock); 2339 oldtk = task_join(tk, 0); 2340 mutex_exit(&curproc->p_lock); 2341 mutex_exit(&cpu_lock); 2342 task_rele(oldtk); 2343 2344 /* 2345 * add lwp counts to zsched's zone, and increment project's task count 2346 * due to the task created in the above tasksys_settaskid 2347 */ 2348 pj = pp->p_task->tk_proj; 2349 mutex_enter(&zone->zone_nlwps_lock); 2350 pj->kpj_nlwps += pp->p_lwpcnt; 2351 pj->kpj_ntasks += 1; 2352 zone->zone_nlwps += pp->p_lwpcnt; 2353 mutex_exit(&zone->zone_nlwps_lock); 2354 2355 /* 2356 * The process was created by a process in the global zone, hence the 2357 * credentials are wrong. We might as well have kcred-ish credentials. 2358 */ 2359 cr = zone->zone_kcred; 2360 crhold(cr); 2361 mutex_enter(&pp->p_crlock); 2362 oldcred = pp->p_cred; 2363 pp->p_cred = cr; 2364 mutex_exit(&pp->p_crlock); 2365 crfree(oldcred); 2366 2367 /* 2368 * Hold credentials again (for thread) 2369 */ 2370 crhold(cr); 2371 2372 /* 2373 * p_lwpcnt can't change since this is a kernel process. 2374 */ 2375 crset(pp, cr); 2376 2377 /* 2378 * Chroot 2379 */ 2380 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 2381 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 2382 2383 /* 2384 * Initialize zone's rctl set. 2385 */ 2386 set = rctl_set_create(); 2387 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2388 mutex_enter(&pp->p_lock); 2389 e.rcep_p.zone = zone; 2390 e.rcep_t = RCENTITY_ZONE; 2391 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 2392 mutex_exit(&pp->p_lock); 2393 rctl_prealloc_destroy(gp); 2394 2395 /* 2396 * Apply the rctls passed in to zone_create(). This is basically a list 2397 * assignment: all of the old values are removed and the new ones 2398 * inserted. That is, if an empty list is passed in, all values are 2399 * removed. 2400 */ 2401 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2402 rctl_dict_entry_t *rde; 2403 rctl_hndl_t hndl; 2404 char *name; 2405 nvlist_t **nvlarray; 2406 uint_t i, nelem; 2407 int error; /* For ASSERT()s */ 2408 2409 name = nvpair_name(nvp); 2410 hndl = rctl_hndl_lookup(name); 2411 ASSERT(hndl != -1); 2412 rde = rctl_dict_lookup_hndl(hndl); 2413 ASSERT(rde != NULL); 2414 2415 for (; /* ever */; ) { 2416 rctl_val_t oval; 2417 2418 mutex_enter(&pp->p_lock); 2419 error = rctl_local_get(hndl, NULL, &oval, pp); 2420 mutex_exit(&pp->p_lock); 2421 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 2422 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 2423 if (oval.rcv_privilege == RCPRIV_SYSTEM) 2424 break; 2425 mutex_enter(&pp->p_lock); 2426 error = rctl_local_delete(hndl, &oval, pp); 2427 mutex_exit(&pp->p_lock); 2428 ASSERT(error == 0); 2429 } 2430 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2431 ASSERT(error == 0); 2432 for (i = 0; i < nelem; i++) { 2433 rctl_val_t *nvalp; 2434 2435 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2436 error = nvlist2rctlval(nvlarray[i], nvalp); 2437 ASSERT(error == 0); 2438 /* 2439 * rctl_local_insert can fail if the value being 2440 * inserted is a duplicate; this is OK. 2441 */ 2442 mutex_enter(&pp->p_lock); 2443 if (rctl_local_insert(hndl, nvalp, pp) != 0) 2444 kmem_cache_free(rctl_val_cache, nvalp); 2445 mutex_exit(&pp->p_lock); 2446 } 2447 } 2448 /* 2449 * Tell the world that we're done setting up. 2450 * 2451 * At this point we want to set the zone status to ZONE_IS_READY 2452 * and atomically set the zone's processor set visibility. Once 2453 * we drop pool_lock() this zone will automatically get updated 2454 * to reflect any future changes to the pools configuration. 2455 */ 2456 pool_lock(); 2457 mutex_enter(&cpu_lock); 2458 mutex_enter(&zonehash_lock); 2459 zone_uniqid(zone); 2460 zone_zsd_configure(zone); 2461 if (pool_state == POOL_ENABLED) 2462 zone_pset_set(zone, pool_default->pool_pset->pset_id); 2463 mutex_enter(&zone_status_lock); 2464 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2465 zone_status_set(zone, ZONE_IS_READY); 2466 mutex_exit(&zone_status_lock); 2467 mutex_exit(&zonehash_lock); 2468 mutex_exit(&cpu_lock); 2469 pool_unlock(); 2470 2471 /* 2472 * Once we see the zone transition to the ZONE_IS_BOOTING state, 2473 * we launch init, and set the state to running. 2474 */ 2475 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 2476 2477 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 2478 id_t cid; 2479 2480 /* 2481 * Ok, this is a little complicated. We need to grab the 2482 * zone's pool's scheduling class ID; note that by now, we 2483 * are already bound to a pool if we need to be (zoneadmd 2484 * will have done that to us while we're in the READY 2485 * state). *But* the scheduling class for the zone's 'init' 2486 * must be explicitly passed to newproc, which doesn't 2487 * respect pool bindings. 2488 * 2489 * We hold the pool_lock across the call to newproc() to 2490 * close the obvious race: the pool's scheduling class 2491 * could change before we manage to create the LWP with 2492 * classid 'cid'. 2493 */ 2494 pool_lock(); 2495 cid = pool_get_class(zone->zone_pool); 2496 if (cid == -1) 2497 cid = defaultcid; 2498 2499 /* 2500 * If this fails, zone_boot will ultimately fail. The 2501 * state of the zone will be set to SHUTTING_DOWN-- userland 2502 * will have to tear down the zone, and fail, or try again. 2503 */ 2504 if ((zone->zone_boot_err = newproc(zone_icode, NULL, cid, 2505 minclsyspri - 1, &ct)) != 0) { 2506 mutex_enter(&zone_status_lock); 2507 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 2508 mutex_exit(&zone_status_lock); 2509 } 2510 pool_unlock(); 2511 } 2512 2513 /* 2514 * Wait for zone_destroy() to be called. This is what we spend 2515 * most of our life doing. 2516 */ 2517 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 2518 2519 if (ct) 2520 /* 2521 * At this point the process contract should be empty. 2522 * (Though if it isn't, it's not the end of the world.) 2523 */ 2524 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 2525 2526 /* 2527 * Allow kcred to be freed when all referring processes 2528 * (including this one) go away. We can't just do this in 2529 * zone_free because we need to wait for the zone_cred_ref to 2530 * drop to 0 before calling zone_free, and the existence of 2531 * zone_kcred will prevent that. Thus, we call crfree here to 2532 * balance the crdup in zone_create. The crhold calls earlier 2533 * in zsched will be dropped when the thread and process exit. 2534 */ 2535 crfree(zone->zone_kcred); 2536 zone->zone_kcred = NULL; 2537 2538 exit(CLD_EXITED, 0); 2539 } 2540 2541 /* 2542 * Helper function to determine if there are any submounts of the 2543 * provided path. Used to make sure the zone doesn't "inherit" any 2544 * mounts from before it is created. 2545 */ 2546 static uint_t 2547 zone_mount_count(const char *rootpath) 2548 { 2549 vfs_t *vfsp; 2550 uint_t count = 0; 2551 size_t rootpathlen = strlen(rootpath); 2552 2553 /* 2554 * Holding zonehash_lock prevents race conditions with 2555 * vfs_list_add()/vfs_list_remove() since we serialize with 2556 * zone_find_by_path(). 2557 */ 2558 ASSERT(MUTEX_HELD(&zonehash_lock)); 2559 /* 2560 * The rootpath must end with a '/' 2561 */ 2562 ASSERT(rootpath[rootpathlen - 1] == '/'); 2563 2564 /* 2565 * This intentionally does not count the rootpath itself if that 2566 * happens to be a mount point. 2567 */ 2568 vfs_list_read_lock(); 2569 vfsp = rootvfs; 2570 do { 2571 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 2572 rootpathlen) == 0) 2573 count++; 2574 vfsp = vfsp->vfs_next; 2575 } while (vfsp != rootvfs); 2576 vfs_list_unlock(); 2577 return (count); 2578 } 2579 2580 /* 2581 * Helper function to make sure that a zone created on 'rootpath' 2582 * wouldn't end up containing other zones' rootpaths. 