1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Zones 28 * 29 * A zone is a named collection of processes, namespace constraints, 30 * and other system resources which comprise a secure and manageable 31 * application containment facility. 32 * 33 * Zones (represented by the reference counted zone_t) are tracked in 34 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 35 * (zoneid_t) are used to track zone association. Zone IDs are 36 * dynamically generated when the zone is created; if a persistent 37 * identifier is needed (core files, accounting logs, audit trail, 38 * etc.), the zone name should be used. 39 * 40 * 41 * Global Zone: 42 * 43 * The global zone (zoneid 0) is automatically associated with all 44 * system resources that have not been bound to a user-created zone. 45 * This means that even systems where zones are not in active use 46 * have a global zone, and all processes, mounts, etc. are 47 * associated with that zone. The global zone is generally 48 * unconstrained in terms of privileges and access, though the usual 49 * credential and privilege based restrictions apply. 50 * 51 * 52 * Zone States: 53 * 54 * The states in which a zone may be in and the transitions are as 55 * follows: 56 * 57 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 58 * initialized zone is added to the list of active zones on the system but 59 * isn't accessible. 60 * 61 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 62 * not yet completed. Not possible to enter the zone, but attributes can 63 * be retrieved. 64 * 65 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 66 * ready. The zone is made visible after the ZSD constructor callbacks are 67 * executed. A zone remains in this state until it transitions into 68 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 69 * 70 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 71 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 72 * state. 73 * 74 * ZONE_IS_RUNNING: The zone is open for business: zsched has 75 * successfully started init. A zone remains in this state until 76 * zone_shutdown() is called. 77 * 78 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 79 * killing all processes running in the zone. The zone remains 80 * in this state until there are no more user processes running in the zone. 81 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 82 * Since zone_shutdown() is restartable, it may be called successfully 83 * multiple times for the same zone_t. Setting of the zone's state to 84 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 85 * the zone's status without worrying about it being a moving target. 86 * 87 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 88 * are no more user processes in the zone. The zone remains in this 89 * state until there are no more kernel threads associated with the 90 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 91 * fail. 92 * 93 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 94 * have exited. zone_shutdown() returns. Henceforth it is not possible to 95 * join the zone or create kernel threads therein. 96 * 97 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 98 * remains in this state until zsched exits. Calls to zone_find_by_*() 99 * return NULL from now on. 100 * 101 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 102 * processes or threads doing work on behalf of the zone. The zone is 103 * removed from the list of active zones. zone_destroy() returns, and 104 * the zone can be recreated. 105 * 106 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 107 * callbacks are executed, and all memory associated with the zone is 108 * freed. 109 * 110 * Threads can wait for the zone to enter a requested state by using 111 * zone_status_wait() or zone_status_timedwait() with the desired 112 * state passed in as an argument. Zone state transitions are 113 * uni-directional; it is not possible to move back to an earlier state. 114 * 115 * 116 * Zone-Specific Data: 117 * 118 * Subsystems needing to maintain zone-specific data can store that 119 * data using the ZSD mechanism. This provides a zone-specific data 120 * store, similar to thread-specific data (see pthread_getspecific(3C) 121 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 122 * to register callbacks to be invoked when a zone is created, shut 123 * down, or destroyed. This can be used to initialize zone-specific 124 * data for new zones and to clean up when zones go away. 125 * 126 * 127 * Data Structures: 128 * 129 * The per-zone structure (zone_t) is reference counted, and freed 130 * when all references are released. zone_hold and zone_rele can be 131 * used to adjust the reference count. In addition, reference counts 132 * associated with the cred_t structure are tracked separately using 133 * zone_cred_hold and zone_cred_rele. 134 * 135 * Pointers to active zone_t's are stored in two hash tables; one 136 * for searching by id, the other for searching by name. Lookups 137 * can be performed on either basis, using zone_find_by_id and 138 * zone_find_by_name. Both return zone_t pointers with the zone 139 * held, so zone_rele should be called when the pointer is no longer 140 * needed. Zones can also be searched by path; zone_find_by_path 141 * returns the zone with which a path name is associated (global 142 * zone if the path is not within some other zone's file system 143 * hierarchy). This currently requires iterating through each zone, 144 * so it is slower than an id or name search via a hash table. 145 * 146 * 147 * Locking: 148 * 149 * zonehash_lock: This is a top-level global lock used to protect the 150 * zone hash tables and lists. Zones cannot be created or destroyed 151 * while this lock is held. 152 * zone_status_lock: This is a global lock protecting zone state. 153 * Zones cannot change state while this lock is held. It also 154 * protects the list of kernel threads associated with a zone. 155 * zone_lock: This is a per-zone lock used to protect several fields of 156 * the zone_t (see <sys/zone.h> for details). In addition, holding 157 * this lock means that the zone cannot go away. 158 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 159 * related to the zone.max-lwps rctl. 160 * zone_mem_lock: This is a per-zone lock used to protect the fields 161 * related to the zone.max-locked-memory and zone.max-swap rctls. 162 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 163 * currently just max_lofi 164 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 165 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 166 * list (a list of zones in the ZONE_IS_DEAD state). 167 * 168 * Ordering requirements: 169 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 170 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 171 * 172 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * 176 * Blocking memory allocations are permitted while holding any of the 177 * zone locks. 178 * 179 * 180 * System Call Interface: 181 * 182 * The zone subsystem can be managed and queried from user level with 183 * the following system calls (all subcodes of the primary "zone" 184 * system call): 185 * - zone_create: creates a zone with selected attributes (name, 186 * root path, privileges, resource controls, ZFS datasets) 187 * - zone_enter: allows the current process to enter a zone 188 * - zone_getattr: reports attributes of a zone 189 * - zone_setattr: set attributes of a zone 190 * - zone_boot: set 'init' running for the zone 191 * - zone_list: lists all zones active in the system 192 * - zone_lookup: looks up zone id based on name 193 * - zone_shutdown: initiates shutdown process (see states above) 194 * - zone_destroy: completes shutdown process (see states above) 195 * 196 */ 197 198 #include <sys/priv_impl.h> 199 #include <sys/cred.h> 200 #include <c2/audit.h> 201 #include <sys/debug.h> 202 #include <sys/file.h> 203 #include <sys/kmem.h> 204 #include <sys/kstat.h> 205 #include <sys/mutex.h> 206 #include <sys/note.h> 207 #include <sys/pathname.h> 208 #include <sys/proc.h> 209 #include <sys/project.h> 210 #include <sys/sysevent.h> 211 #include <sys/task.h> 212 #include <sys/systm.h> 213 #include <sys/types.h> 214 #include <sys/utsname.h> 215 #include <sys/vnode.h> 216 #include <sys/vfs.h> 217 #include <sys/systeminfo.h> 218 #include <sys/policy.h> 219 #include <sys/cred_impl.h> 220 #include <sys/contract_impl.h> 221 #include <sys/contract/process_impl.h> 222 #include <sys/class.h> 223 #include <sys/pool.h> 224 #include <sys/pool_pset.h> 225 #include <sys/pset.h> 226 #include <sys/sysmacros.h> 227 #include <sys/callb.h> 228 #include <sys/vmparam.h> 229 #include <sys/corectl.h> 230 #include <sys/ipc_impl.h> 231 #include <sys/klpd.h> 232 233 #include <sys/door.h> 234 #include <sys/cpuvar.h> 235 #include <sys/sdt.h> 236 237 #include <sys/uadmin.h> 238 #include <sys/session.h> 239 #include <sys/cmn_err.h> 240 #include <sys/modhash.h> 241 #include <sys/sunddi.h> 242 #include <sys/nvpair.h> 243 #include <sys/rctl.h> 244 #include <sys/fss.h> 245 #include <sys/brand.h> 246 #include <sys/zone.h> 247 #include <net/if.h> 248 #include <sys/cpucaps.h> 249 #include <vm/seg.h> 250 #include <sys/mac.h> 251 252 /* List of data link IDs which are accessible from the zone */ 253 typedef struct zone_dl { 254 datalink_id_t zdl_id; 255 list_node_t zdl_linkage; 256 } zone_dl_t; 257 258 /* 259 * cv used to signal that all references to the zone have been released. This 260 * needs to be global since there may be multiple waiters, and the first to 261 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 262 */ 263 static kcondvar_t zone_destroy_cv; 264 /* 265 * Lock used to serialize access to zone_cv. This could have been per-zone, 266 * but then we'd need another lock for zone_destroy_cv, and why bother? 267 */ 268 static kmutex_t zone_status_lock; 269 270 /* 271 * ZSD-related global variables. 272 */ 273 static kmutex_t zsd_key_lock; /* protects the following two */ 274 /* 275 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 276 */ 277 static zone_key_t zsd_keyval = 0; 278 /* 279 * Global list of registered keys. We use this when a new zone is created. 280 */ 281 static list_t zsd_registered_keys; 282 283 int zone_hash_size = 256; 284 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 285 static kmutex_t zonehash_lock; 286 static uint_t zonecount; 287 static id_space_t *zoneid_space; 288 289 /* 290 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 291 * kernel proper runs, and which manages all other zones. 292 * 293 * Although not declared as static, the variable "zone0" should not be used 294 * except for by code that needs to reference the global zone early on in boot, 295 * before it is fully initialized. All other consumers should use 296 * 'global_zone'. 297 */ 298 zone_t zone0; 299 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 300 301 /* 302 * List of active zones, protected by zonehash_lock. 303 */ 304 static list_t zone_active; 305 306 /* 307 * List of destroyed zones that still have outstanding cred references. 308 * Used for debugging. Uses a separate lock to avoid lock ordering 309 * problems in zone_free. 310 */ 311 static list_t zone_deathrow; 312 static kmutex_t zone_deathrow_lock; 313 314 /* number of zones is limited by virtual interface limit in IP */ 315 uint_t maxzones = 8192; 316 317 /* Event channel to sent zone state change notifications */ 318 evchan_t *zone_event_chan; 319 320 /* 321 * This table holds the mapping from kernel zone states to 322 * states visible in the state notification API. 323 * The idea is that we only expose "obvious" states and 324 * do not expose states which are just implementation details. 325 */ 326 const char *zone_status_table[] = { 327 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 328 ZONE_EVENT_INITIALIZED, /* initialized */ 329 ZONE_EVENT_READY, /* ready */ 330 ZONE_EVENT_READY, /* booting */ 331 ZONE_EVENT_RUNNING, /* running */ 332 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 333 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 334 ZONE_EVENT_SHUTTING_DOWN, /* down */ 335 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 336 ZONE_EVENT_UNINITIALIZED, /* dead */ 337 }; 338 339 /* 340 * This isn't static so lint doesn't complain. 341 */ 342 rctl_hndl_t rc_zone_cpu_shares; 343 rctl_hndl_t rc_zone_locked_mem; 344 rctl_hndl_t rc_zone_max_swap; 345 rctl_hndl_t rc_zone_max_lofi; 346 rctl_hndl_t rc_zone_cpu_cap; 347 rctl_hndl_t rc_zone_nlwps; 348 rctl_hndl_t rc_zone_shmmax; 349 rctl_hndl_t rc_zone_shmmni; 350 rctl_hndl_t rc_zone_semmni; 351 rctl_hndl_t rc_zone_msgmni; 352 /* 353 * Synchronization primitives used to synchronize between mounts and zone 354 * creation/destruction. 355 */ 356 static int mounts_in_progress; 357 static kcondvar_t mount_cv; 358 static kmutex_t mount_lock; 359 360 const char * const zone_default_initname = "/sbin/init"; 361 static char * const zone_prefix = "/zone/"; 362 static int zone_shutdown(zoneid_t zoneid); 363 static int zone_add_datalink(zoneid_t, datalink_id_t); 364 static int zone_remove_datalink(zoneid_t, datalink_id_t); 365 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 366 367 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 368 369 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 370 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 371 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 372 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 373 zone_key_t); 374 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 375 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 376 kmutex_t *); 377 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 378 kmutex_t *); 379 380 /* 381 * Bump this number when you alter the zone syscall interfaces; this is 382 * because we need to have support for previous API versions in libc 383 * to support patching; libc calls into the kernel to determine this number. 384 * 385 * Version 1 of the API is the version originally shipped with Solaris 10 386 * Version 2 alters the zone_create system call in order to support more 387 * arguments by moving the args into a structure; and to do better 388 * error reporting when zone_create() fails. 389 * Version 3 alters the zone_create system call in order to support the 390 * import of ZFS datasets to zones. 391 * Version 4 alters the zone_create system call in order to support 392 * Trusted Extensions. 393 * Version 5 alters the zone_boot system call, and converts its old 394 * bootargs parameter to be set by the zone_setattr API instead. 395 * Version 6 adds the flag argument to zone_create. 396 */ 397 static const int ZONE_SYSCALL_API_VERSION = 6; 398 399 /* 400 * Certain filesystems (such as NFS and autofs) need to know which zone 401 * the mount is being placed in. Because of this, we need to be able to 402 * ensure that a zone isn't in the process of being created such that 403 * nfs_mount() thinks it is in the global zone, while by the time it 404 * gets added the list of mounted zones, it ends up on zoneA's mount 405 * list. 406 * 407 * The following functions: block_mounts()/resume_mounts() and 408 * mount_in_progress()/mount_completed() are used by zones and the VFS 409 * layer (respectively) to synchronize zone creation and new mounts. 410 * 411 * The semantics are like a reader-reader lock such that there may 412 * either be multiple mounts (or zone creations, if that weren't 413 * serialized by zonehash_lock) in progress at the same time, but not 414 * both. 415 * 416 * We use cv's so the user can ctrl-C out of the operation if it's 417 * taking too long. 418 * 419 * The semantics are such that there is unfair bias towards the 420 * "current" operation. This means that zone creations may starve if 421 * there is a rapid succession of new mounts coming in to the system, or 422 * there is a remote possibility that zones will be created at such a 423 * rate that new mounts will not be able to proceed. 424 */ 425 /* 426 * Prevent new mounts from progressing to the point of calling 427 * VFS_MOUNT(). If there are already mounts in this "region", wait for 428 * them to complete. 429 */ 430 static int 431 block_mounts(void) 432 { 433 int retval = 0; 434 435 /* 436 * Since it may block for a long time, block_mounts() shouldn't be 437 * called with zonehash_lock held. 438 */ 439 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 440 mutex_enter(&mount_lock); 441 while (mounts_in_progress > 0) { 442 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 443 goto signaled; 444 } 445 /* 446 * A negative value of mounts_in_progress indicates that mounts 447 * have been blocked by (-mounts_in_progress) different callers. 448 */ 449 mounts_in_progress--; 450 retval = 1; 451 signaled: 452 mutex_exit(&mount_lock); 453 return (retval); 454 } 455 456 /* 457 * The VFS layer may progress with new mounts as far as we're concerned. 458 * Allow them to progress if we were the last obstacle. 459 */ 460 static void 461 resume_mounts(void) 462 { 463 mutex_enter(&mount_lock); 464 if (++mounts_in_progress == 0) 465 cv_broadcast(&mount_cv); 466 mutex_exit(&mount_lock); 467 } 468 469 /* 470 * The VFS layer is busy with a mount; zones should wait until all 471 * mounts are completed to progress. 472 */ 473 void 474 mount_in_progress(void) 475 { 476 mutex_enter(&mount_lock); 477 while (mounts_in_progress < 0) 478 cv_wait(&mount_cv, &mount_lock); 479 mounts_in_progress++; 480 mutex_exit(&mount_lock); 481 } 482 483 /* 484 * VFS is done with one mount; wake up any waiting block_mounts() 485 * callers if this is the last mount. 486 */ 487 void 488 mount_completed(void) 489 { 490 mutex_enter(&mount_lock); 491 if (--mounts_in_progress == 0) 492 cv_broadcast(&mount_cv); 493 mutex_exit(&mount_lock); 494 } 495 496 /* 497 * ZSD routines. 498 * 499 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 500 * defined by the pthread_key_create() and related interfaces. 501 * 502 * Kernel subsystems may register one or more data items and/or 503 * callbacks to be executed when a zone is created, shutdown, or 504 * destroyed. 505 * 506 * Unlike the thread counterpart, destructor callbacks will be executed 507 * even if the data pointer is NULL and/or there are no constructor 508 * callbacks, so it is the responsibility of such callbacks to check for 509 * NULL data values if necessary. 510 * 511 * The locking strategy and overall picture is as follows: 512 * 513 * When someone calls zone_key_create(), a template ZSD entry is added to the 514 * global list "zsd_registered_keys", protected by zsd_key_lock. While 515 * holding that lock all the existing zones are marked as 516 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 517 * zone_zsd list (protected by zone_lock). The global list is updated first 518 * (under zone_key_lock) to make sure that newly created zones use the 519 * most recent list of keys. Then under zonehash_lock we walk the zones 520 * and mark them. Similar locking is used in zone_key_delete(). 521 * 522 * The actual create, shutdown, and destroy callbacks are done without 523 * holding any lock. And zsd_flags are used to ensure that the operations 524 * completed so that when zone_key_create (and zone_create) is done, as well as 525 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 526 * are completed. 527 * 528 * When new zones are created constructor callbacks for all registered ZSD 529 * entries will be called. That also uses the above two phases of marking 530 * what needs to be done, and then running the callbacks without holding 531 * any locks. 532 * 533 * The framework does not provide any locking around zone_getspecific() and 534 * zone_setspecific() apart from that needed for internal consistency, so 535 * callers interested in atomic "test-and-set" semantics will need to provide 536 * their own locking. 537 */ 538 539 /* 540 * Helper function to find the zsd_entry associated with the key in the 541 * given list. 542 */ 543 static struct zsd_entry * 544 zsd_find(list_t *l, zone_key_t key) 545 { 546 struct zsd_entry *zsd; 547 548 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 549 if (zsd->zsd_key == key) { 550 return (zsd); 551 } 552 } 553 return (NULL); 554 } 555 556 /* 557 * Helper function to find the zsd_entry associated with the key in the 558 * given list. Move it to the front of the list. 559 */ 560 static struct zsd_entry * 561 zsd_find_mru(list_t *l, zone_key_t key) 562 { 563 struct zsd_entry *zsd; 564 565 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 566 if (zsd->zsd_key == key) { 567 /* 568 * Move to head of list to keep list in MRU order. 569 */ 570 if (zsd != list_head(l)) { 571 list_remove(l, zsd); 572 list_insert_head(l, zsd); 573 } 574 return (zsd); 575 } 576 } 577 return (NULL); 578 } 579 580 void 581 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 582 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 583 { 584 struct zsd_entry *zsdp; 585 struct zsd_entry *t; 586 struct zone *zone; 587 zone_key_t key; 588 589 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 590 zsdp->zsd_data = NULL; 591 zsdp->zsd_create = create; 592 zsdp->zsd_shutdown = shutdown; 593 zsdp->zsd_destroy = destroy; 594 595 /* 596 * Insert in global list of callbacks. Makes future zone creations 597 * see it. 598 */ 599 mutex_enter(&zsd_key_lock); 600 key = zsdp->zsd_key = ++zsd_keyval; 601 ASSERT(zsd_keyval != 0); 602 list_insert_tail(&zsd_registered_keys, zsdp); 603 mutex_exit(&zsd_key_lock); 604 605 /* 606 * Insert for all existing zones and mark them as needing 607 * a create callback. 608 */ 609 mutex_enter(&zonehash_lock); /* stop the world */ 610 for (zone = list_head(&zone_active); zone != NULL; 611 zone = list_next(&zone_active, zone)) { 612 zone_status_t status; 613 614 mutex_enter(&zone->zone_lock); 615 616 /* Skip zones that are on the way down or not yet up */ 617 status = zone_status_get(zone); 618 if (status >= ZONE_IS_DOWN || 619 status == ZONE_IS_UNINITIALIZED) { 620 mutex_exit(&zone->zone_lock); 621 continue; 622 } 623 624 t = zsd_find_mru(&zone->zone_zsd, key); 625 if (t != NULL) { 626 /* 627 * A zsd_configure already inserted it after 628 * we dropped zsd_key_lock above. 629 */ 630 mutex_exit(&zone->zone_lock); 631 continue; 632 } 633 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 634 t->zsd_key = key; 635 t->zsd_create = create; 636 t->zsd_shutdown = shutdown; 637 t->zsd_destroy = destroy; 638 if (create != NULL) { 639 t->zsd_flags = ZSD_CREATE_NEEDED; 640 DTRACE_PROBE2(zsd__create__needed, 641 zone_t *, zone, zone_key_t, key); 642 } 643 list_insert_tail(&zone->zone_zsd, t); 644 mutex_exit(&zone->zone_lock); 645 } 646 mutex_exit(&zonehash_lock); 647 648 if (create != NULL) { 649 /* Now call the create callback for this key */ 650 zsd_apply_all_zones(zsd_apply_create, key); 651 } 652 /* 653 * It is safe for consumers to use the key now, make it 654 * globally visible. Specifically zone_getspecific() will 655 * always successfully return the zone specific data associated 656 * with the key. 657 */ 658 *keyp = key; 659 660 } 661 662 /* 663 * Function called when a module is being unloaded, or otherwise wishes 664 * to unregister its ZSD key and callbacks. 