xref: /titanic_44/usr/src/uts/common/os/sunddi.c (revision ee5416c9d7e449233197d5d20bc6b81e4ff091b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/note.h>
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/uio.h>
35 #include <sys/cred.h>
36 #include <sys/poll.h>
37 #include <sys/mman.h>
38 #include <sys/kmem.h>
39 #include <sys/model.h>
40 #include <sys/file.h>
41 #include <sys/proc.h>
42 #include <sys/open.h>
43 #include <sys/user.h>
44 #include <sys/t_lock.h>
45 #include <sys/vm.h>
46 #include <sys/stat.h>
47 #include <vm/hat.h>
48 #include <vm/seg.h>
49 #include <vm/seg_vn.h>
50 #include <vm/seg_dev.h>
51 #include <vm/as.h>
52 #include <sys/cmn_err.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/autoconf.h>
56 #include <sys/sunddi.h>
57 #include <sys/esunddi.h>
58 #include <sys/sunndi.h>
59 #include <sys/kstat.h>
60 #include <sys/conf.h>
61 #include <sys/ddi_impldefs.h>	/* include implementation structure defs */
62 #include <sys/ndi_impldefs.h>	/* include prototypes */
63 #include <sys/hwconf.h>
64 #include <sys/pathname.h>
65 #include <sys/modctl.h>
66 #include <sys/epm.h>
67 #include <sys/devctl.h>
68 #include <sys/callb.h>
69 #include <sys/cladm.h>
70 #include <sys/sysevent.h>
71 #include <sys/dacf_impl.h>
72 #include <sys/ddidevmap.h>
73 #include <sys/bootconf.h>
74 #include <sys/disp.h>
75 #include <sys/atomic.h>
76 #include <sys/promif.h>
77 #include <sys/instance.h>
78 #include <sys/sysevent/eventdefs.h>
79 #include <sys/task.h>
80 #include <sys/project.h>
81 #include <sys/taskq.h>
82 #include <sys/devpolicy.h>
83 #include <sys/ctype.h>
84 #include <net/if.h>
85 #include <sys/rctl.h>
86 
87 extern	pri_t	minclsyspri;
88 
89 extern	rctl_hndl_t rc_project_locked_mem;
90 extern	rctl_hndl_t rc_zone_locked_mem;
91 
92 #ifdef DEBUG
93 static int sunddi_debug = 0;
94 #endif /* DEBUG */
95 
96 /* ddi_umem_unlock miscellaneous */
97 
98 static	void	i_ddi_umem_unlock_thread_start(void);
99 
100 static	kmutex_t	ddi_umem_unlock_mutex; /* unlock list mutex */
101 static	kcondvar_t	ddi_umem_unlock_cv; /* unlock list block/unblock */
102 static	kthread_t	*ddi_umem_unlock_thread;
103 /*
104  * The ddi_umem_unlock FIFO list.  NULL head pointer indicates empty list.
105  */
106 static	struct	ddi_umem_cookie *ddi_umem_unlock_head = NULL;
107 static	struct	ddi_umem_cookie *ddi_umem_unlock_tail = NULL;
108 
109 
110 /*
111  * DDI(Sun) Function and flag definitions:
112  */
113 
114 #if defined(__x86)
115 /*
116  * Used to indicate which entries were chosen from a range.
117  */
118 char	*chosen_reg = "chosen-reg";
119 #endif
120 
121 /*
122  * Function used to ring system console bell
123  */
124 void (*ddi_console_bell_func)(clock_t duration);
125 
126 /*
127  * Creating register mappings and handling interrupts:
128  */
129 
130 /*
131  * Generic ddi_map: Call parent to fulfill request...
132  */
133 
134 int
135 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset,
136     off_t len, caddr_t *addrp)
137 {
138 	dev_info_t *pdip;
139 
140 	ASSERT(dp);
141 	pdip = (dev_info_t *)DEVI(dp)->devi_parent;
142 	return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip,
143 	    dp, mp, offset, len, addrp));
144 }
145 
146 /*
147  * ddi_apply_range: (Called by nexi only.)
148  * Apply ranges in parent node dp, to child regspec rp...
149  */
150 
151 int
152 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp)
153 {
154 	return (i_ddi_apply_range(dp, rdip, rp));
155 }
156 
157 int
158 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
159     off_t len)
160 {
161 	ddi_map_req_t mr;
162 #if defined(__x86)
163 	struct {
164 		int	bus;
165 		int	addr;
166 		int	size;
167 	} reg, *reglist;
168 	uint_t	length;
169 	int	rc;
170 
171 	/*
172 	 * get the 'registers' or the 'reg' property.
173 	 * We look up the reg property as an array of
174 	 * int's.
175 	 */
176 	rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
177 	    DDI_PROP_DONTPASS, "registers", (int **)&reglist, &length);
178 	if (rc != DDI_PROP_SUCCESS)
179 		rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
180 		    DDI_PROP_DONTPASS, "reg", (int **)&reglist, &length);
181 	if (rc == DDI_PROP_SUCCESS) {
182 		/*
183 		 * point to the required entry.
184 		 */
185 		reg = reglist[rnumber];
186 		reg.addr += offset;
187 		if (len != 0)
188 			reg.size = len;
189 		/*
190 		 * make a new property containing ONLY the required tuple.
191 		 */
192 		if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
193 		    chosen_reg, (int *)&reg, (sizeof (reg)/sizeof (int)))
194 		    != DDI_PROP_SUCCESS) {
195 			cmn_err(CE_WARN, "%s%d: cannot create '%s' "
196 			    "property", DEVI(dip)->devi_name,
197 			    DEVI(dip)->devi_instance, chosen_reg);
198 		}
199 		/*
200 		 * free the memory allocated by
201 		 * ddi_prop_lookup_int_array ().
202 		 */
203 		ddi_prop_free((void *)reglist);
204 	}
205 #endif
206 	mr.map_op = DDI_MO_MAP_LOCKED;
207 	mr.map_type = DDI_MT_RNUMBER;
208 	mr.map_obj.rnumber = rnumber;
209 	mr.map_prot = PROT_READ | PROT_WRITE;
210 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
211 	mr.map_handlep = NULL;
212 	mr.map_vers = DDI_MAP_VERSION;
213 
214 	/*
215 	 * Call my parent to map in my regs.
216 	 */
217 
218 	return (ddi_map(dip, &mr, offset, len, kaddrp));
219 }
220 
221 void
222 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
223     off_t len)
224 {
225 	ddi_map_req_t mr;
226 
227 	mr.map_op = DDI_MO_UNMAP;
228 	mr.map_type = DDI_MT_RNUMBER;
229 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
230 	mr.map_prot = PROT_READ | PROT_WRITE;	/* who cares? */
231 	mr.map_obj.rnumber = rnumber;
232 	mr.map_handlep = NULL;
233 	mr.map_vers = DDI_MAP_VERSION;
234 
235 	/*
236 	 * Call my parent to unmap my regs.
237 	 */
238 
239 	(void) ddi_map(dip, &mr, offset, len, kaddrp);
240 	*kaddrp = (caddr_t)0;
241 #if defined(__x86)
242 	(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg);
243 #endif
244 }
245 
246 int
247 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
248 	off_t offset, off_t len, caddr_t *vaddrp)
249 {
250 	return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp));
251 }
252 
253 /*
254  * nullbusmap:	The/DDI default bus_map entry point for nexi
255  *		not conforming to the reg/range paradigm (i.e. scsi, etc.)
256  *		with no HAT/MMU layer to be programmed at this level.
257  *
258  *		If the call is to map by rnumber, return an error,
259  *		otherwise pass anything else up the tree to my parent.
260  */
261 int
262 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
263 	off_t offset, off_t len, caddr_t *vaddrp)
264 {
265 	_NOTE(ARGUNUSED(rdip))
266 	if (mp->map_type == DDI_MT_RNUMBER)
267 		return (DDI_ME_UNSUPPORTED);
268 
269 	return (ddi_map(dip, mp, offset, len, vaddrp));
270 }
271 
272 /*
273  * ddi_rnumber_to_regspec: Not for use by leaf drivers.
274  *			   Only for use by nexi using the reg/range paradigm.
275  */
276 struct regspec *
277 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber)
278 {
279 	return (i_ddi_rnumber_to_regspec(dip, rnumber));
280 }
281 
282 
283 /*
284  * Note that we allow the dip to be nil because we may be called
285  * prior even to the instantiation of the devinfo tree itself - all
286  * regular leaf and nexus drivers should always use a non-nil dip!
287  *
288  * We treat peek in a somewhat cavalier fashion .. assuming that we'll
289  * simply get a synchronous fault as soon as we touch a missing address.
290  *
291  * Poke is rather more carefully handled because we might poke to a write
292  * buffer, "succeed", then only find some time later that we got an
293  * asynchronous fault that indicated that the address we were writing to
294  * was not really backed by hardware.
295  */
296 
297 static int
298 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size,
299     void *addr, void *value_p)
300 {
301 	union {
302 		uint64_t	u64;
303 		uint32_t	u32;
304 		uint16_t	u16;
305 		uint8_t		u8;
306 	} peekpoke_value;
307 
308 	peekpoke_ctlops_t peekpoke_args;
309 	uint64_t dummy_result;
310 	int rval;
311 
312 	/* Note: size is assumed to be correct;  it is not checked. */
313 	peekpoke_args.size = size;
314 	peekpoke_args.dev_addr = (uintptr_t)addr;
315 	peekpoke_args.handle = NULL;
316 	peekpoke_args.repcount = 1;
317 	peekpoke_args.flags = 0;
318 
319 	if (cmd == DDI_CTLOPS_POKE) {
320 		switch (size) {
321 		case sizeof (uint8_t):
322 			peekpoke_value.u8 = *(uint8_t *)value_p;
323 			break;
324 		case sizeof (uint16_t):
325 			peekpoke_value.u16 = *(uint16_t *)value_p;
326 			break;
327 		case sizeof (uint32_t):
328 			peekpoke_value.u32 = *(uint32_t *)value_p;
329 			break;
330 		case sizeof (uint64_t):
331 			peekpoke_value.u64 = *(uint64_t *)value_p;
332 			break;
333 		}
334 	}
335 
336 	peekpoke_args.host_addr = (uintptr_t)&peekpoke_value.u64;
337 
338 	if (devi != NULL)
339 		rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args,
340 		    &dummy_result);
341 	else
342 		rval = peekpoke_mem(cmd, &peekpoke_args);
343 
344 	/*
345 	 * A NULL value_p is permitted by ddi_peek(9F); discard the result.
346 	 */
347 	if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) {
348 		switch (size) {
349 		case sizeof (uint8_t):
350 			*(uint8_t *)value_p = peekpoke_value.u8;
351 			break;
352 		case sizeof (uint16_t):
353 			*(uint16_t *)value_p = peekpoke_value.u16;
354 			break;
355 		case sizeof (uint32_t):
356 			*(uint32_t *)value_p = peekpoke_value.u32;
357 			break;
358 		case sizeof (uint64_t):
359 			*(uint64_t *)value_p = peekpoke_value.u64;
360 			break;
361 		}
362 	}
363 
364 	return (rval);
365 }
366 
367 /*
368  * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this.
369  * they shouldn't be, but the 9f manpage kind of pseudo exposes it.
370  */
371 int
372 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p)
373 {
374 	switch (size) {
375 	case sizeof (uint8_t):
376 	case sizeof (uint16_t):
377 	case sizeof (uint32_t):
378 	case sizeof (uint64_t):
379 		break;
380 	default:
381 		return (DDI_FAILURE);
382 	}
383 
384 	return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p));
385 }
386 
387 int
388 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p)
389 {
390 	switch (size) {
391 	case sizeof (uint8_t):
392 	case sizeof (uint16_t):
393 	case sizeof (uint32_t):
394 	case sizeof (uint64_t):
395 		break;
396 	default:
397 		return (DDI_FAILURE);
398 	}
399 
400 	return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p));
401 }
402 
403 int
404 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p)
405 {
406 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
407 	    val_p));
408 }
409 
410 int
411 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p)
412 {
413 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
414 	    val_p));
415 }
416 
417 int
418 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p)
419 {
420 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
421 	    val_p));
422 }
423 
424 int
425 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p)
426 {
427 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
428 	    val_p));
429 }
430 
431 
432 /*
433  * We need to separate the old interfaces from the new ones and leave them
434  * in here for a while. Previous versions of the OS defined the new interfaces
435  * to the old interfaces. This way we can fix things up so that we can
436  * eventually remove these interfaces.
437  * e.g. A 3rd party module/driver using ddi_peek8 and built against S10
438  * or earlier will actually have a reference to ddi_peekc in the binary.
439  */
440 #ifdef _ILP32
441 int
442 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p)
443 {
444 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
445 	    val_p));
446 }
447 
448 int
449 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p)
450 {
451 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
452 	    val_p));
453 }
454 
455 int
456 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p)
457 {
458 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
459 	    val_p));
460 }
461 
462 int
463 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p)
464 {
465 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr,
466 	    val_p));
467 }
468 #endif /* _ILP32 */
469 
470 int
471 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val)
472 {
473 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
474 }
475 
476 int
477 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val)
478 {
479 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
480 }
481 
482 int
483 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val)
484 {
485 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
486 }
487 
488 int
489 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val)
490 {
491 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
492 }
493 
494 /*
495  * We need to separate the old interfaces from the new ones and leave them
496  * in here for a while. Previous versions of the OS defined the new interfaces
497  * to the old interfaces. This way we can fix things up so that we can
498  * eventually remove these interfaces.
499  * e.g. A 3rd party module/driver using ddi_poke8 and built against S10
500  * or earlier will actually have a reference to ddi_pokec in the binary.
501  */
502 #ifdef _ILP32
503 int
504 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val)
505 {
506 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
507 }
508 
509 int
510 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val)
511 {
512 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
513 }
514 
515 int
516 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val)
517 {
518 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
519 }
520 
521 int
522 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val)
523 {
524 	return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val));
525 }
526 #endif /* _ILP32 */
527 
528 /*
529  * ddi_peekpokeio() is used primarily by the mem drivers for moving
530  * data to and from uio structures via peek and poke.  Note that we
531  * use "internal" routines ddi_peek and ddi_poke to make this go
532  * slightly faster, avoiding the call overhead ..
533  */
534 int
535 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
536     caddr_t addr, size_t len, uint_t xfersize)
537 {
538 	int64_t	ibuffer;
539 	int8_t w8;
540 	size_t sz;
541 	int o;
542 
543 	if (xfersize > sizeof (long))
544 		xfersize = sizeof (long);
545 
546 	while (len != 0) {
547 		if ((len | (uintptr_t)addr) & 1) {
548 			sz = sizeof (int8_t);
549 			if (rw == UIO_WRITE) {
550 				if ((o = uwritec(uio)) == -1)
551 					return (DDI_FAILURE);
552 				if (ddi_poke8(devi, (int8_t *)addr,
553 				    (int8_t)o) != DDI_SUCCESS)
554 					return (DDI_FAILURE);
555 			} else {
556 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
557 				    (int8_t *)addr, &w8) != DDI_SUCCESS)
558 					return (DDI_FAILURE);
559 				if (ureadc(w8, uio))
560 					return (DDI_FAILURE);
561 			}
562 		} else {
563 			switch (xfersize) {
564 			case sizeof (int64_t):
565 				if (((len | (uintptr_t)addr) &
566 				    (sizeof (int64_t) - 1)) == 0) {
567 					sz = xfersize;
568 					break;
569 				}
570 				/*FALLTHROUGH*/
571 			case sizeof (int32_t):
572 				if (((len | (uintptr_t)addr) &
573 				    (sizeof (int32_t) - 1)) == 0) {
574 					sz = xfersize;
575 					break;
576 				}
577 				/*FALLTHROUGH*/
578 			default:
579 				/*
580 				 * This still assumes that we might have an
581 				 * I/O bus out there that permits 16-bit
582 				 * transfers (and that it would be upset by
583 				 * 32-bit transfers from such locations).
584 				 */
585 				sz = sizeof (int16_t);
586 				break;
587 			}
588 
589 			if (rw == UIO_READ) {
590 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz,
591 				    addr, &ibuffer) != DDI_SUCCESS)
592 					return (DDI_FAILURE);
593 			}
594 
595 			if (uiomove(&ibuffer, sz, rw, uio))
596 				return (DDI_FAILURE);
597 
598 			if (rw == UIO_WRITE) {
599 				if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz,
600 				    addr, &ibuffer) != DDI_SUCCESS)
601 					return (DDI_FAILURE);
602 			}
603 		}
604 		addr += sz;
605 		len -= sz;
606 	}
607 	return (DDI_SUCCESS);
608 }
609 
610 /*
611  * These routines are used by drivers that do layered ioctls
612  * On sparc, they're implemented in assembler to avoid spilling
613  * register windows in the common (copyin) case ..
614  */
615 #if !defined(__sparc)
616 int
617 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags)
618 {
619 	if (flags & FKIOCTL)
620 		return (kcopy(buf, kernbuf, size) ? -1 : 0);
621 	return (copyin(buf, kernbuf, size));
622 }
623 
624 int
625 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags)
626 {
627 	if (flags & FKIOCTL)
628 		return (kcopy(buf, kernbuf, size) ? -1 : 0);
629 	return (copyout(buf, kernbuf, size));
630 }
631 #endif	/* !__sparc */
632 
633 /*
634  * Conversions in nexus pagesize units.  We don't duplicate the
635  * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI
636  * routines anyway.
637  */
638 unsigned long
639 ddi_btop(dev_info_t *dip, unsigned long bytes)
640 {
641 	unsigned long pages;
642 
643 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages);
644 	return (pages);
645 }
646 
647 unsigned long
648 ddi_btopr(dev_info_t *dip, unsigned long bytes)
649 {
650 	unsigned long pages;
651 
652 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages);
653 	return (pages);
654 }
655 
656 unsigned long
657 ddi_ptob(dev_info_t *dip, unsigned long pages)
658 {
659 	unsigned long bytes;
660 
661 	(void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes);
662 	return (bytes);
663 }
664 
665 unsigned int
666 ddi_enter_critical(void)
667 {
668 	return ((uint_t)spl7());
669 }
670 
671 void
672 ddi_exit_critical(unsigned int spl)
673 {
674 	splx((int)spl);
675 }
676 
677 /*
678  * Nexus ctlops punter
679  */
680 
681 #if !defined(__sparc)
682 /*
683  * Request bus_ctl parent to handle a bus_ctl request
684  *
685  * (The sparc version is in sparc_ddi.s)
686  */
687 int
688 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
689 {
690 	int (*fp)();
691 
692 	if (!d || !r)
693 		return (DDI_FAILURE);
694 
695 	if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL)
696 		return (DDI_FAILURE);
697 
698 	fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
699 	return ((*fp)(d, r, op, a, v));
700 }
701 
702 #endif
703 
704 /*
705  * DMA/DVMA setup
706  */
707 
708 #if defined(__sparc)
709 static ddi_dma_lim_t standard_limits = {
710 	(uint_t)0,	/* addr_t dlim_addr_lo */
711 	(uint_t)-1,	/* addr_t dlim_addr_hi */
712 	(uint_t)-1,	/* uint_t dlim_cntr_max */
713 	(uint_t)1,	/* uint_t dlim_burstsizes */
714 	(uint_t)1,	/* uint_t dlim_minxfer */
715 	0		/* uint_t dlim_dmaspeed */
716 };
717 #elif defined(__x86)
718 static ddi_dma_lim_t standard_limits = {
719 	(uint_t)0,		/* addr_t dlim_addr_lo */
720 	(uint_t)0xffffff,	/* addr_t dlim_addr_hi */
721 	(uint_t)0,		/* uint_t dlim_cntr_max */
722 	(uint_t)0x00000001,	/* uint_t dlim_burstsizes */
723 	(uint_t)DMA_UNIT_8,	/* uint_t dlim_minxfer */
724 	(uint_t)0,		/* uint_t dlim_dmaspeed */
725 	(uint_t)0x86<<24+0,	/* uint_t dlim_version */
726 	(uint_t)0xffff,		/* uint_t dlim_adreg_max */
727 	(uint_t)0xffff,		/* uint_t dlim_ctreg_max */
728 	(uint_t)512,		/* uint_t dlim_granular */
729 	(int)1,			/* int dlim_sgllen */
730 	(uint_t)0xffffffff	/* uint_t dlim_reqsizes */
731 };
732 
733 #endif
734 
735 int
736 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp,
737     ddi_dma_handle_t *handlep)
738 {
739 	int (*funcp)() = ddi_dma_map;
740 	struct bus_ops *bop;
741 #if defined(__sparc)
742 	auto ddi_dma_lim_t dma_lim;
743 
744 	if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) {
745 		dma_lim = standard_limits;
746 	} else {
747 		dma_lim = *dmareqp->dmar_limits;
748 	}
749 	dmareqp->dmar_limits = &dma_lim;
750 #endif
751 #if defined(__x86)
752 	if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0)
753 		return (DDI_FAILURE);
754 #endif
755 
756 	/*
757 	 * Handle the case that the requester is both a leaf
758 	 * and a nexus driver simultaneously by calling the
759 	 * requester's bus_dma_map function directly instead
760 	 * of ddi_dma_map.
761 	 */
762 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
763 	if (bop && bop->bus_dma_map)
764 		funcp = bop->bus_dma_map;
765 	return ((*funcp)(dip, dip, dmareqp, handlep));
766 }
767 
768 int
769 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len,
770     uint_t flags, int (*waitfp)(), caddr_t arg,
771     ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep)
772 {
773 	int (*funcp)() = ddi_dma_map;
774 	ddi_dma_lim_t dma_lim;
775 	struct ddi_dma_req dmareq;
776 	struct bus_ops *bop;
777 
778 	if (len == 0) {
779 		return (DDI_DMA_NOMAPPING);
780 	}
781 	if (limits == (ddi_dma_lim_t *)0) {
782 		dma_lim = standard_limits;
783 	} else {
784 		dma_lim = *limits;
785 	}
786 	dmareq.dmar_limits = &dma_lim;
787 	dmareq.dmar_flags = flags;
788 	dmareq.dmar_fp = waitfp;
789 	dmareq.dmar_arg = arg;
790 	dmareq.dmar_object.dmao_size = len;
791 	dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
792 	dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
793 	dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
794 	dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
795 
796 	/*
797 	 * Handle the case that the requester is both a leaf
798 	 * and a nexus driver simultaneously by calling the
799 	 * requester's bus_dma_map function directly instead
800 	 * of ddi_dma_map.
801 	 */
802 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
803 	if (bop && bop->bus_dma_map)
804 		funcp = bop->bus_dma_map;
805 
806 	return ((*funcp)(dip, dip, &dmareq, handlep));
807 }
808 
809 int
810 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags,
811     int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits,
812     ddi_dma_handle_t *handlep)
813 {
814 	int (*funcp)() = ddi_dma_map;
815 	ddi_dma_lim_t dma_lim;
816 	struct ddi_dma_req dmareq;
817 	struct bus_ops *bop;
818 
819 	if (limits == (ddi_dma_lim_t *)0) {
820 		dma_lim = standard_limits;
821 	} else {
822 		dma_lim = *limits;
823 	}
824 	dmareq.dmar_limits = &dma_lim;
825 	dmareq.dmar_flags = flags;
826 	dmareq.dmar_fp = waitfp;
827 	dmareq.dmar_arg = arg;
828 	dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
829 
830 	if (bp->b_flags & B_PAGEIO) {
831 		dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
832 		dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
833 		dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
834 		    (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
835 	} else {
836 		dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
837 		dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
838 		if (bp->b_flags & B_SHADOW) {
839 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
840 			    bp->b_shadow;
841 		} else {
842 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
843 		}
844 
845 		/*
846 		 * If the buffer has no proc pointer, or the proc
847 		 * struct has the kernel address space, or the buffer has
848 		 * been marked B_REMAPPED (meaning that it is now
849 		 * mapped into the kernel's address space), then
850 		 * the address space is kas (kernel address space).
851 		 */
852 		if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
853 		    (bp->b_flags & B_REMAPPED)) {
854 			dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
855 		} else {
856 			dmareq.dmar_object.dmao_obj.virt_obj.v_as =
857 			    bp->b_proc->p_as;
858 		}
859 	}
860 
861 	/*
862 	 * Handle the case that the requester is both a leaf
863 	 * and a nexus driver simultaneously by calling the
864 	 * requester's bus_dma_map function directly instead
865 	 * of ddi_dma_map.
866 	 */
867 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
868 	if (bop && bop->bus_dma_map)
869 		funcp = bop->bus_dma_map;
870 
871 	return ((*funcp)(dip, dip, &dmareq, handlep));
872 }
873 
874 #if !defined(__sparc)
875 /*
876  * Request bus_dma_ctl parent to fiddle with a dma request.
877  *
878  * (The sparc version is in sparc_subr.s)
879  */
880 int
881 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
882     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
883     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
884 {
885 	int (*fp)();
886 
887 	dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl;
888 	fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl;
889 	return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags));
890 }
891 #endif
892 
893 /*
894  * For all DMA control functions, call the DMA control
895  * routine and return status.
896  *
897  * Just plain assume that the parent is to be called.
898  * If a nexus driver or a thread outside the framework
899  * of a nexus driver or a leaf driver calls these functions,
900  * it is up to them to deal with the fact that the parent's
901  * bus_dma_ctl function will be the first one called.
902  */
903 
904 #define	HD	((ddi_dma_impl_t *)h)->dmai_rdip
905 
906 int
907 ddi_dma_kvaddrp(ddi_dma_handle_t h, off_t off, size_t len, caddr_t *kp)
908 {
909 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_KVADDR, &off, &len, kp, 0));
910 }
911 
912 int
913 ddi_dma_htoc(ddi_dma_handle_t h, off_t o, ddi_dma_cookie_t *c)
914 {
915 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_HTOC, &o, 0, (caddr_t *)c, 0));
916 }
917 
918 int
919 ddi_dma_coff(ddi_dma_handle_t h, ddi_dma_cookie_t *c, off_t *o)
920 {
921 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_COFF,
922 	    (off_t *)c, 0, (caddr_t *)o, 0));
923 }
924 
925 int
926 ddi_dma_movwin(ddi_dma_handle_t h, off_t *o, size_t *l, ddi_dma_cookie_t *c)
927 {
928 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_MOVWIN, o,
929 	    l, (caddr_t *)c, 0));
930 }
931 
932 int
933 ddi_dma_curwin(ddi_dma_handle_t h, off_t *o, size_t *l)
934 {
935 	if ((((ddi_dma_impl_t *)h)->dmai_rflags & DDI_DMA_PARTIAL) == 0)
936 		return (DDI_FAILURE);
937 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_REPWIN, o, l, 0, 0));
938 }
939 
940 int
941 ddi_dma_nextwin(ddi_dma_handle_t h, ddi_dma_win_t win,
942     ddi_dma_win_t *nwin)
943 {
944 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTWIN, (off_t *)&win, 0,
945 	    (caddr_t *)nwin, 0));
946 }
947 
948 int
949 ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t *nseg)
950 {
951 	ddi_dma_handle_t h = (ddi_dma_handle_t)win;
952 
953 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTSEG, (off_t *)&win,
954 	    (size_t *)&seg, (caddr_t *)nseg, 0));
955 }
956 
957 #if (defined(__i386) && !defined(__amd64)) || defined(__sparc)
958 /*
959  * This routine is Obsolete and should be removed from ALL architectures
960  * in a future release of Solaris.
961  *
962  * It is deliberately NOT ported to amd64; please fix the code that
963  * depends on this routine to use ddi_dma_nextcookie(9F).
964  *
965  * NOTE: even though we fixed the pointer through a 32-bit param issue (the fix
966  * is a side effect to some other cleanup), we're still not going to support
967  * this interface on x64.
968  */
969 int
970 ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t *o, off_t *l,
971     ddi_dma_cookie_t *cookiep)
972 {
973 	ddi_dma_handle_t h = (ddi_dma_handle_t)seg;
974 
975 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SEGTOC, o, (size_t *)l,
976 	    (caddr_t *)cookiep, 0));
977 }
978 #endif	/* (__i386 && !__amd64) || __sparc */
979 
980 #if !defined(__sparc)
981 
982 /*
983  * The SPARC versions of these routines are done in assembler to
984  * save register windows, so they're in sparc_subr.s.
985  */
986 
987 int
988 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
989 	struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
990 {
991 	dev_info_t	*hdip;
992 	int (*funcp)(dev_info_t *, dev_info_t *, struct ddi_dma_req *,
993 	    ddi_dma_handle_t *);
994 
995 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_map;
996 
997 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_map;
998 	return ((*funcp)(hdip, rdip, dmareqp, handlep));
999 }
1000 
1001 int
1002 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1003     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1004 {
1005 	dev_info_t	*hdip;
1006 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *,
1007 	    int (*)(caddr_t), caddr_t, ddi_dma_handle_t *);
1008 
1009 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
1010 
1011 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_allochdl;
1012 	return ((*funcp)(hdip, rdip, attr, waitfp, arg, handlep));
1013 }
1014 
1015 int
1016 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep)
1017 {
1018 	dev_info_t	*hdip;
1019 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1020 
1021 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl;
1022 
1023 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_freehdl;
1024 	return ((*funcp)(hdip, rdip, handlep));
1025 }
1026 
1027 int
1028 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1029     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1030     ddi_dma_cookie_t *cp, uint_t *ccountp)
1031 {
1032 	dev_info_t	*hdip;
1033 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1034 	    struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *);
1035 
1036 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
1037 
1038 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_bindhdl;
1039 	return ((*funcp)(hdip, rdip, handle, dmareq, cp, ccountp));
1040 }
1041 
1042 int
1043 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
1044     ddi_dma_handle_t handle)
1045 {
1046 	dev_info_t	*hdip;
1047 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1048 
1049 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
1050 
1051 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
1052 	return ((*funcp)(hdip, rdip, handle));
1053 }
1054 
1055 
1056 int
1057 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
1058     ddi_dma_handle_t handle, off_t off, size_t len,
1059     uint_t cache_flags)
1060 {
1061 	dev_info_t	*hdip;
1062 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1063 	    off_t, size_t, uint_t);
1064 
1065 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
1066 
1067 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush;
1068 	return ((*funcp)(hdip, rdip, handle, off, len, cache_flags));
1069 }
1070 
1071 int
1072 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
1073     ddi_dma_handle_t handle, uint_t win, off_t *offp,
1074     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1075 {
1076 	dev_info_t	*hdip;
1077 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t,
1078 	    uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *);
1079 
1080 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win;
1081 
1082 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_win;
1083 	return ((*funcp)(hdip, rdip, handle, win, offp, lenp,
1084 	    cookiep, ccountp));
1085 }
1086 
1087 int
1088 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom)
1089 {
1090 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
1091 	dev_info_t *hdip, *dip;
1092 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t,
1093 	    size_t, uint_t);
1094 
1095 	/*
1096 	 * the DMA nexus driver will set DMP_NOSYNC if the
1097 	 * platform does not require any sync operation. For
1098 	 * example if the memory is uncached or consistent
1099 	 * and without any I/O write buffers involved.
1100 	 */
1101 	if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC)
1102 		return (DDI_SUCCESS);
1103 
1104 	dip = hp->dmai_rdip;
1105 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush;
1106 	funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush;
1107 	return ((*funcp)(hdip, dip, h, o, l, whom));
1108 }
1109 
1110 int
1111 ddi_dma_unbind_handle(ddi_dma_handle_t h)
1112 {
1113 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h;
1114 	dev_info_t *hdip, *dip;
1115 	int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t);
1116 
1117 	dip = hp->dmai_rdip;
1118 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl;
1119 	funcp = DEVI(dip)->devi_bus_dma_unbindfunc;
1120 	return ((*funcp)(hdip, dip, h));
1121 }
1122 
1123 #endif	/* !__sparc */
1124 
1125 int
1126 ddi_dma_free(ddi_dma_handle_t h)
1127 {
1128 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_FREE, 0, 0, 0, 0));
1129 }
1130 
1131 int
1132 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t len, caddr_t *iopbp)
1133 {
1134 	ddi_dma_lim_t defalt;
1135 	size_t size = len;
1136 
1137 	if (!limp) {
1138 		defalt = standard_limits;
1139 		limp = &defalt;
1140 	}
1141 	return (i_ddi_mem_alloc_lim(dip, limp, size, 0, 0, 0,
1142 	    iopbp, NULL, NULL));
1143 }
1144 
1145 void
1146 ddi_iopb_free(caddr_t iopb)
1147 {
1148 	i_ddi_mem_free(iopb, NULL);
1149 }
1150 
1151 int
1152 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length,
1153 	uint_t flags, caddr_t *kaddrp, uint_t *real_length)
1154 {
1155 	ddi_dma_lim_t defalt;
1156 	size_t size = length;
1157 
1158 	if (!limits) {
1159 		defalt = standard_limits;
1160 		limits = &defalt;
1161 	}
1162 	return (i_ddi_mem_alloc_lim(dip, limits, size, flags & 0x1,
1163 	    1, 0, kaddrp, real_length, NULL));
1164 }
1165 
1166 void
1167 ddi_mem_free(caddr_t kaddr)
1168 {
1169 	i_ddi_mem_free(kaddr, NULL);
1170 }
1171 
1172 /*
1173  * DMA attributes, alignment, burst sizes, and transfer minimums
1174  */
1175 int
1176 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp)
1177 {
1178 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1179 
1180 	if (attrp == NULL)
1181 		return (DDI_FAILURE);
1182 	*attrp = dimp->dmai_attr;
1183 	return (DDI_SUCCESS);
1184 }
1185 
1186 int
1187 ddi_dma_burstsizes(ddi_dma_handle_t handle)
1188 {
1189 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1190 
1191 	if (!dimp)
1192 		return (0);
1193 	else
1194 		return (dimp->dmai_burstsizes);
1195 }
1196 
1197 int
1198 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect)
1199 {
1200 	ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle;
1201 
1202 	if (!dimp || !alignment || !mineffect)
1203 		return (DDI_FAILURE);
1204 	if (!(dimp->dmai_rflags & DDI_DMA_SBUS_64BIT)) {
1205 		*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes);
1206 	} else {
1207 		if (dimp->dmai_burstsizes & 0xff0000) {
1208 			*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes >> 16);
1209 		} else {
1210 			*alignment = 1 << ddi_ffs(dimp->dmai_burstsizes);
1211 		}
1212 	}
1213 	*mineffect = dimp->dmai_minxfer;
1214 	return (DDI_SUCCESS);
1215 }
1216 
1217 int
1218 ddi_iomin(dev_info_t *a, int i, int stream)
1219 {
1220 	int r;
1221 
1222 	/*
1223 	 * Make sure that the initial value is sane
1224 	 */
1225 	if (i & (i - 1))
1226 		return (0);
1227 	if (i == 0)
1228 		i = (stream) ? 4 : 1;
1229 
1230 	r = ddi_ctlops(a, a,
1231 	    DDI_CTLOPS_IOMIN, (void *)(uintptr_t)stream, (void *)&i);
1232 	if (r != DDI_SUCCESS || (i & (i - 1)))
1233 		return (0);
1234 	return (i);
1235 }
1236 
1237 /*
1238  * Given two DMA attribute structures, apply the attributes
1239  * of one to the other, following the rules of attributes
1240  * and the wishes of the caller.
1241  *
1242  * The rules of DMA attribute structures are that you cannot
1243  * make things *less* restrictive as you apply one set
1244  * of attributes to another.
1245  *
1246  */
1247 void
1248 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod)
1249 {
1250 	attr->dma_attr_addr_lo =
1251 	    MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo);
1252 	attr->dma_attr_addr_hi =
1253 	    MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi);
1254 	attr->dma_attr_count_max =
1255 	    MIN(attr->dma_attr_count_max, mod->dma_attr_count_max);
1256 	attr->dma_attr_align =
1257 	    MAX(attr->dma_attr_align,  mod->dma_attr_align);
1258 	attr->dma_attr_burstsizes =
1259 	    (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes);
1260 	attr->dma_attr_minxfer =
1261 	    maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer);
1262 	attr->dma_attr_maxxfer =
1263 	    MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer);
1264 	attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg);
1265 	attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen,
1266 	    (uint_t)mod->dma_attr_sgllen);
1267 	attr->dma_attr_granular =
1268 	    MAX(attr->dma_attr_granular, mod->dma_attr_granular);
1269 }
1270 
1271 /*
1272  * mmap/segmap interface:
1273  */
1274 
1275 /*
1276  * ddi_segmap:		setup the default segment driver. Calls the drivers
1277  *			XXmmap routine to validate the range to be mapped.