2583 */ 2584 static boolean_t 2585 zone_is_nested(const char *rootpath) 2586 { 2587 zone_t *zone; 2588 size_t rootpathlen = strlen(rootpath); 2589 size_t len; 2590 2591 ASSERT(MUTEX_HELD(&zonehash_lock)); 2592 2593 for (zone = list_head(&zone_active); zone != NULL; 2594 zone = list_next(&zone_active, zone)) { 2595 if (zone == global_zone) 2596 continue; 2597 len = strlen(zone->zone_rootpath); 2598 if (strncmp(rootpath, zone->zone_rootpath, 2599 MIN(rootpathlen, len)) == 0) 2600 return (B_TRUE); 2601 } 2602 return (B_FALSE); 2603 } 2604 2605 static int 2606 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 2607 size_t zone_privssz) 2608 { 2609 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2610 2611 if (zone_privssz < sizeof (priv_set_t)) 2612 return (set_errno(ENOMEM)); 2613 2614 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 2615 kmem_free(privs, sizeof (priv_set_t)); 2616 return (EFAULT); 2617 } 2618 2619 zone->zone_privset = privs; 2620 return (0); 2621 } 2622 2623 /* 2624 * We make creative use of nvlists to pass in rctls from userland. The list is 2625 * a list of the following structures: 2626 * 2627 * (name = rctl_name, value = nvpair_list_array) 2628 * 2629 * Where each element of the nvpair_list_array is of the form: 2630 * 2631 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 2632 * (name = "limit", value = uint64_t), 2633 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 2634 */ 2635 static int 2636 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 2637 { 2638 nvpair_t *nvp = NULL; 2639 nvlist_t *nvl = NULL; 2640 char *kbuf; 2641 int error; 2642 rctl_val_t rv; 2643 2644 *nvlp = NULL; 2645 2646 if (buflen == 0) 2647 return (0); 2648 2649 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2650 return (ENOMEM); 2651 if (copyin(ubuf, kbuf, buflen)) { 2652 error = EFAULT; 2653 goto out; 2654 } 2655 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 2656 /* 2657 * nvl may have been allocated/free'd, but the value set to 2658 * non-NULL, so we reset it here. 2659 */ 2660 nvl = NULL; 2661 error = EINVAL; 2662 goto out; 2663 } 2664 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2665 rctl_dict_entry_t *rde; 2666 rctl_hndl_t hndl; 2667 nvlist_t **nvlarray; 2668 uint_t i, nelem; 2669 char *name; 2670 2671 error = EINVAL; 2672 name = nvpair_name(nvp); 2673 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 2674 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 2675 goto out; 2676 } 2677 if ((hndl = rctl_hndl_lookup(name)) == -1) { 2678 goto out; 2679 } 2680 rde = rctl_dict_lookup_hndl(hndl); 2681 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 2682 ASSERT(error == 0); 2683 for (i = 0; i < nelem; i++) { 2684 if (error = nvlist2rctlval(nvlarray[i], &rv)) 2685 goto out; 2686 } 2687 if (rctl_invalid_value(rde, &rv)) { 2688 error = EINVAL; 2689 goto out; 2690 } 2691 } 2692 error = 0; 2693 *nvlp = nvl; 2694 out: 2695 kmem_free(kbuf, buflen); 2696 if (error && nvl != NULL) 2697 nvlist_free(nvl); 2698 return (error); 2699 } 2700 2701 int 2702 zone_create_error(int er_error, int er_ext, int *er_out) { 2703 if (er_out != NULL) { 2704 if (copyout(&er_ext, er_out, sizeof (int))) { 2705 return (set_errno(EFAULT)); 2706 } 2707 } 2708 return (set_errno(er_error)); 2709 } 2710 2711 static int 2712 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 2713 { 2714 ts_label_t *tsl; 2715 bslabel_t blab; 2716 2717 /* Get label from user */ 2718 if (copyin(lab, &blab, sizeof (blab)) != 0) 2719 return (EFAULT); 2720 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 2721 if (tsl == NULL) 2722 return (ENOMEM); 2723 2724 zone->zone_slabel = tsl; 2725 return (0); 2726 } 2727 2728 /* 2729 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 2730 */ 2731 static int 2732 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 2733 { 2734 char *kbuf; 2735 char *dataset, *next; 2736 zone_dataset_t *zd; 2737 size_t len; 2738 2739 if (ubuf == NULL || buflen == 0) 2740 return (0); 2741 2742 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 2743 return (ENOMEM); 2744 2745 if (copyin(ubuf, kbuf, buflen) != 0) { 2746 kmem_free(kbuf, buflen); 2747 return (EFAULT); 2748 } 2749 2750 dataset = next = kbuf; 2751 for (;;) { 2752 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 2753 2754 next = strchr(dataset, ','); 2755 2756 if (next == NULL) 2757 len = strlen(dataset); 2758 else 2759 len = next - dataset; 2760 2761 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 2762 bcopy(dataset, zd->zd_dataset, len); 2763 zd->zd_dataset[len] = '\0'; 2764 2765 list_insert_head(&zone->zone_datasets, zd); 2766 2767 if (next == NULL) 2768 break; 2769 2770 dataset = next + 1; 2771 } 2772 2773 kmem_free(kbuf, buflen); 2774 return (0); 2775 } 2776 2777 /* 2778 * System call to create/initialize a new zone named 'zone_name', rooted 2779 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 2780 * and initialized with the zone-wide rctls described in 'rctlbuf', and 2781 * with labeling set by 'match', 'doi', and 'label'. 2782 * 2783 * If extended error is non-null, we may use it to return more detailed 2784 * error information. 2785 */ 2786 static zoneid_t 2787 zone_create(const char *zone_name, const char *zone_root, 2788 const priv_set_t *zone_privs, size_t zone_privssz, 2789 caddr_t rctlbuf, size_t rctlbufsz, 2790 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 2791 int match, uint32_t doi, const bslabel_t *label) 2792 { 2793 struct zsched_arg zarg; 2794 nvlist_t *rctls = NULL; 2795 proc_t *pp = curproc; 2796 zone_t *zone, *ztmp; 2797 zoneid_t zoneid; 2798 int error; 2799 int error2 = 0; 2800 char *str; 2801 cred_t *zkcr; 2802 2803 if (secpolicy_zone_config(CRED()) != 0) 2804 return (set_errno(EPERM)); 2805 2806 /* can't boot zone from within chroot environment */ 2807 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 2808 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 2809 extended_error)); 2810 2811 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 2812 zoneid = zone->zone_id = id_alloc(zoneid_space); 2813 zone->zone_status = ZONE_IS_UNINITIALIZED; 2814 zone->zone_pool = pool_default; 2815 zone->zone_pool_mod = gethrtime(); 2816 zone->zone_psetid = ZONE_PS_INVAL; 2817 zone->zone_ncpus = 0; 2818 zone->zone_ncpus_online = 0; 2819 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 2820 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2821 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 2822 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 2823 offsetof(struct zsd_entry, zsd_linkage)); 2824 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 2825 offsetof(zone_dataset_t, zd_linkage)); 2826 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2827 2828 if ((error = zone_set_name(zone, zone_name)) != 0) { 2829 zone_free(zone); 2830 return (zone_create_error(error, 0, extended_error)); 2831 } 2832 2833 if ((error = zone_set_root(zone, zone_root)) != 0) { 2834 zone_free(zone); 2835 return (zone_create_error(error, 0, extended_error)); 2836 } 2837 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 2838 zone_free(zone); 2839 return (zone_create_error(error, 0, extended_error)); 2840 } 2841 2842 /* initialize node name to be the same as zone name */ 2843 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2844 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 2845 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 2846 2847 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 2848 zone->zone_domain[0] = '\0'; 2849 zone->zone_shares = 1; 2850 zone->zone_bootargs = NULL; 2851 2852 /* 2853 * Zsched initializes the rctls. 2854 */ 2855 zone->zone_rctls = NULL; 2856 2857 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 2858 zone_free(zone); 2859 return (zone_create_error(error, 0, extended_error)); 2860 } 2861 2862 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 2863 zone_free(zone); 2864 return (set_errno(error)); 2865 } 2866 2867 /* 2868 * Read in the trusted system parameters: 2869 * match flag and sensitivity label. 2870 */ 2871 zone->zone_match = match; 2872 if (is_system_labeled()) { 2873 error = zone_set_label(zone, label, doi); 2874 if (error != 0) { 2875 zone_free(zone); 2876 return (set_errno(error)); 2877 } 2878 } else { 2879 /* all zones get an admin_low label if system is not labeled */ 2880 zone->zone_slabel = l_admin_low; 2881 label_hold(l_admin_low); 2882 } 2883 2884 /* 2885 * Stop all lwps since that's what normally happens as part of fork(). 2886 * This needs to happen before we grab any locks to avoid deadlock 2887 * (another lwp in the process could be waiting for the held lock). 