xref: /titanic_44/usr/src/uts/common/os/taskq.c (revision b7f45089ccbe01bab3d7c7377b49d80d2ae18a69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Kernel task queues: general-purpose asynchronous task scheduling.
31  *
32  * A common problem in kernel programming is the need to schedule tasks
33  * to be performed later, by another thread. There are several reasons
34  * you may want or need to do this:
35  *
36  * (1) The task isn't time-critical, but your current code path is.
37  *
38  * (2) The task may require grabbing locks that you already hold.
39  *
40  * (3) The task may need to block (e.g. to wait for memory), but you
41  *     cannot block in your current context.
42  *
43  * (4) Your code path can't complete because of some condition, but you can't
44  *     sleep or fail, so you queue the task for later execution when condition
45  *     disappears.
46  *
47  * (5) You just want a simple way to launch multiple tasks in parallel.
48  *
49  * Task queues provide such a facility. In its simplest form (used when
50  * performance is not a critical consideration) a task queue consists of a
51  * single list of tasks, together with one or more threads to service the
52  * list. There are some cases when this simple queue is not sufficient:
53  *
54  * (1) The task queues are very hot and there is a need to avoid data and lock
55  *	contention over global resources.
56  *
57  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
58  *	the same list managed by the same thread.
59  *
60  * (3) Some tasks may block for a long time, and this should not block other
61  * 	tasks in the queue.
62  *
63  * To provide useful service in such cases we define a "dynamic task queue"
64  * which has an individual thread for each of the tasks. These threads are
65  * dynamically created as they are needed and destroyed when they are not in
66  * use. The API for managing task pools is the same as for managing task queues
67  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
68  * dynamic task pool behavior is desired.
69  *
70  * Dynamic task queues may also place tasks in the normal queue (called "backing
71  * queue") when task pool runs out of resources. Users of task queues may
72  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
73  * flags.
74  *
75  * The backing task queue is also used for scheduling internal tasks needed for
76  * dynamic task queue maintenance.
77  *
78  * INTERFACES:
79  *
80  * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
81  *
82  *	Create a taskq with specified properties.
83  *	Possible 'flags':
84  *
85  *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
86  * 		specified, 'nthreads' specifies the maximum number of threads in
87  *		the task queue. Task execution order for dynamic task queues is
88  *		not predictable.
89  *
90  *		If this flag is not specified (default case) a
91  * 		single-list task queue is created with 'nthreads' threads
92  * 		servicing it. Entries in this queue are managed by
93  * 		taskq_ent_alloc() and taskq_ent_free() which try to keep the
94  * 		task population between 'minalloc' and 'maxalloc', but the
95  *		latter limit is only advisory for TQ_SLEEP dispatches and the
96  *		former limit is only advisory for TQ_NOALLOC dispatches. If
97  *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
98  *		prepopulated with 'minalloc' task structures.
99  *
100  *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
101  *		executed in the order they are scheduled if nthreads == 1.
102  *		If nthreads > 1, task execution order is not predictable.
103  *
104  *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
105  *		Also prepopulate the task queue with 'minalloc' task structures.
106  *
107  *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
108  * 		use their own protocol for handling CPR issues. This flag is not
109  *		supported for DYNAMIC task queues.
110  *
111  *	The 'pri' field specifies the default priority for the threads that
112  *	service all scheduled tasks.
113  *
114  * void taskq_destroy(tap):
115  *
116  *	Waits for any scheduled tasks to complete, then destroys the taskq.
117  *	Caller should guarantee that no new tasks are scheduled in the closing
118  *	taskq.
119  *
120  * taskqid_t taskq_dispatch(tq, func, arg, flags):
121  *
122  *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
123  *	the caller is willing to block for memory.  The function returns an
124  *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
125  *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
126  *	and returns (taskqid_t)0.
127  *
128  *	ASSUMES: func != NULL.
129  *
130  *	Possible flags:
131  *	  TQ_NOSLEEP: Do not wait for resources; may fail.
132  *
133  *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
134  *		non-dynamic task queues.
135  *
136  *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
137  *		lack of available resources and fail. If this flag is not
138  * 		set, and the task pool is exhausted, the task may be scheduled
139  *		in the backing queue. This flag may ONLY be used with dynamic
140  *		task queues.
141  *
142  *		NOTE: This flag should always be used when a task queue is used
143  *		for tasks that may depend on each other for completion.
144  *		Enqueueing dependent tasks may create deadlocks.
145  *
146  *	  TQ_SLEEP:   May block waiting for resources. May still fail for
147  * 		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
148  *		always succeed.
149  *
150  *	NOTE: Dynamic task queues are much more likely to fail in
151  *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
152  *		is important to have backup strategies handling such failures.
153  *
154  * void taskq_wait(tq):
155  *
156  *	Waits for all previously scheduled tasks to complete.
157  *
158  *	NOTE: It does not stop any new task dispatches.
159  *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
160  *
161  * void taskq_suspend(tq)
162  *
163  *	Suspend all task execution. Tasks already scheduled for a dynamic task
164  *	queue will still be executed, but all new scheduled tasks will be
165  *	suspended until taskq_resume() is called.
166  *
167  * int  taskq_suspended(tq)
168  *
169  *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
170  *	ASSERT that the task queue is suspended.
171  *
172  * void taskq_resume(tq)
173  *
174  *	Resume task queue execution.
175  *
176  * int  taskq_member(tq, thread)
177  *
178  *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
179  *	intended use is to ASSERT that a given function is called in taskq
180  *	context only.
181  *
182  * system_taskq
183  *
184  *	Global system-wide dynamic task queue for common uses. It may be used by
185  *	any subsystem that needs to schedule tasks and does not need to manage
186  *	its own task queues. It is initialized quite early during system boot.
187  *
188  * IMPLEMENTATION.
189  *
190  * This is schematic representation of the task queue structures.
191  *
192  *   taskq:
193  *   +-------------+
194  *   |tq_lock      | +---< taskq_ent_free()
195  *   +-------------+ |
196  *   |...          | | tqent:                  tqent:
197  *   +-------------+ | +------------+          +------------+
198  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
199  *   +-------------+   +------------+          +------------+
200  *   |...          |   | ...        |          | ...        |
201  *   +-------------+   +------------+          +------------+
202  *   | tq_task     |    |
203  *   |             |    +-------------->taskq_ent_alloc()
204  * +--------------------------------------------------------------------------+
205  * | |                     |            tqent                   tqent         |
206  * | +---------------------+     +--> +------------+     +--> +------------+  |
207  * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
208  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
209  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
210  *   +---------------------+	   |  +------------+     ^ |  +------------+
211  * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
212  * | +---------------------+	      +------------+     |    +------------+  |
213  * | |...		   |	      | ...        |     |    | ...        |  |
214  * | +---------------------+	      +------------+     |    +------------+  |
215  * |                                      ^              |                    |
216  * |                                      |              |                    |
217  * +--------------------------------------+--------------+       TQ_APPEND() -+
218  *   |             |                      |
219  *   |...          |   taskq_thread()-----+
220  *   +-------------+
221  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
222  *   +-------------+  |
223  *                    |   DYNAMIC TASK QUEUES:
224  *                    |
225  *                    +-> taskq_bucket[nCPU]       	taskq_bucket_dispatch()
226  *                        +-------------------+                    ^
227  *                   +--->| tqbucket_lock     |                    |
228  *                   |    +-------------------+   +--------+      +--------+
229  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
230  *                   |    +-------------------+<--+--------+<--...+--------+ |
231  *                   |    | ...               |   | thread |      | thread | |
232  *                   |    +-------------------+   +--------+      +--------+ |
233  *                   |    +-------------------+                              |
234  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
235  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
236  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
237  *                   |    +-------------------+<--+--------+<--...+--------+
238  *                   |    | ...               |   | thread |      | thread |
239  *                   |    +-------------------+   +--------+      +--------+
240  *		     +---> 	...