1278  *			Return ENXIO of the range is not valid.  Create
1279  *			a seg_dev segment that contains all of the
1280  *			necessary information and will reference the
1281  *			default segment driver routines. It returns zero
1282  *			on success or non-zero on failure.
1283  */
1284 int
1285 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
1286     uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)
1287 {
1288 	extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *,
1289 	    off_t, uint_t, uint_t, uint_t, struct cred *);
1290 
1291 	return (spec_segmap(dev, offset, asp, addrp, len,
1292 	    prot, maxprot, flags, credp));
1293 }
1294 
1295 /*
1296  * ddi_map_fault:	Resolve mappings at fault time.  Used by segment
1297  *			drivers. Allows each successive parent to resolve
1298  *			address translations and add its mappings to the
1299  *			mapping list supplied in the page structure. It
1300  *			returns zero on success	or non-zero on failure.
1301  */
1302 
1303 int
1304 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg,
1305     caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock)
1306 {
1307 	return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock));
1308 }
1309 
1310 /*
1311  * ddi_device_mapping_check:	Called from ddi_segmap_setup.
1312  *	Invokes platform specific DDI to determine whether attributes specified
1313  *	in attr(9s) are	valid for the region of memory that will be made
1314  *	available for direct access to user process via the mmap(2) system call.
1315  */
1316 int
1317 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
1318     uint_t rnumber, uint_t *hat_flags)
1319 {
1320 	ddi_acc_handle_t handle;
1321 	ddi_map_req_t mr;
1322 	ddi_acc_hdl_t *hp;
1323 	int result;
1324 	dev_info_t *dip;
1325 
1326 	/*
1327 	 * we use e_ddi_hold_devi_by_dev to search for the devi.  We
1328 	 * release it immediately since it should already be held by
1329 	 * a devfs vnode.
1330 	 */
1331 	if ((dip =
1332 	    e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL)
1333 		return (-1);
1334 	ddi_release_devi(dip);		/* for e_ddi_hold_devi_by_dev() */
1335 
1336 	/*
1337 	 * Allocate and initialize the common elements of data
1338 	 * access handle.
1339 	 */
1340 	handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
1341 	if (handle == NULL)
1342 		return (-1);
1343 
1344 	hp = impl_acc_hdl_get(handle);
1345 	hp->ah_vers = VERS_ACCHDL;
1346 	hp->ah_dip = dip;
1347 	hp->ah_rnumber = rnumber;
1348 	hp->ah_offset = 0;
1349 	hp->ah_len = 0;
1350 	hp->ah_acc = *accattrp;
1351 
1352 	/*
1353 	 * Set up the mapping request and call to parent.
1354 	 */
1355 	mr.map_op = DDI_MO_MAP_HANDLE;
1356 	mr.map_type = DDI_MT_RNUMBER;
1357 	mr.map_obj.rnumber = rnumber;
1358 	mr.map_prot = PROT_READ | PROT_WRITE;
1359 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
1360 	mr.map_handlep = hp;
1361 	mr.map_vers = DDI_MAP_VERSION;
1362 	result = ddi_map(dip, &mr, 0, 0, NULL);
1363 
1364 	/*
1365 	 * Region must be mappable, pick up flags from the framework.
1366 	 */
1367 	*hat_flags = hp->ah_hat_flags;
1368 
1369 	impl_acc_hdl_free(handle);
1370 
1371 	/*
1372 	 * check for end result.
1373 	 */
1374 	if (result != DDI_SUCCESS)
1375 		return (-1);
1376 	return (0);
1377 }
1378 
1379 
1380 /*
1381  * Property functions:	 See also, ddipropdefs.h.
1382  *
1383  * These functions are the framework for the property functions,
1384  * i.e. they support software defined properties.  All implementation
1385  * specific property handling (i.e.: self-identifying devices and
1386  * PROM defined properties are handled in the implementation specific
1387  * functions (defined in ddi_implfuncs.h).
1388  */
1389 
1390 /*
1391  * nopropop:	Shouldn't be called, right?
1392  */
1393 int
1394 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1395     char *name, caddr_t valuep, int *lengthp)
1396 {
1397 	_NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp))
1398 	return (DDI_PROP_NOT_FOUND);
1399 }
1400 
1401 #ifdef	DDI_PROP_DEBUG
1402 int ddi_prop_debug_flag = 0;
1403 
1404 int
1405 ddi_prop_debug(int enable)
1406 {
1407 	int prev = ddi_prop_debug_flag;
1408 
1409 	if ((enable != 0) || (prev != 0))
1410 		printf("ddi_prop_debug: debugging %s\n",
1411 		    enable ? "enabled" : "disabled");
1412 	ddi_prop_debug_flag = enable;
1413 	return (prev);
1414 }
1415 
1416 #endif	/* DDI_PROP_DEBUG */
1417 
1418 /*
1419  * Search a property list for a match, if found return pointer
1420  * to matching prop struct, else return NULL.
1421  */
1422 
1423 ddi_prop_t *
1424 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head)
1425 {
1426 	ddi_prop_t	*propp;
1427 
1428 	/*
1429 	 * find the property in child's devinfo:
1430 	 * Search order defined by this search function is first matching
1431 	 * property with input dev == DDI_DEV_T_ANY matching any dev or
1432 	 * dev == propp->prop_dev, name == propp->name, and the correct
1433 	 * data type as specified in the flags.  If a DDI_DEV_T_NONE dev
1434 	 * value made it this far then it implies a DDI_DEV_T_ANY search.
1435 	 */
1436 	if (dev == DDI_DEV_T_NONE)
1437 		dev = DDI_DEV_T_ANY;
1438 
1439 	for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
1440 
1441 		if (!DDI_STRSAME(propp->prop_name, name))
1442 			continue;
1443 
1444 		if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev))
1445 			continue;
1446 
1447 		if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1448 			continue;
1449 
1450 		return (propp);
1451 	}
1452 
1453 	return ((ddi_prop_t *)0);
1454 }
1455 
1456 /*
1457  * Search for property within devnames structures
1458  */
1459 ddi_prop_t *
1460 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags)
1461 {
1462 	major_t		major;
1463 	struct devnames	*dnp;
1464 	ddi_prop_t	*propp;
1465 
1466 	/*
1467 	 * Valid dev_t value is needed to index into the
1468 	 * correct devnames entry, therefore a dev_t
1469 	 * value of DDI_DEV_T_ANY is not appropriate.
1470 	 */
1471 	ASSERT(dev != DDI_DEV_T_ANY);
1472 	if (dev == DDI_DEV_T_ANY) {
1473 		return ((ddi_prop_t *)0);
1474 	}
1475 
1476 	major = getmajor(dev);
1477 	dnp = &(devnamesp[major]);
1478 
1479 	if (dnp->dn_global_prop_ptr == NULL)
1480 		return ((ddi_prop_t *)0);
1481 
1482 	LOCK_DEV_OPS(&dnp->dn_lock);
1483 
1484 	for (propp = dnp->dn_global_prop_ptr->prop_list;
1485 	    propp != NULL;
1486 	    propp = (ddi_prop_t *)propp->prop_next) {
1487 
1488 		if (!DDI_STRSAME(propp->prop_name, name))
1489 			continue;
1490 
1491 		if ((!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev))
1492 			continue;
1493 
1494 		if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0)
1495 			continue;
1496 
1497 		/* Property found, return it */
1498 		UNLOCK_DEV_OPS(&dnp->dn_lock);
1499 		return (propp);
1500 	}
1501 
1502 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1503 	return ((ddi_prop_t *)0);
1504 }
1505 
1506 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>";
1507 
1508 /*
1509  * ddi_prop_search_global:
1510  *	Search the global property list within devnames
1511  *	for the named property.  Return the encoded value.
1512  */
1513 static int
1514 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name,
1515     void *valuep, uint_t *lengthp)
1516 {
1517 	ddi_prop_t	*propp;
1518 	caddr_t		buffer;
1519 
1520 	propp =  i_ddi_search_global_prop(dev, name, flags);
1521 
1522 	/* Property NOT found, bail */
1523 	if (propp == (ddi_prop_t *)0)
1524 		return (DDI_PROP_NOT_FOUND);
1525 
1526 	if (propp->prop_flags & DDI_PROP_UNDEF_IT)
1527 		return (DDI_PROP_UNDEFINED);
1528 
1529 	if ((buffer = kmem_alloc(propp->prop_len,
1530 	    (flags & DDI_PROP_CANSLEEP) ? KM_SLEEP : KM_NOSLEEP)) == NULL) {
1531 		cmn_err(CE_CONT, prop_no_mem_msg, name);
1532 		return (DDI_PROP_NO_MEMORY);
1533 	}
1534 
1535 	/*
1536 	 * Return the encoded data
1537 	 */
1538 	*(caddr_t *)valuep = buffer;
1539 	*lengthp = propp->prop_len;
1540 	bcopy(propp->prop_val, buffer, propp->prop_len);
1541 
1542 	return (DDI_PROP_SUCCESS);
1543 }
1544 
1545 /*
1546  * ddi_prop_search_common:	Lookup and return the encoded value
1547  */
1548 int
1549 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1550     uint_t flags, char *name, void *valuep, uint_t *lengthp)
1551 {
1552 	ddi_prop_t	*propp;
1553 	int		i;
1554 	caddr_t		buffer;
1555 	caddr_t		prealloc = NULL;
1556 	int		plength = 0;
1557 	dev_info_t	*pdip;
1558 	int		(*bop)();
1559 
1560 	/*CONSTANTCONDITION*/
1561 	while (1)  {
1562 
1563 		mutex_enter(&(DEVI(dip)->devi_lock));
1564 
1565 
1566 		/*
1567 		 * find the property in child's devinfo:
1568 		 * Search order is:
1569 		 *	1. driver defined properties
1570 		 *	2. system defined properties
1571 		 *	3. driver global properties
1572 		 *	4. boot defined properties
1573 		 */
1574 
1575 		propp = i_ddi_prop_search(dev, name, flags,
1576 		    &(DEVI(dip)->devi_drv_prop_ptr));
1577 		if (propp == NULL)  {
1578 			propp = i_ddi_prop_search(dev, name, flags,
1579 			    &(DEVI(dip)->devi_sys_prop_ptr));
1580 		}
1581 		if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) {
1582 			propp = i_ddi_prop_search(dev, name, flags,
1583 			    &DEVI(dip)->devi_global_prop_list->prop_list);
1584 		}
1585 
1586 		if (propp == NULL)  {
1587 			propp = i_ddi_prop_search(dev, name, flags,
1588 			    &(DEVI(dip)->devi_hw_prop_ptr));
1589 		}
1590 
1591 		/*
1592 		 * Software property found?
1593 		 */
1594 		if (propp != (ddi_prop_t *)0)	{
1595 
1596 			/*
1597 			 * If explicit undefine, return now.
1598 			 */
1599 			if (propp->prop_flags & DDI_PROP_UNDEF_IT) {
1600 				mutex_exit(&(DEVI(dip)->devi_lock));
1601 				if (prealloc)
1602 					kmem_free(prealloc, plength);
1603 				return (DDI_PROP_UNDEFINED);
1604 			}
1605 
1606 			/*
1607 			 * If we only want to know if it exists, return now
1608 			 */
1609 			if (prop_op == PROP_EXISTS) {
1610 				mutex_exit(&(DEVI(dip)->devi_lock));
1611 				ASSERT(prealloc == NULL);
1612 				return (DDI_PROP_SUCCESS);
1613 			}
1614 
1615 			/*
1616 			 * If length only request or prop length == 0,
1617 			 * service request and return now.
1618 			 */
1619 			if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) {
1620 				*lengthp = propp->prop_len;
1621 
1622 				/*
1623 				 * if prop_op is PROP_LEN_AND_VAL_ALLOC
1624 				 * that means prop_len is 0, so set valuep
1625 				 * also to NULL
1626 				 */
1627 				if (prop_op == PROP_LEN_AND_VAL_ALLOC)
1628 					*(caddr_t *)valuep = NULL;
1629 
1630 				mutex_exit(&(DEVI(dip)->devi_lock));
1631 				if (prealloc)
1632 					kmem_free(prealloc, plength);
1633 				return (DDI_PROP_SUCCESS);
1634 			}
1635 
1636 			/*
1637 			 * If LEN_AND_VAL_ALLOC and the request can sleep,
1638 			 * drop the mutex, allocate the buffer, and go
1639 			 * through the loop again.  If we already allocated
1640 			 * the buffer, and the size of the property changed,
1641 			 * keep trying...
1642 			 */
1643 			if ((prop_op == PROP_LEN_AND_VAL_ALLOC) &&
1644 			    (flags & DDI_PROP_CANSLEEP))  {
1645 				if (prealloc && (propp->prop_len != plength)) {
1646 					kmem_free(prealloc, plength);
1647 					prealloc = NULL;
1648 				}
1649 				if (prealloc == NULL)  {
1650 					plength = propp->prop_len;
1651 					mutex_exit(&(DEVI(dip)->devi_lock));
1652 					prealloc = kmem_alloc(plength,
1653 					    KM_SLEEP);
1654 					continue;
1655 				}
1656 			}
1657 
1658 			/*
1659 			 * Allocate buffer, if required.  Either way,
1660 			 * set `buffer' variable.
1661 			 */
1662 			i = *lengthp;			/* Get callers length */
1663 			*lengthp = propp->prop_len;	/* Set callers length */
1664 
1665 			switch (prop_op) {
1666 
1667 			case PROP_LEN_AND_VAL_ALLOC:
1668 
1669 				if (prealloc == NULL) {
1670 					buffer = kmem_alloc(propp->prop_len,
1671 					    KM_NOSLEEP);
1672 				} else {
1673 					buffer = prealloc;
1674 				}
1675 
1676 				if (buffer == NULL)  {
1677 					mutex_exit(&(DEVI(dip)->devi_lock));
1678 					cmn_err(CE_CONT, prop_no_mem_msg, name);
1679 					return (DDI_PROP_NO_MEMORY);
1680 				}
1681 				/* Set callers buf ptr */
1682 				*(caddr_t *)valuep = buffer;
1683 				break;
1684 
1685 			case PROP_LEN_AND_VAL_BUF:
1686 
1687 				if (propp->prop_len > (i)) {
1688 					mutex_exit(&(DEVI(dip)->devi_lock));
1689 					return (DDI_PROP_BUF_TOO_SMALL);
1690 				}
1691 
1692 				buffer = valuep;  /* Get callers buf ptr */
1693 				break;
1694 
1695 			default:
1696 				break;
1697 			}
1698 
1699 			/*
1700 			 * Do the copy.
1701 			 */
1702 			bcopy(propp->prop_val, buffer, propp->prop_len);
1703 			mutex_exit(&(DEVI(dip)->devi_lock));
1704 			return (DDI_PROP_SUCCESS);
1705 		}
1706 
1707 		mutex_exit(&(DEVI(dip)->devi_lock));
1708 		if (prealloc)
1709 			kmem_free(prealloc, plength);
1710 		prealloc = NULL;
1711 
1712 		/*
1713 		 * Prop not found, call parent bus_ops to deal with possible
1714 		 * h/w layer (possible PROM defined props, etc.) and to
1715 		 * possibly ascend the hierarchy, if allowed by flags.
1716 		 */
1717 		pdip = (dev_info_t *)DEVI(dip)->devi_parent;
1718 
1719 		/*
1720 		 * One last call for the root driver PROM props?
1721 		 */
1722 		if (dip == ddi_root_node())  {
1723 			return (ddi_bus_prop_op(dev, dip, dip, prop_op,
1724 			    flags, name, valuep, (int *)lengthp));
1725 		}
1726 
1727 		/*
1728 		 * We may have been called to check for properties
1729 		 * within a single devinfo node that has no parent -
1730 		 * see make_prop()
1731 		 */
1732 		if (pdip == NULL) {
1733 			ASSERT((flags &
1734 			    (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) ==
1735 			    (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM));
1736 			return (DDI_PROP_NOT_FOUND);
1737 		}
1738 
1739 		/*
1740 		 * Instead of recursing, we do iterative calls up the tree.
1741 		 * As a bit of optimization, skip the bus_op level if the
1742 		 * node is a s/w node and if the parent's bus_prop_op function
1743 		 * is `ddi_bus_prop_op', because we know that in this case,
1744 		 * this function does nothing.
1745 		 *
1746 		 * 4225415: If the parent isn't attached, or the child
1747 		 * hasn't been named by the parent yet, use the default
1748 		 * ddi_bus_prop_op as a proxy for the parent.  This
1749 		 * allows property lookups in any child/parent state to
1750 		 * include 'prom' and inherited properties, even when
1751 		 * there are no drivers attached to the child or parent.
1752 		 */
1753 
1754 		bop = ddi_bus_prop_op;
1755 		if (i_ddi_devi_attached(pdip) &&
1756 		    (i_ddi_node_state(dip) >= DS_INITIALIZED))
1757 			bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op;
1758 
1759 		i = DDI_PROP_NOT_FOUND;
1760 
1761 		if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) {
1762 			i = (*bop)(dev, pdip, dip, prop_op,
1763 			    flags | DDI_PROP_DONTPASS,
1764 			    name, valuep, lengthp);
1765 		}
1766 
1767 		if ((flags & DDI_PROP_DONTPASS) ||
1768 		    (i != DDI_PROP_NOT_FOUND))
1769 			return (i);
1770 
1771 		dip = pdip;
1772 	}
1773 	/*NOTREACHED*/
1774 }
1775 
1776 
1777 /*
1778  * ddi_prop_op: The basic property operator for drivers.
1779  *
1780  * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
1781  *
1782  *	prop_op			valuep
1783  *	------			------
1784  *
1785  *	PROP_LEN		<unused>
1786  *
1787  *	PROP_LEN_AND_VAL_BUF	Pointer to callers buffer
1788  *
1789  *	PROP_LEN_AND_VAL_ALLOC	Address of callers pointer (will be set to
1790  *				address of allocated buffer, if successful)
1791  */
1792 int
1793 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1794     char *name, caddr_t valuep, int *lengthp)
1795 {
1796 	int	i;
1797 
1798 	ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0);
1799 
1800 	/*
1801 	 * If this was originally an LDI prop lookup then we bail here.
1802 	 * The reason is that the LDI property lookup interfaces first call
1803 	 * a drivers prop_op() entry point to allow it to override
1804 	 * properties.  But if we've made it here, then the driver hasn't
1805 	 * overriden any properties.  We don't want to continue with the
1806 	 * property search here because we don't have any type inforamtion.
1807 	 * When we return failure, the LDI interfaces will then proceed to
1808 	 * call the typed property interfaces to look up the property.
1809 	 */
1810 	if (mod_flags & DDI_PROP_DYNAMIC)
1811 		return (DDI_PROP_NOT_FOUND);
1812 
1813 	/*
1814 	 * check for pre-typed property consumer asking for typed property:
1815 	 * see e_ddi_getprop_int64.
1816 	 */
1817 	if (mod_flags & DDI_PROP_CONSUMER_TYPED)
1818 		mod_flags |= DDI_PROP_TYPE_INT64;
1819 	mod_flags |= DDI_PROP_TYPE_ANY;
1820 
1821 	i = ddi_prop_search_common(dev, dip, prop_op,
1822 	    mod_flags, name, valuep, (uint_t *)lengthp);
1823 	if (i == DDI_PROP_FOUND_1275)
1824 		return (DDI_PROP_SUCCESS);
1825 	return (i);
1826 }
1827 
1828 /*
1829  * ddi_prop_op_nblocks_blksize: The basic property operator for drivers that
1830  * maintain size in number of blksize blocks.  Provides a dynamic property
1831  * implementation for size oriented properties based on nblocks64 and blksize
1832  * values passed in by the driver.  Fallback to ddi_prop_op if the nblocks64
1833  * is too large.  This interface should not be used with a nblocks64 that
1834  * represents the driver's idea of how to represent unknown, if nblocks is
1835  * unknown use ddi_prop_op.
1836  */
1837 int
1838 ddi_prop_op_nblocks_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1839     int mod_flags, char *name, caddr_t valuep, int *lengthp,
1840     uint64_t nblocks64, uint_t blksize)
1841 {
1842 	uint64_t size64;
1843 	int	blkshift;
1844 
1845 	/* convert block size to shift value */
1846 	ASSERT(BIT_ONLYONESET(blksize));
1847 	blkshift = highbit(blksize) - 1;
1848 
1849 	/*
1850 	 * There is no point in supporting nblocks64 values that don't have
1851 	 * an accurate uint64_t byte count representation.
1852 	 */
1853 	if (nblocks64 >= (UINT64_MAX >> blkshift))
1854 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1855 		    name, valuep, lengthp));
1856 
1857 	size64 = nblocks64 << blkshift;
1858 	return (ddi_prop_op_size_blksize(dev, dip, prop_op, mod_flags,
1859 	    name, valuep, lengthp, size64, blksize));
1860 }
1861 
1862 /*
1863  * ddi_prop_op_nblocks: ddi_prop_op_nblocks_blksize with DEV_BSIZE blksize.
1864  */
1865 int
1866 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1867     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64)
1868 {
1869 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op,
1870 	    mod_flags, name, valuep, lengthp, nblocks64, DEV_BSIZE));
1871 }
1872 
1873 /*
1874  * ddi_prop_op_size_blksize: The basic property operator for block drivers that
1875  * maintain size in bytes. Provides a of dynamic property implementation for
1876  * size oriented properties based on size64 value and blksize passed in by the
1877  * driver.  Fallback to ddi_prop_op if the size64 is too large. This interface
1878  * should not be used with a size64 that represents the driver's idea of how
1879  * to represent unknown, if size is unknown use ddi_prop_op.
1880  *
1881  * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned
1882  * integers. While the most likely interface to request them ([bc]devi_size)
1883  * is declared int (signed) there is no enforcement of this, which means we
1884  * can't enforce limitations here without risking regression.
1885  */
1886 int
1887 ddi_prop_op_size_blksize(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1888     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64,
1889     uint_t blksize)
1890 {
1891 	uint64_t nblocks64;
1892 	int	callers_length;
1893 	caddr_t	buffer;
1894 	int	blkshift;
1895 
1896 	/* convert block size to shift value */
1897 	ASSERT(BIT_ONLYONESET(blksize));
1898 	blkshift = highbit(blksize) - 1;
1899 
1900 	/* compute DEV_BSIZE nblocks value */
1901 	nblocks64 = size64 >> blkshift;
1902 
1903 	/* get callers length, establish length of our dynamic properties */
1904 	callers_length = *lengthp;
1905 
1906 	if (strcmp(name, "Nblocks") == 0)
1907 		*lengthp = sizeof (uint64_t);
1908 	else if (strcmp(name, "Size") == 0)
1909 		*lengthp = sizeof (uint64_t);
1910 	else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX))
1911 		*lengthp = sizeof (uint32_t);
1912 	else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX))
1913 		*lengthp = sizeof (uint32_t);
1914 	else if ((strcmp(name, "blksize") == 0) && (blksize < UINT_MAX))
1915 		*lengthp = sizeof (uint32_t);
1916 	else {
1917 		/* fallback to ddi_prop_op */
1918 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1919 		    name, valuep, lengthp));
1920 	}
1921 
1922 	/* service request for the length of the property */
1923 	if (prop_op == PROP_LEN)
1924 		return (DDI_PROP_SUCCESS);
1925 
1926 	/* the length of the property and the request must match */
1927 	if (callers_length != *lengthp)
1928 		return (DDI_PROP_INVAL_ARG);
1929 
1930 	switch (prop_op) {
1931 	case PROP_LEN_AND_VAL_ALLOC:
1932 		if ((buffer = kmem_alloc(*lengthp,
1933 		    (mod_flags & DDI_PROP_CANSLEEP) ?
1934 		    KM_SLEEP : KM_NOSLEEP)) == NULL)
1935 			return (DDI_PROP_NO_MEMORY);
1936 
1937 		*(caddr_t *)valuep = buffer;	/* set callers buf ptr */
1938 		break;
1939 
1940 	case PROP_LEN_AND_VAL_BUF:
1941 		buffer = valuep;		/* get callers buf ptr */
1942 		break;
1943 
1944 	default:
1945 		return (DDI_PROP_INVAL_ARG);
1946 	}
1947 
1948 	/* transfer the value into the buffer */
1949 	if (strcmp(name, "Nblocks") == 0)
1950 		*((uint64_t *)buffer) = nblocks64;
1951 	else if (strcmp(name, "Size") == 0)
1952 		*((uint64_t *)buffer) = size64;
1953 	else if (strcmp(name, "nblocks") == 0)
1954 		*((uint32_t *)buffer) = (uint32_t)nblocks64;
1955 	else if (strcmp(name, "size") == 0)
1956 		*((uint32_t *)buffer) = (uint32_t)size64;
1957 	else if (strcmp(name, "blksize") == 0)
1958 		*((uint32_t *)buffer) = (uint32_t)blksize;
1959 	return (DDI_PROP_SUCCESS);
1960 }
1961 
1962 /*
1963  * ddi_prop_op_size: ddi_prop_op_size_blksize with DEV_BSIZE block size.
1964  */
1965 int
1966 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1967     int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64)
1968 {
1969 	return (ddi_prop_op_size_blksize(dev, dip, prop_op,
1970 	    mod_flags, name, valuep, lengthp, size64, DEV_BSIZE));
1971 }
1972 
1973 /*
1974  * Variable length props...
1975  */
1976 
1977 /*
1978  * ddi_getlongprop:	Get variable length property len+val into a buffer
1979  *		allocated by property provider via kmem_alloc. Requester
1980  *		is responsible for freeing returned property via kmem_free.
1981  *
1982  *	Arguments:
1983  *
1984  *	dev_t:	Input:	dev_t of property.
1985  *	dip:	Input:	dev_info_t pointer of child.
1986  *	flags:	Input:	Possible flag modifiers are:
1987  *		DDI_PROP_DONTPASS:	Don't pass to parent if prop not found.
1988  *		DDI_PROP_CANSLEEP:	Memory allocation may sleep.
1989  *	name:	Input:	name of property.
1990  *	valuep:	Output:	Addr of callers buffer pointer.
1991  *	lengthp:Output:	*lengthp will contain prop length on exit.
1992  *
1993  *	Possible Returns:
1994  *
1995  *		DDI_PROP_SUCCESS:	Prop found and returned.
1996  *		DDI_PROP_NOT_FOUND:	Prop not found
1997  *		DDI_PROP_UNDEFINED:	Prop explicitly undefined.
1998  *		DDI_PROP_NO_MEMORY:	Prop found, but unable to alloc mem.
1999  */
2000 
2001 int
2002 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
2003     char *name, caddr_t valuep, int *lengthp)
2004 {
2005 	return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC,
2006 	    flags, name, valuep, lengthp));
2007 }
2008 
2009 /*
2010  *
2011  * ddi_getlongprop_buf:		Get long prop into pre-allocated callers
2012  *				buffer. (no memory allocation by provider).
2013  *
2014  *	dev_t:	Input:	dev_t of property.
2015  *	dip:	Input:	dev_info_t pointer of child.
2016  *	flags:	Input:	DDI_PROP_DONTPASS or NULL
2017  *	name:	Input:	name of property
2018  *	valuep:	Input:	ptr to callers buffer.
2019  *	lengthp:I/O:	ptr to length of callers buffer on entry,
2020  *			actual length of property on exit.
2021  *
2022  *	Possible returns:
2023  *
2024  *		DDI_PROP_SUCCESS	Prop found and returned
2025  *		DDI_PROP_NOT_FOUND	Prop not found
2026  *		DDI_PROP_UNDEFINED	Prop explicitly undefined.
2027  *		DDI_PROP_BUF_TOO_SMALL	Prop found, callers buf too small,
2028  *					no value returned, but actual prop
2029  *					length returned in *lengthp
2030  *
2031  */
2032 
2033 int
2034 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
2035     char *name, caddr_t valuep, int *lengthp)
2036 {
2037 	return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
2038 	    flags, name, valuep, lengthp));
2039 }
2040 
2041 /*
2042  * Integer/boolean sized props.
2043  *
2044  * Call is value only... returns found boolean or int sized prop value or
2045  * defvalue if prop not found or is wrong length or is explicitly undefined.
2046  * Only flag is DDI_PROP_DONTPASS...
2047  *
2048  * By convention, this interface returns boolean (0) sized properties
2049  * as value (int)1.
2050  *
2051  * This never returns an error, if property not found or specifically
2052  * undefined, the input `defvalue' is returned.
2053  */
2054 
2055 int
2056 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue)
2057 {
2058 	int	propvalue = defvalue;
2059 	int	proplength = sizeof (int);
2060 	int	error;
2061 
2062 	error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF,
2063 	    flags, name, (caddr_t)&propvalue, &proplength);
2064 
2065 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
2066 		propvalue = 1;
2067 
2068 	return (propvalue);
2069 }
2070 
2071 /*
2072  * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
2073  * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
2074  */
2075 
2076 int
2077 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp)
2078 {
2079 	return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp));
2080 }
2081 
2082 /*
2083  * Allocate a struct prop_driver_data, along with 'size' bytes
2084  * for decoded property data.  This structure is freed by
2085  * calling ddi_prop_free(9F).
2086  */
2087 static void *
2088 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *))
2089 {
2090 	struct prop_driver_data *pdd;
2091 
2092 	/*
2093 	 * Allocate a structure with enough memory to store the decoded data.
2094 	 */
2095 	pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP);
2096 	pdd->pdd_size = (sizeof (struct prop_driver_data) + size);
2097 	pdd->pdd_prop_free = prop_free;
2098 
2099 	/*
2100 	 * Return a pointer to the location to put the decoded data.
2101 	 */
2102 	return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data)));
2103 }
2104 
2105 /*
2106  * Allocated the memory needed to store the encoded data in the property
2107  * handle.
2108  */
2109 static int
2110 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size)
2111 {
2112 	/*
2113 	 * If size is zero, then set data to NULL and size to 0.  This
2114 	 * is a boolean property.
2115 	 */
2116 	if (size == 0) {
2117 		ph->ph_size = 0;
2118 		ph->ph_data = NULL;
2119 		ph->ph_cur_pos = NULL;
2120 		ph->ph_save_pos = NULL;
2121 	} else {
2122 		if (ph->ph_flags == DDI_PROP_DONTSLEEP) {
2123 			ph->ph_data = kmem_zalloc(size, KM_NOSLEEP);
2124 			if (ph->ph_data == NULL)
2125 				return (DDI_PROP_NO_MEMORY);
2126 		} else
2127 			ph->ph_data = kmem_zalloc(size, KM_SLEEP);
2128 		ph->ph_size = size;
2129 		ph->ph_cur_pos = ph->ph_data;
2130 		ph->ph_save_pos = ph->ph_data;
2131 	}
2132 	return (DDI_PROP_SUCCESS);
2133 }
2134 
2135 /*
2136  * Free the space allocated by the lookup routines.  Each lookup routine
2137  * returns a pointer to the decoded data to the driver.  The driver then
2138  * passes this pointer back to us.  This data actually lives in a struct
2139  * prop_driver_data.  We use negative indexing to find the beginning of
2140  * the structure and then free the entire structure using the size and
2141  * the free routine stored in the structure.
2142  */
2143 void
2144 ddi_prop_free(void *datap)
2145 {
2146 	struct prop_driver_data *pdd;
2147 
2148 	/*
2149 	 * Get the structure
2150 	 */
2151 	pdd = (struct prop_driver_data *)
2152 	    ((caddr_t)datap - sizeof (struct prop_driver_data));
2153 	/*
2154 	 * Call the free routine to free it
2155 	 */
2156 	(*pdd->pdd_prop_free)(pdd);
2157 }
2158 
2159 /*
2160  * Free the data associated with an array of ints,
2161  * allocated with ddi_prop_decode_alloc().
2162  */
2163 static void
2164 ddi_prop_free_ints(struct prop_driver_data *pdd)
2165 {
2166 	kmem_free(pdd, pdd->pdd_size);
2167 }
2168 
2169 /*
2170  * Free a single string property or a single string contained within
2171  * the argv style return value of an array of strings.
2172  */
2173 static void
2174 ddi_prop_free_string(struct prop_driver_data *pdd)
2175 {
2176 	kmem_free(pdd, pdd->pdd_size);
2177 
2178 }
2179 
2180 /*
2181  * Free an array of strings.
2182  */
2183 static void
2184 ddi_prop_free_strings(struct prop_driver_data *pdd)
2185 {
2186 	kmem_free(pdd, pdd->pdd_size);
2187 }
2188 
2189 /*
2190  * Free the data associated with an array of bytes.
2191  */
2192 static void
2193 ddi_prop_free_bytes(struct prop_driver_data *pdd)
2194 {
2195 	kmem_free(pdd, pdd->pdd_size);
2196 }
2197 
2198 /*
2199  * Reset the current location pointer in the property handle to the
2200  * beginning of the data.
2201  */
2202 void
2203 ddi_prop_reset_pos(prop_handle_t *ph)
2204 {
2205 	ph->ph_cur_pos = ph->ph_data;
2206 	ph->ph_save_pos = ph->ph_data;
2207 }
2208 
2209 /*
2210  * Restore the current location pointer in the property handle to the
2211  * saved position.
2212  */
2213 void
2214 ddi_prop_save_pos(prop_handle_t *ph)
2215 {
2216 	ph->ph_save_pos = ph->ph_cur_pos;
2217 }
2218 
2219 /*
2220  * Save the location that the current location pointer is pointing to..
2221  */
2222 void
2223 ddi_prop_restore_pos(prop_handle_t *ph)
2224 {
2225 	ph->ph_cur_pos = ph->ph_save_pos;
2226 }
2227 
2228 /*
2229  * Property encode/decode functions
2230  */
2231 
2232 /*
2233  * Decode a single integer property
2234  */
2235 static int
2236 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements)
2237 {
2238 	int	i;
2239 	int	tmp;
2240 
2241 	/*
2242 	 * If there is nothing to decode return an error
2243 	 */
2244 	if (ph->ph_size == 0)
2245 		return (DDI_PROP_END_OF_DATA);
2246 
2247 	/*
2248 	 * Decode the property as a single integer and return it
2249 	 * in data if we were able to decode it.
2250 	 */
2251 	i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp);
2252 	if (i < DDI_PROP_RESULT_OK) {
2253 		switch (i) {
2254 		case DDI_PROP_RESULT_EOF:
2255 			return (DDI_PROP_END_OF_DATA);
2256 
2257 		case DDI_PROP_RESULT_ERROR:
2258 			return (DDI_PROP_CANNOT_DECODE);
2259 		}
2260 	}
2261 
2262 	*(int *)data = tmp;
2263 	*nelements = 1;
2264 	return (DDI_PROP_SUCCESS);
2265 }
2266 
2267 /*
2268  * Decode a single 64 bit integer property
2269  */
2270 static int
2271 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements)
2272 {
2273 	int	i;
2274 	int64_t	tmp;
2275 
2276 	/*
2277 	 * If there is nothing to decode return an error
2278 	 */
2279 	if (ph->ph_size == 0)
2280 		return (DDI_PROP_END_OF_DATA);
2281 
2282 	/*
2283 	 * Decode the property as a single integer and return it
2284 	 * in data if we were able to decode it.
2285 	 */
2286 	i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp);
2287 	if (i < DDI_PROP_RESULT_OK) {
2288 		switch (i) {
2289 		case DDI_PROP_RESULT_EOF:
2290 			return (DDI_PROP_END_OF_DATA);
2291 
2292 		case DDI_PROP_RESULT_ERROR:
2293 			return (DDI_PROP_CANNOT_DECODE);
2294 		}
2295 	}
2296 
2297 	*(int64_t *)data = tmp;
2298 	*nelements = 1;
2299 	return (DDI_PROP_SUCCESS);
2300 }
2301 
2302 /*
2303  * Decode an array of integers property
2304  */
2305 static int
2306 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements)
2307 {
2308 	int	i;
2309 	int	cnt = 0;
2310 	int	*tmp;
2311 	int	*intp;
2312 	int	n;
2313 
2314 	/*
2315 	 * Figure out how many array elements there are by going through the
2316 	 * data without decoding it first and counting.