665 * 666 * Remove from the global list and determine the functions that need to 667 * be called under a global lock. Then call the functions without 668 * holding any locks. Finally free up the zone_zsd entries. (The apply 669 * functions need to access the zone_zsd entries to find zsd_data etc.) 670 */ 671 int 672 zone_key_delete(zone_key_t key) 673 { 674 struct zsd_entry *zsdp = NULL; 675 zone_t *zone; 676 677 mutex_enter(&zsd_key_lock); 678 zsdp = zsd_find_mru(&zsd_registered_keys, key); 679 if (zsdp == NULL) { 680 mutex_exit(&zsd_key_lock); 681 return (-1); 682 } 683 list_remove(&zsd_registered_keys, zsdp); 684 mutex_exit(&zsd_key_lock); 685 686 mutex_enter(&zonehash_lock); 687 for (zone = list_head(&zone_active); zone != NULL; 688 zone = list_next(&zone_active, zone)) { 689 struct zsd_entry *del; 690 691 mutex_enter(&zone->zone_lock); 692 del = zsd_find_mru(&zone->zone_zsd, key); 693 if (del == NULL) { 694 /* 695 * Somebody else got here first e.g the zone going 696 * away. 697 */ 698 mutex_exit(&zone->zone_lock); 699 continue; 700 } 701 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 702 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 703 if (del->zsd_shutdown != NULL && 704 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 705 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 706 DTRACE_PROBE2(zsd__shutdown__needed, 707 zone_t *, zone, zone_key_t, key); 708 } 709 if (del->zsd_destroy != NULL && 710 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 711 del->zsd_flags |= ZSD_DESTROY_NEEDED; 712 DTRACE_PROBE2(zsd__destroy__needed, 713 zone_t *, zone, zone_key_t, key); 714 } 715 mutex_exit(&zone->zone_lock); 716 } 717 mutex_exit(&zonehash_lock); 718 kmem_free(zsdp, sizeof (*zsdp)); 719 720 /* Now call the shutdown and destroy callback for this key */ 721 zsd_apply_all_zones(zsd_apply_shutdown, key); 722 zsd_apply_all_zones(zsd_apply_destroy, key); 723 724 /* Now we can free up the zsdp structures in each zone */ 725 mutex_enter(&zonehash_lock); 726 for (zone = list_head(&zone_active); zone != NULL; 727 zone = list_next(&zone_active, zone)) { 728 struct zsd_entry *del; 729 730 mutex_enter(&zone->zone_lock); 731 del = zsd_find(&zone->zone_zsd, key); 732 if (del != NULL) { 733 list_remove(&zone->zone_zsd, del); 734 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 735 kmem_free(del, sizeof (*del)); 736 } 737 mutex_exit(&zone->zone_lock); 738 } 739 mutex_exit(&zonehash_lock); 740 741 return (0); 742 } 743 744 /* 745 * ZSD counterpart of pthread_setspecific(). 746 * 747 * Since all zsd callbacks, including those with no create function, 748 * have an entry in zone_zsd, if the key is registered it is part of 749 * the zone_zsd list. 750 * Return an error if the key wasn't registerd. 751 */ 752 int 753 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 754 { 755 struct zsd_entry *t; 756 757 mutex_enter(&zone->zone_lock); 758 t = zsd_find_mru(&zone->zone_zsd, key); 759 if (t != NULL) { 760 /* 761 * Replace old value with new 762 */ 763 t->zsd_data = (void *)data; 764 mutex_exit(&zone->zone_lock); 765 return (0); 766 } 767 mutex_exit(&zone->zone_lock); 768 return (-1); 769 } 770 771 /* 772 * ZSD counterpart of pthread_getspecific(). 773 */ 774 void * 775 zone_getspecific(zone_key_t key, zone_t *zone) 776 { 777 struct zsd_entry *t; 778 void *data; 779 780 mutex_enter(&zone->zone_lock); 781 t = zsd_find_mru(&zone->zone_zsd, key); 782 data = (t == NULL ? NULL : t->zsd_data); 783 mutex_exit(&zone->zone_lock); 784 return (data); 785 } 786 787 /* 788 * Function used to initialize a zone's list of ZSD callbacks and data 789 * when the zone is being created. The callbacks are initialized from 790 * the template list (zsd_registered_keys). The constructor callback is 791 * executed later (once the zone exists and with locks dropped). 792 */ 793 static void 794 zone_zsd_configure(zone_t *zone) 795 { 796 struct zsd_entry *zsdp; 797 struct zsd_entry *t; 798 799 ASSERT(MUTEX_HELD(&zonehash_lock)); 800 ASSERT(list_head(&zone->zone_zsd) == NULL); 801 mutex_enter(&zone->zone_lock); 802 mutex_enter(&zsd_key_lock); 803 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 804 zsdp = list_next(&zsd_registered_keys, zsdp)) { 805 /* 806 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 807 * should not have added anything to it. 808 */ 809 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 810 811 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 812 t->zsd_key = zsdp->zsd_key; 813 t->zsd_create = zsdp->zsd_create; 814 t->zsd_shutdown = zsdp->zsd_shutdown; 815 t->zsd_destroy = zsdp->zsd_destroy; 816 if (zsdp->zsd_create != NULL) { 817 t->zsd_flags = ZSD_CREATE_NEEDED; 818 DTRACE_PROBE2(zsd__create__needed, 819 zone_t *, zone, zone_key_t, zsdp->zsd_key); 820 } 821 list_insert_tail(&zone->zone_zsd, t); 822 } 823 mutex_exit(&zsd_key_lock); 824 mutex_exit(&zone->zone_lock); 825 } 826 827 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 828 829 /* 830 * Helper function to execute shutdown or destructor callbacks. 831 */ 832 static void 833 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 834 { 835 struct zsd_entry *t; 836 837 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 838 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 839 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 840 841 /* 842 * Run the callback solely based on what is registered for the zone 843 * in zone_zsd. The global list can change independently of this 844 * as keys are registered and unregistered and we don't register new 845 * callbacks for a zone that is in the process of going away. 846 */ 847 mutex_enter(&zone->zone_lock); 848 for (t = list_head(&zone->zone_zsd); t != NULL; 849 t = list_next(&zone->zone_zsd, t)) { 850 zone_key_t key = t->zsd_key; 851 852 /* Skip if no callbacks registered */ 853 854 if (ct == ZSD_SHUTDOWN) { 855 if (t->zsd_shutdown != NULL && 856 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 857 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 858 DTRACE_PROBE2(zsd__shutdown__needed, 859 zone_t *, zone, zone_key_t, key); 860 } 861 } else { 862 if (t->zsd_destroy != NULL && 863 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 864 t->zsd_flags |= ZSD_DESTROY_NEEDED; 865 DTRACE_PROBE2(zsd__destroy__needed, 866 zone_t *, zone, zone_key_t, key); 867 } 868 } 869 } 870 mutex_exit(&zone->zone_lock); 871 872 /* Now call the shutdown and destroy callback for this key */ 873 zsd_apply_all_keys(zsd_apply_shutdown, zone); 874 zsd_apply_all_keys(zsd_apply_destroy, zone); 875 876 } 877 878 /* 879 * Called when the zone is going away; free ZSD-related memory, and 880 * destroy the zone_zsd list. 881 */ 882 static void 883 zone_free_zsd(zone_t *zone) 884 { 885 struct zsd_entry *t, *next; 886 887 /* 888 * Free all the zsd_entry's we had on this zone. 889 */ 890 mutex_enter(&zone->zone_lock); 891 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 892 next = list_next(&zone->zone_zsd, t); 893 list_remove(&zone->zone_zsd, t); 894 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 895 kmem_free(t, sizeof (*t)); 896 } 897 list_destroy(&zone->zone_zsd); 898 mutex_exit(&zone->zone_lock); 899 900 } 901 902 /* 903 * Apply a function to all zones for particular key value. 904 * 905 * The applyfn has to drop zonehash_lock if it does some work, and 906 * then reacquire it before it returns. 907 * When the lock is dropped we don't follow list_next even 908 * if it is possible to do so without any hazards. This is 909 * because we want the design to allow for the list of zones 910 * to change in any arbitrary way during the time the 911 * lock was dropped. 912 * 913 * It is safe to restart the loop at list_head since the applyfn 914 * changes the zsd_flags as it does work, so a subsequent 915 * pass through will have no effect in applyfn, hence the loop will terminate 916 * in at worst O(N^2). 917 */ 918 static void 919 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 920 { 921 zone_t *zone; 922 923 mutex_enter(&zonehash_lock); 924 zone = list_head(&zone_active); 925 while (zone != NULL) { 926 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 927 /* Lock dropped - restart at head */ 928 zone = list_head(&zone_active); 929 } else { 930 zone = list_next(&zone_active, zone); 931 } 932 } 933 mutex_exit(&zonehash_lock); 934 } 935 936 /* 937 * Apply a function to all keys for a particular zone. 938 * 939 * The applyfn has to drop zonehash_lock if it does some work, and 940 * then reacquire it before it returns. 941 * When the lock is dropped we don't follow list_next even 942 * if it is possible to do so without any hazards. This is 943 * because we want the design to allow for the list of zsd callbacks 944 * to change in any arbitrary way during the time the 945 * lock was dropped. 946 * 947 * It is safe to restart the loop at list_head since the applyfn 948 * changes the zsd_flags as it does work, so a subsequent 949 * pass through will have no effect in applyfn, hence the loop will terminate 950 * in at worst O(N^2). 951 */ 952 static void 953 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 954 { 955 struct zsd_entry *t; 956 957 mutex_enter(&zone->zone_lock); 958 t = list_head(&zone->zone_zsd); 959 while (t != NULL) { 960 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 961 /* Lock dropped - restart at head */ 962 t = list_head(&zone->zone_zsd); 963 } else { 964 t = list_next(&zone->zone_zsd, t); 965 } 966 } 967 mutex_exit(&zone->zone_lock); 968 } 969 970 /* 971 * Call the create function for the zone and key if CREATE_NEEDED 972 * is set. 973 * If some other thread gets here first and sets CREATE_INPROGRESS, then 974 * we wait for that thread to complete so that we can ensure that 975 * all the callbacks are done when we've looped over all zones/keys. 976 * 977 * When we call the create function, we drop the global held by the 978 * caller, and return true to tell the caller it needs to re-evalute the 979 * state. 980 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 981 * remains held on exit. 982 */ 983 static boolean_t 984 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 985 zone_t *zone, zone_key_t key) 986 { 987 void *result; 988 struct zsd_entry *t; 989 boolean_t dropped; 990 991 if (lockp != NULL) { 992 ASSERT(MUTEX_HELD(lockp)); 993 } 994 if (zone_lock_held) { 995 ASSERT(MUTEX_HELD(&zone->zone_lock)); 996 } else { 997 mutex_enter(&zone->zone_lock); 998 } 999 1000 t = zsd_find(&zone->zone_zsd, key); 1001 if (t == NULL) { 1002 /* 1003 * Somebody else got here first e.g the zone going 1004 * away. 1005 */ 1006 if (!zone_lock_held) 1007 mutex_exit(&zone->zone_lock); 1008 return (B_FALSE); 1009 } 1010 dropped = B_FALSE; 1011 if (zsd_wait_for_inprogress(zone, t, lockp)) 1012 dropped = B_TRUE; 1013 1014 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1015 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1016 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1017 DTRACE_PROBE2(zsd__create__inprogress, 1018 zone_t *, zone, zone_key_t, key); 1019 mutex_exit(&zone->zone_lock); 1020 if (lockp != NULL) 1021 mutex_exit(lockp); 1022 1023 dropped = B_TRUE; 1024 ASSERT(t->zsd_create != NULL); 1025 DTRACE_PROBE2(zsd__create__start, 1026 zone_t *, zone, zone_key_t, key); 1027 1028 result = (*t->zsd_create)(zone->zone_id); 1029 1030 DTRACE_PROBE2(zsd__create__end, 1031 zone_t *, zone, voidn *, result); 1032 1033 ASSERT(result != NULL); 1034 if (lockp != NULL) 1035 mutex_enter(lockp); 1036 mutex_enter(&zone->zone_lock); 1037 t->zsd_data = result; 1038 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1039 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1040 cv_broadcast(&t->zsd_cv); 1041 DTRACE_PROBE2(zsd__create__completed, 1042 zone_t *, zone, zone_key_t, key); 1043 } 1044 if (!zone_lock_held) 1045 mutex_exit(&zone->zone_lock); 1046 return (dropped); 1047 } 1048 1049 /* 1050 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1051 * is set. 1052 * If some other thread gets here first and sets *_INPROGRESS, then 1053 * we wait for that thread to complete so that we can ensure that 1054 * all the callbacks are done when we've looped over all zones/keys. 1055 * 1056 * When we call the shutdown function, we drop the global held by the 1057 * caller, and return true to tell the caller it needs to re-evalute the 1058 * state. 1059 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1060 * remains held on exit. 1061 */ 1062 static boolean_t 1063 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1064 zone_t *zone, zone_key_t key) 1065 { 1066 struct zsd_entry *t; 1067 void *data; 1068 boolean_t dropped; 1069 1070 if (lockp != NULL) { 1071 ASSERT(MUTEX_HELD(lockp)); 1072 } 1073 if (zone_lock_held) { 1074 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1075 } else { 1076 mutex_enter(&zone->zone_lock); 1077 } 1078 1079 t = zsd_find(&zone->zone_zsd, key); 1080 if (t == NULL) { 1081 /* 1082 * Somebody else got here first e.g the zone going 1083 * away. 1084 */ 1085 if (!zone_lock_held) 1086 mutex_exit(&zone->zone_lock); 1087 return (B_FALSE); 1088 } 1089 dropped = B_FALSE; 1090 if (zsd_wait_for_creator(zone, t, lockp)) 1091 dropped = B_TRUE; 1092 1093 if (zsd_wait_for_inprogress(zone, t, lockp)) 1094 dropped = B_TRUE; 1095 1096 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1097 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1098 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1099 DTRACE_PROBE2(zsd__shutdown__inprogress, 1100 zone_t *, zone, zone_key_t, key); 1101 mutex_exit(&zone->zone_lock); 1102 if (lockp != NULL) 1103 mutex_exit(lockp); 1104 dropped = B_TRUE; 1105 1106 ASSERT(t->zsd_shutdown != NULL); 1107 data = t->zsd_data; 1108 1109 DTRACE_PROBE2(zsd__shutdown__start, 1110 zone_t *, zone, zone_key_t, key); 1111 1112 (t->zsd_shutdown)(zone->zone_id, data); 1113 DTRACE_PROBE2(zsd__shutdown__end, 1114 zone_t *, zone, zone_key_t, key); 1115 1116 if (lockp != NULL) 1117 mutex_enter(lockp); 1118 mutex_enter(&zone->zone_lock); 1119 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1120 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1121 cv_broadcast(&t->zsd_cv); 1122 DTRACE_PROBE2(zsd__shutdown__completed, 1123 zone_t *, zone, zone_key_t, key); 1124 } 1125 if (!zone_lock_held) 1126 mutex_exit(&zone->zone_lock); 1127 return (dropped); 1128 } 1129 1130 /* 1131 * Call the destroy function for the zone and key if DESTROY_NEEDED 1132 * is set. 1133 * If some other thread gets here first and sets *_INPROGRESS, then 1134 * we wait for that thread to complete so that we can ensure that 1135 * all the callbacks are done when we've looped over all zones/keys. 1136 * 1137 * When we call the destroy function, we drop the global held by the 1138 * caller, and return true to tell the caller it needs to re-evalute the 1139 * state. 1140 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1141 * remains held on exit. 1142 */ 1143 static boolean_t 1144 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1145 zone_t *zone, zone_key_t key) 1146 { 1147 struct zsd_entry *t; 1148 void *data; 1149 boolean_t dropped; 1150 1151 if (lockp != NULL) { 1152 ASSERT(MUTEX_HELD(lockp)); 1153 } 1154 if (zone_lock_held) { 1155 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1156 } else { 1157 mutex_enter(&zone->zone_lock); 1158 } 1159 1160 t = zsd_find(&zone->zone_zsd, key); 1161 if (t == NULL) { 1162 /* 1163 * Somebody else got here first e.g the zone going 1164 * away. 1165 */ 1166 if (!zone_lock_held) 1167 mutex_exit(&zone->zone_lock); 1168 return (B_FALSE); 1169 } 1170 dropped = B_FALSE; 1171 if (zsd_wait_for_creator(zone, t, lockp)) 1172 dropped = B_TRUE; 1173 1174 if (zsd_wait_for_inprogress(zone, t, lockp)) 1175 dropped = B_TRUE; 1176 1177 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1178 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1179 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1180 DTRACE_PROBE2(zsd__destroy__inprogress, 1181 zone_t *, zone, zone_key_t, key); 1182 mutex_exit(&zone->zone_lock); 1183 if (lockp != NULL) 1184 mutex_exit(lockp); 1185 dropped = B_TRUE; 1186 1187 ASSERT(t->zsd_destroy != NULL); 1188 data = t->zsd_data; 1189 DTRACE_PROBE2(zsd__destroy__start, 1190 zone_t *, zone, zone_key_t, key); 1191 1192 (t->zsd_destroy)(zone->zone_id, data); 1193 DTRACE_PROBE2(zsd__destroy__end, 1194 zone_t *, zone, zone_key_t, key); 1195 1196 if (lockp != NULL) 1197 mutex_enter(lockp); 1198 mutex_enter(&zone->zone_lock); 1199 t->zsd_data = NULL; 1200 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1201 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1202 cv_broadcast(&t->zsd_cv); 1203 DTRACE_PROBE2(zsd__destroy__completed, 1204 zone_t *, zone, zone_key_t, key); 1205 } 1206 if (!zone_lock_held) 1207 mutex_exit(&zone->zone_lock); 1208 return (dropped); 1209 } 1210 1211 /* 1212 * Wait for any CREATE_NEEDED flag to be cleared. 1213 * Returns true if lockp was temporarily dropped while waiting. 1214 */ 1215 static boolean_t 1216 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1217 { 1218 boolean_t dropped = B_FALSE; 1219 1220 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1221 DTRACE_PROBE2(zsd__wait__for__creator, 1222 zone_t *, zone, struct zsd_entry *, t); 1223 if (lockp != NULL) { 1224 dropped = B_TRUE; 1225 mutex_exit(lockp); 1226 } 1227 cv_wait(&t->zsd_cv, &zone->zone_lock); 1228 if (lockp != NULL) { 1229 /* First drop zone_lock to preserve order */ 1230 mutex_exit(&zone->zone_lock); 1231 mutex_enter(lockp); 1232 mutex_enter(&zone->zone_lock); 1233 } 1234 } 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any INPROGRESS flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1248 DTRACE_PROBE2(zsd__wait__for__inprogress, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Frees memory associated with the zone dataset list. 1267 */ 1268 static void 1269 zone_free_datasets(zone_t *zone) 1270 { 1271 zone_dataset_t *t, *next; 1272 1273 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1274 next = list_next(&zone->zone_datasets, t); 1275 list_remove(&zone->zone_datasets, t); 1276 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1277 kmem_free(t, sizeof (*t)); 1278 } 1279 list_destroy(&zone->zone_datasets); 1280 } 1281 1282 /* 1283 * zone.cpu-shares resource control support. 1284 */ 1285 /*ARGSUSED*/ 1286 static rctl_qty_t 1287 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1288 { 1289 ASSERT(MUTEX_HELD(&p->p_lock)); 1290 return (p->p_zone->zone_shares); 1291 } 1292 1293 /*ARGSUSED*/ 1294 static int 1295 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1296 rctl_qty_t nv) 1297 { 1298 ASSERT(MUTEX_HELD(&p->p_lock)); 1299 ASSERT(e->rcep_t == RCENTITY_ZONE); 1300 if (e->rcep_p.zone == NULL) 1301 return (0); 1302 1303 e->rcep_p.zone->zone_shares = nv; 1304 return (0); 1305 } 1306 1307 static rctl_ops_t zone_cpu_shares_ops = { 1308 rcop_no_action, 1309 zone_cpu_shares_usage, 1310 zone_cpu_shares_set, 1311 rcop_no_test 1312 }; 1313 1314 /* 1315 * zone.cpu-cap resource control support. 1316 */ 1317 /*ARGSUSED*/ 1318 static rctl_qty_t 1319 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1320 { 1321 ASSERT(MUTEX_HELD(&p->p_lock)); 1322 return (cpucaps_zone_get(p->p_zone)); 1323 } 1324 1325 /*ARGSUSED*/ 1326 static int 1327 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1328 rctl_qty_t nv) 1329 { 1330 zone_t *zone = e->rcep_p.zone; 1331 1332 ASSERT(MUTEX_HELD(&p->p_lock)); 1333 ASSERT(e->rcep_t == RCENTITY_ZONE); 1334 1335 if (zone == NULL) 1336 return (0); 1337 1338 /* 1339 * set cap to the new value. 1340 */ 1341 return (cpucaps_zone_set(zone, nv)); 1342 } 1343 1344 static rctl_ops_t zone_cpu_cap_ops = { 1345 rcop_no_action, 1346 zone_cpu_cap_get, 1347 zone_cpu_cap_set, 1348 rcop_no_test 1349 }; 1350 1351 /*ARGSUSED*/ 1352 static rctl_qty_t 1353 zone_lwps_usage(rctl_t *r, proc_t *p) 1354 { 1355 rctl_qty_t nlwps; 1356 zone_t *zone = p->p_zone; 1357 1358 ASSERT(MUTEX_HELD(&p->p_lock)); 1359 1360 mutex_enter(&zone->zone_nlwps_lock); 1361 nlwps = zone->zone_nlwps; 1362 mutex_exit(&zone->zone_nlwps_lock); 1363 1364 return (nlwps); 1365 } 1366 1367 /*ARGSUSED*/ 1368 static int 1369 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1370 rctl_qty_t incr, uint_t flags) 1371 { 1372 rctl_qty_t nlwps; 1373 1374 ASSERT(MUTEX_HELD(&p->p_lock)); 1375 ASSERT(e->rcep_t == RCENTITY_ZONE); 1376 if (e->rcep_p.zone == NULL) 1377 return (0); 1378 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1379 nlwps = e->rcep_p.zone->zone_nlwps; 1380 1381 if (nlwps + incr > rcntl->rcv_value) 1382 return (1); 1383 1384 return (0); 1385 } 1386 1387 /*ARGSUSED*/ 1388 static int 1389 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1390 { 1391 ASSERT(MUTEX_HELD(&p->p_lock)); 1392 ASSERT(e->rcep_t == RCENTITY_ZONE); 1393 if (e->rcep_p.zone == NULL) 1394 return (0); 1395 e->rcep_p.zone->zone_nlwps_ctl = nv; 1396 return (0); 1397 } 1398 1399 static rctl_ops_t zone_lwps_ops = { 1400 rcop_no_action, 1401 zone_lwps_usage, 1402 zone_lwps_set, 1403 zone_lwps_test, 1404 }; 1405 1406 /*ARGSUSED*/ 1407 static int 1408 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1409 rctl_qty_t incr, uint_t flags) 1410 { 1411 rctl_qty_t v; 1412 ASSERT(MUTEX_HELD(&p->p_lock)); 1413 ASSERT(e->rcep_t == RCENTITY_ZONE); 1414 v = e->rcep_p.zone->zone_shmmax + incr; 1415 if (v > rval->rcv_value) 1416 return (1); 1417 return (0); 1418 } 1419 1420 static rctl_ops_t zone_shmmax_ops = { 1421 rcop_no_action, 1422 rcop_no_usage, 1423 rcop_no_set, 1424 zone_shmmax_test 1425 }; 1426 1427 /*ARGSUSED*/ 1428 static int 1429 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1430 rctl_qty_t incr, uint_t flags) 1431 { 1432 rctl_qty_t v; 1433 ASSERT(MUTEX_HELD(&p->p_lock)); 1434 ASSERT(e->rcep_t == RCENTITY_ZONE); 1435 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1436 if (v > rval->rcv_value) 1437 return (1); 1438 return (0); 1439 } 1440 1441 static rctl_ops_t zone_shmmni_ops = { 1442 rcop_no_action, 1443 rcop_no_usage, 1444 rcop_no_set, 1445 zone_shmmni_test 1446 }; 1447 1448 /*ARGSUSED*/ 1449 static int 1450 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1451 rctl_qty_t incr, uint_t flags) 1452 { 1453 rctl_qty_t v; 1454 ASSERT(MUTEX_HELD(&p->p_lock)); 1455 ASSERT(e->rcep_t == RCENTITY_ZONE); 1456 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1457 if (v > rval->rcv_value) 1458 return (1); 1459 return (0); 1460 } 1461 1462 static rctl_ops_t zone_semmni_ops = { 1463 rcop_no_action, 1464 rcop_no_usage, 1465 rcop_no_set, 1466 zone_semmni_test 1467 }; 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1472 rctl_qty_t incr, uint_t flags) 1473 { 1474 rctl_qty_t v; 1475 ASSERT(MUTEX_HELD(&p->p_lock)); 1476 ASSERT(e->rcep_t == RCENTITY_ZONE); 1477 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1478 if (v > rval->rcv_value) 1479 return (1); 1480 return (0); 1481 } 1482 1483 static rctl_ops_t zone_msgmni_ops = { 1484 rcop_no_action, 1485 rcop_no_usage, 1486 rcop_no_set, 1487 zone_msgmni_test 1488 }; 1489 1490 /*ARGSUSED*/ 1491 static rctl_qty_t 1492 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1493 { 1494 rctl_qty_t q; 1495 ASSERT(MUTEX_HELD(&p->p_lock)); 1496 mutex_enter(&p->p_zone->zone_mem_lock); 1497 q = p->p_zone->zone_locked_mem; 1498 mutex_exit(&p->p_zone->zone_mem_lock); 1499 return (q); 1500 } 1501 1502 /*ARGSUSED*/ 1503 static int 1504 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1505 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1506 { 1507 rctl_qty_t q; 1508 zone_t *z; 1509 1510 z = e->rcep_p.zone; 1511 ASSERT(MUTEX_HELD(&p->p_lock)); 1512 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1513 q = z->zone_locked_mem; 1514 if (q + incr > rcntl->rcv_value) 1515 return (1); 1516 return (0); 1517 } 1518 1519 /*ARGSUSED*/ 1520 static int 1521 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1522 rctl_qty_t nv) 1523 { 1524 ASSERT(MUTEX_HELD(&p->p_lock)); 1525 ASSERT(e->rcep_t == RCENTITY_ZONE); 1526 if (e->rcep_p.zone == NULL) 1527 return (0); 1528 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1529 return (0); 1530 } 1531 1532 static rctl_ops_t