241  *
242  *
243  * Task queues use tq_task field to link new entry in the queue. The queue is a
244  * circular doubly-linked list. Entries are put in the end of the list with
245  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
246  * FIFO order. Task queue entries are cached in the free list managed by
247  * taskq_ent_alloc() and taskq_ent_free() functions.
248  *
249  *	All threads used by task queues mark t_taskq field of the thread to
250  *	point to the task queue.
251  *
252  * Dynamic Task Queues Implementation.
253  *
254  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
255  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
256  * is controlled by a single entry.
257  *
258  * Entries are distributed over a set of buckets. To avoid using modulo
259  * arithmetics the number of buckets is 2^n and is determined as the nearest
260  * power of two roundown of the number of CPUs in the system. Tunable
261  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
262  * is attached to a bucket for its lifetime and can't migrate to other buckets.
263  *
264  * Entries that have scheduled tasks are not placed in any list. The dispatch
265  * function sets their "func" and "arg" fields and signals the corresponding
266  * thread to execute the task. Once the thread executes the task it clears the
267  * "func" field and places an entry on the bucket cache of free entries pointed
268  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
269  * field equal to NULL. The free list is a circular doubly-linked list identical
270  * in structure to the tq_task list above, but entries are taken from it in LIFO
271  * order - the last freed entry is the first to be allocated. The
272  * taskq_bucket_dispatch() function gets the most recently used entry from the
273  * free list, sets its "func" and "arg" fields and signals a worker thread.
274  *
275  * After executing each task a per-entry thread taskq_d_thread() places its
276  * entry on the bucket free list and goes to a timed sleep. If it wakes up
277  * without getting new task it removes the entry from the free list and destroys
278  * itself. The thread sleep time is controlled by a tunable variable
279  * `taskq_thread_timeout'.
280  *
281  * There is various statistics kept in the bucket which allows for later
282  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
283  * death statistics is kept in the global taskq data structure. Since thread
284  * creation and death happen rarely, updating such global data does not present
285  * a performance problem.
286  *
287  * NOTE: Threads are not bound to any CPU and there is absolutely no association
288  *       between the bucket and actual thread CPU, so buckets are used only to
289  *	 split resources and reduce resource contention. Having threads attached
290  *	 to the CPU denoted by a bucket may reduce number of times the job
291  *	 switches between CPUs.
292  *
293  *	 Current algorithm creates a thread whenever a bucket has no free
294  *	 entries. It would be nice to know how many threads are in the running
295  *	 state and don't create threads if all CPUs are busy with existing
296  *	 tasks, but it is unclear how such strategy can be implemented.
297  *
298  *	 Currently buckets are created statically as an array attached to task
299  *	 queue. On some system with nCPUs < max_ncpus it may waste system
300  *	 memory. One solution may be allocation of buckets when they are first
301  *	 touched, but it is not clear how useful it is.
302  *
303  * SUSPEND/RESUME implementation.
304  *
305  *	Before executing a task taskq_thread() (executing non-dynamic task
306  *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
307  *	function gets the same lock as a writer blocking all non-dynamic task
308  *	execution. The taskq_resume() function releases the lock allowing
309  *	taskq_thread to continue execution.
310  *
311  *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
312  *	taskq_suspend() function. After that taskq_bucket_dispatch() always
313  *	fails, so that taskq_dispatch() will either enqueue tasks for a
314  *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
315  *	flags.
316  *
317  *	NOTE: taskq_suspend() does not immediately block any tasks already
318  *	      scheduled for dynamic task queues. It only suspends new tasks
319  *	      scheduled after taskq_suspend() was called.
320  *
321  *	taskq_member() function works by comparing a thread t_taskq pointer with
322  *	the passed thread pointer.
323  *
324  * LOCKS and LOCK Hierarchy:
325  *
326  *   There are two locks used in task queues.
327  *
328  *   1) Task queue structure has a lock, protecting global task queue state.
329  *
330  *   2) Each per-CPU bucket has a lock for bucket management.
331  *
332  *   If both locks are needed, task queue lock should be taken only after bucket
333  *   lock.
334  *
335  * DEBUG FACILITIES.
336  *
337  * For DEBUG kernels it is possible to induce random failures to
338  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
339  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
340  * failures for dynamic and static task queues respectively.
341  *
342  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
343  *
344  * TUNABLES
345  *
346  *	system_taskq_size	- Size of the global system_taskq.
347  *				  This value is multiplied by nCPUs to determine
348  *				  actual size.
349  *				  Default value: 64
350  *
351  *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
352  *				  Default value: 5 minutes
353  *
354  *	taskq_maxbuckets	- Maximum number of buckets in any task queue
355  *				  Default value: 128
356  *
357  *	taskq_search_depth	- Maximum # of buckets searched for a free entry
358  *				  Default value: 4
359  *
360  *	taskq_dmtbf		- Mean time between induced dispatch failures
361  *				  for dynamic task queues.
362  *				  Default value: UINT_MAX (no induced failures)
363  *
364  *	taskq_smtbf		- Mean time between induced dispatch failures
365  *				  for static task queues.
366  *				  Default value: UINT_MAX (no induced failures)
367  *
368  * CONDITIONAL compilation.
369  *
370  *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
371  *
372  */
373 
374 #include <sys/taskq_impl.h>
375 #include <sys/thread.h>
376 #include <sys/proc.h>
377 #include <sys/kmem.h>
378 #include <sys/vmem.h>
379 #include <sys/callb.h>
380 #include <sys/systm.h>
381 #include <sys/cmn_err.h>
382 #include <sys/debug.h>
383 #include <sys/vmsystm.h>	/* For throttlefree */
384 #include <sys/sysmacros.h>
385 #include <sys/cpuvar.h>
386 #include <sys/sdt.h>
387 
388 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
389 
390 /*
391  * Pseudo instance numbers for taskqs without explicitely provided instance.
392  */
393 static vmem_t *taskq_id_arena;
394 
395 /* Global system task queue for common use */
396 taskq_t	*system_taskq;
397 
398 /*
399  * Maxmimum number of entries in global system taskq is
400  * 	system_taskq_size * max_ncpus
401  */
402 #define	SYSTEM_TASKQ_SIZE 64
403 int system_taskq_size = SYSTEM_TASKQ_SIZE;
404 
405 /*
406  * Dynamic task queue threads that don't get any work within
407  * taskq_thread_timeout destroy themselves
408  */
409 #define	TASKQ_THREAD_TIMEOUT (60 * 5)
410 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
411 
412 #define	TASKQ_MAXBUCKETS 128
413 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
414 
415 /*
416  * When a bucket has no available entries another buckets are tried.
417  * taskq_search_depth parameter limits the amount of buckets that we search
418  * before failing. This is mostly useful in systems with many CPUs where we may
419  * spend too much time scanning busy buckets.