2317 	 */
2318 	for (;;) {
2319 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL);
2320 		if (i < 0)
2321 			break;
2322 		cnt++;
2323 	}
2324 
2325 	/*
2326 	 * If there are no elements return an error
2327 	 */
2328 	if (cnt == 0)
2329 		return (DDI_PROP_END_OF_DATA);
2330 
2331 	/*
2332 	 * If we cannot skip through the data, we cannot decode it
2333 	 */
2334 	if (i == DDI_PROP_RESULT_ERROR)
2335 		return (DDI_PROP_CANNOT_DECODE);
2336 
2337 	/*
2338 	 * Reset the data pointer to the beginning of the encoded data
2339 	 */
2340 	ddi_prop_reset_pos(ph);
2341 
2342 	/*
2343 	 * Allocated memory to store the decoded value in.
2344 	 */
2345 	intp = ddi_prop_decode_alloc((cnt * sizeof (int)),
2346 	    ddi_prop_free_ints);
2347 
2348 	/*
2349 	 * Decode each element and place it in the space we just allocated
2350 	 */
2351 	tmp = intp;
2352 	for (n = 0; n < cnt; n++, tmp++) {
2353 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp);
2354 		if (i < DDI_PROP_RESULT_OK) {
2355 			/*
2356 			 * Free the space we just allocated
2357 			 * and return an error.
2358 			 */
2359 			ddi_prop_free(intp);
2360 			switch (i) {
2361 			case DDI_PROP_RESULT_EOF:
2362 				return (DDI_PROP_END_OF_DATA);
2363 
2364 			case DDI_PROP_RESULT_ERROR:
2365 				return (DDI_PROP_CANNOT_DECODE);
2366 			}
2367 		}
2368 	}
2369 
2370 	*nelements = cnt;
2371 	*(int **)data = intp;
2372 
2373 	return (DDI_PROP_SUCCESS);
2374 }
2375 
2376 /*
2377  * Decode a 64 bit integer array property
2378  */
2379 static int
2380 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements)
2381 {
2382 	int	i;
2383 	int	n;
2384 	int	cnt = 0;
2385 	int64_t	*tmp;
2386 	int64_t	*intp;
2387 
2388 	/*
2389 	 * Count the number of array elements by going
2390 	 * through the data without decoding it.
2391 	 */
2392 	for (;;) {
2393 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL);
2394 		if (i < 0)
2395 			break;
2396 		cnt++;
2397 	}
2398 
2399 	/*
2400 	 * If there are no elements return an error
2401 	 */
2402 	if (cnt == 0)
2403 		return (DDI_PROP_END_OF_DATA);
2404 
2405 	/*
2406 	 * If we cannot skip through the data, we cannot decode it
2407 	 */
2408 	if (i == DDI_PROP_RESULT_ERROR)
2409 		return (DDI_PROP_CANNOT_DECODE);
2410 
2411 	/*
2412 	 * Reset the data pointer to the beginning of the encoded data
2413 	 */
2414 	ddi_prop_reset_pos(ph);
2415 
2416 	/*
2417 	 * Allocate memory to store the decoded value.
2418 	 */
2419 	intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)),
2420 	    ddi_prop_free_ints);
2421 
2422 	/*
2423 	 * Decode each element and place it in the space allocated
2424 	 */
2425 	tmp = intp;
2426 	for (n = 0; n < cnt; n++, tmp++) {
2427 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp);
2428 		if (i < DDI_PROP_RESULT_OK) {
2429 			/*
2430 			 * Free the space we just allocated
2431 			 * and return an error.
2432 			 */
2433 			ddi_prop_free(intp);
2434 			switch (i) {
2435 			case DDI_PROP_RESULT_EOF:
2436 				return (DDI_PROP_END_OF_DATA);
2437 
2438 			case DDI_PROP_RESULT_ERROR:
2439 				return (DDI_PROP_CANNOT_DECODE);
2440 			}
2441 		}
2442 	}
2443 
2444 	*nelements = cnt;
2445 	*(int64_t **)data = intp;
2446 
2447 	return (DDI_PROP_SUCCESS);
2448 }
2449 
2450 /*
2451  * Encode an array of integers property (Can be one element)
2452  */
2453 int
2454 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements)
2455 {
2456 	int	i;
2457 	int	*tmp;
2458 	int	cnt;
2459 	int	size;
2460 
2461 	/*
2462 	 * If there is no data, we cannot do anything
2463 	 */
2464 	if (nelements == 0)
2465 		return (DDI_PROP_CANNOT_ENCODE);
2466 
2467 	/*
2468 	 * Get the size of an encoded int.
2469 	 */
2470 	size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2471 
2472 	if (size < DDI_PROP_RESULT_OK) {
2473 		switch (size) {
2474 		case DDI_PROP_RESULT_EOF:
2475 			return (DDI_PROP_END_OF_DATA);
2476 
2477 		case DDI_PROP_RESULT_ERROR:
2478 			return (DDI_PROP_CANNOT_ENCODE);
2479 		}
2480 	}
2481 
2482 	/*
2483 	 * Allocate space in the handle to store the encoded int.
2484 	 */
2485 	if (ddi_prop_encode_alloc(ph, size * nelements) !=
2486 	    DDI_PROP_SUCCESS)
2487 		return (DDI_PROP_NO_MEMORY);
2488 
2489 	/*
2490 	 * Encode the array of ints.
2491 	 */
2492 	tmp = (int *)data;
2493 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2494 		i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp);
2495 		if (i < DDI_PROP_RESULT_OK) {
2496 			switch (i) {
2497 			case DDI_PROP_RESULT_EOF:
2498 				return (DDI_PROP_END_OF_DATA);
2499 
2500 			case DDI_PROP_RESULT_ERROR:
2501 				return (DDI_PROP_CANNOT_ENCODE);
2502 			}
2503 		}
2504 	}
2505 
2506 	return (DDI_PROP_SUCCESS);
2507 }
2508 
2509 
2510 /*
2511  * Encode a 64 bit integer array property
2512  */
2513 int
2514 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements)
2515 {
2516 	int i;
2517 	int cnt;
2518 	int size;
2519 	int64_t *tmp;
2520 
2521 	/*
2522 	 * If there is no data, we cannot do anything
2523 	 */
2524 	if (nelements == 0)
2525 		return (DDI_PROP_CANNOT_ENCODE);
2526 
2527 	/*
2528 	 * Get the size of an encoded 64 bit int.
2529 	 */
2530 	size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL);
2531 
2532 	if (size < DDI_PROP_RESULT_OK) {
2533 		switch (size) {
2534 		case DDI_PROP_RESULT_EOF:
2535 			return (DDI_PROP_END_OF_DATA);
2536 
2537 		case DDI_PROP_RESULT_ERROR:
2538 			return (DDI_PROP_CANNOT_ENCODE);
2539 		}
2540 	}
2541 
2542 	/*
2543 	 * Allocate space in the handle to store the encoded int.
2544 	 */
2545 	if (ddi_prop_encode_alloc(ph, size * nelements) !=
2546 	    DDI_PROP_SUCCESS)
2547 		return (DDI_PROP_NO_MEMORY);
2548 
2549 	/*
2550 	 * Encode the array of ints.
2551 	 */
2552 	tmp = (int64_t *)data;
2553 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2554 		i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp);
2555 		if (i < DDI_PROP_RESULT_OK) {
2556 			switch (i) {
2557 			case DDI_PROP_RESULT_EOF:
2558 				return (DDI_PROP_END_OF_DATA);
2559 
2560 			case DDI_PROP_RESULT_ERROR:
2561 				return (DDI_PROP_CANNOT_ENCODE);
2562 			}
2563 		}
2564 	}
2565 
2566 	return (DDI_PROP_SUCCESS);
2567 }
2568 
2569 /*
2570  * Decode a single string property
2571  */
2572 static int
2573 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements)
2574 {
2575 	char		*tmp;
2576 	char		*str;
2577 	int		i;
2578 	int		size;
2579 
2580 	/*
2581 	 * If there is nothing to decode return an error
2582 	 */
2583 	if (ph->ph_size == 0)
2584 		return (DDI_PROP_END_OF_DATA);
2585 
2586 	/*
2587 	 * Get the decoded size of the encoded string.
2588 	 */
2589 	size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2590 	if (size < DDI_PROP_RESULT_OK) {
2591 		switch (size) {
2592 		case DDI_PROP_RESULT_EOF:
2593 			return (DDI_PROP_END_OF_DATA);
2594 
2595 		case DDI_PROP_RESULT_ERROR:
2596 			return (DDI_PROP_CANNOT_DECODE);
2597 		}
2598 	}
2599 
2600 	/*
2601 	 * Allocated memory to store the decoded value in.
2602 	 */
2603 	str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string);
2604 
2605 	ddi_prop_reset_pos(ph);
2606 
2607 	/*
2608 	 * Decode the str and place it in the space we just allocated
2609 	 */
2610 	tmp = str;
2611 	i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp);
2612 	if (i < DDI_PROP_RESULT_OK) {
2613 		/*
2614 		 * Free the space we just allocated
2615 		 * and return an error.
2616 		 */
2617 		ddi_prop_free(str);
2618 		switch (i) {
2619 		case DDI_PROP_RESULT_EOF:
2620 			return (DDI_PROP_END_OF_DATA);
2621 
2622 		case DDI_PROP_RESULT_ERROR:
2623 			return (DDI_PROP_CANNOT_DECODE);
2624 		}
2625 	}
2626 
2627 	*(char **)data = str;
2628 	*nelements = 1;
2629 
2630 	return (DDI_PROP_SUCCESS);
2631 }
2632 
2633 /*
2634  * Decode an array of strings.
2635  */
2636 int
2637 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements)
2638 {
2639 	int		cnt = 0;
2640 	char		**strs;
2641 	char		**tmp;
2642 	char		*ptr;
2643 	int		i;
2644 	int		n;
2645 	int		size;
2646 	size_t		nbytes;
2647 
2648 	/*
2649 	 * Figure out how many array elements there are by going through the
2650 	 * data without decoding it first and counting.
2651 	 */
2652 	for (;;) {
2653 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL);
2654 		if (i < 0)
2655 			break;
2656 		cnt++;
2657 	}
2658 
2659 	/*
2660 	 * If there are no elements return an error
2661 	 */
2662 	if (cnt == 0)
2663 		return (DDI_PROP_END_OF_DATA);
2664 
2665 	/*
2666 	 * If we cannot skip through the data, we cannot decode it
2667 	 */
2668 	if (i == DDI_PROP_RESULT_ERROR)
2669 		return (DDI_PROP_CANNOT_DECODE);
2670 
2671 	/*
2672 	 * Reset the data pointer to the beginning of the encoded data
2673 	 */
2674 	ddi_prop_reset_pos(ph);
2675 
2676 	/*
2677 	 * Figure out how much memory we need for the sum total
2678 	 */
2679 	nbytes = (cnt + 1) * sizeof (char *);
2680 
2681 	for (n = 0; n < cnt; n++) {
2682 		/*
2683 		 * Get the decoded size of the current encoded string.
2684 		 */
2685 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2686 		if (size < DDI_PROP_RESULT_OK) {
2687 			switch (size) {
2688 			case DDI_PROP_RESULT_EOF:
2689 				return (DDI_PROP_END_OF_DATA);
2690 
2691 			case DDI_PROP_RESULT_ERROR:
2692 				return (DDI_PROP_CANNOT_DECODE);
2693 			}
2694 		}
2695 
2696 		nbytes += size;
2697 	}
2698 
2699 	/*
2700 	 * Allocate memory in which to store the decoded strings.
2701 	 */
2702 	strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings);
2703 
2704 	/*
2705 	 * Set up pointers for each string by figuring out yet
2706 	 * again how long each string is.
2707 	 */
2708 	ddi_prop_reset_pos(ph);
2709 	ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *));
2710 	for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2711 		/*
2712 		 * Get the decoded size of the current encoded string.
2713 		 */
2714 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL);
2715 		if (size < DDI_PROP_RESULT_OK) {
2716 			ddi_prop_free(strs);
2717 			switch (size) {
2718 			case DDI_PROP_RESULT_EOF:
2719 				return (DDI_PROP_END_OF_DATA);
2720 
2721 			case DDI_PROP_RESULT_ERROR:
2722 				return (DDI_PROP_CANNOT_DECODE);
2723 			}
2724 		}
2725 
2726 		*tmp = ptr;
2727 		ptr += size;
2728 	}
2729 
2730 	/*
2731 	 * String array is terminated by a NULL
2732 	 */
2733 	*tmp = NULL;
2734 
2735 	/*
2736 	 * Finally, we can decode each string
2737 	 */
2738 	ddi_prop_reset_pos(ph);
2739 	for (tmp = strs, n = 0; n < cnt; n++, tmp++) {
2740 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp);
2741 		if (i < DDI_PROP_RESULT_OK) {
2742 			/*
2743 			 * Free the space we just allocated
2744 			 * and return an error
2745 			 */
2746 			ddi_prop_free(strs);
2747 			switch (i) {
2748 			case DDI_PROP_RESULT_EOF:
2749 				return (DDI_PROP_END_OF_DATA);
2750 
2751 			case DDI_PROP_RESULT_ERROR:
2752 				return (DDI_PROP_CANNOT_DECODE);
2753 			}
2754 		}
2755 	}
2756 
2757 	*(char ***)data = strs;
2758 	*nelements = cnt;
2759 
2760 	return (DDI_PROP_SUCCESS);
2761 }
2762 
2763 /*
2764  * Encode a string.
2765  */
2766 int
2767 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements)
2768 {
2769 	char		**tmp;
2770 	int		size;
2771 	int		i;
2772 
2773 	/*
2774 	 * If there is no data, we cannot do anything
2775 	 */
2776 	if (nelements == 0)
2777 		return (DDI_PROP_CANNOT_ENCODE);
2778 
2779 	/*
2780 	 * Get the size of the encoded string.
2781 	 */
2782 	tmp = (char **)data;
2783 	size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2784 	if (size < DDI_PROP_RESULT_OK) {
2785 		switch (size) {
2786 		case DDI_PROP_RESULT_EOF:
2787 			return (DDI_PROP_END_OF_DATA);
2788 
2789 		case DDI_PROP_RESULT_ERROR:
2790 			return (DDI_PROP_CANNOT_ENCODE);
2791 		}
2792 	}
2793 
2794 	/*
2795 	 * Allocate space in the handle to store the encoded string.
2796 	 */
2797 	if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS)
2798 		return (DDI_PROP_NO_MEMORY);
2799 
2800 	ddi_prop_reset_pos(ph);
2801 
2802 	/*
2803 	 * Encode the string.
2804 	 */
2805 	tmp = (char **)data;
2806 	i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2807 	if (i < DDI_PROP_RESULT_OK) {
2808 		switch (i) {
2809 		case DDI_PROP_RESULT_EOF:
2810 			return (DDI_PROP_END_OF_DATA);
2811 
2812 		case DDI_PROP_RESULT_ERROR:
2813 			return (DDI_PROP_CANNOT_ENCODE);
2814 		}
2815 	}
2816 
2817 	return (DDI_PROP_SUCCESS);
2818 }
2819 
2820 
2821 /*
2822  * Encode an array of strings.
2823  */
2824 int
2825 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements)
2826 {
2827 	int		cnt = 0;
2828 	char		**tmp;
2829 	int		size;
2830 	uint_t		total_size;
2831 	int		i;
2832 
2833 	/*
2834 	 * If there is no data, we cannot do anything
2835 	 */
2836 	if (nelements == 0)
2837 		return (DDI_PROP_CANNOT_ENCODE);
2838 
2839 	/*
2840 	 * Get the total size required to encode all the strings.
2841 	 */
2842 	total_size = 0;
2843 	tmp = (char **)data;
2844 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2845 		size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp);
2846 		if (size < DDI_PROP_RESULT_OK) {
2847 			switch (size) {
2848 			case DDI_PROP_RESULT_EOF:
2849 				return (DDI_PROP_END_OF_DATA);
2850 
2851 			case DDI_PROP_RESULT_ERROR:
2852 				return (DDI_PROP_CANNOT_ENCODE);
2853 			}
2854 		}
2855 		total_size += (uint_t)size;
2856 	}
2857 
2858 	/*
2859 	 * Allocate space in the handle to store the encoded strings.
2860 	 */
2861 	if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS)
2862 		return (DDI_PROP_NO_MEMORY);
2863 
2864 	ddi_prop_reset_pos(ph);
2865 
2866 	/*
2867 	 * Encode the array of strings.
2868 	 */
2869 	tmp = (char **)data;
2870 	for (cnt = 0; cnt < nelements; cnt++, tmp++) {
2871 		i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp);
2872 		if (i < DDI_PROP_RESULT_OK) {
2873 			switch (i) {
2874 			case DDI_PROP_RESULT_EOF:
2875 				return (DDI_PROP_END_OF_DATA);
2876 
2877 			case DDI_PROP_RESULT_ERROR:
2878 				return (DDI_PROP_CANNOT_ENCODE);
2879 			}
2880 		}
2881 	}
2882 
2883 	return (DDI_PROP_SUCCESS);
2884 }
2885 
2886 
2887 /*
2888  * Decode an array of bytes.
2889  */
2890 static int
2891 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements)
2892 {
2893 	uchar_t		*tmp;
2894 	int		nbytes;
2895 	int		i;
2896 
2897 	/*
2898 	 * If there are no elements return an error
2899 	 */
2900 	if (ph->ph_size == 0)
2901 		return (DDI_PROP_END_OF_DATA);
2902 
2903 	/*
2904 	 * Get the size of the encoded array of bytes.
2905 	 */
2906 	nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE,
2907 	    data, ph->ph_size);
2908 	if (nbytes < DDI_PROP_RESULT_OK) {
2909 		switch (nbytes) {
2910 		case DDI_PROP_RESULT_EOF:
2911 			return (DDI_PROP_END_OF_DATA);
2912 
2913 		case DDI_PROP_RESULT_ERROR:
2914 			return (DDI_PROP_CANNOT_DECODE);
2915 		}
2916 	}
2917 
2918 	/*
2919 	 * Allocated memory to store the decoded value in.
2920 	 */
2921 	tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes);
2922 
2923 	/*
2924 	 * Decode each element and place it in the space we just allocated
2925 	 */
2926 	i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes);
2927 	if (i < DDI_PROP_RESULT_OK) {
2928 		/*
2929 		 * Free the space we just allocated
2930 		 * and return an error
2931 		 */
2932 		ddi_prop_free(tmp);
2933 		switch (i) {
2934 		case DDI_PROP_RESULT_EOF:
2935 			return (DDI_PROP_END_OF_DATA);
2936 
2937 		case DDI_PROP_RESULT_ERROR:
2938 			return (DDI_PROP_CANNOT_DECODE);
2939 		}
2940 	}
2941 
2942 	*(uchar_t **)data = tmp;
2943 	*nelements = nbytes;
2944 
2945 	return (DDI_PROP_SUCCESS);
2946 }
2947 
2948 /*
2949  * Encode an array of bytes.
2950  */
2951 int
2952 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements)
2953 {
2954 	int		size;
2955 	int		i;
2956 
2957 	/*
2958 	 * If there are no elements, then this is a boolean property,
2959 	 * so just create a property handle with no data and return.
2960 	 */
2961 	if (nelements == 0) {
2962 		(void) ddi_prop_encode_alloc(ph, 0);
2963 		return (DDI_PROP_SUCCESS);
2964 	}
2965 
2966 	/*
2967 	 * Get the size of the encoded array of bytes.
2968 	 */
2969 	size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data,
2970 	    nelements);
2971 	if (size < DDI_PROP_RESULT_OK) {
2972 		switch (size) {
2973 		case DDI_PROP_RESULT_EOF:
2974 			return (DDI_PROP_END_OF_DATA);
2975 
2976 		case DDI_PROP_RESULT_ERROR:
2977 			return (DDI_PROP_CANNOT_DECODE);
2978 		}
2979 	}
2980 
2981 	/*
2982 	 * Allocate space in the handle to store the encoded bytes.
2983 	 */
2984 	if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS)
2985 		return (DDI_PROP_NO_MEMORY);
2986 
2987 	/*
2988 	 * Encode the array of bytes.
2989 	 */
2990 	i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data,
2991 	    nelements);
2992 	if (i < DDI_PROP_RESULT_OK) {
2993 		switch (i) {
2994 		case DDI_PROP_RESULT_EOF:
2995 			return (DDI_PROP_END_OF_DATA);
2996 
2997 		case DDI_PROP_RESULT_ERROR:
2998 			return (DDI_PROP_CANNOT_ENCODE);
2999 		}
3000 	}
3001 
3002 	return (DDI_PROP_SUCCESS);
3003 }
3004 
3005 /*
3006  * OBP 1275 integer, string and byte operators.
3007  *
3008  * DDI_PROP_CMD_DECODE:
3009  *
3010  *	DDI_PROP_RESULT_ERROR:		cannot decode the data
3011  *	DDI_PROP_RESULT_EOF:		end of data
3012  *	DDI_PROP_OK:			data was decoded
3013  *
3014  * DDI_PROP_CMD_ENCODE:
3015  *
3016  *	DDI_PROP_RESULT_ERROR:		cannot encode the data
3017  *	DDI_PROP_RESULT_EOF:		end of data
3018  *	DDI_PROP_OK:			data was encoded
3019  *
3020  * DDI_PROP_CMD_SKIP:
3021  *
3022  *	DDI_PROP_RESULT_ERROR:		cannot skip the data
3023  *	DDI_PROP_RESULT_EOF:		end of data
3024  *	DDI_PROP_OK:			data was skipped
3025  *
3026  * DDI_PROP_CMD_GET_ESIZE:
3027  *
3028  *	DDI_PROP_RESULT_ERROR:		cannot get encoded size
3029  *	DDI_PROP_RESULT_EOF:		end of data
3030  *	> 0:				the encoded size
3031  *
3032  * DDI_PROP_CMD_GET_DSIZE:
3033  *
3034  *	DDI_PROP_RESULT_ERROR:		cannot get decoded size
3035  *	DDI_PROP_RESULT_EOF:		end of data
3036  *	> 0:				the decoded size
3037  */
3038 
3039 /*
3040  * OBP 1275 integer operator
3041  *
3042  * OBP properties are a byte stream of data, so integers may not be
3043  * properly aligned.  Therefore we need to copy them one byte at a time.
3044  */
3045 int
3046 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data)
3047 {
3048 	int	i;
3049 
3050 	switch (cmd) {
3051 	case DDI_PROP_CMD_DECODE:
3052 		/*
3053 		 * Check that there is encoded data
3054 		 */
3055 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
3056 			return (DDI_PROP_RESULT_ERROR);
3057 		if (ph->ph_flags & PH_FROM_PROM) {
3058 			i = MIN(ph->ph_size, PROP_1275_INT_SIZE);
3059 			if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3060 			    ph->ph_size - i))
3061 				return (DDI_PROP_RESULT_ERROR);
3062 		} else {
3063 			if (ph->ph_size < sizeof (int) ||
3064 			    ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3065 			    ph->ph_size - sizeof (int))))
3066 				return (DDI_PROP_RESULT_ERROR);
3067 		}
3068 
3069 		/*
3070 		 * Copy the integer, using the implementation-specific
3071 		 * copy function if the property is coming from the PROM.
3072 		 */
3073 		if (ph->ph_flags & PH_FROM_PROM) {
3074 			*data = impl_ddi_prop_int_from_prom(
3075 			    (uchar_t *)ph->ph_cur_pos,
3076 			    (ph->ph_size < PROP_1275_INT_SIZE) ?
3077 			    ph->ph_size : PROP_1275_INT_SIZE);
3078 		} else {
3079 			bcopy(ph->ph_cur_pos, data, sizeof (int));
3080 		}
3081 
3082 		/*
3083 		 * Move the current location to the start of the next
3084 		 * bit of undecoded data.
3085 		 */
3086 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3087 		    PROP_1275_INT_SIZE;
3088 		return (DDI_PROP_RESULT_OK);
3089 
3090 	case DDI_PROP_CMD_ENCODE:
3091 		/*
3092 		 * Check that there is room to encoded the data
3093 		 */
3094 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3095 		    ph->ph_size < PROP_1275_INT_SIZE ||
3096 		    ((int *)ph->ph_cur_pos > ((int *)ph->ph_data +
3097 		    ph->ph_size - sizeof (int))))
3098 			return (DDI_PROP_RESULT_ERROR);
3099 
3100 		/*
3101 		 * Encode the integer into the byte stream one byte at a
3102 		 * time.
3103 		 */
3104 		bcopy(data, ph->ph_cur_pos, sizeof (int));
3105 
3106 		/*
3107 		 * Move the current location to the start of the next bit of
3108 		 * space where we can store encoded data.
3109 		 */
3110 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
3111 		return (DDI_PROP_RESULT_OK);
3112 
3113 	case DDI_PROP_CMD_SKIP:
3114 		/*
3115 		 * Check that there is encoded data
3116 		 */
3117 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3118 		    ph->ph_size < PROP_1275_INT_SIZE)
3119 			return (DDI_PROP_RESULT_ERROR);
3120 
3121 
3122 		if ((caddr_t)ph->ph_cur_pos ==
3123 		    (caddr_t)ph->ph_data + ph->ph_size) {
3124 			return (DDI_PROP_RESULT_EOF);
3125 		} else if ((caddr_t)ph->ph_cur_pos >
3126 		    (caddr_t)ph->ph_data + ph->ph_size) {
3127 			return (DDI_PROP_RESULT_EOF);
3128 		}
3129 
3130 		/*
3131 		 * Move the current location to the start of the next bit of
3132 		 * undecoded data.
3133 		 */
3134 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE;
3135 		return (DDI_PROP_RESULT_OK);
3136 
3137 	case DDI_PROP_CMD_GET_ESIZE:
3138 		/*
3139 		 * Return the size of an encoded integer on OBP
3140 		 */
3141 		return (PROP_1275_INT_SIZE);
3142 
3143 	case DDI_PROP_CMD_GET_DSIZE:
3144 		/*
3145 		 * Return the size of a decoded integer on the system.
3146 		 */
3147 		return (sizeof (int));
3148 
3149 	default:
3150 #ifdef DEBUG
3151 		panic("ddi_prop_1275_int: %x impossible", cmd);
3152 		/*NOTREACHED*/
3153 #else
3154 		return (DDI_PROP_RESULT_ERROR);
3155 #endif	/* DEBUG */
3156 	}
3157 }
3158 
3159 /*
3160  * 64 bit integer operator.
3161  *
3162  * This is an extension, defined by Sun, to the 1275 integer
3163  * operator.  This routine handles the encoding/decoding of
3164  * 64 bit integer properties.
3165  */
3166 int
3167 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data)
3168 {
3169 
3170 	switch (cmd) {
3171 	case DDI_PROP_CMD_DECODE:
3172 		/*
3173 		 * Check that there is encoded data
3174 		 */
3175 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0)
3176 			return (DDI_PROP_RESULT_ERROR);
3177 		if (ph->ph_flags & PH_FROM_PROM) {
3178 			return (DDI_PROP_RESULT_ERROR);
3179 		} else {
3180 			if (ph->ph_size < sizeof (int64_t) ||
3181 			    ((int64_t *)ph->ph_cur_pos >
3182 			    ((int64_t *)ph->ph_data +
3183 			    ph->ph_size - sizeof (int64_t))))
3184 				return (DDI_PROP_RESULT_ERROR);
3185 		}
3186 		/*
3187 		 * Copy the integer, using the implementation-specific
3188 		 * copy function if the property is coming from the PROM.
3189 		 */
3190 		if (ph->ph_flags & PH_FROM_PROM) {
3191 			return (DDI_PROP_RESULT_ERROR);
3192 		} else {
3193 			bcopy(ph->ph_cur_pos, data, sizeof (int64_t));
3194 		}
3195 
3196 		/*
3197 		 * Move the current location to the start of the next
3198 		 * bit of undecoded data.
3199 		 */
3200 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3201 		    sizeof (int64_t);
3202 			return (DDI_PROP_RESULT_OK);
3203 
3204 	case DDI_PROP_CMD_ENCODE:
3205 		/*
3206 		 * Check that there is room to encoded the data
3207 		 */
3208 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3209 		    ph->ph_size < sizeof (int64_t) ||
3210 		    ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data +
3211 		    ph->ph_size - sizeof (int64_t))))
3212 			return (DDI_PROP_RESULT_ERROR);
3213 
3214 		/*
3215 		 * Encode the integer into the byte stream one byte at a
3216 		 * time.
3217 		 */
3218 		bcopy(data, ph->ph_cur_pos, sizeof (int64_t));
3219 
3220 		/*
3221 		 * Move the current location to the start of the next bit of
3222 		 * space where we can store encoded data.
3223 		 */
3224 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3225 		    sizeof (int64_t);
3226 		return (DDI_PROP_RESULT_OK);
3227 
3228 	case DDI_PROP_CMD_SKIP:
3229 		/*
3230 		 * Check that there is encoded data
3231 		 */
3232 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3233 		    ph->ph_size < sizeof (int64_t))
3234 			return (DDI_PROP_RESULT_ERROR);
3235 
3236 		if ((caddr_t)ph->ph_cur_pos ==
3237 		    (caddr_t)ph->ph_data + ph->ph_size) {
3238 			return (DDI_PROP_RESULT_EOF);
3239 		} else if ((caddr_t)ph->ph_cur_pos >
3240 		    (caddr_t)ph->ph_data + ph->ph_size) {
3241 			return (DDI_PROP_RESULT_EOF);
3242 		}
3243 
3244 		/*
3245 		 * Move the current location to the start of
3246 		 * the next bit of undecoded data.
3247 		 */
3248 		ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos +
3249 		    sizeof (int64_t);
3250 			return (DDI_PROP_RESULT_OK);
3251 
3252 	case DDI_PROP_CMD_GET_ESIZE:
3253 		/*
3254 		 * Return the size of an encoded integer on OBP
3255 		 */
3256 		return (sizeof (int64_t));
3257 
3258 	case DDI_PROP_CMD_GET_DSIZE:
3259 		/*
3260 		 * Return the size of a decoded integer on the system.
3261 		 */
3262 		return (sizeof (int64_t));
3263 
3264 	default:
3265 #ifdef DEBUG
3266 		panic("ddi_prop_int64_op: %x impossible", cmd);
3267 		/*NOTREACHED*/
3268 #else
3269 		return (DDI_PROP_RESULT_ERROR);
3270 #endif  /* DEBUG */
3271 	}
3272 }
3273 
3274 /*
3275  * OBP 1275 string operator.
3276  *
3277  * OBP strings are NULL terminated.
3278  */
3279 int
3280 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data)
3281 {
3282 	int	n;
3283 	char	*p;
3284 	char	*end;
3285 
3286 	switch (cmd) {
3287 	case DDI_PROP_CMD_DECODE:
3288 		/*
3289 		 * Check that there is encoded data
3290 		 */
3291 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3292 			return (DDI_PROP_RESULT_ERROR);
3293 		}
3294 
3295 		/*
3296 		 * Match DDI_PROP_CMD_GET_DSIZE logic for when to stop and
3297 		 * how to NULL terminate result.
3298 		 */
3299 		p = (char *)ph->ph_cur_pos;
3300 		end = (char *)ph->ph_data + ph->ph_size;
3301 		if (p >= end)
3302 			return (DDI_PROP_RESULT_EOF);
3303 
3304 		while (p < end) {
3305 			*data++ = *p;
3306 			if (*p++ == 0) {	/* NULL from OBP */
3307 				ph->ph_cur_pos = p;
3308 				return (DDI_PROP_RESULT_OK);
3309 			}
3310 		}
3311 
3312 		/*
3313 		 * If OBP did not NULL terminate string, which happens
3314 		 * (at least) for 'true'/'false' boolean values, account for
3315 		 * the space and store null termination on decode.
3316 		 */
3317 		ph->ph_cur_pos = p;
3318 		*data = 0;
3319 		return (DDI_PROP_RESULT_OK);
3320 
3321 	case DDI_PROP_CMD_ENCODE:
3322 		/*
3323 		 * Check that there is room to encoded the data
3324 		 */
3325 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3326 			return (DDI_PROP_RESULT_ERROR);
3327 		}
3328 
3329 		n = strlen(data) + 1;
3330 		if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3331 		    ph->ph_size - n)) {
3332 			return (DDI_PROP_RESULT_ERROR);
3333 		}
3334 
3335 		/*
3336 		 * Copy the NULL terminated string
3337 		 */
3338 		bcopy(data, ph->ph_cur_pos, n);
3339 
3340 		/*
3341 		 * Move the current location to the start of the next bit of
3342 		 * space where we can store encoded data.
3343 		 */
3344 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + n;
3345 		return (DDI_PROP_RESULT_OK);
3346 
3347 	case DDI_PROP_CMD_SKIP:
3348 		/*
3349 		 * Check that there is encoded data
3350 		 */
3351 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0) {
3352 			return (DDI_PROP_RESULT_ERROR);
3353 		}
3354 
3355 		/*
3356 		 * Return the string length plus one for the NULL
3357 		 * We know the size of the property, we need to
3358 		 * ensure that the string is properly formatted,
3359 		 * since we may be looking up random OBP data.
3360 		 */
3361 		p = (char *)ph->ph_cur_pos;
3362 		end = (char *)ph->ph_data + ph->ph_size;
3363 		if (p >= end)
3364 			return (DDI_PROP_RESULT_EOF);
3365 
3366 		while (p < end) {
3367 			if (*p++ == 0) {	/* NULL from OBP */
3368 				ph->ph_cur_pos = p;
3369 				return (DDI_PROP_RESULT_OK);
3370 			}
3371 		}
3372 
3373 		/*
3374 		 * Accommodate the fact that OBP does not always NULL
3375 		 * terminate strings.
3376 		 */
3377 		ph->ph_cur_pos = p;
3378 		return (DDI_PROP_RESULT_OK);
3379 
3380 	case DDI_PROP_CMD_GET_ESIZE:
3381 		/*
3382 		 * Return the size of the encoded string on OBP.
3383 		 */
3384 		return (strlen(data) + 1);
3385 
3386 	case DDI_PROP_CMD_GET_DSIZE:
3387 		/*
3388 		 * Return the string length plus one for the NULL.
3389 		 * We know the size of the property, we need to
3390 		 * ensure that the string is properly formatted,
3391 		 * since we may be looking up random OBP data.
3392 		 */
3393 		p = (char *)ph->ph_cur_pos;
3394 		end = (char *)ph->ph_data + ph->ph_size;
3395 		if (p >= end)
3396 			return (DDI_PROP_RESULT_EOF);
3397 
3398 		for (n = 0; p < end; n++) {
3399 			if (*p++ == 0) {	/* NULL from OBP */
3400 				ph->ph_cur_pos = p;
3401 				return (n + 1);
3402 			}
3403 		}
3404 
3405 		/*
3406 		 * If OBP did not NULL terminate string, which happens for
3407 		 * 'true'/'false' boolean values, account for the space
3408 		 * to store null termination here.
3409 		 */
3410 		ph->ph_cur_pos = p;
3411 		return (n + 1);
3412 
3413 	default:
3414 #ifdef DEBUG
3415 		panic("ddi_prop_1275_string: %x impossible", cmd);
3416 		/*NOTREACHED*/
3417 #else
3418 		return (DDI_PROP_RESULT_ERROR);
3419 #endif	/* DEBUG */
3420 	}
3421 }
3422 
3423 /*
3424  * OBP 1275 byte operator
3425  *
3426  * Caller must specify the number of bytes to get.  OBP encodes bytes
3427  * as a byte so there is a 1-to-1 translation.