zone_locked_mem_ops = { 1533 rcop_no_action, 1534 zone_locked_mem_usage, 1535 zone_locked_mem_set, 1536 zone_locked_mem_test 1537 }; 1538 1539 /*ARGSUSED*/ 1540 static rctl_qty_t 1541 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1542 { 1543 rctl_qty_t q; 1544 zone_t *z = p->p_zone; 1545 1546 ASSERT(MUTEX_HELD(&p->p_lock)); 1547 mutex_enter(&z->zone_mem_lock); 1548 q = z->zone_max_swap; 1549 mutex_exit(&z->zone_mem_lock); 1550 return (q); 1551 } 1552 1553 /*ARGSUSED*/ 1554 static int 1555 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1556 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1557 { 1558 rctl_qty_t q; 1559 zone_t *z; 1560 1561 z = e->rcep_p.zone; 1562 ASSERT(MUTEX_HELD(&p->p_lock)); 1563 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1564 q = z->zone_max_swap; 1565 if (q + incr > rcntl->rcv_value) 1566 return (1); 1567 return (0); 1568 } 1569 1570 /*ARGSUSED*/ 1571 static int 1572 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1573 rctl_qty_t nv) 1574 { 1575 ASSERT(MUTEX_HELD(&p->p_lock)); 1576 ASSERT(e->rcep_t == RCENTITY_ZONE); 1577 if (e->rcep_p.zone == NULL) 1578 return (0); 1579 e->rcep_p.zone->zone_max_swap_ctl = nv; 1580 return (0); 1581 } 1582 1583 static rctl_ops_t zone_max_swap_ops = { 1584 rcop_no_action, 1585 zone_max_swap_usage, 1586 zone_max_swap_set, 1587 zone_max_swap_test 1588 }; 1589 1590 /*ARGSUSED*/ 1591 static rctl_qty_t 1592 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1593 { 1594 rctl_qty_t q; 1595 zone_t *z = p->p_zone; 1596 1597 ASSERT(MUTEX_HELD(&p->p_lock)); 1598 mutex_enter(&z->zone_rctl_lock); 1599 q = z->zone_max_lofi; 1600 mutex_exit(&z->zone_rctl_lock); 1601 return (q); 1602 } 1603 1604 /*ARGSUSED*/ 1605 static int 1606 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1607 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1608 { 1609 rctl_qty_t q; 1610 zone_t *z; 1611 1612 z = e->rcep_p.zone; 1613 ASSERT(MUTEX_HELD(&p->p_lock)); 1614 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1615 q = z->zone_max_lofi; 1616 if (q + incr > rcntl->rcv_value) 1617 return (1); 1618 return (0); 1619 } 1620 1621 /*ARGSUSED*/ 1622 static int 1623 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1624 rctl_qty_t nv) 1625 { 1626 ASSERT(MUTEX_HELD(&p->p_lock)); 1627 ASSERT(e->rcep_t == RCENTITY_ZONE); 1628 if (e->rcep_p.zone == NULL) 1629 return (0); 1630 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1631 return (0); 1632 } 1633 1634 static rctl_ops_t zone_max_lofi_ops = { 1635 rcop_no_action, 1636 zone_max_lofi_usage, 1637 zone_max_lofi_set, 1638 zone_max_lofi_test 1639 }; 1640 1641 /* 1642 * Helper function to brand the zone with a unique ID. 1643 */ 1644 static void 1645 zone_uniqid(zone_t *zone) 1646 { 1647 static uint64_t uniqid = 0; 1648 1649 ASSERT(MUTEX_HELD(&zonehash_lock)); 1650 zone->zone_uniqid = uniqid++; 1651 } 1652 1653 /* 1654 * Returns a held pointer to the "kcred" for the specified zone. 1655 */ 1656 struct cred * 1657 zone_get_kcred(zoneid_t zoneid) 1658 { 1659 zone_t *zone; 1660 cred_t *cr; 1661 1662 if ((zone = zone_find_by_id(zoneid)) == NULL) 1663 return (NULL); 1664 cr = zone->zone_kcred; 1665 crhold(cr); 1666 zone_rele(zone); 1667 return (cr); 1668 } 1669 1670 static int 1671 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1672 { 1673 zone_t *zone = ksp->ks_private; 1674 zone_kstat_t *zk = ksp->ks_data; 1675 1676 if (rw == KSTAT_WRITE) 1677 return (EACCES); 1678 1679 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1680 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1681 return (0); 1682 } 1683 1684 static int 1685 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1686 { 1687 zone_t *zone = ksp->ks_private; 1688 zone_kstat_t *zk = ksp->ks_data; 1689 1690 if (rw == KSTAT_WRITE) 1691 return (EACCES); 1692 1693 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1694 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1695 return (0); 1696 } 1697 1698 static void 1699 zone_kstat_create(zone_t *zone) 1700 { 1701 kstat_t *ksp; 1702 zone_kstat_t *zk; 1703 1704 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1705 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1706 KSTAT_FLAG_VIRTUAL); 1707 1708 if (ksp == NULL) 1709 return; 1710 1711 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1712 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1713 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1714 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1715 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1716 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1717 ksp->ks_update = zone_lockedmem_kstat_update; 1718 ksp->ks_private = zone; 1719 kstat_install(ksp); 1720 1721 zone->zone_lockedmem_kstat = ksp; 1722 1723 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1724 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1725 KSTAT_FLAG_VIRTUAL); 1726 1727 if (ksp == NULL) 1728 return; 1729 1730 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1731 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1732 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1733 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1734 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1735 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1736 ksp->ks_update = zone_swapresv_kstat_update; 1737 ksp->ks_private = zone; 1738 kstat_install(ksp); 1739 1740 zone->zone_swapresv_kstat = ksp; 1741 } 1742 1743 static void 1744 zone_kstat_delete(zone_t *zone) 1745 { 1746 void *data; 1747 1748 if (zone->zone_lockedmem_kstat != NULL) { 1749 data = zone->zone_lockedmem_kstat->ks_data; 1750 kstat_delete(zone->zone_lockedmem_kstat); 1751 kmem_free(data, sizeof (zone_kstat_t)); 1752 } 1753 if (zone->zone_swapresv_kstat != NULL) { 1754 data = zone->zone_swapresv_kstat->ks_data; 1755 kstat_delete(zone->zone_swapresv_kstat); 1756 kmem_free(data, sizeof (zone_kstat_t)); 1757 } 1758 } 1759 1760 /* 1761 * Called very early on in boot to initialize the ZSD list so that 1762 * zone_key_create() can be called before zone_init(). It also initializes 1763 * portions of zone0 which may be used before zone_init() is called. The 1764 * variable "global_zone" will be set when zone0 is fully initialized by 1765 * zone_init(). 1766 */ 1767 void 1768 zone_zsd_init(void) 1769 { 1770 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1771 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1772 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1773 offsetof(struct zsd_entry, zsd_linkage)); 1774 list_create(&zone_active, sizeof (zone_t), 1775 offsetof(zone_t, zone_linkage)); 1776 list_create(&zone_deathrow, sizeof (zone_t), 1777 offsetof(zone_t, zone_linkage)); 1778 1779 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1780 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1781 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1782 zone0.zone_shares = 1; 1783 zone0.zone_nlwps = 0; 1784 zone0.zone_nlwps_ctl = INT_MAX; 1785 zone0.zone_locked_mem = 0; 1786 zone0.zone_locked_mem_ctl = UINT64_MAX; 1787 ASSERT(zone0.zone_max_swap == 0); 1788 zone0.zone_max_swap_ctl = UINT64_MAX; 1789 zone0.zone_max_lofi = 0; 1790 zone0.zone_max_lofi_ctl = UINT64_MAX; 1791 zone0.zone_shmmax = 0; 1792 zone0.zone_ipc.ipcq_shmmni = 0; 1793 zone0.zone_ipc.ipcq_semmni = 0; 1794 zone0.zone_ipc.ipcq_msgmni = 0; 1795 zone0.zone_name = GLOBAL_ZONENAME; 1796 zone0.zone_nodename = utsname.nodename; 1797 zone0.zone_domain = srpc_domain; 1798 zone0.zone_hostid = HW_INVALID_HOSTID; 1799 zone0.zone_fs_allowed = NULL; 1800 zone0.zone_ref = 1; 1801 zone0.zone_id = GLOBAL_ZONEID; 1802 zone0.zone_status = ZONE_IS_RUNNING; 1803 zone0.zone_rootpath = "/"; 1804 zone0.zone_rootpathlen = 2; 1805 zone0.zone_psetid = ZONE_PS_INVAL; 1806 zone0.zone_ncpus = 0; 1807 zone0.zone_ncpus_online = 0; 1808 zone0.zone_proc_initpid = 1; 1809 zone0.zone_initname = initname; 1810 zone0.zone_lockedmem_kstat = NULL; 1811 zone0.zone_swapresv_kstat = NULL; 1812 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1813 offsetof(struct zsd_entry, zsd_linkage)); 1814 list_insert_head(&zone_active, &zone0); 1815 1816 /* 1817 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1818 * to anything meaningful. It is assigned to be 'rootdir' in 1819 * vfs_mountroot(). 1820 */ 1821 zone0.zone_rootvp = NULL; 1822 zone0.zone_vfslist = NULL; 1823 zone0.zone_bootargs = initargs; 1824 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1825 /* 1826 * The global zone has all privileges 1827 */ 1828 priv_fillset(zone0.zone_privset); 1829 /* 1830 * Add p0 to the global zone 1831 */ 1832 zone0.zone_zsched = &p0; 1833 p0.p_zone = &zone0; 1834 } 1835 1836 /* 1837 * Compute a hash value based on the contents of the label and the DOI. The 1838 * hash algorithm is somewhat arbitrary, but is based on the observation that 1839 * humans will likely pick labels that differ by amounts that work out to be 1840 * multiples of the number of hash chains, and thus stirring in some primes 1841 * should help. 1842 */ 1843 static uint_t 1844 hash_bylabel(void *hdata, mod_hash_key_t key) 1845 { 1846 const ts_label_t *lab = (ts_label_t *)key; 1847 const uint32_t *up, *ue; 1848 uint_t hash; 1849 int i; 1850 1851 _NOTE(ARGUNUSED(hdata)); 1852 1853 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1854 /* we depend on alignment of label, but not representation */ 1855 up = (const uint32_t *)&lab->tsl_label; 1856 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1857 i = 1; 1858 while (up < ue) { 1859 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1860 hash += *up + (*up << ((i % 16) + 1)); 1861 up++; 1862 i++; 1863 } 1864 return (hash); 1865 } 1866 1867 /* 1868 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1869 * equal). This may need to be changed if less than / greater than is ever 1870 * needed. 1871 */ 1872 static int 1873 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1874 { 1875 ts_label_t *lab1 = (ts_label_t *)key1; 1876 ts_label_t *lab2 = (ts_label_t *)key2; 1877 1878 return (label_equal(lab1, lab2) ? 0 : 1); 1879 } 1880 1881 /* 1882 * Called by main() to initialize the zones framework. 1883 */ 1884 void 1885 zone_init(void) 1886 { 1887 rctl_dict_entry_t *rde; 1888 rctl_val_t *dval; 1889 rctl_set_t *set; 1890 rctl_alloc_gp_t *gp; 1891 rctl_entity_p_t e; 1892 int res; 1893 1894 ASSERT(curproc == &p0); 1895 1896 /* 1897 * Create ID space for zone IDs. ID 0 is reserved for the 1898 * global zone. 1899 */ 1900 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1901 1902 /* 1903 * Initialize generic zone resource controls, if any. 1904 */ 1905 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1906 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1907 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1908 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1909 1910 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1911 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1912 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1913 RCTL_GLOBAL_INFINITE, 1914 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1915 1916 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1917 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1918 INT_MAX, INT_MAX, &zone_lwps_ops); 1919 /* 1920 * System V IPC resource controls 1921 */ 1922 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1923 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1924 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1925 1926 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1927 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1928 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1929 1930 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1931 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1932 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1933 1934 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1935 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1936 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1937 1938 /* 1939 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1940 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1941 */ 1942 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1943 bzero(dval, sizeof (rctl_val_t)); 1944 dval->rcv_value = 1; 1945 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1946 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1947 dval->rcv_action_recip_pid = -1; 1948 1949 rde = rctl_dict_lookup("zone.cpu-shares"); 1950 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1951 1952 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1953 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1954 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1955 &zone_locked_mem_ops); 1956 1957 rc_zone_max_swap = rctl_register("zone.max-swap", 1958 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1959 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1960 &zone_max_swap_ops); 1961 1962 rc_zone_max_lofi = rctl_register("zone.max-lofi", 1963 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 1964 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1965 &zone_max_lofi_ops); 1966 1967 /* 1968 * Initialize the ``global zone''. 1969 */ 1970 set = rctl_set_create(); 1971 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1972 mutex_enter(&p0.p_lock); 1973 e.rcep_p.zone = &zone0; 1974 e.rcep_t = RCENTITY_ZONE; 1975 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1976 gp); 1977 1978 zone0.zone_nlwps = p0.p_lwpcnt; 1979 zone0.zone_ntasks = 1; 1980 mutex_exit(&p0.p_lock); 1981 zone0.zone_restart_init = B_TRUE; 1982 zone0.zone_brand = &native_brand; 1983 rctl_prealloc_destroy(gp); 1984 /* 1985 * pool_default hasn't been initialized yet, so we let pool_init() 1986 * take care of making sure the global zone is in the default pool. 1987 */ 1988 1989 /* 1990 * Initialize global zone kstats 1991 */ 1992 zone_kstat_create(&zone0); 1993 1994 /* 1995 * Initialize zone label. 1996 * mlp are initialized when tnzonecfg is loaded. 1997 */ 1998 zone0.zone_slabel = l_admin_low; 1999 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2000 label_hold(l_admin_low); 2001 2002 /* 2003 * Initialise the lock for the database structure used by mntfs. 2004 */ 2005 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2006 2007 mutex_enter(&zonehash_lock); 2008 zone_uniqid(&zone0); 2009 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2010 2011 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2012 mod_hash_null_valdtor); 2013 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2014 zone_hash_size, mod_hash_null_valdtor); 2015 /* 2016 * maintain zonehashbylabel only for labeled systems 2017 */ 2018 if (is_system_labeled()) 2019 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2020 zone_hash_size, mod_hash_null_keydtor, 2021 mod_hash_null_valdtor, hash_bylabel, NULL, 2022 hash_labelkey_cmp, KM_SLEEP); 2023 zonecount = 1; 2024 2025 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2026 (mod_hash_val_t)&zone0); 2027 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2028 (mod_hash_val_t)&zone0); 2029 if (is_system_labeled()) { 2030 zone0.zone_flags |= ZF_HASHED_LABEL; 2031 (void) mod_hash_insert(zonehashbylabel, 2032 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2033 } 2034 mutex_exit(&zonehash_lock); 2035 2036 /* 2037 * We avoid setting zone_kcred until now, since kcred is initialized 2038 * sometime after zone_zsd_init() and before zone_init(). 2039 */ 2040 zone0.zone_kcred = kcred; 2041 /* 2042 * The global zone is fully initialized (except for zone_rootvp which 2043 * will be set when the root filesystem is mounted). 2044 */ 2045 global_zone = &zone0; 2046 2047 /* 2048 * Setup an event channel to send zone status change notifications on 2049 */ 2050 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2051 EVCH_CREAT); 2052 2053 if (res) 2054 panic("Sysevent_evc_bind failed during zone setup.\n"); 2055 2056 } 2057 2058 static void 2059 zone_free(zone_t *zone) 2060 { 2061 ASSERT(zone != global_zone); 2062 ASSERT(zone->zone_ntasks == 0); 2063 ASSERT(zone->zone_nlwps == 0); 2064 ASSERT(zone->zone_cred_ref == 0); 2065 ASSERT(zone->zone_kcred == NULL); 2066 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2067 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2068 2069 /* 2070 * Remove any zone caps. 2071 */ 2072 cpucaps_zone_remove(zone); 2073 2074 ASSERT(zone->zone_cpucap == NULL); 2075 2076 /* remove from deathrow list */ 2077 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2078 ASSERT(zone->zone_ref == 0); 2079 mutex_enter(&zone_deathrow_lock); 2080 list_remove(&zone_deathrow, zone); 2081 mutex_exit(&zone_deathrow_lock); 2082 } 2083 2084 zone_free_zsd(zone); 2085 zone_free_datasets(zone); 2086 list_destroy(&zone->zone_dl_list); 2087 2088 if (zone->zone_rootvp != NULL) 2089 VN_RELE(zone->zone_rootvp); 2090 if (zone->zone_rootpath) 2091 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2092 if (zone->zone_name != NULL) 2093 kmem_free(zone->zone_name, ZONENAME_MAX); 2094 if (zone->zone_slabel != NULL) 2095 label_rele(zone->zone_slabel); 2096 if (zone->zone_nodename != NULL) 2097 kmem_free(zone->zone_nodename, _SYS_NMLN); 2098 if (zone->zone_domain != NULL) 2099 kmem_free(zone->zone_domain, _SYS_NMLN); 2100 if (zone->zone_privset != NULL) 2101 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2102 if (zone->zone_rctls != NULL) 2103 rctl_set_free(zone->zone_rctls); 2104 if (zone->zone_bootargs != NULL) 2105 strfree(zone->zone_bootargs); 2106 if (zone->zone_initname != NULL) 2107 strfree(zone->zone_initname); 2108 if (zone->zone_fs_allowed != NULL) 2109 strfree(zone->zone_fs_allowed); 2110 if (zone->zone_pfexecd != NULL) 2111 klpd_freelist(&zone->zone_pfexecd); 2112 id_free(zoneid_space, zone->zone_id); 2113 mutex_destroy(&zone->zone_lock); 2114 cv_destroy(&zone->zone_cv); 2115 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2116 rw_destroy(&zone->zone_mntfs_db_lock); 2117 kmem_free(zone, sizeof (zone_t)); 2118 } 2119 2120 /* 2121 * See block comment at the top of this file for information about zone 2122 * status values. 2123 */ 2124 /* 2125 * Convenience function for setting zone status. 2126 */ 2127 static void 2128 zone_status_set(zone_t *zone, zone_status_t status) 2129 { 2130 2131 nvlist_t *nvl = NULL; 2132 ASSERT(MUTEX_HELD(&zone_status_lock)); 2133 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2134 status >= zone_status_get(zone)); 2135 2136 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2137 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2138 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2139 zone_status_table[status]) || 2140 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2141 zone_status_table[zone->zone_status]) || 2142 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2143 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2144 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2145 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2146 #ifdef DEBUG 2147 (void) printf( 2148 "Failed to allocate and send zone state change event.\n"); 2149 #endif 2150 } 2151 nvlist_free(nvl); 2152 2153 zone->zone_status = status; 2154 2155 cv_broadcast(&zone->zone_cv); 2156 } 2157 2158 /* 2159 * Public function to retrieve the zone status. The zone status may 2160 * change after it is retrieved. 2161 */ 2162 zone_status_t 2163 zone_status_get(zone_t *zone) 2164 { 2165 return (zone->zone_status); 2166 } 2167 2168 static int 2169 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2170 { 2171 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2172 int err = 0; 2173 2174 ASSERT(zone != global_zone); 2175 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2176 goto done; /* EFAULT or ENAMETOOLONG */ 2177 2178 if (zone->zone_bootargs != NULL) 2179 strfree(zone->zone_bootargs); 2180 2181 zone->zone_bootargs = strdup(buf); 2182 2183 done: 2184 kmem_free(buf, BOOTARGS_MAX); 2185 return (err); 2186 } 2187 2188 static int 2189 zone_set_brand(zone_t *zone, const char *brand) 2190 { 2191 struct brand_attr *attrp; 2192 brand_t *bp; 2193 2194 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2195 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2196 kmem_free(attrp, sizeof (struct brand_attr)); 2197 return (EFAULT); 2198 } 2199 2200 bp = brand_register_zone(attrp); 2201 kmem_free(attrp, sizeof (struct brand_attr)); 2202 if (bp == NULL) 2203 return (EINVAL); 2204 2205 /* 2206 * This is the only place where a zone can change it's brand. 2207 * We already need to hold zone_status_lock to check the zone 2208 * status, so we'll just use that lock to serialize zone 2209 * branding requests as well. 2210 */ 2211 mutex_enter(&zone_status_lock); 2212 2213 /* Re-Branding is not allowed and the zone can't be booted yet */ 2214 if ((ZONE_IS_BRANDED(zone)) || 2215 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2216 mutex_exit(&zone_status_lock); 2217 brand_unregister_zone(bp); 2218 return (EINVAL); 2219 } 2220 2221 /* set up the brand specific data */ 2222 zone->zone_brand = bp; 2223 ZBROP(zone)->b_init_brand_data(zone); 2224 2225 mutex_exit(&zone_status_lock); 2226 return (0); 2227 } 2228 2229 static int 2230 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2231 { 2232 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2233 int err = 0; 2234 2235 ASSERT(zone != global_zone); 2236 if ((err = copyinstr(zone_fs_allowed, buf, 2237 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2238 goto done; 2239 2240 if (zone->zone_fs_allowed != NULL) 2241 strfree(zone->zone_fs_allowed); 2242 2243 zone->zone_fs_allowed = strdup(buf); 2244 2245 done: 2246 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2247 return (err); 2248 } 2249 2250 static int 2251 zone_set_initname(zone_t *zone, const char *zone_initname) 2252 { 2253 char initname[INITNAME_SZ]; 2254 size_t len; 2255 int err = 0; 2256 2257 ASSERT(zone != global_zone); 2258 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2259 return (err); /* EFAULT or ENAMETOOLONG */ 2260 2261 if (zone->zone_initname != NULL) 2262 strfree(zone->zone_initname); 2263 2264 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2265 (void) strcpy(zone->zone_initname, initname); 2266 return (0); 2267 } 2268 2269 static int 2270 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2271 { 2272 uint64_t mcap; 2273 int err = 0; 2274 2275 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2276 zone->zone_phys_mcap = mcap; 2277 2278 return (err); 2279 } 2280 2281 static int 2282 zone_set_sched_class(zone_t *zone, const char *new_class) 2283 { 2284 char sched_class[PC_CLNMSZ]; 2285 id_t classid; 2286 int err; 2287 2288 ASSERT(zone != global_zone); 2289 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2290 return (err); /* EFAULT or ENAMETOOLONG */ 2291 2292 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2293 return (set_errno(EINVAL)); 2294 zone->zone_defaultcid = classid; 2295 ASSERT(zone->zone_defaultcid > 0 && 2296 zone->zone_defaultcid < loaded_classes); 2297 2298 return (0); 2299 } 2300 2301 /* 2302 * Block indefinitely waiting for (zone_status >= status) 2303 */ 2304 void 2305 zone_status_wait(zone_t *zone, zone_status_t status) 2306 { 2307 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2308 2309 mutex_enter(&zone_status_lock); 2310 while (zone->zone_status < status) { 2311 cv_wait(&zone->zone_cv, &zone_status_lock); 2312 } 2313 mutex_exit(&zone_status_lock); 2314 } 2315 2316 /* 2317 * Private CPR-safe version of zone_status_wait(). 