2888 */ 2889 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 2890 zone_free(zone); 2891 if (rctls) 2892 nvlist_free(rctls); 2893 return (zone_create_error(error, 0, extended_error)); 2894 } 2895 2896 if (block_mounts() == 0) { 2897 mutex_enter(&pp->p_lock); 2898 if (curthread != pp->p_agenttp) 2899 continuelwps(pp); 2900 mutex_exit(&pp->p_lock); 2901 zone_free(zone); 2902 if (rctls) 2903 nvlist_free(rctls); 2904 return (zone_create_error(error, 0, extended_error)); 2905 } 2906 2907 /* 2908 * Set up credential for kernel access. After this, any errors 2909 * should go through the dance in errout rather than calling 2910 * zone_free directly. 2911 */ 2912 zone->zone_kcred = crdup(kcred); 2913 crsetzone(zone->zone_kcred, zone); 2914 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 2915 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 2916 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 2917 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 2918 2919 mutex_enter(&zonehash_lock); 2920 /* 2921 * Make sure zone doesn't already exist. 2922 * 2923 * If the system and zone are labeled, 2924 * make sure no other zone exists that has the same label. 2925 */ 2926 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 2927 (zone->zone_slabel != NULL && 2928 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 2929 zone_status_t status; 2930 2931 status = zone_status_get(ztmp); 2932 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 2933 error = EEXIST; 2934 else 2935 error = EBUSY; 2936 goto errout; 2937 } 2938 2939 /* 2940 * Don't allow zone creations which would cause one zone's rootpath to 2941 * be accessible from that of another (non-global) zone. 2942 */ 2943 if (zone_is_nested(zone->zone_rootpath)) { 2944 error = EBUSY; 2945 goto errout; 2946 } 2947 2948 ASSERT(zonecount != 0); /* check for leaks */ 2949 if (zonecount + 1 > maxzones) { 2950 error = ENOMEM; 2951 goto errout; 2952 } 2953 2954 if (zone_mount_count(zone->zone_rootpath) != 0) { 2955 error = EBUSY; 2956 error2 = ZE_AREMOUNTS; 2957 goto errout; 2958 } 2959 2960 /* 2961 * Zone is still incomplete, but we need to drop all locks while 2962 * zsched() initializes this zone's kernel process. We 2963 * optimistically add the zone to the hashtable and associated 2964 * lists so a parallel zone_create() doesn't try to create the 2965 * same zone. 2966 */ 2967 zonecount++; 2968 (void) mod_hash_insert(zonehashbyid, 2969 (mod_hash_key_t)(uintptr_t)zone->zone_id, 2970 (mod_hash_val_t)(uintptr_t)zone); 2971 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 2972 (void) strcpy(str, zone->zone_name); 2973 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 2974 (mod_hash_val_t)(uintptr_t)zone); 2975 if (is_system_labeled()) { 2976 (void) mod_hash_insert(zonehashbylabel, 2977 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 2978 } 2979 2980 /* 2981 * Insert into active list. At this point there are no 'hold's 2982 * on the zone, but everyone else knows not to use it, so we can 2983 * continue to use it. zsched() will do a zone_hold() if the 2984 * newproc() is successful. 2985 */ 2986 list_insert_tail(&zone_active, zone); 2987 mutex_exit(&zonehash_lock); 2988 2989 zarg.zone = zone; 2990 zarg.nvlist = rctls; 2991 /* 2992 * The process, task, and project rctls are probably wrong; 2993 * we need an interface to get the default values of all rctls, 2994 * and initialize zsched appropriately. I'm not sure that that 2995 * makes much of a difference, though. 2996 */ 2997 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 2998 /* 2999 * We need to undo all globally visible state. 3000 */ 3001 mutex_enter(&zonehash_lock); 3002 list_remove(&zone_active, zone); 3003 if (is_system_labeled()) { 3004 ASSERT(zone->zone_slabel != NULL); 3005 (void) mod_hash_destroy(zonehashbylabel, 3006 (mod_hash_key_t)zone->zone_slabel); 3007 } 3008 (void) mod_hash_destroy(zonehashbyname, 3009 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3010 (void) mod_hash_destroy(zonehashbyid, 3011 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3012 ASSERT(zonecount > 1); 3013 zonecount--; 3014 goto errout; 3015 } 3016 3017 /* 3018 * Zone creation can't fail from now on. 3019 */ 3020 3021 /* 3022 * Let the other lwps continue. 3023 */ 3024 mutex_enter(&pp->p_lock); 3025 if (curthread != pp->p_agenttp) 3026 continuelwps(pp); 3027 mutex_exit(&pp->p_lock); 3028 3029 /* 3030 * Wait for zsched to finish initializing the zone. 3031 */ 3032 zone_status_wait(zone, ZONE_IS_READY); 3033 /* 3034 * The zone is fully visible, so we can let mounts progress. 3035 */ 3036 resume_mounts(); 3037 if (rctls) 3038 nvlist_free(rctls); 3039 3040 return (zoneid); 3041 3042 errout: 3043 mutex_exit(&zonehash_lock); 3044 /* 3045 * Let the other lwps continue. 3046 */ 3047 mutex_enter(&pp->p_lock); 3048 if (curthread != pp->p_agenttp) 3049 continuelwps(pp); 3050 mutex_exit(&pp->p_lock); 3051 3052 resume_mounts(); 3053 if (rctls) 3054 nvlist_free(rctls); 3055 /* 3056 * There is currently one reference to the zone, a cred_ref from 3057 * zone_kcred. To free the zone, we call crfree, which will call 3058 * zone_cred_rele, which will call zone_free. 3059 */ 3060 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 3061 ASSERT(zone->zone_kcred->cr_ref == 1); 3062 ASSERT(zone->zone_ref == 0); 3063 zkcr = zone->zone_kcred; 3064 zone->zone_kcred = NULL; 3065 crfree(zkcr); /* triggers call to zone_free */ 3066 return (zone_create_error(error, error2, extended_error)); 3067 } 3068 3069 /* 3070 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 3071 * the heavy lifting. 3072 */ 3073 static int 3074 zone_boot(zoneid_t zoneid, const char *bootargs) 3075 { 3076 int err; 3077 zone_t *zone; 3078 3079 if (secpolicy_zone_config(CRED()) != 0) 3080 return (set_errno(EPERM)); 3081 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3082 return (set_errno(EINVAL)); 3083 3084 mutex_enter(&zonehash_lock); 3085 /* 3086 * Look for zone under hash lock to prevent races with calls to 3087 * zone_shutdown, zone_destroy, etc. 3088 */ 3089 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3090 mutex_exit(&zonehash_lock); 3091 return (set_errno(EINVAL)); 3092 } 3093 3094 if ((err = zone_set_bootargs(zone, bootargs)) != 0) { 3095 mutex_exit(&zonehash_lock); 3096 return (set_errno(err)); 3097 } 3098 3099 mutex_enter(&zone_status_lock); 3100 if (zone_status_get(zone) != ZONE_IS_READY) { 3101 mutex_exit(&zone_status_lock); 3102 mutex_exit(&zonehash_lock); 3103 return (set_errno(EINVAL)); 3104 } 3105 zone_status_set(zone, ZONE_IS_BOOTING); 3106 mutex_exit(&zone_status_lock); 3107 3108 zone_hold(zone); /* so we can use the zone_t later */ 3109 mutex_exit(&zonehash_lock); 3110 3111 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 3112 zone_rele(zone); 3113 return (set_errno(EINTR)); 3114 } 3115 3116 /* 3117 * Boot (starting init) might have failed, in which case the zone 3118 * will go to the SHUTTING_DOWN state; an appropriate errno will 3119 * be placed in zone->zone_boot_err, and so we return that. 3120 */ 3121 err = zone->zone_boot_err; 3122 zone_rele(zone); 3123 return (err ? set_errno(err) : 0); 3124 } 3125 3126 /* 3127 * Kills all user processes in the zone, waiting for them all to exit 3128 * before returning. 3129 */ 3130 static int 3131 zone_empty(zone_t *zone) 3132 { 3133 int waitstatus; 3134 3135 /* 3136 * We need to drop zonehash_lock before killing all 3137 * processes, otherwise we'll deadlock with zone_find_* 3138 * which can be called from the exit path. 3139 */ 3140 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 3141 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 3142 ZONE_IS_EMPTY)) == -1) { 3143 killall(zone->zone_id); 3144 } 3145 /* 3146 * return EINTR if we were signaled 3147 */ 3148 if (waitstatus == 0) 3149 return (EINTR); 3150 return (0); 3151 } 3152 3153 /* 3154 * This function implements the policy for zone visibility. 3155 * 3156 * In standard Solaris, a non-global zone can only see itself. 3157 * 3158 * In Trusted Extensions, a labeled zone can lookup any zone whose label 3159 * it dominates. For this test, the label of the global zone is treated as 3160 * admin_high so it is special-cased instead of being checked for dominance. 3161 * 3162 * Returns true if zone attributes are viewable, false otherwise. 