420  */
421 #define	TASKQ_SEARCH_DEPTH 4
422 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
423 
424 /*
425  * Hashing function: mix various bits of x. May be pretty much anything.
426  */
427 #define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
428 
429 /*
430  * We do not create any new threads when the system is low on memory and start
431  * throttling memory allocations. The following macro tries to estimate such
432  * condition.
433  */
434 #define	ENOUGH_MEMORY() (freemem > throttlefree)
435 
436 /*
437  * Static functions.
438  */
439 static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
440     int, uint_t);
441 static void taskq_thread(void *);
442 static void taskq_d_thread(taskq_ent_t *);
443 static void taskq_bucket_extend(void *);
444 static int  taskq_constructor(void *, void *, int);
445 static void taskq_destructor(void *, void *);
446 static int  taskq_ent_constructor(void *, void *, int);
447 static void taskq_ent_destructor(void *, void *);
448 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
449 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
450 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
451     void *);
452 
453 /*
454  * Task queues kstats.
455  */
456 struct taskq_kstat {
457 	kstat_named_t	tq_tasks;
458 	kstat_named_t	tq_executed;
459 	kstat_named_t	tq_maxtasks;
460 	kstat_named_t	tq_totaltime;
461 	kstat_named_t	tq_nalloc;
462 	kstat_named_t	tq_nactive;
463 	kstat_named_t	tq_pri;
464 	kstat_named_t	tq_nthreads;
465 } taskq_kstat = {
466 	{ "tasks",		KSTAT_DATA_UINT64 },
467 	{ "executed",		KSTAT_DATA_UINT64 },
468 	{ "maxtasks",		KSTAT_DATA_UINT64 },
469 	{ "totaltime",		KSTAT_DATA_UINT64 },
470 	{ "nactive",		KSTAT_DATA_UINT64 },
471 	{ "nalloc",		KSTAT_DATA_UINT64 },
472 	{ "priority",		KSTAT_DATA_UINT64 },
473 	{ "threads",		KSTAT_DATA_UINT64 },
474 };
475 
476 struct taskq_d_kstat {
477 	kstat_named_t	tqd_pri;
478 	kstat_named_t	tqd_btasks;
479 	kstat_named_t	tqd_bexecuted;
480 	kstat_named_t	tqd_bmaxtasks;
481 	kstat_named_t	tqd_bnalloc;
482 	kstat_named_t	tqd_bnactive;
483 	kstat_named_t	tqd_btotaltime;
484 	kstat_named_t	tqd_hits;
485 	kstat_named_t	tqd_misses;
486 	kstat_named_t	tqd_overflows;
487 	kstat_named_t	tqd_tcreates;
488 	kstat_named_t	tqd_tdeaths;
489 	kstat_named_t	tqd_maxthreads;
490 	kstat_named_t	tqd_nomem;
491 	kstat_named_t	tqd_disptcreates;
492 	kstat_named_t	tqd_totaltime;
493 	kstat_named_t	tqd_nalloc;
494 	kstat_named_t	tqd_nfree;
495 } taskq_d_kstat = {
496 	{ "priority",		KSTAT_DATA_UINT64 },
497 	{ "btasks",		KSTAT_DATA_UINT64 },
498 	{ "bexecuted",		KSTAT_DATA_UINT64 },
499 	{ "bmaxtasks",		KSTAT_DATA_UINT64 },
500 	{ "bnalloc",		KSTAT_DATA_UINT64 },
501 	{ "bnactive",		KSTAT_DATA_UINT64 },
502 	{ "btotaltime",		KSTAT_DATA_UINT64 },
503 	{ "hits",		KSTAT_DATA_UINT64 },
504 	{ "misses",		KSTAT_DATA_UINT64 },
505 	{ "overflows",		KSTAT_DATA_UINT64 },
506 	{ "tcreates",		KSTAT_DATA_UINT64 },
507 	{ "tdeaths",		KSTAT_DATA_UINT64 },
508 	{ "maxthreads",		KSTAT_DATA_UINT64 },
509 	{ "nomem",		KSTAT_DATA_UINT64 },
510 	{ "disptcreates",	KSTAT_DATA_UINT64 },
511 	{ "totaltime",		KSTAT_DATA_UINT64 },
512 	{ "nalloc",		KSTAT_DATA_UINT64 },
513 	{ "nfree",		KSTAT_DATA_UINT64 },
514 };
515 
516 static kmutex_t taskq_kstat_lock;
517 static kmutex_t taskq_d_kstat_lock;
518 static int taskq_kstat_update(kstat_t *, int);
519 static int taskq_d_kstat_update(kstat_t *, int);
520 
521 
522 /*
523  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
524  */
525 #define	TASKQ_STATISTIC 1
526 
527 #if TASKQ_STATISTIC
528 #define	TQ_STAT(b, x)	b->tqbucket_stat.x++
529 #else
530 #define	TQ_STAT(b, x)
531 #endif
532 
533 /*
534  * Random fault injection.
535  */
536 uint_t taskq_random;
537 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
538 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
539 
540 /*
541  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
542  *
543  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
544  * they could prepopulate the cache and make sure that they do not use more
545  * then minalloc entries.  So, fault injection in this case insures that
546  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
547  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
548  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
549  * dispatches.
550  */
551 #ifdef DEBUG
552 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
553 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
554 	if ((flag & TQ_NOSLEEP) &&				\
555 	    taskq_random < 1771875 / taskq_dmtbf) {		\
556 		return (NULL);					\
557 	}
558 
559 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
560 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
561 	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
562 	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
563 	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
564 	    (taskq_random < (1771875 / taskq_smtbf))) {		\
565 		mutex_exit(&tq->tq_lock);			\
566 		return (NULL);					\
567 	}
568 #else
569 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
570 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
571 #endif
572 
573 #define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
574 	((l).tqent_prev == &(l)))
575 
576 /*
577  * Append `tqe' in the end of the doubly-linked list denoted by l.
578  */
579 #define	TQ_APPEND(l, tqe) {					\
580 	tqe->tqent_next = &l;					\
581 	tqe->tqent_prev = l.tqent_prev;				\
582 	tqe->tqent_next->tqent_prev = tqe;			\
583 	tqe->tqent_prev->tqent_next = tqe;			\
584 }
585 
586 /*
587  * Schedule a task specified by func and arg into the task queue entry tqe.
588  */
589 #define	TQ_ENQUEUE(tq, tqe, func, arg) {			\
590 	ASSERT(MUTEX_HELD(&tq->tq_lock));			\
591 	TQ_APPEND(tq->tq_task, tqe);				\
592 	tqe->tqent_func = (func);				\
593 	tqe->tqent_arg = (arg);					\
594 	tq->tq_tasks++;						\
595 	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)	\
596 		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
597 	cv_signal(&tq->tq_dispatch_cv);				\
598 	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
599 }
600 
601 /*
602  * Do-nothing task which may be used to prepopulate thread caches.