2318 */ 2319 static void 2320 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2321 { 2322 callb_cpr_t cprinfo; 2323 2324 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2325 2326 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2327 str); 2328 mutex_enter(&zone_status_lock); 2329 while (zone->zone_status < status) { 2330 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2331 cv_wait(&zone->zone_cv, &zone_status_lock); 2332 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2333 } 2334 /* 2335 * zone_status_lock is implicitly released by the following. 2336 */ 2337 CALLB_CPR_EXIT(&cprinfo); 2338 } 2339 2340 /* 2341 * Block until zone enters requested state or signal is received. Return (0) 2342 * if signaled, non-zero otherwise. 2343 */ 2344 int 2345 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2346 { 2347 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2348 2349 mutex_enter(&zone_status_lock); 2350 while (zone->zone_status < status) { 2351 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2352 mutex_exit(&zone_status_lock); 2353 return (0); 2354 } 2355 } 2356 mutex_exit(&zone_status_lock); 2357 return (1); 2358 } 2359 2360 /* 2361 * Block until the zone enters the requested state or the timeout expires, 2362 * whichever happens first. Return (-1) if operation timed out, time remaining 2363 * otherwise. 2364 */ 2365 clock_t 2366 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2367 { 2368 clock_t timeleft = 0; 2369 2370 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2371 2372 mutex_enter(&zone_status_lock); 2373 while (zone->zone_status < status && timeleft != -1) { 2374 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2375 } 2376 mutex_exit(&zone_status_lock); 2377 return (timeleft); 2378 } 2379 2380 /* 2381 * Block until the zone enters the requested state, the current process is 2382 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2383 * operation timed out, 0 if signaled, time remaining otherwise. 2384 */ 2385 clock_t 2386 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2387 { 2388 clock_t timeleft = tim - ddi_get_lbolt(); 2389 2390 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2391 2392 mutex_enter(&zone_status_lock); 2393 while (zone->zone_status < status) { 2394 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2395 tim); 2396 if (timeleft <= 0) 2397 break; 2398 } 2399 mutex_exit(&zone_status_lock); 2400 return (timeleft); 2401 } 2402 2403 /* 2404 * Zones have two reference counts: one for references from credential 2405 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2406 * This is so we can allow a zone to be rebooted while there are still 2407 * outstanding cred references, since certain drivers cache dblks (which 2408 * implicitly results in cached creds). We wait for zone_ref to drop to 2409 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2410 * later freed when the zone_cred_ref drops to 0, though nothing other 2411 * than the zone id and privilege set should be accessed once the zone 2412 * is "dead". 2413 * 2414 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2415 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2416 * to 0. This can be useful to flush out other sources of cached creds 2417 * that may be less innocuous than the driver case. 2418 */ 2419 2420 int zone_wait_for_cred = 0; 2421 2422 static void 2423 zone_hold_locked(zone_t *z) 2424 { 2425 ASSERT(MUTEX_HELD(&z->zone_lock)); 2426 z->zone_ref++; 2427 ASSERT(z->zone_ref != 0); 2428 } 2429 2430 void 2431 zone_hold(zone_t *z) 2432 { 2433 mutex_enter(&z->zone_lock); 2434 zone_hold_locked(z); 2435 mutex_exit(&z->zone_lock); 2436 } 2437 2438 /* 2439 * If the non-cred ref count drops to 1 and either the cred ref count 2440 * is 0 or we aren't waiting for cred references, the zone is ready to 2441 * be destroyed. 2442 */ 2443 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2444 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2445 2446 void 2447 zone_rele(zone_t *z) 2448 { 2449 boolean_t wakeup; 2450 2451 mutex_enter(&z->zone_lock); 2452 ASSERT(z->zone_ref != 0); 2453 z->zone_ref--; 2454 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2455 /* no more refs, free the structure */ 2456 mutex_exit(&z->zone_lock); 2457 zone_free(z); 2458 return; 2459 } 2460 /* signal zone_destroy so the zone can finish halting */ 2461 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2462 mutex_exit(&z->zone_lock); 2463 2464 if (wakeup) { 2465 /* 2466 * Grabbing zonehash_lock here effectively synchronizes with 2467 * zone_destroy() to avoid missed signals. 2468 */ 2469 mutex_enter(&zonehash_lock); 2470 cv_broadcast(&zone_destroy_cv); 2471 mutex_exit(&zonehash_lock); 2472 } 2473 } 2474 2475 void 2476 zone_cred_hold(zone_t *z) 2477 { 2478 mutex_enter(&z->zone_lock); 2479 z->zone_cred_ref++; 2480 ASSERT(z->zone_cred_ref != 0); 2481 mutex_exit(&z->zone_lock); 2482 } 2483 2484 void 2485 zone_cred_rele(zone_t *z) 2486 { 2487 boolean_t wakeup; 2488 2489 mutex_enter(&z->zone_lock); 2490 ASSERT(z->zone_cred_ref != 0); 2491 z->zone_cred_ref--; 2492 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2493 /* no more refs, free the structure */ 2494 mutex_exit(&z->zone_lock); 2495 zone_free(z); 2496 return; 2497 } 2498 /* 2499 * If zone_destroy is waiting for the cred references to drain 2500 * out, and they have, signal it. 2501 */ 2502 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2503 zone_status_get(z) >= ZONE_IS_DEAD); 2504 mutex_exit(&z->zone_lock); 2505 2506 if (wakeup) { 2507 /* 2508 * Grabbing zonehash_lock here effectively synchronizes with 2509 * zone_destroy() to avoid missed signals. 2510 */ 2511 mutex_enter(&zonehash_lock); 2512 cv_broadcast(&zone_destroy_cv); 2513 mutex_exit(&zonehash_lock); 2514 } 2515 } 2516 2517 void 2518 zone_task_hold(zone_t *z) 2519 { 2520 mutex_enter(&z->zone_lock); 2521 z->zone_ntasks++; 2522 ASSERT(z->zone_ntasks != 0); 2523 mutex_exit(&z->zone_lock); 2524 } 2525 2526 void 2527 zone_task_rele(zone_t *zone) 2528 { 2529 uint_t refcnt; 2530 2531 mutex_enter(&zone->zone_lock); 2532 ASSERT(zone->zone_ntasks != 0); 2533 refcnt = --zone->zone_ntasks; 2534 if (refcnt > 1) { /* Common case */ 2535 mutex_exit(&zone->zone_lock); 2536 return; 2537 } 2538 zone_hold_locked(zone); /* so we can use the zone_t later */ 2539 mutex_exit(&zone->zone_lock); 2540 if (refcnt == 1) { 2541 /* 2542 * See if the zone is shutting down. 2543 */ 2544 mutex_enter(&zone_status_lock); 2545 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2546 goto out; 2547 } 2548 2549 /* 2550 * Make sure the ntasks didn't change since we 2551 * dropped zone_lock. 2552 */ 2553 mutex_enter(&zone->zone_lock); 2554 if (refcnt != zone->zone_ntasks) { 2555 mutex_exit(&zone->zone_lock); 2556 goto out; 2557 } 2558 mutex_exit(&zone->zone_lock); 2559 2560 /* 2561 * No more user processes in the zone. The zone is empty. 2562 */ 2563 zone_status_set(zone, ZONE_IS_EMPTY); 2564 goto out; 2565 } 2566 2567 ASSERT(refcnt == 0); 2568 /* 2569 * zsched has exited; the zone is dead. 2570 */ 2571 zone->zone_zsched = NULL; /* paranoia */ 2572 mutex_enter(&zone_status_lock); 2573 zone_status_set(zone, ZONE_IS_DEAD); 2574 out: 2575 mutex_exit(&zone_status_lock); 2576 zone_rele(zone); 2577 } 2578 2579 zoneid_t 2580 getzoneid(void) 2581 { 2582 return (curproc->p_zone->zone_id); 2583 } 2584 2585 /* 2586 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2587 * check the validity of a zone's state. 2588 */ 2589 static zone_t * 2590 zone_find_all_by_id(zoneid_t zoneid) 2591 { 2592 mod_hash_val_t hv; 2593 zone_t *zone = NULL; 2594 2595 ASSERT(MUTEX_HELD(&zonehash_lock)); 2596 2597 if (mod_hash_find(zonehashbyid, 2598 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2599 zone = (zone_t *)hv; 2600 return (zone); 2601 } 2602 2603 static zone_t * 2604 zone_find_all_by_label(const ts_label_t *label) 2605 { 2606 mod_hash_val_t hv; 2607 zone_t *zone = NULL; 2608 2609 ASSERT(MUTEX_HELD(&zonehash_lock)); 2610 2611 /* 2612 * zonehashbylabel is not maintained for unlabeled systems 2613 */ 2614 if (!is_system_labeled()) 2615 return (NULL); 2616 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2617 zone = (zone_t *)hv; 2618 return (zone); 2619 } 2620 2621 static zone_t * 2622 zone_find_all_by_name(char *name) 2623 { 2624 mod_hash_val_t hv; 2625 zone_t *zone = NULL; 2626 2627 ASSERT(MUTEX_HELD(&zonehash_lock)); 2628 2629 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2630 zone = (zone_t *)hv; 2631 return (zone); 2632 } 2633 2634 /* 2635 * Public interface for looking up a zone by zoneid. Only returns the zone if 2636 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2637 * Caller must call zone_rele() once it is done with the zone. 2638 * 2639 * The zone may begin the zone_destroy() sequence immediately after this 2640 * function returns, but may be safely used until zone_rele() is called. 2641 */ 2642 zone_t * 2643 zone_find_by_id(zoneid_t zoneid) 2644 { 2645 zone_t *zone; 2646 zone_status_t status; 2647 2648 mutex_enter(&zonehash_lock); 2649 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2650 mutex_exit(&zonehash_lock); 2651 return (NULL); 2652 } 2653 status = zone_status_get(zone); 2654 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2655 /* 2656 * For all practical purposes the zone doesn't exist. 2657 */ 2658 mutex_exit(&zonehash_lock); 2659 return (NULL); 2660 } 2661 zone_hold(zone); 2662 mutex_exit(&zonehash_lock); 2663 return (zone); 2664 } 2665 2666 /* 2667 * Similar to zone_find_by_id, but using zone label as the key. 2668 */ 2669 zone_t * 2670 zone_find_by_label(const ts_label_t *label) 2671 { 2672 zone_t *zone; 2673 zone_status_t status; 2674 2675 mutex_enter(&zonehash_lock); 2676 if ((zone = zone_find_all_by_label(label)) == NULL) { 2677 mutex_exit(&zonehash_lock); 2678 return (NULL); 2679 } 2680 2681 status = zone_status_get(zone); 2682 if (status > ZONE_IS_DOWN) { 2683 /* 2684 * For all practical purposes the zone doesn't exist. 2685 */ 2686 mutex_exit(&zonehash_lock); 2687 return (NULL); 2688 } 2689 zone_hold(zone); 2690 mutex_exit(&zonehash_lock); 2691 return (zone); 2692 } 2693 2694 /* 2695 * Similar to zone_find_by_id, but using zone name as the key. 2696 */ 2697 zone_t * 2698 zone_find_by_name(char *name) 2699 { 2700 zone_t *zone; 2701 zone_status_t status; 2702 2703 mutex_enter(&zonehash_lock); 2704 if ((zone = zone_find_all_by_name(name)) == NULL) { 2705 mutex_exit(&zonehash_lock); 2706 return (NULL); 2707 } 2708 status = zone_status_get(zone); 2709 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2710 /* 2711 * For all practical purposes the zone doesn't exist. 2712 */ 2713 mutex_exit(&zonehash_lock); 2714 return (NULL); 2715 } 2716 zone_hold(zone); 2717 mutex_exit(&zonehash_lock); 2718 return (zone); 2719 } 2720 2721 /* 2722 * Similar to zone_find_by_id(), using the path as a key. For instance, 2723 * if there is a zone "foo" rooted at /foo/root, and the path argument 2724 * is "/foo/root/proc", it will return the held zone_t corresponding to 2725 * zone "foo". 2726 * 2727 * zone_find_by_path() always returns a non-NULL value, since at the 2728 * very least every path will be contained in the global zone. 2729 * 2730 * As with the other zone_find_by_*() functions, the caller is 2731 * responsible for zone_rele()ing the return value of this function. 2732 */ 2733 zone_t * 2734 zone_find_by_path(const char *path) 2735 { 2736 zone_t *zone; 2737 zone_t *zret = NULL; 2738 zone_status_t status; 2739 2740 if (path == NULL) { 2741 /* 2742 * Call from rootconf(). 2743 */ 2744 zone_hold(global_zone); 2745 return (global_zone); 2746 } 2747 ASSERT(*path == '/'); 2748 mutex_enter(&zonehash_lock); 2749 for (zone = list_head(&zone_active); zone != NULL; 2750 zone = list_next(&zone_active, zone)) { 2751 if (ZONE_PATH_VISIBLE(path, zone)) 2752 zret = zone; 2753 } 2754 ASSERT(zret != NULL); 2755 status = zone_status_get(zret); 2756 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2757 /* 2758 * Zone practically doesn't exist. 2759 */ 2760 zret = global_zone; 2761 } 2762 zone_hold(zret); 2763 mutex_exit(&zonehash_lock); 2764 return (zret); 2765 } 2766 2767 /* 2768 * Get the number of cpus visible to this zone. The system-wide global 2769 * 'ncpus' is returned if pools are disabled, the caller is in the 2770 * global zone, or a NULL zone argument is passed in. 2771 */ 2772 int 2773 zone_ncpus_get(zone_t *zone) 2774 { 2775 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2776 2777 return (myncpus != 0 ? myncpus : ncpus); 2778 } 2779 2780 /* 2781 * Get the number of online cpus visible to this zone. The system-wide 2782 * global 'ncpus_online' is returned if pools are disabled, the caller 2783 * is in the global zone, or a NULL zone argument is passed in. 2784 */ 2785 int 2786 zone_ncpus_online_get(zone_t *zone) 2787 { 2788 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2789 2790 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2791 } 2792 2793 /* 2794 * Return the pool to which the zone is currently bound. 2795 */ 2796 pool_t * 2797 zone_pool_get(zone_t *zone) 2798 { 2799 ASSERT(pool_lock_held()); 2800 2801 return (zone->zone_pool); 2802 } 2803 2804 /* 2805 * Set the zone's pool pointer and update the zone's visibility to match 2806 * the resources in the new pool. 2807 */ 2808 void 2809 zone_pool_set(zone_t *zone, pool_t *pool) 2810 { 2811 ASSERT(pool_lock_held()); 2812 ASSERT(MUTEX_HELD(&cpu_lock)); 2813 2814 zone->zone_pool = pool; 2815 zone_pset_set(zone, pool->pool_pset->pset_id); 2816 } 2817 2818 /* 2819 * Return the cached value of the id of the processor set to which the 2820 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2821 * facility is disabled. 2822 */ 2823 psetid_t 2824 zone_pset_get(zone_t *zone) 2825 { 2826 ASSERT(MUTEX_HELD(&cpu_lock)); 2827 2828 return (zone->zone_psetid); 2829 } 2830 2831 /* 2832 * Set the cached value of the id of the processor set to which the zone 2833 * is currently bound. Also update the zone's visibility to match the 2834 * resources in the new processor set. 2835 */ 2836 void 2837 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2838 { 2839 psetid_t oldpsetid; 2840 2841 ASSERT(MUTEX_HELD(&cpu_lock)); 2842 oldpsetid = zone_pset_get(zone); 2843 2844 if (oldpsetid == newpsetid) 2845 return; 2846 /* 2847 * Global zone sees all. 2848 */ 2849 if (zone != global_zone) { 2850 zone->zone_psetid = newpsetid; 2851 if (newpsetid != ZONE_PS_INVAL) 2852 pool_pset_visibility_add(newpsetid, zone); 2853 if (oldpsetid != ZONE_PS_INVAL) 2854 pool_pset_visibility_remove(oldpsetid, zone); 2855 } 2856 /* 2857 * Disabling pools, so we should start using the global values 2858 * for ncpus and ncpus_online. 2859 */ 2860 if (newpsetid == ZONE_PS_INVAL) { 2861 zone->zone_ncpus = 0; 2862 zone->zone_ncpus_online = 0; 2863 } 2864 } 2865 2866 /* 2867 * Walk the list of active zones and issue the provided callback for 2868 * each of them. 2869 * 2870 * Caller must not be holding any locks that may be acquired under 2871 * zonehash_lock. See comment at the beginning of the file for a list of 2872 * common locks and their interactions with zones. 2873 */ 2874 int 2875 zone_walk(int (*cb)(zone_t *, void *), void *data) 2876 { 2877 zone_t *zone; 2878 int ret = 0; 2879 zone_status_t status; 2880 2881 mutex_enter(&zonehash_lock); 2882 for (zone = list_head(&zone_active); zone != NULL; 2883 zone = list_next(&zone_active, zone)) { 2884 /* 2885 * Skip zones that shouldn't be externally visible. 2886 */ 2887 status = zone_status_get(zone); 2888 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2889 continue; 2890 /* 2891 * Bail immediately if any callback invocation returns a 2892 * non-zero value. 2893 */ 2894 ret = (*cb)(zone, data); 2895 if (ret != 0) 2896 break; 2897 } 2898 mutex_exit(&zonehash_lock); 2899 return (ret); 2900 } 2901 2902 static int 2903 zone_set_root(zone_t *zone, const char *upath) 2904 { 2905 vnode_t *vp; 2906 int trycount; 2907 int error = 0; 2908 char *path; 2909 struct pathname upn, pn; 2910 size_t pathlen; 2911 2912 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2913 return (error); 2914 2915 pn_alloc(&pn); 2916 2917 /* prevent infinite loop */ 2918 trycount = 10; 2919 for (;;) { 2920 if (--trycount <= 0) { 2921 error = ESTALE; 2922 goto out; 2923 } 2924 2925 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2926 /* 2927 * VOP_ACCESS() may cover 'vp' with a new 2928 * filesystem, if 'vp' is an autoFS vnode. 2929 * Get the new 'vp' if so. 2930 */ 2931 if ((error = 2932 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2933 (!vn_ismntpt(vp) || 2934 (error = traverse(&vp)) == 0)) { 2935 pathlen = pn.pn_pathlen + 2; 2936 path = kmem_alloc(pathlen, KM_SLEEP); 2937 (void) strncpy(path, pn.pn_path, 2938 pn.pn_pathlen + 1); 2939 path[pathlen - 2] = '/'; 2940 path[pathlen - 1] = '\0'; 2941 pn_free(&pn); 2942 pn_free(&upn); 2943 2944 /* Success! */ 2945 break; 2946 } 2947 VN_RELE(vp); 2948 } 2949 if (error != ESTALE) 2950 goto out; 2951 } 2952 2953 ASSERT(error == 0); 2954 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2955 zone->zone_rootpath = path; 2956 zone->zone_rootpathlen = pathlen; 2957 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2958 zone->zone_flags |= ZF_IS_SCRATCH; 2959 return (0); 2960 2961 out: 2962 pn_free(&pn); 2963 pn_free(&upn); 2964 return (error); 2965 } 2966 2967 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2968 ((c) >= 'a' && (c) <= 'z') || \ 2969 ((c) >= 'A' && (c) <= 'Z')) 2970 2971 static int 2972 zone_set_name(zone_t *zone, const char *uname) 2973 { 2974 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2975 size_t len; 2976 int i, err; 2977 2978 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2979 kmem_free(kname, ZONENAME_MAX); 2980 return (err); /* EFAULT or ENAMETOOLONG */ 2981 } 2982 2983 /* must be less than ZONENAME_MAX */ 2984 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2985 kmem_free(kname, ZONENAME_MAX); 2986 return (EINVAL); 2987 } 2988 2989 /* 2990 * Name must start with an alphanumeric and must contain only 2991 * alphanumerics, '-', '_' and '.'. 2992 */ 2993 if (!isalnum(kname[0])) { 2994 kmem_free(kname, ZONENAME_MAX); 2995 return (EINVAL); 2996 } 2997 for (i = 1; i < len - 1; i++) { 2998 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2999 kname[i] != '.') { 3000 kmem_free(kname, ZONENAME_MAX); 3001 return (EINVAL); 3002 } 3003 } 3004 3005 zone->zone_name = kname; 3006 return (0); 3007 } 3008 3009 /* 3010 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3011 * is NULL or it points to a zone with no hostid emulation, then the machine's 3012 * hostid (i.e., the global zone's hostid) is returned. This function returns 3013 * zero if neither the zone nor the host machine (global zone) have hostids. It 3014 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3015 * hostid and the machine's hostid is invalid. 3016 */ 3017 uint32_t 3018 zone_get_hostid(zone_t *zonep) 3019 { 3020 unsigned long machine_hostid; 3021 3022 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3023 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3024 return (HW_INVALID_HOSTID); 3025 return ((uint32_t)machine_hostid); 3026 } 3027 return (zonep->zone_hostid); 3028 } 3029 3030 /* 3031 * Similar to thread_create(), but makes sure the thread is in the appropriate 3032 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3033 */ 3034 /*ARGSUSED*/ 3035 kthread_t * 3036 zthread_create( 3037 caddr_t stk, 3038 size_t stksize, 3039 void (*proc)(), 3040 void *arg, 3041 size_t len, 3042 pri_t pri) 3043 { 3044 kthread_t *t; 3045 zone_t *zone = curproc->p_zone; 3046 proc_t *pp = zone->zone_zsched; 3047 3048 zone_hold(zone); /* Reference to be dropped when thread exits */ 3049 3050 /* 3051 * No-one should be trying to create threads if the zone is shutting 3052 * down and there aren't any kernel threads around. See comment 3053 * in zthread_exit(). 3054 */ 3055 ASSERT(!(zone->zone_kthreads == NULL && 3056 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3057 /* 3058 * Create a thread, but don't let it run until we've finished setting 3059 * things up. 3060 */ 3061 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3062 ASSERT(t->t_forw == NULL); 3063 mutex_enter(&zone_status_lock); 3064 if (zone->zone_kthreads == NULL) { 3065 t->t_forw = t->t_back = t; 3066 } else { 3067 kthread_t *tx = zone->zone_kthreads; 3068 3069 t->t_forw = tx; 3070 t->t_back = tx->t_back; 3071 tx->t_back->t_forw = t; 3072 tx->t_back = t; 3073 } 3074 zone->zone_kthreads = t; 3075 mutex_exit(&zone_status_lock); 3076 3077 mutex_enter(&pp->p_lock); 3078 t->t_proc_flag |= TP_ZTHREAD; 3079 project_rele(t->t_proj); 3080 t->t_proj = project_hold(pp->p_task->tk_proj); 3081 3082 /* 3083 * Setup complete, let it run. 3084 */ 3085 thread_lock(t); 3086 t->t_schedflag |= TS_ALLSTART; 3087 setrun_locked(t); 3088 thread_unlock(t); 3089 3090 mutex_exit(&pp->p_lock); 3091 3092 return (t); 3093 } 3094 3095 /* 3096 * Similar to thread_exit(). Must be called by threads created via 3097 * zthread_exit(). 3098 */ 3099 void 3100 zthread_exit(void) 3101 { 3102 kthread_t *t = curthread; 3103 proc_t *pp = curproc; 3104 zone_t *zone = pp->p_zone; 3105 3106 mutex_enter(&zone_status_lock); 3107 3108 /* 3109 * Reparent to p0 3110 */ 3111 kpreempt_disable(); 3112 mutex_enter(&pp->p_lock); 3113 t->t_proc_flag &= ~TP_ZTHREAD; 3114 t->t_procp = &p0; 3115 hat_thread_exit(t); 3116 mutex_exit(&pp->p_lock); 3117 kpreempt_enable(); 3118 3119 if (t->t_back == t) { 3120 ASSERT(t->t_forw == t); 3121 /* 3122 * If the zone is empty, once the thread count 3123 * goes to zero no further kernel threads can be 3124 * created. This is because if the creator is a process 3125 * in the zone, then it must have exited before the zone 3126 * state could be set to ZONE_IS_EMPTY. 3127 * Otherwise, if the creator is a kernel thread in the 3128 * zone, the thread count is non-zero. 3129 * 3130 * This really means that non-zone kernel threads should 3131 * not create zone kernel threads. 3132 */ 3133 zone->zone_kthreads = NULL; 3134 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3135 zone_status_set(zone, ZONE_IS_DOWN); 3136 /* 3137 * Remove any CPU caps on this zone. 3138 */ 3139 cpucaps_zone_remove(zone); 3140 } 3141 } else { 3142 t->t_forw->t_back = t->t_back; 3143 t->t_back->t_forw = t->t_forw; 3144 if (zone->zone_kthreads == t) 3145 zone->zone_kthreads = t->t_forw; 3146 } 3147 mutex_exit(&zone_status_lock); 3148 zone_rele(zone); 3149 thread_exit(); 3150 /* NOTREACHED */ 3151 } 3152 3153 static void 3154 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3155 { 3156 vnode_t *oldvp; 3157 3158 /* we're going to hold a reference here to the directory */ 3159 VN_HOLD(vp); 3160 3161 /* update abs cwd/root path see c2/audit.c */ 3162 if (AU_AUDITING()) 3163 audit_chdirec(vp, vpp); 3164 3165 mutex_enter(&pp->p_lock); 3166 oldvp = *vpp; 3167 *vpp = vp; 3168 mutex_exit(&pp->p_lock); 3169 if (oldvp != NULL) 3170 VN_RELE(oldvp); 3171 } 3172 3173 /* 3174 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3175 */ 3176 static int 3177 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3178 { 3179 nvpair_t *nvp = NULL; 3180 boolean_t priv_set = B_FALSE; 3181 boolean_t limit_set = B_FALSE; 3182 boolean_t action_set = B_FALSE; 3183 3184 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3185 const char *name; 3186 uint64_t ui64; 3187 3188 name = nvpair_name(nvp); 3189 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3190 return (EINVAL); 3191 (void) nvpair_value_uint64(nvp, &ui64); 3192 if (strcmp(name, "privilege") == 0) { 3193 /* 3194 * Currently only privileged values are allowed, but 3195 * this may change in the future. 