3428  */
3429 int
3430 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data,
3431 	uint_t nelements)
3432 {
3433 	switch (cmd) {
3434 	case DDI_PROP_CMD_DECODE:
3435 		/*
3436 		 * Check that there is encoded data
3437 		 */
3438 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3439 		    ph->ph_size < nelements ||
3440 		    ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3441 		    ph->ph_size - nelements)))
3442 			return (DDI_PROP_RESULT_ERROR);
3443 
3444 		/*
3445 		 * Copy out the bytes
3446 		 */
3447 		bcopy(ph->ph_cur_pos, data, nelements);
3448 
3449 		/*
3450 		 * Move the current location
3451 		 */
3452 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3453 		return (DDI_PROP_RESULT_OK);
3454 
3455 	case DDI_PROP_CMD_ENCODE:
3456 		/*
3457 		 * Check that there is room to encode the data
3458 		 */
3459 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3460 		    ph->ph_size < nelements ||
3461 		    ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3462 		    ph->ph_size - nelements)))
3463 			return (DDI_PROP_RESULT_ERROR);
3464 
3465 		/*
3466 		 * Copy in the bytes
3467 		 */
3468 		bcopy(data, ph->ph_cur_pos, nelements);
3469 
3470 		/*
3471 		 * Move the current location to the start of the next bit of
3472 		 * space where we can store encoded data.
3473 		 */
3474 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3475 		return (DDI_PROP_RESULT_OK);
3476 
3477 	case DDI_PROP_CMD_SKIP:
3478 		/*
3479 		 * Check that there is encoded data
3480 		 */
3481 		if (ph->ph_cur_pos == NULL || ph->ph_size == 0 ||
3482 		    ph->ph_size < nelements)
3483 			return (DDI_PROP_RESULT_ERROR);
3484 
3485 		if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data +
3486 		    ph->ph_size - nelements))
3487 			return (DDI_PROP_RESULT_EOF);
3488 
3489 		/*
3490 		 * Move the current location
3491 		 */
3492 		ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements;
3493 		return (DDI_PROP_RESULT_OK);
3494 
3495 	case DDI_PROP_CMD_GET_ESIZE:
3496 		/*
3497 		 * The size in bytes of the encoded size is the
3498 		 * same as the decoded size provided by the caller.
3499 		 */
3500 		return (nelements);
3501 
3502 	case DDI_PROP_CMD_GET_DSIZE:
3503 		/*
3504 		 * Just return the number of bytes specified by the caller.
3505 		 */
3506 		return (nelements);
3507 
3508 	default:
3509 #ifdef DEBUG
3510 		panic("ddi_prop_1275_bytes: %x impossible", cmd);
3511 		/*NOTREACHED*/
3512 #else
3513 		return (DDI_PROP_RESULT_ERROR);
3514 #endif	/* DEBUG */
3515 	}
3516 }
3517 
3518 /*
3519  * Used for properties that come from the OBP, hardware configuration files,
3520  * or that are created by calls to ddi_prop_update(9F).
3521  */
3522 static struct prop_handle_ops prop_1275_ops = {
3523 	ddi_prop_1275_int,
3524 	ddi_prop_1275_string,
3525 	ddi_prop_1275_bytes,
3526 	ddi_prop_int64_op
3527 };
3528 
3529 
3530 /*
3531  * Interface to create/modify a managed property on child's behalf...
3532  * Flags interpreted are:
3533  *	DDI_PROP_CANSLEEP:	Allow memory allocation to sleep.
3534  *	DDI_PROP_SYSTEM_DEF:	Manipulate system list rather than driver list.
3535  *
3536  * Use same dev_t when modifying or undefining a property.
3537  * Search for properties with DDI_DEV_T_ANY to match first named
3538  * property on the list.
3539  *
3540  * Properties are stored LIFO and subsequently will match the first
3541  * `matching' instance.
3542  */
3543 
3544 /*
3545  * ddi_prop_add:	Add a software defined property
3546  */
3547 
3548 /*
3549  * define to get a new ddi_prop_t.
3550  * km_flags are KM_SLEEP or KM_NOSLEEP.
3551  */
3552 
3553 #define	DDI_NEW_PROP_T(km_flags)	\
3554 	(kmem_zalloc(sizeof (ddi_prop_t), km_flags))
3555 
3556 static int
3557 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags,
3558     char *name, caddr_t value, int length)
3559 {
3560 	ddi_prop_t	*new_propp, *propp;
3561 	ddi_prop_t	**list_head = &(DEVI(dip)->devi_drv_prop_ptr);
3562 	int		km_flags = KM_NOSLEEP;
3563 	int		name_buf_len;
3564 
3565 	/*
3566 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero return error.
3567 	 */
3568 
3569 	if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0)
3570 		return (DDI_PROP_INVAL_ARG);
3571 
3572 	if (flags & DDI_PROP_CANSLEEP)
3573 		km_flags = KM_SLEEP;
3574 
3575 	if (flags & DDI_PROP_SYSTEM_DEF)
3576 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
3577 	else if (flags & DDI_PROP_HW_DEF)
3578 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
3579 
3580 	if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL)  {
3581 		cmn_err(CE_CONT, prop_no_mem_msg, name);
3582 		return (DDI_PROP_NO_MEMORY);
3583 	}
3584 
3585 	/*
3586 	 * If dev is major number 0, then we need to do a ddi_name_to_major
3587 	 * to get the real major number for the device.  This needs to be
3588 	 * done because some drivers need to call ddi_prop_create in their
3589 	 * attach routines but they don't have a dev.  By creating the dev
3590 	 * ourself if the major number is 0, drivers will not have to know what
3591 	 * their major number.	They can just create a dev with major number
3592 	 * 0 and pass it in.  For device 0, we will be doing a little extra
3593 	 * work by recreating the same dev that we already have, but its the
3594 	 * price you pay :-).
3595 	 *
3596 	 * This fixes bug #1098060.
3597 	 */
3598 	if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) {
3599 		new_propp->prop_dev =
3600 		    makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name),
3601 		    getminor(dev));
3602 	} else
3603 		new_propp->prop_dev = dev;
3604 
3605 	/*
3606 	 * Allocate space for property name and copy it in...
3607 	 */
3608 
3609 	name_buf_len = strlen(name) + 1;
3610 	new_propp->prop_name = kmem_alloc(name_buf_len, km_flags);
3611 	if (new_propp->prop_name == 0)	{
3612 		kmem_free(new_propp, sizeof (ddi_prop_t));
3613 		cmn_err(CE_CONT, prop_no_mem_msg, name);
3614 		return (DDI_PROP_NO_MEMORY);
3615 	}
3616 	bcopy(name, new_propp->prop_name, name_buf_len);
3617 
3618 	/*
3619 	 * Set the property type
3620 	 */
3621 	new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK;
3622 
3623 	/*
3624 	 * Set length and value ONLY if not an explicit property undefine:
3625 	 * NOTE: value and length are zero for explicit undefines.
3626 	 */
3627 
3628 	if (flags & DDI_PROP_UNDEF_IT) {
3629 		new_propp->prop_flags |= DDI_PROP_UNDEF_IT;
3630 	} else {
3631 		if ((new_propp->prop_len = length) != 0) {
3632 			new_propp->prop_val = kmem_alloc(length, km_flags);
3633 			if (new_propp->prop_val == 0)  {
3634 				kmem_free(new_propp->prop_name, name_buf_len);
3635 				kmem_free(new_propp, sizeof (ddi_prop_t));
3636 				cmn_err(CE_CONT, prop_no_mem_msg, name);
3637 				return (DDI_PROP_NO_MEMORY);
3638 			}
3639 			bcopy(value, new_propp->prop_val, length);
3640 		}
3641 	}
3642 
3643 	/*
3644 	 * Link property into beginning of list. (Properties are LIFO order.)
3645 	 */
3646 
3647 	mutex_enter(&(DEVI(dip)->devi_lock));
3648 	propp = *list_head;
3649 	new_propp->prop_next = propp;
3650 	*list_head = new_propp;
3651 	mutex_exit(&(DEVI(dip)->devi_lock));
3652 	return (DDI_PROP_SUCCESS);
3653 }
3654 
3655 
3656 /*
3657  * ddi_prop_change:	Modify a software managed property value
3658  *
3659  *			Set new length and value if found.
3660  *			returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or
3661  *			input name is the NULL string.
3662  *			returns DDI_PROP_NO_MEMORY if unable to allocate memory
3663  *
3664  *			Note: an undef can be modified to be a define,
3665  *			(you can't go the other way.)
3666  */
3667 
3668 static int
3669 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags,
3670     char *name, caddr_t value, int length)
3671 {
3672 	ddi_prop_t	*propp;
3673 	ddi_prop_t	**ppropp;
3674 	caddr_t		p = NULL;
3675 
3676 	if ((dev == DDI_DEV_T_ANY) || (name == NULL) || (strlen(name) == 0))
3677 		return (DDI_PROP_INVAL_ARG);
3678 
3679 	/*
3680 	 * Preallocate buffer, even if we don't need it...
3681 	 */
3682 	if (length != 0)  {
3683 		p = kmem_alloc(length, (flags & DDI_PROP_CANSLEEP) ?
3684 		    KM_SLEEP : KM_NOSLEEP);
3685 		if (p == NULL)	{
3686 			cmn_err(CE_CONT, prop_no_mem_msg, name);
3687 			return (DDI_PROP_NO_MEMORY);
3688 		}
3689 	}
3690 
3691 	/*
3692 	 * If the dev_t value contains DDI_MAJOR_T_UNKNOWN for the major
3693 	 * number, a real dev_t value should be created based upon the dip's
3694 	 * binding driver.  See ddi_prop_add...
3695 	 */
3696 	if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN)
3697 		dev = makedevice(
3698 		    ddi_name_to_major(DEVI(dip)->devi_binding_name),
3699 		    getminor(dev));
3700 
3701 	/*
3702 	 * Check to see if the property exists.  If so we modify it.
3703 	 * Else we create it by calling ddi_prop_add().
3704 	 */
3705 	mutex_enter(&(DEVI(dip)->devi_lock));
3706 	ppropp = &DEVI(dip)->devi_drv_prop_ptr;
3707 	if (flags & DDI_PROP_SYSTEM_DEF)
3708 		ppropp = &DEVI(dip)->devi_sys_prop_ptr;
3709 	else if (flags & DDI_PROP_HW_DEF)
3710 		ppropp = &DEVI(dip)->devi_hw_prop_ptr;
3711 
3712 	if ((propp = i_ddi_prop_search(dev, name, flags, ppropp)) != NULL) {
3713 		/*
3714 		 * Need to reallocate buffer?  If so, do it
3715 		 * carefully (reuse same space if new prop
3716 		 * is same size and non-NULL sized).
3717 		 */
3718 		if (length != 0)
3719 			bcopy(value, p, length);
3720 
3721 		if (propp->prop_len != 0)
3722 			kmem_free(propp->prop_val, propp->prop_len);
3723 
3724 		propp->prop_len = length;
3725 		propp->prop_val = p;
3726 		propp->prop_flags &= ~DDI_PROP_UNDEF_IT;
3727 		mutex_exit(&(DEVI(dip)->devi_lock));
3728 		return (DDI_PROP_SUCCESS);
3729 	}
3730 
3731 	mutex_exit(&(DEVI(dip)->devi_lock));
3732 	if (length != 0)
3733 		kmem_free(p, length);
3734 
3735 	return (ddi_prop_add(dev, dip, flags, name, value, length));
3736 }
3737 
3738 /*
3739  * Common update routine used to update and encode a property.	Creates
3740  * a property handle, calls the property encode routine, figures out if
3741  * the property already exists and updates if it does.	Otherwise it
3742  * creates if it does not exist.
3743  */
3744 int
3745 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags,
3746     char *name, void *data, uint_t nelements,
3747     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
3748 {
3749 	prop_handle_t	ph;
3750 	int		rval;
3751 	uint_t		ourflags;
3752 
3753 	/*
3754 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3755 	 * return error.
3756 	 */
3757 	if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3758 		return (DDI_PROP_INVAL_ARG);
3759 
3760 	/*
3761 	 * Create the handle
3762 	 */
3763 	ph.ph_data = NULL;
3764 	ph.ph_cur_pos = NULL;
3765 	ph.ph_save_pos = NULL;
3766 	ph.ph_size = 0;
3767 	ph.ph_ops = &prop_1275_ops;
3768 
3769 	/*
3770 	 * ourflags:
3771 	 * For compatibility with the old interfaces.  The old interfaces
3772 	 * didn't sleep by default and slept when the flag was set.  These
3773 	 * interfaces to the opposite.	So the old interfaces now set the
3774 	 * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep.
3775 	 *
3776 	 * ph.ph_flags:
3777 	 * Blocked data or unblocked data allocation
3778 	 * for ph.ph_data in ddi_prop_encode_alloc()
3779 	 */
3780 	if (flags & DDI_PROP_DONTSLEEP) {
3781 		ourflags = flags;
3782 		ph.ph_flags = DDI_PROP_DONTSLEEP;
3783 	} else {
3784 		ourflags = flags | DDI_PROP_CANSLEEP;
3785 		ph.ph_flags = DDI_PROP_CANSLEEP;
3786 	}
3787 
3788 	/*
3789 	 * Encode the data and store it in the property handle by
3790 	 * calling the prop_encode routine.
3791 	 */
3792 	if ((rval = (*prop_create)(&ph, data, nelements)) !=
3793 	    DDI_PROP_SUCCESS) {
3794 		if (rval == DDI_PROP_NO_MEMORY)
3795 			cmn_err(CE_CONT, prop_no_mem_msg, name);
3796 		if (ph.ph_size != 0)
3797 			kmem_free(ph.ph_data, ph.ph_size);
3798 		return (rval);
3799 	}
3800 
3801 	/*
3802 	 * The old interfaces use a stacking approach to creating
3803 	 * properties.	If we are being called from the old interfaces,
3804 	 * the DDI_PROP_STACK_CREATE flag will be set, so we just do a
3805 	 * create without checking.
3806 	 */
3807 	if (flags & DDI_PROP_STACK_CREATE) {
3808 		rval = ddi_prop_add(match_dev, dip,
3809 		    ourflags, name, ph.ph_data, ph.ph_size);
3810 	} else {
3811 		rval = ddi_prop_change(match_dev, dip,
3812 		    ourflags, name, ph.ph_data, ph.ph_size);
3813 	}
3814 
3815 	/*
3816 	 * Free the encoded data allocated in the prop_encode routine.
3817 	 */
3818 	if (ph.ph_size != 0)
3819 		kmem_free(ph.ph_data, ph.ph_size);
3820 
3821 	return (rval);
3822 }
3823 
3824 
3825 /*
3826  * ddi_prop_create:	Define a managed property:
3827  *			See above for details.
3828  */
3829 
3830 int
3831 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3832     char *name, caddr_t value, int length)
3833 {
3834 	if (!(flag & DDI_PROP_CANSLEEP)) {
3835 		flag |= DDI_PROP_DONTSLEEP;
3836 #ifdef DDI_PROP_DEBUG
3837 		if (length != 0)
3838 			cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete,"
3839 			    "use ddi_prop_update (prop = %s, node = %s%d)",
3840 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
3841 #endif /* DDI_PROP_DEBUG */
3842 	}
3843 	flag &= ~DDI_PROP_SYSTEM_DEF;
3844 	return (ddi_prop_update_common(dev, dip,
3845 	    (flag | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY), name,
3846 	    value, length, ddi_prop_fm_encode_bytes));
3847 }
3848 
3849 int
3850 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
3851     char *name, caddr_t value, int length)
3852 {
3853 	if (!(flag & DDI_PROP_CANSLEEP))
3854 		flag |= DDI_PROP_DONTSLEEP;
3855 	return (ddi_prop_update_common(dev, dip,
3856 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
3857 	    DDI_PROP_TYPE_ANY),
3858 	    name, value, length, ddi_prop_fm_encode_bytes));
3859 }
3860 
3861 int
3862 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3863     char *name, caddr_t value, int length)
3864 {
3865 	ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3866 
3867 	/*
3868 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3869 	 * return error.
3870 	 */
3871 	if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3872 		return (DDI_PROP_INVAL_ARG);
3873 
3874 	if (!(flag & DDI_PROP_CANSLEEP))
3875 		flag |= DDI_PROP_DONTSLEEP;
3876 	flag &= ~DDI_PROP_SYSTEM_DEF;
3877 	if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_NOTPROM), name) == 0)
3878 		return (DDI_PROP_NOT_FOUND);
3879 
3880 	return (ddi_prop_update_common(dev, dip,
3881 	    (flag | DDI_PROP_TYPE_BYTE), name,
3882 	    value, length, ddi_prop_fm_encode_bytes));
3883 }
3884 
3885 int
3886 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
3887     char *name, caddr_t value, int length)
3888 {
3889 	ASSERT((flag & DDI_PROP_TYPE_MASK) == 0);
3890 
3891 	/*
3892 	 * If dev_t is DDI_DEV_T_ANY or name's length is zero,
3893 	 * return error.
3894 	 */
3895 	if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0)
3896 		return (DDI_PROP_INVAL_ARG);
3897 
3898 	if (ddi_prop_exists(dev, dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0)
3899 		return (DDI_PROP_NOT_FOUND);
3900 
3901 	if (!(flag & DDI_PROP_CANSLEEP))
3902 		flag |= DDI_PROP_DONTSLEEP;
3903 	return (ddi_prop_update_common(dev, dip,
3904 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE),
3905 	    name, value, length, ddi_prop_fm_encode_bytes));
3906 }
3907 
3908 
3909 /*
3910  * Common lookup routine used to lookup and decode a property.
3911  * Creates a property handle, searches for the raw encoded data,
3912  * fills in the handle, and calls the property decode functions
3913  * passed in.
3914  *
3915  * This routine is not static because ddi_bus_prop_op() which lives in
3916  * ddi_impl.c calls it.  No driver should be calling this routine.
3917  */
3918 int
3919 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip,
3920     uint_t flags, char *name, void *data, uint_t *nelements,
3921     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3922 {
3923 	int		rval;
3924 	uint_t		ourflags;
3925 	prop_handle_t	ph;
3926 
3927 	if ((match_dev == DDI_DEV_T_NONE) ||
3928 	    (name == NULL) || (strlen(name) == 0))
3929 		return (DDI_PROP_INVAL_ARG);
3930 
3931 	ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags :
3932 	    flags | DDI_PROP_CANSLEEP;
3933 
3934 	/*
3935 	 * Get the encoded data
3936 	 */
3937 	bzero(&ph, sizeof (prop_handle_t));
3938 
3939 	if (flags & DDI_UNBND_DLPI2) {
3940 		/*
3941 		 * For unbound dlpi style-2 devices, index into
3942 		 * the devnames' array and search the global
3943 		 * property list.
3944 		 */
3945 		ourflags &= ~DDI_UNBND_DLPI2;
3946 		rval = i_ddi_prop_search_global(match_dev,
3947 		    ourflags, name, &ph.ph_data, &ph.ph_size);
3948 	} else {
3949 		rval = ddi_prop_search_common(match_dev, dip,
3950 		    PROP_LEN_AND_VAL_ALLOC, ourflags, name,
3951 		    &ph.ph_data, &ph.ph_size);
3952 
3953 	}
3954 
3955 	if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) {
3956 		ASSERT(ph.ph_data == NULL);
3957 		ASSERT(ph.ph_size == 0);
3958 		return (rval);
3959 	}
3960 
3961 	/*
3962 	 * If the encoded data came from a OBP or software
3963 	 * use the 1275 OBP decode/encode routines.
3964 	 */
3965 	ph.ph_cur_pos = ph.ph_data;
3966 	ph.ph_save_pos = ph.ph_data;
3967 	ph.ph_ops = &prop_1275_ops;
3968 	ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0;
3969 
3970 	rval = (*prop_decoder)(&ph, data, nelements);
3971 
3972 	/*
3973 	 * Free the encoded data
3974 	 */
3975 	if (ph.ph_size != 0)
3976 		kmem_free(ph.ph_data, ph.ph_size);
3977 
3978 	return (rval);
3979 }
3980 
3981 /*
3982  * Lookup and return an array of composite properties.  The driver must
3983  * provide the decode routine.
3984  */
3985 int
3986 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip,
3987     uint_t flags, char *name, void *data, uint_t *nelements,
3988     int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements))
3989 {
3990 	return (ddi_prop_lookup_common(match_dev, dip,
3991 	    (flags | DDI_PROP_TYPE_COMPOSITE), name,
3992 	    data, nelements, prop_decoder));
3993 }
3994 
3995 /*
3996  * Return 1 if a property exists (no type checking done).
3997  * Return 0 if it does not exist.
3998  */
3999 int
4000 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name)
4001 {
4002 	int	i;
4003 	uint_t	x = 0;
4004 
4005 	i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS,
4006 	    flags | DDI_PROP_TYPE_MASK, name, NULL, &x);
4007 	return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275);
4008 }
4009 
4010 
4011 /*
4012  * Update an array of composite properties.  The driver must
4013  * provide the encode routine.
4014  */
4015 int
4016 ddi_prop_update(dev_t match_dev, dev_info_t *dip,
4017     char *name, void *data, uint_t nelements,
4018     int (*prop_create)(prop_handle_t *, void *data, uint_t nelements))
4019 {
4020 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE,
4021 	    name, data, nelements, prop_create));
4022 }
4023 
4024 /*
4025  * Get a single integer or boolean property and return it.
4026  * If the property does not exists, or cannot be decoded,
4027  * then return the defvalue passed in.
4028  *
4029  * This routine always succeeds.
4030  */
4031 int
4032 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
4033     char *name, int defvalue)
4034 {
4035 	int	data;
4036 	uint_t	nelements;
4037 	int	rval;
4038 
4039 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4040 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4041 #ifdef DEBUG
4042 		if (dip != NULL) {
4043 			cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag"
4044 			    " 0x%x (prop = %s, node = %s%d)", flags,
4045 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
4046 		}
4047 #endif /* DEBUG */
4048 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4049 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4050 	}
4051 
4052 	if ((rval = ddi_prop_lookup_common(match_dev, dip,
4053 	    (flags | DDI_PROP_TYPE_INT), name, &data, &nelements,
4054 	    ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) {
4055 		if (rval == DDI_PROP_END_OF_DATA)
4056 			data = 1;
4057 		else
4058 			data = defvalue;
4059 	}
4060 	return (data);
4061 }
4062 
4063 /*
4064  * Get a single 64 bit integer or boolean property and return it.
4065  * If the property does not exists, or cannot be decoded,
4066  * then return the defvalue passed in.
4067  *
4068  * This routine always succeeds.
4069  */
4070 int64_t
4071 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
4072     char *name, int64_t defvalue)
4073 {
4074 	int64_t	data;
4075 	uint_t	nelements;
4076 	int	rval;
4077 
4078 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4079 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4080 #ifdef DEBUG
4081 		if (dip != NULL) {
4082 			cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag"
4083 			    " 0x%x (prop = %s, node = %s%d)", flags,
4084 			    name, ddi_driver_name(dip), ddi_get_instance(dip));
4085 		}
4086 #endif /* DEBUG */
4087 		return (DDI_PROP_INVAL_ARG);
4088 	}
4089 
4090 	if ((rval = ddi_prop_lookup_common(match_dev, dip,
4091 	    (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
4092 	    name, &data, &nelements, ddi_prop_fm_decode_int64))
4093 	    != DDI_PROP_SUCCESS) {
4094 		if (rval == DDI_PROP_END_OF_DATA)
4095 			data = 1;
4096 		else
4097 			data = defvalue;
4098 	}
4099 	return (data);
4100 }
4101 
4102 /*
4103  * Get an array of integer property
4104  */
4105 int
4106 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4107     char *name, int **data, uint_t *nelements)
4108 {
4109 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4110 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4111 #ifdef DEBUG
4112 		if (dip != NULL) {
4113 			cmn_err(CE_WARN, "ddi_prop_lookup_int_array: "
4114 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4115 			    flags, name, ddi_driver_name(dip),
4116 			    ddi_get_instance(dip));
4117 		}
4118 #endif /* DEBUG */
4119 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4120 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4121 	}
4122 
4123 	return (ddi_prop_lookup_common(match_dev, dip,
4124 	    (flags | DDI_PROP_TYPE_INT), name, data,
4125 	    nelements, ddi_prop_fm_decode_ints));
4126 }
4127 
4128 /*
4129  * Get an array of 64 bit integer properties
4130  */
4131 int
4132 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4133     char *name, int64_t **data, uint_t *nelements)
4134 {
4135 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4136 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4137 #ifdef DEBUG
4138 		if (dip != NULL) {
4139 			cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: "
4140 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4141 			    flags, name, ddi_driver_name(dip),
4142 			    ddi_get_instance(dip));
4143 		}
4144 #endif /* DEBUG */
4145 		return (DDI_PROP_INVAL_ARG);
4146 	}
4147 
4148 	return (ddi_prop_lookup_common(match_dev, dip,
4149 	    (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM),
4150 	    name, data, nelements, ddi_prop_fm_decode_int64_array));
4151 }
4152 
4153 /*
4154  * Update a single integer property.  If the property exists on the drivers
4155  * property list it updates, else it creates it.
4156  */
4157 int
4158 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
4159     char *name, int data)
4160 {
4161 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
4162 	    name, &data, 1, ddi_prop_fm_encode_ints));
4163 }
4164 
4165 /*
4166  * Update a single 64 bit integer property.
4167  * Update the driver property list if it exists, else create it.
4168  */
4169 int
4170 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
4171     char *name, int64_t data)
4172 {
4173 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
4174 	    name, &data, 1, ddi_prop_fm_encode_int64));
4175 }
4176 
4177 int
4178 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
4179     char *name, int data)
4180 {
4181 	return (ddi_prop_update_common(match_dev, dip,
4182 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
4183 	    name, &data, 1, ddi_prop_fm_encode_ints));
4184 }
4185 
4186 int
4187 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
4188     char *name, int64_t data)
4189 {
4190 	return (ddi_prop_update_common(match_dev, dip,
4191 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
4192 	    name, &data, 1, ddi_prop_fm_encode_int64));
4193 }
4194 
4195 /*
4196  * Update an array of integer property.  If the property exists on the drivers
4197  * property list it updates, else it creates it.
4198  */
4199 int
4200 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
4201     char *name, int *data, uint_t nelements)
4202 {
4203 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT,
4204 	    name, data, nelements, ddi_prop_fm_encode_ints));
4205 }
4206 
4207 /*
4208  * Update an array of 64 bit integer properties.
4209  * Update the driver property list if it exists, else create it.
4210  */
4211 int
4212 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
4213     char *name, int64_t *data, uint_t nelements)
4214 {
4215 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64,
4216 	    name, data, nelements, ddi_prop_fm_encode_int64));
4217 }
4218 
4219 int
4220 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
4221     char *name, int64_t *data, uint_t nelements)
4222 {
4223 	return (ddi_prop_update_common(match_dev, dip,
4224 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64,
4225 	    name, data, nelements, ddi_prop_fm_encode_int64));
4226 }
4227 
4228 int
4229 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
4230     char *name, int *data, uint_t nelements)
4231 {
4232 	return (ddi_prop_update_common(match_dev, dip,
4233 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT,
4234 	    name, data, nelements, ddi_prop_fm_encode_ints));
4235 }
4236 
4237 /*
4238  * Get a single string property.
4239  */
4240 int
4241 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
4242     char *name, char **data)
4243 {
4244 	uint_t x;
4245 
4246 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4247 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4248 #ifdef DEBUG
4249 		if (dip != NULL) {
4250 			cmn_err(CE_WARN, "%s: invalid flag 0x%x "
4251 			    "(prop = %s, node = %s%d); invalid bits ignored",
4252 			    "ddi_prop_lookup_string", flags, name,
4253 			    ddi_driver_name(dip), ddi_get_instance(dip));
4254 		}
4255 #endif /* DEBUG */
4256 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4257 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4258 	}
4259 
4260 	return (ddi_prop_lookup_common(match_dev, dip,
4261 	    (flags | DDI_PROP_TYPE_STRING), name, data,
4262 	    &x, ddi_prop_fm_decode_string));
4263 }
4264 
4265 /*
4266  * Get an array of strings property.
4267  */
4268 int
4269 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4270     char *name, char ***data, uint_t *nelements)
4271 {
4272 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4273 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4274 #ifdef DEBUG
4275 		if (dip != NULL) {
4276 			cmn_err(CE_WARN, "ddi_prop_lookup_string_array: "
4277 			    "invalid flag 0x%x (prop = %s, node = %s%d)",
4278 			    flags, name, ddi_driver_name(dip),
4279 			    ddi_get_instance(dip));
4280 		}
4281 #endif /* DEBUG */
4282 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4283 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4284 	}
4285 
4286 	return (ddi_prop_lookup_common(match_dev, dip,
4287 	    (flags | DDI_PROP_TYPE_STRING), name, data,
4288 	    nelements, ddi_prop_fm_decode_strings));
4289 }
4290 
4291 /*
4292  * Update a single string property.
4293  */
4294 int
4295 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
4296     char *name, char *data)
4297 {
4298 	return (ddi_prop_update_common(match_dev, dip,
4299 	    DDI_PROP_TYPE_STRING, name, &data, 1,
4300 	    ddi_prop_fm_encode_string));
4301 }
4302 
4303 int
4304 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
4305     char *name, char *data)
4306 {
4307 	return (ddi_prop_update_common(match_dev, dip,
4308 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4309 	    name, &data, 1, ddi_prop_fm_encode_string));
4310 }
4311 
4312 
4313 /*
4314  * Update an array of strings property.
4315  */
4316 int
4317 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4318     char *name, char **data, uint_t nelements)
4319 {
4320 	return (ddi_prop_update_common(match_dev, dip,
4321 	    DDI_PROP_TYPE_STRING, name, data, nelements,
4322 	    ddi_prop_fm_encode_strings));
4323 }
4324 
4325 int
4326 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
4327     char *name, char **data, uint_t nelements)
4328 {
4329 	return (ddi_prop_update_common(match_dev, dip,
4330 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING,
4331 	    name, data, nelements,
4332 	    ddi_prop_fm_encode_strings));
4333 }
4334 
4335 
4336 /*
4337  * Get an array of bytes property.
4338  */
4339 int
4340 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
4341     char *name, uchar_t **data, uint_t *nelements)
4342 {
4343 	if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4344 	    LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) {
4345 #ifdef DEBUG
4346 		if (dip != NULL) {
4347 			cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: "
4348 			    " invalid flag 0x%x (prop = %s, node = %s%d)",
4349 			    flags, name, ddi_driver_name(dip),
4350 			    ddi_get_instance(dip));
4351 		}
4352 #endif /* DEBUG */
4353 		flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
4354 		    LDI_DEV_T_ANY | DDI_UNBND_DLPI2;
4355 	}
4356 
4357 	return (ddi_prop_lookup_common(match_dev, dip,
4358 	    (flags | DDI_PROP_TYPE_BYTE), name, data,
4359 	    nelements, ddi_prop_fm_decode_bytes));
4360 }
4361 
4362 /*
4363  * Update an array of bytes property.
4364  */
4365 int
4366 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4367     char *name, uchar_t *data, uint_t nelements)
4368 {
4369 	if (nelements == 0)
4370 		return (DDI_PROP_INVAL_ARG);
4371 
4372 	return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE,
4373 	    name, data, nelements, ddi_prop_fm_encode_bytes));
4374 }
4375 
4376 
4377 int
4378 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
4379     char *name, uchar_t *data, uint_t nelements)
4380 {
4381 	if (nelements == 0)
4382 		return (DDI_PROP_INVAL_ARG);
4383 
4384 	return (ddi_prop_update_common(match_dev, dip,
4385 	    DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE,
4386 	    name, data, nelements, ddi_prop_fm_encode_bytes));
4387 }
4388 
4389 
4390 /*
4391  * ddi_prop_remove_common:	Undefine a managed property:
4392  *			Input dev_t must match dev_t when defined.
4393  *			Returns DDI_PROP_NOT_FOUND, possibly.
4394  *			DDI_PROP_INVAL_ARG is also possible if dev is
4395  *			DDI_DEV_T_ANY or incoming name is the NULL string.
4396  */
4397 int
4398 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag)
4399 {
4400 	ddi_prop_t	**list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4401 	ddi_prop_t	*propp;
4402 	ddi_prop_t	*lastpropp = NULL;
4403 
4404 	if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) ||
4405 	    (strlen(name) == 0)) {
4406 		return (DDI_PROP_INVAL_ARG);
4407 	}
4408 
4409 	if (flag & DDI_PROP_SYSTEM_DEF)
4410 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4411 	else if (flag & DDI_PROP_HW_DEF)
4412 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4413 
4414 	mutex_enter(&(DEVI(dip)->devi_lock));
4415 
4416 	for (propp = *list_head; propp != NULL; propp = propp->prop_next)  {
4417 		if (DDI_STRSAME(propp->prop_name, name) &&
4418 		    (dev == propp->prop_dev)) {
4419 			/*
4420 			 * Unlink this propp allowing for it to
4421 			 * be first in the list:
4422 			 */
4423 
4424 			if (lastpropp == NULL)
4425 				*list_head = propp->prop_next;
4426 			else
4427 				lastpropp->prop_next = propp->prop_next;
4428 
4429 			mutex_exit(&(DEVI(dip)->devi_lock));
4430 
4431 			/*
4432 			 * Free memory and return...
4433 			 */
4434 			kmem_free(propp->prop_name,
4435 			    strlen(propp->prop_name) + 1);
4436 			if (propp->prop_len != 0)
4437 				kmem_free(propp->prop_val, propp->prop_len);
4438 			kmem_free(propp, sizeof (ddi_prop_t));
4439 			return (DDI_PROP_SUCCESS);
4440 		}
4441 		lastpropp = propp;
4442 	}
4443 	mutex_exit(&(DEVI(dip)->devi_lock));
4444 	return (DDI_PROP_NOT_FOUND);
4445 }
4446 
4447 int
4448 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4449 {
4450 	return (ddi_prop_remove_common(dev, dip, name, 0));
4451 }
4452 
4453 int
4454 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name)
4455 {
4456 	return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF));
4457 }
4458 
4459 /*
4460  * e_ddi_prop_list_delete: remove a list of properties
4461  *	Note that the caller needs to provide the required protection
4462  *	(eg. devi_lock if these properties are still attached to a devi)
4463  */
4464 void
4465 e_ddi_prop_list_delete(ddi_prop_t *props)
4466 {
4467 	i_ddi_prop_list_delete(props);
4468 }
4469 
4470 /*
4471  * ddi_prop_remove_all_common:
4472  *	Used before unloading a driver to remove
4473  *	all properties. (undefines all dev_t's props.)
4474  *	Also removes `explicitly undefined' props.
4475  *	No errors possible.
4476  */
4477 void
4478 ddi_prop_remove_all_common(dev_info_t *dip, int flag)
4479 {
4480 	ddi_prop_t	**list_head;
4481 
4482 	mutex_enter(&(DEVI(dip)->devi_lock));
4483 	if (flag & DDI_PROP_SYSTEM_DEF) {
4484 		list_head = &(DEVI(dip)->devi_sys_prop_ptr);
4485 	} else if (flag & DDI_PROP_HW_DEF) {
4486 		list_head = &(DEVI(dip)->devi_hw_prop_ptr);
4487 	} else {
4488 		list_head = &(DEVI(dip)->devi_drv_prop_ptr);
4489 	}
4490 	i_ddi_prop_list_delete(*list_head);
4491 	*list_head = NULL;
4492 	mutex_exit(&(DEVI(dip)->devi_lock));
4493 }
4494 
4495 
4496 /*
4497  * ddi_prop_remove_all:		Remove all driver prop definitions.
4498  */
4499 
4500 void
4501 ddi_prop_remove_all(dev_info_t *dip)
4502 {
4503 	ddi_prop_remove_all_common(dip, 0);
4504 }
4505 
4506 /*
4507  * e_ddi_prop_remove_all:	Remove all system prop definitions.
4508  */
4509 
4510 void
4511 e_ddi_prop_remove_all(dev_info_t *dip)
4512 {
4513 	ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF);
4514 }
4515 
4516 
4517 /*
4518  * ddi_prop_undefine:	Explicitly undefine a property.  Property
4519  *			searches which match this property return
4520  *			the error code DDI_PROP_UNDEFINED.