603  */
604 /*ARGSUSED*/
605 void
606 nulltask(void *unused)
607 {
608 }
609 
610 
611 /*ARGSUSED*/
612 static int
613 taskq_constructor(void *buf, void *cdrarg, int kmflags)
614 {
615 	taskq_t *tq = buf;
616 
617 	bzero(tq, sizeof (taskq_t));
618 
619 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
620 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
621 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
622 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
623 
624 	tq->tq_task.tqent_next = &tq->tq_task;
625 	tq->tq_task.tqent_prev = &tq->tq_task;
626 
627 	return (0);
628 }
629 
630 /*ARGSUSED*/
631 static void
632 taskq_destructor(void *buf, void *cdrarg)
633 {
634 	taskq_t *tq = buf;
635 
636 	mutex_destroy(&tq->tq_lock);
637 	rw_destroy(&tq->tq_threadlock);
638 	cv_destroy(&tq->tq_dispatch_cv);
639 	cv_destroy(&tq->tq_wait_cv);
640 }
641 
642 /*ARGSUSED*/
643 static int
644 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
645 {
646 	taskq_ent_t *tqe = buf;
647 
648 	tqe->tqent_thread = NULL;
649 	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
650 
651 	return (0);
652 }
653 
654 /*ARGSUSED*/
655 static void
656 taskq_ent_destructor(void *buf, void *cdrarg)
657 {
658 	taskq_ent_t *tqe = buf;
659 
660 	ASSERT(tqe->tqent_thread == NULL);
661 	cv_destroy(&tqe->tqent_cv);
662 }
663 
664 void
665 taskq_init(void)
666 {
667 	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
668 	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
669 	    taskq_ent_destructor, NULL, NULL, NULL, 0);
670 	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
671 	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
672 	taskq_id_arena = vmem_create("taskq_id_arena",
673 	    (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
674 	    VM_SLEEP | VMC_IDENTIFIER);
675 }
676 
677 /*
678  * Create global system dynamic task queue.
679  */
680 void
681 system_taskq_init(void)
682 {
683 	system_taskq = taskq_create_common("system_taskq", 0,
684 	    system_taskq_size * max_ncpus, minclsyspri, 4, 512,
685 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
686 }
687 
688 /*
689  * taskq_ent_alloc()
690  *
691  * Allocates a new taskq_ent_t structure either from the free list or from the
692  * cache. Returns NULL if it can't be allocated.
693  *
694  * Assumes: tq->tq_lock is held.
695  */
696 static taskq_ent_t *
697 taskq_ent_alloc(taskq_t *tq, int flags)
698 {
699 	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
700 
701 	taskq_ent_t *tqe;
702 
703 	ASSERT(MUTEX_HELD(&tq->tq_lock));
704 
705 	/*
706 	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
707 	 * we are below tq_minalloc.
708 	 */
709 	if ((tqe = tq->tq_freelist) != NULL &&
710 	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
711 		tq->tq_freelist = tqe->tqent_next;
712 	} else {
713 		if (flags & TQ_NOALLOC)
714 			return (NULL);
715 
716 		mutex_exit(&tq->tq_lock);
717 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
718 			if (kmflags & KM_NOSLEEP) {
719 				mutex_enter(&tq->tq_lock);
720 				return (NULL);
721 			}
722 			/*
723 			 * We don't want to exceed tq_maxalloc, but we can't
724 			 * wait for other tasks to complete (and thus free up
725 			 * task structures) without risking deadlock with
726 			 * the caller.  So, we just delay for one second
727 			 * to throttle the allocation rate.
728 			 */
729 			delay(hz);
730 		}
731 		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
732 		mutex_enter(&tq->tq_lock);
733 		if (tqe != NULL)
734 			tq->tq_nalloc++;
735 	}
736 	return (tqe);
737 }
738 
739 /*
740  * taskq_ent_free()
741  *
742  * Free taskq_ent_t structure by either putting it on the free list or freeing
743  * it to the cache.
744  *
745  * Assumes: tq->tq_lock is held.
746  */
747 static void
748 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
749 {
750 	ASSERT(MUTEX_HELD(&tq->tq_lock));
751 
752 	if (tq->tq_nalloc <= tq->tq_minalloc) {
753 		tqe->tqent_next = tq->tq_freelist;
754 		tq->tq_freelist = tqe;
755 	} else {
756 		tq->tq_nalloc--;
757 		mutex_exit(&tq->tq_lock);
758 		kmem_cache_free(taskq_ent_cache, tqe);
759 		mutex_enter(&tq->tq_lock);
760 	}
761 }
762 
763 /*
764  * Dispatch a task "func(arg)" to a free entry of bucket b.
765  *
766  * Assumes: no bucket locks is held.
767  *
768  * Returns: a pointer to an entry if dispatch was successful.
769  *	    NULL if there are no free entries or if the bucket is suspended.
770  */
771 static taskq_ent_t *
772 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
773 {
774 	taskq_ent_t *tqe;
775 
776 	ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
777 	ASSERT(func != NULL);
778 
779 	mutex_enter(&b->tqbucket_lock);
780 
781 	ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
782 	ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
783 
784 	/*
785 	 * Get en entry from the freelist if there is one.
786 	 * Schedule task into the entry.
787 	 */
788 	if ((b->tqbucket_nfree != 0) &&
789 	    !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
790 		tqe = b->tqbucket_freelist.tqent_prev;
791 
792 		ASSERT(tqe != &b->tqbucket_freelist);
793 		ASSERT(tqe->tqent_thread != NULL);
794 
795 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
796 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
797 		b->tqbucket_nalloc++;
798 		b->tqbucket_nfree--;
799 		tqe->tqent_func = func;
800 		tqe->tqent_arg = arg;
801 		TQ_STAT(b, tqs_hits);
802 		cv_signal(&tqe->tqent_cv);
803 		DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
804 		    taskq_ent_t *, tqe);
805 	} else {
806 		tqe = NULL;
807 		TQ_STAT(b, tqs_misses);
808 	}
809 	mutex_exit(&b->tqbucket_lock);
810 	return (tqe);
811 }
812 
813 /*
814  * Dispatch a task.
815  *
816  * Assumes: func != NULL
817  *
818  * Returns: NULL if dispatch failed.
819  *	    non-NULL if task dispatched successfully.
820  *	    Actual return value is the pointer to taskq entry that was used to
821  *	    dispatch a task. This is useful for debugging.
822  */
823 /* ARGSUSED */
824 taskqid_t
825 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
826 {
827 	taskq_bucket_t *bucket = NULL;	/* Which bucket needs extension */
828 	taskq_ent_t *tqe = NULL;
829 	taskq_ent_t *tqe1;
830 	uint_t bsize;
831 
832 	ASSERT(tq != NULL);
833 	ASSERT(func != NULL);
834 
835 	if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
836 		/*
837 		 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
838 		 */
839 		ASSERT(! (flags & TQ_NOQUEUE));
840 		/*
841 		 * Enqueue the task to the underlying queue.
842 		 */
843 		mutex_enter(&tq->tq_lock);
844 
845 		TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
846 
847 		if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
848 			mutex_exit(&tq->tq_lock);
849 			return (NULL);
850 		}
851 		TQ_ENQUEUE(tq, tqe, func, arg);
852 		mutex_exit(&tq->tq_lock);
853 		return ((taskqid_t)tqe);
854 	}
855 
856 	/*
857 	 * Dynamic taskq dispatching.
858 	 */
859 	ASSERT(!(flags & TQ_NOALLOC));
860 	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
861 
862 	bsize = tq->tq_nbuckets;
863 
864 	if (bsize == 1) {
865 		/*
866 		 * In a single-CPU case there is only one bucket, so get
867 		 * entry directly from there.
