xref: /titanic_44/usr/src/uts/common/os/strsubr.c (revision 5ebc22727c394636ca1111875be60eb4705d818f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/param.h>
36 #include <sys/errno.h>
37 #include <sys/signal.h>
38 #include <sys/proc.h>
39 #include <sys/conf.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/session.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/stropts.h>
48 #include <sys/poll.h>
49 #include <sys/systm.h>
50 #include <sys/cpuvar.h>
51 #include <sys/uio.h>
52 #include <sys/cmn_err.h>
53 #include <sys/priocntl.h>
54 #include <sys/procset.h>
55 #include <sys/vmem.h>
56 #include <sys/bitmap.h>
57 #include <sys/kmem.h>
58 #include <sys/siginfo.h>
59 #include <sys/vtrace.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/modctl.h>
63 #include <sys/vmsystm.h>
64 #include <vm/page.h>
65 #include <sys/atomic.h>
66 #include <sys/suntpi.h>
67 #include <sys/strlog.h>
68 #include <sys/promif.h>
69 #include <sys/project.h>
70 #include <sys/vm.h>
71 #include <sys/taskq.h>
72 #include <sys/sunddi.h>
73 #include <sys/sunldi_impl.h>
74 #include <sys/strsun.h>
75 #include <sys/isa_defs.h>
76 #include <sys/multidata.h>
77 #include <sys/pattr.h>
78 #include <sys/strft.h>
79 #include <sys/fs/snode.h>
80 #include <sys/zone.h>
81 
82 #define	O_SAMESTR(q)	(((q)->q_next) && \
83 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
84 
85 /*
86  * WARNING:
87  * The variables and routines in this file are private, belonging
88  * to the STREAMS subsystem. These should not be used by modules
89  * or drivers. Compatibility will not be guaranteed.
90  */
91 
92 /*
93  * Id value used to distinguish between different multiplexor links.
94  */
95 static int32_t lnk_id = 0;
96 
97 #define	STREAMS_LOPRI MINCLSYSPRI
98 static pri_t streams_lopri = STREAMS_LOPRI;
99 
100 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
101 typedef struct str_stat {
102 	kstat_named_t	sqenables;
103 	kstat_named_t	stenables;
104 	kstat_named_t	syncqservice;
105 	kstat_named_t	freebs;
106 	kstat_named_t	qwr_outer;
107 	kstat_named_t	rservice;
108 	kstat_named_t	strwaits;
109 	kstat_named_t	taskqfails;
110 	kstat_named_t	bufcalls;
111 	kstat_named_t	qhelps;
112 	kstat_named_t	qremoved;
113 	kstat_named_t	sqremoved;
114 	kstat_named_t	bcwaits;
115 	kstat_named_t	sqtoomany;
116 } str_stat_t;
117 
118 static str_stat_t str_statistics = {
119 	{ "sqenables",		KSTAT_DATA_UINT64 },
120 	{ "stenables",		KSTAT_DATA_UINT64 },
121 	{ "syncqservice",	KSTAT_DATA_UINT64 },
122 	{ "freebs",		KSTAT_DATA_UINT64 },
123 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
124 	{ "rservice",		KSTAT_DATA_UINT64 },
125 	{ "strwaits",		KSTAT_DATA_UINT64 },
126 	{ "taskqfails",		KSTAT_DATA_UINT64 },
127 	{ "bufcalls",		KSTAT_DATA_UINT64 },
128 	{ "qhelps",		KSTAT_DATA_UINT64 },
129 	{ "qremoved",		KSTAT_DATA_UINT64 },
130 	{ "sqremoved",		KSTAT_DATA_UINT64 },
131 	{ "bcwaits",		KSTAT_DATA_UINT64 },
132 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
133 };
134 
135 static kstat_t *str_kstat;
136 
137 /*
138  * qrunflag was used previously to control background scheduling of queues. It
139  * is not used anymore, but kept here in case some module still wants to access
140  * it via qready() and setqsched macros.
141  */
142 char qrunflag;			/*  Unused */
143 
144 /*
145  * Most of the streams scheduling is done via task queues. Task queues may fail
146  * for non-sleep dispatches, so there are two backup threads servicing failed
147  * requests for queues and syncqs. Both of these threads also service failed
148  * dispatches freebs requests. Queues are put in the list specified by `qhead'
149  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
150  * requests are put into `freebs_list' which has no tail pointer. All three
151  * lists are protected by a single `service_queue' lock and use
152  * `services_to_run' condition variable for signaling background threads. Use of
153  * a single lock should not be a problem because it is only used under heavy
154  * loads when task queues start to fail and at that time it may be a good idea
155  * to throttle scheduling requests.
156  *
157  * NOTE: queues and syncqs should be scheduled by two separate threads because
158  * queue servicing may be blocked waiting for a syncq which may be also
159  * scheduled for background execution. This may create a deadlock when only one
160  * thread is used for both.
161  */
162 
163 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
164 
165 static kmutex_t service_queue;		/* protects all of servicing vars */
166 static kcondvar_t services_to_run;	/* wake up background service thread */
167 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
168 
169 /*
170  * List of queues scheduled for background processing dueue to lack of resources
171  * in the task queues. Protected by service_queue lock;
172  */
173 static struct queue *qhead;
174 static struct queue *qtail;
175 
176 /*
177  * Same list for syncqs
178  */
179 static syncq_t *sqhead;
180 static syncq_t *sqtail;
181 
182 static mblk_t *freebs_list;	/* list of buffers to free */
183 
184 /*
185  * Backup threads for servicing queues and syncqs
186  */
187 kthread_t *streams_qbkgrnd_thread;
188 kthread_t *streams_sqbkgrnd_thread;
189 
190 /*
191  * Bufcalls related variables.
192  */
193 struct bclist	strbcalls;	/* list of waiting bufcalls */
194 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
195 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
196 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
197 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
198 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
199 
200 kmutex_t	strresources;	/* protects global resources */
201 kmutex_t	muxifier;	/* single-threads multiplexor creation */
202 
203 extern void	time_to_wait(clock_t *, clock_t);
204 
205 /*
206  * run_queues is no longer used, but is kept in case some 3-d party
207  * module/driver decides to use it.
208  */
209 int run_queues = 0;
210 
211 /*
212  * sq_max_size is the depth of the syncq (in number of messages) before
213  * qfill_syncq() starts QFULL'ing destination queues. As its primary
214  * consumer - IP is no longer D_MTPERMOD, but there may be other
215  * modules/drivers depend on this syncq flow control, we prefer to
216  * choose a large number as the default value. For potential
217  * performance gain, this value is tunable in /etc/system.
218  */
219 int sq_max_size = 10000;
220 
221 /*
222  * the number of ciputctrl structures per syncq and stream we create when
223  * needed.
224  */
225 int n_ciputctrl;
226 int max_n_ciputctrl = 16;
227 /*
228  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
229  */
230 int min_n_ciputctrl = 2;
231 
232 static struct mux_node *mux_nodes;	/* mux info for cycle checking */
233 
234 /*
235  * Per-driver/module syncqs
236  * ========================
237  *
238  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
239  * perdm structures, new entries being added (and new syncqs allocated) when
240  * setq() encounters a module/driver with a streamtab that it hasn't seen
241  * before.
242  * The reason for this mechanism is that some modules and drivers share a
243  * common streamtab and it is necessary for those modules and drivers to also
244  * share a common PERMOD syncq.
245  *
246  * perdm_list --> dm_str == streamtab_1
247  *                dm_sq == syncq_1
248  *                dm_ref
249  *                dm_next --> dm_str == streamtab_2
250  *                            dm_sq == syncq_2
251  *                            dm_ref
252  *                            dm_next --> ... NULL
253  *
254  * The dm_ref field is incremented for each new driver/module that takes
255  * a reference to the perdm structure and hence shares the syncq.
256  * References are held in the fmodsw_impl_t structure for each STREAMS module
257  * or the dev_impl array (indexed by device major number) for each driver.
258  *
259  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
260  *		     ^                 ^ ^               ^
261  *                   |  ______________/  |               |
262  *                   | /                 |               |
263  * dev_impl:     ...|x|y|...          module A	      module B
264  *
265  * When a module/driver is unloaded the reference count is decremented and,
266  * when it falls to zero, the perdm structure is removed from the list and
267  * the syncq is freed (see rele_dm()).
268  */
269 perdm_t *perdm_list = NULL;
270 static krwlock_t perdm_rwlock;
271 cdevsw_impl_t *devimpl;
272 
273 extern struct qinit strdata;
274 extern struct qinit stwdata;
275 
276 static void runservice(queue_t *);
277 static void streams_bufcall_service(void);
278 static void streams_qbkgrnd_service(void);
279 static void streams_sqbkgrnd_service(void);
280 static syncq_t *new_syncq(void);
281 static void free_syncq(syncq_t *);
282 static void outer_insert(syncq_t *, syncq_t *);
283 static void outer_remove(syncq_t *, syncq_t *);
284 static void write_now(syncq_t *);
285 static void clr_qfull(queue_t *);
286 static void enable_svc(queue_t *);
287 static void runbufcalls(void);
288 static void sqenable(syncq_t *);
289 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
290 static void wait_q_syncq(queue_t *);
291 static void backenable_insertedq(queue_t *);
292 
293 static void queue_service(queue_t *);
294 static void stream_service(stdata_t *);
295 static void syncq_service(syncq_t *);
296 static void qwriter_outer_service(syncq_t *);
297 static void mblk_free(mblk_t *);
298 #ifdef DEBUG
299 static int qprocsareon(queue_t *);
300 #endif
301 
302 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
303 static void reset_nfsrv_ptr(queue_t *, queue_t *);
304 
305 static void sq_run_events(syncq_t *);
306 static int propagate_syncq(queue_t *);
307 
308 static void	blocksq(syncq_t *, ushort_t, int);
309 static void	unblocksq(syncq_t *, ushort_t, int);
310 static int	dropsq(syncq_t *, uint16_t);
311 static void	emptysq(syncq_t *);
312 static sqlist_t *sqlist_alloc(struct stdata *, int);
313 static void	sqlist_free(sqlist_t *);
314 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
315 static void	sqlist_insert(sqlist_t *, syncq_t *);
316 static void	sqlist_insertall(sqlist_t *, queue_t *);
317 
318 static void	strsetuio(stdata_t *);
319 
320 struct kmem_cache *stream_head_cache;
321 struct kmem_cache *queue_cache;
322 struct kmem_cache *syncq_cache;
323 struct kmem_cache *qband_cache;
324 struct kmem_cache *linkinfo_cache;
325 struct kmem_cache *ciputctrl_cache = NULL;
326 
327 static linkinfo_t *linkinfo_list;
328 
329 /*
330  *  Qinit structure and Module_info structures
331  *	for passthru read and write queues
332  */
333 
334 static void pass_wput(queue_t *, mblk_t *);
335 static queue_t *link_addpassthru(stdata_t *);
336 static void link_rempassthru(queue_t *);
337 
338 struct  module_info passthru_info = {
339 	0,
340 	"passthru",
341 	0,
342 	INFPSZ,
343 	STRHIGH,
344 	STRLOW
345 };
346 
347 struct  qinit passthru_rinit = {
348 	(int (*)())putnext,
349 	NULL,
350 	NULL,
351 	NULL,
352 	NULL,
353 	&passthru_info,
354 	NULL
355 };
356 
357 struct  qinit passthru_winit = {
358 	(int (*)()) pass_wput,
359 	NULL,
360 	NULL,
361 	NULL,
362 	NULL,
363 	&passthru_info,
364 	NULL
365 };
366 
367 /*
368  * Special form of assertion: verify that X implies Y i.e. when X is true Y
369  * should also be true.
370  */
371 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
372 
373 /*
374  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
375  */
376 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
377 
378 /*
379  * Verify correctness of list head/tail pointers.
380  */
381 #define	LISTCHECK(head, tail, link) {				\
382 	EQUIV(head, tail);					\
383 	IMPLY(tail != NULL, tail->link == NULL);		\
384 }
385 
386 /*
387  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
388  * using a `link' field.
389  */
390 #define	ENQUEUE(el, head, tail, link) {				\
391 	ASSERT(el->link == NULL);				\
392 	LISTCHECK(head, tail, link);				\
393 	if (head == NULL)					\
394 		head = el;					\
395 	else							\
396 		tail->link = el;				\
397 	tail = el;						\
398 }
399 
400 /*
401  * Dequeue the first element of the list denoted by `head' and `tail' pointers
402  * using a `link' field and put result into `el'.
403  */
404 #define	DQ(el, head, tail, link) {				\
405 	LISTCHECK(head, tail, link);				\
406 	el = head;						\
407 	if (head != NULL) {					\
408 		head = head->link;				\
409 		if (head == NULL)				\
410 			tail = NULL;				\
411 		el->link = NULL;				\
412 	}							\
413 }
414 
415 /*
416  * Remove `el' from the list using `chase' and `curr' pointers and return result
417  * in `succeed'.
418  */
419 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
420 	LISTCHECK(head, tail, link);				\
421 	chase = NULL;						\
422 	succeed = 0;						\
423 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
424 		chase = curr;					\
425 	if (curr != NULL) {					\
426 		succeed = 1;					\
427 		ASSERT(curr == el);				\
428 		if (chase != NULL)				\
429 			chase->link = curr->link;		\
430 		else						\
431 			head = curr->link;			\
432 		curr->link = NULL;				\
433 		if (curr == tail)				\
434 			tail = chase;				\
435 	}							\
436 	LISTCHECK(head, tail, link);				\
437 }
438 
439 /* Handling of delayed messages on the inner syncq. */
440 
441 /*
442  * DEBUG versions should use function versions (to simplify tracing) and
443  * non-DEBUG kernels should use macro versions.
444  */
445 
446 /*
447  * Put a queue on the syncq list of queues.
448  * Assumes SQLOCK held.