4521  *
4522  *			Use ddi_prop_remove to negate effect of
4523  *			ddi_prop_undefine
4524  *
4525  *			See above for error returns.
4526  */
4527 
4528 int
4529 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4530 {
4531 	if (!(flag & DDI_PROP_CANSLEEP))
4532 		flag |= DDI_PROP_DONTSLEEP;
4533 	return (ddi_prop_update_common(dev, dip,
4534 	    (flag | DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT |
4535 	    DDI_PROP_TYPE_ANY), name, NULL, 0, ddi_prop_fm_encode_bytes));
4536 }
4537 
4538 int
4539 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name)
4540 {
4541 	if (!(flag & DDI_PROP_CANSLEEP))
4542 		flag |= DDI_PROP_DONTSLEEP;
4543 	return (ddi_prop_update_common(dev, dip,
4544 	    (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE |
4545 	    DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY),
4546 	    name, NULL, 0, ddi_prop_fm_encode_bytes));
4547 }
4548 
4549 /*
4550  * Code to search hardware layer (PROM), if it exists, on behalf of child.
4551  *
4552  * if input dip != child_dip, then call is on behalf of child
4553  * to search PROM, do it via ddi_prop_search_common() and ascend only
4554  * if allowed.
4555  *
4556  * if input dip == ch_dip (child_dip), call is on behalf of root driver,
4557  * to search for PROM defined props only.
4558  *
4559  * Note that the PROM search is done only if the requested dev
4560  * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties
4561  * have no associated dev, thus are automatically associated with
4562  * DDI_DEV_T_NONE.
4563  *
4564  * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer.
4565  *
4566  * Returns DDI_PROP_FOUND_1275 if found to indicate to framework
4567  * that the property resides in the prom.
4568  */
4569 int
4570 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4571     ddi_prop_op_t prop_op, int mod_flags,
4572     char *name, caddr_t valuep, int *lengthp)
4573 {
4574 	int	len;
4575 	caddr_t buffer;
4576 
4577 	/*
4578 	 * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then
4579 	 * look in caller's PROM if it's a self identifying device...
4580 	 *
4581 	 * Note that this is very similar to ddi_prop_op, but we
4582 	 * search the PROM instead of the s/w defined properties,
4583 	 * and we are called on by the parent driver to do this for
4584 	 * the child.
4585 	 */
4586 
4587 	if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) &&
4588 	    ndi_dev_is_prom_node(ch_dip) &&
4589 	    ((mod_flags & DDI_PROP_NOTPROM) == 0)) {
4590 		len = prom_getproplen((pnode_t)DEVI(ch_dip)->devi_nodeid, name);
4591 		if (len == -1) {
4592 			return (DDI_PROP_NOT_FOUND);
4593 		}
4594 
4595 		/*
4596 		 * If exists only request, we're done
4597 		 */
4598 		if (prop_op == PROP_EXISTS) {
4599 			return (DDI_PROP_FOUND_1275);
4600 		}
4601 
4602 		/*
4603 		 * If length only request or prop length == 0, get out
4604 		 */
4605 		if ((prop_op == PROP_LEN) || (len == 0)) {
4606 			*lengthp = len;
4607 			return (DDI_PROP_FOUND_1275);
4608 		}
4609 
4610 		/*
4611 		 * Allocate buffer if required... (either way `buffer'
4612 		 * is receiving address).
4613 		 */
4614 
4615 		switch (prop_op) {
4616 
4617 		case PROP_LEN_AND_VAL_ALLOC:
4618 
4619 			buffer = kmem_alloc((size_t)len,
4620 			    mod_flags & DDI_PROP_CANSLEEP ?
4621 			    KM_SLEEP : KM_NOSLEEP);
4622 			if (buffer == NULL) {
4623 				return (DDI_PROP_NO_MEMORY);
4624 			}
4625 			*(caddr_t *)valuep = buffer;
4626 			break;
4627 
4628 		case PROP_LEN_AND_VAL_BUF:
4629 
4630 			if (len > (*lengthp)) {
4631 				*lengthp = len;
4632 				return (DDI_PROP_BUF_TOO_SMALL);
4633 			}
4634 
4635 			buffer = valuep;
4636 			break;
4637 
4638 		default:
4639 			break;
4640 		}
4641 
4642 		/*
4643 		 * Call the PROM function to do the copy.
4644 		 */
4645 		(void) prom_getprop((pnode_t)DEVI(ch_dip)->devi_nodeid,
4646 		    name, buffer);
4647 
4648 		*lengthp = len; /* return the actual length to the caller */
4649 		(void) impl_fix_props(dip, ch_dip, name, len, buffer);
4650 		return (DDI_PROP_FOUND_1275);
4651 	}
4652 
4653 	return (DDI_PROP_NOT_FOUND);
4654 }
4655 
4656 /*
4657  * The ddi_bus_prop_op default bus nexus prop op function.
4658  *
4659  * Code to search hardware layer (PROM), if it exists,
4660  * on behalf of child, then, if appropriate, ascend and check
4661  * my own software defined properties...
4662  */
4663 int
4664 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
4665     ddi_prop_op_t prop_op, int mod_flags,
4666     char *name, caddr_t valuep, int *lengthp)
4667 {
4668 	int	error;
4669 
4670 	error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags,
4671 	    name, valuep, lengthp);
4672 
4673 	if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 ||
4674 	    error == DDI_PROP_BUF_TOO_SMALL)
4675 		return (error);
4676 
4677 	if (error == DDI_PROP_NO_MEMORY) {
4678 		cmn_err(CE_CONT, prop_no_mem_msg, name);
4679 		return (DDI_PROP_NO_MEMORY);
4680 	}
4681 
4682 	/*
4683 	 * Check the 'options' node as a last resort
4684 	 */
4685 	if ((mod_flags & DDI_PROP_DONTPASS) != 0)
4686 		return (DDI_PROP_NOT_FOUND);
4687 
4688 	if (ch_dip == ddi_root_node())	{
4689 		/*
4690 		 * As a last resort, when we've reached
4691 		 * the top and still haven't found the
4692 		 * property, see if the desired property
4693 		 * is attached to the options node.
4694 		 *
4695 		 * The options dip is attached right after boot.
4696 		 */
4697 		ASSERT(options_dip != NULL);
4698 		/*
4699 		 * Force the "don't pass" flag to *just* see
4700 		 * what the options node has to offer.
4701 		 */
4702 		return (ddi_prop_search_common(dev, options_dip, prop_op,
4703 		    mod_flags|DDI_PROP_DONTPASS, name, valuep,
4704 		    (uint_t *)lengthp));
4705 	}
4706 
4707 	/*
4708 	 * Otherwise, continue search with parent's s/w defined properties...
4709 	 * NOTE: Using `dip' in following call increments the level.
4710 	 */
4711 
4712 	return (ddi_prop_search_common(dev, dip, prop_op, mod_flags,
4713 	    name, valuep, (uint_t *)lengthp));
4714 }
4715 
4716 /*
4717  * External property functions used by other parts of the kernel...
4718  */
4719 
4720 /*
4721  * e_ddi_getlongprop: See comments for ddi_get_longprop.
4722  */
4723 
4724 int
4725 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags,
4726     caddr_t valuep, int *lengthp)
4727 {
4728 	_NOTE(ARGUNUSED(type))
4729 	dev_info_t *devi;
4730 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC;
4731 	int error;
4732 
4733 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4734 		return (DDI_PROP_NOT_FOUND);
4735 
4736 	error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4737 	ddi_release_devi(devi);
4738 	return (error);
4739 }
4740 
4741 /*
4742  * e_ddi_getlongprop_buf:	See comments for ddi_getlongprop_buf.
4743  */
4744 
4745 int
4746 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags,
4747     caddr_t valuep, int *lengthp)
4748 {
4749 	_NOTE(ARGUNUSED(type))
4750 	dev_info_t *devi;
4751 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4752 	int error;
4753 
4754 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4755 		return (DDI_PROP_NOT_FOUND);
4756 
4757 	error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp);
4758 	ddi_release_devi(devi);
4759 	return (error);
4760 }
4761 
4762 /*
4763  * e_ddi_getprop:	See comments for ddi_getprop.
4764  */
4765 int
4766 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue)
4767 {
4768 	_NOTE(ARGUNUSED(type))
4769 	dev_info_t *devi;
4770 	ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF;
4771 	int	propvalue = defvalue;
4772 	int	proplength = sizeof (int);
4773 	int	error;
4774 
4775 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4776 		return (defvalue);
4777 
4778 	error = cdev_prop_op(dev, devi, prop_op,
4779 	    flags, name, (caddr_t)&propvalue, &proplength);
4780 	ddi_release_devi(devi);
4781 
4782 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4783 		propvalue = 1;
4784 
4785 	return (propvalue);
4786 }
4787 
4788 /*
4789  * e_ddi_getprop_int64:
4790  *
4791  * This is a typed interfaces, but predates typed properties. With the
4792  * introduction of typed properties the framework tries to ensure
4793  * consistent use of typed interfaces. This is why TYPE_INT64 is not
4794  * part of TYPE_ANY.  E_ddi_getprop_int64 is a special case where a
4795  * typed interface invokes legacy (non-typed) interfaces:
4796  * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)).  In this case the
4797  * fact that TYPE_INT64 is not part of TYPE_ANY matters.  To support
4798  * this type of lookup as a single operation we invoke the legacy
4799  * non-typed interfaces with the special CONSUMER_TYPED bit set. The
4800  * framework ddi_prop_op(9F) implementation is expected to check for
4801  * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY
4802  * (currently TYPE_INT64).
4803  */
4804 int64_t
4805 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name,
4806     int flags, int64_t defvalue)
4807 {
4808 	_NOTE(ARGUNUSED(type))
4809 	dev_info_t	*devi;
4810 	ddi_prop_op_t	prop_op = PROP_LEN_AND_VAL_BUF;
4811 	int64_t		propvalue = defvalue;
4812 	int		proplength = sizeof (propvalue);
4813 	int		error;
4814 
4815 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4816 		return (defvalue);
4817 
4818 	error = cdev_prop_op(dev, devi, prop_op, flags |
4819 	    DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength);
4820 	ddi_release_devi(devi);
4821 
4822 	if ((error == DDI_PROP_SUCCESS) && (proplength == 0))
4823 		propvalue = 1;
4824 
4825 	return (propvalue);
4826 }
4827 
4828 /*
4829  * e_ddi_getproplen:	See comments for ddi_getproplen.
4830  */
4831 int
4832 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp)
4833 {
4834 	_NOTE(ARGUNUSED(type))
4835 	dev_info_t *devi;
4836 	ddi_prop_op_t prop_op = PROP_LEN;
4837 	int error;
4838 
4839 	if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
4840 		return (DDI_PROP_NOT_FOUND);
4841 
4842 	error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp);
4843 	ddi_release_devi(devi);
4844 	return (error);
4845 }
4846 
4847 /*
4848  * Routines to get at elements of the dev_info structure
4849  */
4850 
4851 /*
4852  * ddi_binding_name: Return the driver binding name of the devinfo node
4853  *		This is the name the OS used to bind the node to a driver.
4854  */
4855 char *
4856 ddi_binding_name(dev_info_t *dip)
4857 {
4858 	return (DEVI(dip)->devi_binding_name);
4859 }
4860 
4861 /*
4862  * ddi_driver_major: Return the major number of the driver that
4863  *		the supplied devinfo is bound to (-1 if none)
4864  */
4865 major_t
4866 ddi_driver_major(dev_info_t *devi)
4867 {
4868 	return (DEVI(devi)->devi_major);
4869 }
4870 
4871 /*
4872  * ddi_driver_name: Return the normalized driver name. this is the
4873  *		actual driver name
4874  */
4875 const char *
4876 ddi_driver_name(dev_info_t *devi)
4877 {
4878 	major_t major;
4879 
4880 	if ((major = ddi_driver_major(devi)) != (major_t)-1)
4881 		return (ddi_major_to_name(major));
4882 
4883 	return (ddi_node_name(devi));
4884 }
4885 
4886 /*
4887  * i_ddi_set_binding_name:	Set binding name.
4888  *
4889  *	Set the binding name to the given name.
4890  *	This routine is for use by the ddi implementation, not by drivers.
4891  */
4892 void
4893 i_ddi_set_binding_name(dev_info_t *dip, char *name)
4894 {
4895 	DEVI(dip)->devi_binding_name = name;
4896 
4897 }
4898 
4899 /*
4900  * ddi_get_name: A synonym of ddi_binding_name() ... returns a name
4901  * the implementation has used to bind the node to a driver.
4902  */
4903 char *
4904 ddi_get_name(dev_info_t *dip)
4905 {
4906 	return (DEVI(dip)->devi_binding_name);
4907 }
4908 
4909 /*
4910  * ddi_node_name: Return the name property of the devinfo node
4911  *		This may differ from ddi_binding_name if the node name
4912  *		does not define a binding to a driver (i.e. generic names).
4913  */
4914 char *
4915 ddi_node_name(dev_info_t *dip)
4916 {
4917 	return (DEVI(dip)->devi_node_name);
4918 }
4919 
4920 
4921 /*
4922  * ddi_get_nodeid:	Get nodeid stored in dev_info structure.
4923  */
4924 int
4925 ddi_get_nodeid(dev_info_t *dip)
4926 {
4927 	return (DEVI(dip)->devi_nodeid);
4928 }
4929 
4930 int
4931 ddi_get_instance(dev_info_t *dip)
4932 {
4933 	return (DEVI(dip)->devi_instance);
4934 }
4935 
4936 struct dev_ops *
4937 ddi_get_driver(dev_info_t *dip)
4938 {
4939 	return (DEVI(dip)->devi_ops);
4940 }
4941 
4942 void
4943 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo)
4944 {
4945 	DEVI(dip)->devi_ops = devo;
4946 }
4947 
4948 /*
4949  * ddi_set_driver_private/ddi_get_driver_private:
4950  * Get/set device driver private data in devinfo.
4951  */
4952 void
4953 ddi_set_driver_private(dev_info_t *dip, void *data)
4954 {
4955 	DEVI(dip)->devi_driver_data = data;
4956 }
4957 
4958 void *
4959 ddi_get_driver_private(dev_info_t *dip)
4960 {
4961 	return (DEVI(dip)->devi_driver_data);
4962 }
4963 
4964 /*
4965  * ddi_get_parent, ddi_get_child, ddi_get_next_sibling
4966  */
4967 
4968 dev_info_t *
4969 ddi_get_parent(dev_info_t *dip)
4970 {
4971 	return ((dev_info_t *)DEVI(dip)->devi_parent);
4972 }
4973 
4974 dev_info_t *
4975 ddi_get_child(dev_info_t *dip)
4976 {
4977 	return ((dev_info_t *)DEVI(dip)->devi_child);
4978 }
4979 
4980 dev_info_t *
4981 ddi_get_next_sibling(dev_info_t *dip)
4982 {
4983 	return ((dev_info_t *)DEVI(dip)->devi_sibling);
4984 }
4985 
4986 dev_info_t *
4987 ddi_get_next(dev_info_t *dip)
4988 {
4989 	return ((dev_info_t *)DEVI(dip)->devi_next);
4990 }
4991 
4992 void
4993 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip)
4994 {
4995 	DEVI(dip)->devi_next = DEVI(nextdip);
4996 }
4997 
4998 /*
4999  * ddi_root_node:		Return root node of devinfo tree
5000  */
5001 
5002 dev_info_t *
5003 ddi_root_node(void)
5004 {
5005 	extern dev_info_t *top_devinfo;
5006 
5007 	return (top_devinfo);
5008 }
5009 
5010 /*
5011  * Miscellaneous functions:
5012  */
5013 
5014 /*
5015  * Implementation specific hooks
5016  */
5017 
5018 void
5019 ddi_report_dev(dev_info_t *d)
5020 {
5021 	char *b;
5022 
5023 	(void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0);
5024 
5025 	/*
5026 	 * If this devinfo node has cb_ops, it's implicitly accessible from
5027 	 * userland, so we print its full name together with the instance
5028 	 * number 'abbreviation' that the driver may use internally.
5029 	 */
5030 	if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 &&
5031 	    (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) {
5032 		cmn_err(CE_CONT, "?%s%d is %s\n",
5033 		    ddi_driver_name(d), ddi_get_instance(d),
5034 		    ddi_pathname(d, b));
5035 		kmem_free(b, MAXPATHLEN);
5036 	}
5037 }
5038 
5039 /*
5040  * ddi_ctlops() is described in the assembler not to buy a new register
5041  * window when it's called and can reduce cost in climbing the device tree
5042  * without using the tail call optimization.
5043  */
5044 int
5045 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result)
5046 {
5047 	int ret;
5048 
5049 	ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE,
5050 	    (void *)&rnumber, (void *)result);
5051 
5052 	return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
5053 }
5054 
5055 int
5056 ddi_dev_nregs(dev_info_t *dev, int *result)
5057 {
5058 	return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result));
5059 }
5060 
5061 int
5062 ddi_dev_is_sid(dev_info_t *d)
5063 {
5064 	return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0));
5065 }
5066 
5067 int
5068 ddi_slaveonly(dev_info_t *d)
5069 {
5070 	return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0));
5071 }
5072 
5073 int
5074 ddi_dev_affinity(dev_info_t *a, dev_info_t *b)
5075 {
5076 	return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0));
5077 }
5078 
5079 int
5080 ddi_streams_driver(dev_info_t *dip)
5081 {
5082 	if (i_ddi_devi_attached(dip) &&
5083 	    (DEVI(dip)->devi_ops->devo_cb_ops != NULL) &&
5084 	    (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL))
5085 		return (DDI_SUCCESS);
5086 	return (DDI_FAILURE);
5087 }
5088 
5089 /*
5090  * callback free list
5091  */
5092 
5093 static int ncallbacks;
5094 static int nc_low = 170;
5095 static int nc_med = 512;
5096 static int nc_high = 2048;
5097 static struct ddi_callback *callbackq;
5098 static struct ddi_callback *callbackqfree;
5099 
5100 /*
5101  * set/run callback lists
5102  */
5103 struct	cbstats	{
5104 	kstat_named_t	cb_asked;
5105 	kstat_named_t	cb_new;
5106 	kstat_named_t	cb_run;
5107 	kstat_named_t	cb_delete;
5108 	kstat_named_t	cb_maxreq;
5109 	kstat_named_t	cb_maxlist;
5110 	kstat_named_t	cb_alloc;
5111 	kstat_named_t	cb_runouts;
5112 	kstat_named_t	cb_L2;
5113 	kstat_named_t	cb_grow;
5114 } cbstats = {
5115 	{"asked",	KSTAT_DATA_UINT32},
5116 	{"new",		KSTAT_DATA_UINT32},
5117 	{"run",		KSTAT_DATA_UINT32},
5118 	{"delete",	KSTAT_DATA_UINT32},
5119 	{"maxreq",	KSTAT_DATA_UINT32},
5120 	{"maxlist",	KSTAT_DATA_UINT32},
5121 	{"alloc",	KSTAT_DATA_UINT32},
5122 	{"runouts",	KSTAT_DATA_UINT32},
5123 	{"L2",		KSTAT_DATA_UINT32},
5124 	{"grow",	KSTAT_DATA_UINT32},
5125 };
5126 
5127 #define	nc_asked	cb_asked.value.ui32
5128 #define	nc_new		cb_new.value.ui32
5129 #define	nc_run		cb_run.value.ui32
5130 #define	nc_delete	cb_delete.value.ui32
5131 #define	nc_maxreq	cb_maxreq.value.ui32
5132 #define	nc_maxlist	cb_maxlist.value.ui32
5133 #define	nc_alloc	cb_alloc.value.ui32
5134 #define	nc_runouts	cb_runouts.value.ui32
5135 #define	nc_L2		cb_L2.value.ui32
5136 #define	nc_grow		cb_grow.value.ui32
5137 
5138 static kmutex_t ddi_callback_mutex;
5139 
5140 /*
5141  * callbacks are handled using a L1/L2 cache. The L1 cache
5142  * comes out of kmem_cache_alloc and can expand/shrink dynamically. If
5143  * we can't get callbacks from the L1 cache [because pageout is doing
5144  * I/O at the time freemem is 0], we allocate callbacks out of the
5145  * L2 cache. The L2 cache is static and depends on the memory size.
5146  * [We might also count the number of devices at probe time and
5147  * allocate one structure per device and adjust for deferred attach]
5148  */
5149 void
5150 impl_ddi_callback_init(void)
5151 {
5152 	int	i;
5153 	uint_t	physmegs;
5154 	kstat_t	*ksp;
5155 
5156 	physmegs = physmem >> (20 - PAGESHIFT);
5157 	if (physmegs < 48) {
5158 		ncallbacks = nc_low;
5159 	} else if (physmegs < 128) {
5160 		ncallbacks = nc_med;
5161 	} else {
5162 		ncallbacks = nc_high;
5163 	}
5164 
5165 	/*
5166 	 * init free list
5167 	 */
5168 	callbackq = kmem_zalloc(
5169 	    ncallbacks * sizeof (struct ddi_callback), KM_SLEEP);
5170 	for (i = 0; i < ncallbacks-1; i++)
5171 		callbackq[i].c_nfree = &callbackq[i+1];
5172 	callbackqfree = callbackq;
5173 
5174 	/* init kstats */
5175 	if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED,
5176 	    sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) {
5177 		ksp->ks_data = (void *) &cbstats;
5178 		kstat_install(ksp);
5179 	}
5180 
5181 }
5182 
5183 static void
5184 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid,
5185 	int count)
5186 {
5187 	struct ddi_callback *list, *marker, *new;
5188 	size_t size = sizeof (struct ddi_callback);
5189 
5190 	list = marker = (struct ddi_callback *)*listid;
5191 	while (list != NULL) {
5192 		if (list->c_call == funcp && list->c_arg == arg) {
5193 			list->c_count += count;
5194 			return;
5195 		}
5196 		marker = list;
5197 		list = list->c_nlist;
5198 	}
5199 	new = kmem_alloc(size, KM_NOSLEEP);
5200 	if (new == NULL) {
5201 		new = callbackqfree;
5202 		if (new == NULL) {
5203 			new = kmem_alloc_tryhard(sizeof (struct ddi_callback),
5204 			    &size, KM_NOSLEEP | KM_PANIC);
5205 			cbstats.nc_grow++;
5206 		} else {
5207 			callbackqfree = new->c_nfree;
5208 			cbstats.nc_L2++;
5209 		}
5210 	}
5211 	if (marker != NULL) {
5212 		marker->c_nlist = new;
5213 	} else {
5214 		*listid = (uintptr_t)new;
5215 	}
5216 	new->c_size = size;
5217 	new->c_nlist = NULL;
5218 	new->c_call = funcp;
5219 	new->c_arg = arg;
5220 	new->c_count = count;
5221 	cbstats.nc_new++;
5222 	cbstats.nc_alloc++;
5223 	if (cbstats.nc_alloc > cbstats.nc_maxlist)
5224 		cbstats.nc_maxlist = cbstats.nc_alloc;
5225 }
5226 
5227 void
5228 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid)
5229 {
5230 	mutex_enter(&ddi_callback_mutex);
5231 	cbstats.nc_asked++;
5232 	if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq)
5233 		cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run);
5234 	(void) callback_insert(funcp, arg, listid, 1);
5235 	mutex_exit(&ddi_callback_mutex);
5236 }
5237 
5238 static void
5239 real_callback_run(void *Queue)
5240 {
5241 	int (*funcp)(caddr_t);
5242 	caddr_t arg;
5243 	int count, rval;
5244 	uintptr_t *listid;
5245 	struct ddi_callback *list, *marker;
5246 	int check_pending = 1;
5247 	int pending = 0;
5248 
5249 	do {
5250 		mutex_enter(&ddi_callback_mutex);
5251 		listid = Queue;
5252 		list = (struct ddi_callback *)*listid;
5253 		if (list == NULL) {
5254 			mutex_exit(&ddi_callback_mutex);
5255 			return;
5256 		}
5257 		if (check_pending) {
5258 			marker = list;
5259 			while (marker != NULL) {
5260 				pending += marker->c_count;
5261 				marker = marker->c_nlist;
5262 			}
5263 			check_pending = 0;
5264 		}
5265 		ASSERT(pending > 0);
5266 		ASSERT(list->c_count > 0);
5267 		funcp = list->c_call;
5268 		arg = list->c_arg;
5269 		count = list->c_count;
5270 		*(uintptr_t *)Queue = (uintptr_t)list->c_nlist;
5271 		if (list >= &callbackq[0] &&
5272 		    list <= &callbackq[ncallbacks-1]) {
5273 			list->c_nfree = callbackqfree;
5274 			callbackqfree = list;
5275 		} else
5276 			kmem_free(list, list->c_size);
5277 
5278 		cbstats.nc_delete++;
5279 		cbstats.nc_alloc--;
5280 		mutex_exit(&ddi_callback_mutex);
5281 
5282 		do {
5283 			if ((rval = (*funcp)(arg)) == 0) {
5284 				pending -= count;
5285 				mutex_enter(&ddi_callback_mutex);
5286 				(void) callback_insert(funcp, arg, listid,
5287 				    count);
5288 				cbstats.nc_runouts++;
5289 			} else {
5290 				pending--;
5291 				mutex_enter(&ddi_callback_mutex);
5292 				cbstats.nc_run++;
5293 			}
5294 			mutex_exit(&ddi_callback_mutex);
5295 		} while (rval != 0 && (--count > 0));
5296 	} while (pending > 0);
5297 }
5298 
5299 void
5300 ddi_run_callback(uintptr_t *listid)
5301 {
5302 	softcall(real_callback_run, listid);
5303 }
5304 
5305 dev_info_t *
5306 nodevinfo(dev_t dev, int otyp)
5307 {
5308 	_NOTE(ARGUNUSED(dev, otyp))
5309 	return ((dev_info_t *)0);
5310 }
5311 
5312 /*
5313  * A driver should support its own getinfo(9E) entry point. This function
5314  * is provided as a convenience for ON drivers that don't expect their
5315  * getinfo(9E) entry point to be called. A driver that uses this must not
5316  * call ddi_create_minor_node.
5317  */
5318 int
5319 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5320 {
5321 	_NOTE(ARGUNUSED(dip, infocmd, arg, result))
5322 	return (DDI_FAILURE);
5323 }
5324 
5325 /*
5326  * A driver should support its own getinfo(9E) entry point. This function
5327  * is provided as a convenience for ON drivers that where the minor number
5328  * is the instance. Drivers that do not have 1:1 mapping must implement
5329  * their own getinfo(9E) function.
5330  */
5331 int
5332 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
5333     void *arg, void **result)
5334 {
5335 	_NOTE(ARGUNUSED(dip))
5336 	int	instance;
5337 
5338 	if (infocmd != DDI_INFO_DEVT2INSTANCE)
5339 		return (DDI_FAILURE);
5340 
5341 	instance = getminor((dev_t)(uintptr_t)arg);
5342 	*result = (void *)(uintptr_t)instance;
5343 	return (DDI_SUCCESS);
5344 }
5345 
5346 int
5347 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd)
5348 {
5349 	_NOTE(ARGUNUSED(devi, cmd))
5350 	return (DDI_FAILURE);
5351 }
5352 
5353 int
5354 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
5355     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep)
5356 {
5357 	_NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep))
5358 	return (DDI_DMA_NOMAPPING);
5359 }
5360 
5361 int
5362 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
5363     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
5364 {
5365 	_NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep))
5366 	return (DDI_DMA_BADATTR);
5367 }
5368 
5369 int
5370 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
5371     ddi_dma_handle_t handle)
5372 {
5373 	_NOTE(ARGUNUSED(dip, rdip, handle))
5374 	return (DDI_FAILURE);
5375 }
5376 
5377 int
5378 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
5379     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
5380     ddi_dma_cookie_t *cp, uint_t *ccountp)
5381 {
5382 	_NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp))
5383 	return (DDI_DMA_NOMAPPING);
5384 }
5385 
5386 int
5387 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
5388     ddi_dma_handle_t handle)
5389 {
5390 	_NOTE(ARGUNUSED(dip, rdip, handle))
5391 	return (DDI_FAILURE);
5392 }
5393 
5394 int
5395 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
5396     ddi_dma_handle_t handle, off_t off, size_t len,
5397     uint_t cache_flags)
5398 {
5399 	_NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags))
5400 	return (DDI_FAILURE);
5401 }
5402 
5403 int
5404 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
5405     ddi_dma_handle_t handle, uint_t win, off_t *offp,
5406     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
5407 {
5408 	_NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp))
5409 	return (DDI_FAILURE);
5410 }
5411 
5412 int
5413 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
5414     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
5415     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags)
5416 {
5417 	_NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags))
5418 	return (DDI_FAILURE);
5419 }
5420 
5421 void
5422 ddivoid(void)
5423 {}
5424 
5425 int
5426 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
5427     struct pollhead **pollhdrp)
5428 {
5429 	_NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp))
5430 	return (ENXIO);
5431 }
5432 
5433 cred_t *
5434 ddi_get_cred(void)
5435 {
5436 	return (CRED());
5437 }
5438 
5439 clock_t
5440 ddi_get_lbolt(void)
5441 {
5442 	return (lbolt);
5443 }
5444 
5445 time_t
5446 ddi_get_time(void)
5447 {
5448 	time_t	now;
5449 
5450 	if ((now = gethrestime_sec()) == 0) {
5451 		timestruc_t ts;
5452 		mutex_enter(&tod_lock);
5453 		ts = tod_get();
5454 		mutex_exit(&tod_lock);
5455 		return (ts.tv_sec);
5456 	} else {
5457 		return (now);
5458 	}
5459 }
5460 
5461 pid_t
5462 ddi_get_pid(void)
5463 {
5464 	return (ttoproc(curthread)->p_pid);
5465 }
5466 
5467 kt_did_t
5468 ddi_get_kt_did(void)
5469 {
5470 	return (curthread->t_did);
5471 }
5472 
5473 /*
5474  * This function returns B_TRUE if the caller can reasonably expect that a call
5475  * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened
5476  * by user-level signal.  If it returns B_FALSE, then the caller should use
5477  * other means to make certain that the wait will not hang "forever."
5478  *
5479  * It does not check the signal mask, nor for reception of any particular
5480  * signal.
5481  *
5482  * Currently, a thread can receive a signal if it's not a kernel thread and it
5483  * is not in the middle of exit(2) tear-down.  Threads that are in that
5484  * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to
5485  * cv_timedwait, and qwait_sig to qwait.
5486  */
5487 boolean_t
5488 ddi_can_receive_sig(void)
5489 {
5490 	proc_t *pp;
5491 
5492 	if (curthread->t_proc_flag & TP_LWPEXIT)
5493 		return (B_FALSE);
5494 	if ((pp = ttoproc(curthread)) == NULL)
5495 		return (B_FALSE);
5496 	return (pp->p_as != &kas);
5497 }
5498 
5499 /*
5500  * Swap bytes in 16-bit [half-]words
5501  */
5502 void
5503 swab(void *src, void *dst, size_t nbytes)
5504 {
5505 	uchar_t *pf = (uchar_t *)src;
5506 	uchar_t *pt = (uchar_t *)dst;
5507 	uchar_t tmp;
5508 	int nshorts;
5509 
5510 	nshorts = nbytes >> 1;
5511 
5512 	while (--nshorts >= 0) {
5513 		tmp = *pf++;
5514 		*pt++ = *pf++;
5515 		*pt++ = tmp;
5516 	}
5517 }
5518 
5519 static void
5520 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp)
5521 {
5522 	struct ddi_minor_data *dp;
5523 
5524 	mutex_enter(&(DEVI(ddip)->devi_lock));
5525 	i_devi_enter(ddip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1);
5526 
5527 	if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) {
5528 		DEVI(ddip)->devi_minor = dmdp;
5529 	} else {
5530 		while (dp->next != (struct ddi_minor_data *)NULL)
5531 			dp = dp->next;
5532 		dp->next = dmdp;
5533 	}
5534 
5535 	i_devi_exit(ddip, DEVI_S_MD_UPDATE, 1);
5536 	mutex_exit(&(DEVI(ddip)->devi_lock));
5537 }
5538 
5539 /*
5540  * Part of the obsolete SunCluster DDI Hooks.
5541  * Keep for binary compatibility
5542  */
5543 minor_t
5544 ddi_getiminor(dev_t dev)
5545 {
5546 	return (getminor(dev));
5547 }
5548 
5549 static int
5550 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name)
5551 {
5552 	int se_flag;
5553 	int kmem_flag;
5554 	int se_err;
5555 	char *pathname, *class_name;
5556 	sysevent_t *ev = NULL;
5557 	sysevent_id_t eid;
5558 	sysevent_value_t se_val;
5559 	sysevent_attr_list_t *ev_attr_list = NULL;
5560 
5561 	/* determine interrupt context */
5562 	se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP;
5563 	kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
5564 
5565 	i_ddi_di_cache_invalidate(kmem_flag);
5566 
5567 #ifdef DEBUG
5568 	if ((se_flag == SE_NOSLEEP) && sunddi_debug) {
5569 		cmn_err(CE_CONT, "ddi_create_minor_node: called from "
5570 		    "interrupt level by driver %s",
5571 		    ddi_driver_name(dip));
5572 	}
5573 #endif /* DEBUG */
5574 
5575 	ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag);
5576 	if (ev == NULL) {
5577 		goto fail;
5578 	}
5579 
5580 	pathname = kmem_alloc(MAXPATHLEN, kmem_flag);
5581 	if (pathname == NULL) {
5582 		sysevent_free(ev);
5583 		goto fail;
5584 	}
5585 
5586 	(void) ddi_pathname(dip, pathname);
5587 	ASSERT(strlen(pathname));
5588 	se_val.value_type = SE_DATA_TYPE_STRING;
5589 	se_val.value.sv_string = pathname;
5590 	if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5591 	    &se_val, se_flag) != 0) {
5592 		kmem_free(pathname, MAXPATHLEN);
5593 		sysevent_free(ev);
5594 		goto fail;
5595 	}
5596 	kmem_free(pathname, MAXPATHLEN);
5597 
5598 	/* add the device class attribute */
5599 	if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5600 		se_val.value_type = SE_DATA_TYPE_STRING;
5601 		se_val.value.sv_string = class_name;
5602 		if (sysevent_add_attr(&ev_attr_list,
5603 		    DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5604 			sysevent_free_attr(ev_attr_list);
5605 			goto fail;
5606 		}
5607 	}
5608 
5609 	/*
5610 	 * allow for NULL minor names
5611 	 */
5612 	if (minor_name != NULL) {
5613 		se_val.value.sv_string = minor_name;
5614 		if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5615 		    &se_val, se_flag) != 0) {
5616 			sysevent_free_attr(ev_attr_list);
5617 			sysevent_free(ev);
5618 			goto fail;
5619 		}
5620 	}
5621 
5622 	if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5623 		sysevent_free_attr(ev_attr_list);
5624 		sysevent_free(ev);
5625 		goto fail;
5626 	}
5627 
5628 	if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) {
5629 		if (se_err == SE_NO_TRANSPORT) {
5630 			cmn_err(CE_WARN, "/devices or /dev may not be current "
5631 			    "for driver %s (%s). Run devfsadm -i %s",
5632 			    ddi_driver_name(dip), "syseventd not responding",
5633 			    ddi_driver_name(dip));
5634 		} else {
5635 			sysevent_free(ev);
5636 			goto fail;
5637 		}
5638 	}
5639 
5640 	sysevent_free(ev);
5641 	return (DDI_SUCCESS);
5642 fail:
5643 	cmn_err(CE_WARN, "/devices or /dev may not be current "
5644 	    "for driver %s. Run devfsadm -i %s",
5645 	    ddi_driver_name(dip), ddi_driver_name(dip));
5646 	return (DDI_SUCCESS);
5647 }
5648 
5649 /*
5650  * failing to remove a minor node is not of interest
5651  * therefore we do not generate an error message
5652  */
5653 static int
5654 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name)
5655 {
5656 	char *pathname, *class_name;
5657 	sysevent_t *ev;
5658 	sysevent_id_t eid;
5659 	sysevent_value_t se_val;
5660 	sysevent_attr_list_t *ev_attr_list = NULL;
5661 
5662 	/*
5663 	 * only log ddi_remove_minor_node() calls outside the scope
5664 	 * of attach/detach reconfigurations and when the dip is
5665 	 * still initialized.