868 		 */
869 		if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
870 		    != NULL)
871 			return ((taskqid_t)tqe);	/* Fastpath */
872 		bucket = tq->tq_buckets;
873 	} else {
874 		int loopcount;
875 		taskq_bucket_t *b;
876 		uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
877 
878 		h = TQ_HASH(h);
879 
880 		/*
881 		 * The 'bucket' points to the original bucket that we hit. If we
882 		 * can't allocate from it, we search other buckets, but only
883 		 * extend this one.
884 		 */
885 		b = &tq->tq_buckets[h & (bsize - 1)];
886 		ASSERT(b->tqbucket_taskq == tq);	/* Sanity check */
887 
888 		/*
889 		 * Do a quick check before grabbing the lock. If the bucket does
890 		 * not have free entries now, chances are very small that it
891 		 * will after we take the lock, so we just skip it.
892 		 */
893 		if (b->tqbucket_nfree != 0) {
894 			if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
895 				return ((taskqid_t)tqe);	/* Fastpath */
896 		} else {
897 			TQ_STAT(b, tqs_misses);
898 		}
899 
900 		bucket = b;
901 		loopcount = MIN(taskq_search_depth, bsize);
902 		/*
903 		 * If bucket dispatch failed, search loopcount number of buckets
904 		 * before we give up and fail.
905 		 */
906 		do {
907 			b = &tq->tq_buckets[++h & (bsize - 1)];
908 			ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
909 			loopcount--;
910 
911 			if (b->tqbucket_nfree != 0) {
912 				tqe = taskq_bucket_dispatch(b, func, arg);
913 			} else {
914 				TQ_STAT(b, tqs_misses);
915 			}
916 		} while ((tqe == NULL) && (loopcount > 0));
917 	}
918 
919 	/*
920 	 * At this point we either scheduled a task and (tqe != NULL) or failed
921 	 * (tqe == NULL). Try to recover from fails.
922 	 */
923 
924 	/*
925 	 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
926 	 */
927 	if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
928 		/*
929 		 * taskq_bucket_extend() may fail to do anything, but this is
930 		 * fine - we deal with it later. If the bucket was successfully
931 		 * extended, there is a good chance that taskq_bucket_dispatch()
932 		 * will get this new entry, unless someone is racing with us and
933 		 * stealing the new entry from under our nose.
934 		 * taskq_bucket_extend() may sleep.
935 		 */
936 		taskq_bucket_extend(bucket);
937 		TQ_STAT(bucket, tqs_disptcreates);
938 		if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
939 			return ((taskqid_t)tqe);
940 	}
941 
942 	ASSERT(bucket != NULL);
943 	/*
944 	 * Since there are not enough free entries in the bucket, extend it
945 	 * in the background using backing queue.
946 	 */
947 	mutex_enter(&tq->tq_lock);
948 	if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
949 		TQ_ENQUEUE(tq, tqe1, taskq_bucket_extend,
950 		    bucket);
951 	} else {
952 		TQ_STAT(bucket, tqs_nomem);
953 	}
954 
955 	/*
956 	 * Dispatch failed and we can't find an entry to schedule a task.
957 	 * Revert to the backing queue unless TQ_NOQUEUE was asked.
958 	 */
959 	if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
960 		if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
961 			TQ_ENQUEUE(tq, tqe, func, arg);
962 		} else {
963 			TQ_STAT(bucket, tqs_nomem);
964 		}
965 	}
966 	mutex_exit(&tq->tq_lock);
967 
968 	return ((taskqid_t)tqe);
969 }
970 
971 /*
972  * Wait for all pending tasks to complete.
973  * Calling taskq_wait from a task will cause deadlock.
974  */
975 void
976 taskq_wait(taskq_t *tq)
977 {
978 	ASSERT(tq != curthread->t_taskq);
979 
980 	mutex_enter(&tq->tq_lock);
981 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
982 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
983 	mutex_exit(&tq->tq_lock);
984 
985 	if (tq->tq_flags & TASKQ_DYNAMIC) {
986 		taskq_bucket_t *b = tq->tq_buckets;
987 		int bid = 0;
988 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
989 			mutex_enter(&b->tqbucket_lock);
990 			while (b->tqbucket_nalloc > 0)
991 				cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
992 			mutex_exit(&b->tqbucket_lock);
993 		}
994 	}
995 }
996 
997 /*
998  * Suspend execution of tasks.
999  *
1000  * Tasks in the queue part will be suspended immediately upon return from this
1001  * function. Pending tasks in the dynamic part will continue to execute, but all
1002  * new tasks will  be suspended.
1003  */
1004 void
1005 taskq_suspend(taskq_t *tq)
1006 {
1007 	rw_enter(&tq->tq_threadlock, RW_WRITER);
1008 
1009 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1010 		taskq_bucket_t *b = tq->tq_buckets;
1011 		int bid = 0;
1012 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1013 			mutex_enter(&b->tqbucket_lock);
1014 			b->tqbucket_flags |= TQBUCKET_SUSPEND;
1015 			mutex_exit(&b->tqbucket_lock);
1016 		}
1017 	}
1018 	/*
1019 	 * Mark task queue as being suspended. Needed for taskq_suspended().
1020 	 */
1021 	mutex_enter(&tq->tq_lock);
1022 	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1023 	tq->tq_flags |= TASKQ_SUSPENDED;
1024 	mutex_exit(&tq->tq_lock);
1025 }
1026 
1027 /*
1028  * returns: 1 if tq is suspended, 0 otherwise.
1029  */
1030 int
1031 taskq_suspended(taskq_t *tq)
1032 {
1033 	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1034 }
1035 
1036 /*
1037  * Resume taskq execution.
1038  */
1039 void
1040 taskq_resume(taskq_t *tq)
1041 {
1042 	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1043 
1044 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1045 		taskq_bucket_t *b = tq->tq_buckets;
1046 		int bid = 0;
1047 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1048 			mutex_enter(&b->tqbucket_lock);
1049 			b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1050 			mutex_exit(&b->tqbucket_lock);
1051 		}
1052 	}
1053 	mutex_enter(&tq->tq_lock);
1054 	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1055 	tq->tq_flags &= ~TASKQ_SUSPENDED;
1056 	mutex_exit(&tq->tq_lock);
1057 
1058 	rw_exit(&tq->tq_threadlock);
1059 }
1060 
1061 int
1062 taskq_member(taskq_t *tq, kthread_t *thread)
1063 {
1064 	return (thread->t_taskq == tq);
1065 }
1066 
1067 /*
1068  * Worker thread for processing task queue.