3163 */ 3164 static boolean_t 3165 zone_list_access(zone_t *zone) 3166 { 3167 3168 if (curproc->p_zone == global_zone || 3169 curproc->p_zone == zone) { 3170 return (B_TRUE); 3171 } else if (is_system_labeled()) { 3172 bslabel_t *curproc_label; 3173 bslabel_t *zone_label; 3174 3175 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 3176 zone_label = label2bslabel(zone->zone_slabel); 3177 3178 if (zone->zone_id != GLOBAL_ZONEID && 3179 bldominates(curproc_label, zone_label)) { 3180 return (B_TRUE); 3181 } else { 3182 return (B_FALSE); 3183 } 3184 } else { 3185 return (B_FALSE); 3186 } 3187 } 3188 3189 /* 3190 * Systemcall to start the zone's halt sequence. By the time this 3191 * function successfully returns, all user processes and kernel threads 3192 * executing in it will have exited, ZSD shutdown callbacks executed, 3193 * and the zone status set to ZONE_IS_DOWN. 3194 * 3195 * It is possible that the call will interrupt itself if the caller is the 3196 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 3197 */ 3198 static int 3199 zone_shutdown(zoneid_t zoneid) 3200 { 3201 int error; 3202 zone_t *zone; 3203 zone_status_t status; 3204 3205 if (secpolicy_zone_config(CRED()) != 0) 3206 return (set_errno(EPERM)); 3207 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3208 return (set_errno(EINVAL)); 3209 3210 /* 3211 * Block mounts so that VFS_MOUNT() can get an accurate view of 3212 * the zone's status with regards to ZONE_IS_SHUTTING down. 3213 * 3214 * e.g. NFS can fail the mount if it determines that the zone 3215 * has already begun the shutdown sequence. 3216 */ 3217 if (block_mounts() == 0) 3218 return (set_errno(EINTR)); 3219 mutex_enter(&zonehash_lock); 3220 /* 3221 * Look for zone under hash lock to prevent races with other 3222 * calls to zone_shutdown and zone_destroy. 3223 */ 3224 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3225 mutex_exit(&zonehash_lock); 3226 resume_mounts(); 3227 return (set_errno(EINVAL)); 3228 } 3229 mutex_enter(&zone_status_lock); 3230 status = zone_status_get(zone); 3231 /* 3232 * Fail if the zone isn't fully initialized yet. 3233 */ 3234 if (status < ZONE_IS_READY) { 3235 mutex_exit(&zone_status_lock); 3236 mutex_exit(&zonehash_lock); 3237 resume_mounts(); 3238 return (set_errno(EINVAL)); 3239 } 3240 /* 3241 * If conditions required for zone_shutdown() to return have been met, 3242 * return success. 3243 */ 3244 if (status >= ZONE_IS_DOWN) { 3245 mutex_exit(&zone_status_lock); 3246 mutex_exit(&zonehash_lock); 3247 resume_mounts(); 3248 return (0); 3249 } 3250 /* 3251 * If zone_shutdown() hasn't been called before, go through the motions. 3252 * If it has, there's nothing to do but wait for the kernel threads to 3253 * drain. 3254 */ 3255 if (status < ZONE_IS_EMPTY) { 3256 uint_t ntasks; 3257 3258 mutex_enter(&zone->zone_lock); 3259 if ((ntasks = zone->zone_ntasks) != 1) { 3260 /* 3261 * There's still stuff running. 3262 */ 3263 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3264 } 3265 mutex_exit(&zone->zone_lock); 3266 if (ntasks == 1) { 3267 /* 3268 * The only way to create another task is through 3269 * zone_enter(), which will block until we drop 3270 * zonehash_lock. The zone is empty. 3271 */ 3272 if (zone->zone_kthreads == NULL) { 3273 /* 3274 * Skip ahead to ZONE_IS_DOWN 3275 */ 3276 zone_status_set(zone, ZONE_IS_DOWN); 3277 } else { 3278 zone_status_set(zone, ZONE_IS_EMPTY); 3279 } 3280 } 3281 } 3282 zone_hold(zone); /* so we can use the zone_t later */ 3283 mutex_exit(&zone_status_lock); 3284 mutex_exit(&zonehash_lock); 3285 resume_mounts(); 3286 3287 if (error = zone_empty(zone)) { 3288 zone_rele(zone); 3289 return (set_errno(error)); 3290 } 3291 /* 3292 * After the zone status goes to ZONE_IS_DOWN this zone will no 3293 * longer be notified of changes to the pools configuration, so 3294 * in order to not end up with a stale pool pointer, we point 3295 * ourselves at the default pool and remove all resource 3296 * visibility. This is especially important as the zone_t may 3297 * languish on the deathrow for a very long time waiting for 3298 * cred's to drain out. 3299 * 3300 * This rebinding of the zone can happen multiple times 3301 * (presumably due to interrupted or parallel systemcalls) 3302 * without any adverse effects. 3303 */ 3304 if (pool_lock_intr() != 0) { 3305 zone_rele(zone); 3306 return (set_errno(EINTR)); 3307 } 3308 if (pool_state == POOL_ENABLED) { 3309 mutex_enter(&cpu_lock); 3310 zone_pool_set(zone, pool_default); 3311 /* 3312 * The zone no longer needs to be able to see any cpus. 3313 */ 3314 zone_pset_set(zone, ZONE_PS_INVAL); 3315 mutex_exit(&cpu_lock); 3316 } 3317 pool_unlock(); 3318 3319 /* 3320 * ZSD shutdown callbacks can be executed multiple times, hence 3321 * it is safe to not be holding any locks across this call. 3322 */ 3323 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 3324 3325 mutex_enter(&zone_status_lock); 3326 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 3327 zone_status_set(zone, ZONE_IS_DOWN); 3328 mutex_exit(&zone_status_lock); 3329 3330 /* 3331 * Wait for kernel threads to drain. 3332 */ 3333 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 3334 zone_rele(zone); 3335 return (set_errno(EINTR)); 3336 } 3337 zone_rele(zone); 3338 return (0); 3339 } 3340 3341 /* 3342 * Systemcall entry point to finalize the zone halt process. The caller 3343 * must have already successfully callefd zone_shutdown(). 3344 * 3345 * Upon successful completion, the zone will have been fully destroyed: 3346 * zsched will have exited, destructor callbacks executed, and the zone 3347 * removed from the list of active zones. 3348 */ 3349 static int 3350 zone_destroy(zoneid_t zoneid) 3351 { 3352 uint64_t uniqid; 3353 zone_t *zone; 3354 zone_status_t status; 3355 3356 if (secpolicy_zone_config(CRED()) != 0) 3357 return (set_errno(EPERM)); 3358 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3359 return (set_errno(EINVAL)); 3360 3361 mutex_enter(&zonehash_lock); 3362 /* 3363 * Look for zone under hash lock to prevent races with other 3364 * calls to zone_destroy. 3365 */ 3366 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3367 mutex_exit(&zonehash_lock); 3368 return (set_errno(EINVAL)); 3369 } 3370 3371 if (zone_mount_count(zone->zone_rootpath) != 0) { 3372 mutex_exit(&zonehash_lock); 3373 return (set_errno(EBUSY)); 3374 } 3375 mutex_enter(&zone_status_lock); 3376 status = zone_status_get(zone); 3377 if (status < ZONE_IS_DOWN) { 3378 mutex_exit(&zone_status_lock); 3379 mutex_exit(&zonehash_lock); 3380 return (set_errno(EBUSY)); 3381 } else if (status == ZONE_IS_DOWN) { 3382 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 3383 } 3384 mutex_exit(&zone_status_lock); 3385 zone_hold(zone); 3386 mutex_exit(&zonehash_lock); 3387 3388 /* 3389 * wait for zsched to exit 3390 */ 3391 zone_status_wait(zone, ZONE_IS_DEAD); 3392 zone_zsd_callbacks(zone, ZSD_DESTROY); 3393 uniqid = zone->zone_uniqid; 3394 zone_rele(zone); 3395 zone = NULL; /* potentially free'd */ 3396 3397 mutex_enter(&zonehash_lock); 3398 for (; /* ever */; ) { 3399 boolean_t unref; 3400 3401 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 3402 zone->zone_uniqid != uniqid) { 3403 /* 3404 * The zone has gone away. Necessary conditions 3405 * are met, so we return success. 3406 */ 3407 mutex_exit(&zonehash_lock); 3408 return (0); 3409 } 3410 mutex_enter(&zone->zone_lock); 3411 unref = ZONE_IS_UNREF(zone); 3412 mutex_exit(&zone->zone_lock); 3413 if (unref) { 3414 /* 3415 * There is only one reference to the zone -- that 3416 * added when the zone was added to the hashtables -- 3417 * and things will remain this way until we drop 3418 * zonehash_lock... we can go ahead and cleanup the 3419 * zone. 3420 */ 3421 break; 3422 } 3423 3424 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 3425 /* Signaled */ 3426 mutex_exit(&zonehash_lock); 3427 return (set_errno(EINTR)); 3428 } 3429 3430 } 3431 3432 /* 3433 * It is now safe to let the zone be recreated; remove it from the 3434 * lists. The memory will not be freed until the last cred 3435 * reference goes away. 3436 */ 3437 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 3438 zonecount--; 3439 /* remove from active list and hash tables */ 3440 list_remove(&zone_active, zone); 3441 (void) mod_hash_destroy(zonehashbyname, 3442 (mod_hash_key_t)zone->zone_name); 3443 (void) mod_hash_destroy(zonehashbyid, 3444 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3445 if (is_system_labeled() && zone->zone_slabel != NULL) 3446 (void) mod_hash_destroy(zonehashbylabel, 3447 (mod_hash_key_t)zone->zone_slabel); 3448 mutex_exit(&zonehash_lock); 3449 3450 /* 3451 * Release the root vnode; we're not using it anymore. Nor should any 3452 * other thread that might access it exist. 