3196 */ 3197 if (ui64 != RCPRIV_PRIVILEGED) 3198 return (EINVAL); 3199 rv->rcv_privilege = ui64; 3200 priv_set = B_TRUE; 3201 } else if (strcmp(name, "limit") == 0) { 3202 rv->rcv_value = ui64; 3203 limit_set = B_TRUE; 3204 } else if (strcmp(name, "action") == 0) { 3205 if (ui64 != RCTL_LOCAL_NOACTION && 3206 ui64 != RCTL_LOCAL_DENY) 3207 return (EINVAL); 3208 rv->rcv_flagaction = ui64; 3209 action_set = B_TRUE; 3210 } else { 3211 return (EINVAL); 3212 } 3213 } 3214 3215 if (!(priv_set && limit_set && action_set)) 3216 return (EINVAL); 3217 rv->rcv_action_signal = 0; 3218 rv->rcv_action_recipient = NULL; 3219 rv->rcv_action_recip_pid = -1; 3220 rv->rcv_firing_time = 0; 3221 3222 return (0); 3223 } 3224 3225 /* 3226 * Non-global zone version of start_init. 3227 */ 3228 void 3229 zone_start_init(void) 3230 { 3231 proc_t *p = ttoproc(curthread); 3232 zone_t *z = p->p_zone; 3233 3234 ASSERT(!INGLOBALZONE(curproc)); 3235 3236 /* 3237 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3238 * storing just the pid of init is sufficient. 3239 */ 3240 z->zone_proc_initpid = p->p_pid; 3241 3242 /* 3243 * We maintain zone_boot_err so that we can return the cause of the 3244 * failure back to the caller of the zone_boot syscall. 3245 */ 3246 p->p_zone->zone_boot_err = start_init_common(); 3247 3248 /* 3249 * We will prevent booting zones from becoming running zones if the 3250 * global zone is shutting down. 3251 */ 3252 mutex_enter(&zone_status_lock); 3253 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3254 ZONE_IS_SHUTTING_DOWN) { 3255 /* 3256 * Make sure we are still in the booting state-- we could have 3257 * raced and already be shutting down, or even further along. 3258 */ 3259 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3260 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3261 } 3262 mutex_exit(&zone_status_lock); 3263 /* It's gone bad, dispose of the process */ 3264 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3265 mutex_enter(&p->p_lock); 3266 ASSERT(p->p_flag & SEXITLWPS); 3267 lwp_exit(); 3268 } 3269 } else { 3270 if (zone_status_get(z) == ZONE_IS_BOOTING) 3271 zone_status_set(z, ZONE_IS_RUNNING); 3272 mutex_exit(&zone_status_lock); 3273 /* cause the process to return to userland. */ 3274 lwp_rtt(); 3275 } 3276 } 3277 3278 struct zsched_arg { 3279 zone_t *zone; 3280 nvlist_t *nvlist; 3281 }; 3282 3283 /* 3284 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3285 * anything to do with scheduling, but rather with the fact that 3286 * per-zone kernel threads are parented to zsched, just like regular 3287 * kernel threads are parented to sched (p0). 3288 * 3289 * zsched is also responsible for launching init for the zone. 3290 */ 3291 static void 3292 zsched(void *arg) 3293 { 3294 struct zsched_arg *za = arg; 3295 proc_t *pp = curproc; 3296 proc_t *initp = proc_init; 3297 zone_t *zone = za->zone; 3298 cred_t *cr, *oldcred; 3299 rctl_set_t *set; 3300 rctl_alloc_gp_t *gp; 3301 contract_t *ct = NULL; 3302 task_t *tk, *oldtk; 3303 rctl_entity_p_t e; 3304 kproject_t *pj; 3305 3306 nvlist_t *nvl = za->nvlist; 3307 nvpair_t *nvp = NULL; 3308 3309 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3310 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3311 PTOU(pp)->u_argc = 0; 3312 PTOU(pp)->u_argv = NULL; 3313 PTOU(pp)->u_envp = NULL; 3314 closeall(P_FINFO(pp)); 3315 3316 /* 3317 * We are this zone's "zsched" process. As the zone isn't generally 3318 * visible yet we don't need to grab any locks before initializing its 3319 * zone_proc pointer. 3320 */ 3321 zone_hold(zone); /* this hold is released by zone_destroy() */ 3322 zone->zone_zsched = pp; 3323 mutex_enter(&pp->p_lock); 3324 pp->p_zone = zone; 3325 mutex_exit(&pp->p_lock); 3326 3327 /* 3328 * Disassociate process from its 'parent'; parent ourselves to init 3329 * (pid 1) and change other values as needed. 3330 */ 3331 sess_create(); 3332 3333 mutex_enter(&pidlock); 3334 proc_detach(pp); 3335 pp->p_ppid = 1; 3336 pp->p_flag |= SZONETOP; 3337 pp->p_ancpid = 1; 3338 pp->p_parent = initp; 3339 pp->p_psibling = NULL; 3340 if (initp->p_child) 3341 initp->p_child->p_psibling = pp; 3342 pp->p_sibling = initp->p_child; 3343 initp->p_child = pp; 3344 3345 /* Decrement what newproc() incremented. */ 3346 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3347 /* 3348 * Our credentials are about to become kcred-like, so we don't care 3349 * about the caller's ruid. 3350 */ 3351 upcount_inc(crgetruid(kcred), zone->zone_id); 3352 mutex_exit(&pidlock); 3353 3354 /* 3355 * getting out of global zone, so decrement lwp counts 3356 */ 3357 pj = pp->p_task->tk_proj; 3358 mutex_enter(&global_zone->zone_nlwps_lock); 3359 pj->kpj_nlwps -= pp->p_lwpcnt; 3360 global_zone->zone_nlwps -= pp->p_lwpcnt; 3361 mutex_exit(&global_zone->zone_nlwps_lock); 3362 3363 /* 3364 * Decrement locked memory counts on old zone and project. 3365 */ 3366 mutex_enter(&global_zone->zone_mem_lock); 3367 global_zone->zone_locked_mem -= pp->p_locked_mem; 3368 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3369 mutex_exit(&global_zone->zone_mem_lock); 3370 3371 /* 3372 * Create and join a new task in project '0' of this zone. 3373 * 3374 * We don't need to call holdlwps() since we know we're the only lwp in 3375 * this process. 3376 * 3377 * task_join() returns with p_lock held. 3378 */ 3379 tk = task_create(0, zone); 3380 mutex_enter(&cpu_lock); 3381 oldtk = task_join(tk, 0); 3382 3383 pj = pp->p_task->tk_proj; 3384 3385 mutex_enter(&zone->zone_mem_lock); 3386 zone->zone_locked_mem += pp->p_locked_mem; 3387 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3388 mutex_exit(&zone->zone_mem_lock); 3389 3390 /* 3391 * add lwp counts to zsched's zone, and increment project's task count 3392 * due to the task created in the above tasksys_settaskid 3393 */ 3394 3395 mutex_enter(&zone->zone_nlwps_lock); 3396 pj->kpj_nlwps += pp->p_lwpcnt; 3397 pj->kpj_ntasks += 1; 3398 zone->zone_nlwps += pp->p_lwpcnt; 3399 mutex_exit(&zone->zone_nlwps_lock); 3400 3401 mutex_exit(&curproc->p_lock); 3402 mutex_exit(&cpu_lock); 3403 task_rele(oldtk); 3404 3405 /* 3406 * The process was created by a process in the global zone, hence the 3407 * credentials are wrong. We might as well have kcred-ish credentials. 3408 */ 3409 cr = zone->zone_kcred; 3410 crhold(cr); 3411 mutex_enter(&pp->p_crlock); 3412 oldcred = pp->p_cred; 3413 pp->p_cred = cr; 3414 mutex_exit(&pp->p_crlock); 3415 crfree(oldcred); 3416 3417 /* 3418 * Hold credentials again (for thread) 3419 */ 3420 crhold(cr); 3421 3422 /* 3423 * p_lwpcnt can't change since this is a kernel process. 3424 */ 3425 crset(pp, cr); 3426 3427 /* 3428 * Chroot 3429 */ 3430 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3431 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3432 3433 /* 3434 * Initialize zone's rctl set. 3435 */ 3436 set = rctl_set_create(); 3437 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3438 mutex_enter(&pp->p_lock); 3439 e.rcep_p.zone = zone; 3440 e.rcep_t = RCENTITY_ZONE; 3441 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3442 mutex_exit(&pp->p_lock); 3443 rctl_prealloc_destroy(gp); 3444 3445 /* 3446 * Apply the rctls passed in to zone_create(). This is basically a list 3447 * assignment: all of the old values are removed and the new ones 3448 * inserted. That is, if an empty list is passed in, all values are 3449 * removed. 3450 */ 3451 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3452 rctl_dict_entry_t *rde; 3453 rctl_hndl_t hndl; 3454 char *name; 3455 nvlist_t **nvlarray; 3456 uint_t i, nelem; 3457 int error; /* For ASSERT()s */ 3458 3459 name = nvpair_name(nvp); 3460 hndl = rctl_hndl_lookup(name); 3461 ASSERT(hndl != -1); 3462 rde = rctl_dict_lookup_hndl(hndl); 3463 ASSERT(rde != NULL); 3464 3465 for (; /* ever */; ) { 3466 rctl_val_t oval; 3467 3468 mutex_enter(&pp->p_lock); 3469 error = rctl_local_get(hndl, NULL, &oval, pp); 3470 mutex_exit(&pp->p_lock); 3471 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3472 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3473 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3474 break; 3475 mutex_enter(&pp->p_lock); 3476 error = rctl_local_delete(hndl, &oval, pp); 3477 mutex_exit(&pp->p_lock); 3478 ASSERT(error == 0); 3479 } 3480 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3481 ASSERT(error == 0); 3482 for (i = 0; i < nelem; i++) { 3483 rctl_val_t *nvalp; 3484 3485 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3486 error = nvlist2rctlval(nvlarray[i], nvalp); 3487 ASSERT(error == 0); 3488 /* 3489 * rctl_local_insert can fail if the value being 3490 * inserted is a duplicate; this is OK. 3491 */ 3492 mutex_enter(&pp->p_lock); 3493 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3494 kmem_cache_free(rctl_val_cache, nvalp); 3495 mutex_exit(&pp->p_lock); 3496 } 3497 } 3498 /* 3499 * Tell the world that we're done setting up. 3500 * 3501 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3502 * and atomically set the zone's processor set visibility. Once 3503 * we drop pool_lock() this zone will automatically get updated 3504 * to reflect any future changes to the pools configuration. 3505 * 3506 * Note that after we drop the locks below (zonehash_lock in 3507 * particular) other operations such as a zone_getattr call can 3508 * now proceed and observe the zone. That is the reason for doing a 3509 * state transition to the INITIALIZED state. 3510 */ 3511 pool_lock(); 3512 mutex_enter(&cpu_lock); 3513 mutex_enter(&zonehash_lock); 3514 zone_uniqid(zone); 3515 zone_zsd_configure(zone); 3516 if (pool_state == POOL_ENABLED) 3517 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3518 mutex_enter(&zone_status_lock); 3519 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3520 zone_status_set(zone, ZONE_IS_INITIALIZED); 3521 mutex_exit(&zone_status_lock); 3522 mutex_exit(&zonehash_lock); 3523 mutex_exit(&cpu_lock); 3524 pool_unlock(); 3525 3526 /* Now call the create callback for this key */ 3527 zsd_apply_all_keys(zsd_apply_create, zone); 3528 3529 /* The callbacks are complete. Mark ZONE_IS_READY */ 3530 mutex_enter(&zone_status_lock); 3531 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3532 zone_status_set(zone, ZONE_IS_READY); 3533 mutex_exit(&zone_status_lock); 3534 3535 /* 3536 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3537 * we launch init, and set the state to running. 3538 */ 3539 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3540 3541 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3542 id_t cid; 3543 3544 /* 3545 * Ok, this is a little complicated. We need to grab the 3546 * zone's pool's scheduling class ID; note that by now, we 3547 * are already bound to a pool if we need to be (zoneadmd 3548 * will have done that to us while we're in the READY 3549 * state). *But* the scheduling class for the zone's 'init' 3550 * must be explicitly passed to newproc, which doesn't 3551 * respect pool bindings. 3552 * 3553 * We hold the pool_lock across the call to newproc() to 3554 * close the obvious race: the pool's scheduling class 3555 * could change before we manage to create the LWP with 3556 * classid 'cid'. 3557 */ 3558 pool_lock(); 3559 if (zone->zone_defaultcid > 0) 3560 cid = zone->zone_defaultcid; 3561 else 3562 cid = pool_get_class(zone->zone_pool); 3563 if (cid == -1) 3564 cid = defaultcid; 3565 3566 /* 3567 * If this fails, zone_boot will ultimately fail. The 3568 * state of the zone will be set to SHUTTING_DOWN-- userland 3569 * will have to tear down the zone, and fail, or try again. 3570 */ 3571 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3572 minclsyspri - 1, &ct, 0)) != 0) { 3573 mutex_enter(&zone_status_lock); 3574 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3575 mutex_exit(&zone_status_lock); 3576 } 3577 pool_unlock(); 3578 } 3579 3580 /* 3581 * Wait for zone_destroy() to be called. This is what we spend 3582 * most of our life doing. 3583 */ 3584 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3585 3586 if (ct) 3587 /* 3588 * At this point the process contract should be empty. 3589 * (Though if it isn't, it's not the end of the world.) 3590 */ 3591 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3592 3593 /* 3594 * Allow kcred to be freed when all referring processes 3595 * (including this one) go away. We can't just do this in 3596 * zone_free because we need to wait for the zone_cred_ref to 3597 * drop to 0 before calling zone_free, and the existence of 3598 * zone_kcred will prevent that. Thus, we call crfree here to 3599 * balance the crdup in zone_create. The crhold calls earlier 3600 * in zsched will be dropped when the thread and process exit. 3601 */ 3602 crfree(zone->zone_kcred); 3603 zone->zone_kcred = NULL; 3604 3605 exit(CLD_EXITED, 0); 3606 } 3607 3608 /* 3609 * Helper function to determine if there are any submounts of the 3610 * provided path. Used to make sure the zone doesn't "inherit" any 3611 * mounts from before it is created. 3612 */ 3613 static uint_t 3614 zone_mount_count(const char *rootpath) 3615 { 3616 vfs_t *vfsp; 3617 uint_t count = 0; 3618 size_t rootpathlen = strlen(rootpath); 3619 3620 /* 3621 * Holding zonehash_lock prevents race conditions with 3622 * vfs_list_add()/vfs_list_remove() since we serialize with 3623 * zone_find_by_path(). 3624 */ 3625 ASSERT(MUTEX_HELD(&zonehash_lock)); 3626 /* 3627 * The rootpath must end with a '/' 3628 */ 3629 ASSERT(rootpath[rootpathlen - 1] == '/'); 3630 3631 /* 3632 * This intentionally does not count the rootpath itself if that 3633 * happens to be a mount point. 3634 */ 3635 vfs_list_read_lock(); 3636 vfsp = rootvfs; 3637 do { 3638 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3639 rootpathlen) == 0) 3640 count++; 3641 vfsp = vfsp->vfs_next; 3642 } while (vfsp != rootvfs); 3643 vfs_list_unlock(); 3644 return (count); 3645 } 3646 3647 /* 3648 * Helper function to make sure that a zone created on 'rootpath' 3649 * wouldn't end up containing other zones' rootpaths. 3650 */ 3651 static boolean_t 3652 zone_is_nested(const char *rootpath) 3653 { 3654 zone_t *zone; 3655 size_t rootpathlen = strlen(rootpath); 3656 size_t len; 3657 3658 ASSERT(MUTEX_HELD(&zonehash_lock)); 3659 3660 /* 3661 * zone_set_root() appended '/' and '\0' at the end of rootpath 3662 */ 3663 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3664 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3665 return (B_TRUE); 3666 3667 for (zone = list_head(&zone_active); zone != NULL; 3668 zone = list_next(&zone_active, zone)) { 3669 if (zone == global_zone) 3670 continue; 3671 len = strlen(zone->zone_rootpath); 3672 if (strncmp(rootpath, zone->zone_rootpath, 3673 MIN(rootpathlen, len)) == 0) 3674 return (B_TRUE); 3675 } 3676 return (B_FALSE); 3677 } 3678 3679 static int 3680 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3681 size_t zone_privssz) 3682 { 3683 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3684 3685 if (zone_privssz < sizeof (priv_set_t)) 3686 return (set_errno(ENOMEM)); 3687 3688 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3689 kmem_free(privs, sizeof (priv_set_t)); 3690 return (EFAULT); 3691 } 3692 3693 zone->zone_privset = privs; 3694 return (0); 3695 } 3696 3697 /* 3698 * We make creative use of nvlists to pass in rctls from userland. The list is 3699 * a list of the following structures: 3700 * 3701 * (name = rctl_name, value = nvpair_list_array) 3702 * 3703 * Where each element of the nvpair_list_array is of the form: 3704 * 3705 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3706 * (name = "limit", value = uint64_t), 3707 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3708 */ 3709 static int 3710 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3711 { 3712 nvpair_t *nvp = NULL; 3713 nvlist_t *nvl = NULL; 3714 char *kbuf; 3715 int error; 3716 rctl_val_t rv; 3717 3718 *nvlp = NULL; 3719 3720 if (buflen == 0) 3721 return (0); 3722 3723 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3724 return (ENOMEM); 3725 if (copyin(ubuf, kbuf, buflen)) { 3726 error = EFAULT; 3727 goto out; 3728 } 3729 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3730 /* 3731 * nvl may have been allocated/free'd, but the value set to 3732 * non-NULL, so we reset it here. 3733 */ 3734 nvl = NULL; 3735 error = EINVAL; 3736 goto out; 3737 } 3738 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3739 rctl_dict_entry_t *rde; 3740 rctl_hndl_t hndl; 3741 nvlist_t **nvlarray; 3742 uint_t i, nelem; 3743 char *name; 3744 3745 error = EINVAL; 3746 name = nvpair_name(nvp); 3747 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3748 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3749 goto out; 3750 } 3751 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3752 goto out; 3753 } 3754 rde = rctl_dict_lookup_hndl(hndl); 3755 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3756 ASSERT(error == 0); 3757 for (i = 0; i < nelem; i++) { 3758 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3759 goto out; 3760 } 3761 if (rctl_invalid_value(rde, &rv)) { 3762 error = EINVAL; 3763 goto out; 3764 } 3765 } 3766 error = 0; 3767 *nvlp = nvl; 3768 out: 3769 kmem_free(kbuf, buflen); 3770 if (error && nvl != NULL) 3771 nvlist_free(nvl); 3772 return (error); 3773 } 3774 3775 int 3776 zone_create_error(int er_error, int er_ext, int *er_out) { 3777 if (er_out != NULL) { 3778 if (copyout(&er_ext, er_out, sizeof (int))) { 3779 return (set_errno(EFAULT)); 3780 } 3781 } 3782 return (set_errno(er_error)); 3783 } 3784 3785 static int 3786 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3787 { 3788 ts_label_t *tsl; 3789 bslabel_t blab; 3790 3791 /* Get label from user */ 3792 if (copyin(lab, &blab, sizeof (blab)) != 0) 3793 return (EFAULT); 3794 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3795 if (tsl == NULL) 3796 return (ENOMEM); 3797 3798 zone->zone_slabel = tsl; 3799 return (0); 3800 } 3801 3802 /* 3803 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3804 */ 3805 static int 3806 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3807 { 3808 char *kbuf; 3809 char *dataset, *next; 3810 zone_dataset_t *zd; 3811 size_t len; 3812 3813 if (ubuf == NULL || buflen == 0) 3814 return (0); 3815 3816 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3817 return (ENOMEM); 3818 3819 if (copyin(ubuf, kbuf, buflen) != 0) { 3820 kmem_free(kbuf, buflen); 3821 return (EFAULT); 3822 } 3823 3824 dataset = next = kbuf; 3825 for (;;) { 3826 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3827 3828 next = strchr(dataset, ','); 3829 3830 if (next == NULL) 3831 len = strlen(dataset); 3832 else 3833 len = next - dataset; 3834 3835 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3836 bcopy(dataset, zd->zd_dataset, len); 3837 zd->zd_dataset[len] = '\0'; 3838 3839 list_insert_head(&zone->zone_datasets, zd); 3840 3841 if (next == NULL) 3842 break; 3843 3844 dataset = next + 1; 3845 } 3846 3847 kmem_free(kbuf, buflen); 3848 return (0); 3849 } 3850 3851 /* 3852 * System call to create/initialize a new zone named 'zone_name', rooted 3853 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3854 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3855 * with labeling set by 'match', 'doi', and 'label'. 3856 * 3857 * If extended error is non-null, we may use it to return more detailed 3858 * error information. 3859 */ 3860 static zoneid_t 3861 zone_create(const char *zone_name, const char *zone_root, 3862 const priv_set_t *zone_privs, size_t zone_privssz, 3863 caddr_t rctlbuf, size_t rctlbufsz, 3864 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3865 int match, uint32_t doi, const bslabel_t *label, 3866 int flags) 3867 { 3868 struct zsched_arg zarg; 3869 nvlist_t *rctls = NULL; 3870 proc_t *pp = curproc; 3871 zone_t *zone, *ztmp; 3872 zoneid_t zoneid; 3873 int error; 3874 int error2 = 0; 3875 char *str; 3876 cred_t *zkcr; 3877 boolean_t insert_label_hash; 3878 3879 if (secpolicy_zone_config(CRED()) != 0) 3880 return (set_errno(EPERM)); 3881 3882 /* can't boot zone from within chroot environment */ 3883 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3884 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3885 extended_error)); 3886 3887 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3888 zoneid = zone->zone_id = id_alloc(zoneid_space); 3889 zone->zone_status = ZONE_IS_UNINITIALIZED; 3890 zone->zone_pool = pool_default; 3891 zone->zone_pool_mod = gethrtime(); 3892 zone->zone_psetid = ZONE_PS_INVAL; 3893 zone->zone_ncpus = 0; 3894 zone->zone_ncpus_online = 0; 3895 zone->zone_restart_init = B_TRUE; 3896 zone->zone_brand = &native_brand; 3897 zone->zone_initname = NULL; 3898 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3899 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3900 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3901 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3902 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3903 offsetof(struct zsd_entry, zsd_linkage)); 3904 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3905 offsetof(zone_dataset_t, zd_linkage)); 3906 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 3907 offsetof(zone_dl_t, zdl_linkage)); 3908 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3909 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 3910 3911 if (flags & ZCF_NET_EXCL) { 3912 zone->zone_flags |= ZF_NET_EXCL; 3913 } 3914 3915 if ((error = zone_set_name(zone, zone_name)) != 0) { 3916 zone_free(zone); 3917 return (zone_create_error(error, 0, extended_error)); 3918 } 3919 3920 if ((error = zone_set_root(zone, zone_root)) != 0) { 3921 zone_free(zone); 3922 return (zone_create_error(error, 0, extended_error)); 3923 } 3924 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3925 zone_free(zone); 3926 return (zone_create_error(error, 0, extended_error)); 3927 } 3928 3929 /* initialize node name to be the same as zone name */ 3930 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3931 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3932 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3933 3934 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3935 zone->zone_domain[0] = '\0'; 3936 zone->zone_hostid = HW_INVALID_HOSTID; 3937 zone->zone_shares = 1; 3938 zone->zone_shmmax = 0; 3939 zone->zone_ipc.ipcq_shmmni = 0; 3940 zone->zone_ipc.ipcq_semmni = 0; 3941 zone->zone_ipc.ipcq_msgmni = 0; 3942 zone->zone_bootargs = NULL; 3943 zone->zone_fs_allowed = NULL; 3944 zone->zone_initname = 3945 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3946 (void) strcpy(zone->zone_initname, zone_default_initname); 3947 zone->zone_nlwps = 0; 3948 zone->zone_nlwps_ctl = INT_MAX; 3949 zone->zone_locked_mem = 0; 3950 zone->zone_locked_mem_ctl = UINT64_MAX; 3951 zone->zone_max_swap = 0; 3952 zone->zone_max_swap_ctl = UINT64_MAX; 3953 zone->zone_max_lofi = 0; 3954 zone->zone_max_lofi_ctl = UINT64_MAX; 3955 zone0.zone_lockedmem_kstat = NULL; 3956 zone0.zone_swapresv_kstat = NULL; 3957 3958 /* 3959 * Zsched initializes the rctls. 3960 */ 3961 zone->zone_rctls = NULL; 3962 3963 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3964 zone_free(zone); 3965 return (zone_create_error(error, 0, extended_error)); 3966 } 3967 3968 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3969 zone_free(zone); 3970 return (set_errno(error)); 3971 } 3972 3973 /* 3974 * Read in the trusted system parameters: 3975 * match flag and sensitivity label. 