449  */
450 #define	SQPUT_Q(sq, qp)							\
451 {									\
452 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
453 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
454 		/* The queue should not be linked anywhere */		\
455 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
456 		/* Head and tail may only be NULL simultaneously */	\
457 		EQUIV(sq->sq_head, sq->sq_tail);			\
458 		/* Queue may be only enqueyed on its syncq */		\
459 		ASSERT(sq == qp->q_syncq);				\
460 		/* Check the correctness of SQ_MESSAGES flag */		\
461 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
462 		/* Sanity check first/last elements of the list */	\
463 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
464 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
465 		/*							\
466 		 * Sanity check of priority field: empty queue should	\
467 		 * have zero priority					\
468 		 * and nqueues equal to zero.				\
469 		 */							\
470 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
471 		/* Sanity check of sq_nqueues field */			\
472 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
473 		if (sq->sq_head == NULL) {				\
474 			sq->sq_head = sq->sq_tail = qp;			\
475 			sq->sq_flags |= SQ_MESSAGES;			\
476 		} else if (qp->q_spri == 0) {				\
477 			qp->q_sqprev = sq->sq_tail;			\
478 			sq->sq_tail->q_sqnext = qp;			\
479 			sq->sq_tail = qp;				\
480 		} else {						\
481 			/*						\
482 			 * Put this queue in priority order: higher	\
483 			 * priority gets closer to the head.		\
484 			 */						\
485 			queue_t **qpp = &sq->sq_tail;			\
486 			queue_t *qnext = NULL;				\
487 									\
488 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
489 				qnext = *qpp;				\
490 				qpp = &(*qpp)->q_sqprev;		\
491 			}						\
492 			qp->q_sqnext = qnext;				\
493 			qp->q_sqprev = *qpp;				\
494 			if (*qpp != NULL) {				\
495 				(*qpp)->q_sqnext = qp;			\
496 			} else {					\
497 				sq->sq_head = qp;			\
498 				sq->sq_pri = sq->sq_head->q_spri;	\
499 			}						\
500 			*qpp = qp;					\
501 		}							\
502 		qp->q_sqflags |= Q_SQQUEUED;				\
503 		qp->q_sqtstamp = lbolt;					\
504 		sq->sq_nqueues++;					\
505 	}								\
506 }
507 
508 /*
509  * Remove a queue from the syncq list
510  * Assumes SQLOCK held.
511  */
512 #define	SQRM_Q(sq, qp)							\
513 	{								\
514 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
515 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
516 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
517 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
518 		/* Check that the queue is actually in the list */	\
519 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
520 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
521 		ASSERT(sq->sq_nqueues != 0);				\
522 		if (qp->q_sqprev == NULL) {				\
523 			/* First queue on list, make head q_sqnext */	\
524 			sq->sq_head = qp->q_sqnext;			\
525 		} else {						\
526 			/* Make prev->next == next */			\
527 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
528 		}							\
529 		if (qp->q_sqnext == NULL) {				\
530 			/* Last queue on list, make tail sqprev */	\
531 			sq->sq_tail = qp->q_sqprev;			\
532 		} else {						\
533 			/* Make next->prev == prev */			\
534 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
535 		}							\
536 		/* clear out references on this queue */		\
537 		qp->q_sqprev = qp->q_sqnext = NULL;			\
538 		qp->q_sqflags &= ~Q_SQQUEUED;				\
539 		/* If there is nothing queued, clear SQ_MESSAGES */	\
540 		if (sq->sq_head != NULL) {				\
541 			sq->sq_pri = sq->sq_head->q_spri;		\
542 		} else	{						\
543 			sq->sq_flags &= ~SQ_MESSAGES;			\
544 			sq->sq_pri = 0;					\
545 		}							\
546 		sq->sq_nqueues--;					\
547 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
548 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
549 	}
550 
551 /* Hide the definition from the header file. */
552 #ifdef SQPUT_MP
553 #undef SQPUT_MP
554 #endif
555 
556 /*
557  * Put a message on the queue syncq.
558  * Assumes QLOCK held.
559  */
560 #define	SQPUT_MP(qp, mp)						\
561 	{								\
562 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
563 		ASSERT(qp->q_sqhead == NULL ||				\
564 		    (qp->q_sqtail != NULL &&				\
565 		    qp->q_sqtail->b_next == NULL));			\
566 		qp->q_syncqmsgs++;					\
567 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
568 		if (qp->q_sqhead == NULL) {				\
569 			qp->q_sqhead = qp->q_sqtail = mp;		\
570 		} else {						\
571 			qp->q_sqtail->b_next = mp;			\
572 			qp->q_sqtail = mp;				\
573 		}							\
574 		ASSERT(qp->q_syncqmsgs > 0);				\
575 	}
576 
577 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
578 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
579 		if ((sq)->sq_ciputctrl != NULL) {			\
580 			int i;						\
581 			int nlocks = (sq)->sq_nciputctrl;		\
582 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
583 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
584 			for (i = 0; i <= nlocks; i++) {			\
585 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
586 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
587 			}						\
588 		}							\
589 	}
590 
591 
592 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
593 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
594 		if ((sq)->sq_ciputctrl != NULL) {			\
595 			int i;						\
596 			int nlocks = (sq)->sq_nciputctrl;		\
597 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
598 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
599 			for (i = 0; i <= nlocks; i++) {			\
600 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
601 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
602 			}						\
603 		}							\
604 	}
605 
606 /*
607  * Run service procedures for all queues in the stream head.
608  */
609 #define	STR_SERVICE(stp, q) {						\
610 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
611 	while (stp->sd_qhead != NULL) {					\
612 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
613 		ASSERT(stp->sd_nqueues > 0);				\
614 		stp->sd_nqueues--;					\
615 		ASSERT(!(q->q_flag & QINSERVICE));			\
616 		mutex_exit(&stp->sd_qlock);				\
617 		queue_service(q);					\
618 		mutex_enter(&stp->sd_qlock);				\
619 	}								\
620 	ASSERT(stp->sd_nqueues == 0);					\
621 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
622 }
623 
624 /*
625  * constructor/destructor routines for the stream head cache
626  */
627 /* ARGSUSED */
628 static int
629 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
630 {
631 	stdata_t *stp = buf;
632 
633 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
634 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
635 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
636 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
637 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
638 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
639 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
640 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
641 	stp->sd_wrq = NULL;
642 
643 	return (0);
644 }
645 
646 /* ARGSUSED */
647 static void
648 stream_head_destructor(void *buf, void *cdrarg)
649 {
650 	stdata_t *stp = buf;
651 
652 	mutex_destroy(&stp->sd_lock);
653 	mutex_destroy(&stp->sd_reflock);
654 	mutex_destroy(&stp->sd_qlock);
655 	cv_destroy(&stp->sd_monitor);
656 	cv_destroy(&stp->sd_iocmonitor);
657 	cv_destroy(&stp->sd_refmonitor);
658 	cv_destroy(&stp->sd_qcv);
659 	cv_destroy(&stp->sd_zcopy_wait);
660 }
661 
662 /*
663  * constructor/destructor routines for the queue cache
664  */
665 /* ARGSUSED */
666 static int
667 queue_constructor(void *buf, void *cdrarg, int kmflags)
668 {
669 	queinfo_t *qip = buf;
670 	queue_t *qp = &qip->qu_rqueue;
671 	queue_t *wqp = &qip->qu_wqueue;
672 	syncq_t	*sq = &qip->qu_syncq;
673 
674 	qp->q_first = NULL;
675 	qp->q_link = NULL;
676 	qp->q_count = 0;
677 	qp->q_mblkcnt = 0;
678 	qp->q_sqhead = NULL;
679 	qp->q_sqtail = NULL;
680 	qp->q_sqnext = NULL;
681 	qp->q_sqprev = NULL;
682 	qp->q_sqflags = 0;
683 	qp->q_rwcnt = 0;
684 	qp->q_spri = 0;
685 
686 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
687 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
688 
689 	wqp->q_first = NULL;
690 	wqp->q_link = NULL;
691 	wqp->q_count = 0;
692 	wqp->q_mblkcnt = 0;
693 	wqp->q_sqhead = NULL;
694 	wqp->q_sqtail = NULL;
695 	wqp->q_sqnext = NULL;
696 	wqp->q_sqprev = NULL;
697 	wqp->q_sqflags = 0;
698 	wqp->q_rwcnt = 0;
699 	wqp->q_spri = 0;
700 
701 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
702 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
703 
704 	sq->sq_head = NULL;
705 	sq->sq_tail = NULL;
706 	sq->sq_evhead = NULL;
707 	sq->sq_evtail = NULL;
708 	sq->sq_callbpend = NULL;
709 	sq->sq_outer = NULL;
710 	sq->sq_onext = NULL;
711 	sq->sq_oprev = NULL;
712 	sq->sq_next = NULL;
713 	sq->sq_svcflags = 0;
714 	sq->sq_servcount = 0;
715 	sq->sq_needexcl = 0;
716 	sq->sq_nqueues = 0;
717 	sq->sq_pri = 0;
718 
719 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
720 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
721 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
722 
723 	return (0);
724 }
725 
726 /* ARGSUSED */
727 static void
728 queue_destructor(void *buf, void *cdrarg)
729 {
730 	queinfo_t *qip = buf;
731 	queue_t *qp = &qip->qu_rqueue;
732 	queue_t *wqp = &qip->qu_wqueue;
733 	syncq_t	*sq = &qip->qu_syncq;
734 
735 	ASSERT(qp->q_sqhead == NULL);
736 	ASSERT(wqp->q_sqhead == NULL);
737 	ASSERT(qp->q_sqnext == NULL);
738 	ASSERT(wqp->q_sqnext == NULL);
739 	ASSERT(qp->q_rwcnt == 0);
740 	ASSERT(wqp->q_rwcnt == 0);
741 
742 	mutex_destroy(&qp->q_lock);
743 	cv_destroy(&qp->q_wait);
744 
745 	mutex_destroy(&wqp->q_lock);
746 	cv_destroy(&wqp->q_wait);
747 
748 	mutex_destroy(&sq->sq_lock);
749 	cv_destroy(&sq->sq_wait);
750 	cv_destroy(&sq->sq_exitwait);
751 }
752 
753 /*
754  * constructor/destructor routines for the syncq cache
755  */
756 /* ARGSUSED */
757 static int
758 syncq_constructor(void *buf, void *cdrarg, int kmflags)
759 {
760 	syncq_t	*sq = buf;
761 
762 	bzero(buf, sizeof (syncq_t));
763 
764 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
765 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
766 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
767 
768 	return (0);
769 }
770 
771 /* ARGSUSED */
772 static void
773 syncq_destructor(void *buf, void *cdrarg)
774 {
775 	syncq_t	*sq = buf;
776 
777 	ASSERT(sq->sq_head == NULL);
778 	ASSERT(sq->sq_tail == NULL);
779 	ASSERT(sq->sq_evhead == NULL);
780 	ASSERT(sq->sq_evtail == NULL);
781 	ASSERT(sq->sq_callbpend == NULL);
782 	ASSERT(sq->sq_callbflags == 0);
783 	ASSERT(sq->sq_outer == NULL);
784 	ASSERT(sq->sq_onext == NULL);
785 	ASSERT(sq->sq_oprev == NULL);
786 	ASSERT(sq->sq_next == NULL);
787 	ASSERT(sq->sq_needexcl == 0);
788 	ASSERT(sq->sq_svcflags == 0);
789 	ASSERT(sq->sq_servcount == 0);
790 	ASSERT(sq->sq_nqueues == 0);
791 	ASSERT(sq->sq_pri == 0);
792 	ASSERT(sq->sq_count == 0);
793 	ASSERT(sq->sq_rmqcount == 0);
794 	ASSERT(sq->sq_cancelid == 0);
795 	ASSERT(sq->sq_ciputctrl == NULL);
796 	ASSERT(sq->sq_nciputctrl == 0);
797 	ASSERT(sq->sq_type == 0);
798 	ASSERT(sq->sq_flags == 0);
799 
800 	mutex_destroy(&sq->sq_lock);
801 	cv_destroy(&sq->sq_wait);
802 	cv_destroy(&sq->sq_exitwait);
803 }
804 
805 /* ARGSUSED */
806 static int
807 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
808 {
809 	ciputctrl_t *cip = buf;
810 	int i;
811 
812 	for (i = 0; i < n_ciputctrl; i++) {
813 		cip[i].ciputctrl_count = SQ_FASTPUT;
814 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
815 	}
816 
817 	return (0);
818 }
819 
820 /* ARGSUSED */
821 static void
822 ciputctrl_destructor(void *buf, void *cdrarg)
823 {
824 	ciputctrl_t *cip = buf;
825 	int i;
826 
827 	for (i = 0; i < n_ciputctrl; i++) {
828 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
829 		mutex_destroy(&cip[i].ciputctrl_lock);
830 	}
831 }
832 
833 /*
834  * Init routine run from main at boot time.
835  */
836 void
837 strinit(void)
838 {
839 	int i;
840 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
841 
842 	/*
843 	 * Set up mux_node structures.
844 	 */
845 	mux_nodes = kmem_zalloc((sizeof (struct mux_node) * devcnt), KM_SLEEP);
846 	for (i = 0; i < devcnt; i++)
847 		mux_nodes[i].mn_imaj = i;
848 
849 	stream_head_cache = kmem_cache_create("stream_head_cache",
850 		sizeof (stdata_t), 0,
851 		stream_head_constructor, stream_head_destructor, NULL,
852 		NULL, NULL, 0);
853 
854 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
855 		queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
856 
857 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
858 		syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
859 
860 	qband_cache = kmem_cache_create("qband_cache",
861 		sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
862 
863 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
864 		sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
865 
866 	n_ciputctrl = ncpus;
867 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
868 	ASSERT(n_ciputctrl >= 1);
869 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
870 	if (n_ciputctrl >= min_n_ciputctrl) {
871 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
872 			sizeof (ciputctrl_t) * n_ciputctrl,
873 			sizeof (ciputctrl_t), ciputctrl_constructor,
874 			ciputctrl_destructor, NULL, NULL, NULL, 0);
875 	}
876 
877 	streams_taskq = system_taskq;
878 
879 	if (streams_taskq == NULL)
880 		panic("strinit: no memory for streams taskq!");
881 
882 	bc_bkgrnd_thread = thread_create(NULL, 0,
883 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
884 
885 	streams_qbkgrnd_thread = thread_create(NULL, 0,
886 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
887 
888 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
889 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
890 
891 	/*
892 	 * Create STREAMS kstats.
893 	 */
894 	str_kstat = kstat_create("streams", 0, "strstat",
895 	    "net", KSTAT_TYPE_NAMED,
896 	    sizeof (str_statistics) / sizeof (kstat_named_t),
897 	    KSTAT_FLAG_VIRTUAL);
898 
899 	if (str_kstat != NULL) {
900 		str_kstat->ks_data = &str_statistics;
901 		kstat_install(str_kstat);
902 	}
903 
904 	/*
905 	 * TPI support routine initialisation.