5666 	 */
5667 	if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) ||
5668 	    (i_ddi_node_state(dip) < DS_INITIALIZED)) {
5669 		return (DDI_SUCCESS);
5670 	}
5671 
5672 	i_ddi_di_cache_invalidate(KM_SLEEP);
5673 
5674 	ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP);
5675 	if (ev == NULL) {
5676 		return (DDI_SUCCESS);
5677 	}
5678 
5679 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5680 	if (pathname == NULL) {
5681 		sysevent_free(ev);
5682 		return (DDI_SUCCESS);
5683 	}
5684 
5685 	(void) ddi_pathname(dip, pathname);
5686 	ASSERT(strlen(pathname));
5687 	se_val.value_type = SE_DATA_TYPE_STRING;
5688 	se_val.value.sv_string = pathname;
5689 	if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
5690 	    &se_val, SE_SLEEP) != 0) {
5691 		kmem_free(pathname, MAXPATHLEN);
5692 		sysevent_free(ev);
5693 		return (DDI_SUCCESS);
5694 	}
5695 
5696 	kmem_free(pathname, MAXPATHLEN);
5697 
5698 	/*
5699 	 * allow for NULL minor names
5700 	 */
5701 	if (minor_name != NULL) {
5702 		se_val.value.sv_string = minor_name;
5703 		if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME,
5704 		    &se_val, SE_SLEEP) != 0) {
5705 			sysevent_free_attr(ev_attr_list);
5706 			goto fail;
5707 		}
5708 	}
5709 
5710 	if ((class_name = i_ddi_devi_class(dip)) != NULL) {
5711 		/* add the device class, driver name and instance attributes */
5712 
5713 		se_val.value_type = SE_DATA_TYPE_STRING;
5714 		se_val.value.sv_string = class_name;
5715 		if (sysevent_add_attr(&ev_attr_list,
5716 		    DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
5717 			sysevent_free_attr(ev_attr_list);
5718 			goto fail;
5719 		}
5720 
5721 		se_val.value_type = SE_DATA_TYPE_STRING;
5722 		se_val.value.sv_string = (char *)ddi_driver_name(dip);
5723 		if (sysevent_add_attr(&ev_attr_list,
5724 		    DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
5725 			sysevent_free_attr(ev_attr_list);
5726 			goto fail;
5727 		}
5728 
5729 		se_val.value_type = SE_DATA_TYPE_INT32;
5730 		se_val.value.sv_int32 = ddi_get_instance(dip);
5731 		if (sysevent_add_attr(&ev_attr_list,
5732 		    DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
5733 			sysevent_free_attr(ev_attr_list);
5734 			goto fail;
5735 		}
5736 
5737 	}
5738 
5739 	if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
5740 		sysevent_free_attr(ev_attr_list);
5741 	} else {
5742 		(void) log_sysevent(ev, SE_SLEEP, &eid);
5743 	}
5744 fail:
5745 	sysevent_free(ev);
5746 	return (DDI_SUCCESS);
5747 }
5748 
5749 /*
5750  * Derive the device class of the node.
5751  * Device class names aren't defined yet. Until this is done we use
5752  * devfs event subclass names as device class names.
5753  */
5754 static int
5755 derive_devi_class(dev_info_t *dip, char *node_type, int flag)
5756 {
5757 	int rv = DDI_SUCCESS;
5758 
5759 	if (i_ddi_devi_class(dip) == NULL) {
5760 		if (strncmp(node_type, DDI_NT_BLOCK,
5761 		    sizeof (DDI_NT_BLOCK) - 1) == 0 &&
5762 		    (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' ||
5763 		    node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') &&
5764 		    strcmp(node_type, DDI_NT_FD) != 0) {
5765 
5766 			rv = i_ddi_set_devi_class(dip, ESC_DISK, flag);
5767 
5768 		} else if (strncmp(node_type, DDI_NT_NET,
5769 		    sizeof (DDI_NT_NET) - 1) == 0 &&
5770 		    (node_type[sizeof (DDI_NT_NET) - 1] == '\0' ||
5771 		    node_type[sizeof (DDI_NT_NET) - 1] == ':')) {
5772 
5773 			rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag);
5774 
5775 		} else if (strncmp(node_type, DDI_NT_PRINTER,
5776 		    sizeof (DDI_NT_PRINTER) - 1) == 0 &&
5777 		    (node_type[sizeof (DDI_NT_PRINTER) - 1] == '\0' ||
5778 		    node_type[sizeof (DDI_NT_PRINTER) - 1] == ':')) {
5779 
5780 			rv = i_ddi_set_devi_class(dip, ESC_PRINTER, flag);
5781 
5782 		} else if (strncmp(node_type, DDI_PSEUDO,
5783 		    sizeof (DDI_PSEUDO) -1) == 0 &&
5784 		    (strncmp(ESC_LOFI, ddi_node_name(dip),
5785 		    sizeof (ESC_LOFI) -1) == 0)) {
5786 			rv = i_ddi_set_devi_class(dip, ESC_LOFI, flag);
5787 		}
5788 	}
5789 
5790 	return (rv);
5791 }
5792 
5793 /*
5794  * Check compliance with PSARC 2003/375:
5795  *
5796  * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not
5797  * exceed IFNAMSIZ (16) characters in length.
5798  */
5799 static boolean_t
5800 verify_name(char *name)
5801 {
5802 	size_t	len = strlen(name);
5803 	char	*cp;
5804 
5805 	if (len == 0 || len > IFNAMSIZ)
5806 		return (B_FALSE);
5807 
5808 	for (cp = name; *cp != '\0'; cp++) {
5809 		if (!isalnum(*cp) && *cp != '_')
5810 			return (B_FALSE);
5811 	}
5812 
5813 	return (B_TRUE);
5814 }
5815 
5816 /*
5817  * ddi_create_minor_common:	Create a  ddi_minor_data structure and
5818  *				attach it to the given devinfo node.
5819  */
5820 
5821 int
5822 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type,
5823     minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype,
5824     const char *read_priv, const char *write_priv, mode_t priv_mode)
5825 {
5826 	struct ddi_minor_data *dmdp;
5827 	major_t major;
5828 
5829 	if (spec_type != S_IFCHR && spec_type != S_IFBLK)
5830 		return (DDI_FAILURE);
5831 
5832 	if (name == NULL)
5833 		return (DDI_FAILURE);
5834 
5835 	/*
5836 	 * Log a message if the minor number the driver is creating
5837 	 * is not expressible on the on-disk filesystem (currently
5838 	 * this is limited to 18 bits both by UFS). The device can
5839 	 * be opened via devfs, but not by device special files created
5840 	 * via mknod().
5841 	 */
5842 	if (minor_num > L_MAXMIN32) {
5843 		cmn_err(CE_WARN,
5844 		    "%s%d:%s minor 0x%x too big for 32-bit applications",
5845 		    ddi_driver_name(dip), ddi_get_instance(dip),
5846 		    name, minor_num);
5847 		return (DDI_FAILURE);
5848 	}
5849 
5850 	/* dip must be bound and attached */
5851 	major = ddi_driver_major(dip);
5852 	ASSERT(major != (major_t)-1);
5853 
5854 	/*
5855 	 * Default node_type to DDI_PSEUDO and issue notice in debug mode
5856 	 */
5857 	if (node_type == NULL) {
5858 		node_type = DDI_PSEUDO;
5859 		NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d "
5860 		    " minor node %s; default to DDI_PSEUDO",
5861 		    ddi_driver_name(dip), ddi_get_instance(dip), name));
5862 	}
5863 
5864 	/*
5865 	 * If the driver is a network driver, ensure that the name falls within
5866 	 * the interface naming constraints specified by PSARC/2003/375.
5867 	 */
5868 	if (strcmp(node_type, DDI_NT_NET) == 0) {
5869 		if (!verify_name(name))
5870 			return (DDI_FAILURE);
5871 
5872 		if (mtype == DDM_MINOR) {
5873 			struct devnames *dnp = &devnamesp[major];
5874 
5875 			/* Mark driver as a network driver */
5876 			LOCK_DEV_OPS(&dnp->dn_lock);
5877 			dnp->dn_flags |= DN_NETWORK_DRIVER;
5878 			UNLOCK_DEV_OPS(&dnp->dn_lock);
5879 		}
5880 	}
5881 
5882 	if (mtype == DDM_MINOR) {
5883 		if (derive_devi_class(dip,  node_type, KM_NOSLEEP) !=
5884 		    DDI_SUCCESS)
5885 			return (DDI_FAILURE);
5886 	}
5887 
5888 	/*
5889 	 * Take care of minor number information for the node.
5890 	 */
5891 
5892 	if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data),
5893 	    KM_NOSLEEP)) == NULL) {
5894 		return (DDI_FAILURE);
5895 	}
5896 	if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) {
5897 		kmem_free(dmdp, sizeof (struct ddi_minor_data));
5898 		return (DDI_FAILURE);
5899 	}
5900 	dmdp->dip = dip;
5901 	dmdp->ddm_dev = makedevice(major, minor_num);
5902 	dmdp->ddm_spec_type = spec_type;
5903 	dmdp->ddm_node_type = node_type;
5904 	dmdp->type = mtype;
5905 	if (flag & CLONE_DEV) {
5906 		dmdp->type = DDM_ALIAS;
5907 		dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major);
5908 	}
5909 	if (flag & PRIVONLY_DEV) {
5910 		dmdp->ddm_flags |= DM_NO_FSPERM;
5911 	}
5912 	if (read_priv || write_priv) {
5913 		dmdp->ddm_node_priv =
5914 		    devpolicy_priv_by_name(read_priv, write_priv);
5915 	}
5916 	dmdp->ddm_priv_mode = priv_mode;
5917 
5918 	ddi_append_minor_node(dip, dmdp);
5919 
5920 	/*
5921 	 * only log ddi_create_minor_node() calls which occur
5922 	 * outside the scope of attach(9e)/detach(9e) reconfigurations
5923 	 */
5924 	if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) &&
5925 	    mtype != DDM_INTERNAL_PATH) {
5926 		(void) i_log_devfs_minor_create(dip, name);
5927 	}
5928 
5929 	/*
5930 	 * Check if any dacf rules match the creation of this minor node
5931 	 */
5932 	dacfc_match_create_minor(name, node_type, dip, dmdp, flag);
5933 	return (DDI_SUCCESS);
5934 }
5935 
5936 int
5937 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
5938     minor_t minor_num, char *node_type, int flag)
5939 {
5940 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5941 	    node_type, flag, DDM_MINOR, NULL, NULL, 0));
5942 }
5943 
5944 int
5945 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
5946     minor_t minor_num, char *node_type, int flag,
5947     const char *rdpriv, const char *wrpriv, mode_t priv_mode)
5948 {
5949 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5950 	    node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode));
5951 }
5952 
5953 int
5954 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type,
5955     minor_t minor_num, char *node_type, int flag)
5956 {
5957 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5958 	    node_type, flag, DDM_DEFAULT, NULL, NULL, 0));
5959 }
5960 
5961 /*
5962  * Internal (non-ddi) routine for drivers to export names known
5963  * to the kernel (especially ddi_pathname_to_dev_t and friends)
5964  * but not exported externally to /dev
5965  */
5966 int
5967 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type,
5968     minor_t minor_num)
5969 {
5970 	return (ddi_create_minor_common(dip, name, spec_type, minor_num,
5971 	    "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0));
5972 }
5973 
5974 void
5975 ddi_remove_minor_node(dev_info_t *dip, char *name)
5976 {
5977 	struct ddi_minor_data *dmdp, *dmdp1;
5978 	struct ddi_minor_data **dmdp_prev;
5979 
5980 	mutex_enter(&(DEVI(dip)->devi_lock));
5981 	i_devi_enter(dip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1);
5982 
5983 	dmdp_prev = &DEVI(dip)->devi_minor;
5984 	dmdp = DEVI(dip)->devi_minor;
5985 	while (dmdp != NULL) {
5986 		dmdp1 = dmdp->next;
5987 		if ((name == NULL || (dmdp->ddm_name != NULL &&
5988 		    strcmp(name, dmdp->ddm_name) == 0))) {
5989 			if (dmdp->ddm_name != NULL) {
5990 				if (dmdp->type != DDM_INTERNAL_PATH)
5991 					(void) i_log_devfs_minor_remove(dip,
5992 					    dmdp->ddm_name);
5993 				kmem_free(dmdp->ddm_name,
5994 				    strlen(dmdp->ddm_name) + 1);
5995 			}
5996 			/*
5997 			 * Release device privilege, if any.
5998 			 * Release dacf client data associated with this minor
5999 			 * node by storing NULL.
6000 			 */
6001 			if (dmdp->ddm_node_priv)
6002 				dpfree(dmdp->ddm_node_priv);
6003 			dacf_store_info((dacf_infohdl_t)dmdp, NULL);
6004 			kmem_free(dmdp, sizeof (struct ddi_minor_data));
6005 			*dmdp_prev = dmdp1;
6006 			/*
6007 			 * OK, we found it, so get out now -- if we drive on,
6008 			 * we will strcmp against garbage.  See 1139209.
6009 			 */
6010 			if (name != NULL)
6011 				break;
6012 		} else {
6013 			dmdp_prev = &dmdp->next;
6014 		}
6015 		dmdp = dmdp1;
6016 	}
6017 
6018 	i_devi_exit(dip, DEVI_S_MD_UPDATE, 1);
6019 	mutex_exit(&(DEVI(dip)->devi_lock));
6020 }
6021 
6022 
6023 int
6024 ddi_in_panic()
6025 {
6026 	return (panicstr != NULL);
6027 }
6028 
6029 
6030 /*
6031  * Find first bit set in a mask (returned counting from 1 up)
6032  */
6033 
6034 int
6035 ddi_ffs(long mask)
6036 {
6037 	return (ffs(mask));
6038 }
6039 
6040 /*
6041  * Find last bit set. Take mask and clear
6042  * all but the most significant bit, and
6043  * then let ffs do the rest of the work.
6044  *
6045  * Algorithm courtesy of Steve Chessin.
6046  */
6047 
6048 int
6049 ddi_fls(long mask)
6050 {
6051 	while (mask) {
6052 		long nx;
6053 
6054 		if ((nx = (mask & (mask - 1))) == 0)
6055 			break;
6056 		mask = nx;
6057 	}
6058 	return (ffs(mask));
6059 }
6060 
6061 /*
6062  * The next five routines comprise generic storage management utilities
6063  * for driver soft state structures (in "the old days," this was done
6064  * with a statically sized array - big systems and dynamic loading
6065  * and unloading make heap allocation more attractive)
6066  */
6067 
6068 /*
6069  * Allocate a set of pointers to 'n_items' objects of size 'size'
6070  * bytes.  Each pointer is initialized to nil.
6071  *
6072  * The 'size' and 'n_items' values are stashed in the opaque
6073  * handle returned to the caller.
6074  *
6075  * This implementation interprets 'set of pointers' to mean 'array
6076  * of pointers' but note that nothing in the interface definition
6077  * precludes an implementation that uses, for example, a linked list.
6078  * However there should be a small efficiency gain from using an array
6079  * at lookup time.
6080  *
6081  * NOTE	As an optimization, we make our growable array allocations in
6082  *	powers of two (bytes), since that's how much kmem_alloc (currently)
6083  *	gives us anyway.  It should save us some free/realloc's ..
6084  *
6085  *	As a further optimization, we make the growable array start out
6086  *	with MIN_N_ITEMS in it.
6087  */
6088 
6089 #define	MIN_N_ITEMS	8	/* 8 void *'s == 32 bytes */
6090 
6091 int
6092 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
6093 {
6094 	struct i_ddi_soft_state *ss;
6095 
6096 	if (state_p == NULL || *state_p != NULL || size == 0)
6097 		return (EINVAL);
6098 
6099 	ss = kmem_zalloc(sizeof (*ss), KM_SLEEP);
6100 	mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL);
6101 	ss->size = size;
6102 
6103 	if (n_items < MIN_N_ITEMS)
6104 		ss->n_items = MIN_N_ITEMS;
6105 	else {
6106 		int bitlog;
6107 
6108 		if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items))
6109 			bitlog--;
6110 		ss->n_items = 1 << bitlog;
6111 	}
6112 
6113 	ASSERT(ss->n_items >= n_items);
6114 
6115 	ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP);
6116 
6117 	*state_p = ss;
6118 
6119 	return (0);
6120 }
6121 
6122 
6123 /*
6124  * Allocate a state structure of size 'size' to be associated
6125  * with item 'item'.
6126  *
6127  * In this implementation, the array is extended to
6128  * allow the requested offset, if needed.
6129  */
6130 int
6131 ddi_soft_state_zalloc(void *state, int item)
6132 {
6133 	struct i_ddi_soft_state *ss;
6134 	void **array;
6135 	void *new_element;
6136 
6137 	if ((ss = state) == NULL || item < 0)
6138 		return (DDI_FAILURE);
6139 
6140 	mutex_enter(&ss->lock);
6141 	if (ss->size == 0) {
6142 		mutex_exit(&ss->lock);
6143 		cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s",
6144 		    mod_containing_pc(caller()));
6145 		return (DDI_FAILURE);
6146 	}
6147 
6148 	array = ss->array;	/* NULL if ss->n_items == 0 */
6149 	ASSERT(ss->n_items != 0 && array != NULL);
6150 
6151 	/*
6152 	 * refuse to tread on an existing element
6153 	 */
6154 	if (item < ss->n_items && array[item] != NULL) {
6155 		mutex_exit(&ss->lock);
6156 		return (DDI_FAILURE);
6157 	}
6158 
6159 	/*
6160 	 * Allocate a new element to plug in
6161 	 */
6162 	new_element = kmem_zalloc(ss->size, KM_SLEEP);
6163 
6164 	/*
6165 	 * Check if the array is big enough, if not, grow it.
6166 	 */
6167 	if (item >= ss->n_items) {
6168 		void	**new_array;
6169 		size_t	new_n_items;
6170 		struct i_ddi_soft_state *dirty;
6171 
6172 		/*
6173 		 * Allocate a new array of the right length, copy
6174 		 * all the old pointers to the new array, then
6175 		 * if it exists at all, put the old array on the
6176 		 * dirty list.
6177 		 *
6178 		 * Note that we can't kmem_free() the old array.
6179 		 *
6180 		 * Why -- well the 'get' operation is 'mutex-free', so we
6181 		 * can't easily catch a suspended thread that is just about
6182 		 * to dereference the array we just grew out of.  So we
6183 		 * cons up a header and put it on a list of 'dirty'
6184 		 * pointer arrays.  (Dirty in the sense that there may
6185 		 * be suspended threads somewhere that are in the middle
6186 		 * of referencing them).  Fortunately, we -can- garbage
6187 		 * collect it all at ddi_soft_state_fini time.
6188 		 */
6189 		new_n_items = ss->n_items;
6190 		while (new_n_items < (1 + item))
6191 			new_n_items <<= 1;	/* double array size .. */
6192 
6193 		ASSERT(new_n_items >= (1 + item));	/* sanity check! */
6194 
6195 		new_array = kmem_zalloc(new_n_items * sizeof (void *),
6196 		    KM_SLEEP);
6197 		/*
6198 		 * Copy the pointers into the new array
6199 		 */
6200 		bcopy(array, new_array, ss->n_items * sizeof (void *));
6201 
6202 		/*
6203 		 * Save the old array on the dirty list
6204 		 */
6205 		dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP);
6206 		dirty->array = ss->array;
6207 		dirty->n_items = ss->n_items;
6208 		dirty->next = ss->next;
6209 		ss->next = dirty;
6210 
6211 		ss->array = (array = new_array);
6212 		ss->n_items = new_n_items;
6213 	}
6214 
6215 	ASSERT(array != NULL && item < ss->n_items && array[item] == NULL);
6216 
6217 	array[item] = new_element;
6218 
6219 	mutex_exit(&ss->lock);
6220 	return (DDI_SUCCESS);
6221 }
6222 
6223 
6224 /*
6225  * Fetch a pointer to the allocated soft state structure.
6226  *
6227  * This is designed to be cheap.
6228  *
6229  * There's an argument that there should be more checking for
6230  * nil pointers and out of bounds on the array.. but we do a lot
6231  * of that in the alloc/free routines.
6232  *
6233  * An array has the convenience that we don't need to lock read-access
6234  * to it c.f. a linked list.  However our "expanding array" strategy
6235  * means that we should hold a readers lock on the i_ddi_soft_state
6236  * structure.
6237  *
6238  * However, from a performance viewpoint, we need to do it without
6239  * any locks at all -- this also makes it a leaf routine.  The algorithm
6240  * is 'lock-free' because we only discard the pointer arrays at
6241  * ddi_soft_state_fini() time.
6242  */
6243 void *
6244 ddi_get_soft_state(void *state, int item)
6245 {
6246 	struct i_ddi_soft_state *ss = state;
6247 
6248 	ASSERT(ss != NULL && item >= 0);
6249 
6250 	if (item < ss->n_items && ss->array != NULL)
6251 		return (ss->array[item]);
6252 	return (NULL);
6253 }
6254 
6255 /*
6256  * Free the state structure corresponding to 'item.'   Freeing an
6257  * element that has either gone or was never allocated is not
6258  * considered an error.  Note that we free the state structure, but
6259  * we don't shrink our pointer array, or discard 'dirty' arrays,
6260  * since even a few pointers don't really waste too much memory.
6261  *
6262  * Passing an item number that is out of bounds, or a null pointer will
6263  * provoke an error message.
6264  */
6265 void
6266 ddi_soft_state_free(void *state, int item)
6267 {
6268 	struct i_ddi_soft_state *ss;
6269 	void **array;
6270 	void *element;
6271 	static char msg[] = "ddi_soft_state_free:";
6272 
6273 	if ((ss = state) == NULL) {
6274 		cmn_err(CE_WARN, "%s null handle: %s",
6275 		    msg, mod_containing_pc(caller()));
6276 		return;
6277 	}
6278 
6279 	element = NULL;
6280 
6281 	mutex_enter(&ss->lock);
6282 
6283 	if ((array = ss->array) == NULL || ss->size == 0) {
6284 		cmn_err(CE_WARN, "%s bad handle: %s",
6285 		    msg, mod_containing_pc(caller()));
6286 	} else if (item < 0 || item >= ss->n_items) {
6287 		cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s",
6288 		    msg, item, ss->n_items - 1, mod_containing_pc(caller()));
6289 	} else if (array[item] != NULL) {
6290 		element = array[item];
6291 		array[item] = NULL;
6292 	}
6293 
6294 	mutex_exit(&ss->lock);
6295 
6296 	if (element)
6297 		kmem_free(element, ss->size);
6298 }
6299 
6300 
6301 /*
6302  * Free the entire set of pointers, and any
6303  * soft state structures contained therein.
6304  *
6305  * Note that we don't grab the ss->lock mutex, even though
6306  * we're inspecting the various fields of the data structure.
6307  *
6308  * There is an implicit assumption that this routine will
6309  * never run concurrently with any of the above on this
6310  * particular state structure i.e. by the time the driver
6311  * calls this routine, there should be no other threads
6312  * running in the driver.
6313  */
6314 void
6315 ddi_soft_state_fini(void **state_p)
6316 {
6317 	struct i_ddi_soft_state *ss, *dirty;
6318 	int item;
6319 	static char msg[] = "ddi_soft_state_fini:";
6320 
6321 	if (state_p == NULL || (ss = *state_p) == NULL) {
6322 		cmn_err(CE_WARN, "%s null handle: %s",
6323 		    msg, mod_containing_pc(caller()));
6324 		return;
6325 	}
6326 
6327 	if (ss->size == 0) {
6328 		cmn_err(CE_WARN, "%s bad handle: %s",
6329 		    msg, mod_containing_pc(caller()));
6330 		return;
6331 	}
6332 
6333 	if (ss->n_items > 0) {
6334 		for (item = 0; item < ss->n_items; item++)
6335 			ddi_soft_state_free(ss, item);
6336 		kmem_free(ss->array, ss->n_items * sizeof (void *));
6337 	}
6338 
6339 	/*
6340 	 * Now delete any dirty arrays from previous 'grow' operations
6341 	 */
6342 	for (dirty = ss->next; dirty; dirty = ss->next) {
6343 		ss->next = dirty->next;
6344 		kmem_free(dirty->array, dirty->n_items * sizeof (void *));
6345 		kmem_free(dirty, sizeof (*dirty));
6346 	}
6347 
6348 	mutex_destroy(&ss->lock);
6349 	kmem_free(ss, sizeof (*ss));
6350 
6351 	*state_p = NULL;
6352 }
6353 
6354 /*
6355  * This sets the devi_addr entry in the dev_info structure 'dip' to 'name'.
6356  * Storage is double buffered to prevent updates during devi_addr use -
6357  * double buffering is adaquate for reliable ddi_deviname() consumption.
6358  * The double buffer is not freed until dev_info structure destruction
6359  * (by i_ddi_free_node).
6360  */
6361 void
6362 ddi_set_name_addr(dev_info_t *dip, char *name)
6363 {
6364 	char	*buf = DEVI(dip)->devi_addr_buf;
6365 	char	*newaddr;
6366 
6367 	if (buf == NULL) {
6368 		buf = kmem_zalloc(2 * MAXNAMELEN, KM_SLEEP);
6369 		DEVI(dip)->devi_addr_buf = buf;
6370 	}
6371 
6372 	if (name) {
6373 		ASSERT(strlen(name) < MAXNAMELEN);
6374 		newaddr = (DEVI(dip)->devi_addr == buf) ?
6375 		    (buf + MAXNAMELEN) : buf;
6376 		(void) strlcpy(newaddr, name, MAXNAMELEN);
6377 	} else
6378 		newaddr = NULL;
6379 
6380 	DEVI(dip)->devi_addr = newaddr;
6381 }
6382 
6383 char *
6384 ddi_get_name_addr(dev_info_t *dip)
6385 {
6386 	return (DEVI(dip)->devi_addr);
6387 }
6388 
6389 void
6390 ddi_set_parent_data(dev_info_t *dip, void *pd)
6391 {
6392 	DEVI(dip)->devi_parent_data = pd;
6393 }
6394 
6395 void *
6396 ddi_get_parent_data(dev_info_t *dip)
6397 {
6398 	return (DEVI(dip)->devi_parent_data);
6399 }
6400 
6401 /*
6402  * ddi_name_to_major: Returns the major number of a module given its name.
6403  */
6404 major_t
6405 ddi_name_to_major(char *name)
6406 {
6407 	return (mod_name_to_major(name));
6408 }
6409 
6410 /*
6411  * ddi_major_to_name: Returns the module name bound to a major number.
6412  */
6413 char *
6414 ddi_major_to_name(major_t major)
6415 {
6416 	return (mod_major_to_name(major));
6417 }
6418 
6419 /*
6420  * Return the name of the devinfo node pointed at by 'dip' in the buffer
6421  * pointed at by 'name.'  A devinfo node is named as a result of calling
6422  * ddi_initchild().
6423  *
6424  * Note: the driver must be held before calling this function!
6425  */
6426 char *
6427 ddi_deviname(dev_info_t *dip, char *name)
6428 {
6429 	char *addrname;
6430 	char none = '\0';
6431 
6432 	if (dip == ddi_root_node()) {
6433 		*name = '\0';
6434 		return (name);
6435 	}
6436 
6437 	if (i_ddi_node_state(dip) < DS_BOUND) {
6438 		addrname = &none;
6439 	} else {
6440 		/*
6441 		 * Use ddi_get_name_addr() without checking state so we get
6442 		 * a unit-address if we are called after ddi_set_name_addr()
6443 		 * by nexus DDI_CTL_INITCHILD code, but before completing
6444 		 * node promotion to DS_INITIALIZED.  We currently have
6445 		 * two situations where we are called in this state:
6446 		 *   o  For framework processing of a path-oriented alias.
6447 		 *   o  If a SCSA nexus driver calls ddi_devid_register()
6448 		 *	from it's tran_tgt_init(9E) implementation.
6449 		 */
6450 		addrname = ddi_get_name_addr(dip);
6451 		if (addrname == NULL)
6452 			addrname = &none;
6453 	}
6454 
6455 	if (*addrname == '\0') {
6456 		(void) sprintf(name, "/%s", ddi_node_name(dip));
6457 	} else {
6458 		(void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname);
6459 	}
6460 
6461 	return (name);
6462 }
6463 
6464 /*
6465  * Spits out the name of device node, typically name@addr, for a given node,
6466  * using the driver name, not the nodename.
6467  *
6468  * Used by match_parent. Not to be used elsewhere.
6469  */
6470 char *
6471 i_ddi_parname(dev_info_t *dip, char *name)
6472 {
6473 	char *addrname;
6474 
6475 	if (dip == ddi_root_node()) {
6476 		*name = '\0';
6477 		return (name);
6478 	}
6479 
6480 	ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
6481 
6482 	if (*(addrname = ddi_get_name_addr(dip)) == '\0')
6483 		(void) sprintf(name, "%s", ddi_binding_name(dip));
6484 	else
6485 		(void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname);
6486 	return (name);
6487 }
6488 
6489 static char *
6490 pathname_work(dev_info_t *dip, char *path)
6491 {
6492 	char *bp;
6493 
6494 	if (dip == ddi_root_node()) {
6495 		*path = '\0';
6496 		return (path);
6497 	}
6498 	(void) pathname_work(ddi_get_parent(dip), path);
6499 	bp = path + strlen(path);
6500 	(void) ddi_deviname(dip, bp);
6501 	return (path);
6502 }
6503 
6504 char *
6505 ddi_pathname(dev_info_t *dip, char *path)
6506 {
6507 	return (pathname_work(dip, path));
6508 }
6509 
6510 /*
6511  * Given a dev_t, return the pathname of the corresponding device in the
6512  * buffer pointed at by "path."  The buffer is assumed to be large enough
6513  * to hold the pathname of the device (MAXPATHLEN).
6514  *
6515  * The pathname of a device is the pathname of the devinfo node to which
6516  * the device "belongs," concatenated with the character ':' and the name
6517  * of the minor node corresponding to the dev_t.  If spec_type is 0 then
6518  * just the pathname of the devinfo node is returned without driving attach
6519  * of that node.  For a non-zero spec_type, an attach is performed and a
6520  * search of the minor list occurs.
6521  *
6522  * It is possible that the path associated with the dev_t is not
6523  * currently available in the devinfo tree.  In order to have a
6524  * dev_t, a device must have been discovered before, which means
6525  * that the path is always in the instance tree.  The one exception
6526  * to this is if the dev_t is associated with a pseudo driver, in
6527  * which case the device must exist on the pseudo branch of the
6528  * devinfo tree as a result of parsing .conf files.
6529  */
6530 int
6531 ddi_dev_pathname(dev_t devt, int spec_type, char *path)
6532 {
6533 	major_t		major = getmajor(devt);
6534 	int		instance;
6535 	dev_info_t	*dip;
6536 	char		*minorname;
6537 	char		*drvname;
6538 
6539 	if (major >= devcnt)
6540 		goto fail;
6541 	if (major == clone_major) {
6542 		/* clone has no minor nodes, manufacture the path here */
6543 		if ((drvname = ddi_major_to_name(getminor(devt))) == NULL)
6544 			goto fail;
6545 
6546 		(void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname);
6547 		return (DDI_SUCCESS);
6548 	}
6549 
6550 	/* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */
6551 	if ((instance = dev_to_instance(devt)) == -1)
6552 		goto fail;
6553 
6554 	/* reconstruct the path given the major/instance */
6555 	if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS)
6556 		goto fail;
6557 
6558 	/* if spec_type given we must drive attach and search minor nodes */
6559 	if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) {
6560 		/* attach the path so we can search minors */
6561 		if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL)
6562 			goto fail;
6563 
6564 		/* Add minorname to path. */
6565 		mutex_enter(&(DEVI(dip)->devi_lock));
6566 		minorname = i_ddi_devtspectype_to_minorname(dip,
6567 		    devt, spec_type);
6568 		if (minorname) {
6569 			(void) strcat(path, ":");
6570 			(void) strcat(path, minorname);
6571 		}
6572 		mutex_exit(&(DEVI(dip)->devi_lock));
6573 		ddi_release_devi(dip);
6574 		if (minorname == NULL)
6575 			goto fail;
6576 	}
6577 	ASSERT(strlen(path) < MAXPATHLEN);
6578 	return (DDI_SUCCESS);
6579 
6580 fail:	*path = 0;
6581 	return (DDI_FAILURE);
6582 }
6583 
6584 /*
6585  * Given a major number and an instance, return the path.
6586  * This interface does NOT drive attach.
6587  */
6588 int
6589 e_ddi_majorinstance_to_path(major_t major, int instance, char *path)
6590 {
6591 	struct devnames *dnp;
6592 	dev_info_t	*dip;
6593 
6594 	if ((major >= devcnt) || (instance == -1)) {
6595 		*path = 0;
6596 		return (DDI_FAILURE);
6597 	}
6598 
6599 	/* look for the major/instance in the instance tree */
6600 	if (e_ddi_instance_majorinstance_to_path(major, instance,
6601 	    path) == DDI_SUCCESS) {
6602 		ASSERT(strlen(path) < MAXPATHLEN);
6603 		return (DDI_SUCCESS);
6604 	}
6605 
6606 	/*
6607 	 * Not in instance tree, find the instance on the per driver list and
6608 	 * construct path to instance via ddi_pathname(). This is how paths
6609 	 * down the 'pseudo' branch are constructed.
6610 	 */
6611 	dnp = &(devnamesp[major]);
6612 	LOCK_DEV_OPS(&(dnp->dn_lock));
6613 	for (dip = dnp->dn_head; dip;
6614 	    dip = (dev_info_t *)DEVI(dip)->devi_next) {
6615 		/* Skip if instance does not match. */
6616 		if (DEVI(dip)->devi_instance != instance)
6617 			continue;
6618 
6619 		/*
6620 		 * An ndi_hold_devi() does not prevent DS_INITIALIZED->DS_BOUND
6621 		 * node demotion, so it is not an effective way of ensuring
6622 		 * that the ddi_pathname result has a unit-address.  Instead,
6623 		 * we reverify the node state after calling ddi_pathname().
6624 		 */
6625 		if (i_ddi_node_state(dip) >= DS_INITIALIZED) {
6626 			(void) ddi_pathname(dip, path);
6627 			if (i_ddi_node_state(dip) < DS_INITIALIZED)
6628 				continue;
6629 			UNLOCK_DEV_OPS(&(dnp->dn_lock));
6630 			ASSERT(strlen(path) < MAXPATHLEN);
6631 			return (DDI_SUCCESS);
6632 		}
6633 	}
6634 	UNLOCK_DEV_OPS(&(dnp->dn_lock));
6635 
6636 	/* can't reconstruct the path */
6637 	*path = 0;
6638 	return (DDI_FAILURE);
6639 }
6640 
6641 #define	GLD_DRIVER_PPA "SUNW,gld_v0_ppa"
6642 
6643 /*
6644  * Given the dip for a network interface return the ppa for that interface.
6645  *
6646  * In all cases except GLD v0 drivers, the ppa == instance.
6647  * In the case of GLD v0 drivers, the ppa is equal to the attach order.
6648  * So for these drivers when the attach routine calls gld_register(),
6649  * the GLD framework creates an integer property called "gld_driver_ppa"
6650  * that can be queried here.
6651  *
6652  * The only time this function is used is when a system is booting over nfs.
6653  * In this case the system has to resolve the pathname of the boot device
6654  * to it's ppa.
6655  */
6656 int
6657 i_ddi_devi_get_ppa(dev_info_t *dip)
6658 {
6659 	return (ddi_prop_get_int(DDI_DEV_T_ANY, dip,
6660 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
6661 	    GLD_DRIVER_PPA, ddi_get_instance(dip)));
6662 }
6663 
6664 /*
6665  * i_ddi_devi_set_ppa() should only be called from gld_register()
6666  * and only for GLD v0 drivers
6667  */
6668 void
6669 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa)
6670 {
6671 	(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa);
6672 }
6673 
6674 
6675 /*
6676  * Private DDI Console bell functions.