3976 */ 3977 zone->zone_match = match; 3978 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3979 /* Fail if requested to set doi to anything but system's doi */ 3980 if (doi != 0 && doi != default_doi) { 3981 zone_free(zone); 3982 return (set_errno(EINVAL)); 3983 } 3984 /* Always apply system's doi to the zone */ 3985 error = zone_set_label(zone, label, default_doi); 3986 if (error != 0) { 3987 zone_free(zone); 3988 return (set_errno(error)); 3989 } 3990 insert_label_hash = B_TRUE; 3991 } else { 3992 /* all zones get an admin_low label if system is not labeled */ 3993 zone->zone_slabel = l_admin_low; 3994 label_hold(l_admin_low); 3995 insert_label_hash = B_FALSE; 3996 } 3997 3998 /* 3999 * Stop all lwps since that's what normally happens as part of fork(). 4000 * This needs to happen before we grab any locks to avoid deadlock 4001 * (another lwp in the process could be waiting for the held lock). 4002 */ 4003 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4004 zone_free(zone); 4005 if (rctls) 4006 nvlist_free(rctls); 4007 return (zone_create_error(error, 0, extended_error)); 4008 } 4009 4010 if (block_mounts() == 0) { 4011 mutex_enter(&pp->p_lock); 4012 if (curthread != pp->p_agenttp) 4013 continuelwps(pp); 4014 mutex_exit(&pp->p_lock); 4015 zone_free(zone); 4016 if (rctls) 4017 nvlist_free(rctls); 4018 return (zone_create_error(error, 0, extended_error)); 4019 } 4020 4021 /* 4022 * Set up credential for kernel access. After this, any errors 4023 * should go through the dance in errout rather than calling 4024 * zone_free directly. 4025 */ 4026 zone->zone_kcred = crdup(kcred); 4027 crsetzone(zone->zone_kcred, zone); 4028 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4029 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4030 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4031 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4032 4033 mutex_enter(&zonehash_lock); 4034 /* 4035 * Make sure zone doesn't already exist. 4036 * 4037 * If the system and zone are labeled, 4038 * make sure no other zone exists that has the same label. 4039 */ 4040 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4041 (insert_label_hash && 4042 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4043 zone_status_t status; 4044 4045 status = zone_status_get(ztmp); 4046 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4047 error = EEXIST; 4048 else 4049 error = EBUSY; 4050 4051 if (insert_label_hash) 4052 error2 = ZE_LABELINUSE; 4053 4054 goto errout; 4055 } 4056 4057 /* 4058 * Don't allow zone creations which would cause one zone's rootpath to 4059 * be accessible from that of another (non-global) zone. 4060 */ 4061 if (zone_is_nested(zone->zone_rootpath)) { 4062 error = EBUSY; 4063 goto errout; 4064 } 4065 4066 ASSERT(zonecount != 0); /* check for leaks */ 4067 if (zonecount + 1 > maxzones) { 4068 error = ENOMEM; 4069 goto errout; 4070 } 4071 4072 if (zone_mount_count(zone->zone_rootpath) != 0) { 4073 error = EBUSY; 4074 error2 = ZE_AREMOUNTS; 4075 goto errout; 4076 } 4077 4078 /* 4079 * Zone is still incomplete, but we need to drop all locks while 4080 * zsched() initializes this zone's kernel process. We 4081 * optimistically add the zone to the hashtable and associated 4082 * lists so a parallel zone_create() doesn't try to create the 4083 * same zone. 4084 */ 4085 zonecount++; 4086 (void) mod_hash_insert(zonehashbyid, 4087 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4088 (mod_hash_val_t)(uintptr_t)zone); 4089 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4090 (void) strcpy(str, zone->zone_name); 4091 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4092 (mod_hash_val_t)(uintptr_t)zone); 4093 if (insert_label_hash) { 4094 (void) mod_hash_insert(zonehashbylabel, 4095 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4096 zone->zone_flags |= ZF_HASHED_LABEL; 4097 } 4098 4099 /* 4100 * Insert into active list. At this point there are no 'hold's 4101 * on the zone, but everyone else knows not to use it, so we can 4102 * continue to use it. zsched() will do a zone_hold() if the 4103 * newproc() is successful. 4104 */ 4105 list_insert_tail(&zone_active, zone); 4106 mutex_exit(&zonehash_lock); 4107 4108 zarg.zone = zone; 4109 zarg.nvlist = rctls; 4110 /* 4111 * The process, task, and project rctls are probably wrong; 4112 * we need an interface to get the default values of all rctls, 4113 * and initialize zsched appropriately. I'm not sure that that 4114 * makes much of a difference, though. 4115 */ 4116 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4117 if (error != 0) { 4118 /* 4119 * We need to undo all globally visible state. 4120 */ 4121 mutex_enter(&zonehash_lock); 4122 list_remove(&zone_active, zone); 4123 if (zone->zone_flags & ZF_HASHED_LABEL) { 4124 ASSERT(zone->zone_slabel != NULL); 4125 (void) mod_hash_destroy(zonehashbylabel, 4126 (mod_hash_key_t)zone->zone_slabel); 4127 } 4128 (void) mod_hash_destroy(zonehashbyname, 4129 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4130 (void) mod_hash_destroy(zonehashbyid, 4131 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4132 ASSERT(zonecount > 1); 4133 zonecount--; 4134 goto errout; 4135 } 4136 4137 /* 4138 * Zone creation can't fail from now on. 4139 */ 4140 4141 /* 4142 * Create zone kstats 4143 */ 4144 zone_kstat_create(zone); 4145 4146 /* 4147 * Let the other lwps continue. 4148 */ 4149 mutex_enter(&pp->p_lock); 4150 if (curthread != pp->p_agenttp) 4151 continuelwps(pp); 4152 mutex_exit(&pp->p_lock); 4153 4154 /* 4155 * Wait for zsched to finish initializing the zone. 4156 */ 4157 zone_status_wait(zone, ZONE_IS_READY); 4158 /* 4159 * The zone is fully visible, so we can let mounts progress. 4160 */ 4161 resume_mounts(); 4162 if (rctls) 4163 nvlist_free(rctls); 4164 4165 return (zoneid); 4166 4167 errout: 4168 mutex_exit(&zonehash_lock); 4169 /* 4170 * Let the other lwps continue. 4171 */ 4172 mutex_enter(&pp->p_lock); 4173 if (curthread != pp->p_agenttp) 4174 continuelwps(pp); 4175 mutex_exit(&pp->p_lock); 4176 4177 resume_mounts(); 4178 if (rctls) 4179 nvlist_free(rctls); 4180 /* 4181 * There is currently one reference to the zone, a cred_ref from 4182 * zone_kcred. To free the zone, we call crfree, which will call 4183 * zone_cred_rele, which will call zone_free. 4184 */ 4185 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4186 ASSERT(zone->zone_kcred->cr_ref == 1); 4187 ASSERT(zone->zone_ref == 0); 4188 zkcr = zone->zone_kcred; 4189 zone->zone_kcred = NULL; 4190 crfree(zkcr); /* triggers call to zone_free */ 4191 return (zone_create_error(error, error2, extended_error)); 4192 } 4193 4194 /* 4195 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4196 * the heavy lifting. initname is the path to the program to launch 4197 * at the "top" of the zone; if this is NULL, we use the system default, 4198 * which is stored at zone_default_initname. 4199 */ 4200 static int 4201 zone_boot(zoneid_t zoneid) 4202 { 4203 int err; 4204 zone_t *zone; 4205 4206 if (secpolicy_zone_config(CRED()) != 0) 4207 return (set_errno(EPERM)); 4208 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4209 return (set_errno(EINVAL)); 4210 4211 mutex_enter(&zonehash_lock); 4212 /* 4213 * Look for zone under hash lock to prevent races with calls to 4214 * zone_shutdown, zone_destroy, etc. 4215 */ 4216 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4217 mutex_exit(&zonehash_lock); 4218 return (set_errno(EINVAL)); 4219 } 4220 4221 mutex_enter(&zone_status_lock); 4222 if (zone_status_get(zone) != ZONE_IS_READY) { 4223 mutex_exit(&zone_status_lock); 4224 mutex_exit(&zonehash_lock); 4225 return (set_errno(EINVAL)); 4226 } 4227 zone_status_set(zone, ZONE_IS_BOOTING); 4228 mutex_exit(&zone_status_lock); 4229 4230 zone_hold(zone); /* so we can use the zone_t later */ 4231 mutex_exit(&zonehash_lock); 4232 4233 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4234 zone_rele(zone); 4235 return (set_errno(EINTR)); 4236 } 4237 4238 /* 4239 * Boot (starting init) might have failed, in which case the zone 4240 * will go to the SHUTTING_DOWN state; an appropriate errno will 4241 * be placed in zone->zone_boot_err, and so we return that. 4242 */ 4243 err = zone->zone_boot_err; 4244 zone_rele(zone); 4245 return (err ? set_errno(err) : 0); 4246 } 4247 4248 /* 4249 * Kills all user processes in the zone, waiting for them all to exit 4250 * before returning. 4251 */ 4252 static int 4253 zone_empty(zone_t *zone) 4254 { 4255 int waitstatus; 4256 4257 /* 4258 * We need to drop zonehash_lock before killing all 4259 * processes, otherwise we'll deadlock with zone_find_* 4260 * which can be called from the exit path. 4261 */ 4262 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4263 while ((waitstatus = zone_status_timedwait_sig(zone, 4264 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4265 killall(zone->zone_id); 4266 } 4267 /* 4268 * return EINTR if we were signaled 4269 */ 4270 if (waitstatus == 0) 4271 return (EINTR); 4272 return (0); 4273 } 4274 4275 /* 4276 * This function implements the policy for zone visibility. 4277 * 4278 * In standard Solaris, a non-global zone can only see itself. 4279 * 4280 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4281 * it dominates. For this test, the label of the global zone is treated as 4282 * admin_high so it is special-cased instead of being checked for dominance. 4283 * 4284 * Returns true if zone attributes are viewable, false otherwise. 4285 */ 4286 static boolean_t 4287 zone_list_access(zone_t *zone) 4288 { 4289 4290 if (curproc->p_zone == global_zone || 4291 curproc->p_zone == zone) { 4292 return (B_TRUE); 4293 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4294 bslabel_t *curproc_label; 4295 bslabel_t *zone_label; 4296 4297 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4298 zone_label = label2bslabel(zone->zone_slabel); 4299 4300 if (zone->zone_id != GLOBAL_ZONEID && 4301 bldominates(curproc_label, zone_label)) { 4302 return (B_TRUE); 4303 } else { 4304 return (B_FALSE); 4305 } 4306 } else { 4307 return (B_FALSE); 4308 } 4309 } 4310 4311 /* 4312 * Systemcall to start the zone's halt sequence. By the time this 4313 * function successfully returns, all user processes and kernel threads 4314 * executing in it will have exited, ZSD shutdown callbacks executed, 4315 * and the zone status set to ZONE_IS_DOWN. 4316 * 4317 * It is possible that the call will interrupt itself if the caller is the 4318 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4319 */ 4320 static int 4321 zone_shutdown(zoneid_t zoneid) 4322 { 4323 int error; 4324 zone_t *zone; 4325 zone_status_t status; 4326 4327 if (secpolicy_zone_config(CRED()) != 0) 4328 return (set_errno(EPERM)); 4329 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4330 return (set_errno(EINVAL)); 4331 4332 /* 4333 * Block mounts so that VFS_MOUNT() can get an accurate view of 4334 * the zone's status with regards to ZONE_IS_SHUTTING down. 4335 * 4336 * e.g. NFS can fail the mount if it determines that the zone 4337 * has already begun the shutdown sequence. 4338 */ 4339 if (block_mounts() == 0) 4340 return (set_errno(EINTR)); 4341 mutex_enter(&zonehash_lock); 4342 /* 4343 * Look for zone under hash lock to prevent races with other 4344 * calls to zone_shutdown and zone_destroy. 4345 */ 4346 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4347 mutex_exit(&zonehash_lock); 4348 resume_mounts(); 4349 return (set_errno(EINVAL)); 4350 } 4351 mutex_enter(&zone_status_lock); 4352 status = zone_status_get(zone); 4353 /* 4354 * Fail if the zone isn't fully initialized yet. 4355 */ 4356 if (status < ZONE_IS_READY) { 4357 mutex_exit(&zone_status_lock); 4358 mutex_exit(&zonehash_lock); 4359 resume_mounts(); 4360 return (set_errno(EINVAL)); 4361 } 4362 /* 4363 * If conditions required for zone_shutdown() to return have been met, 4364 * return success. 4365 */ 4366 if (status >= ZONE_IS_DOWN) { 4367 mutex_exit(&zone_status_lock); 4368 mutex_exit(&zonehash_lock); 4369 resume_mounts(); 4370 return (0); 4371 } 4372 /* 4373 * If zone_shutdown() hasn't been called before, go through the motions. 4374 * If it has, there's nothing to do but wait for the kernel threads to 4375 * drain. 4376 */ 4377 if (status < ZONE_IS_EMPTY) { 4378 uint_t ntasks; 4379 4380 mutex_enter(&zone->zone_lock); 4381 if ((ntasks = zone->zone_ntasks) != 1) { 4382 /* 4383 * There's still stuff running. 4384 */ 4385 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4386 } 4387 mutex_exit(&zone->zone_lock); 4388 if (ntasks == 1) { 4389 /* 4390 * The only way to create another task is through 4391 * zone_enter(), which will block until we drop 4392 * zonehash_lock. The zone is empty. 4393 */ 4394 if (zone->zone_kthreads == NULL) { 4395 /* 4396 * Skip ahead to ZONE_IS_DOWN 4397 */ 4398 zone_status_set(zone, ZONE_IS_DOWN); 4399 } else { 4400 zone_status_set(zone, ZONE_IS_EMPTY); 4401 } 4402 } 4403 } 4404 zone_hold(zone); /* so we can use the zone_t later */ 4405 mutex_exit(&zone_status_lock); 4406 mutex_exit(&zonehash_lock); 4407 resume_mounts(); 4408 4409 if (error = zone_empty(zone)) { 4410 zone_rele(zone); 4411 return (set_errno(error)); 4412 } 4413 /* 4414 * After the zone status goes to ZONE_IS_DOWN this zone will no 4415 * longer be notified of changes to the pools configuration, so 4416 * in order to not end up with a stale pool pointer, we point 4417 * ourselves at the default pool and remove all resource 4418 * visibility. This is especially important as the zone_t may 4419 * languish on the deathrow for a very long time waiting for 4420 * cred's to drain out. 4421 * 4422 * This rebinding of the zone can happen multiple times 4423 * (presumably due to interrupted or parallel systemcalls) 4424 * without any adverse effects. 4425 */ 4426 if (pool_lock_intr() != 0) { 4427 zone_rele(zone); 4428 return (set_errno(EINTR)); 4429 } 4430 if (pool_state == POOL_ENABLED) { 4431 mutex_enter(&cpu_lock); 4432 zone_pool_set(zone, pool_default); 4433 /* 4434 * The zone no longer needs to be able to see any cpus. 4435 */ 4436 zone_pset_set(zone, ZONE_PS_INVAL); 4437 mutex_exit(&cpu_lock); 4438 } 4439 pool_unlock(); 4440 4441 /* 4442 * ZSD shutdown callbacks can be executed multiple times, hence 4443 * it is safe to not be holding any locks across this call. 4444 */ 4445 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4446 4447 mutex_enter(&zone_status_lock); 4448 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4449 zone_status_set(zone, ZONE_IS_DOWN); 4450 mutex_exit(&zone_status_lock); 4451 4452 /* 4453 * Wait for kernel threads to drain. 4454 */ 4455 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4456 zone_rele(zone); 4457 return (set_errno(EINTR)); 4458 } 4459 4460 /* 4461 * Zone can be become down/destroyable even if the above wait 4462 * returns EINTR, so any code added here may never execute. 4463 * (i.e. don't add code here) 4464 */ 4465 4466 zone_rele(zone); 4467 return (0); 4468 } 4469 4470 /* 4471 * Systemcall entry point to finalize the zone halt process. The caller 4472 * must have already successfully called zone_shutdown(). 4473 * 4474 * Upon successful completion, the zone will have been fully destroyed: 4475 * zsched will have exited, destructor callbacks executed, and the zone 4476 * removed from the list of active zones. 4477 */ 4478 static int 4479 zone_destroy(zoneid_t zoneid) 4480 { 4481 uint64_t uniqid; 4482 zone_t *zone; 4483 zone_status_t status; 4484 4485 if (secpolicy_zone_config(CRED()) != 0) 4486 return (set_errno(EPERM)); 4487 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4488 return (set_errno(EINVAL)); 4489 4490 mutex_enter(&zonehash_lock); 4491 /* 4492 * Look for zone under hash lock to prevent races with other 4493 * calls to zone_destroy. 4494 */ 4495 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4496 mutex_exit(&zonehash_lock); 4497 return (set_errno(EINVAL)); 4498 } 4499 4500 if (zone_mount_count(zone->zone_rootpath) != 0) { 4501 mutex_exit(&zonehash_lock); 4502 return (set_errno(EBUSY)); 4503 } 4504 mutex_enter(&zone_status_lock); 4505 status = zone_status_get(zone); 4506 if (status < ZONE_IS_DOWN) { 4507 mutex_exit(&zone_status_lock); 4508 mutex_exit(&zonehash_lock); 4509 return (set_errno(EBUSY)); 4510 } else if (status == ZONE_IS_DOWN) { 4511 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4512 } 4513 mutex_exit(&zone_status_lock); 4514 zone_hold(zone); 4515 mutex_exit(&zonehash_lock); 4516 4517 /* 4518 * wait for zsched to exit 4519 */ 4520 zone_status_wait(zone, ZONE_IS_DEAD); 4521 zone_zsd_callbacks(zone, ZSD_DESTROY); 4522 zone->zone_netstack = NULL; 4523 uniqid = zone->zone_uniqid; 4524 zone_rele(zone); 4525 zone = NULL; /* potentially free'd */ 4526 4527 mutex_enter(&zonehash_lock); 4528 for (; /* ever */; ) { 4529 boolean_t unref; 4530 4531 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4532 zone->zone_uniqid != uniqid) { 4533 /* 4534 * The zone has gone away. Necessary conditions 4535 * are met, so we return success. 4536 */ 4537 mutex_exit(&zonehash_lock); 4538 return (0); 4539 } 4540 mutex_enter(&zone->zone_lock); 4541 unref = ZONE_IS_UNREF(zone); 4542 mutex_exit(&zone->zone_lock); 4543 if (unref) { 4544 /* 4545 * There is only one reference to the zone -- that 4546 * added when the zone was added to the hashtables -- 4547 * and things will remain this way until we drop 4548 * zonehash_lock... we can go ahead and cleanup the 4549 * zone. 4550 */ 4551 break; 4552 } 4553 4554 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4555 /* Signaled */ 4556 mutex_exit(&zonehash_lock); 4557 return (set_errno(EINTR)); 4558 } 4559 4560 } 4561 4562 /* 4563 * Remove CPU cap for this zone now since we're not going to 4564 * fail below this point. 4565 */ 4566 cpucaps_zone_remove(zone); 4567 4568 /* Get rid of the zone's kstats */ 4569 zone_kstat_delete(zone); 4570 4571 /* remove the pfexecd doors */ 4572 if (zone->zone_pfexecd != NULL) { 4573 klpd_freelist(&zone->zone_pfexecd); 4574 zone->zone_pfexecd = NULL; 4575 } 4576 4577 /* free brand specific data */ 4578 if (ZONE_IS_BRANDED(zone)) 4579 ZBROP(zone)->b_free_brand_data(zone); 4580 4581 /* Say goodbye to brand framework. */ 4582 brand_unregister_zone(zone->zone_brand); 4583 4584 /* 4585 * It is now safe to let the zone be recreated; remove it from the 4586 * lists. The memory will not be freed until the last cred 4587 * reference goes away. 4588 */ 4589 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4590 zonecount--; 4591 /* remove from active list and hash tables */ 4592 list_remove(&zone_active, zone); 4593 (void) mod_hash_destroy(zonehashbyname, 4594 (mod_hash_key_t)zone->zone_name); 4595 (void) mod_hash_destroy(zonehashbyid, 4596 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4597 if (zone->zone_flags & ZF_HASHED_LABEL) 4598 (void) mod_hash_destroy(zonehashbylabel, 4599 (mod_hash_key_t)zone->zone_slabel); 4600 mutex_exit(&zonehash_lock); 4601 4602 /* 4603 * Release the root vnode; we're not using it anymore. Nor should any 4604 * other thread that might access it exist. 4605 */ 4606 if (zone->zone_rootvp != NULL) { 4607 VN_RELE(zone->zone_rootvp); 4608 zone->zone_rootvp = NULL; 4609 } 4610 4611 /* add to deathrow list */ 4612 mutex_enter(&zone_deathrow_lock); 4613 list_insert_tail(&zone_deathrow, zone); 4614 mutex_exit(&zone_deathrow_lock); 4615 4616 /* 4617 * Drop last reference (which was added by zsched()), this will 4618 * free the zone unless there are outstanding cred references. 4619 */ 4620 zone_rele(zone); 4621 return (0); 4622 } 4623 4624 /* 4625 * Systemcall entry point for zone_getattr(2). 4626 */ 4627 static ssize_t 4628 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4629 { 4630 size_t size; 4631 int error = 0, err; 4632 zone_t *zone; 4633 char *zonepath; 4634 char *outstr; 4635 zone_status_t zone_status; 4636 pid_t initpid; 4637 boolean_t global = (curzone == global_zone); 4638 boolean_t inzone = (curzone->zone_id == zoneid); 4639 ushort_t flags; 4640 4641 mutex_enter(&zonehash_lock); 4642 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4643 mutex_exit(&zonehash_lock); 4644 return (set_errno(EINVAL)); 4645 } 4646 zone_status = zone_status_get(zone); 4647 if (zone_status < ZONE_IS_INITIALIZED) { 4648 mutex_exit(&zonehash_lock); 4649 return (set_errno(EINVAL)); 4650 } 4651 zone_hold(zone); 4652 mutex_exit(&zonehash_lock); 4653 4654 /* 4655 * If not in the global zone, don't show information about other zones, 4656 * unless the system is labeled and the local zone's label dominates 4657 * the other zone. 4658 */ 4659 if (!zone_list_access(zone)) { 4660 zone_rele(zone); 4661 return (set_errno(EINVAL)); 4662 } 4663 4664 switch (attr) { 4665 case ZONE_ATTR_ROOT: 4666 if (global) { 4667 /* 4668 * Copy the path to trim the trailing "/" (except for 4669 * the global zone). 