906 	 */
907 	tpi_init();
908 }
909 
910 void
911 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
912 {
913 	struct stdata *stp;
914 
915 	ASSERT(vp->v_stream);
916 	stp = vp->v_stream;
917 	/* Have to hold sd_lock to prevent siglist from changing */
918 	mutex_enter(&stp->sd_lock);
919 	if (stp->sd_sigflags & event)
920 		strsendsig(stp->sd_siglist, event, band, error);
921 	mutex_exit(&stp->sd_lock);
922 }
923 
924 /*
925  * Send the "sevent" set of signals to a process.
926  * This might send more than one signal if the process is registered
927  * for multiple events. The caller should pass in an sevent that only
928  * includes the events for which the process has registered.
929  */
930 static void
931 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
932 	uchar_t band, int error)
933 {
934 	ASSERT(MUTEX_HELD(&proc->p_lock));
935 
936 	info->si_band = 0;
937 	info->si_errno = 0;
938 
939 	if (sevent & S_ERROR) {
940 		sevent &= ~S_ERROR;
941 		info->si_code = POLL_ERR;
942 		info->si_errno = error;
943 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
944 			"strsendsig:proc %p info %p", proc, info);
945 		sigaddq(proc, NULL, info, KM_NOSLEEP);
946 		info->si_errno = 0;
947 	}
948 	if (sevent & S_HANGUP) {
949 		sevent &= ~S_HANGUP;
950 		info->si_code = POLL_HUP;
951 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
952 			"strsendsig:proc %p info %p", proc, info);
953 		sigaddq(proc, NULL, info, KM_NOSLEEP);
954 	}
955 	if (sevent & S_HIPRI) {
956 		sevent &= ~S_HIPRI;
957 		info->si_code = POLL_PRI;
958 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
959 			"strsendsig:proc %p info %p", proc, info);
960 		sigaddq(proc, NULL, info, KM_NOSLEEP);
961 	}
962 	if (sevent & S_RDBAND) {
963 		sevent &= ~S_RDBAND;
964 		if (events & S_BANDURG)
965 			sigtoproc(proc, NULL, SIGURG);
966 		else
967 			sigtoproc(proc, NULL, SIGPOLL);
968 	}
969 	if (sevent & S_WRBAND) {
970 		sevent &= ~S_WRBAND;
971 		sigtoproc(proc, NULL, SIGPOLL);
972 	}
973 	if (sevent & S_INPUT) {
974 		sevent &= ~S_INPUT;
975 		info->si_code = POLL_IN;
976 		info->si_band = band;
977 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
978 			"strsendsig:proc %p info %p", proc, info);
979 		sigaddq(proc, NULL, info, KM_NOSLEEP);
980 		info->si_band = 0;
981 	}
982 	if (sevent & S_OUTPUT) {
983 		sevent &= ~S_OUTPUT;
984 		info->si_code = POLL_OUT;
985 		info->si_band = band;
986 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
987 			"strsendsig:proc %p info %p", proc, info);
988 		sigaddq(proc, NULL, info, KM_NOSLEEP);
989 		info->si_band = 0;
990 	}
991 	if (sevent & S_MSG) {
992 		sevent &= ~S_MSG;
993 		info->si_code = POLL_MSG;
994 		info->si_band = band;
995 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
996 			"strsendsig:proc %p info %p", proc, info);
997 		sigaddq(proc, NULL, info, KM_NOSLEEP);
998 		info->si_band = 0;
999 	}
1000 	if (sevent & S_RDNORM) {
1001 		sevent &= ~S_RDNORM;
1002 		sigtoproc(proc, NULL, SIGPOLL);
1003 	}
1004 	if (sevent != 0) {
1005 		panic("strsendsig: unknown event(s) %x", sevent);
1006 	}
1007 }
1008 
1009 /*
1010  * Send SIGPOLL/SIGURG signal to all processes and process groups
1011  * registered on the given signal list that want a signal for at
1012  * least one of the specified events.
1013  *
1014  * Must be called with exclusive access to siglist (caller holding sd_lock).
1015  *
1016  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1017  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1018  * while it is in the siglist.
1019  *
1020  * For performance reasons (MP scalability) the code drops pidlock
1021  * when sending signals to a single process.
1022  * When sending to a process group the code holds
1023  * pidlock to prevent the membership in the process group from changing
1024  * while walking the p_pglink list.
1025  */
1026 void
1027 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1028 {
1029 	strsig_t *ssp;
1030 	k_siginfo_t info;
1031 	struct pid *pidp;
1032 	proc_t  *proc;
1033 
1034 	info.si_signo = SIGPOLL;
1035 	info.si_errno = 0;
1036 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1037 		int sevent;
1038 
1039 		sevent = ssp->ss_events & event;
1040 		if (sevent == 0)
1041 			continue;
1042 
1043 		if ((pidp = ssp->ss_pidp) == NULL) {
1044 			/* pid was released but still on event list */
1045 			continue;
1046 		}
1047 
1048 
1049 		if (ssp->ss_pid > 0) {
1050 			/*
1051 			 * XXX This unfortunately still generates
1052 			 * a signal when a fd is closed but
1053 			 * the proc is active.
1054 			 */
1055 			ASSERT(ssp->ss_pid == pidp->pid_id);
1056 
1057 			mutex_enter(&pidlock);
1058 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1059 			if (proc == NULL) {
1060 				mutex_exit(&pidlock);
1061 				continue;
1062 			}
1063 			mutex_enter(&proc->p_lock);
1064 			mutex_exit(&pidlock);
1065 			dosendsig(proc, ssp->ss_events, sevent, &info,
1066 				band, error);
1067 			mutex_exit(&proc->p_lock);
1068 		} else {
1069 			/*
1070 			 * Send to process group. Hold pidlock across
1071 			 * calls to dosendsig().
1072 			 */
1073 			pid_t pgrp = -ssp->ss_pid;
1074 
1075 			mutex_enter(&pidlock);
1076 			proc = pgfind_zone(pgrp, ALL_ZONES);
1077 			while (proc != NULL) {
1078 				mutex_enter(&proc->p_lock);
1079 				dosendsig(proc, ssp->ss_events, sevent,
1080 					&info, band, error);
1081 				mutex_exit(&proc->p_lock);
1082 				proc = proc->p_pglink;
1083 			}
1084 			mutex_exit(&pidlock);
1085 		}
1086 	}
1087 }
1088 
1089 /*
1090  * Attach a stream device or module.
1091  * qp is a read queue; the new queue goes in so its next
1092  * read ptr is the argument, and the write queue corresponding
1093  * to the argument points to this queue. Return 0 on success,
1094  * or a non-zero errno on failure.
1095  */
1096 int
1097 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1098     boolean_t is_insert)
1099 {
1100 	major_t			major;
1101 	cdevsw_impl_t		*dp;
1102 	struct streamtab	*str;
1103 	queue_t			*rq;
1104 	queue_t			*wrq;
1105 	uint32_t		qflag;
1106 	uint32_t		sqtype;
1107 	perdm_t			*dmp;
1108 	int			error;
1109 	int			sflag;
1110 
1111 	rq = allocq();
1112 	wrq = _WR(rq);
1113 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1114 
1115 	if (fp != NULL) {
1116 		str = fp->f_str;
1117 		qflag = fp->f_qflag;
1118 		sqtype = fp->f_sqtype;
1119 		dmp = fp->f_dmp;
1120 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1121 		sflag = MODOPEN;
1122 
1123 		/*
1124 		 * stash away a pointer to the module structure so we can
1125 		 * unref it in qdetach.
1126 		 */
1127 		rq->q_fp = fp;
1128 	} else {
1129 		ASSERT(!is_insert);
1130 
1131 		major = getmajor(*devp);
1132 		dp = &devimpl[major];
1133 
1134 		str = dp->d_str;
1135 		ASSERT(str == STREAMSTAB(major));
1136 
1137 		qflag = dp->d_qflag;
1138 		ASSERT(qflag & QISDRV);
1139 		sqtype = dp->d_sqtype;
1140 
1141 		/* create perdm_t if needed */
1142 		if (NEED_DM(dp->d_dmp, qflag))
1143 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1144 
1145 		dmp = dp->d_dmp;
1146 		sflag = 0;
1147 	}
1148 
1149 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1150 	    "qattach:qflag == %X(%X)", qflag, *devp);
1151 
1152 	/* setq might sleep in allocator - avoid holding locks. */
1153 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1154 
1155 	/*
1156 	 * Before calling the module's open routine, set up the q_next
1157 	 * pointer for inserting a module in the middle of a stream.
1158 	 *
1159 	 * Note that we can always set _QINSERTING and set up q_next
1160 	 * pointer for both inserting and pushing a module.  Then there
1161 	 * is no need for the is_insert parameter.  In insertq(), called
1162 	 * by qprocson(), assume that q_next of the new module always points
1163 	 * to the correct queue and use it for insertion.  Everything should
1164 	 * work out fine.  But in the first release of _I_INSERT, we
1165 	 * distinguish between inserting and pushing to make sure that
1166 	 * pushing a module follows the same code path as before.
1167 	 */
1168 	if (is_insert) {
1169 		rq->q_flag |= _QINSERTING;
1170 		rq->q_next = qp;
1171 	}
1172 
1173 	/*
1174 	 * If there is an outer perimeter get exclusive access during
1175 	 * the open procedure.  Bump up the reference count on the queue.
1176 	 */
1177 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1178 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1179 	if (error != 0)
1180 		goto failed;
1181 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1182 	ASSERT(qprocsareon(rq));
1183 	return (0);
1184 
1185 failed:
1186 	rq->q_flag &= ~_QINSERTING;
1187 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1188 		qprocsoff(rq);
1189 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1190 	rq->q_next = wrq->q_next = NULL;
1191 	qdetach(rq, 0, 0, crp, B_FALSE);
1192 	return (error);
1193 }
1194 
1195 /*
1196  * Handle second open of stream. For modules, set the
1197  * last argument to MODOPEN and do not pass any open flags.
1198  * Ignore dummydev since this is not the first open.
1199  */
1200 int
1201 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1202 {
1203 	int	error;
1204 	dev_t dummydev;
1205 	queue_t *wqp = _WR(qp);
1206 
1207 	ASSERT(qp->q_flag & QREADR);
1208 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1209 
1210 	dummydev = *devp;
1211 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1212 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1213 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1214 		mutex_enter(&STREAM(qp)->sd_lock);
1215 		qp->q_stream->sd_flag |= STREOPENFAIL;
1216 		mutex_exit(&STREAM(qp)->sd_lock);
1217 		return (error);
1218 	}
1219 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1220 
1221 	/*
1222 	 * successful open should have done qprocson()
1223 	 */
1224 	ASSERT(qprocsareon(_RD(qp)));
1225 	return (0);
1226 }
1227 
1228 /*
1229  * Detach a stream module or device.
1230  * If clmode == 1 then the module or driver was opened and its
1231  * close routine must be called. If clmode == 0, the module
1232  * or driver was never opened or the open failed, and so its close
1233  * should not be called.
1234  */
1235 void
1236 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1237 {
1238 	queue_t *wqp = _WR(qp);
1239 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1240 
1241 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1242 		stream_runservice(STREAM(qp));
1243 
1244 	if (clmode) {
1245 		/*
1246 		 * Make sure that all the messages on the write side syncq are
1247 		 * processed and nothing is left. Since we are closing, no new
1248 		 * messages may appear there.
1249 		 */
1250 		wait_q_syncq(wqp);
1251 
1252 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1253 		if (is_remove) {
1254 			mutex_enter(QLOCK(qp));
1255 			qp->q_flag |= _QREMOVING;
1256 			mutex_exit(QLOCK(qp));
1257 		}
1258 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1259 		/*
1260 		 * Check that qprocsoff() was actually called.
1261 		 */
1262 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1263 
1264 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1265 	} else {
1266 		disable_svc(qp);
1267 	}
1268 
1269 	/*
1270 	 * Allow any threads blocked in entersq to proceed and discover
1271 	 * the QWCLOSE is set.
1272 	 * Note: This assumes that all users of entersq check QWCLOSE.
1273 	 * Currently runservice is the only entersq that can happen
1274 	 * after removeq has finished.
1275 	 * Removeq will have discarded all messages destined to the closing
1276 	 * pair of queues from the syncq.
1277 	 * NOTE: Calling a function inside an assert is unconventional.
1278 	 * However, it does not cause any problem since flush_syncq() does
1279 	 * not change any state except when it returns non-zero i.e.
1280 	 * when the assert will trigger.
1281 	 */
1282 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1283 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1284 	ASSERT((qp->q_flag & QPERMOD) ||
1285 		((qp->q_syncq->sq_head == NULL) &&
1286 		(wqp->q_syncq->sq_head == NULL)));
1287 
1288 	/*
1289 	 * Flush the queues before q_next is set to NULL. This is needed
1290 	 * in order to backenable any downstream queue before we go away.
1291 	 * Note: we are already removed from the stream so that the
1292 	 * backenabling will not cause any messages to be delivered to our
1293 	 * put procedures.
1294 	 */
1295 	flushq(qp, FLUSHALL);
1296 	flushq(wqp, FLUSHALL);
1297 
1298 	/*
1299 	 * wait for any pending service processing to complete
1300 	 */
1301 	wait_svc(qp);
1302 
1303 	/* Tidy up - removeq only does a half-remove from stream */
1304 	qp->q_next = wqp->q_next = NULL;
1305 	ASSERT(!(qp->q_flag & QENAB));
1306 	ASSERT(!(wqp->q_flag & QENAB));
1307 
1308 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1309 
1310 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1311 	if (qp->q_fp != NULL)
1312 		fmodsw_rele(qp->q_fp);
1313 
1314 	/* freeq removes us from the outer perimeter if any */
1315 	freeq(qp);
1316 }
1317 
1318 /* Prevent service procedures from being called */
1319 void
1320 disable_svc(queue_t *qp)
1321 {
1322 	queue_t *wqp = _WR(qp);
1323 
1324 	ASSERT(qp->q_flag & QREADR);
1325 	mutex_enter(QLOCK(qp));
1326 	qp->q_flag |= QWCLOSE;
1327 	mutex_exit(QLOCK(qp));
1328 	mutex_enter(QLOCK(wqp));
1329 	wqp->q_flag |= QWCLOSE;
1330 	mutex_exit(QLOCK(wqp));
1331 }
1332 
1333 /* allow service procedures to be called again */
1334 void
1335 enable_svc(queue_t *qp)
1336 {
1337 	queue_t *wqp = _WR(qp);
1338 
1339 	ASSERT(qp->q_flag & QREADR);
1340 	mutex_enter(QLOCK(qp));
1341 	qp->q_flag &= ~QWCLOSE;
1342 	mutex_exit(QLOCK(qp));
1343 	mutex_enter(QLOCK(wqp));
1344 	wqp->q_flag &= ~QWCLOSE;
1345 	mutex_exit(QLOCK(wqp));
1346 }
1347 
1348 /*
1349  * Remove queue from qhead/qtail if it is enabled.