6677  */
6678 void
6679 ddi_ring_console_bell(clock_t duration)
6680 {
6681 	if (ddi_console_bell_func != NULL)
6682 		(*ddi_console_bell_func)(duration);
6683 }
6684 
6685 void
6686 ddi_set_console_bell(void (*bellfunc)(clock_t duration))
6687 {
6688 	ddi_console_bell_func = bellfunc;
6689 }
6690 
6691 int
6692 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
6693 	int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
6694 {
6695 	int (*funcp)() = ddi_dma_allochdl;
6696 	ddi_dma_attr_t dma_attr;
6697 	struct bus_ops *bop;
6698 
6699 	if (attr == (ddi_dma_attr_t *)0)
6700 		return (DDI_DMA_BADATTR);
6701 
6702 	dma_attr = *attr;
6703 
6704 	bop = DEVI(dip)->devi_ops->devo_bus_ops;
6705 	if (bop && bop->bus_dma_allochdl)
6706 		funcp = bop->bus_dma_allochdl;
6707 
6708 	return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep));
6709 }
6710 
6711 void
6712 ddi_dma_free_handle(ddi_dma_handle_t *handlep)
6713 {
6714 	ddi_dma_handle_t h = *handlep;
6715 	(void) ddi_dma_freehdl(HD, HD, h);
6716 }
6717 
6718 static uintptr_t dma_mem_list_id = 0;
6719 
6720 
6721 int
6722 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
6723 	ddi_device_acc_attr_t *accattrp, uint_t flags,
6724 	int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
6725 	size_t *real_length, ddi_acc_handle_t *handlep)
6726 {
6727 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6728 	dev_info_t *dip = hp->dmai_rdip;
6729 	ddi_acc_hdl_t *ap;
6730 	ddi_dma_attr_t *attrp = &hp->dmai_attr;
6731 	uint_t sleepflag, xfermodes;
6732 	int (*fp)(caddr_t);
6733 	int rval;
6734 
6735 	if (waitfp == DDI_DMA_SLEEP)
6736 		fp = (int (*)())KM_SLEEP;
6737 	else if (waitfp == DDI_DMA_DONTWAIT)
6738 		fp = (int (*)())KM_NOSLEEP;
6739 	else
6740 		fp = waitfp;
6741 	*handlep = impl_acc_hdl_alloc(fp, arg);
6742 	if (*handlep == NULL)
6743 		return (DDI_FAILURE);
6744 
6745 	/* check if the cache attributes are supported */
6746 	if (i_ddi_check_cache_attr(flags) == B_FALSE)
6747 		return (DDI_FAILURE);
6748 
6749 	/*
6750 	 * Transfer the meaningful bits to xfermodes.
6751 	 * Double-check if the 3rd party driver correctly sets the bits.
6752 	 * If not, set DDI_DMA_STREAMING to keep compatibility.
6753 	 */
6754 	xfermodes = flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING);
6755 	if (xfermodes == 0) {
6756 		xfermodes = DDI_DMA_STREAMING;
6757 	}
6758 
6759 	/*
6760 	 * initialize the common elements of data access handle
6761 	 */
6762 	ap = impl_acc_hdl_get(*handlep);
6763 	ap->ah_vers = VERS_ACCHDL;
6764 	ap->ah_dip = dip;
6765 	ap->ah_offset = 0;
6766 	ap->ah_len = 0;
6767 	ap->ah_xfermodes = flags;
6768 	ap->ah_acc = *accattrp;
6769 
6770 	sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0);
6771 	if (xfermodes == DDI_DMA_CONSISTENT) {
6772 		rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
6773 		    flags, accattrp, kaddrp, NULL, ap);
6774 		*real_length = length;
6775 	} else {
6776 		rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag,
6777 		    flags, accattrp, kaddrp, real_length, ap);
6778 	}
6779 	if (rval == DDI_SUCCESS) {
6780 		ap->ah_len = (off_t)(*real_length);
6781 		ap->ah_addr = *kaddrp;
6782 	} else {
6783 		impl_acc_hdl_free(*handlep);
6784 		*handlep = (ddi_acc_handle_t)NULL;
6785 		if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) {
6786 			ddi_set_callback(waitfp, arg, &dma_mem_list_id);
6787 		}
6788 		rval = DDI_FAILURE;
6789 	}
6790 	return (rval);
6791 }
6792 
6793 void
6794 ddi_dma_mem_free(ddi_acc_handle_t *handlep)
6795 {
6796 	ddi_acc_hdl_t *ap;
6797 
6798 	ap = impl_acc_hdl_get(*handlep);
6799 	ASSERT(ap);
6800 
6801 	i_ddi_mem_free((caddr_t)ap->ah_addr, ap);
6802 
6803 	/*
6804 	 * free the handle
6805 	 */
6806 	impl_acc_hdl_free(*handlep);
6807 	*handlep = (ddi_acc_handle_t)NULL;
6808 
6809 	if (dma_mem_list_id != 0) {
6810 		ddi_run_callback(&dma_mem_list_id);
6811 	}
6812 }
6813 
6814 int
6815 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
6816 	uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
6817 	ddi_dma_cookie_t *cookiep, uint_t *ccountp)
6818 {
6819 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6820 	dev_info_t *hdip, *dip;
6821 	struct ddi_dma_req dmareq;
6822 	int (*funcp)();
6823 
6824 	dmareq.dmar_flags = flags;
6825 	dmareq.dmar_fp = waitfp;
6826 	dmareq.dmar_arg = arg;
6827 	dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount;
6828 
6829 	if (bp->b_flags & B_PAGEIO) {
6830 		dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES;
6831 		dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages;
6832 		dmareq.dmar_object.dmao_obj.pp_obj.pp_offset =
6833 		    (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET);
6834 	} else {
6835 		dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr;
6836 		if (bp->b_flags & B_SHADOW) {
6837 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv =
6838 			    bp->b_shadow;
6839 			dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR;
6840 		} else {
6841 			dmareq.dmar_object.dmao_type =
6842 			    (bp->b_flags & (B_PHYS | B_REMAPPED)) ?
6843 			    DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR;
6844 			dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
6845 		}
6846 
6847 		/*
6848 		 * If the buffer has no proc pointer, or the proc
6849 		 * struct has the kernel address space, or the buffer has
6850 		 * been marked B_REMAPPED (meaning that it is now
6851 		 * mapped into the kernel's address space), then
6852 		 * the address space is kas (kernel address space).
6853 		 */
6854 		if ((bp->b_proc == NULL) || (bp->b_proc->p_as == &kas) ||
6855 		    (bp->b_flags & B_REMAPPED)) {
6856 			dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0;
6857 		} else {
6858 			dmareq.dmar_object.dmao_obj.virt_obj.v_as =
6859 			    bp->b_proc->p_as;
6860 		}
6861 	}
6862 
6863 	dip = hp->dmai_rdip;
6864 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
6865 	funcp = DEVI(dip)->devi_bus_dma_bindfunc;
6866 	return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp));
6867 }
6868 
6869 int
6870 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
6871 	caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t),
6872 	caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
6873 {
6874 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6875 	dev_info_t *hdip, *dip;
6876 	struct ddi_dma_req dmareq;
6877 	int (*funcp)();
6878 
6879 	if (len == (uint_t)0) {
6880 		return (DDI_DMA_NOMAPPING);
6881 	}
6882 	dmareq.dmar_flags = flags;
6883 	dmareq.dmar_fp = waitfp;
6884 	dmareq.dmar_arg = arg;
6885 	dmareq.dmar_object.dmao_size = len;
6886 	dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR;
6887 	dmareq.dmar_object.dmao_obj.virt_obj.v_as = as;
6888 	dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr;
6889 	dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL;
6890 
6891 	dip = hp->dmai_rdip;
6892 	hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl;
6893 	funcp = DEVI(dip)->devi_bus_dma_bindfunc;
6894 	return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp));
6895 }
6896 
6897 void
6898 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep)
6899 {
6900 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6901 	ddi_dma_cookie_t *cp;
6902 
6903 	cp = hp->dmai_cookie;
6904 	ASSERT(cp);
6905 
6906 	cookiep->dmac_notused = cp->dmac_notused;
6907 	cookiep->dmac_type = cp->dmac_type;
6908 	cookiep->dmac_address = cp->dmac_address;
6909 	cookiep->dmac_size = cp->dmac_size;
6910 	hp->dmai_cookie++;
6911 }
6912 
6913 int
6914 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp)
6915 {
6916 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6917 	if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) {
6918 		return (DDI_FAILURE);
6919 	} else {
6920 		*nwinp = hp->dmai_nwin;
6921 		return (DDI_SUCCESS);
6922 	}
6923 }
6924 
6925 int
6926 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp,
6927 	size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
6928 {
6929 	int (*funcp)() = ddi_dma_win;
6930 	struct bus_ops *bop;
6931 
6932 	bop = DEVI(HD)->devi_ops->devo_bus_ops;
6933 	if (bop && bop->bus_dma_win)
6934 		funcp = bop->bus_dma_win;
6935 
6936 	return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp));
6937 }
6938 
6939 int
6940 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes)
6941 {
6942 	return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0,
6943 	    &burstsizes, 0, 0));
6944 }
6945 
6946 int
6947 i_ddi_dma_fault_check(ddi_dma_impl_t *hp)
6948 {
6949 	return (hp->dmai_fault);
6950 }
6951 
6952 int
6953 ddi_check_dma_handle(ddi_dma_handle_t handle)
6954 {
6955 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6956 	int (*check)(ddi_dma_impl_t *);
6957 
6958 	if ((check = hp->dmai_fault_check) == NULL)
6959 		check = i_ddi_dma_fault_check;
6960 
6961 	return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE);
6962 }
6963 
6964 void
6965 i_ddi_dma_set_fault(ddi_dma_handle_t handle)
6966 {
6967 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6968 	void (*notify)(ddi_dma_impl_t *);
6969 
6970 	if (!hp->dmai_fault) {
6971 		hp->dmai_fault = 1;
6972 		if ((notify = hp->dmai_fault_notify) != NULL)
6973 			(*notify)(hp);
6974 	}
6975 }
6976 
6977 void
6978 i_ddi_dma_clr_fault(ddi_dma_handle_t handle)
6979 {
6980 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
6981 	void (*notify)(ddi_dma_impl_t *);
6982 
6983 	if (hp->dmai_fault) {
6984 		hp->dmai_fault = 0;
6985 		if ((notify = hp->dmai_fault_notify) != NULL)
6986 			(*notify)(hp);
6987 	}
6988 }
6989 
6990 /*
6991  * register mapping routines.
6992  */
6993 int
6994 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
6995 	offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
6996 	ddi_acc_handle_t *handle)
6997 {
6998 	ddi_map_req_t mr;
6999 	ddi_acc_hdl_t *hp;
7000 	int result;
7001 
7002 	/*
7003 	 * Allocate and initialize the common elements of data access handle.
7004 	 */
7005 	*handle = impl_acc_hdl_alloc(KM_SLEEP, NULL);
7006 	hp = impl_acc_hdl_get(*handle);
7007 	hp->ah_vers = VERS_ACCHDL;
7008 	hp->ah_dip = dip;
7009 	hp->ah_rnumber = rnumber;
7010 	hp->ah_offset = offset;
7011 	hp->ah_len = len;
7012 	hp->ah_acc = *accattrp;
7013 
7014 	/*
7015 	 * Set up the mapping request and call to parent.
7016 	 */
7017 	mr.map_op = DDI_MO_MAP_LOCKED;
7018 	mr.map_type = DDI_MT_RNUMBER;
7019 	mr.map_obj.rnumber = rnumber;
7020 	mr.map_prot = PROT_READ | PROT_WRITE;
7021 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
7022 	mr.map_handlep = hp;
7023 	mr.map_vers = DDI_MAP_VERSION;
7024 	result = ddi_map(dip, &mr, offset, len, addrp);
7025 
7026 	/*
7027 	 * check for end result
7028 	 */
7029 	if (result != DDI_SUCCESS) {
7030 		impl_acc_hdl_free(*handle);
7031 		*handle = (ddi_acc_handle_t)NULL;
7032 	} else {
7033 		hp->ah_addr = *addrp;
7034 	}
7035 
7036 	return (result);
7037 }
7038 
7039 void
7040 ddi_regs_map_free(ddi_acc_handle_t *handlep)
7041 {
7042 	ddi_map_req_t mr;
7043 	ddi_acc_hdl_t *hp;
7044 
7045 	hp = impl_acc_hdl_get(*handlep);
7046 	ASSERT(hp);
7047 
7048 	mr.map_op = DDI_MO_UNMAP;
7049 	mr.map_type = DDI_MT_RNUMBER;
7050 	mr.map_obj.rnumber = hp->ah_rnumber;
7051 	mr.map_prot = PROT_READ | PROT_WRITE;
7052 	mr.map_flags = DDI_MF_KERNEL_MAPPING;
7053 	mr.map_handlep = hp;
7054 	mr.map_vers = DDI_MAP_VERSION;
7055 
7056 	/*
7057 	 * Call my parent to unmap my regs.
7058 	 */
7059 	(void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
7060 	    hp->ah_len, &hp->ah_addr);
7061 	/*
7062 	 * free the handle
7063 	 */
7064 	impl_acc_hdl_free(*handlep);
7065 	*handlep = (ddi_acc_handle_t)NULL;
7066 }
7067 
7068 int
7069 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
7070 	ssize_t dev_advcnt, uint_t dev_datasz)
7071 {
7072 	uint8_t *b;
7073 	uint16_t *w;
7074 	uint32_t *l;
7075 	uint64_t *ll;
7076 
7077 	/* check for total byte count is multiple of data transfer size */
7078 	if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7079 		return (DDI_FAILURE);
7080 
7081 	switch (dev_datasz) {
7082 	case DDI_DATA_SZ01_ACC:
7083 		for (b = (uint8_t *)dev_addr;
7084 		    bytecount != 0; bytecount -= 1, b += dev_advcnt)
7085 			ddi_put8(handle, b, 0);
7086 		break;
7087 	case DDI_DATA_SZ02_ACC:
7088 		for (w = (uint16_t *)dev_addr;
7089 		    bytecount != 0; bytecount -= 2, w += dev_advcnt)
7090 			ddi_put16(handle, w, 0);
7091 		break;
7092 	case DDI_DATA_SZ04_ACC:
7093 		for (l = (uint32_t *)dev_addr;
7094 		    bytecount != 0; bytecount -= 4, l += dev_advcnt)
7095 			ddi_put32(handle, l, 0);
7096 		break;
7097 	case DDI_DATA_SZ08_ACC:
7098 		for (ll = (uint64_t *)dev_addr;
7099 		    bytecount != 0; bytecount -= 8, ll += dev_advcnt)
7100 			ddi_put64(handle, ll, 0x0ll);
7101 		break;
7102 	default:
7103 		return (DDI_FAILURE);
7104 	}
7105 	return (DDI_SUCCESS);
7106 }
7107 
7108 int
7109 ddi_device_copy(
7110 	ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
7111 	ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
7112 	size_t bytecount, uint_t dev_datasz)
7113 {
7114 	uint8_t *b_src, *b_dst;
7115 	uint16_t *w_src, *w_dst;
7116 	uint32_t *l_src, *l_dst;
7117 	uint64_t *ll_src, *ll_dst;
7118 
7119 	/* check for total byte count is multiple of data transfer size */
7120 	if (bytecount != ((bytecount / dev_datasz) * dev_datasz))
7121 		return (DDI_FAILURE);
7122 
7123 	switch (dev_datasz) {
7124 	case DDI_DATA_SZ01_ACC:
7125 		b_src = (uint8_t *)src_addr;
7126 		b_dst = (uint8_t *)dest_addr;
7127 
7128 		for (; bytecount != 0; bytecount -= 1) {
7129 			ddi_put8(dest_handle, b_dst,
7130 			    ddi_get8(src_handle, b_src));
7131 			b_dst += dest_advcnt;
7132 			b_src += src_advcnt;
7133 		}
7134 		break;
7135 	case DDI_DATA_SZ02_ACC:
7136 		w_src = (uint16_t *)src_addr;
7137 		w_dst = (uint16_t *)dest_addr;
7138 
7139 		for (; bytecount != 0; bytecount -= 2) {
7140 			ddi_put16(dest_handle, w_dst,
7141 			    ddi_get16(src_handle, w_src));
7142 			w_dst += dest_advcnt;
7143 			w_src += src_advcnt;
7144 		}
7145 		break;
7146 	case DDI_DATA_SZ04_ACC:
7147 		l_src = (uint32_t *)src_addr;
7148 		l_dst = (uint32_t *)dest_addr;
7149 
7150 		for (; bytecount != 0; bytecount -= 4) {
7151 			ddi_put32(dest_handle, l_dst,
7152 			    ddi_get32(src_handle, l_src));
7153 			l_dst += dest_advcnt;
7154 			l_src += src_advcnt;
7155 		}
7156 		break;
7157 	case DDI_DATA_SZ08_ACC:
7158 		ll_src = (uint64_t *)src_addr;
7159 		ll_dst = (uint64_t *)dest_addr;
7160 
7161 		for (; bytecount != 0; bytecount -= 8) {
7162 			ddi_put64(dest_handle, ll_dst,
7163 			    ddi_get64(src_handle, ll_src));
7164 			ll_dst += dest_advcnt;
7165 			ll_src += src_advcnt;
7166 		}
7167 		break;
7168 	default:
7169 		return (DDI_FAILURE);
7170 	}
7171 	return (DDI_SUCCESS);
7172 }
7173 
7174 #define	swap16(value)  \
7175 	((((value) & 0xff) << 8) | ((value) >> 8))
7176 
7177 #define	swap32(value)	\
7178 	(((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \
7179 	(uint32_t)swap16((uint16_t)((value) >> 16)))
7180 
7181 #define	swap64(value)	\
7182 	(((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \
7183 	    << 32) | \
7184 	(uint64_t)swap32((uint32_t)((value) >> 32)))
7185 
7186 uint16_t
7187 ddi_swap16(uint16_t value)
7188 {
7189 	return (swap16(value));
7190 }
7191 
7192 uint32_t
7193 ddi_swap32(uint32_t value)
7194 {
7195 	return (swap32(value));
7196 }
7197 
7198 uint64_t
7199 ddi_swap64(uint64_t value)
7200 {
7201 	return (swap64(value));
7202 }
7203 
7204 /*
7205  * Convert a binding name to a driver name.
7206  * A binding name is the name used to determine the driver for a
7207  * device - it may be either an alias for the driver or the name
7208  * of the driver itself.
7209  */
7210 char *
7211 i_binding_to_drv_name(char *bname)
7212 {
7213 	major_t major_no;
7214 
7215 	ASSERT(bname != NULL);
7216 
7217 	if ((major_no = ddi_name_to_major(bname)) == -1)
7218 		return (NULL);
7219 	return (ddi_major_to_name(major_no));
7220 }
7221 
7222 /*
7223  * Search for minor name that has specified dev_t and spec_type.
7224  * If spec_type is zero then any dev_t match works.  Since we
7225  * are returning a pointer to the minor name string, we require the
7226  * caller to do the locking.
7227  */
7228 char *
7229 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type)
7230 {
7231 	struct ddi_minor_data	*dmdp;
7232 
7233 	/*
7234 	 * The did layered driver currently intentionally returns a
7235 	 * devinfo ptr for an underlying sd instance based on a did
7236 	 * dev_t. In this case it is not an error.
7237 	 *
7238 	 * The did layered driver is associated with Sun Cluster.
7239 	 */
7240 	ASSERT((ddi_driver_major(dip) == getmajor(dev)) ||
7241 	    (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0));
7242 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_lock)));
7243 
7244 	for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7245 		if (((dmdp->type == DDM_MINOR) ||
7246 		    (dmdp->type == DDM_INTERNAL_PATH) ||
7247 		    (dmdp->type == DDM_DEFAULT)) &&
7248 		    (dmdp->ddm_dev == dev) &&
7249 		    ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) ||
7250 		    (dmdp->ddm_spec_type == spec_type)))
7251 			return (dmdp->ddm_name);
7252 	}
7253 
7254 	return (NULL);
7255 }
7256 
7257 /*
7258  * Find the devt and spectype of the specified minor_name.
7259  * Return DDI_FAILURE if minor_name not found. Since we are
7260  * returning everything via arguments we can do the locking.
7261  */
7262 int
7263 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name,
7264 	dev_t *devtp, int *spectypep)
7265 {
7266 	struct ddi_minor_data	*dmdp;
7267 
7268 	/* deal with clone minor nodes */
7269 	if (dip == clone_dip) {
7270 		major_t	major;
7271 		/*
7272 		 * Make sure minor_name is a STREAMS driver.
7273 		 * We load the driver but don't attach to any instances.
7274 		 */
7275 
7276 		major = ddi_name_to_major(minor_name);
7277 		if (major == (major_t)-1)
7278 			return (DDI_FAILURE);
7279 
7280 		if (ddi_hold_driver(major) == NULL)
7281 			return (DDI_FAILURE);
7282 
7283 		if (STREAMSTAB(major) == NULL) {
7284 			ddi_rele_driver(major);
7285 			return (DDI_FAILURE);
7286 		}
7287 		ddi_rele_driver(major);
7288 
7289 		if (devtp)
7290 			*devtp = makedevice(clone_major, (minor_t)major);
7291 
7292 		if (spectypep)
7293 			*spectypep = S_IFCHR;
7294 
7295 		return (DDI_SUCCESS);
7296 	}
7297 
7298 	ASSERT(!MUTEX_HELD(&(DEVI(dip)->devi_lock)));
7299 	mutex_enter(&(DEVI(dip)->devi_lock));
7300 
7301 	for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
7302 		if (((dmdp->type != DDM_MINOR) &&
7303 		    (dmdp->type != DDM_INTERNAL_PATH) &&
7304 		    (dmdp->type != DDM_DEFAULT)) ||
7305 		    strcmp(minor_name, dmdp->ddm_name))
7306 			continue;
7307 
7308 		if (devtp)
7309 			*devtp = dmdp->ddm_dev;
7310 
7311 		if (spectypep)
7312 			*spectypep = dmdp->ddm_spec_type;
7313 
7314 		mutex_exit(&(DEVI(dip)->devi_lock));
7315 		return (DDI_SUCCESS);
7316 	}
7317 
7318 	mutex_exit(&(DEVI(dip)->devi_lock));
7319 	return (DDI_FAILURE);
7320 }
7321 
7322 extern char	hw_serial[];
7323 static kmutex_t devid_gen_mutex;
7324 static short	devid_gen_number;
7325 
7326 #ifdef DEBUG
7327 
7328 static int	devid_register_corrupt = 0;
7329 static int	devid_register_corrupt_major = 0;
7330 static int	devid_register_corrupt_hint = 0;
7331 static int	devid_register_corrupt_hint_major = 0;
7332 
7333 static int devid_lyr_debug = 0;
7334 
7335 #define	DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)		\
7336 	if (devid_lyr_debug)					\
7337 		ddi_debug_devid_devts(msg, ndevs, devs)
7338 
7339 #else
7340 
7341 #define	DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs)
7342 
7343 #endif /* DEBUG */
7344 
7345 
7346 #ifdef	DEBUG
7347 
7348 static void
7349 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs)
7350 {
7351 	int i;
7352 
7353 	cmn_err(CE_CONT, "%s:\n", msg);
7354 	for (i = 0; i < ndevs; i++) {
7355 		cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7356 	}
7357 }
7358 
7359 static void
7360 ddi_debug_devid_paths(char *msg, int npaths, char **paths)
7361 {
7362 	int i;
7363 
7364 	cmn_err(CE_CONT, "%s:\n", msg);
7365 	for (i = 0; i < npaths; i++) {
7366 		cmn_err(CE_CONT, "    %s\n", paths[i]);
7367 	}
7368 }
7369 
7370 static void
7371 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs)
7372 {
7373 	int i;
7374 
7375 	cmn_err(CE_CONT, "dev_ts per path %s\n", path);
7376 	for (i = 0; i < ndevs; i++) {
7377 		cmn_err(CE_CONT, "    0x%lx\n", devs[i]);
7378 	}
7379 }
7380 
7381 #endif	/* DEBUG */
7382 
7383 /*
7384  * Register device id into DDI framework.
7385  * Must be called when device is attached.
7386  */
7387 static int
7388 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7389 {
7390 	impl_devid_t	*i_devid = (impl_devid_t *)devid;
7391 	size_t		driver_len;
7392 	const char	*driver_name;
7393 	char		*devid_str;
7394 	major_t		major;
7395 
7396 	if ((dip == NULL) ||
7397 	    ((major = ddi_driver_major(dip)) == (major_t)-1))
7398 		return (DDI_FAILURE);
7399 
7400 	/* verify that the devid is valid */
7401 	if (ddi_devid_valid(devid) != DDI_SUCCESS)
7402 		return (DDI_FAILURE);
7403 
7404 	/* Updating driver name hint in devid */
7405 	driver_name = ddi_driver_name(dip);
7406 	driver_len = strlen(driver_name);
7407 	if (driver_len > DEVID_HINT_SIZE) {
7408 		/* Pick up last four characters of driver name */
7409 		driver_name += driver_len - DEVID_HINT_SIZE;
7410 		driver_len = DEVID_HINT_SIZE;
7411 	}
7412 	bzero(i_devid->did_driver, DEVID_HINT_SIZE);
7413 	bcopy(driver_name, i_devid->did_driver, driver_len);
7414 
7415 #ifdef DEBUG
7416 	/* Corrupt the devid for testing. */
7417 	if (devid_register_corrupt)
7418 		i_devid->did_id[0] += devid_register_corrupt;
7419 	if (devid_register_corrupt_major &&
7420 	    (major == devid_register_corrupt_major))
7421 		i_devid->did_id[0] += 1;
7422 	if (devid_register_corrupt_hint)
7423 		i_devid->did_driver[0] += devid_register_corrupt_hint;
7424 	if (devid_register_corrupt_hint_major &&
7425 	    (major == devid_register_corrupt_hint_major))
7426 		i_devid->did_driver[0] += 1;
7427 #endif /* DEBUG */
7428 
7429 	/* encode the devid as a string */
7430 	if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL)
7431 		return (DDI_FAILURE);
7432 
7433 	/* add string as a string property */
7434 	if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
7435 	    DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) {
7436 		cmn_err(CE_WARN, "%s%d: devid property update failed",
7437 		    ddi_driver_name(dip), ddi_get_instance(dip));
7438 		ddi_devid_str_free(devid_str);
7439 		return (DDI_FAILURE);
7440 	}
7441 
7442 	ddi_devid_str_free(devid_str);
7443 
7444 #ifdef	DEVID_COMPATIBILITY
7445 	/*
7446 	 * marker for devinfo snapshot compatibility.
7447 	 * This code gets deleted when di_devid is gone from libdevid
7448 	 */
7449 	DEVI(dip)->devi_devid = DEVID_COMPATIBILITY;
7450 #endif	/* DEVID_COMPATIBILITY */
7451 	return (DDI_SUCCESS);
7452 }
7453 
7454 int
7455 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid)
7456 {
7457 	int rval;
7458 
7459 	rval = i_ddi_devid_register(dip, devid);
7460 	if (rval == DDI_SUCCESS) {
7461 		/*
7462 		 * Register devid in devid-to-path cache
7463 		 */
7464 		if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
7465 			mutex_enter(&DEVI(dip)->devi_lock);
7466 			DEVI(dip)->devi_flags |= DEVI_REGISTERED_DEVID;
7467 			mutex_exit(&DEVI(dip)->devi_lock);
7468 		} else {
7469 			cmn_err(CE_WARN, "%s%d: failed to cache devid",
7470 			    ddi_driver_name(dip), ddi_get_instance(dip));
7471 		}
7472 	} else {
7473 		cmn_err(CE_WARN, "%s%d: failed to register devid",
7474 		    ddi_driver_name(dip), ddi_get_instance(dip));
7475 	}
7476 	return (rval);
7477 }
7478 
7479 /*
7480  * Remove (unregister) device id from DDI framework.
7481  * Must be called when device is detached.
7482  */
7483 static void
7484 i_ddi_devid_unregister(dev_info_t *dip)
7485 {
7486 #ifdef	DEVID_COMPATIBILITY
7487 	/*
7488 	 * marker for micro release devinfo snapshot compatibility.
7489 	 * This code gets deleted for the minor release.
7490 	 */
7491 	DEVI(dip)->devi_devid = NULL;		/* unset DEVID_PROP */
7492 #endif	/* DEVID_COMPATIBILITY */
7493 
7494 	/* remove the devid property */
7495 	(void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME);
7496 }
7497 
7498 void
7499 ddi_devid_unregister(dev_info_t *dip)
7500 {
7501 	mutex_enter(&DEVI(dip)->devi_lock);
7502 	DEVI(dip)->devi_flags &= ~DEVI_REGISTERED_DEVID;
7503 	mutex_exit(&DEVI(dip)->devi_lock);
7504 	e_devid_cache_unregister(dip);
7505 	i_ddi_devid_unregister(dip);
7506 }
7507 
7508 /*
7509  * Allocate and initialize a device id.
7510  */
7511 int
7512 ddi_devid_init(
7513 	dev_info_t	*dip,
7514 	ushort_t	devid_type,
7515 	ushort_t	nbytes,
7516 	void		*id,
7517 	ddi_devid_t	*ret_devid)
7518 {
7519 	impl_devid_t	*i_devid;
7520 	int		sz = sizeof (*i_devid) + nbytes - sizeof (char);
7521 	int		driver_len;
7522 	const char	*driver_name;
7523 
7524 	switch (devid_type) {
7525 	case DEVID_SCSI3_WWN:
7526 		/*FALLTHRU*/
7527 	case DEVID_SCSI_SERIAL:
7528 		/*FALLTHRU*/
7529 	case DEVID_ATA_SERIAL:
7530 		/*FALLTHRU*/
7531 	case DEVID_ENCAP:
7532 		if (nbytes == 0)
7533 			return (DDI_FAILURE);
7534 		if (id == NULL)
7535 			return (DDI_FAILURE);
7536 		break;
7537 	case DEVID_FAB:
7538 		if (nbytes != 0)
7539 			return (DDI_FAILURE);
7540 		if (id != NULL)
7541 			return (DDI_FAILURE);
7542 		nbytes = sizeof (int) +
7543 		    sizeof (struct timeval32) + sizeof (short);
7544 		sz += nbytes;
7545 		break;
7546 	default:
7547 		return (DDI_FAILURE);
7548 	}
7549 
7550 	if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL)
7551 		return (DDI_FAILURE);
7552 
7553 	i_devid->did_magic_hi = DEVID_MAGIC_MSB;
7554 	i_devid->did_magic_lo = DEVID_MAGIC_LSB;
7555 	i_devid->did_rev_hi = DEVID_REV_MSB;
7556 	i_devid->did_rev_lo = DEVID_REV_LSB;
7557 	DEVID_FORMTYPE(i_devid, devid_type);
7558 	DEVID_FORMLEN(i_devid, nbytes);
7559 
7560 	/* Fill in driver name hint */
7561 	driver_name = ddi_driver_name(dip);
7562 	driver_len = strlen(driver_name);
7563 	if (driver_len > DEVID_HINT_SIZE) {
7564 		/* Pick up last four characters of driver name */
7565 		driver_name += driver_len - DEVID_HINT_SIZE;
7566 		driver_len = DEVID_HINT_SIZE;
7567 	}
7568 
7569 	bcopy(driver_name, i_devid->did_driver, driver_len);
7570 
7571 	/* Fill in id field */
7572 	if (devid_type == DEVID_FAB) {
7573 		char		*cp;
7574 		int		hostid;
7575 		char		*hostid_cp = &hw_serial[0];
7576 		struct timeval32 timestamp32;
7577 		int		i;
7578 		int		*ip;
7579 		short		gen;
7580 
7581 		/* increase the generation number */
7582 		mutex_enter(&devid_gen_mutex);
7583 		gen = devid_gen_number++;
7584 		mutex_exit(&devid_gen_mutex);
7585 
7586 		cp = i_devid->did_id;
7587 
7588 		/* Fill in host id (big-endian byte ordering) */
7589 		hostid = stoi(&hostid_cp);
7590 		*cp++ = hibyte(hiword(hostid));
7591 		*cp++ = lobyte(hiword(hostid));
7592 		*cp++ = hibyte(loword(hostid));
7593 		*cp++ = lobyte(loword(hostid));
7594 
7595 		/*
7596 		 * Fill in timestamp (big-endian byte ordering)
7597 		 *
7598 		 * (Note that the format may have to be changed
7599 		 * before 2038 comes around, though it's arguably
7600 		 * unique enough as it is..)
7601 		 */
7602 		uniqtime32(&timestamp32);
7603 		ip = (int *)&timestamp32;
7604 		for (i = 0;
7605 		    i < sizeof (timestamp32) / sizeof (int); i++, ip++) {
7606 			int	val;
7607 			val = *ip;
7608 			*cp++ = hibyte(hiword(val));
7609 			*cp++ = lobyte(hiword(val));
7610 			*cp++ = hibyte(loword(val));
7611 			*cp++ = lobyte(loword(val));
7612 		}
7613 
7614 		/* fill in the generation number */
7615 		*cp++ = hibyte(gen);
7616 		*cp++ = lobyte(gen);
7617 	} else
7618 		bcopy(id, i_devid->did_id, nbytes);
7619 
7620 	/* return device id */
7621 	*ret_devid = (ddi_devid_t)i_devid;
7622 	return (DDI_SUCCESS);
7623 }
7624 
7625 int
7626 ddi_devid_get(dev_info_t *dip, ddi_devid_t *ret_devid)
7627 {
7628 	return (i_ddi_devi_get_devid(DDI_DEV_T_ANY, dip, ret_devid));
7629 }
7630 
7631 int
7632 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid)
7633 {
7634 	char		*devidstr;
7635 
7636 	ASSERT(dev != DDI_DEV_T_NONE);
7637 
7638 	/* look up the property, devt specific first */
7639 	if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS,
7640 	    DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) {
7641 		if ((dev == DDI_DEV_T_ANY) ||
7642 		    (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
7643 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) !=
7644 		    DDI_PROP_SUCCESS)) {
7645 			return (DDI_FAILURE);
7646 		}
7647 	}
7648 
7649 	/* convert to binary form */
7650 	if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) {
7651 		ddi_prop_free(devidstr);
7652 		return (DDI_FAILURE);
7653 	}
7654 	ddi_prop_free(devidstr);
7655 	return (DDI_SUCCESS);
7656 }
7657 
7658 /*
7659  * Return a copy of the device id for dev_t
7660  */
7661 int
7662 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid)
7663 {
7664 	dev_info_t	*dip;
7665 	int		rval;
7666 
7667 	/* get the dip */
7668 	if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7669 		return (DDI_FAILURE);
7670 
7671 	rval = i_ddi_devi_get_devid(dev, dip, ret_devid);
7672 
7673 	ddi_release_devi(dip);		/* e_ddi_hold_devi_by_dev() */
7674 	return (rval);
7675 }
7676 
7677 /*
7678  * Return a copy of the minor name for dev_t and spec_type
7679  */
7680 int
7681 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name)
7682 {
7683 	dev_info_t	*dip;
7684 	char		*nm;
7685 	size_t		alloc_sz, sz;
7686 
7687 	if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL)
7688 		return (DDI_FAILURE);
7689 
7690 	mutex_enter(&(DEVI(dip)->devi_lock));
7691 
7692 	if ((nm = i_ddi_devtspectype_to_minorname(dip,
7693 	    dev, spec_type)) == NULL) {
7694 		mutex_exit(&(DEVI(dip)->devi_lock));
7695 		ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7696 		return (DDI_FAILURE);
7697 	}
7698 
7699 	/* make a copy */
7700 	alloc_sz = strlen(nm) + 1;
7701 retry:
7702 	/* drop lock to allocate memory */
7703 	mutex_exit(&(DEVI(dip)->devi_lock));
7704 	*minor_name = kmem_alloc(alloc_sz, KM_SLEEP);
7705 	mutex_enter(&(DEVI(dip)->devi_lock));
7706 
7707 	/* re-check things, since we dropped the lock */
7708 	if ((nm = i_ddi_devtspectype_to_minorname(dip,
7709 	    dev, spec_type)) == NULL) {
7710 		mutex_exit(&(DEVI(dip)->devi_lock));
7711 		kmem_free(*minor_name, alloc_sz);
7712 		*minor_name = NULL;
7713 		ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7714 		return (DDI_FAILURE);
7715 	}
7716 
7717 	/* verify size is the same */
7718 	sz = strlen(nm) + 1;
7719 	if (alloc_sz != sz) {
7720 		kmem_free(*minor_name, alloc_sz);
7721 		alloc_sz = sz;
7722 		goto retry;
7723 	}
7724 
7725 	/* sz == alloc_sz - make a copy */
7726 	(void) strcpy(*minor_name, nm);
7727 
7728 	mutex_exit(&(DEVI(dip)->devi_lock));
7729 	ddi_release_devi(dip);	/* e_ddi_hold_devi_by_dev() */
7730 	return (DDI_SUCCESS);
7731 }
7732 
7733 int
7734 ddi_lyr_devid_to_devlist(
7735 	ddi_devid_t	devid,
7736 	char		*minor_name,
7737 	int		*retndevs,
7738 	dev_t		**retdevs)
7739 {
7740 	ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS);
7741 
7742 	if (e_devid_cache_to_devt_list(devid, minor_name,
7743 	    retndevs, retdevs) == DDI_SUCCESS) {
7744 		ASSERT(*retndevs > 0);
7745 		DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7746 		    *retndevs, *retdevs);
7747 		return (DDI_SUCCESS);
7748 	}
7749 
7750 	if (e_ddi_devid_discovery(devid) == DDI_FAILURE) {
7751 		return (DDI_FAILURE);
7752 	}
7753 
7754 	if (e_devid_cache_to_devt_list(devid, minor_name,
7755 	    retndevs, retdevs) == DDI_SUCCESS) {
7756 		ASSERT(*retndevs > 0);
7757 		DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist",
7758 		    *retndevs, *retdevs);
7759 		return (DDI_SUCCESS);
7760 	}
7761 
7762 	return (DDI_FAILURE);
7763 }
7764 
7765 void
7766 ddi_lyr_free_devlist(dev_t *devlist, int ndevs)
7767 {
7768 	kmem_free(devlist, sizeof (dev_t) * ndevs);
7769 }
7770 
7771 /*
7772  * Note: This will need to be fixed if we ever allow processes to
7773  * have more than one data model per exec.