3453 */ 3454 if (zone->zone_rootvp != NULL) { 3455 VN_RELE(zone->zone_rootvp); 3456 zone->zone_rootvp = NULL; 3457 } 3458 3459 /* add to deathrow list */ 3460 mutex_enter(&zone_deathrow_lock); 3461 list_insert_tail(&zone_deathrow, zone); 3462 mutex_exit(&zone_deathrow_lock); 3463 3464 /* 3465 * Drop last reference (which was added by zsched()), this will 3466 * free the zone unless there are outstanding cred references. 3467 */ 3468 zone_rele(zone); 3469 return (0); 3470 } 3471 3472 /* 3473 * Systemcall entry point for zone_getattr(2). 3474 */ 3475 static ssize_t 3476 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 3477 { 3478 size_t size; 3479 int error = 0, err; 3480 zone_t *zone; 3481 char *zonepath; 3482 zone_status_t zone_status; 3483 pid_t initpid; 3484 boolean_t global = (curproc->p_zone == global_zone); 3485 boolean_t curzone = (curproc->p_zone->zone_id == zoneid); 3486 3487 mutex_enter(&zonehash_lock); 3488 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3489 mutex_exit(&zonehash_lock); 3490 return (set_errno(EINVAL)); 3491 } 3492 zone_status = zone_status_get(zone); 3493 if (zone_status < ZONE_IS_READY) { 3494 mutex_exit(&zonehash_lock); 3495 return (set_errno(EINVAL)); 3496 } 3497 zone_hold(zone); 3498 mutex_exit(&zonehash_lock); 3499 3500 /* 3501 * If not in the global zone, don't show information about other zones, 3502 * unless the system is labeled and the local zone's label dominates 3503 * the other zone. 3504 */ 3505 if (!zone_list_access(zone)) { 3506 zone_rele(zone); 3507 return (set_errno(EINVAL)); 3508 } 3509 3510 switch (attr) { 3511 case ZONE_ATTR_ROOT: 3512 if (global) { 3513 /* 3514 * Copy the path to trim the trailing "/" (except for 3515 * the global zone). 3516 */ 3517 if (zone != global_zone) 3518 size = zone->zone_rootpathlen - 1; 3519 else 3520 size = zone->zone_rootpathlen; 3521 zonepath = kmem_alloc(size, KM_SLEEP); 3522 bcopy(zone->zone_rootpath, zonepath, size); 3523 zonepath[size - 1] = '\0'; 3524 } else { 3525 if (curzone || !is_system_labeled()) { 3526 /* 3527 * Caller is not in the global zone. 3528 * if the query is on the current zone 3529 * or the system is not labeled, 3530 * just return faked-up path for current zone. 3531 */ 3532 zonepath = "/"; 3533 size = 2; 3534 } else { 3535 /* 3536 * Return related path for current zone. 3537 */ 3538 int prefix_len = strlen(zone_prefix); 3539 int zname_len = strlen(zone->zone_name); 3540 3541 size = prefix_len + zname_len + 1; 3542 zonepath = kmem_alloc(size, KM_SLEEP); 3543 bcopy(zone_prefix, zonepath, prefix_len); 3544 bcopy(zone->zone_name, zonepath + 3545 prefix_len, zname_len); 3546 zonepath[size - 1] = '\0'; 3547 } 3548 } 3549 if (bufsize > size) 3550 bufsize = size; 3551 if (buf != NULL) { 3552 err = copyoutstr(zonepath, buf, bufsize, NULL); 3553 if (err != 0 && err != ENAMETOOLONG) 3554 error = EFAULT; 3555 } 3556 if (global || (is_system_labeled() && !curzone)) 3557 kmem_free(zonepath, size); 3558 break; 3559 3560 case ZONE_ATTR_NAME: 3561 size = strlen(zone->zone_name) + 1; 3562 if (bufsize > size) 3563 bufsize = size; 3564 if (buf != NULL) { 3565 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 3566 if (err != 0 && err != ENAMETOOLONG) 3567 error = EFAULT; 3568 } 3569 break; 3570 3571 case ZONE_ATTR_STATUS: 3572 /* 3573 * Since we're not holding zonehash_lock, the zone status 3574 * may be anything; leave it up to userland to sort it out. 3575 */ 3576 size = sizeof (zone_status); 3577 if (bufsize > size) 3578 bufsize = size; 3579 zone_status = zone_status_get(zone); 3580 if (buf != NULL && 3581 copyout(&zone_status, buf, bufsize) != 0) 3582 error = EFAULT; 3583 break; 3584 case ZONE_ATTR_PRIVSET: 3585 size = sizeof (priv_set_t); 3586 if (bufsize > size) 3587 bufsize = size; 3588 if (buf != NULL && 3589 copyout(zone->zone_privset, buf, bufsize) != 0) 3590 error = EFAULT; 3591 break; 3592 case ZONE_ATTR_UNIQID: 3593 size = sizeof (zone->zone_uniqid); 3594 if (bufsize > size) 3595 bufsize = size; 3596 if (buf != NULL && 3597 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 3598 error = EFAULT; 3599 break; 3600 case ZONE_ATTR_POOLID: 3601 { 3602 pool_t *pool; 3603 poolid_t poolid; 3604 3605 if (pool_lock_intr() != 0) { 3606 error = EINTR; 3607 break; 3608 } 3609 pool = zone_pool_get(zone); 3610 poolid = pool->pool_id; 3611 pool_unlock(); 3612 size = sizeof (poolid); 3613 if (bufsize > size) 3614 bufsize = size; 3615 if (buf != NULL && copyout(&poolid, buf, size) != 0) 3616 error = EFAULT; 3617 } 3618 break; 3619 case ZONE_ATTR_SLBL: 3620 size = sizeof (bslabel_t); 3621 if (bufsize > size) 3622 bufsize = size; 3623 if (zone->zone_slabel == NULL) 3624 error = EINVAL; 3625 else if (buf != NULL && 3626 copyout(label2bslabel(zone->zone_slabel), buf, 3627 bufsize) != 0) 3628 error = EFAULT; 3629 break; 3630 case ZONE_ATTR_INITPID: 3631 size = sizeof (initpid); 3632 if (bufsize > size) 3633 bufsize = size; 3634 initpid = zone->zone_proc_initpid; 3635 if (initpid == -1) { 3636 error = ESRCH; 3637 break; 3638 } 3639 if (buf != NULL && 3640 copyout(&initpid, buf, bufsize) != 0) 3641 error = EFAULT; 3642 break; 3643 default: 3644 error = EINVAL; 3645 } 3646 zone_rele(zone); 3647 3648 if (error) 3649 return (set_errno(error)); 3650 return ((ssize_t)size); 3651 } 3652 3653 /* 3654 * Return zero if the process has at least one vnode mapped in to its 3655 * address space which shouldn't be allowed to change zones. 3656 */ 3657 static int 3658 as_can_change_zones(void) 3659 { 3660 proc_t *pp = curproc; 3661 struct seg *seg; 3662 struct as *as = pp->p_as; 3663 vnode_t *vp; 3664 int allow = 1; 3665 3666 ASSERT(pp->p_as != &kas); 3667 AS_LOCK_ENTER(&as, &as->a_lock, RW_READER); 3668 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 3669 /* 3670 * if we can't get a backing vnode for this segment then skip 3671 * it. 3672 */ 3673 vp = NULL; 3674 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 3675 continue; 3676 if (!vn_can_change_zones(vp)) { /* bail on first match */ 3677 allow = 0; 3678 break; 3679 } 3680 } 3681 AS_LOCK_EXIT(&as, &as->a_lock); 3682 return (allow); 3683 } 3684 3685 /* 3686 * Systemcall entry point for zone_enter(). 3687 * 3688 * The current process is injected into said zone. In the process 3689 * it will change its project membership, privileges, rootdir/cwd, 3690 * zone-wide rctls, and pool association to match those of the zone. 3691 * 3692 * The first zone_enter() called while the zone is in the ZONE_IS_READY 3693 * state will transition it to ZONE_IS_RUNNING. Processes may only 3694 * enter a zone that is "ready" or "running". 3695 */ 3696 static int 3697 zone_enter(zoneid_t zoneid) 3698 { 3699 zone_t *zone; 3700 vnode_t *vp; 3701 proc_t *pp = curproc; 3702 contract_t *ct; 3703 cont_process_t *ctp; 3704 task_t *tk, *oldtk; 3705 kproject_t *zone_proj0; 3706 cred_t *cr, *newcr; 3707 pool_t *oldpool, *newpool; 3708 sess_t *sp; 3709 uid_t uid; 3710 zone_status_t status; 3711 int err = 0; 3712 rctl_entity_p_t e; 3713 3714 if (secpolicy_zone_config(CRED()) != 0) 3715 return (set_errno(EPERM)); 3716 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 3717 return (set_errno(EINVAL)); 3718 3719 /* 3720 * Stop all lwps so we don't need to hold a lock to look at 3721 * curproc->p_zone. This needs to happen before we grab any 3722 * locks to avoid deadlock (another lwp in the process could 3723 * be waiting for the held lock). 3724 */ 3725 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 3726 return (set_errno(EINTR)); 3727 3728 /* 3729 * Make sure we're not changing zones with files open or mapped in 3730 * to our address space which shouldn't be changing zones. 