1350  * Only reset QENAB if the queue was removed from the runlist.
1351  * A queue goes through 3 stages:
1352  *	It is on the service list and QENAB is set.
1353  *	It is removed from the service list but QENAB is still set.
1354  *	QENAB gets changed to QINSERVICE.
1355  *	QINSERVICE is reset (when the service procedure is done)
1356  * Thus we can not reset QENAB unless we actually removed it from the service
1357  * queue.
1358  */
1359 void
1360 remove_runlist(queue_t *qp)
1361 {
1362 	if (qp->q_flag & QENAB && qhead != NULL) {
1363 		queue_t *q_chase;
1364 		queue_t *q_curr;
1365 		int removed;
1366 
1367 		mutex_enter(&service_queue);
1368 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1369 		mutex_exit(&service_queue);
1370 		if (removed) {
1371 			STRSTAT(qremoved);
1372 			qp->q_flag &= ~QENAB;
1373 		}
1374 	}
1375 }
1376 
1377 
1378 /*
1379  * wait for any pending service processing to complete.
1380  * The removal of queues from the runlist is not atomic with the
1381  * clearing of the QENABLED flag and setting the INSERVICE flag.
1382  * consequently it is possible for remove_runlist in strclose
1383  * to not find the queue on the runlist but for it to be QENABLED
1384  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1385  * as well as INSERVICE.
1386  */
1387 void
1388 wait_svc(queue_t *qp)
1389 {
1390 	queue_t *wqp = _WR(qp);
1391 
1392 	ASSERT(qp->q_flag & QREADR);
1393 
1394 	/*
1395 	 * Try to remove queues from qhead/qtail list.
1396 	 */
1397 	if (qhead != NULL) {
1398 		remove_runlist(qp);
1399 		remove_runlist(wqp);
1400 	}
1401 	/*
1402 	 * Wait till the syncqs associated with the queue
1403 	 * will dissapear from background processing list.
1404 	 * This only needs to be done for non-PERMOD perimeters since
1405 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1406 	 * when the last module/driver is unloaded.
1407 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1408 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1409 	 * function remove the queue from its syncq list, so sqthread will not
1410 	 * try to access the queue.
1411 	 */
1412 	if (!(qp->q_flag & QPERMOD)) {
1413 		syncq_t *rsq = qp->q_syncq;
1414 		syncq_t *wsq = wqp->q_syncq;
1415 
1416 		/*
1417 		 * Disable rsq and wsq and wait for any background processing of
1418 		 * syncq to complete.
1419 		 */
1420 		wait_sq_svc(rsq);
1421 		if (wsq != rsq)
1422 			wait_sq_svc(wsq);
1423 	}
1424 
1425 	mutex_enter(QLOCK(qp));
1426 	while (qp->q_flag & (QINSERVICE|QENAB))
1427 		cv_wait(&qp->q_wait, QLOCK(qp));
1428 	mutex_exit(QLOCK(qp));
1429 	mutex_enter(QLOCK(wqp));
1430 	while (wqp->q_flag & (QINSERVICE|QENAB))
1431 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1432 	mutex_exit(QLOCK(wqp));
1433 }
1434 
1435 /*
1436  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1437  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1438  * also be set, and is passed through to allocb_cred_wait().
1439  *
1440  * Returns errno on failure, zero on success.
1441  */
1442 int
1443 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1444 {
1445 	mblk_t *tmp;
1446 	ssize_t  count;
1447 	size_t n;
1448 	int error = 0;
1449 
1450 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1451 		(flag & (U_TO_K | K_TO_K)) == K_TO_K);
1452 
1453 	if (bp->b_datap->db_type == M_IOCTL) {
1454 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1455 	} else {
1456 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1457 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1458 	}
1459 	/*
1460 	 * strdoioctl validates ioc_count, so if this assert fails it
1461 	 * cannot be due to user error.
1462 	 */
1463 	ASSERT(count >= 0);
1464 
1465 	while (count > 0) {
1466 		n = MIN(MAXIOCBSZ, count);
1467 		if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error,
1468 		    cr)) == NULL) {
1469 			return (error);
1470 		}
1471 		error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K));
1472 		if (error != 0) {
1473 			freeb(tmp);
1474 			return (error);
1475 		}
1476 		arg += n;
1477 		DB_CPID(tmp) = curproc->p_pid;
1478 		tmp->b_wptr += n;
1479 		count -= n;
1480 		bp = (bp->b_cont = tmp);
1481 	}
1482 
1483 	return (0);
1484 }
1485 
1486 /*
1487  * Copy ioctl data to user-land. Return non-zero errno on failure,
1488  * 0 for success.
1489  */
1490 int
1491 getiocd(mblk_t *bp, char *arg, int copymode)
1492 {
1493 	ssize_t count;
1494 	size_t  n;
1495 	int	error;
1496 
1497 	if (bp->b_datap->db_type == M_IOCACK)
1498 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1499 	else {
1500 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1501 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1502 	}
1503 	ASSERT(count >= 0);
1504 
1505 	for (bp = bp->b_cont; bp && count;
1506 	    count -= n, bp = bp->b_cont, arg += n) {
1507 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1508 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1509 		if (error)
1510 			return (error);
1511 	}
1512 	ASSERT(count == 0);
1513 	return (0);
1514 }
1515 
1516 /*
1517  * Allocate a linkinfo entry given the write queue of the
1518  * bottom module of the top stream and the write queue of the
1519  * stream head of the bottom stream.
1520  */
1521 linkinfo_t *
1522 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1523 {
1524 	linkinfo_t *linkp;
1525 
1526 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1527 
1528 	linkp->li_lblk.l_qtop = qup;
1529 	linkp->li_lblk.l_qbot = qdown;
1530 	linkp->li_fpdown = fpdown;
1531 
1532 	mutex_enter(&strresources);
1533 	linkp->li_next = linkinfo_list;
1534 	linkp->li_prev = NULL;
1535 	if (linkp->li_next)
1536 		linkp->li_next->li_prev = linkp;
1537 	linkinfo_list = linkp;
1538 	linkp->li_lblk.l_index = ++lnk_id;
1539 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1540 	mutex_exit(&strresources);
1541 
1542 	return (linkp);
1543 }
1544 
1545 /*
1546  * Free a linkinfo entry.
1547  */
1548 void
1549 lbfree(linkinfo_t *linkp)
1550 {
1551 	mutex_enter(&strresources);
1552 	if (linkp->li_next)
1553 		linkp->li_next->li_prev = linkp->li_prev;
1554 	if (linkp->li_prev)
1555 		linkp->li_prev->li_next = linkp->li_next;
1556 	else
1557 		linkinfo_list = linkp->li_next;
1558 	mutex_exit(&strresources);
1559 
1560 	kmem_cache_free(linkinfo_cache, linkp);
1561 }
1562 
1563 /*
1564  * Check for a potential linking cycle.
1565  * Return 1 if a link will result in a cycle,
1566  * and 0 otherwise.
1567  */
1568 int
1569 linkcycle(stdata_t *upstp, stdata_t *lostp)
1570 {
1571 	struct mux_node *np;
1572 	struct mux_edge *ep;
1573 	int i;
1574 	major_t lomaj;
1575 	major_t upmaj;
1576 	/*
1577 	 * if the lower stream is a pipe/FIFO, return, since link
1578 	 * cycles can not happen on pipes/FIFOs
1579 	 */
1580 	if (lostp->sd_vnode->v_type == VFIFO)
1581 		return (0);
1582 
1583 	for (i = 0; i < devcnt; i++) {
1584 		np = &mux_nodes[i];
1585 		MUX_CLEAR(np);
1586 	}
1587 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1588 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1589 	np = &mux_nodes[lomaj];
1590 	for (;;) {
1591 		if (!MUX_DIDVISIT(np)) {
1592 			if (np->mn_imaj == upmaj)
1593 				return (1);
1594 			if (np->mn_outp == NULL) {
1595 				MUX_VISIT(np);
1596 				if (np->mn_originp == NULL)
1597 					return (0);
1598 				np = np->mn_originp;
1599 				continue;
1600 			}
1601 			MUX_VISIT(np);
1602 			np->mn_startp = np->mn_outp;
1603 		} else {
1604 			if (np->mn_startp == NULL) {
1605 				if (np->mn_originp == NULL)
1606 					return (0);
1607 				else {
1608 					np = np->mn_originp;
1609 					continue;
1610 				}
1611 			}
1612 			/*
1613 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1614 			 * ignore the edge and move on. ep->me_nodep gets
1615 			 * set to NULL in mux_addedge() if it is a FIFO.
1616 			 *
1617 			 */
1618 			ep = np->mn_startp;
1619 			np->mn_startp = ep->me_nextp;
1620 			if (ep->me_nodep == NULL)
1621 				continue;
1622 			ep->me_nodep->mn_originp = np;
1623 			np = ep->me_nodep;
1624 		}
1625 	}
1626 }
1627 
1628 /*
1629  * Find linkinfo entry corresponding to the parameters.
1630  */
1631 linkinfo_t *
1632 findlinks(stdata_t *stp, int index, int type)
1633 {
1634 	linkinfo_t *linkp;
1635 	struct mux_edge *mep;
1636 	struct mux_node *mnp;
1637 	queue_t *qup;
1638 
1639 	mutex_enter(&strresources);
1640 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1641 		qup = getendq(stp->sd_wrq);
1642 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1643 			if ((qup == linkp->li_lblk.l_qtop) &&
1644 			    (!index || (index == linkp->li_lblk.l_index))) {
1645 				mutex_exit(&strresources);
1646 				return (linkp);
1647 			}
1648 		}
1649 	} else {
1650 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1651 		mnp = &mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1652 		mep = mnp->mn_outp;
1653 		while (mep) {
1654 			if ((index == 0) || (index == mep->me_muxid))
1655 				break;
1656 			mep = mep->me_nextp;
1657 		}
1658 		if (!mep) {
1659 			mutex_exit(&strresources);
1660 			return (NULL);
1661 		}
1662 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1663 			if ((!linkp->li_lblk.l_qtop) &&
1664 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1665 				mutex_exit(&strresources);
1666 				return (linkp);
1667 			}
1668 		}
1669 	}
1670 	mutex_exit(&strresources);
1671 	return (NULL);
1672 }
1673 
1674 /*
1675  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1676  * last queue on the chain and return it.
1677  */
1678 queue_t *
1679 getendq(queue_t *q)
1680 {
1681 	ASSERT(q != NULL);
1682 	while (_SAMESTR(q))
1683 		q = q->q_next;
1684 	return (q);
1685 }
1686 
1687 /*
1688  * wait for the syncq count to drop to zero.
1689  * sq could be either outer or inner.
1690  */
1691 
1692 static void
1693 wait_syncq(syncq_t *sq)
1694 {
1695 	uint16_t count;
1696 
1697 	mutex_enter(SQLOCK(sq));
1698 	count = sq->sq_count;
1699 	SQ_PUTLOCKS_ENTER(sq);
1700 	SUM_SQ_PUTCOUNTS(sq, count);
1701 	while (count != 0) {
1702 		sq->sq_flags |= SQ_WANTWAKEUP;
1703 		SQ_PUTLOCKS_EXIT(sq);
1704 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1705 		count = sq->sq_count;
1706 		SQ_PUTLOCKS_ENTER(sq);
1707 		SUM_SQ_PUTCOUNTS(sq, count);
1708 	}
1709 	SQ_PUTLOCKS_EXIT(sq);
1710 	mutex_exit(SQLOCK(sq));
1711 }
1712 
1713 /*
1714  * Wait while there are any messages for the queue in its syncq.
1715  */
1716 static void
1717 wait_q_syncq(queue_t *q)
1718 {
1719 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1720 		syncq_t *sq = q->q_syncq;
1721 
1722 		mutex_enter(SQLOCK(sq));
1723 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1724 			sq->sq_flags |= SQ_WANTWAKEUP;
1725 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1726 		}
1727 		mutex_exit(SQLOCK(sq));
1728 	}
1729 }
1730 
1731 
1732 int
1733 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1734     int lhlink)
1735 {
1736 	struct stdata *stp;
1737 	struct strioctl strioc;
1738 	struct linkinfo *linkp;
1739 	struct stdata *stpdown;
1740 	struct streamtab *str;
1741 	queue_t *passq;
1742 	syncq_t *passyncq;
1743 	queue_t *rq;
1744 	cdevsw_impl_t *dp;
1745 	uint32_t qflag;
1746 	uint32_t sqtype;
1747 	perdm_t *dmp;
1748 	int error = 0;
1749 
1750 	stp = vp->v_stream;
1751 	TRACE_1(TR_FAC_STREAMS_FR,
1752 		TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1753 	/*
1754 	 * Test for invalid upper stream
1755 	 */
1756 	if (stp->sd_flag & STRHUP) {
1757 		return (ENXIO);
1758 	}
1759 	if (vp->v_type == VFIFO) {
1760 		return (EINVAL);
1761 	}
1762 	if (stp->sd_strtab == NULL) {
1763 		return (EINVAL);
1764 	}
1765 	if (!stp->sd_strtab->st_muxwinit) {
1766 		return (EINVAL);
1767 	}
1768 	if (fpdown == NULL) {
1769 		return (EBADF);
1770 	}
1771 	if (getmajor(stp->sd_vnode->v_rdev) >= devcnt) {
1772 		return (EINVAL);
1773 	}
1774 	mutex_enter(&muxifier);
1775 	if (stp->sd_flag & STPLEX) {
1776 		mutex_exit(&muxifier);
1777 		return (ENXIO);
1778 	}
1779 
1780 	/*
1781 	 * Test for invalid lower stream.
1782 	 * The check for the v_type != VFIFO and having a major
1783 	 * number not >= devcnt is done to avoid problems with
1784 	 * adding mux_node entry past the end of mux_nodes[].
1785 	 * For FIFO's we don't add an entry so this isn't a
1786 	 * problem.