1069  */
1070 static void
1071 taskq_thread(void *arg)
1072 {
1073 	taskq_t *tq = arg;
1074 	taskq_ent_t *tqe;
1075 	callb_cpr_t cprinfo;
1076 	hrtime_t start, end;
1077 
1078 	if (tq->tq_flags & TASKQ_CPR_SAFE) {
1079 		CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1080 	} else {
1081 		CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1082 		    tq->tq_name);
1083 	}
1084 	mutex_enter(&tq->tq_lock);
1085 	while (tq->tq_flags & TASKQ_ACTIVE) {
1086 		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1087 			if (--tq->tq_active == 0)
1088 				cv_broadcast(&tq->tq_wait_cv);
1089 			if (tq->tq_flags & TASKQ_CPR_SAFE) {
1090 				cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
1091 			} else {
1092 				CALLB_CPR_SAFE_BEGIN(&cprinfo);
1093 				cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
1094 				CALLB_CPR_SAFE_END(&cprinfo, &tq->tq_lock);
1095 			}
1096 			tq->tq_active++;
1097 			continue;
1098 		}
1099 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1100 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1101 		mutex_exit(&tq->tq_lock);
1102 
1103 		rw_enter(&tq->tq_threadlock, RW_READER);
1104 		start = gethrtime();
1105 		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1106 		    taskq_ent_t *, tqe);
1107 		tqe->tqent_func(tqe->tqent_arg);
1108 		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1109 		    taskq_ent_t *, tqe);
1110 		end = gethrtime();
1111 		rw_exit(&tq->tq_threadlock);
1112 
1113 		mutex_enter(&tq->tq_lock);
1114 		tq->tq_totaltime += end - start;
1115 		tq->tq_executed++;
1116 
1117 		taskq_ent_free(tq, tqe);
1118 	}
1119 	tq->tq_nthreads--;
1120 	cv_broadcast(&tq->tq_wait_cv);
1121 	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1122 	CALLB_CPR_EXIT(&cprinfo);
1123 	thread_exit();
1124 }
1125 
1126 /*
1127  * Worker per-entry thread for dynamic dispatches.
1128  */
1129 static void
1130 taskq_d_thread(taskq_ent_t *tqe)
1131 {
1132 	taskq_bucket_t	*bucket = tqe->tqent_bucket;
1133 	taskq_t		*tq = bucket->tqbucket_taskq;
1134 	kmutex_t	*lock = &bucket->tqbucket_lock;
1135 	kcondvar_t	*cv = &tqe->tqent_cv;
1136 	callb_cpr_t	cprinfo;
1137 	clock_t		w;
1138 
1139 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1140 
1141 	mutex_enter(lock);
1142 
1143 	for (;;) {
1144 		/*
1145 		 * If a task is scheduled (func != NULL), execute it, otherwise
1146 		 * sleep, waiting for a job.
1147 		 */
1148 		if (tqe->tqent_func != NULL) {
1149 			hrtime_t	start;
1150 			hrtime_t	end;
1151 
1152 			ASSERT(bucket->tqbucket_nalloc > 0);
1153 
1154 			/*
1155 			 * It is possible to free the entry right away before
1156 			 * actually executing the task so that subsequent
1157 			 * dispatches may immediately reuse it. But this,
1158 			 * effectively, creates a two-length queue in the entry
1159 			 * and may lead to a deadlock if the execution of the
1160 			 * current task depends on the execution of the next
1161 			 * scheduled task. So, we keep the entry busy until the
1162 			 * task is processed.
1163 			 */
1164 
1165 			mutex_exit(lock);
1166 			start = gethrtime();
1167 			DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1168 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1169 			tqe->tqent_func(tqe->tqent_arg);
1170 			DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1171 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1172 			end = gethrtime();
1173 			mutex_enter(lock);
1174 			bucket->tqbucket_totaltime += end - start;
1175 
1176 			/*
1177 			 * Return the entry to the bucket free list.
1178 			 */
1179 			tqe->tqent_func = NULL;
1180 			TQ_APPEND(bucket->tqbucket_freelist, tqe);
1181 			bucket->tqbucket_nalloc--;
1182 			bucket->tqbucket_nfree++;
1183 			ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1184 			/*
1185 			 * taskq_wait() waits for nalloc to drop to zero on
1186 			 * tqbucket_cv.
1187 			 */
1188 			cv_signal(&bucket->tqbucket_cv);
1189 		}
1190 
1191 		/*
1192 		 * At this point the entry must be in the bucket free list -
1193 		 * either because it was there initially or because it just
1194 		 * finished executing a task and put itself on the free list.
1195 		 */
1196 		ASSERT(bucket->tqbucket_nfree > 0);
1197 		/*
1198 		 * Go to sleep unless we are closing.
1199 		 * If a thread is sleeping too long, it dies.
1200 		 */
1201 		if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1202 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1203 			w = cv_timedwait(cv, lock, lbolt +
1204 			    taskq_thread_timeout * hz);
1205 			CALLB_CPR_SAFE_END(&cprinfo, lock);
1206 		}
1207 
1208 		/*
1209 		 * At this point we may be in two different states:
1210 		 *
1211 		 * (1) tqent_func is set which means that a new task is
1212 		 *	dispatched and we need to execute it.
1213 		 *
1214 		 * (2) Thread is sleeping for too long or we are closing. In
1215 		 *	both cases destroy the thread and the entry.
1216 		 */
1217 
1218 		/* If func is NULL we should be on the freelist. */
1219 		ASSERT((tqe->tqent_func != NULL) ||
1220 		    (bucket->tqbucket_nfree > 0));
1221 		/* If func is non-NULL we should be allocated */
1222 		ASSERT((tqe->tqent_func == NULL) ||
1223 		    (bucket->tqbucket_nalloc > 0));
1224 
1225 		/* Check freelist consistency */
1226 		ASSERT((bucket->tqbucket_nfree > 0) ||
1227 		    IS_EMPTY(bucket->tqbucket_freelist));
1228 		ASSERT((bucket->tqbucket_nfree == 0) ||
1229 		    !IS_EMPTY(bucket->tqbucket_freelist));
1230 
1231 		if ((tqe->tqent_func == NULL) &&
1232 		    ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1233 			/*
1234 			 * This thread is sleeping for too long or we are
1235 			 * closing - time to die.
1236 			 * Thread creation/destruction happens rarely,
1237 			 * so grabbing the lock is not a big performance issue.
1238 			 * The bucket lock is dropped by CALLB_CPR_EXIT().
1239 			 */
1240 
1241 			/* Remove the entry from the free list. */
1242 			tqe->tqent_prev->tqent_next = tqe->tqent_next;
1243 			tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1244 			ASSERT(bucket->tqbucket_nfree > 0);
1245 			bucket->tqbucket_nfree--;
1246 
1247 			TQ_STAT(bucket, tqs_tdeaths);
1248 			cv_signal(&bucket->tqbucket_cv);
1249 			tqe->tqent_thread = NULL;
1250 			mutex_enter(&tq->tq_lock);
1251 			tq->tq_tdeaths++;
1252 			mutex_exit(&tq->tq_lock);
1253 			CALLB_CPR_EXIT(&cprinfo);
1254 			kmem_cache_free(taskq_ent_cache, tqe);
1255 			thread_exit();
1256 		}
1257 	}
1258 }
1259 
1260 
1261 /*
1262  * Taskq creation. May sleep for memory.
1263  * Always use automatically generated instances to avoid kstat name space
1264  * collisions.
1265  */
1266 
1267 taskq_t *
1268 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1269     int maxalloc, uint_t flags)
1270 {
1271 	return taskq_create_common(name, 0, nthreads, pri, minalloc,
1272 	    maxalloc, flags | TASKQ_NOINSTANCE);
1273 }
1274 
1275 /*
1276  * Create an instance of task queue. It is legal to create task queues with the
1277  * same name and different instances.
1278  *
1279  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1280  * instance from ddi_get_instance(). In some cases the instance is not
1281  * initialized and is set to -1. This case is handled as if no instance was
1282  * passed at all.