3731 */ 3732 if (!files_can_change_zones()) { 3733 err = EBADF; 3734 goto out; 3735 } 3736 if (!as_can_change_zones()) { 3737 err = EFAULT; 3738 goto out; 3739 } 3740 3741 mutex_enter(&zonehash_lock); 3742 if (pp->p_zone != global_zone) { 3743 mutex_exit(&zonehash_lock); 3744 err = EINVAL; 3745 goto out; 3746 } 3747 3748 zone = zone_find_all_by_id(zoneid); 3749 if (zone == NULL) { 3750 mutex_exit(&zonehash_lock); 3751 err = EINVAL; 3752 goto out; 3753 } 3754 3755 /* 3756 * To prevent processes in a zone from holding contracts on 3757 * extrazonal resources, and to avoid process contract 3758 * memberships which span zones, contract holders and processes 3759 * which aren't the sole members of their encapsulating process 3760 * contracts are not allowed to zone_enter. 3761 */ 3762 ctp = pp->p_ct_process; 3763 ct = &ctp->conp_contract; 3764 mutex_enter(&ct->ct_lock); 3765 mutex_enter(&pp->p_lock); 3766 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 3767 mutex_exit(&pp->p_lock); 3768 mutex_exit(&ct->ct_lock); 3769 mutex_exit(&zonehash_lock); 3770 pool_unlock(); 3771 err = EINVAL; 3772 goto out; 3773 } 3774 3775 /* 3776 * Moreover, we don't allow processes whose encapsulating 3777 * process contracts have inherited extrazonal contracts. 3778 * While it would be easier to eliminate all process contracts 3779 * with inherited contracts, we need to be able to give a 3780 * restarted init (or other zone-penetrating process) its 3781 * predecessor's contracts. 3782 */ 3783 if (ctp->conp_ninherited != 0) { 3784 contract_t *next; 3785 for (next = list_head(&ctp->conp_inherited); next; 3786 next = list_next(&ctp->conp_inherited, next)) { 3787 if (contract_getzuniqid(next) != zone->zone_uniqid) { 3788 mutex_exit(&pp->p_lock); 3789 mutex_exit(&ct->ct_lock); 3790 mutex_exit(&zonehash_lock); 3791 pool_unlock(); 3792 err = EINVAL; 3793 goto out; 3794 } 3795 } 3796 } 3797 mutex_exit(&pp->p_lock); 3798 mutex_exit(&ct->ct_lock); 3799 3800 status = zone_status_get(zone); 3801 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 3802 /* 3803 * Can't join 3804 */ 3805 mutex_exit(&zonehash_lock); 3806 err = EINVAL; 3807 goto out; 3808 } 3809 3810 /* 3811 * Make sure new priv set is within the permitted set for caller 3812 */ 3813 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 3814 mutex_exit(&zonehash_lock); 3815 err = EPERM; 3816 goto out; 3817 } 3818 /* 3819 * We want to momentarily drop zonehash_lock while we optimistically 3820 * bind curproc to the pool it should be running in. This is safe 3821 * since the zone can't disappear (we have a hold on it). 3822 */ 3823 zone_hold(zone); 3824 mutex_exit(&zonehash_lock); 3825 3826 /* 3827 * Grab pool_lock to keep the pools configuration from changing 3828 * and to stop ourselves from getting rebound to another pool 3829 * until we join the zone. 3830 */ 3831 if (pool_lock_intr() != 0) { 3832 zone_rele(zone); 3833 err = EINTR; 3834 goto out; 3835 } 3836 ASSERT(secpolicy_pool(CRED()) == 0); 3837 /* 3838 * Bind ourselves to the pool currently associated with the zone. 3839 */ 3840 oldpool = curproc->p_pool; 3841 newpool = zone_pool_get(zone); 3842 if (pool_state == POOL_ENABLED && newpool != oldpool && 3843 (err = pool_do_bind(newpool, P_PID, P_MYID, 3844 POOL_BIND_ALL)) != 0) { 3845 pool_unlock(); 3846 zone_rele(zone); 3847 goto out; 3848 } 3849 3850 /* 3851 * Grab cpu_lock now; we'll need it later when we call 3852 * task_join(). 3853 */ 3854 mutex_enter(&cpu_lock); 3855 mutex_enter(&zonehash_lock); 3856 /* 3857 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 3858 */ 3859 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 3860 /* 3861 * Can't join anymore. 3862 */ 3863 mutex_exit(&zonehash_lock); 3864 mutex_exit(&cpu_lock); 3865 if (pool_state == POOL_ENABLED && 3866 newpool != oldpool) 3867 (void) pool_do_bind(oldpool, P_PID, P_MYID, 3868 POOL_BIND_ALL); 3869 pool_unlock(); 3870 zone_rele(zone); 3871 err = EINVAL; 3872 goto out; 3873 } 3874 3875 mutex_enter(&pp->p_lock); 3876 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 3877 /* verify that we do not exceed and task or lwp limits */ 3878 mutex_enter(&zone->zone_nlwps_lock); 3879 /* add new lwps to zone and zone's proj0 */ 3880 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 3881 zone->zone_nlwps += pp->p_lwpcnt; 3882 /* add 1 task to zone's proj0 */ 3883 zone_proj0->kpj_ntasks += 1; 3884 mutex_exit(&pp->p_lock); 3885 mutex_exit(&zone->zone_nlwps_lock); 3886 3887 /* remove lwps from proc's old zone and old project */ 3888 mutex_enter(&pp->p_zone->zone_nlwps_lock); 3889 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 3890 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 3891 mutex_exit(&pp->p_zone->zone_nlwps_lock); 3892 3893 /* 3894 * Joining the zone cannot fail from now on. 3895 * 3896 * This means that a lot of the following code can be commonized and 3897 * shared with zsched(). 3898 */ 3899 3900 /* 3901 * Reset the encapsulating process contract's zone. 3902 */ 3903 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 3904 contract_setzuniqid(ct, zone->zone_uniqid); 3905 3906 /* 3907 * Create a new task and associate the process with the project keyed 3908 * by (projid,zoneid). 3909 * 3910 * We might as well be in project 0; the global zone's projid doesn't 3911 * make much sense in a zone anyhow. 3912 * 3913 * This also increments zone_ntasks, and returns with p_lock held. 3914 */ 3915 tk = task_create(0, zone); 3916 oldtk = task_join(tk, 0); 3917 mutex_exit(&cpu_lock); 3918 3919 pp->p_flag |= SZONETOP; 3920 pp->p_zone = zone; 3921 3922 /* 3923 * call RCTLOP_SET functions on this proc 3924 */ 3925 e.rcep_p.zone = zone; 3926 e.rcep_t = RCENTITY_ZONE; 3927 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 3928 RCD_CALLBACK); 3929 mutex_exit(&pp->p_lock); 3930 3931 /* 3932 * We don't need to hold any of zsched's locks here; not only do we know 3933 * the process and zone aren't going away, we know its session isn't 3934 * changing either. 3935 * 3936 * By joining zsched's session here, we mimic the behavior in the 3937 * global zone of init's sid being the pid of sched. We extend this 3938 * to all zlogin-like zone_enter()'ing processes as well. 3939 */ 3940 mutex_enter(&pidlock); 3941 sp = zone->zone_zsched->p_sessp; 3942 SESS_HOLD(sp); 3943 mutex_enter(&pp->p_lock); 3944 pgexit(pp); 3945 SESS_RELE(pp->p_sessp); 3946 pp->p_sessp = sp; 3947 pgjoin(pp, zone->zone_zsched->p_pidp); 3948 mutex_exit(&pp->p_lock); 3949 mutex_exit(&pidlock); 3950 3951 mutex_exit(&zonehash_lock); 3952 /* 3953 * We're firmly in the zone; let pools progress. 3954 */ 3955 pool_unlock(); 3956 task_rele(oldtk); 3957 /* 3958 * We don't need to retain a hold on the zone since we already 3959 * incremented zone_ntasks, so the zone isn't going anywhere. 3960 */ 3961 zone_rele(zone); 3962 3963 /* 3964 * Chroot 3965 */ 3966 vp = zone->zone_rootvp; 3967 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 3968 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 3969 3970 /* 3971 * Change process credentials 3972 */ 3973 newcr = cralloc(); 3974 mutex_enter(&pp->p_crlock); 3975 cr = pp->p_cred; 3976 crcopy_to(cr, newcr); 3977 crsetzone(newcr, zone); 3978 pp->p_cred = newcr; 3979 3980 /* 3981 * Restrict all process privilege sets to zone limit 3982 */ 3983 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 3984 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 3985 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 3986 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 3987 mutex_exit(&pp->p_crlock); 3988 crset(pp, newcr); 3989 3990 /* 3991 * Adjust upcount to reflect zone entry. 3992 */ 3993 uid = crgetruid(newcr); 3994 mutex_enter(&pidlock); 3995 upcount_dec(uid, GLOBAL_ZONEID); 3996 upcount_inc(uid, zoneid); 3997 mutex_exit(&pidlock); 3998 3999 /* 4000 * Set up core file path and content. 4001 */ 4002 set_core_defaults(); 4003 4004 out: 4005 /* 4006 * Let the other lwps continue. 4007 */ 4008 mutex_enter(&pp->p_lock); 4009 if (curthread != pp->p_agenttp) 4010 continuelwps(pp); 4011 mutex_exit(&pp->p_lock); 4012 4013 return (err != 0 ? set_errno(err) : 0); 4014 } 4015 4016 /* 4017 * Systemcall entry point for zone_list(2). 4018 * 4019 * Processes running in a (non-global) zone only see themselves. 4020 * On labeled systems, they see all zones whose label they dominate. 