1787 	 */
1788 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1789 	    (stpdown == stp) || (stpdown->sd_flag &
1790 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1791 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1792 	    (getmajor(stpdown->sd_vnode->v_rdev) >= devcnt)) ||
1793 	    linkcycle(stp, stpdown)) {
1794 		mutex_exit(&muxifier);
1795 		return (EINVAL);
1796 	}
1797 	TRACE_1(TR_FAC_STREAMS_FR,
1798 		TR_STPDOWN, "stpdown:%p", stpdown);
1799 	rq = getendq(stp->sd_wrq);
1800 	if (cmd == I_PLINK)
1801 		rq = NULL;
1802 
1803 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1804 
1805 	strioc.ic_cmd = cmd;
1806 	strioc.ic_timout = INFTIM;
1807 	strioc.ic_len = sizeof (struct linkblk);
1808 	strioc.ic_dp = (char *)&linkp->li_lblk;
1809 
1810 	/*
1811 	 * STRPLUMB protects plumbing changes and should be set before
1812 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1813 	 * and cleared in the end of mlink when passthru queue is removed.
1814 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1815 	 * queue is in-place (it is not a proper module and doesn't have open
1816 	 * entry point).
1817 	 *
1818 	 * STPLEX prevents any threads from entering the stream from above. It
1819 	 * can't be set before the call to link_addpassthru() because putnext
1820 	 * from below may cause stream head I/O routines to be called and these
1821 	 * routines assert that STPLEX is not set. After link_addpassthru()
1822 	 * nothing may come from below since the pass queue syncq is blocked.
1823 	 * Note also that STPLEX should be cleared before the call to
1824 	 * link_remmpassthru() since when messages start flowing to the stream
1825 	 * head (e.g. because of message propagation from the pass queue) stream
1826 	 * head I/O routines may be called with STPLEX flag set.
1827 	 *
1828 	 * When STPLEX is set, nothing may come into the stream from above and
1829 	 * it is safe to do a setq which will change stream head. So, the
1830 	 * correct sequence of actions is:
1831 	 *
1832 	 * 1) Set STRPLUMB
1833 	 * 2) Call link_addpassthru()
1834 	 * 3) Set STPLEX
1835 	 * 4) Call setq and update the stream state
1836 	 * 5) Clear STPLEX
1837 	 * 6) Call link_rempassthru()
1838 	 * 7) Clear STRPLUMB
1839 	 *
1840 	 * The same sequence applies to munlink() code.
1841 	 */
1842 	mutex_enter(&stpdown->sd_lock);
1843 	stpdown->sd_flag |= STRPLUMB;
1844 	mutex_exit(&stpdown->sd_lock);
1845 	/*
1846 	 * Add passthru queue below lower mux. This will block
1847 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1848 	 */
1849 	passq = link_addpassthru(stpdown);
1850 
1851 	mutex_enter(&stpdown->sd_lock);
1852 	stpdown->sd_flag |= STPLEX;
1853 	mutex_exit(&stpdown->sd_lock);
1854 
1855 	rq = _RD(stpdown->sd_wrq);
1856 	/*
1857 	 * There may be messages in the streamhead's syncq due to messages
1858 	 * that arrived before link_addpassthru() was done. To avoid
1859 	 * background processing of the syncq happening simultaneous with
1860 	 * setq processing, we disable the streamhead syncq and wait until
1861 	 * existing background thread finishes working on it.
1862 	 */
1863 	wait_sq_svc(rq->q_syncq);
1864 	passyncq = passq->q_syncq;
1865 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1866 		blocksq(passyncq, SQ_BLOCKED, 0);
1867 
1868 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1869 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1870 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1871 
1872 	/* setq might sleep in allocator - avoid holding locks. */
1873 	/* Note: we are holding muxifier here. */
1874 
1875 	str = stp->sd_strtab;
1876 	dp = &devimpl[getmajor(vp->v_rdev)];
1877 	ASSERT(dp->d_str == str);
1878 
1879 	qflag = dp->d_qflag;
1880 	sqtype = dp->d_sqtype;
1881 
1882 	/* create perdm_t if needed */
1883 	if (NEED_DM(dp->d_dmp, qflag))
1884 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1885 
1886 	dmp = dp->d_dmp;
1887 
1888 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1889 	    B_TRUE);
1890 
1891 	/*
1892 	 * XXX Remove any "odd" messages from the queue.
1893 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1894 	 */
1895 	error = strdoioctl(stp, &strioc, FNATIVE,
1896 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1897 	if (error != 0) {
1898 		lbfree(linkp);
1899 
1900 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1901 			blocksq(passyncq, SQ_BLOCKED, 0);
1902 		/*
1903 		 * Restore the stream head queue and then remove
1904 		 * the passq. Turn off STPLEX before we turn on
1905 		 * the stream by removing the passq.
1906 		 */
1907 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1908 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1909 		    B_TRUE);
1910 
1911 		mutex_enter(&stpdown->sd_lock);
1912 		stpdown->sd_flag &= ~STPLEX;
1913 		mutex_exit(&stpdown->sd_lock);
1914 
1915 		link_rempassthru(passq);
1916 
1917 		mutex_enter(&stpdown->sd_lock);
1918 		stpdown->sd_flag &= ~STRPLUMB;
1919 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1920 		cv_broadcast(&stpdown->sd_monitor);
1921 		mutex_exit(&stpdown->sd_lock);
1922 
1923 		mutex_exit(&muxifier);
1924 		return (error);
1925 	}
1926 	mutex_enter(&fpdown->f_tlock);
1927 	fpdown->f_count++;
1928 	mutex_exit(&fpdown->f_tlock);
1929 
1930 	/*
1931 	 * if we've made it here the linkage is all set up so we should also
1932 	 * set up the layered driver linkages
1933 	 */
1934 
1935 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1936 	if (cmd == I_LINK) {
1937 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1938 	} else {
1939 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1940 	}
1941 
1942 	link_rempassthru(passq);
1943 
1944 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index);
1945 
1946 	/*
1947 	 * Mark the upper stream as having dependent links
1948 	 * so that strclose can clean it up.
1949 	 */
1950 	if (cmd == I_LINK) {
1951 		mutex_enter(&stp->sd_lock);
1952 		stp->sd_flag |= STRHASLINKS;
1953 		mutex_exit(&stp->sd_lock);
1954 	}
1955 	/*
1956 	 * Wake up any other processes that may have been
1957 	 * waiting on the lower stream. These will all
1958 	 * error out.
1959 	 */
1960 	mutex_enter(&stpdown->sd_lock);
1961 	/* The passthru module is removed so we may release STRPLUMB */
1962 	stpdown->sd_flag &= ~STRPLUMB;
1963 	cv_broadcast(&rq->q_wait);
1964 	cv_broadcast(&_WR(rq)->q_wait);
1965 	cv_broadcast(&stpdown->sd_monitor);
1966 	mutex_exit(&stpdown->sd_lock);
1967 	mutex_exit(&muxifier);
1968 	*rvalp = linkp->li_lblk.l_index;
1969 	return (0);
1970 }
1971 
1972 int
1973 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1974 {
1975 	int		ret;
1976 	struct file	*fpdown;
1977 
1978 	fpdown = getf(arg);
1979 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1980 	if (fpdown != NULL)
1981 		releasef(arg);
1982 	return (ret);
1983 }
1984 
1985 /*
1986  * Unlink a multiplexor link. Stp is the controlling stream for the
1987  * link, and linkp points to the link's entry in the linkinfo list.
1988  * The muxifier lock must be held on entry and is dropped on exit.
1989  *
1990  * NOTE : Currently it is assumed that mux would process all the messages
1991  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1992  * of the mux to handle all the messages that arrive before UNLINK.
1993  * If the mux has to send down messages on its lower stream before
1994  * ACKing I_UNLINK, then it *should* know to handle messages even
1995  * after the UNLINK is acked (actually it should be able to handle till we
1996  * re-block the read side of the pass queue here). If the mux does not
1997  * open up the lower stream, any messages that arrive during UNLINK
1998  * will be put in the stream head. In the case of lower stream opening
1999  * up, some messages might land in the stream head depending on when
2000  * the message arrived and when the read side of the pass queue was
2001  * re-blocked.
2002  */
2003 int
2004 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp)
2005 {
2006 	struct strioctl strioc;
2007 	struct stdata *stpdown;
2008 	queue_t *rq, *wrq;
2009 	queue_t	*passq;
2010 	syncq_t *passyncq;
2011 	int error = 0;
2012 	file_t *fpdown;
2013 
2014 	ASSERT(MUTEX_HELD(&muxifier));
2015 
2016 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2017 
2018 	/*
2019 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2020 	 */
2021 	mutex_enter(&stpdown->sd_lock);
2022 	stpdown->sd_flag |= STRPLUMB;
2023 	mutex_exit(&stpdown->sd_lock);
2024 
2025 	/*
2026 	 * Add passthru queue below lower mux. This will block
2027 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2028 	 */
2029 	passq = link_addpassthru(stpdown);
2030 
2031 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2032 		strioc.ic_cmd = I_UNLINK;
2033 	else
2034 		strioc.ic_cmd = I_PUNLINK;
2035 	strioc.ic_timout = INFTIM;
2036 	strioc.ic_len = sizeof (struct linkblk);
2037 	strioc.ic_dp = (char *)&linkp->li_lblk;
2038 
2039 	error = strdoioctl(stp, &strioc, FNATIVE,
2040 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2041 
2042 	/*
2043 	 * If there was an error and this is not called via strclose,
2044 	 * return to the user. Otherwise, pretend there was no error
2045 	 * and close the link.
2046 	 */
2047 	if (error) {
2048 		if (flag & LINKCLOSE) {
2049 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2050 			    "unlink ioctl, closing anyway (%d)\n", error);
2051 		} else {
2052 			link_rempassthru(passq);
2053 			mutex_enter(&stpdown->sd_lock);
2054 			stpdown->sd_flag &= ~STRPLUMB;
2055 			cv_broadcast(&stpdown->sd_monitor);
2056 			mutex_exit(&stpdown->sd_lock);
2057 			mutex_exit(&muxifier);
2058 			return (error);
2059 		}
2060 	}
2061 
2062 	mux_rmvedge(stp, linkp->li_lblk.l_index);
2063 	fpdown = linkp->li_fpdown;
2064 	lbfree(linkp);
2065 
2066 	/*
2067 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2068 	 * can slow others down. It's okay to since attempts to mlink() this
2069 	 * stream will be stopped because STPLEX is still set in the stdata
2070 	 * structure, and munlink() is stopped because mux_rmvedge() and
2071 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2072 	 * respectively.  Note that we defer the closef() of fpdown until
2073 	 * after we drop muxifier since strclose() can call munlinkall().
2074 	 */
2075 	mutex_exit(&muxifier);
2076 
2077 	wrq = stpdown->sd_wrq;
2078 	rq = _RD(wrq);
2079 
2080 	/*
2081 	 * Get rid of outstanding service procedure runs, before we make
2082 	 * it a stream head, since a stream head doesn't have any service
2083 	 * procedure.
2084 	 */
2085 	disable_svc(rq);
2086 	wait_svc(rq);
2087 
2088 	/*
2089 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2090 	 * is queued up to be finished. mux should take care that nothing is
2091 	 * send down to this queue. We should do it now as we're going to block
2092 	 * passyncq if it was unblocked.
2093 	 */
2094 	if (wrq->q_flag & QPERMOD) {
2095 		syncq_t	*sq = wrq->q_syncq;
2096 
2097 		mutex_enter(SQLOCK(sq));
2098 		while (wrq->q_sqflags & Q_SQQUEUED) {
2099 			sq->sq_flags |= SQ_WANTWAKEUP;
2100 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2101 		}
2102 		mutex_exit(SQLOCK(sq));
2103 	}
2104 	passyncq = passq->q_syncq;
2105 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2106 
2107 		syncq_t *sq, *outer;
2108 
2109 		/*
2110 		 * Messages could be flowing from underneath. We will
2111 		 * block the read side of the passq. This would be
2112 		 * sufficient for QPAIR and QPERQ muxes to ensure
2113 		 * that no data is flowing up into this queue
2114 		 * and hence no thread active in this instance of
2115 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2116 		 * could be messages on the inner and outer/inner
2117 		 * syncqs respectively. We will wait for them to drain.
2118 		 * Because passq is blocked messages end up in the syncq
2119 		 * And qfill_syncq could possibly end up setting QFULL
2120 		 * which will access the rq->q_flag. Hence, we have to
2121 		 * acquire the QLOCK in setq.
2122 		 *
2123 		 * XXX Messages can also flow from top into this
2124 		 * queue though the unlink is over (Ex. some instance
2125 		 * in putnext() called from top that has still not
2126 		 * accessed this queue. And also putq(lowerq) ?).
2127 		 * Solution : How about blocking the l_qtop queue ?
2128 		 * Do we really care about such pure D_MP muxes ?
2129 		 */
2130 
2131 		blocksq(passyncq, SQ_BLOCKED, 0);
2132 
2133 		sq = rq->q_syncq;
2134 		if ((outer = sq->sq_outer) != NULL) {
2135 
2136 			/*
2137 			 * We have to just wait for the outer sq_count
2138 			 * drop to zero. As this does not prevent new
2139 			 * messages to enter the outer perimeter, this
2140 			 * is subject to starvation.
2141 			 *
2142 			 * NOTE :Because of blocksq above, messages could
2143 			 * be in the inner syncq only because of some
2144 			 * thread holding the outer perimeter exclusively.
2145 			 * Hence it would be sufficient to wait for the
2146 			 * exclusive holder of the outer perimeter to drain
2147 			 * the inner and outer syncqs. But we will not depend
2148 			 * on this feature and hence check the inner syncqs
2149 			 * separately.
2150 			 */
2151 			wait_syncq(outer);
2152 		}
2153 
2154 
2155 		/*
2156 		 * There could be messages destined for
2157 		 * this queue. Let the exclusive holder
2158 		 * drain it.
2159 		 */
2160 
2161 		wait_syncq(sq);
2162 		ASSERT((rq->q_flag & QPERMOD) ||
2163 			((rq->q_syncq->sq_head == NULL) &&
2164 			(_WR(rq)->q_syncq->sq_head == NULL)));
2165 	}
2166 
2167 	/*
2168 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2169 	 * case as we don't disable its syncq or remove it off the syncq
2170 	 * service list.