1283  */
1284 taskq_t *
1285 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1286     int minalloc, int maxalloc, uint_t flags)
1287 {
1288 	ASSERT((instance >= 0) || (instance == -1));
1289 
1290 	if (instance < 0) {
1291 		flags |= TASKQ_NOINSTANCE;
1292 	}
1293 
1294 	return (taskq_create_common(name, instance, nthreads,
1295 	    pri, minalloc, maxalloc, flags));
1296 }
1297 
1298 static taskq_t *
1299 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1300     int minalloc, int maxalloc, uint_t flags)
1301 {
1302 	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1303 	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1304 	uint_t bsize;	/* # of buckets - always power of 2 */
1305 
1306 	/*
1307 	 * TASKQ_CPR_SAFE and TASKQ_DYNAMIC flags are mutually exclusive.
1308 	 */
1309 	ASSERT((flags & (TASKQ_DYNAMIC | TASKQ_CPR_SAFE)) !=
1310 	    ((TASKQ_DYNAMIC | TASKQ_CPR_SAFE)));
1311 
1312 	ASSERT(tq->tq_buckets == NULL);
1313 
1314 	bsize = 1 << (highbit(ncpus) - 1);
1315 	ASSERT(bsize >= 1);
1316 	bsize = MIN(bsize, taskq_maxbuckets);
1317 
1318 	tq->tq_maxsize = nthreads;
1319 
1320 	/* For non-dynamic task queues use just one backup thread */
1321 	if (flags & TASKQ_DYNAMIC)
1322 		nthreads = 1;
1323 
1324 	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1325 	tq->tq_name[TASKQ_NAMELEN] = '\0';
1326 	/* Make sure the name conforms to the rules for C indentifiers */
1327 	strident_canon(tq->tq_name, TASKQ_NAMELEN);
1328 
1329 	tq->tq_flags = flags | TASKQ_ACTIVE;
1330 	tq->tq_active = nthreads;
1331 	tq->tq_instance = instance;
1332 	tq->tq_nthreads = nthreads;
1333 	tq->tq_minalloc = minalloc;
1334 	tq->tq_maxalloc = maxalloc;
1335 	tq->tq_nbuckets = bsize;
1336 	tq->tq_pri = pri;
1337 
1338 	if (flags & TASKQ_PREPOPULATE) {
1339 		mutex_enter(&tq->tq_lock);
1340 		while (minalloc-- > 0)
1341 			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1342 		mutex_exit(&tq->tq_lock);
1343 	}
1344 
1345 	if (nthreads == 1) {
1346 		tq->tq_thread = thread_create(NULL, 0, taskq_thread, tq,
1347 		    0, &p0, TS_RUN, pri);
1348 		/*
1349 		 * No need to take thread_lock to change the field: no one can
1350 		 * reference it at this point.
1351 		 */
1352 		tq->tq_thread->t_taskq = tq;
1353 	} else {
1354 		kthread_t **tpp = kmem_alloc(sizeof (kthread_t *) * nthreads,
1355 		    KM_SLEEP);
1356 
1357 		tq->tq_threadlist = tpp;
1358 
1359 		mutex_enter(&tq->tq_lock);
1360 		while (nthreads-- > 0) {
1361 			*tpp = thread_create(NULL, 0, taskq_thread, tq,
1362 			    0, &p0, TS_RUN, pri);
1363 			(*tpp)->t_taskq = tq;
1364 			tpp++;
1365 		}
1366 		mutex_exit(&tq->tq_lock);
1367 	}
1368 
1369 	if (flags & TASKQ_DYNAMIC) {
1370 		taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
1371 		    bsize, KM_SLEEP);
1372 		int b_id;
1373 
1374 		tq->tq_buckets = bucket;
1375 
1376 		/* Initialize each bucket */
1377 		for (b_id = 0; b_id < bsize; b_id++, bucket++) {
1378 			mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
1379 			    NULL);
1380 			cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
1381 			bucket->tqbucket_taskq = tq;
1382 			bucket->tqbucket_freelist.tqent_next =
1383 			    bucket->tqbucket_freelist.tqent_prev =
1384 			    &bucket->tqbucket_freelist;
1385 			if (flags & TASKQ_PREPOPULATE)
1386 				taskq_bucket_extend(bucket);
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Install kstats.
1392 	 * We have two cases:
1393 	 *   1) Instance is provided to taskq_create_instance(). In this case it
1394 	 * 	should be >= 0 and we use it.
1395 	 *
1396 	 *   2) Instance is not provided and is automatically generated
1397 	 */
1398 	if (flags & TASKQ_NOINSTANCE) {
1399 		instance = tq->tq_instance =
1400 		    (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
1401 	}
1402 
1403 	if (flags & TASKQ_DYNAMIC) {
1404 		if ((tq->tq_kstat = kstat_create("unix", instance,
1405 			tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
1406 			sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
1407 			KSTAT_FLAG_VIRTUAL)) != NULL) {
1408 			tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
1409 			tq->tq_kstat->ks_data = &taskq_d_kstat;
1410 			tq->tq_kstat->ks_update = taskq_d_kstat_update;
1411 			tq->tq_kstat->ks_private = tq;
1412 			kstat_install(tq->tq_kstat);
1413 		}
1414 	} else {
1415 		if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
1416 			"taskq", KSTAT_TYPE_NAMED,
1417 			sizeof (taskq_kstat) / sizeof (kstat_named_t),
1418 			KSTAT_FLAG_VIRTUAL)) != NULL) {
1419 			tq->tq_kstat->ks_lock = &taskq_kstat_lock;
1420 			tq->tq_kstat->ks_data = &taskq_kstat;
1421 			tq->tq_kstat->ks_update = taskq_kstat_update;
1422 			tq->tq_kstat->ks_private = tq;
1423 			kstat_install(tq->tq_kstat);
1424 		}
1425 	}
1426 
1427 	return (tq);
1428 }
1429 
1430 /*
1431  * taskq_destroy().
1432  *
1433  * Assumes: by the time taskq_destroy is called no one will use this task queue
1434  * in any way and no one will try to dispatch entries in it.
1435  */
1436 void
1437 taskq_destroy(taskq_t *tq)
1438 {
1439 	taskq_bucket_t *b = tq->tq_buckets;
1440 	int bid = 0;
1441 
1442 	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
1443 
1444 	/*
1445 	 * Destroy kstats.
1446 	 */
1447 	if (tq->tq_kstat != NULL) {
1448 		kstat_delete(tq->tq_kstat);
1449 		tq->tq_kstat = NULL;
1450 	}
1451 
1452 	/*
1453 	 * Destroy instance if needed.
1454 	 */
1455 	if (tq->tq_flags & TASKQ_NOINSTANCE) {
1456 		vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
1457 		    1);
1458 		tq->tq_instance = 0;
1459 	}
1460 
1461 	/*
1462 	 * Wait for any pending entries to complete.
1463 	 */
1464 	taskq_wait(tq);
1465 
1466 	mutex_enter(&tq->tq_lock);
1467 	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
1468 	    (tq->tq_active == 0));
1469 
1470 	if ((tq->tq_nthreads > 1) && (tq->tq_threadlist != NULL))
1471 		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
1472 		    tq->tq_nthreads);
1473 
1474 	tq->tq_flags &= ~TASKQ_ACTIVE;
1475 	cv_broadcast(&tq->tq_dispatch_cv);
1476 	while (tq->tq_nthreads != 0)
1477 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1478 
1479 	tq->tq_minalloc = 0;
1480 	while (tq->tq_nalloc != 0)
1481 		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1482 
1483 	mutex_exit(&tq->tq_lock);
1484 
1485 	/*
1486 	 * Mark each bucket as closing and wakeup all sleeping threads.