4021 */ 4022 static int 4023 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 4024 { 4025 zoneid_t *zoneids; 4026 zone_t *zone; 4027 uint_t user_nzones, real_nzones; 4028 uint_t domi_nzones; 4029 int error; 4030 4031 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 4032 return (set_errno(EFAULT)); 4033 4034 if (curproc->p_zone != global_zone) { 4035 bslabel_t *mybslab; 4036 4037 if (!is_system_labeled()) { 4038 /* just return current zone */ 4039 real_nzones = domi_nzones = 1; 4040 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 4041 zoneids[0] = curproc->p_zone->zone_id; 4042 } else { 4043 /* return all zones that are dominated */ 4044 mutex_enter(&zonehash_lock); 4045 real_nzones = zonecount; 4046 domi_nzones = 0; 4047 if (real_nzones > 0) { 4048 zoneids = kmem_alloc(real_nzones * 4049 sizeof (zoneid_t), KM_SLEEP); 4050 mybslab = label2bslabel(curproc->p_zone-> 4051 zone_slabel); 4052 for (zone = list_head(&zone_active); 4053 zone != NULL; 4054 zone = list_next(&zone_active, zone)) { 4055 if (zone->zone_id == GLOBAL_ZONEID) 4056 continue; 4057 if (bldominates(mybslab, 4058 label2bslabel(zone->zone_slabel))) { 4059 zoneids[domi_nzones++] = 4060 zone->zone_id; 4061 } 4062 } 4063 } 4064 mutex_exit(&zonehash_lock); 4065 } 4066 } else { 4067 mutex_enter(&zonehash_lock); 4068 real_nzones = zonecount; 4069 domi_nzones = 0; 4070 if (real_nzones > 0) { 4071 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 4072 KM_SLEEP); 4073 for (zone = list_head(&zone_active); zone != NULL; 4074 zone = list_next(&zone_active, zone)) 4075 zoneids[domi_nzones++] = zone->zone_id; 4076 ASSERT(domi_nzones == real_nzones); 4077 } 4078 mutex_exit(&zonehash_lock); 4079 } 4080 4081 /* 4082 * If user has allocated space for fewer entries than we found, then 4083 * return only up to his limit. Either way, tell him exactly how many 4084 * we found. 4085 */ 4086 if (domi_nzones < user_nzones) 4087 user_nzones = domi_nzones; 4088 error = 0; 4089 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 4090 error = EFAULT; 4091 } else if (zoneidlist != NULL && user_nzones != 0) { 4092 if (copyout(zoneids, zoneidlist, 4093 user_nzones * sizeof (zoneid_t)) != 0) 4094 error = EFAULT; 4095 } 4096 4097 if (real_nzones > 0) 4098 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 4099 4100 if (error != 0) 4101 return (set_errno(error)); 4102 else 4103 return (0); 4104 } 4105 4106 /* 4107 * Systemcall entry point for zone_lookup(2). 4108 * 4109 * Non-global zones are only able to see themselves and (on labeled systems) 4110 * the zones they dominate. 4111 */ 4112 static zoneid_t 4113 zone_lookup(const char *zone_name) 4114 { 4115 char *kname; 4116 zone_t *zone; 4117 zoneid_t zoneid; 4118 int err; 4119 4120 if (zone_name == NULL) { 4121 /* return caller's zone id */ 4122 return (getzoneid()); 4123 } 4124 4125 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 4126 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 4127 kmem_free(kname, ZONENAME_MAX); 4128 return (set_errno(err)); 4129 } 4130 4131 mutex_enter(&zonehash_lock); 4132 zone = zone_find_all_by_name(kname); 4133 kmem_free(kname, ZONENAME_MAX); 4134 /* 4135 * In a non-global zone, can only lookup global and own name. 4136 * In Trusted Extensions zone label dominance rules apply. 4137 */ 4138 if (zone == NULL || 4139 zone_status_get(zone) < ZONE_IS_READY || 4140 !zone_list_access(zone)) { 4141 mutex_exit(&zonehash_lock); 4142 return (set_errno(EINVAL)); 4143 } else { 4144 zoneid = zone->zone_id; 4145 mutex_exit(&zonehash_lock); 4146 return (zoneid); 4147 } 4148 } 4149 4150 static int 4151 zone_version(int *version_arg) 4152 { 4153 int version = ZONE_SYSCALL_API_VERSION; 4154 4155 if (copyout(&version, version_arg, sizeof (int)) != 0) 4156 return (set_errno(EFAULT)); 4157 return (0); 4158 } 4159 4160 /* ARGSUSED */ 4161 long 4162 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 4163 { 4164 zone_def zs; 4165 4166 switch (cmd) { 4167 case ZONE_CREATE: 4168 if (get_udatamodel() == DATAMODEL_NATIVE) { 4169 if (copyin(arg1, &zs, sizeof (zone_def))) { 4170 return (set_errno(EFAULT)); 4171 } 4172 } else { 4173 #ifdef _SYSCALL32_IMPL 4174 zone_def32 zs32; 4175 4176 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 4177 return (set_errno(EFAULT)); 4178 } 4179 zs.zone_name = 4180 (const char *)(unsigned long)zs32.zone_name; 4181 zs.zone_root = 4182 (const char *)(unsigned long)zs32.zone_root; 4183 zs.zone_privs = 4184 (const struct priv_set *) 4185 (unsigned long)zs32.zone_privs; 4186 zs.zone_privssz = zs32.zone_privssz; 4187 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 4188 zs.rctlbufsz = zs32.rctlbufsz; 4189 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 4190 zs.zfsbufsz = zs32.zfsbufsz; 4191 zs.extended_error = 4192 (int *)(unsigned long)zs32.extended_error; 4193 zs.match = zs32.match; 4194 zs.doi = zs32.doi; 4195 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 4196 #else 4197 panic("get_udatamodel() returned bogus result\n"); 4198 #endif 4199 } 4200 4201 return (zone_create(zs.zone_name, zs.zone_root, 4202 zs.zone_privs, zs.zone_privssz, 4203 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 4204 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 4205 zs.extended_error, zs.match, zs.doi, 4206 zs.label)); 4207 case ZONE_BOOT: 4208 return (zone_boot((zoneid_t)(uintptr_t)arg1, 4209 (const char *)arg2)); 4210 case ZONE_DESTROY: 4211 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 4212 case ZONE_GETATTR: 4213 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 4214 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 4215 case ZONE_ENTER: 4216 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 4217 case ZONE_LIST: 4218 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 4219 case ZONE_SHUTDOWN: 4220 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 4221 case ZONE_LOOKUP: 4222 return (zone_lookup((const char *)arg1)); 4223 case ZONE_VERSION: 4224 return (zone_version((int *)arg1)); 4225 default: 4226 return (set_errno(EINVAL)); 4227 } 4228 } 4229 4230 struct zarg { 4231 zone_t *zone; 4232 zone_cmd_arg_t arg; 4233 }; 4234 4235 static int 4236 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 4237 { 4238 char *buf; 4239 size_t buflen; 4240 int error; 4241 4242 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 4243 buf = kmem_alloc(buflen, KM_SLEEP); 4244 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 4245 error = door_ki_open(buf, doorp); 4246 kmem_free(buf, buflen); 4247 return (error); 4248 } 4249 4250 static void 4251 zone_release_door(door_handle_t *doorp) 4252 { 4253 door_ki_rele(*doorp); 4254 *doorp = NULL; 4255 } 4256 4257 static void 4258 zone_ki_call_zoneadmd(struct zarg *zargp) 4259 { 4260 door_handle_t door = NULL; 4261 door_arg_t darg, save_arg; 4262 char *zone_name; 4263 size_t zone_namelen; 4264 zoneid_t zoneid; 4265 zone_t *zone; 4266 zone_cmd_arg_t arg; 4267 uint64_t uniqid; 4268 size_t size; 4269 int error; 4270 int retry; 4271 4272 zone = zargp->zone; 4273 arg = zargp->arg; 4274 kmem_free(zargp, sizeof (*zargp)); 4275 4276 zone_namelen = strlen(zone->zone_name) + 1; 4277 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 4278 bcopy(zone->zone_name, zone_name, zone_namelen); 4279 zoneid = zone->zone_id; 4280 uniqid = zone->zone_uniqid; 4281 /* 4282 * zoneadmd may be down, but at least we can empty out the zone. 4283 * We can ignore the return value of zone_empty() since we're called 4284 * from a kernel thread and know we won't be delivered any signals. 4285 */ 4286 ASSERT(curproc == &p0); 4287 (void) zone_empty(zone); 4288 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 4289 zone_rele(zone); 4290 4291 size = sizeof (arg); 4292 darg.rbuf = (char *)&arg; 4293 darg.data_ptr = (char *)&arg; 4294 darg.rsize = size; 4295 darg.data_size = size; 4296 darg.desc_ptr = NULL; 4297 darg.desc_num = 0; 4298 4299 save_arg = darg; 4300 /* 4301 * Since we're not holding a reference to the zone, any number of 4302 * things can go wrong, including the zone disappearing before we get a 4303 * chance to talk to zoneadmd. 