2171 	 */
2172 	if (rq->q_flag & QPERMOD) {
2173 		syncq_t	*sq = rq->q_syncq;
2174 
2175 		mutex_enter(SQLOCK(sq));
2176 		while (rq->q_sqflags & Q_SQQUEUED) {
2177 			sq->sq_flags |= SQ_WANTWAKEUP;
2178 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2179 		}
2180 		mutex_exit(SQLOCK(sq));
2181 	}
2182 
2183 	/*
2184 	 * flush_syncq changes states only when there is some messages to
2185 	 * free. ie when it returns non-zero value to return.
2186 	 */
2187 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2188 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2189 
2190 	/*
2191 	 * No body else should know about this queue now.
2192 	 * If the mux did not process the messages before
2193 	 * acking the I_UNLINK, free them now.
2194 	 */
2195 
2196 	flushq(rq, FLUSHALL);
2197 	flushq(_WR(rq), FLUSHALL);
2198 
2199 	/*
2200 	 * Convert the mux lower queue into a stream head queue.
2201 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2202 	 */
2203 	rq->q_ptr = wrq->q_ptr = stpdown;
2204 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2205 
2206 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2207 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2208 
2209 	enable_svc(rq);
2210 
2211 	/*
2212 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2213 	 * needs to be set to prevent reopen() of the stream - such reopen may
2214 	 * try to call non-existent pass queue open routine and panic.
2215 	 */
2216 	mutex_enter(&stpdown->sd_lock);
2217 	stpdown->sd_flag &= ~STPLEX;
2218 	mutex_exit(&stpdown->sd_lock);
2219 
2220 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2221 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2222 
2223 	/* clean up the layered driver linkages */
2224 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2225 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2226 	} else {
2227 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2228 	}
2229 
2230 	link_rempassthru(passq);
2231 
2232 	/*
2233 	 * Now all plumbing changes are finished and STRPLUMB is no
2234 	 * longer needed.
2235 	 */
2236 	mutex_enter(&stpdown->sd_lock);
2237 	stpdown->sd_flag &= ~STRPLUMB;
2238 	cv_broadcast(&stpdown->sd_monitor);
2239 	mutex_exit(&stpdown->sd_lock);
2240 
2241 	(void) closef(fpdown);
2242 	return (0);
2243 }
2244 
2245 /*
2246  * Unlink all multiplexor links for which stp is the controlling stream.
2247  * Return 0, or a non-zero errno on failure.
2248  */
2249 int
2250 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp)
2251 {
2252 	linkinfo_t *linkp;
2253 	int error = 0;
2254 
2255 	mutex_enter(&muxifier);
2256 	while (linkp = findlinks(stp, 0, flag)) {
2257 		/*
2258 		 * munlink() releases the muxifier lock.
2259 		 */
2260 		if (error = munlink(stp, linkp, flag, crp, rvalp))
2261 			return (error);
2262 		mutex_enter(&muxifier);
2263 	}
2264 	mutex_exit(&muxifier);
2265 	return (0);
2266 }
2267 
2268 /*
2269  * A multiplexor link has been made. Add an
2270  * edge to the directed graph.
2271  */
2272 void
2273 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid)
2274 {
2275 	struct mux_node *np;
2276 	struct mux_edge *ep;
2277 	major_t upmaj;
2278 	major_t lomaj;
2279 
2280 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2281 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2282 	np = &mux_nodes[upmaj];
2283 	if (np->mn_outp) {
2284 		ep = np->mn_outp;
2285 		while (ep->me_nextp)
2286 			ep = ep->me_nextp;
2287 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2288 		ep = ep->me_nextp;
2289 	} else {
2290 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2291 		ep = np->mn_outp;
2292 	}
2293 	ep->me_nextp = NULL;
2294 	ep->me_muxid = muxid;
2295 	if (lostp->sd_vnode->v_type == VFIFO)
2296 		ep->me_nodep = NULL;
2297 	else
2298 		ep->me_nodep = &mux_nodes[lomaj];
2299 }
2300 
2301 /*
2302  * A multiplexor link has been removed. Remove the
2303  * edge in the directed graph.
2304  */
2305 void
2306 mux_rmvedge(stdata_t *upstp, int muxid)
2307 {
2308 	struct mux_node *np;
2309 	struct mux_edge *ep;
2310 	struct mux_edge *pep = NULL;
2311 	major_t upmaj;
2312 
2313 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2314 	np = &mux_nodes[upmaj];
2315 	ASSERT(np->mn_outp != NULL);
2316 	ep = np->mn_outp;
2317 	while (ep) {
2318 		if (ep->me_muxid == muxid) {
2319 			if (pep)
2320 				pep->me_nextp = ep->me_nextp;
2321 			else
2322 				np->mn_outp = ep->me_nextp;
2323 			kmem_free(ep, sizeof (struct mux_edge));
2324 			return;
2325 		}
2326 		pep = ep;
2327 		ep = ep->me_nextp;
2328 	}
2329 	ASSERT(0);	/* should not reach here */
2330 }
2331 
2332 /*
2333  * Translate the device flags (from conf.h) to the corresponding
2334  * qflag and sq_flag (type) values.
2335  */
2336 int
2337 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2338 	uint32_t *sqtypep)
2339 {
2340 	uint32_t qflag = 0;
2341 	uint32_t sqtype = 0;
2342 
2343 	if (devflag & _D_OLD)
2344 		goto bad;
2345 
2346 	/* Inner perimeter presence and scope */
2347 	switch (devflag & D_MTINNER_MASK) {
2348 	case D_MP:
2349 		qflag |= QMTSAFE;
2350 		sqtype |= SQ_CI;
2351 		break;
2352 	case D_MTPERQ|D_MP:
2353 		qflag |= QPERQ;
2354 		break;
2355 	case D_MTQPAIR|D_MP:
2356 		qflag |= QPAIR;
2357 		break;
2358 	case D_MTPERMOD|D_MP:
2359 		qflag |= QPERMOD;
2360 		break;
2361 	default:
2362 		goto bad;
2363 	}
2364 
2365 	/* Outer perimeter */
2366 	if (devflag & D_MTOUTPERIM) {
2367 		switch (devflag & D_MTINNER_MASK) {
2368 		case D_MP:
2369 		case D_MTPERQ|D_MP:
2370 		case D_MTQPAIR|D_MP:
2371 			break;
2372 		default:
2373 			goto bad;
2374 		}
2375 		qflag |= QMTOUTPERIM;
2376 	}
2377 
2378 	/* Inner perimeter modifiers */
2379 	if (devflag & D_MTINNER_MOD) {
2380 		switch (devflag & D_MTINNER_MASK) {
2381 		case D_MP:
2382 			goto bad;
2383 		default:
2384 			break;
2385 		}
2386 		if (devflag & D_MTPUTSHARED)
2387 			sqtype |= SQ_CIPUT;
2388 		if (devflag & _D_MTOCSHARED) {
2389 			/*
2390 			 * The code in putnext assumes that it has the
2391 			 * highest concurrency by not checking sq_count.
2392 			 * Thus _D_MTOCSHARED can only be supported when
2393 			 * D_MTPUTSHARED is set.
2394 			 */
2395 			if (!(devflag & D_MTPUTSHARED))
2396 				goto bad;
2397 			sqtype |= SQ_CIOC;
2398 		}
2399 		if (devflag & _D_MTCBSHARED) {
2400 			/*
2401 			 * The code in putnext assumes that it has the
2402 			 * highest concurrency by not checking sq_count.
2403 			 * Thus _D_MTCBSHARED can only be supported when
2404 			 * D_MTPUTSHARED is set.
2405 			 */
2406 			if (!(devflag & D_MTPUTSHARED))
2407 				goto bad;
2408 			sqtype |= SQ_CICB;
2409 		}
2410 		if (devflag & _D_MTSVCSHARED) {
2411 			/*
2412 			 * The code in putnext assumes that it has the
2413 			 * highest concurrency by not checking sq_count.
2414 			 * Thus _D_MTSVCSHARED can only be supported when
2415 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2416 			 * supported only for QPERMOD.
2417 			 */
2418 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2419 				goto bad;
2420 			sqtype |= SQ_CISVC;
2421 		}
2422 	}
2423 
2424 	/* Default outer perimeter concurrency */
2425 	sqtype |= SQ_CO;
2426 
2427 	/* Outer perimeter modifiers */
2428 	if (devflag & D_MTOCEXCL) {
2429 		if (!(devflag & D_MTOUTPERIM)) {
2430 			/* No outer perimeter */
2431 			goto bad;
2432 		}
2433 		sqtype &= ~SQ_COOC;
2434 	}
2435 
2436 	/* Synchronous Streams extended qinit structure */
2437 	if (devflag & D_SYNCSTR)
2438 		qflag |= QSYNCSTR;
2439 
2440 	*qflagp = qflag;
2441 	*sqtypep = sqtype;
2442 	return (0);
2443 
2444 bad:
2445 	cmn_err(CE_WARN,
2446 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2447 	    (int)(qflag & D_MTSAFETY_MASK),
2448 	    stp->st_rdinit->qi_minfo->mi_idname);
2449 
2450 	return (EINVAL);
2451 }
2452 
2453 /*
2454  * Set the interface values for a pair of queues (qinit structure,
2455  * packet sizes, water marks).
2456  * setq assumes that the caller does not have a claim (entersq or claimq)
2457  * on the queue.
2458  */
2459 void
2460 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2461     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2462 {
2463 	queue_t *wq;
2464 	syncq_t	*sq, *outer;
2465 
2466 	ASSERT(rq->q_flag & QREADR);
2467 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2468 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2469 
2470 	wq = _WR(rq);
2471 	rq->q_qinfo = rinit;
2472 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2473 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2474 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2475 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2476 	wq->q_qinfo = winit;
2477 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2478 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2479 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2480 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2481 
2482 	/* Remove old syncqs */
2483 	sq = rq->q_syncq;
2484 	outer = sq->sq_outer;
2485 	if (outer != NULL) {
2486 		ASSERT(wq->q_syncq->sq_outer == outer);
2487 		outer_remove(outer, rq->q_syncq);
2488 		if (wq->q_syncq != rq->q_syncq)
2489 			outer_remove(outer, wq->q_syncq);
2490 	}
2491 	ASSERT(sq->sq_outer == NULL);
2492 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2493 
2494 	if (sq != SQ(rq)) {
2495 		if (!(rq->q_flag & QPERMOD))
2496 			free_syncq(sq);
2497 		if (wq->q_syncq == rq->q_syncq)
2498 			wq->q_syncq = NULL;
2499 		rq->q_syncq = NULL;
2500 	}
2501 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2502 	    wq->q_syncq != SQ(rq)) {
2503 		free_syncq(wq->q_syncq);
2504 		wq->q_syncq = NULL;
2505 	}
2506 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2507 				rq->q_syncq->sq_tail == NULL));
2508 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2509 				wq->q_syncq->sq_tail == NULL));
2510 
2511 	if (!(rq->q_flag & QPERMOD) &&
2512 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2513 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2514 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2515 		    rq->q_syncq->sq_nciputctrl, 0);
2516 		ASSERT(ciputctrl_cache != NULL);
2517 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2518 		rq->q_syncq->sq_ciputctrl = NULL;
2519 		rq->q_syncq->sq_nciputctrl = 0;
2520 	}
2521 
2522 	if (!(wq->q_flag & QPERMOD) &&
2523 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2524 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2525 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2526 		    wq->q_syncq->sq_nciputctrl, 0);
2527 		ASSERT(ciputctrl_cache != NULL);
2528 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2529 		wq->q_syncq->sq_ciputctrl = NULL;
2530 		wq->q_syncq->sq_nciputctrl = 0;
2531 	}
2532 
2533 	sq = SQ(rq);
2534 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2535 	ASSERT(sq->sq_outer == NULL);
2536 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2537 
2538 	/*
2539 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2540 	 * bits in sq_flag based on the sqtype.
2541 	 */
2542 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2543 
2544 	rq->q_syncq = wq->q_syncq = sq;
2545 	sq->sq_type = sqtype;
2546 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2547 
2548 	/*
2549 	 *  We are making sq_svcflags zero,
2550 	 *  resetting SQ_DISABLED in case it was set by
2551 	 *  wait_svc() in the munlink path.
2552 	 *
2553 	 */
2554 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2555 	sq->sq_svcflags = 0;
2556 
2557 	/*
2558 	 * We need to acquire the lock here for the mlink and munlink case,
2559 	 * where canputnext, backenable, etc can access the q_flag.
2560 	 */
2561 	if (lock_needed) {
2562 		mutex_enter(QLOCK(rq));
2563 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2564 		mutex_exit(QLOCK(rq));
2565 		mutex_enter(QLOCK(wq));
2566 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2567 		mutex_exit(QLOCK(wq));
2568 	} else {
2569 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2570 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2571 	}
2572 
2573 	if (qflag & QPERQ) {
2574 		/* Allocate a separate syncq for the write side */
2575 		sq = new_syncq();
2576 		sq->sq_type = rq->q_syncq->sq_type;
2577 		sq->sq_flags = rq->q_syncq->sq_flags;
2578 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2579 		    sq->sq_oprev == NULL);
2580 		wq->q_syncq = sq;
2581 	}
2582 	if (qflag & QPERMOD) {
2583 		sq = dmp->dm_sq;
2584 
2585 		/*
2586 		 * Assert that we do have an inner perimeter syncq and that it
2587 		 * does not have an outer perimeter associated with it.
2588 		 */
2589 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2590 		    sq->sq_oprev == NULL);
2591 		rq->q_syncq = wq->q_syncq = sq;
2592 	}
2593 	if (qflag & QMTOUTPERIM) {
2594 		outer = dmp->dm_sq;
2595 
2596 		ASSERT(outer->sq_outer == NULL);
2597 		outer_insert(outer, rq->q_syncq);
2598 		if (wq->q_syncq != rq->q_syncq)
2599 			outer_insert(outer, wq->q_syncq);
2600 	}
2601 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2602 		(rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2603 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2604 		(wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2605 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2606 
2607 	/*
2608 	 * Initialize struio() types.