1487 	 */
1488 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1489 		taskq_ent_t *tqe;
1490 
1491 		mutex_enter(&b->tqbucket_lock);
1492 
1493 		b->tqbucket_flags |= TQBUCKET_CLOSE;
1494 		/* Wakeup all sleeping threads */
1495 
1496 		for (tqe = b->tqbucket_freelist.tqent_next;
1497 		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
1498 			cv_signal(&tqe->tqent_cv);
1499 
1500 		ASSERT(b->tqbucket_nalloc == 0);
1501 
1502 		/*
1503 		 * At this point we waited for all pending jobs to complete (in
1504 		 * both the task queue and the bucket and no new jobs should
1505 		 * arrive. Wait for all threads to die.
1506 		 */
1507 		while (b->tqbucket_nfree > 0)
1508 			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1509 		mutex_exit(&b->tqbucket_lock);
1510 		mutex_destroy(&b->tqbucket_lock);
1511 		cv_destroy(&b->tqbucket_cv);
1512 	}
1513 
1514 	if (tq->tq_buckets != NULL) {
1515 		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
1516 		kmem_free(tq->tq_buckets,
1517 		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);
1518 
1519 		/* Cleanup fields before returning tq to the cache */
1520 		tq->tq_buckets = NULL;
1521 		tq->tq_tcreates = 0;
1522 		tq->tq_tdeaths = 0;
1523 	} else {
1524 		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1525 	}
1526 
1527 	tq->tq_totaltime = 0;
1528 	tq->tq_tasks = 0;
1529 	tq->tq_maxtasks = 0;
1530 	tq->tq_executed = 0;
1531 	kmem_cache_free(taskq_cache, tq);
1532 }
1533 
1534 /*
1535  * Extend a bucket with a new entry on the free list and attach a worker thread
1536  * to it.
1537  *
1538  * Argument: pointer to the bucket.
1539  *
1540  * This function may quietly fail. It is only used by taskq_dispatch() which
1541  * handles such failures properly.
1542  */
1543 static void
1544 taskq_bucket_extend(void *arg)
1545 {
1546 	taskq_ent_t *tqe;
1547 	taskq_bucket_t *b = (taskq_bucket_t *)arg;
1548 	taskq_t *tq = b->tqbucket_taskq;
1549 	int nthreads;
1550 
1551 	if (! ENOUGH_MEMORY()) {
1552 		TQ_STAT(b, tqs_nomem);
1553 		return;
1554 	}
1555 
1556 	mutex_enter(&tq->tq_lock);
1557 
1558 	/*
1559 	 * Observe global taskq limits on the number of threads.
1560 	 */
1561 	if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
1562 		tq->tq_tcreates--;
1563 		mutex_exit(&tq->tq_lock);
1564 		return;
1565 	}
1566 	mutex_exit(&tq->tq_lock);
1567 
1568 	tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
1569 
1570 	if (tqe == NULL) {
1571 		mutex_enter(&tq->tq_lock);
1572 		TQ_STAT(b, tqs_nomem);
1573 		tq->tq_tcreates--;
1574 		mutex_exit(&tq->tq_lock);
1575 		return;
1576 	}
1577 
1578 	ASSERT(tqe->tqent_thread == NULL);
1579 
1580 	tqe->tqent_bucket = b;
1581 
1582 	/*
1583 	 * Create a thread in a TS_STOPPED state first. If it is successfully
1584 	 * created, place the entry on the free list and start the thread.
1585 	 */
1586 	tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
1587 	    0, &p0, TS_STOPPED, tq->tq_pri);
1588 
1589 	/*
1590 	 * Once the entry is ready, link it to the the bucket free list.
1591 	 */
1592 	mutex_enter(&b->tqbucket_lock);
1593 	tqe->tqent_func = NULL;
1594 	TQ_APPEND(b->tqbucket_freelist, tqe);
1595 	b->tqbucket_nfree++;
1596 	TQ_STAT(b, tqs_tcreates);
1597 
1598 #if TASKQ_STATISTIC
1599 	nthreads = b->tqbucket_stat.tqs_tcreates -
1600 	    b->tqbucket_stat.tqs_tdeaths;
1601 	b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
1602 	    b->tqbucket_stat.tqs_maxthreads);
1603 #endif
1604 
1605 	mutex_exit(&b->tqbucket_lock);
1606 	/*
1607 	 * Start the stopped thread.
1608 	 */
1609 	thread_lock(tqe->tqent_thread);
1610 	tqe->tqent_thread->t_taskq = tq;
1611 	tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
1612 	setrun_locked(tqe->tqent_thread);
1613 	thread_unlock(tqe->tqent_thread);
1614 }
1615 
1616 static int
1617 taskq_kstat_update(kstat_t *ksp, int rw)
1618 {
1619 	struct taskq_kstat *tqsp = &taskq_kstat;
1620 	taskq_t *tq = ksp->ks_private;
1621 
1622 	if (rw == KSTAT_WRITE)
1623 		return (EACCES);
1624 
1625 	tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
1626 	tqsp->tq_executed.value.ui64 = tq->tq_executed;
1627 	tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
1628 	tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
1629 	tqsp->tq_nactive.value.ui64 = tq->tq_active;
1630 	tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
1631 	tqsp->tq_pri.value.ui64 = tq->tq_pri;
1632 	tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
1633 	return (0);
1634 }
1635 
1636 static int
1637 taskq_d_kstat_update(kstat_t *ksp, int rw)
1638 {
1639 	struct taskq_d_kstat *tqsp = &taskq_d_kstat;
1640 	taskq_t *tq = ksp->ks_private;
1641 	taskq_bucket_t *b = tq->tq_buckets;
1642 	int bid = 0;
1643 
1644 	if (rw == KSTAT_WRITE)
1645 		return (EACCES);
1646 
1647 	ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
1648 
1649 	tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
1650 	tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
1651 	tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
1652 	tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
1653 	tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
1654 	tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
1655 	tqsp->tqd_pri.value.ui64 = tq->tq_pri;
1656 
1657 	tqsp->tqd_hits.value.ui64 = 0;
1658 	tqsp->tqd_misses.value.ui64 = 0;
1659 	tqsp->tqd_overflows.value.ui64 = 0;
1660 	tqsp->tqd_tcreates.value.ui64 = 0;
1661 	tqsp->tqd_tdeaths.value.ui64 = 0;
1662 	tqsp->tqd_maxthreads.value.ui64 = 0;
1663 	tqsp->tqd_nomem.value.ui64 = 0;
1664 	tqsp->tqd_disptcreates.value.ui64 = 0;
1665 	tqsp->tqd_totaltime.value.ui64 = 0;
1666 	tqsp->tqd_nalloc.value.ui64 = 0;
1667 	tqsp->tqd_nfree.value.ui64 = 0;
1668 
1669 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1670 		tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
1671 		tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
1672 		tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
1673 		tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
1674 		tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
1675 		tqsp->tqd_maxthreads.value.ui64 +=
1676 		    b->tqbucket_stat.tqs_maxthreads;
1677 		tqsp->tqd_nomem.value.ui64 += b->tqbucket_stat.tqs_nomem;
1678 		tqsp->tqd_disptcreates.value.ui64 +=
1679 		    b->tqbucket_stat.tqs_disptcreates;
1680 		tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
1681 		tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
1682 		tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
1683 	}
1684 	return (0);
1685 }
1686