4670 */ 4671 if (zone != global_zone) 4672 size = zone->zone_rootpathlen - 1; 4673 else 4674 size = zone->zone_rootpathlen; 4675 zonepath = kmem_alloc(size, KM_SLEEP); 4676 bcopy(zone->zone_rootpath, zonepath, size); 4677 zonepath[size - 1] = '\0'; 4678 } else { 4679 if (inzone || !is_system_labeled()) { 4680 /* 4681 * Caller is not in the global zone. 4682 * if the query is on the current zone 4683 * or the system is not labeled, 4684 * just return faked-up path for current zone. 4685 */ 4686 zonepath = "/"; 4687 size = 2; 4688 } else { 4689 /* 4690 * Return related path for current zone. 4691 */ 4692 int prefix_len = strlen(zone_prefix); 4693 int zname_len = strlen(zone->zone_name); 4694 4695 size = prefix_len + zname_len + 1; 4696 zonepath = kmem_alloc(size, KM_SLEEP); 4697 bcopy(zone_prefix, zonepath, prefix_len); 4698 bcopy(zone->zone_name, zonepath + 4699 prefix_len, zname_len); 4700 zonepath[size - 1] = '\0'; 4701 } 4702 } 4703 if (bufsize > size) 4704 bufsize = size; 4705 if (buf != NULL) { 4706 err = copyoutstr(zonepath, buf, bufsize, NULL); 4707 if (err != 0 && err != ENAMETOOLONG) 4708 error = EFAULT; 4709 } 4710 if (global || (is_system_labeled() && !inzone)) 4711 kmem_free(zonepath, size); 4712 break; 4713 4714 case ZONE_ATTR_NAME: 4715 size = strlen(zone->zone_name) + 1; 4716 if (bufsize > size) 4717 bufsize = size; 4718 if (buf != NULL) { 4719 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4720 if (err != 0 && err != ENAMETOOLONG) 4721 error = EFAULT; 4722 } 4723 break; 4724 4725 case ZONE_ATTR_STATUS: 4726 /* 4727 * Since we're not holding zonehash_lock, the zone status 4728 * may be anything; leave it up to userland to sort it out. 4729 */ 4730 size = sizeof (zone_status); 4731 if (bufsize > size) 4732 bufsize = size; 4733 zone_status = zone_status_get(zone); 4734 if (buf != NULL && 4735 copyout(&zone_status, buf, bufsize) != 0) 4736 error = EFAULT; 4737 break; 4738 case ZONE_ATTR_FLAGS: 4739 size = sizeof (zone->zone_flags); 4740 if (bufsize > size) 4741 bufsize = size; 4742 flags = zone->zone_flags; 4743 if (buf != NULL && 4744 copyout(&flags, buf, bufsize) != 0) 4745 error = EFAULT; 4746 break; 4747 case ZONE_ATTR_PRIVSET: 4748 size = sizeof (priv_set_t); 4749 if (bufsize > size) 4750 bufsize = size; 4751 if (buf != NULL && 4752 copyout(zone->zone_privset, buf, bufsize) != 0) 4753 error = EFAULT; 4754 break; 4755 case ZONE_ATTR_UNIQID: 4756 size = sizeof (zone->zone_uniqid); 4757 if (bufsize > size) 4758 bufsize = size; 4759 if (buf != NULL && 4760 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4761 error = EFAULT; 4762 break; 4763 case ZONE_ATTR_POOLID: 4764 { 4765 pool_t *pool; 4766 poolid_t poolid; 4767 4768 if (pool_lock_intr() != 0) { 4769 error = EINTR; 4770 break; 4771 } 4772 pool = zone_pool_get(zone); 4773 poolid = pool->pool_id; 4774 pool_unlock(); 4775 size = sizeof (poolid); 4776 if (bufsize > size) 4777 bufsize = size; 4778 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4779 error = EFAULT; 4780 } 4781 break; 4782 case ZONE_ATTR_SLBL: 4783 size = sizeof (bslabel_t); 4784 if (bufsize > size) 4785 bufsize = size; 4786 if (zone->zone_slabel == NULL) 4787 error = EINVAL; 4788 else if (buf != NULL && 4789 copyout(label2bslabel(zone->zone_slabel), buf, 4790 bufsize) != 0) 4791 error = EFAULT; 4792 break; 4793 case ZONE_ATTR_INITPID: 4794 size = sizeof (initpid); 4795 if (bufsize > size) 4796 bufsize = size; 4797 initpid = zone->zone_proc_initpid; 4798 if (initpid == -1) { 4799 error = ESRCH; 4800 break; 4801 } 4802 if (buf != NULL && 4803 copyout(&initpid, buf, bufsize) != 0) 4804 error = EFAULT; 4805 break; 4806 case ZONE_ATTR_BRAND: 4807 size = strlen(zone->zone_brand->b_name) + 1; 4808 4809 if (bufsize > size) 4810 bufsize = size; 4811 if (buf != NULL) { 4812 err = copyoutstr(zone->zone_brand->b_name, buf, 4813 bufsize, NULL); 4814 if (err != 0 && err != ENAMETOOLONG) 4815 error = EFAULT; 4816 } 4817 break; 4818 case ZONE_ATTR_INITNAME: 4819 size = strlen(zone->zone_initname) + 1; 4820 if (bufsize > size) 4821 bufsize = size; 4822 if (buf != NULL) { 4823 err = copyoutstr(zone->zone_initname, buf, bufsize, 4824 NULL); 4825 if (err != 0 && err != ENAMETOOLONG) 4826 error = EFAULT; 4827 } 4828 break; 4829 case ZONE_ATTR_BOOTARGS: 4830 if (zone->zone_bootargs == NULL) 4831 outstr = ""; 4832 else 4833 outstr = zone->zone_bootargs; 4834 size = strlen(outstr) + 1; 4835 if (bufsize > size) 4836 bufsize = size; 4837 if (buf != NULL) { 4838 err = copyoutstr(outstr, buf, bufsize, NULL); 4839 if (err != 0 && err != ENAMETOOLONG) 4840 error = EFAULT; 4841 } 4842 break; 4843 case ZONE_ATTR_PHYS_MCAP: 4844 size = sizeof (zone->zone_phys_mcap); 4845 if (bufsize > size) 4846 bufsize = size; 4847 if (buf != NULL && 4848 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4849 error = EFAULT; 4850 break; 4851 case ZONE_ATTR_SCHED_CLASS: 4852 mutex_enter(&class_lock); 4853 4854 if (zone->zone_defaultcid >= loaded_classes) 4855 outstr = ""; 4856 else 4857 outstr = sclass[zone->zone_defaultcid].cl_name; 4858 size = strlen(outstr) + 1; 4859 if (bufsize > size) 4860 bufsize = size; 4861 if (buf != NULL) { 4862 err = copyoutstr(outstr, buf, bufsize, NULL); 4863 if (err != 0 && err != ENAMETOOLONG) 4864 error = EFAULT; 4865 } 4866 4867 mutex_exit(&class_lock); 4868 break; 4869 case ZONE_ATTR_HOSTID: 4870 if (zone->zone_hostid != HW_INVALID_HOSTID && 4871 bufsize == sizeof (zone->zone_hostid)) { 4872 size = sizeof (zone->zone_hostid); 4873 if (buf != NULL && copyout(&zone->zone_hostid, buf, 4874 bufsize) != 0) 4875 error = EFAULT; 4876 } else { 4877 error = EINVAL; 4878 } 4879 break; 4880 case ZONE_ATTR_FS_ALLOWED: 4881 if (zone->zone_fs_allowed == NULL) 4882 outstr = ""; 4883 else 4884 outstr = zone->zone_fs_allowed; 4885 size = strlen(outstr) + 1; 4886 if (bufsize > size) 4887 bufsize = size; 4888 if (buf != NULL) { 4889 err = copyoutstr(outstr, buf, bufsize, NULL); 4890 if (err != 0 && err != ENAMETOOLONG) 4891 error = EFAULT; 4892 } 4893 break; 4894 default: 4895 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4896 size = bufsize; 4897 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4898 } else { 4899 error = EINVAL; 4900 } 4901 } 4902 zone_rele(zone); 4903 4904 if (error) 4905 return (set_errno(error)); 4906 return ((ssize_t)size); 4907 } 4908 4909 /* 4910 * Systemcall entry point for zone_setattr(2). 4911 */ 4912 /*ARGSUSED*/ 4913 static int 4914 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4915 { 4916 zone_t *zone; 4917 zone_status_t zone_status; 4918 int err; 4919 4920 if (secpolicy_zone_config(CRED()) != 0) 4921 return (set_errno(EPERM)); 4922 4923 /* 4924 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4925 * global zone. 4926 */ 4927 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4928 return (set_errno(EINVAL)); 4929 } 4930 4931 mutex_enter(&zonehash_lock); 4932 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4933 mutex_exit(&zonehash_lock); 4934 return (set_errno(EINVAL)); 4935 } 4936 zone_hold(zone); 4937 mutex_exit(&zonehash_lock); 4938 4939 /* 4940 * At present most attributes can only be set on non-running, 4941 * non-global zones. 4942 */ 4943 zone_status = zone_status_get(zone); 4944 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4945 goto done; 4946 4947 switch (attr) { 4948 case ZONE_ATTR_INITNAME: 4949 err = zone_set_initname(zone, (const char *)buf); 4950 break; 4951 case ZONE_ATTR_BOOTARGS: 4952 err = zone_set_bootargs(zone, (const char *)buf); 4953 break; 4954 case ZONE_ATTR_BRAND: 4955 err = zone_set_brand(zone, (const char *)buf); 4956 break; 4957 case ZONE_ATTR_FS_ALLOWED: 4958 err = zone_set_fs_allowed(zone, (const char *)buf); 4959 break; 4960 case ZONE_ATTR_PHYS_MCAP: 4961 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4962 break; 4963 case ZONE_ATTR_SCHED_CLASS: 4964 err = zone_set_sched_class(zone, (const char *)buf); 4965 break; 4966 case ZONE_ATTR_HOSTID: 4967 if (bufsize == sizeof (zone->zone_hostid)) { 4968 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 4969 err = 0; 4970 else 4971 err = EFAULT; 4972 } else { 4973 err = EINVAL; 4974 } 4975 break; 4976 default: 4977 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4978 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4979 else 4980 err = EINVAL; 4981 } 4982 4983 done: 4984 zone_rele(zone); 4985 return (err != 0 ? set_errno(err) : 0); 4986 } 4987 4988 /* 4989 * Return zero if the process has at least one vnode mapped in to its 4990 * address space which shouldn't be allowed to change zones. 4991 * 4992 * Also return zero if the process has any shared mappings which reserve 4993 * swap. This is because the counting for zone.max-swap does not allow swap 4994 * reservation to be shared between zones. zone swap reservation is counted 4995 * on zone->zone_max_swap. 4996 */ 4997 static int 4998 as_can_change_zones(void) 4999 { 5000 proc_t *pp = curproc; 5001 struct seg *seg; 5002 struct as *as = pp->p_as; 5003 vnode_t *vp; 5004 int allow = 1; 5005 5006 ASSERT(pp->p_as != &kas); 5007 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5008 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5009 5010 /* 5011 * Cannot enter zone with shared anon memory which 5012 * reserves swap. See comment above. 5013 */ 5014 if (seg_can_change_zones(seg) == B_FALSE) { 5015 allow = 0; 5016 break; 5017 } 5018 /* 5019 * if we can't get a backing vnode for this segment then skip 5020 * it. 5021 */ 5022 vp = NULL; 5023 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5024 continue; 5025 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5026 allow = 0; 5027 break; 5028 } 5029 } 5030 AS_LOCK_EXIT(as, &as->a_lock); 5031 return (allow); 5032 } 5033 5034 /* 5035 * Count swap reserved by curproc's address space 5036 */ 5037 static size_t 5038 as_swresv(void) 5039 { 5040 proc_t *pp = curproc; 5041 struct seg *seg; 5042 struct as *as = pp->p_as; 5043 size_t swap = 0; 5044 5045 ASSERT(pp->p_as != &kas); 5046 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5047 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5048 swap += seg_swresv(seg); 5049 5050 return (swap); 5051 } 5052 5053 /* 5054 * Systemcall entry point for zone_enter(). 5055 * 5056 * The current process is injected into said zone. In the process 5057 * it will change its project membership, privileges, rootdir/cwd, 5058 * zone-wide rctls, and pool association to match those of the zone. 5059 * 5060 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5061 * state will transition it to ZONE_IS_RUNNING. Processes may only 5062 * enter a zone that is "ready" or "running". 5063 */ 5064 static int 5065 zone_enter(zoneid_t zoneid) 5066 { 5067 zone_t *zone; 5068 vnode_t *vp; 5069 proc_t *pp = curproc; 5070 contract_t *ct; 5071 cont_process_t *ctp; 5072 task_t *tk, *oldtk; 5073 kproject_t *zone_proj0; 5074 cred_t *cr, *newcr; 5075 pool_t *oldpool, *newpool; 5076 sess_t *sp; 5077 uid_t uid; 5078 zone_status_t status; 5079 int err = 0; 5080 rctl_entity_p_t e; 5081 size_t swap; 5082 kthread_id_t t; 5083 5084 if (secpolicy_zone_config(CRED()) != 0) 5085 return (set_errno(EPERM)); 5086 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5087 return (set_errno(EINVAL)); 5088 5089 /* 5090 * Stop all lwps so we don't need to hold a lock to look at 5091 * curproc->p_zone. This needs to happen before we grab any 5092 * locks to avoid deadlock (another lwp in the process could 5093 * be waiting for the held lock). 5094 */ 5095 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5096 return (set_errno(EINTR)); 5097 5098 /* 5099 * Make sure we're not changing zones with files open or mapped in 5100 * to our address space which shouldn't be changing zones. 5101 */ 5102 if (!files_can_change_zones()) { 5103 err = EBADF; 5104 goto out; 5105 } 5106 if (!as_can_change_zones()) { 5107 err = EFAULT; 5108 goto out; 5109 } 5110 5111 mutex_enter(&zonehash_lock); 5112 if (pp->p_zone != global_zone) { 5113 mutex_exit(&zonehash_lock); 5114 err = EINVAL; 5115 goto out; 5116 } 5117 5118 zone = zone_find_all_by_id(zoneid); 5119 if (zone == NULL) { 5120 mutex_exit(&zonehash_lock); 5121 err = EINVAL; 5122 goto out; 5123 } 5124 5125 /* 5126 * To prevent processes in a zone from holding contracts on 5127 * extrazonal resources, and to avoid process contract 5128 * memberships which span zones, contract holders and processes 5129 * which aren't the sole members of their encapsulating process 5130 * contracts are not allowed to zone_enter. 5131 */ 5132 ctp = pp->p_ct_process; 5133 ct = &ctp->conp_contract; 5134 mutex_enter(&ct->ct_lock); 5135 mutex_enter(&pp->p_lock); 5136 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5137 mutex_exit(&pp->p_lock); 5138 mutex_exit(&ct->ct_lock); 5139 mutex_exit(&zonehash_lock); 5140 err = EINVAL; 5141 goto out; 5142 } 5143 5144 /* 5145 * Moreover, we don't allow processes whose encapsulating 5146 * process contracts have inherited extrazonal contracts. 5147 * While it would be easier to eliminate all process contracts 5148 * with inherited contracts, we need to be able to give a 5149 * restarted init (or other zone-penetrating process) its 5150 * predecessor's contracts. 5151 */ 5152 if (ctp->conp_ninherited != 0) { 5153 contract_t *next; 5154 for (next = list_head(&ctp->conp_inherited); next; 5155 next = list_next(&ctp->conp_inherited, next)) { 5156 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5157 mutex_exit(&pp->p_lock); 5158 mutex_exit(&ct->ct_lock); 5159 mutex_exit(&zonehash_lock); 5160 err = EINVAL; 5161 goto out; 5162 } 5163 } 5164 } 5165 5166 mutex_exit(&pp->p_lock); 5167 mutex_exit(&ct->ct_lock); 5168 5169 status = zone_status_get(zone); 5170 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5171 /* 5172 * Can't join 5173 */ 5174 mutex_exit(&zonehash_lock); 5175 err = EINVAL; 5176 goto out; 5177 } 5178 5179 /* 5180 * Make sure new priv set is within the permitted set for caller 5181 */ 5182 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5183 mutex_exit(&zonehash_lock); 5184 err = EPERM; 5185 goto out; 5186 } 5187 /* 5188 * We want to momentarily drop zonehash_lock while we optimistically 5189 * bind curproc to the pool it should be running in. This is safe 5190 * since the zone can't disappear (we have a hold on it). 5191 */ 5192 zone_hold(zone); 5193 mutex_exit(&zonehash_lock); 5194 5195 /* 5196 * Grab pool_lock to keep the pools configuration from changing 5197 * and to stop ourselves from getting rebound to another pool 5198 * until we join the zone. 5199 */ 5200 if (pool_lock_intr() != 0) { 5201 zone_rele(zone); 5202 err = EINTR; 5203 goto out; 5204 } 5205 ASSERT(secpolicy_pool(CRED()) == 0); 5206 /* 5207 * Bind ourselves to the pool currently associated with the zone. 5208 */ 5209 oldpool = curproc->p_pool; 5210 newpool = zone_pool_get(zone); 5211 if (pool_state == POOL_ENABLED && newpool != oldpool && 5212 (err = pool_do_bind(newpool, P_PID, P_MYID, 5213 POOL_BIND_ALL)) != 0) { 5214 pool_unlock(); 5215 zone_rele(zone); 5216 goto out; 5217 } 5218 5219 /* 5220 * Grab cpu_lock now; we'll need it later when we call 5221 * task_join(). 5222 */ 5223 mutex_enter(&cpu_lock); 5224 mutex_enter(&zonehash_lock); 5225 /* 5226 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5227 */ 5228 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5229 /* 5230 * Can't join anymore. 5231 */ 5232 mutex_exit(&zonehash_lock); 5233 mutex_exit(&cpu_lock); 5234 if (pool_state == POOL_ENABLED && 5235 newpool != oldpool) 5236 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5237 POOL_BIND_ALL); 5238 pool_unlock(); 5239 zone_rele(zone); 5240 err = EINVAL; 5241 goto out; 5242 } 5243 5244 /* 5245 * a_lock must be held while transfering locked memory and swap 5246 * reservation from the global zone to the non global zone because 5247 * asynchronous faults on the processes' address space can lock 5248 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5249 * segments respectively. 5250 */ 5251 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5252 swap = as_swresv(); 5253 mutex_enter(&pp->p_lock); 5254 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5255 /* verify that we do not exceed and task or lwp limits */ 5256 mutex_enter(&zone->zone_nlwps_lock); 5257 /* add new lwps to zone and zone's proj0 */ 5258 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5259 zone->zone_nlwps += pp->p_lwpcnt; 5260 /* add 1 task to zone's proj0 */ 5261 zone_proj0->kpj_ntasks += 1; 5262 mutex_exit(&zone->zone_nlwps_lock); 5263 5264 mutex_enter(&zone->zone_mem_lock); 5265 zone->zone_locked_mem += pp->p_locked_mem; 5266 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5267 zone->zone_max_swap += swap; 5268 mutex_exit(&zone->zone_mem_lock); 5269 5270 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5271 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5272 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5273 5274 /* remove lwps from proc's old zone and old project */ 5275 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5276 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5277 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5278 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5279 5280 mutex_enter(&pp->p_zone->zone_mem_lock); 5281 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5282 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5283 pp->p_zone->zone_max_swap -= swap; 5284 mutex_exit(&pp->p_zone->zone_mem_lock); 5285 5286 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5287 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5288 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5289 5290 pp->p_flag |= SZONETOP; 5291 pp->p_zone = zone; 5292 mutex_exit(&pp->p_lock); 5293 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5294 5295 /* 5296 * Joining the zone cannot fail from now on. 5297 * 5298 * This means that a lot of the following code can be commonized and 5299 * shared with zsched(). 5300 */ 5301 5302 /* 5303 * If the process contract fmri was inherited, we need to 5304 * flag this so that any contract status will not leak 5305 * extra zone information, svc_fmri in this case 5306 */ 5307 if (ctp->conp_svc_ctid != ct->ct_id) { 5308 mutex_enter(&ct->ct_lock); 5309 ctp->conp_svc_zone_enter = ct->ct_id; 5310 mutex_exit(&ct->ct_lock); 5311 } 5312 5313 /* 5314 * Reset the encapsulating process contract's zone. 5315 */ 5316 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5317 contract_setzuniqid(ct, zone->zone_uniqid); 5318 5319 /* 5320 * Create a new task and associate the process with the project keyed 5321 * by (projid,zoneid). 5322 * 5323 * We might as well be in project 0; the global zone's projid doesn't 5324 * make much sense in a zone anyhow. 5325 * 5326 * This also increments zone_ntasks, and returns with p_lock held. 5327 */ 5328 tk = task_create(0, zone); 5329 oldtk = task_join(tk, 0); 5330 mutex_exit(&cpu_lock); 5331 5332 /* 5333 * call RCTLOP_SET functions on this proc 5334 */ 5335 e.rcep_p.zone = zone; 5336 e.rcep_t = RCENTITY_ZONE; 5337 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5338 RCD_CALLBACK); 5339 mutex_exit(&pp->p_lock); 5340 5341 /* 5342 * We don't need to hold any of zsched's locks here; not only do we know 5343 * the process and zone aren't going away, we know its session isn't 5344 * changing either. 5345 * 5346 * By joining zsched's session here, we mimic the behavior in the 5347 * global zone of init's sid being the pid of sched. We extend this 5348 * to all zlogin-like zone_enter()'ing processes as well. 5349 */ 5350 mutex_enter(&pidlock); 5351 sp = zone->zone_zsched->p_sessp; 5352 sess_hold(zone->zone_zsched); 5353 mutex_enter(&pp->p_lock); 5354 pgexit(pp); 5355 sess_rele(pp->p_sessp, B_TRUE); 5356 pp->p_sessp = sp; 5357 pgjoin(pp, zone->zone_zsched->p_pidp); 5358 5359 /* 5360 * If any threads are scheduled to be placed on zone wait queue they 5361 * should abandon the idea since the wait queue is changing. 5362 * We need to be holding pidlock & p_lock to do this. 5363 */ 5364 if ((t = pp->p_tlist) != NULL) { 5365 do { 5366 thread_lock(t); 5367 /* 5368 * Kick this thread so that he doesn't sit 5369 * on a wrong wait queue. 5370 */ 5371 if (ISWAITING(t)) 5372 setrun_locked(t); 5373 5374 if (t->t_schedflag & TS_ANYWAITQ) 5375 t->t_schedflag &= ~ TS_ANYWAITQ; 5376 5377 thread_unlock(t); 5378 } while ((t = t->t_forw) != pp->p_tlist); 5379 } 5380 5381 /* 5382 * If there is a default scheduling class for the zone and it is not 5383 * the class we are currently in, change all of the threads in the 5384 * process to the new class. We need to be holding pidlock & p_lock 5385 * when we call parmsset so this is a good place to do it. 5386 */ 5387 if (zone->zone_defaultcid > 0 && 5388 zone->zone_defaultcid != curthread->t_cid) { 5389 pcparms_t pcparms; 5390 5391 pcparms.pc_cid = zone->zone_defaultcid; 5392 pcparms.pc_clparms[0] = 0; 5393 5394 /* 5395 * If setting the class fails, we still want to enter the zone. 5396 */ 5397 if ((t = pp->p_tlist) != NULL) { 5398 do { 5399 (void) parmsset(&pcparms, t); 5400 } while ((t = t->t_forw) != pp->p_tlist); 5401 } 5402 } 5403 5404 mutex_exit(&pp->p_lock); 5405 mutex_exit(&pidlock); 5406 5407 mutex_exit(&zonehash_lock); 5408 /* 5409 * We're firmly in the zone; let pools progress. 5410 */ 5411 pool_unlock(); 5412 task_rele(oldtk); 5413 /* 5414 * We don't need to retain a hold on the zone since we already 5415 * incremented zone_ntasks, so the zone isn't going anywhere. 5416 */ 5417 zone_rele(zone); 5418 5419 /* 5420 * Chroot 5421 */ 5422 vp = zone->zone_rootvp; 5423 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5424 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5425 5426 /* 5427 * Change process credentials 5428 */ 5429 newcr = cralloc(); 5430 mutex_enter(&pp->p_crlock); 5431 cr = pp->p_cred; 5432 crcopy_to(cr, newcr); 5433 crsetzone(newcr, zone); 5434 pp->p_cred = newcr; 5435 5436 /* 5437 * Restrict all process privilege sets to zone limit 5438 */ 5439 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5440 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5441 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5442 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5443 mutex_exit(&pp->p_crlock); 5444 crset(pp, newcr); 5445 5446 /* 5447 * Adjust upcount to reflect zone entry. 5448 */ 5449 uid = crgetruid(newcr); 5450 mutex_enter(&pidlock); 5451 upcount_dec(uid, GLOBAL_ZONEID); 5452 upcount_inc(uid, zoneid); 5453 mutex_exit(&pidlock); 5454 5455 /* 5456 * Set up core file path and content. 5457 */ 5458 set_core_defaults(); 5459 5460 out: 5461 /* 5462 * Let the other lwps continue. 5463 */ 5464 mutex_enter(&pp->p_lock); 5465 if (curthread != pp->p_agenttp) 5466 continuelwps(pp); 5467 mutex_exit(&pp->p_lock); 5468 5469 return (err != 0 ? set_errno(err) : 0); 5470 } 5471 5472 /* 5473 * Systemcall entry point for zone_list(2). 5474 * 5475 * Processes running in a (non-global) zone only see themselves. 5476 * On labeled systems, they see all zones whose label they dominate. 5477 */ 5478 static int 5479 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5480 { 5481 zoneid_t *zoneids; 5482 zone_t *zone, *myzone; 5483 uint_t user_nzones, real_nzones; 5484 uint_t domi_nzones; 5485 int error; 5486 5487 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5488 return (set_errno(EFAULT)); 5489 5490 myzone = curproc->p_zone; 5491 if (myzone != global_zone) { 5492 bslabel_t *mybslab; 5493 5494 if (!is_system_labeled()) { 5495 /* just return current zone */ 5496 real_nzones = domi_nzones = 1; 5497 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5498 zoneids[0] = myzone->zone_id; 5499 } else { 5500 /* return all zones that are dominated */ 5501 mutex_enter(&zonehash_lock); 5502 real_nzones = zonecount; 5503 domi_nzones = 0; 5504 if (real_nzones > 0) { 5505 zoneids = kmem_alloc(real_nzones * 5506 sizeof (zoneid_t), KM_SLEEP); 5507 mybslab = label2bslabel(myzone->zone_slabel); 5508 for (zone = list_head(&zone_active); 5509 zone != NULL; 5510 zone = list_next(&zone_active, zone)) { 5511 if (zone->zone_id == GLOBAL_ZONEID) 5512 continue; 5513 if (zone != myzone && 5514 (zone->zone_flags & ZF_IS_SCRATCH)) 5515 continue; 5516 /* 5517 * Note that a label always dominates 5518 * itself, so myzone is always included 5519 * in the list. 5520 */ 5521 if (bldominates(mybslab, 5522 label2bslabel(zone->zone_slabel))) { 5523 zoneids[domi_nzones++] = 5524 zone->zone_id; 5525 } 5526 } 5527 } 5528 mutex_exit(&zonehash_lock); 5529 } 5530 } else { 5531 mutex_enter(&zonehash_lock); 5532 real_nzones = zonecount; 5533 domi_nzones = 0; 5534 if (real_nzones > 0) { 5535 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5536 KM_SLEEP); 5537 for (zone = list_head(&zone_active); zone != NULL; 5538 zone = list_next(&zone_active, zone)) 5539 zoneids[domi_nzones++] = zone->zone_id; 5540 ASSERT(domi_nzones == real_nzones); 5541 } 5542 mutex_exit(&zonehash_lock); 5543 } 5544 5545 /* 5546 * If user has allocated space for fewer entries than we found, then 5547 * return only up to his limit. Either way, tell him exactly how many 5548 * we found. 5549 */ 5550 if (domi_nzones < user_nzones) 5551 user_nzones = domi_nzones; 5552 error = 0; 5553 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5554 error = EFAULT; 5555 } else if (zoneidlist != NULL && user_nzones != 0) { 5556 if (copyout(zoneids, zoneidlist, 5557 user_nzones * sizeof (zoneid_t)) != 0) 5558 error = EFAULT; 5559 } 5560 5561 if (real_nzones > 0) 5562 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5563 5564 if (error != 0) 5565 return (set_errno(error)); 5566 else 5567 return (0); 5568 } 5569 5570 /* 5571 * Systemcall entry point for zone_lookup(2). 5572 * 5573 * Non-global zones are only able to see themselves and (on labeled systems) 5574 * the zones they dominate. 5575 */ 5576 static zoneid_t 5577 zone_lookup(const char *zone_name) 5578 { 5579 char *kname; 5580 zone_t *zone; 5581 zoneid_t zoneid; 5582 int err; 5583 5584 if (zone_name == NULL) { 5585 /* return caller's zone id */ 5586 return (getzoneid()); 5587 } 5588 5589 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5590 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5591 kmem_free(kname, ZONENAME_MAX); 5592 return (set_errno(err)); 5593 } 5594 5595 mutex_enter(&zonehash_lock); 5596 zone = zone_find_all_by_name(kname); 5597 kmem_free(kname, ZONENAME_MAX); 5598 /* 5599 * In a non-global zone, can only lookup global and own name. 5600 * In Trusted Extensions zone label dominance rules apply. 