2609 	 */
2610 	rq->q_struiot =
2611 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2612 	wq->q_struiot =
2613 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2614 }
2615 
2616 perdm_t *
2617 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2618 {
2619 	syncq_t	*sq;
2620 	perdm_t	**pp;
2621 	perdm_t	*p;
2622 	perdm_t	*dmp;
2623 
2624 	ASSERT(str != NULL);
2625 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2626 
2627 	rw_enter(&perdm_rwlock, RW_READER);
2628 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2629 		if (p->dm_str == str) {	/* found one */
2630 			atomic_add_32(&(p->dm_ref), 1);
2631 			rw_exit(&perdm_rwlock);
2632 			return (p);
2633 		}
2634 	}
2635 	rw_exit(&perdm_rwlock);
2636 
2637 	sq = new_syncq();
2638 	if (qflag & QPERMOD) {
2639 		sq->sq_type = sqtype | SQ_PERMOD;
2640 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2641 	} else {
2642 		ASSERT(qflag & QMTOUTPERIM);
2643 		sq->sq_onext = sq->sq_oprev = sq;
2644 	}
2645 
2646 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2647 	dmp->dm_sq = sq;
2648 	dmp->dm_str = str;
2649 	dmp->dm_ref = 1;
2650 	dmp->dm_next = NULL;
2651 
2652 	rw_enter(&perdm_rwlock, RW_WRITER);
2653 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2654 		if (p->dm_str == str) {	/* already present */
2655 			p->dm_ref++;
2656 			rw_exit(&perdm_rwlock);
2657 			free_syncq(sq);
2658 			kmem_free(dmp, sizeof (perdm_t));
2659 			return (p);
2660 		}
2661 	}
2662 
2663 	*pp = dmp;
2664 	rw_exit(&perdm_rwlock);
2665 	return (dmp);
2666 }
2667 
2668 void
2669 rele_dm(perdm_t *dmp)
2670 {
2671 	perdm_t **pp;
2672 	perdm_t *p;
2673 
2674 	rw_enter(&perdm_rwlock, RW_WRITER);
2675 	ASSERT(dmp->dm_ref > 0);
2676 
2677 	if (--dmp->dm_ref > 0) {
2678 		rw_exit(&perdm_rwlock);
2679 		return;
2680 	}
2681 
2682 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2683 		if (p == dmp)
2684 			break;
2685 	ASSERT(p == dmp);
2686 	*pp = p->dm_next;
2687 	rw_exit(&perdm_rwlock);
2688 
2689 	/*
2690 	 * Wait for any background processing that relies on the
2691 	 * syncq to complete before it is freed.
2692 	 */
2693 	wait_sq_svc(p->dm_sq);
2694 	free_syncq(p->dm_sq);
2695 	kmem_free(p, sizeof (perdm_t));
2696 }
2697 
2698 /*
2699  * Make a protocol message given control and data buffers.
2700  * n.b., this can block; be careful of what locks you hold when calling it.
2701  *
2702  * If sd_maxblk is less than *iosize this routine can fail part way through
2703  * (due to an allocation failure). In this case on return *iosize will contain
2704  * the amount that was consumed. Otherwise *iosize will not be modified
2705  * i.e. it will contain the amount that was consumed.
2706  */
2707 int
2708 strmakemsg(
2709 	struct strbuf *mctl,
2710 	ssize_t *iosize,
2711 	struct uio *uiop,
2712 	stdata_t *stp,
2713 	int32_t flag,
2714 	mblk_t **mpp)
2715 {
2716 	mblk_t *mpctl = NULL;
2717 	mblk_t *mpdata = NULL;
2718 	int error;
2719 
2720 	ASSERT(uiop != NULL);
2721 
2722 	*mpp = NULL;
2723 	/* Create control part, if any */
2724 	if ((mctl != NULL) && (mctl->len >= 0)) {
2725 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2726 		if (error)
2727 			return (error);
2728 	}
2729 	/* Create data part, if any */
2730 	if (*iosize >= 0) {
2731 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2732 		if (error) {
2733 			freemsg(mpctl);
2734 			return (error);
2735 		}
2736 	}
2737 	if (mpctl != NULL) {
2738 		if (mpdata != NULL)
2739 			linkb(mpctl, mpdata);
2740 		*mpp = mpctl;
2741 	} else {
2742 		*mpp = mpdata;
2743 	}
2744 	return (0);
2745 }
2746 
2747 /*
2748  * Make the control part of a protocol message given a control buffer.
2749  * n.b., this can block; be careful of what locks you hold when calling it.
2750  */
2751 int
2752 strmakectl(
2753 	struct strbuf *mctl,
2754 	int32_t flag,
2755 	int32_t fflag,
2756 	mblk_t **mpp)
2757 {
2758 	mblk_t *bp = NULL;
2759 	unsigned char msgtype;
2760 	int error = 0;
2761 
2762 	*mpp = NULL;
2763 	/*
2764 	 * Create control part of message, if any.
2765 	 */
2766 	if ((mctl != NULL) && (mctl->len >= 0)) {
2767 		caddr_t base;
2768 		int ctlcount;
2769 		int allocsz;
2770 
2771 		if (flag & RS_HIPRI)
2772 			msgtype = M_PCPROTO;
2773 		else
2774 			msgtype = M_PROTO;
2775 
2776 		ctlcount = mctl->len;
2777 		base = mctl->buf;
2778 
2779 		/*
2780 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2781 		 * blocks by increasing the size to something more usable.
2782 		 */
2783 		allocsz = MAX(ctlcount, 64);
2784 
2785 		/*
2786 		 * Range checking has already been done; simply try
2787 		 * to allocate a message block for the ctl part.
2788 		 */
2789 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2790 			if (fflag & (FNDELAY|FNONBLOCK))
2791 				return (EAGAIN);
2792 			if (error = strwaitbuf(allocsz, BPRI_MED))
2793 				return (error);
2794 		}
2795 
2796 		bp->b_datap->db_type = msgtype;
2797 		if (copyin(base, bp->b_wptr, ctlcount)) {
2798 			freeb(bp);
2799 			return (EFAULT);
2800 		}
2801 		bp->b_wptr += ctlcount;
2802 	}
2803 	*mpp = bp;
2804 	return (0);
2805 }
2806 
2807 /*
2808  * Make a protocol message given data buffers.
2809  * n.b., this can block; be careful of what locks you hold when calling it.
2810  *
2811  * If sd_maxblk is less than *iosize this routine can fail part way through
2812  * (due to an allocation failure). In this case on return *iosize will contain
2813  * the amount that was consumed. Otherwise *iosize will not be modified
2814  * i.e. it will contain the amount that was consumed.
2815  */
2816 int
2817 strmakedata(
2818 	ssize_t   *iosize,
2819 	struct uio *uiop,
2820 	stdata_t *stp,
2821 	int32_t flag,
2822 	mblk_t **mpp)
2823 {
2824 	mblk_t *mp = NULL;
2825 	mblk_t *bp;
2826 	int wroff = (int)stp->sd_wroff;
2827 	int error = 0;
2828 	ssize_t maxblk;
2829 	ssize_t count = *iosize;
2830 	cred_t *cr = CRED();
2831 
2832 	*mpp = NULL;
2833 	if (count < 0)
2834 		return (0);
2835 
2836 	maxblk = stp->sd_maxblk;
2837 	if (maxblk == INFPSZ)
2838 		maxblk = count;
2839 
2840 	/*
2841 	 * Create data part of message, if any.
2842 	 */
2843 	do {
2844 		ssize_t size;
2845 		dblk_t  *dp;
2846 
2847 		ASSERT(uiop);
2848 
2849 		size = MIN(count, maxblk);
2850 
2851 		while ((bp = allocb_cred(size + wroff, cr)) == NULL) {
2852 			error = EAGAIN;
2853 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2854 			    (error = strwaitbuf(size + wroff, BPRI_MED)) != 0) {
2855 				if (count == *iosize) {
2856 					freemsg(mp);
2857 					return (error);
2858 				} else {
2859 					*iosize -= count;
2860 					*mpp = mp;
2861 					return (0);
2862 				}
2863 			}
2864 		}
2865 		dp = bp->b_datap;
2866 		dp->db_cpid = curproc->p_pid;
2867 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2868 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2869 
2870 		if (flag & STRUIO_POSTPONE) {
2871 			/*
2872 			 * Setup the stream uio portion of the
2873 			 * dblk for subsequent use by struioget().
2874 			 */
2875 			dp->db_struioflag = STRUIO_SPEC;
2876 			dp->db_cksumstart = 0;
2877 			dp->db_cksumstuff = 0;
2878 			dp->db_cksumend = size;
2879 			*(long long *)dp->db_struioun.data = 0ll;
2880 		} else {
2881 			if (stp->sd_copyflag & STRCOPYCACHED)
2882 				uiop->uio_extflg |= UIO_COPY_CACHED;
2883 
2884 			if (size != 0) {
2885 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2886 				    uiop);
2887 				if (error != 0) {
2888 					freeb(bp);
2889 					freemsg(mp);
2890 					return (error);
2891 				}
2892 			}
2893 		}
2894 
2895 		bp->b_wptr += size;
2896 		count -= size;
2897 
2898 		if (mp == NULL)
2899 			mp = bp;
2900 		else
2901 			linkb(mp, bp);
2902 	} while (count > 0);
2903 
2904 	*mpp = mp;
2905 	return (0);
2906 }
2907 
2908 /*
2909  * Wait for a buffer to become available. Return non-zero errno
2910  * if not able to wait, 0 if buffer is probably there.
2911  */
2912 int
2913 strwaitbuf(size_t size, int pri)
2914 {
2915 	bufcall_id_t id;
2916 
2917 	mutex_enter(&bcall_monitor);
2918 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2919 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2920 		mutex_exit(&bcall_monitor);
2921 		return (ENOSR);
2922 	}
2923 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2924 		unbufcall(id);
2925 		mutex_exit(&bcall_monitor);
2926 		return (EINTR);
2927 	}
2928 	unbufcall(id);
2929 	mutex_exit(&bcall_monitor);
2930 	return (0);
2931 }
2932 
2933 /*
2934  * This function waits for a read or write event to happen on a stream.
2935  * fmode can specify FNDELAY and/or FNONBLOCK.
2936  * The timeout is in ms with -1 meaning infinite.
2937  * The flag values work as follows:
2938  *	READWAIT	Check for read side errors, send M_READ
2939  *	GETWAIT		Check for read side errors, no M_READ
2940  *	WRITEWAIT	Check for write side errors.
2941  *	NOINTR		Do not return error if nonblocking or timeout.
2942  * 	STR_NOERROR	Ignore all errors except STPLEX.
2943  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2944  *	STR_PEEK	Pass through the strgeterr().
2945  */
2946 int
2947 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2948     int *done)
2949 {
2950 	int slpflg, errs;
2951 	int error;
2952 	kcondvar_t *sleepon;
2953 	mblk_t *mp;
2954 	ssize_t *rd_count;
2955 	clock_t rval;
2956 
2957 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2958 	if ((flag & READWAIT) || (flag & GETWAIT)) {
2959 		slpflg = RSLEEP;
2960 		sleepon = &_RD(stp->sd_wrq)->q_wait;
2961 		errs = STRDERR|STPLEX;
2962 	} else {
2963 		slpflg = WSLEEP;
2964 		sleepon = &stp->sd_wrq->q_wait;
2965 		errs = STWRERR|STRHUP|STPLEX;
2966 	}
2967 	if (flag & STR_NOERROR)
2968 		errs = STPLEX;
2969 
2970 	if (stp->sd_wakeq & slpflg) {
2971 		/*
2972 		 * A strwakeq() is pending, no need to sleep.
2973 		 */
2974 		stp->sd_wakeq &= ~slpflg;
2975 		*done = 0;
2976 		return (0);
2977 	}
2978 
2979 	if (fmode & (FNDELAY|FNONBLOCK)) {
2980 		if (!(flag & NOINTR))
2981 			error = EAGAIN;
2982 		else
2983 			error = 0;
2984 		*done = 1;
2985 		return (error);
2986 	}
2987 
2988 	if (stp->sd_flag & errs) {
2989 		/*
2990 		 * Check for errors before going to sleep since the
2991 		 * caller might not have checked this while holding
2992 		 * sd_lock.
2993 		 */
2994 		error = strgeterr(stp, errs, (flag & STR_PEEK));
2995 		if (error != 0) {
2996 			*done = 1;
2997 			return (error);
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * If any module downstream has requested read notification
3003 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3004 	 * down stream.
3005 	 */
3006 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3007 		mutex_exit(&stp->sd_lock);
3008 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3009 		    (flag & STR_NOSIG), &error))) {
3010 			mutex_enter(&stp->sd_lock);
3011 			*done = 1;
3012 			return (error);
3013 		}
3014 		mp->b_datap->db_type = M_READ;
3015 		rd_count = (ssize_t *)mp->b_wptr;
3016 		*rd_count = count;
3017 		mp->b_wptr += sizeof (ssize_t);
3018 		/*
3019 		 * Send the number of bytes requested by the
3020 		 * read as the argument to M_READ.
3021 		 */
3022 		stream_willservice(stp);
3023 		putnext(stp->sd_wrq, mp);
3024 		stream_runservice(stp);
3025 		mutex_enter(&stp->sd_lock);
3026 
3027 		/*
3028 		 * If any data arrived due to inline processing
3029 		 * of putnext(), don't sleep.
3030 		 */
3031 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3032 			*done = 0;
3033 			return (0);
3034 		}
3035 	}
3036 
3037 	stp->sd_flag |= slpflg;
3038 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3039 		"strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3040 		stp, flag, count, fmode, done);
3041 
3042 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3043 	if (rval > 0) {
3044 		/* EMPTY */
3045 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3046 			"strwaitq awakes(2):%X, %X, %X, %X, %X",
3047 			stp, flag, count, fmode, done);
3048 	} else if (rval == 0) {
3049 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3050 			"strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3051 			stp, flag, count, fmode, done);
3052 		stp->sd_flag &= ~slpflg;
3053 		cv_broadcast(sleepon);
3054 		if (!(flag & NOINTR))
3055 			error = EINTR;
3056 		else
3057 			error = 0;
3058 		*done = 1;
3059 		return (error);
3060 	} else {
3061 		/* timeout */
3062 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3063 			"strwaitq timeout:%p, %X, %lX, %X, %p",
3064 			stp, flag, count, fmode, done);
3065 		*done = 1;
3066 		if (!(flag & NOINTR))
3067 			return (ETIME);
3068 		else
3069 			return (0);
3070 	}
3071 	/*
3072 	 * If the caller implements delayed errors (i.e. queued after data)
3073 	 * we can not check for errors here since data as well as an
3074 	 * error might have arrived at the stream head. We return to
3075 	 * have the caller check the read queue before checking for errors.
3076 	 */
3077 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3078 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3079 		if (error != 0) {
3080 			*done = 1;
3081 			return (error);
3082 		}
3083 	}
3084 	*done = 0;
3085 	return (0);
3086 }
3087 
3088 /*
3089  * Perform job control discipline access checks.