7774  */
7775 model_t
7776 ddi_mmap_get_model(void)
7777 {
7778 	return (get_udatamodel());
7779 }
7780 
7781 model_t
7782 ddi_model_convert_from(model_t model)
7783 {
7784 	return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE);
7785 }
7786 
7787 /*
7788  * ddi interfaces managing storage and retrieval of eventcookies.
7789  */
7790 
7791 /*
7792  * Invoke bus nexus driver's implementation of the
7793  * (*bus_remove_eventcall)() interface to remove a registered
7794  * callback handler for "event".
7795  */
7796 int
7797 ddi_remove_event_handler(ddi_callback_id_t id)
7798 {
7799 	ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id;
7800 	dev_info_t *ddip;
7801 
7802 	ASSERT(cb);
7803 	if (!cb) {
7804 		return (DDI_FAILURE);
7805 	}
7806 
7807 	ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie);
7808 	return (ndi_busop_remove_eventcall(ddip, id));
7809 }
7810 
7811 /*
7812  * Invoke bus nexus driver's implementation of the
7813  * (*bus_add_eventcall)() interface to register a callback handler
7814  * for "event".
7815  */
7816 int
7817 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
7818     void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
7819     void *arg, ddi_callback_id_t *id)
7820 {
7821 	return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id));
7822 }
7823 
7824 
7825 /*
7826  * Return a handle for event "name" by calling up the device tree
7827  * hierarchy via  (*bus_get_eventcookie)() interface until claimed
7828  * by a bus nexus or top of dev_info tree is reached.
7829  */
7830 int
7831 ddi_get_eventcookie(dev_info_t *dip, char *name,
7832     ddi_eventcookie_t *event_cookiep)
7833 {
7834 	return (ndi_busop_get_eventcookie(dip, dip,
7835 	    name, event_cookiep));
7836 }
7837 
7838 /*
7839  * single thread access to dev_info node and set state
7840  */
7841 void
7842 i_devi_enter(dev_info_t *dip, uint_t s_mask, uint_t w_mask, int has_lock)
7843 {
7844 	if (!has_lock)
7845 		mutex_enter(&(DEVI(dip)->devi_lock));
7846 
7847 	ASSERT(mutex_owned(&(DEVI(dip)->devi_lock)));
7848 
7849 	/*
7850 	 * wait until state(s) have been changed
7851 	 */
7852 	while ((DEVI(dip)->devi_state & w_mask) != 0) {
7853 		cv_wait(&(DEVI(dip)->devi_cv), &(DEVI(dip)->devi_lock));
7854 	}
7855 	DEVI(dip)->devi_state |= s_mask;
7856 
7857 	if (!has_lock)
7858 		mutex_exit(&(DEVI(dip)->devi_lock));
7859 }
7860 
7861 void
7862 i_devi_exit(dev_info_t *dip, uint_t c_mask, int has_lock)
7863 {
7864 	if (!has_lock)
7865 		mutex_enter(&(DEVI(dip)->devi_lock));
7866 
7867 	ASSERT(mutex_owned(&(DEVI(dip)->devi_lock)));
7868 
7869 	/*
7870 	 * clear the state(s) and wakeup any threads waiting
7871 	 * for state change
7872 	 */
7873 	DEVI(dip)->devi_state &= ~c_mask;
7874 	cv_broadcast(&(DEVI(dip)->devi_cv));
7875 
7876 	if (!has_lock)
7877 		mutex_exit(&(DEVI(dip)->devi_lock));
7878 }
7879 
7880 /*
7881  * This procedure is provided as the general callback function when
7882  * umem_lockmemory calls as_add_callback for long term memory locking.
7883  * When as_unmap, as_setprot, or as_free encounter segments which have
7884  * locked memory, this callback will be invoked.
7885  */
7886 void
7887 umem_lock_undo(struct as *as, void *arg, uint_t event)
7888 {
7889 	_NOTE(ARGUNUSED(as, event))
7890 	struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg;
7891 
7892 	/*
7893 	 * Call the cleanup function.  Decrement the cookie reference
7894 	 * count, if it goes to zero, return the memory for the cookie.
7895 	 * The i_ddi_umem_unlock for this cookie may or may not have been
7896 	 * called already.  It is the responsibility of the caller of
7897 	 * umem_lockmemory to handle the case of the cleanup routine
7898 	 * being called after a ddi_umem_unlock for the cookie
7899 	 * was called.
7900 	 */
7901 
7902 	(*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp);
7903 
7904 	/* remove the cookie if reference goes to zero */
7905 	if (atomic_add_long_nv((ulong_t *)(&(cp->cook_refcnt)), -1) == 0) {
7906 		kmem_free(cp, sizeof (struct ddi_umem_cookie));
7907 	}
7908 }
7909 
7910 /*
7911  * The following two Consolidation Private routines provide generic
7912  * interfaces to increase/decrease the amount of device-locked memory.
7913  *
7914  * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory()
7915  * must be called every time i_ddi_incr_locked_memory() is called.
7916  */
7917 int
7918 /* ARGSUSED */
7919 i_ddi_incr_locked_memory(proc_t *procp, rctl_qty_t inc)
7920 {
7921 	ASSERT(procp != NULL);
7922 	mutex_enter(&procp->p_lock);
7923 	if (rctl_incr_locked_mem(procp, NULL, inc, 1)) {
7924 		mutex_exit(&procp->p_lock);
7925 		return (ENOMEM);
7926 	}
7927 	mutex_exit(&procp->p_lock);
7928 	return (0);
7929 }
7930 
7931 /*
7932  * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory()
7933  * must be called every time i_ddi_decr_locked_memory() is called.
7934  */
7935 /* ARGSUSED */
7936 void
7937 i_ddi_decr_locked_memory(proc_t *procp, rctl_qty_t dec)
7938 {
7939 	ASSERT(procp != NULL);
7940 	mutex_enter(&procp->p_lock);
7941 	rctl_decr_locked_mem(procp, NULL, dec, 1);
7942 	mutex_exit(&procp->p_lock);
7943 }
7944 
7945 /*
7946  * This routine checks if the max-locked-memory resource ctl is
7947  * exceeded, if not increments it, grabs a hold on the project.
7948  * Returns 0 if successful otherwise returns error code
7949  */
7950 static int
7951 umem_incr_devlockmem(struct ddi_umem_cookie *cookie)
7952 {
7953 	proc_t		*procp;
7954 	int		ret;
7955 
7956 	ASSERT(cookie);
7957 	procp = cookie->procp;
7958 	ASSERT(procp);
7959 
7960 	if ((ret = i_ddi_incr_locked_memory(procp,
7961 	    cookie->size)) != 0) {
7962 		return (ret);
7963 	}
7964 	return (0);
7965 }
7966 
7967 /*
7968  * Decrements the max-locked-memory resource ctl and releases
7969  * the hold on the project that was acquired during umem_incr_devlockmem
7970  */
7971 static void
7972 umem_decr_devlockmem(struct ddi_umem_cookie *cookie)
7973 {
7974 	proc_t		*proc;
7975 
7976 	proc = (proc_t *)cookie->procp;
7977 	if (!proc)
7978 		return;
7979 
7980 	i_ddi_decr_locked_memory(proc, cookie->size);
7981 }
7982 
7983 /*
7984  * A consolidation private function which is essentially equivalent to
7985  * ddi_umem_lock but with the addition of arguments ops_vector and procp.
7986  * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and
7987  * the ops_vector is valid.
7988  *
7989  * Lock the virtual address range in the current process and create a
7990  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
7991  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
7992  * to user space.
7993  *
7994  * Note: The resource control accounting currently uses a full charge model
7995  * in other words attempts to lock the same/overlapping areas of memory
7996  * will deduct the full size of the buffer from the projects running
7997  * counter for the device locked memory.
7998  *
7999  * addr, size should be PAGESIZE aligned
8000  *
8001  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8002  *	identifies whether the locked memory will be read or written or both
8003  *      DDI_UMEMLOCK_LONGTERM  must be set when the locking will
8004  * be maintained for an indefinitely long period (essentially permanent),
8005  * rather than for what would be required for a typical I/O completion.
8006  * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT
8007  * if the memory pertains to a regular file which is mapped MAP_SHARED.
8008  * This is to prevent a deadlock if a file truncation is attempted after
8009  * after the locking is done.
8010  *
8011  * Returns 0 on success
8012  *	EINVAL - for invalid parameters
8013  *	EPERM, ENOMEM and other error codes returned by as_pagelock
8014  *	ENOMEM - is returned if the current request to lock memory exceeds
8015  *		*.max-locked-memory resource control value.
8016  *      EFAULT - memory pertains to a regular file mapped shared and
8017  *		and DDI_UMEMLOCK_LONGTERM flag is set
8018  *	EAGAIN - could not start the ddi_umem_unlock list processing thread
8019  */
8020 int
8021 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie,
8022 		struct umem_callback_ops *ops_vector,
8023 		proc_t *procp)
8024 {
8025 	int	error;
8026 	struct ddi_umem_cookie *p;
8027 	void	(*driver_callback)() = NULL;
8028 	struct as *as = procp->p_as;
8029 	struct seg		*seg;
8030 	vnode_t			*vp;
8031 
8032 	*cookie = NULL;		/* in case of any error return */
8033 
8034 	/* These are the only three valid flags */
8035 	if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE |
8036 	    DDI_UMEMLOCK_LONGTERM)) != 0)
8037 		return (EINVAL);
8038 
8039 	/* At least one (can be both) of the two access flags must be set */
8040 	if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0)
8041 		return (EINVAL);
8042 
8043 	/* addr and len must be page-aligned */
8044 	if (((uintptr_t)addr & PAGEOFFSET) != 0)
8045 		return (EINVAL);
8046 
8047 	if ((len & PAGEOFFSET) != 0)
8048 		return (EINVAL);
8049 
8050 	/*
8051 	 * For longterm locking a driver callback must be specified; if
8052 	 * not longterm then a callback is optional.
8053 	 */
8054 	if (ops_vector != NULL) {
8055 		if (ops_vector->cbo_umem_callback_version !=
8056 		    UMEM_CALLBACK_VERSION)
8057 			return (EINVAL);
8058 		else
8059 			driver_callback = ops_vector->cbo_umem_lock_cleanup;
8060 	}
8061 	if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM))
8062 		return (EINVAL);
8063 
8064 	/*
8065 	 * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8066 	 * be called on first ddi_umem_lock or umem_lockmemory call.
8067 	 */
8068 	if (ddi_umem_unlock_thread == NULL)
8069 		i_ddi_umem_unlock_thread_start();
8070 
8071 	/* Allocate memory for the cookie */
8072 	p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8073 
8074 	/* Convert the flags to seg_rw type */
8075 	if (flags & DDI_UMEMLOCK_WRITE) {
8076 		p->s_flags = S_WRITE;
8077 	} else {
8078 		p->s_flags = S_READ;
8079 	}
8080 
8081 	/* Store procp in cookie for later iosetup/unlock */
8082 	p->procp = (void *)procp;
8083 
8084 	/*
8085 	 * Store the struct as pointer in cookie for later use by
8086 	 * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8087 	 * is called after relvm is called.
8088 	 */
8089 	p->asp = as;
8090 
8091 	/*
8092 	 * The size field is needed for lockmem accounting.
8093 	 */
8094 	p->size = len;
8095 
8096 	if (umem_incr_devlockmem(p) != 0) {
8097 		/*
8098 		 * The requested memory cannot be locked
8099 		 */
8100 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8101 		*cookie = (ddi_umem_cookie_t)NULL;
8102 		return (ENOMEM);
8103 	}
8104 
8105 	/* Lock the pages corresponding to addr, len in memory */
8106 	error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags);
8107 	if (error != 0) {
8108 		umem_decr_devlockmem(p);
8109 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8110 		*cookie = (ddi_umem_cookie_t)NULL;
8111 		return (error);
8112 	}
8113 
8114 	/*
8115 	 * For longterm locking the addr must pertain to a seg_vn segment or
8116 	 * or a seg_spt segment.
8117 	 * If the segment pertains to a regular file, it cannot be
8118 	 * mapped MAP_SHARED.
8119 	 * This is to prevent a deadlock if a file truncation is attempted
8120 	 * after the locking is done.
8121 	 * Doing this after as_pagelock guarantees persistence of the as; if
8122 	 * an unacceptable segment is found, the cleanup includes calling
8123 	 * as_pageunlock before returning EFAULT.
8124 	 */
8125 	if (flags & DDI_UMEMLOCK_LONGTERM) {
8126 		extern  struct seg_ops segspt_shmops;
8127 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
8128 		for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) {
8129 			if (seg == NULL || seg->s_base > addr + len)
8130 				break;
8131 			if (((seg->s_ops != &segvn_ops) &&
8132 			    (seg->s_ops != &segspt_shmops)) ||
8133 			    ((SEGOP_GETVP(seg, addr, &vp) == 0 &&
8134 			    vp != NULL && vp->v_type == VREG) &&
8135 			    (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) {
8136 				as_pageunlock(as, p->pparray,
8137 				    addr, len, p->s_flags);
8138 				AS_LOCK_EXIT(as, &as->a_lock);
8139 				umem_decr_devlockmem(p);
8140 				kmem_free(p, sizeof (struct ddi_umem_cookie));
8141 				*cookie = (ddi_umem_cookie_t)NULL;
8142 				return (EFAULT);
8143 			}
8144 		}
8145 		AS_LOCK_EXIT(as, &as->a_lock);
8146 	}
8147 
8148 
8149 	/* Initialize the fields in the ddi_umem_cookie */
8150 	p->cvaddr = addr;
8151 	p->type = UMEM_LOCKED;
8152 	if (driver_callback != NULL) {
8153 		/* i_ddi_umem_unlock and umem_lock_undo may need the cookie */
8154 		p->cook_refcnt = 2;
8155 		p->callbacks = *ops_vector;
8156 	} else {
8157 		/* only i_ddi_umme_unlock needs the cookie */
8158 		p->cook_refcnt = 1;
8159 	}
8160 
8161 	*cookie = (ddi_umem_cookie_t)p;
8162 
8163 	/*
8164 	 * If a driver callback was specified, add an entry to the
8165 	 * as struct callback list. The as_pagelock above guarantees
8166 	 * the persistence of as.
8167 	 */
8168 	if (driver_callback) {
8169 		error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT,
8170 		    addr, len, KM_SLEEP);
8171 		if (error != 0) {
8172 			as_pageunlock(as, p->pparray,
8173 			    addr, len, p->s_flags);
8174 			umem_decr_devlockmem(p);
8175 			kmem_free(p, sizeof (struct ddi_umem_cookie));
8176 			*cookie = (ddi_umem_cookie_t)NULL;
8177 		}
8178 	}
8179 	return (error);
8180 }
8181 
8182 /*
8183  * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free
8184  * the cookie.  Called from i_ddi_umem_unlock_thread.
8185  */
8186 
8187 static void
8188 i_ddi_umem_unlock(struct ddi_umem_cookie *p)
8189 {
8190 	uint_t	rc;
8191 
8192 	/*
8193 	 * There is no way to determine whether a callback to
8194 	 * umem_lock_undo was registered via as_add_callback.
8195 	 * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and
8196 	 * a valid callback function structure.)  as_delete_callback
8197 	 * is called to delete a possible registered callback.  If the
8198 	 * return from as_delete_callbacks is AS_CALLBACK_DELETED, it
8199 	 * indicates that there was a callback registered, and that is was
8200 	 * successfully deleted.  Thus, the cookie reference count
8201 	 * will never be decremented by umem_lock_undo.  Just return the
8202 	 * memory for the cookie, since both users of the cookie are done.
8203 	 * A return of AS_CALLBACK_NOTFOUND indicates a callback was
8204 	 * never registered.  A return of AS_CALLBACK_DELETE_DEFERRED
8205 	 * indicates that callback processing is taking place and, and
8206 	 * umem_lock_undo is, or will be, executing, and thus decrementing
8207 	 * the cookie reference count when it is complete.
8208 	 *
8209 	 * This needs to be done before as_pageunlock so that the
8210 	 * persistence of as is guaranteed because of the locked pages.
8211 	 *
8212 	 */
8213 	rc = as_delete_callback(p->asp, p);
8214 
8215 
8216 	/*
8217 	 * The proc->p_as will be stale if i_ddi_umem_unlock is called
8218 	 * after relvm is called so use p->asp.
8219 	 */
8220 	as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags);
8221 
8222 	/*
8223 	 * Now that we have unlocked the memory decrement the
8224 	 * *.max-locked-memory rctl
8225 	 */
8226 	umem_decr_devlockmem(p);
8227 
8228 	if (rc == AS_CALLBACK_DELETED) {
8229 		/* umem_lock_undo will not happen, return the cookie memory */
8230 		ASSERT(p->cook_refcnt == 2);
8231 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8232 	} else {
8233 		/*
8234 		 * umem_undo_lock may happen if as_delete_callback returned
8235 		 * AS_CALLBACK_DELETE_DEFERRED.  In that case, decrement the
8236 		 * reference count, atomically, and return the cookie
8237 		 * memory if the reference count goes to zero.  The only
8238 		 * other value for rc is AS_CALLBACK_NOTFOUND.  In that
8239 		 * case, just return the cookie memory.
8240 		 */
8241 		if ((rc != AS_CALLBACK_DELETE_DEFERRED) ||
8242 		    (atomic_add_long_nv((ulong_t *)(&(p->cook_refcnt)), -1)
8243 		    == 0)) {
8244 			kmem_free(p, sizeof (struct ddi_umem_cookie));
8245 		}
8246 	}
8247 }
8248 
8249 /*
8250  * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler.
8251  *
8252  * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list
8253  * until it is empty.  Then, wait for more to be added.  This thread is awoken
8254  * via calls to ddi_umem_unlock.
8255  */
8256 
8257 static void
8258 i_ddi_umem_unlock_thread(void)
8259 {
8260 	struct ddi_umem_cookie	*ret_cookie;
8261 	callb_cpr_t	cprinfo;
8262 
8263 	/* process the ddi_umem_unlock list */
8264 	CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex,
8265 	    callb_generic_cpr, "unlock_thread");
8266 	for (;;) {
8267 		mutex_enter(&ddi_umem_unlock_mutex);
8268 		if (ddi_umem_unlock_head != NULL) {	/* list not empty */
8269 			ret_cookie = ddi_umem_unlock_head;
8270 			/* take if off the list */
8271 			if ((ddi_umem_unlock_head =
8272 			    ddi_umem_unlock_head->unl_forw) == NULL) {
8273 				ddi_umem_unlock_tail = NULL;
8274 			}
8275 			mutex_exit(&ddi_umem_unlock_mutex);
8276 			/* unlock the pages in this cookie */
8277 			(void) i_ddi_umem_unlock(ret_cookie);
8278 		} else {   /* list is empty, wait for next ddi_umem_unlock */
8279 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
8280 			cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex);
8281 			CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex);
8282 			mutex_exit(&ddi_umem_unlock_mutex);
8283 		}
8284 	}
8285 	/* ddi_umem_unlock_thread does not exit */
8286 	/* NOTREACHED */
8287 }
8288 
8289 /*
8290  * Start the thread that will process the ddi_umem_unlock list if it is
8291  * not already started (i_ddi_umem_unlock_thread).
8292  */
8293 static void
8294 i_ddi_umem_unlock_thread_start(void)
8295 {
8296 	mutex_enter(&ddi_umem_unlock_mutex);
8297 	if (ddi_umem_unlock_thread == NULL) {
8298 		ddi_umem_unlock_thread = thread_create(NULL, 0,
8299 		    i_ddi_umem_unlock_thread, NULL, 0, &p0,
8300 		    TS_RUN, minclsyspri);
8301 	}
8302 	mutex_exit(&ddi_umem_unlock_mutex);
8303 }
8304 
8305 /*
8306  * Lock the virtual address range in the current process and create a
8307  * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to
8308  * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export
8309  * to user space.
8310  *
8311  * Note: The resource control accounting currently uses a full charge model
8312  * in other words attempts to lock the same/overlapping areas of memory
8313  * will deduct the full size of the buffer from the projects running
8314  * counter for the device locked memory. This applies to umem_lockmemory too.
8315  *
8316  * addr, size should be PAGESIZE aligned
8317  * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both
8318  *	identifies whether the locked memory will be read or written or both
8319  *
8320  * Returns 0 on success
8321  *	EINVAL - for invalid parameters
8322  *	EPERM, ENOMEM and other error codes returned by as_pagelock
8323  *	ENOMEM - is returned if the current request to lock memory exceeds
8324  *		*.max-locked-memory resource control value.
8325  *	EAGAIN - could not start the ddi_umem_unlock list processing thread
8326  */
8327 int
8328 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie)
8329 {
8330 	int	error;
8331 	struct ddi_umem_cookie *p;
8332 
8333 	*cookie = NULL;		/* in case of any error return */
8334 
8335 	/* These are the only two valid flags */
8336 	if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) {
8337 		return (EINVAL);
8338 	}
8339 
8340 	/* At least one of the two flags (or both) must be set */
8341 	if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) {
8342 		return (EINVAL);
8343 	}
8344 
8345 	/* addr and len must be page-aligned */
8346 	if (((uintptr_t)addr & PAGEOFFSET) != 0) {
8347 		return (EINVAL);
8348 	}
8349 
8350 	if ((len & PAGEOFFSET) != 0) {
8351 		return (EINVAL);
8352 	}
8353 
8354 	/*
8355 	 * Call i_ddi_umem_unlock_thread_start if necessary.  It will
8356 	 * be called on first ddi_umem_lock or umem_lockmemory call.
8357 	 */
8358 	if (ddi_umem_unlock_thread == NULL)
8359 		i_ddi_umem_unlock_thread_start();
8360 
8361 	/* Allocate memory for the cookie */
8362 	p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP);
8363 
8364 	/* Convert the flags to seg_rw type */
8365 	if (flags & DDI_UMEMLOCK_WRITE) {
8366 		p->s_flags = S_WRITE;
8367 	} else {
8368 		p->s_flags = S_READ;
8369 	}
8370 
8371 	/* Store curproc in cookie for later iosetup/unlock */
8372 	p->procp = (void *)curproc;
8373 
8374 	/*
8375 	 * Store the struct as pointer in cookie for later use by
8376 	 * ddi_umem_unlock.  The proc->p_as will be stale if ddi_umem_unlock
8377 	 * is called after relvm is called.
8378 	 */
8379 	p->asp = curproc->p_as;
8380 	/*
8381 	 * The size field is needed for lockmem accounting.
8382 	 */
8383 	p->size = len;
8384 
8385 	if (umem_incr_devlockmem(p) != 0) {
8386 		/*
8387 		 * The requested memory cannot be locked
8388 		 */
8389 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8390 		*cookie = (ddi_umem_cookie_t)NULL;
8391 		return (ENOMEM);
8392 	}
8393 
8394 	/* Lock the pages corresponding to addr, len in memory */
8395 	error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray),
8396 	    addr, len, p->s_flags);
8397 	if (error != 0) {
8398 		umem_decr_devlockmem(p);
8399 		kmem_free(p, sizeof (struct ddi_umem_cookie));
8400 		*cookie = (ddi_umem_cookie_t)NULL;
8401 		return (error);
8402 	}
8403 
8404 	/* Initialize the fields in the ddi_umem_cookie */
8405 	p->cvaddr = addr;
8406 	p->type = UMEM_LOCKED;
8407 	p->cook_refcnt = 1;
8408 
8409 	*cookie = (ddi_umem_cookie_t)p;
8410 	return (error);
8411 }
8412 
8413 /*
8414  * Add the cookie to the ddi_umem_unlock list.  Pages will be
8415  * unlocked by i_ddi_umem_unlock_thread.
8416  */
8417 
8418 void
8419 ddi_umem_unlock(ddi_umem_cookie_t cookie)
8420 {
8421 	struct ddi_umem_cookie	*p = (struct ddi_umem_cookie *)cookie;
8422 
8423 	ASSERT(p->type == UMEM_LOCKED);
8424 	ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */
8425 	ASSERT(ddi_umem_unlock_thread != NULL);
8426 
8427 	p->unl_forw = (struct ddi_umem_cookie *)NULL;	/* end of list */
8428 	/*
8429 	 * Queue the unlock request and notify i_ddi_umem_unlock thread
8430 	 * if it's called in the interrupt context. Otherwise, unlock pages
8431 	 * immediately.
8432 	 */
8433 	if (servicing_interrupt()) {
8434 		/* queue the unlock request and notify the thread */
8435 		mutex_enter(&ddi_umem_unlock_mutex);
8436 		if (ddi_umem_unlock_head == NULL) {
8437 			ddi_umem_unlock_head = ddi_umem_unlock_tail = p;
8438 			cv_broadcast(&ddi_umem_unlock_cv);
8439 		} else {
8440 			ddi_umem_unlock_tail->unl_forw = p;
8441 			ddi_umem_unlock_tail = p;
8442 		}
8443 		mutex_exit(&ddi_umem_unlock_mutex);
8444 	} else {
8445 		/* unlock the pages right away */
8446 		(void) i_ddi_umem_unlock(p);
8447 	}
8448 }
8449 
8450 /*
8451  * Create a buf structure from a ddi_umem_cookie
8452  * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc
8453  *		(only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported)
8454  * off, len - identifies the portion of the memory represented by the cookie
8455  *		that the buf points to.
8456  *	NOTE: off, len need to follow the alignment/size restrictions of the
8457  *		device (dev) that this buf will be passed to. Some devices
8458  *		will accept unrestricted alignment/size, whereas others (such as
8459  *		st) require some block-size alignment/size. It is the caller's
8460  *		responsibility to ensure that the alignment/size restrictions
8461  *		are met (we cannot assert as we do not know the restrictions)
8462  *
8463  * direction - is one of B_READ or B_WRITE and needs to be compatible with
8464  *		the flags used in ddi_umem_lock
8465  *
8466  * The following three arguments are used to initialize fields in the
8467  * buf structure and are uninterpreted by this routine.
8468  *
8469  * dev
8470  * blkno
8471  * iodone
8472  *
8473  * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP
8474  *
8475  * Returns a buf structure pointer on success (to be freed by freerbuf)
8476  *	NULL on any parameter error or memory alloc failure
8477  *
8478  */
8479 struct buf *
8480 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len,
8481 	int direction, dev_t dev, daddr_t blkno,
8482 	int (*iodone)(struct buf *), int sleepflag)
8483 {
8484 	struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie;
8485 	struct buf *bp;
8486 
8487 	/*
8488 	 * check for valid cookie offset, len
8489 	 */
8490 	if ((off + len) > p->size) {
8491 		return (NULL);
8492 	}
8493 
8494 	if (len > p->size) {
8495 		return (NULL);
8496 	}
8497 
8498 	/* direction has to be one of B_READ or B_WRITE */
8499 	if ((direction != B_READ) && (direction != B_WRITE)) {
8500 		return (NULL);
8501 	}
8502 
8503 	/* These are the only two valid sleepflags */
8504 	if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) {
8505 		return (NULL);
8506 	}
8507 
8508 	/*
8509 	 * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported
8510 	 */
8511 	if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) {
8512 		return (NULL);
8513 	}
8514 
8515 	/* If type is KMEM_NON_PAGEABLE procp is NULL */
8516 	ASSERT((p->type == KMEM_NON_PAGEABLE) ?
8517 	    (p->procp == NULL) : (p->procp != NULL));
8518 
8519 	bp = kmem_alloc(sizeof (struct buf), sleepflag);
8520 	if (bp == NULL) {
8521 		return (NULL);
8522 	}
8523 	bioinit(bp);
8524 
8525 	bp->b_flags = B_BUSY | B_PHYS | direction;
8526 	bp->b_edev = dev;
8527 	bp->b_lblkno = blkno;
8528 	bp->b_iodone = iodone;
8529 	bp->b_bcount = len;
8530 	bp->b_proc = (proc_t *)p->procp;
8531 	ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8532 	bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off);
8533 	if (p->pparray != NULL) {
8534 		bp->b_flags |= B_SHADOW;
8535 		ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0);
8536 		bp->b_shadow = p->pparray + btop(off);
8537 	}
8538 	return (bp);
8539 }
8540 
8541 /*
8542  * Fault-handling and related routines
8543  */
8544 
8545 ddi_devstate_t
8546 ddi_get_devstate(dev_info_t *dip)
8547 {
8548 	if (DEVI_IS_DEVICE_OFFLINE(dip))
8549 		return (DDI_DEVSTATE_OFFLINE);
8550 	else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip))
8551 		return (DDI_DEVSTATE_DOWN);
8552 	else if (DEVI_IS_BUS_QUIESCED(dip))
8553 		return (DDI_DEVSTATE_QUIESCED);
8554 	else if (DEVI_IS_DEVICE_DEGRADED(dip))
8555 		return (DDI_DEVSTATE_DEGRADED);
8556 	else
8557 		return (DDI_DEVSTATE_UP);
8558 }
8559 
8560 void
8561 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact,
8562 	ddi_fault_location_t location, const char *message)
8563 {
8564 	struct ddi_fault_event_data fd;
8565 	ddi_eventcookie_t ec;
8566 
8567 	/*
8568 	 * Assemble all the information into a fault-event-data structure
8569 	 */
8570 	fd.f_dip = dip;
8571 	fd.f_impact = impact;
8572 	fd.f_location = location;
8573 	fd.f_message = message;
8574 	fd.f_oldstate = ddi_get_devstate(dip);
8575 
8576 	/*
8577 	 * Get eventcookie from defining parent.
8578 	 */
8579 	if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) !=
8580 	    DDI_SUCCESS)
8581 		return;
8582 
8583 	(void) ndi_post_event(dip, dip, ec, &fd);
8584 }
8585 
8586 char *
8587 i_ddi_devi_class(dev_info_t *dip)
8588 {
8589 	return (DEVI(dip)->devi_device_class);
8590 }
8591 
8592 int
8593 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag)
8594 {
8595 	struct dev_info *devi = DEVI(dip);
8596 
8597 	mutex_enter(&devi->devi_lock);
8598 
8599 	if (devi->devi_device_class)
8600 		kmem_free(devi->devi_device_class,
8601 		    strlen(devi->devi_device_class) + 1);
8602 
8603 	if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag))
8604 	    != NULL) {
8605 		mutex_exit(&devi->devi_lock);
8606 		return (DDI_SUCCESS);
8607 	}
8608 
8609 	mutex_exit(&devi->devi_lock);
8610 
8611 	return (DDI_FAILURE);
8612 }
8613 
8614 
8615 /*
8616  * Task Queues DDI interfaces.
8617  */
8618 
8619 /* ARGSUSED */
8620 ddi_taskq_t *
8621 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads,
8622     pri_t pri, uint_t cflags)
8623 {
8624 	char full_name[TASKQ_NAMELEN];
8625 	const char *tq_name;
8626 	int nodeid = 0;
8627 
8628 	if (dip == NULL)
8629 		tq_name = name;
8630 	else {
8631 		nodeid = ddi_get_instance(dip);
8632 
8633 		if (name == NULL)
8634 			name = "tq";
8635 
8636 		(void) snprintf(full_name, sizeof (full_name), "%s_%s",
8637 		    ddi_driver_name(dip), name);
8638 
8639 		tq_name = full_name;
8640 	}
8641 
8642 	return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads,
8643 	    pri == TASKQ_DEFAULTPRI ? minclsyspri : pri,
8644 	    nthreads, INT_MAX, TASKQ_PREPOPULATE));
8645 }
8646 
8647 void
8648 ddi_taskq_destroy(ddi_taskq_t *tq)
8649 {
8650 	taskq_destroy((taskq_t *)tq);
8651 }
8652 
8653 int
8654 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
8655     void *arg, uint_t dflags)
8656 {
8657 	taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg,
8658 	    dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP);
8659 
8660 	return (id != 0 ? DDI_SUCCESS : DDI_FAILURE);
8661 }
8662 
8663 void
8664 ddi_taskq_wait(ddi_taskq_t *tq)
8665 {
8666 	taskq_wait((taskq_t *)tq);
8667 }
8668 
8669 void
8670 ddi_taskq_suspend(ddi_taskq_t *tq)
8671 {
8672 	taskq_suspend((taskq_t *)tq);
8673 }
8674 
8675 boolean_t
8676 ddi_taskq_suspended(ddi_taskq_t *tq)
8677 {
8678 	return (taskq_suspended((taskq_t *)tq));
8679 }
8680 
8681 void
8682 ddi_taskq_resume(ddi_taskq_t *tq)
8683 {
8684 	taskq_resume((taskq_t *)tq);
8685 }
8686 
8687 int
8688 ddi_parse(
8689 	const char	*ifname,
8690 	char		*alnum,
8691 	uint_t		*nump)
8692 {
8693 	const char	*p;
8694 	int		l;
8695 	ulong_t		num;
8696 	boolean_t	nonum = B_TRUE;
8697 	char		c;
8698 
8699 	l = strlen(ifname);
8700 	for (p = ifname + l; p != ifname; l--) {
8701 		c = *--p;
8702 		if (!isdigit(c)) {
8703 			(void) strlcpy(alnum, ifname, l + 1);
8704 			if (ddi_strtoul(p + 1, NULL, 10, &num) != 0)
8705 				return (DDI_FAILURE);
8706 			break;
8707 		}
8708 		nonum = B_FALSE;
8709 	}
8710 	if (l == 0 || nonum)
8711 		return (DDI_FAILURE);
8712 
8713 	*nump = num;
8714 	return (DDI_SUCCESS);
8715 }
8716