5601 */ 5602 if (zone == NULL || 5603 zone_status_get(zone) < ZONE_IS_READY || 5604 !zone_list_access(zone)) { 5605 mutex_exit(&zonehash_lock); 5606 return (set_errno(EINVAL)); 5607 } else { 5608 zoneid = zone->zone_id; 5609 mutex_exit(&zonehash_lock); 5610 return (zoneid); 5611 } 5612 } 5613 5614 static int 5615 zone_version(int *version_arg) 5616 { 5617 int version = ZONE_SYSCALL_API_VERSION; 5618 5619 if (copyout(&version, version_arg, sizeof (int)) != 0) 5620 return (set_errno(EFAULT)); 5621 return (0); 5622 } 5623 5624 /* ARGSUSED */ 5625 long 5626 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5627 { 5628 zone_def zs; 5629 int err; 5630 5631 switch (cmd) { 5632 case ZONE_CREATE: 5633 if (get_udatamodel() == DATAMODEL_NATIVE) { 5634 if (copyin(arg1, &zs, sizeof (zone_def))) { 5635 return (set_errno(EFAULT)); 5636 } 5637 } else { 5638 #ifdef _SYSCALL32_IMPL 5639 zone_def32 zs32; 5640 5641 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5642 return (set_errno(EFAULT)); 5643 } 5644 zs.zone_name = 5645 (const char *)(unsigned long)zs32.zone_name; 5646 zs.zone_root = 5647 (const char *)(unsigned long)zs32.zone_root; 5648 zs.zone_privs = 5649 (const struct priv_set *) 5650 (unsigned long)zs32.zone_privs; 5651 zs.zone_privssz = zs32.zone_privssz; 5652 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5653 zs.rctlbufsz = zs32.rctlbufsz; 5654 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5655 zs.zfsbufsz = zs32.zfsbufsz; 5656 zs.extended_error = 5657 (int *)(unsigned long)zs32.extended_error; 5658 zs.match = zs32.match; 5659 zs.doi = zs32.doi; 5660 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5661 zs.flags = zs32.flags; 5662 #else 5663 panic("get_udatamodel() returned bogus result\n"); 5664 #endif 5665 } 5666 5667 return (zone_create(zs.zone_name, zs.zone_root, 5668 zs.zone_privs, zs.zone_privssz, 5669 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5670 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5671 zs.extended_error, zs.match, zs.doi, 5672 zs.label, zs.flags)); 5673 case ZONE_BOOT: 5674 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5675 case ZONE_DESTROY: 5676 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5677 case ZONE_GETATTR: 5678 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5679 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5680 case ZONE_SETATTR: 5681 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5682 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5683 case ZONE_ENTER: 5684 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5685 case ZONE_LIST: 5686 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5687 case ZONE_SHUTDOWN: 5688 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5689 case ZONE_LOOKUP: 5690 return (zone_lookup((const char *)arg1)); 5691 case ZONE_VERSION: 5692 return (zone_version((int *)arg1)); 5693 case ZONE_ADD_DATALINK: 5694 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5695 (datalink_id_t)(uintptr_t)arg2)); 5696 case ZONE_DEL_DATALINK: 5697 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5698 (datalink_id_t)(uintptr_t)arg2)); 5699 case ZONE_CHECK_DATALINK: { 5700 zoneid_t zoneid; 5701 boolean_t need_copyout; 5702 5703 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 5704 return (EFAULT); 5705 need_copyout = (zoneid == ALL_ZONES); 5706 err = zone_check_datalink(&zoneid, 5707 (datalink_id_t)(uintptr_t)arg2); 5708 if (err == 0 && need_copyout) { 5709 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 5710 err = EFAULT; 5711 } 5712 return (err == 0 ? 0 : set_errno(err)); 5713 } 5714 case ZONE_LIST_DATALINK: 5715 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5716 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 5717 default: 5718 return (set_errno(EINVAL)); 5719 } 5720 } 5721 5722 struct zarg { 5723 zone_t *zone; 5724 zone_cmd_arg_t arg; 5725 }; 5726 5727 static int 5728 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5729 { 5730 char *buf; 5731 size_t buflen; 5732 int error; 5733 5734 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5735 buf = kmem_alloc(buflen, KM_SLEEP); 5736 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5737 error = door_ki_open(buf, doorp); 5738 kmem_free(buf, buflen); 5739 return (error); 5740 } 5741 5742 static void 5743 zone_release_door(door_handle_t *doorp) 5744 { 5745 door_ki_rele(*doorp); 5746 *doorp = NULL; 5747 } 5748 5749 static void 5750 zone_ki_call_zoneadmd(struct zarg *zargp) 5751 { 5752 door_handle_t door = NULL; 5753 door_arg_t darg, save_arg; 5754 char *zone_name; 5755 size_t zone_namelen; 5756 zoneid_t zoneid; 5757 zone_t *zone; 5758 zone_cmd_arg_t arg; 5759 uint64_t uniqid; 5760 size_t size; 5761 int error; 5762 int retry; 5763 5764 zone = zargp->zone; 5765 arg = zargp->arg; 5766 kmem_free(zargp, sizeof (*zargp)); 5767 5768 zone_namelen = strlen(zone->zone_name) + 1; 5769 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5770 bcopy(zone->zone_name, zone_name, zone_namelen); 5771 zoneid = zone->zone_id; 5772 uniqid = zone->zone_uniqid; 5773 /* 5774 * zoneadmd may be down, but at least we can empty out the zone. 5775 * We can ignore the return value of zone_empty() since we're called 5776 * from a kernel thread and know we won't be delivered any signals. 5777 */ 5778 ASSERT(curproc == &p0); 5779 (void) zone_empty(zone); 5780 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5781 zone_rele(zone); 5782 5783 size = sizeof (arg); 5784 darg.rbuf = (char *)&arg; 5785 darg.data_ptr = (char *)&arg; 5786 darg.rsize = size; 5787 darg.data_size = size; 5788 darg.desc_ptr = NULL; 5789 darg.desc_num = 0; 5790 5791 save_arg = darg; 5792 /* 5793 * Since we're not holding a reference to the zone, any number of 5794 * things can go wrong, including the zone disappearing before we get a 5795 * chance to talk to zoneadmd. 5796 */ 5797 for (retry = 0; /* forever */; retry++) { 5798 if (door == NULL && 5799 (error = zone_lookup_door(zone_name, &door)) != 0) { 5800 goto next; 5801 } 5802 ASSERT(door != NULL); 5803 5804 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5805 SIZE_MAX, 0)) == 0) { 5806 break; 5807 } 5808 switch (error) { 5809 case EINTR: 5810 /* FALLTHROUGH */ 5811 case EAGAIN: /* process may be forking */ 5812 /* 5813 * Back off for a bit 5814 */ 5815 break; 5816 case EBADF: 5817 zone_release_door(&door); 5818 if (zone_lookup_door(zone_name, &door) != 0) { 5819 /* 5820 * zoneadmd may be dead, but it may come back to 5821 * life later. 5822 */ 5823 break; 5824 } 5825 break; 5826 default: 5827 cmn_err(CE_WARN, 5828 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5829 error); 5830 goto out; 5831 } 5832 next: 5833 /* 5834 * If this isn't the same zone_t that we originally had in mind, 5835 * then this is the same as if two kadmin requests come in at 5836 * the same time: the first one wins. This means we lose, so we 5837 * bail. 5838 */ 5839 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5840 /* 5841 * Problem is solved. 5842 */ 5843 break; 5844 } 5845 if (zone->zone_uniqid != uniqid) { 5846 /* 5847 * zoneid recycled 5848 */ 5849 zone_rele(zone); 5850 break; 5851 } 5852 /* 5853 * We could zone_status_timedwait(), but there doesn't seem to 5854 * be much point in doing that (plus, it would mean that 5855 * zone_free() isn't called until this thread exits). 5856 */ 5857 zone_rele(zone); 5858 delay(hz); 5859 darg = save_arg; 5860 } 5861 out: 5862 if (door != NULL) { 5863 zone_release_door(&door); 5864 } 5865 kmem_free(zone_name, zone_namelen); 5866 thread_exit(); 5867 } 5868 5869 /* 5870 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5871 * kadmin(). The caller is a process in the zone. 5872 * 5873 * In order to shutdown the zone, we will hand off control to zoneadmd 5874 * (running in the global zone) via a door. We do a half-hearted job at 5875 * killing all processes in the zone, create a kernel thread to contact 5876 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5877 * a form of generation number used to let zoneadmd (as well as 5878 * zone_destroy()) know exactly which zone they're re talking about. 5879 */ 5880 int 5881 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5882 { 5883 struct zarg *zargp; 5884 zone_cmd_t zcmd; 5885 zone_t *zone; 5886 5887 zone = curproc->p_zone; 5888 ASSERT(getzoneid() != GLOBAL_ZONEID); 5889 5890 switch (cmd) { 5891 case A_SHUTDOWN: 5892 switch (fcn) { 5893 case AD_HALT: 5894 case AD_POWEROFF: 5895 zcmd = Z_HALT; 5896 break; 5897 case AD_BOOT: 5898 zcmd = Z_REBOOT; 5899 break; 5900 case AD_IBOOT: 5901 case AD_SBOOT: 5902 case AD_SIBOOT: 5903 case AD_NOSYNC: 5904 return (ENOTSUP); 5905 default: 5906 return (EINVAL); 5907 } 5908 break; 5909 case A_REBOOT: 5910 zcmd = Z_REBOOT; 5911 break; 5912 case A_FTRACE: 5913 case A_REMOUNT: 5914 case A_FREEZE: 5915 case A_DUMP: 5916 case A_CONFIG: 5917 return (ENOTSUP); 5918 default: 5919 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5920 return (EINVAL); 5921 } 5922 5923 if (secpolicy_zone_admin(credp, B_FALSE)) 5924 return (EPERM); 5925 mutex_enter(&zone_status_lock); 5926 5927 /* 5928 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5929 * is in the zone. 5930 */ 5931 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5932 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5933 /* 5934 * This zone is already on its way down. 5935 */ 5936 mutex_exit(&zone_status_lock); 5937 return (0); 5938 } 5939 /* 5940 * Prevent future zone_enter()s 5941 */ 5942 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5943 mutex_exit(&zone_status_lock); 5944 5945 /* 5946 * Kill everyone now and call zoneadmd later. 5947 * zone_ki_call_zoneadmd() will do a more thorough job of this 5948 * later. 5949 */ 5950 killall(zone->zone_id); 5951 /* 5952 * Now, create the thread to contact zoneadmd and do the rest of the 5953 * work. This thread can't be created in our zone otherwise 5954 * zone_destroy() would deadlock. 5955 */ 5956 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5957 zargp->arg.cmd = zcmd; 5958 zargp->arg.uniqid = zone->zone_uniqid; 5959 zargp->zone = zone; 5960 (void) strcpy(zargp->arg.locale, "C"); 5961 /* mdep was already copied in for us by uadmin */ 5962 if (mdep != NULL) 5963 (void) strlcpy(zargp->arg.bootbuf, mdep, 5964 sizeof (zargp->arg.bootbuf)); 5965 zone_hold(zone); 5966 5967 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5968 TS_RUN, minclsyspri); 5969 exit(CLD_EXITED, 0); 5970 5971 return (EINVAL); 5972 } 5973 5974 /* 5975 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5976 * status to ZONE_IS_SHUTTING_DOWN. 5977 * 5978 * This function also shuts down all running zones to ensure that they won't 5979 * fork new processes. 5980 */ 5981 void 5982 zone_shutdown_global(void) 5983 { 5984 zone_t *current_zonep; 5985 5986 ASSERT(INGLOBALZONE(curproc)); 5987 mutex_enter(&zonehash_lock); 5988 mutex_enter(&zone_status_lock); 5989 5990 /* Modify the global zone's status first. */ 5991 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5992 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5993 5994 /* 5995 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 5996 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 5997 * could cause assertions to fail (e.g., assertions about a zone's 5998 * state during initialization, readying, or booting) or produce races. 5999 * We'll let threads continue to initialize and ready new zones: they'll 6000 * fail to boot the new zones when they see that the global zone is 6001 * shutting down. 6002 */ 6003 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6004 current_zonep = list_next(&zone_active, current_zonep)) { 6005 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6006 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6007 } 6008 mutex_exit(&zone_status_lock); 6009 mutex_exit(&zonehash_lock); 6010 } 6011 6012 /* 6013 * Returns true if the named dataset is visible in the current zone. 6014 * The 'write' parameter is set to 1 if the dataset is also writable. 6015 */ 6016 int 6017 zone_dataset_visible(const char *dataset, int *write) 6018 { 6019 static int zfstype = -1; 6020 zone_dataset_t *zd; 6021 size_t len; 6022 zone_t *zone = curproc->p_zone; 6023 const char *name = NULL; 6024 vfs_t *vfsp = NULL; 6025 6026 if (dataset[0] == '\0') 6027 return (0); 6028 6029 /* 6030 * Walk the list once, looking for datasets which match exactly, or 6031 * specify a dataset underneath an exported dataset. If found, return 6032 * true and note that it is writable. 6033 */ 6034 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6035 zd = list_next(&zone->zone_datasets, zd)) { 6036 6037 len = strlen(zd->zd_dataset); 6038 if (strlen(dataset) >= len && 6039 bcmp(dataset, zd->zd_dataset, len) == 0 && 6040 (dataset[len] == '\0' || dataset[len] == '/' || 6041 dataset[len] == '@')) { 6042 if (write) 6043 *write = 1; 6044 return (1); 6045 } 6046 } 6047 6048 /* 6049 * Walk the list a second time, searching for datasets which are parents 6050 * of exported datasets. These should be visible, but read-only. 6051 * 6052 * Note that we also have to support forms such as 'pool/dataset/', with 6053 * a trailing slash. 6054 */ 6055 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6056 zd = list_next(&zone->zone_datasets, zd)) { 6057 6058 len = strlen(dataset); 6059 if (dataset[len - 1] == '/') 6060 len--; /* Ignore trailing slash */ 6061 if (len < strlen(zd->zd_dataset) && 6062 bcmp(dataset, zd->zd_dataset, len) == 0 && 6063 zd->zd_dataset[len] == '/') { 6064 if (write) 6065 *write = 0; 6066 return (1); 6067 } 6068 } 6069 6070 /* 6071 * We reach here if the given dataset is not found in the zone_dataset 6072 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6073 * instead of delegation. For this we search for the dataset in the 6074 * zone_vfslist of this zone. If found, return true and note that it is 6075 * not writable. 6076 */ 6077 6078 /* 6079 * Initialize zfstype if it is not initialized yet. 6080 */ 6081 if (zfstype == -1) { 6082 struct vfssw *vswp = vfs_getvfssw("zfs"); 6083 zfstype = vswp - vfssw; 6084 vfs_unrefvfssw(vswp); 6085 } 6086 6087 vfs_list_read_lock(); 6088 vfsp = zone->zone_vfslist; 6089 do { 6090 ASSERT(vfsp); 6091 if (vfsp->vfs_fstype == zfstype) { 6092 name = refstr_value(vfsp->vfs_resource); 6093 6094 /* 6095 * Check if we have an exact match. 6096 */ 6097 if (strcmp(dataset, name) == 0) { 6098 vfs_list_unlock(); 6099 if (write) 6100 *write = 0; 6101 return (1); 6102 } 6103 /* 6104 * We need to check if we are looking for parents of 6105 * a dataset. These should be visible, but read-only. 6106 */ 6107 len = strlen(dataset); 6108 if (dataset[len - 1] == '/') 6109 len--; 6110 6111 if (len < strlen(name) && 6112 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6113 vfs_list_unlock(); 6114 if (write) 6115 *write = 0; 6116 return (1); 6117 } 6118 } 6119 vfsp = vfsp->vfs_zone_next; 6120 } while (vfsp != zone->zone_vfslist); 6121 6122 vfs_list_unlock(); 6123 return (0); 6124 } 6125 6126 /* 6127 * zone_find_by_any_path() - 6128 * 6129 * kernel-private routine similar to zone_find_by_path(), but which 6130 * effectively compares against zone paths rather than zonerootpath 6131 * (i.e., the last component of zonerootpaths, which should be "root/", 6132 * are not compared.) This is done in order to accurately identify all 6133 * paths, whether zone-visible or not, including those which are parallel 6134 * to /root/, such as /dev/, /home/, etc... 6135 * 6136 * If the specified path does not fall under any zone path then global 6137 * zone is returned. 6138 * 6139 * The treat_abs parameter indicates whether the path should be treated as 6140 * an absolute path although it does not begin with "/". (This supports 6141 * nfs mount syntax such as host:any/path.) 6142 * 6143 * The caller is responsible for zone_rele of the returned zone. 6144 */ 6145 zone_t * 6146 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6147 { 6148 zone_t *zone; 6149 int path_offset = 0; 6150 6151 if (path == NULL) { 6152 zone_hold(global_zone); 6153 return (global_zone); 6154 } 6155 6156 if (*path != '/') { 6157 ASSERT(treat_abs); 6158 path_offset = 1; 6159 } 6160 6161 mutex_enter(&zonehash_lock); 6162 for (zone = list_head(&zone_active); zone != NULL; 6163 zone = list_next(&zone_active, zone)) { 6164 char *c; 6165 size_t pathlen; 6166 char *rootpath_start; 6167 6168 if (zone == global_zone) /* skip global zone */ 6169 continue; 6170 6171 /* scan backwards to find start of last component */ 6172 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6173 do { 6174 c--; 6175 } while (*c != '/'); 6176 6177 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6178 rootpath_start = (zone->zone_rootpath + path_offset); 6179 if (strncmp(path, rootpath_start, pathlen) == 0) 6180 break; 6181 } 6182 if (zone == NULL) 6183 zone = global_zone; 6184 zone_hold(zone); 6185 mutex_exit(&zonehash_lock); 6186 return (zone); 6187 } 6188 6189 /* 6190 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6191 * zone_dl_t pointer if found, and NULL otherwise. 6192 */ 6193 static zone_dl_t * 6194 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6195 { 6196 zone_dl_t *zdl; 6197 6198 ASSERT(mutex_owned(&zone->zone_lock)); 6199 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6200 zdl = list_next(&zone->zone_dl_list, zdl)) { 6201 if (zdl->zdl_id == linkid) 6202 break; 6203 } 6204 return (zdl); 6205 } 6206 6207 static boolean_t 6208 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6209 { 6210 boolean_t exists; 6211 6212 mutex_enter(&zone->zone_lock); 6213 exists = (zone_find_dl(zone, linkid) != NULL); 6214 mutex_exit(&zone->zone_lock); 6215 return (exists); 6216 } 6217 6218 /* 6219 * Add an data link name for the zone. 6220 */ 6221 static int 6222 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6223 { 6224 zone_dl_t *zdl; 6225 zone_t *zone; 6226 zone_t *thiszone; 6227 6228 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6229 return (set_errno(ENXIO)); 6230 6231 /* Verify that the datalink ID doesn't already belong to a zone. */ 6232 mutex_enter(&zonehash_lock); 6233 for (zone = list_head(&zone_active); zone != NULL; 6234 zone = list_next(&zone_active, zone)) { 6235 if (zone_dl_exists(zone, linkid)) { 6236 mutex_exit(&zonehash_lock); 6237 zone_rele(thiszone); 6238 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6239 } 6240 } 6241 6242 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6243 zdl->zdl_id = linkid; 6244 mutex_enter(&thiszone->zone_lock); 6245 list_insert_head(&thiszone->zone_dl_list, zdl); 6246 mutex_exit(&thiszone->zone_lock); 6247 mutex_exit(&zonehash_lock); 6248 zone_rele(thiszone); 6249 return (0); 6250 } 6251 6252 static int 6253 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6254 { 6255 zone_dl_t *zdl; 6256 zone_t *zone; 6257 int err = 0; 6258 6259 if ((zone = zone_find_by_id(zoneid)) == NULL) 6260 return (set_errno(EINVAL)); 6261 6262 mutex_enter(&zone->zone_lock); 6263 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6264 err = ENXIO; 6265 } else { 6266 list_remove(&zone->zone_dl_list, zdl); 6267 kmem_free(zdl, sizeof (zone_dl_t)); 6268 } 6269 mutex_exit(&zone->zone_lock); 6270 zone_rele(zone); 6271 return (err == 0 ? 0 : set_errno(err)); 6272 } 6273 6274 /* 6275 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6276 * the linkid. Otherwise we just check if the specified zoneidp has been 6277 * assigned the supplied linkid. 6278 */ 6279 int 6280 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6281 { 6282 zone_t *zone; 6283 int err = ENXIO; 6284 6285 if (*zoneidp != ALL_ZONES) { 6286 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6287 if (zone_dl_exists(zone, linkid)) 6288 err = 0; 6289 zone_rele(zone); 6290 } 6291 return (err); 6292 } 6293 6294 mutex_enter(&zonehash_lock); 6295 for (zone = list_head(&zone_active); zone != NULL; 6296 zone = list_next(&zone_active, zone)) { 6297 if (zone_dl_exists(zone, linkid)) { 6298 *zoneidp = zone->zone_id; 6299 err = 0; 6300 break; 6301 } 6302 } 6303 mutex_exit(&zonehash_lock); 6304 return (err); 6305 } 6306 6307 /* 6308 * Get the list of datalink IDs assigned to a zone. 6309 * 6310 * On input, *nump is the number of datalink IDs that can fit in the supplied 6311 * idarray. Upon return, *nump is either set to the number of datalink IDs 6312 * that were placed in the array if the array was large enough, or to the 6313 * number of datalink IDs that the function needs to place in the array if the 6314 * array is too small. 6315 */ 6316 static int 6317 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6318 { 6319 uint_t num, dlcount; 6320 zone_t *zone; 6321 zone_dl_t *zdl; 6322 datalink_id_t *idptr = idarray; 6323 6324 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6325 return (set_errno(EFAULT)); 6326 if ((zone = zone_find_by_id(zoneid)) == NULL) 6327 return (set_errno(ENXIO)); 6328 6329 num = 0; 6330 mutex_enter(&zone->zone_lock); 6331 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6332 zdl = list_next(&zone->zone_dl_list, zdl)) { 6333 /* 6334 * If the list is bigger than what the caller supplied, just 6335 * count, don't do copyout. 6336 */ 6337 if (++num > dlcount) 6338 continue; 6339 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6340 mutex_exit(&zone->zone_lock); 6341 zone_rele(zone); 6342 return (set_errno(EFAULT)); 6343 } 6344 idptr++; 6345 } 6346 mutex_exit(&zone->zone_lock); 6347 zone_rele(zone); 6348 6349 /* Increased or decreased, caller should be notified. */ 6350 if (num != dlcount) { 6351 if (copyout(&num, nump, sizeof (num)) != 0) 6352 return (set_errno(EFAULT)); 6353 } 6354 return (0); 6355 } 6356 6357 /* 6358 * Public interface for looking up a zone by zoneid. It's a customized version 6359 * for netstack_zone_create(). It can only be called from the zsd create 6360 * callbacks, since it doesn't have reference on the zone structure hence if 6361 * it is called elsewhere the zone could disappear after the zonehash_lock 6362 * is dropped. 6363 * 6364 * Furthermore it 6365 * 1. Doesn't check the status of the zone. 6366 * 2. It will be called even before zone_init is called, in that case the 6367 * address of zone0 is returned directly, and netstack_zone_create() 6368 * will only assign a value to zone0.zone_netstack, won't break anything. 6369 * 3. Returns without the zone being held. 6370 */ 6371 zone_t * 6372 zone_find_by_id_nolock(zoneid_t zoneid) 6373 { 6374 zone_t *zone; 6375 6376 mutex_enter(&zonehash_lock); 6377 if (zonehashbyid == NULL) 6378 zone = &zone0; 6379 else 6380 zone = zone_find_all_by_id(zoneid); 6381 mutex_exit(&zonehash_lock); 6382 return (zone); 6383 } 6384 6385 /* 6386 * Walk the datalinks for a given zone 6387 */ 6388 int 6389 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6390 void *data) 6391 { 6392 zone_t *zone; 6393 zone_dl_t *zdl; 6394 datalink_id_t *idarray; 6395 uint_t idcount = 0; 6396 int i, ret = 0; 6397 6398 if ((zone = zone_find_by_id(zoneid)) == NULL) 6399 return (ENOENT); 6400 6401 /* 6402 * We first build an array of linkid's so that we can walk these and 6403 * execute the callback with the zone_lock dropped. 6404 */ 6405 mutex_enter(&zone->zone_lock); 6406 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6407 zdl = list_next(&zone->zone_dl_list, zdl)) { 6408 idcount++; 6409 } 6410 6411 if (idcount == 0) { 6412 mutex_exit(&zone->zone_lock); 6413 zone_rele(zone); 6414 return (0); 6415 } 6416 6417 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6418 if (idarray == NULL) { 6419 mutex_exit(&zone->zone_lock); 6420 zone_rele(zone); 6421 return (ENOMEM); 6422 } 6423 6424 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6425 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6426 idarray[i] = zdl->zdl_id; 6427 } 6428 6429 mutex_exit(&zone->zone_lock); 6430 6431 for (i = 0; i < idcount && ret == 0; i++) { 6432 if ((ret = (*cb)(idarray[i], data)) != 0) 6433 break; 6434 } 6435 6436 zone_rele(zone); 6437 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6438 return (ret); 6439 } 6440