4304 */ 4305 for (retry = 0; /* forever */; retry++) { 4306 if (door == NULL && 4307 (error = zone_lookup_door(zone_name, &door)) != 0) { 4308 goto next; 4309 } 4310 ASSERT(door != NULL); 4311 4312 if ((error = door_ki_upcall(door, &darg)) == 0) { 4313 break; 4314 } 4315 switch (error) { 4316 case EINTR: 4317 /* FALLTHROUGH */ 4318 case EAGAIN: /* process may be forking */ 4319 /* 4320 * Back off for a bit 4321 */ 4322 break; 4323 case EBADF: 4324 zone_release_door(&door); 4325 if (zone_lookup_door(zone_name, &door) != 0) { 4326 /* 4327 * zoneadmd may be dead, but it may come back to 4328 * life later. 4329 */ 4330 break; 4331 } 4332 break; 4333 default: 4334 cmn_err(CE_WARN, 4335 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 4336 error); 4337 goto out; 4338 } 4339 next: 4340 /* 4341 * If this isn't the same zone_t that we originally had in mind, 4342 * then this is the same as if two kadmin requests come in at 4343 * the same time: the first one wins. This means we lose, so we 4344 * bail. 4345 */ 4346 if ((zone = zone_find_by_id(zoneid)) == NULL) { 4347 /* 4348 * Problem is solved. 4349 */ 4350 break; 4351 } 4352 if (zone->zone_uniqid != uniqid) { 4353 /* 4354 * zoneid recycled 4355 */ 4356 zone_rele(zone); 4357 break; 4358 } 4359 /* 4360 * We could zone_status_timedwait(), but there doesn't seem to 4361 * be much point in doing that (plus, it would mean that 4362 * zone_free() isn't called until this thread exits). 4363 */ 4364 zone_rele(zone); 4365 delay(hz); 4366 darg = save_arg; 4367 } 4368 out: 4369 if (door != NULL) { 4370 zone_release_door(&door); 4371 } 4372 kmem_free(zone_name, zone_namelen); 4373 thread_exit(); 4374 } 4375 4376 /* 4377 * Entry point for uadmin() to tell the zone to go away or reboot. The caller 4378 * is a process in the zone to be modified. 4379 * 4380 * In order to shutdown the zone, we will hand off control to zoneadmd 4381 * (running in the global zone) via a door. We do a half-hearted job at 4382 * killing all processes in the zone, create a kernel thread to contact 4383 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 4384 * a form of generation number used to let zoneadmd (as well as 4385 * zone_destroy()) know exactly which zone they're re talking about. 4386 */ 4387 int 4388 zone_uadmin(int cmd, int fcn, cred_t *credp) 4389 { 4390 struct zarg *zargp; 4391 zone_cmd_t zcmd; 4392 zone_t *zone; 4393 4394 zone = curproc->p_zone; 4395 ASSERT(getzoneid() != GLOBAL_ZONEID); 4396 4397 switch (cmd) { 4398 case A_SHUTDOWN: 4399 switch (fcn) { 4400 case AD_HALT: 4401 case AD_POWEROFF: 4402 zcmd = Z_HALT; 4403 break; 4404 case AD_BOOT: 4405 zcmd = Z_REBOOT; 4406 break; 4407 case AD_IBOOT: 4408 case AD_SBOOT: 4409 case AD_SIBOOT: 4410 case AD_NOSYNC: 4411 return (ENOTSUP); 4412 default: 4413 return (EINVAL); 4414 } 4415 break; 4416 case A_REBOOT: 4417 zcmd = Z_REBOOT; 4418 break; 4419 case A_FTRACE: 4420 case A_REMOUNT: 4421 case A_FREEZE: 4422 case A_DUMP: 4423 return (ENOTSUP); 4424 default: 4425 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 4426 return (EINVAL); 4427 } 4428 4429 if (secpolicy_zone_admin(credp, B_FALSE)) 4430 return (EPERM); 4431 mutex_enter(&zone_status_lock); 4432 /* 4433 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 4434 * is in the zone. 4435 */ 4436 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 4437 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 4438 /* 4439 * This zone is already on its way down. 4440 */ 4441 mutex_exit(&zone_status_lock); 4442 return (0); 4443 } 4444 /* 4445 * Prevent future zone_enter()s 4446 */ 4447 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4448 mutex_exit(&zone_status_lock); 4449 4450 /* 4451 * Kill everyone now and call zoneadmd later. 4452 * zone_ki_call_zoneadmd() will do a more thorough job of this 4453 * later. 4454 */ 4455 killall(zone->zone_id); 4456 /* 4457 * Now, create the thread to contact zoneadmd and do the rest of the 4458 * work. This thread can't be created in our zone otherwise 4459 * zone_destroy() would deadlock. 4460 */ 4461 zargp = kmem_alloc(sizeof (*zargp), KM_SLEEP); 4462 zargp->arg.cmd = zcmd; 4463 zargp->arg.uniqid = zone->zone_uniqid; 4464 (void) strcpy(zargp->arg.locale, "C"); 4465 zone_hold(zargp->zone = zone); 4466 4467 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 4468 TS_RUN, minclsyspri); 4469 exit(CLD_EXITED, 0); 4470 4471 return (EINVAL); 4472 } 4473 4474 /* 4475 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 4476 * status to ZONE_IS_SHUTTING_DOWN. 4477 */ 4478 void 4479 zone_shutdown_global(void) 4480 { 4481 ASSERT(curproc->p_zone == global_zone); 4482 4483 mutex_enter(&zone_status_lock); 4484 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 4485 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 4486 mutex_exit(&zone_status_lock); 4487 } 4488 4489 /* 4490 * Returns true if the named dataset is visible in the current zone. 4491 * The 'write' parameter is set to 1 if the dataset is also writable. 4492 */ 4493 int 4494 zone_dataset_visible(const char *dataset, int *write) 4495 { 4496 zone_dataset_t *zd; 4497 size_t len; 4498 zone_t *zone = curproc->p_zone; 4499 4500 if (dataset[0] == '\0') 4501 return (0); 4502 4503 /* 4504 * Walk the list once, looking for datasets which match exactly, or 4505 * specify a dataset underneath an exported dataset. If found, return 4506 * true and note that it is writable. 4507 */ 4508 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4509 zd = list_next(&zone->zone_datasets, zd)) { 4510 4511 len = strlen(zd->zd_dataset); 4512 if (strlen(dataset) >= len && 4513 bcmp(dataset, zd->zd_dataset, len) == 0 && 4514 (dataset[len] == '\0' || dataset[len] == '/' || 4515 dataset[len] == '@')) { 4516 if (write) 4517 *write = 1; 4518 return (1); 4519 } 4520 } 4521 4522 /* 4523 * Walk the list a second time, searching for datasets which are parents 4524 * of exported datasets. These should be visible, but read-only. 4525 * 4526 * Note that we also have to support forms such as 'pool/dataset/', with 4527 * a trailing slash. 4528 */ 4529 for (zd = list_head(&zone->zone_datasets); zd != NULL; 4530 zd = list_next(&zone->zone_datasets, zd)) { 4531 4532 len = strlen(dataset); 4533 if (dataset[len - 1] == '/') 4534 len--; /* Ignore trailing slash */ 4535 if (len < strlen(zd->zd_dataset) && 4536 bcmp(dataset, zd->zd_dataset, len) == 0 && 4537 zd->zd_dataset[len] == '/') { 4538 if (write) 4539 *write = 0; 4540 return (1); 4541 } 4542 } 4543 4544 return (0); 4545 } 4546 4547 /* 4548 * zone_find_by_any_path() - 4549 * 4550 * kernel-private routine similar to zone_find_by_path(), but which 4551 * effectively compares against zone paths rather than zonerootpath 4552 * (i.e., the last component of zonerootpaths, which should be "root/", 4553 * are not compared.) This is done in order to accurately identify all 4554 * paths, whether zone-visible or not, including those which are parallel 4555 * to /root/, such as /dev/, /home/, etc... 4556 * 4557 * If the specified path does not fall under any zone path then global 4558 * zone is returned. 4559 * 4560 * The treat_abs parameter indicates whether the path should be treated as 4561 * an absolute path although it does not begin with "/". (This supports 4562 * nfs mount syntax such as host:any/path.) 4563 * 4564 * The caller is responsible for zone_rele of the returned zone. 4565 */ 4566 zone_t * 4567 zone_find_by_any_path(const char *path, boolean_t treat_abs) 4568 { 4569 zone_t *zone; 4570 int path_offset = 0; 4571 4572 if (path == NULL) { 4573 zone_hold(global_zone); 4574 return (global_zone); 4575 } 4576 4577 if (*path != '/') { 4578 ASSERT(treat_abs); 4579 path_offset = 1; 4580 } 4581 4582 mutex_enter(&zonehash_lock); 4583 for (zone = list_head(&zone_active); zone != NULL; 4584 zone = list_next(&zone_active, zone)) { 4585 char *c; 4586 size_t pathlen; 4587 4588 if (zone == global_zone) /* skip global zone */ 4589 continue; 4590 4591 /* scan backwards to find start of last component */ 4592 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 4593 do { 4594 c--; 4595 } while (*c != '/'); 4596 4597 pathlen = c - zone->zone_rootpath + 1; 4598 if (strncmp(path, zone->zone_rootpath + path_offset, 4599 pathlen - path_offset) == 0) 4600 break; 4601 } 4602 if (zone == NULL) 4603 zone = global_zone; 4604 zone_hold(zone); 4605 mutex_exit(&zonehash_lock); 4606 return (zone); 4607 } 4608