3090  * Return 0 for success and the errno for failure.
3091  */
3092 
3093 #define	cantsend(p, t, sig) \
3094 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3095 
3096 int
3097 straccess(struct stdata *stp, enum jcaccess mode)
3098 {
3099 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3100 	kthread_t *t = curthread;
3101 	proc_t *p = ttoproc(t);
3102 	sess_t *sp;
3103 
3104 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3105 		return (0);
3106 
3107 	mutex_enter(&p->p_lock);
3108 	sp = p->p_sessp;
3109 
3110 	for (;;) {
3111 		/*
3112 		 * If this is not the calling process's controlling terminal
3113 		 * or if the calling process is already in the foreground
3114 		 * then allow access.
3115 		 */
3116 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3117 		    p->p_pgidp == stp->sd_pgidp) {
3118 			mutex_exit(&p->p_lock);
3119 			return (0);
3120 		}
3121 
3122 		/*
3123 		 * Check to see if controlling terminal has been deallocated.
3124 		 */
3125 		if (sp->s_vp == NULL) {
3126 			if (!cantsend(p, t, SIGHUP))
3127 				sigtoproc(p, t, SIGHUP);
3128 			mutex_exit(&p->p_lock);
3129 			return (EIO);
3130 		}
3131 
3132 		if (mode == JCGETP) {
3133 			mutex_exit(&p->p_lock);
3134 			return (0);
3135 		}
3136 
3137 		if (mode == JCREAD) {
3138 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3139 				mutex_exit(&p->p_lock);
3140 				return (EIO);
3141 			}
3142 			mutex_exit(&p->p_lock);
3143 			pgsignal(p->p_pgidp, SIGTTIN);
3144 			mutex_enter(&p->p_lock);
3145 		} else {  /* mode == JCWRITE or JCSETP */
3146 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3147 			    cantsend(p, t, SIGTTOU)) {
3148 				mutex_exit(&p->p_lock);
3149 				return (0);
3150 			}
3151 			if (p->p_detached) {
3152 				mutex_exit(&p->p_lock);
3153 				return (EIO);
3154 			}
3155 			mutex_exit(&p->p_lock);
3156 			pgsignal(p->p_pgidp, SIGTTOU);
3157 			mutex_enter(&p->p_lock);
3158 		}
3159 
3160 		/*
3161 		 * We call cv_wait_sig_swap() to cause the appropriate
3162 		 * action for the jobcontrol signal to take place.
3163 		 * If the signal is being caught, we will take the
3164 		 * EINTR error return.  Otherwise, the default action
3165 		 * of causing the process to stop will take place.
3166 		 * In this case, we rely on the periodic cv_broadcast() on
3167 		 * &lbolt_cv to wake us up to loop around and test again.
3168 		 * We can't get here if the signal is ignored or
3169 		 * if the current thread is blocking the signal.
3170 		 */
3171 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3172 			mutex_exit(&p->p_lock);
3173 			return (EINTR);
3174 		}
3175 	}
3176 }
3177 
3178 /*
3179  * Return size of message of block type (bp->b_datap->db_type)
3180  */
3181 size_t
3182 xmsgsize(mblk_t *bp)
3183 {
3184 	unsigned char type;
3185 	size_t count = 0;
3186 
3187 	type = bp->b_datap->db_type;
3188 
3189 	for (; bp; bp = bp->b_cont) {
3190 		if (type != bp->b_datap->db_type)
3191 			break;
3192 		ASSERT(bp->b_wptr >= bp->b_rptr);
3193 		count += bp->b_wptr - bp->b_rptr;
3194 	}
3195 	return (count);
3196 }
3197 
3198 /*
3199  * Allocate a stream head.
3200  */
3201 struct stdata *
3202 shalloc(queue_t *qp)
3203 {
3204 	stdata_t *stp;
3205 
3206 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3207 
3208 	stp->sd_wrq = _WR(qp);
3209 	stp->sd_strtab = NULL;
3210 	stp->sd_iocid = 0;
3211 	stp->sd_mate = NULL;
3212 	stp->sd_freezer = NULL;
3213 	stp->sd_refcnt = 0;
3214 	stp->sd_wakeq = 0;
3215 	stp->sd_anchor = 0;
3216 	stp->sd_struiowrq = NULL;
3217 	stp->sd_struiordq = NULL;
3218 	stp->sd_struiodnak = 0;
3219 	stp->sd_struionak = NULL;
3220 #ifdef C2_AUDIT
3221 	stp->sd_t_audit_data = NULL;
3222 #endif
3223 	stp->sd_rput_opt = 0;
3224 	stp->sd_wput_opt = 0;
3225 	stp->sd_read_opt = 0;
3226 	stp->sd_rprotofunc = strrput_proto;
3227 	stp->sd_rmiscfunc = strrput_misc;
3228 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3229 	stp->sd_ciputctrl = NULL;
3230 	stp->sd_nciputctrl = 0;
3231 	stp->sd_qhead = NULL;
3232 	stp->sd_qtail = NULL;
3233 	stp->sd_servid = NULL;
3234 	stp->sd_nqueues = 0;
3235 	stp->sd_svcflags = 0;
3236 	stp->sd_copyflag = 0;
3237 	return (stp);
3238 }
3239 
3240 /*
3241  * Free a stream head.
3242  */
3243 void
3244 shfree(stdata_t *stp)
3245 {
3246 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3247 
3248 	stp->sd_wrq = NULL;
3249 
3250 	mutex_enter(&stp->sd_qlock);
3251 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3252 		STRSTAT(strwaits);
3253 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3254 	}
3255 	mutex_exit(&stp->sd_qlock);
3256 
3257 	if (stp->sd_ciputctrl != NULL) {
3258 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3259 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3260 		    stp->sd_nciputctrl, 0);
3261 		ASSERT(ciputctrl_cache != NULL);
3262 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3263 		stp->sd_ciputctrl = NULL;
3264 		stp->sd_nciputctrl = 0;
3265 	}
3266 	ASSERT(stp->sd_qhead == NULL);
3267 	ASSERT(stp->sd_qtail == NULL);
3268 	ASSERT(stp->sd_nqueues == 0);
3269 	kmem_cache_free(stream_head_cache, stp);
3270 }
3271 
3272 /*
3273  * Allocate a pair of queues and a syncq for the pair
3274  */
3275 queue_t *
3276 allocq(void)
3277 {
3278 	queinfo_t *qip;
3279 	queue_t *qp, *wqp;
3280 	syncq_t	*sq;
3281 
3282 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3283 
3284 	qp = &qip->qu_rqueue;
3285 	wqp = &qip->qu_wqueue;
3286 	sq = &qip->qu_syncq;
3287 
3288 	qp->q_last	= NULL;
3289 	qp->q_next	= NULL;
3290 	qp->q_ptr	= NULL;
3291 	qp->q_flag	= QUSE | QREADR;
3292 	qp->q_bandp	= NULL;
3293 	qp->q_stream	= NULL;
3294 	qp->q_syncq	= sq;
3295 	qp->q_nband	= 0;
3296 	qp->q_nfsrv	= NULL;
3297 	qp->q_draining	= 0;
3298 	qp->q_syncqmsgs	= 0;
3299 	qp->q_spri	= 0;
3300 	qp->q_qtstamp	= 0;
3301 	qp->q_sqtstamp	= 0;
3302 	qp->q_fp	= NULL;
3303 
3304 	wqp->q_last	= NULL;
3305 	wqp->q_next	= NULL;
3306 	wqp->q_ptr	= NULL;
3307 	wqp->q_flag	= QUSE;
3308 	wqp->q_bandp	= NULL;
3309 	wqp->q_stream	= NULL;
3310 	wqp->q_syncq	= sq;
3311 	wqp->q_nband	= 0;
3312 	wqp->q_nfsrv	= NULL;
3313 	wqp->q_draining	= 0;
3314 	wqp->q_syncqmsgs = 0;
3315 	wqp->q_qtstamp	= 0;
3316 	wqp->q_sqtstamp	= 0;
3317 	wqp->q_spri	= 0;
3318 
3319 	sq->sq_count	= 0;
3320 	sq->sq_rmqcount	= 0;
3321 	sq->sq_flags	= 0;
3322 	sq->sq_type	= 0;
3323 	sq->sq_callbflags = 0;
3324 	sq->sq_cancelid	= 0;
3325 	sq->sq_ciputctrl = NULL;
3326 	sq->sq_nciputctrl = 0;
3327 	sq->sq_needexcl = 0;
3328 	sq->sq_svcflags = 0;
3329 
3330 	return (qp);
3331 }
3332 
3333 /*
3334  * Free a pair of queues and the "attached" syncq.
3335  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3336  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3337  */
3338 void
3339 freeq(queue_t *qp)
3340 {
3341 	qband_t *qbp, *nqbp;
3342 	syncq_t *sq, *outer;
3343 	queue_t *wqp = _WR(qp);
3344 
3345 	ASSERT(qp->q_flag & QREADR);
3346 
3347 	(void) flush_syncq(qp->q_syncq, qp);
3348 	(void) flush_syncq(wqp->q_syncq, wqp);
3349 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3350 
3351 	outer = qp->q_syncq->sq_outer;
3352 	if (outer != NULL) {
3353 		outer_remove(outer, qp->q_syncq);
3354 		if (wqp->q_syncq != qp->q_syncq)
3355 			outer_remove(outer, wqp->q_syncq);
3356 	}
3357 	/*
3358 	 * Free any syncqs that are outside what allocq returned.
3359 	 */
3360 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3361 		free_syncq(qp->q_syncq);
3362 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3363 		free_syncq(wqp->q_syncq);
3364 
3365 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3366 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3367 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3368 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3369 	sq = SQ(qp);
3370 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3371 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3372 	ASSERT(sq->sq_outer == NULL);
3373 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3374 	ASSERT(sq->sq_callbpend == NULL);
3375 	ASSERT(sq->sq_needexcl == 0);
3376 
3377 	if (sq->sq_ciputctrl != NULL) {
3378 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3379 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3380 		    sq->sq_nciputctrl, 0);
3381 		ASSERT(ciputctrl_cache != NULL);
3382 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3383 		sq->sq_ciputctrl = NULL;
3384 		sq->sq_nciputctrl = 0;
3385 	}
3386 
3387 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3388 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3389 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3390 
3391 	qp->q_flag &= ~QUSE;
3392 	wqp->q_flag &= ~QUSE;
3393 
3394 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3395 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3396 
3397 	qbp = qp->q_bandp;
3398 	while (qbp) {
3399 		nqbp = qbp->qb_next;
3400 		freeband(qbp);
3401 		qbp = nqbp;
3402 	}
3403 	qbp = wqp->q_bandp;
3404 	while (qbp) {
3405 		nqbp = qbp->qb_next;
3406 		freeband(qbp);
3407 		qbp = nqbp;
3408 	}
3409 	kmem_cache_free(queue_cache, qp);
3410 }
3411 
3412 /*
3413  * Allocate a qband structure.
3414  */
3415 qband_t *
3416 allocband(void)
3417 {
3418 	qband_t *qbp;
3419 
3420 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3421 	if (qbp == NULL)
3422 		return (NULL);
3423 
3424 	qbp->qb_next	= NULL;
3425 	qbp->qb_count	= 0;
3426 	qbp->qb_mblkcnt	= 0;
3427 	qbp->qb_first	= NULL;
3428 	qbp->qb_last	= NULL;
3429 	qbp->qb_flag	= 0;
3430 
3431 	return (qbp);
3432 }
3433 
3434 /*
3435  * Free a qband structure.
3436  */
3437 void
3438 freeband(qband_t *qbp)
3439 {
3440 	kmem_cache_free(qband_cache, qbp);
3441 }
3442 
3443 /*
3444  * Just like putnextctl(9F), except that allocb_wait() is used.
3445  *
3446  * Consolidation Private, and of course only callable from the stream head or
3447  * routines that may block.
3448  */
3449 int
3450 putnextctl_wait(queue_t *q, int type)
3451 {
3452 	mblk_t *bp;
3453 	int error;
3454 
3455 	if ((datamsg(type) && (type != M_DELAY)) ||
3456 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3457 		return (0);
3458 
3459 	bp->b_datap->db_type = (unsigned char)type;
3460 	putnext(q, bp);
3461 	return (1);
3462 }
3463 
3464 /*
3465  * run any possible bufcalls.
3466  */
3467 void
3468 runbufcalls(void)
3469 {
3470 	strbufcall_t *bcp;
3471 
3472 	mutex_enter(&bcall_monitor);
3473 	mutex_enter(&strbcall_lock);
3474 
3475 	if (strbcalls.bc_head) {
3476 		size_t count;
3477 		int nevent;
3478 
3479 		/*
3480 		 * count how many events are on the list
3481 		 * now so we can check to avoid looping
3482 		 * in low memory situations
3483 		 */
3484 		nevent = 0;
3485 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3486 			nevent++;
3487 
3488 		/*
3489 		 * get estimate of available memory from kmem_avail().
3490 		 * awake all bufcall functions waiting for
3491 		 * memory whose request could be satisfied
3492 		 * by 'count' memory and let 'em fight for it.
3493 		 */
3494 		count = kmem_avail();
3495 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3496 			STRSTAT(bufcalls);
3497 			--nevent;
3498 			if (bcp->bc_size <= count) {
3499 				bcp->bc_executor = curthread;
3500 				mutex_exit(&strbcall_lock);
3501 				(*bcp->bc_func)(bcp->bc_arg);
3502 				mutex_enter(&strbcall_lock);
3503 				bcp->bc_executor = NULL;
3504 				cv_broadcast(&bcall_cv);
3505 				strbcalls.bc_head = bcp->bc_next;
3506 				kmem_free(bcp, sizeof (strbufcall_t));
3507 			} else {
3508 				/*
3509 				 * too big, try again later - note
3510 				 * that nevent was decremented above
3511 				 * so we won't retry this one on this
3512 				 * iteration of the loop
3513 				 */
3514 				if (bcp->bc_next != NULL) {
3515 					strbcalls.bc_head = bcp->bc_next;
3516 					bcp->bc_next = NULL;
3517 					strbcalls.bc_tail->bc_next = bcp;
3518 					strbcalls.bc_tail = bcp;
3519 				}
3520 			}
3521 		}
3522 		if (strbcalls.bc_head == NULL)
3523 			strbcalls.bc_tail = NULL;
3524 	}
3525 
3526 	mutex_exit(&strbcall_lock);
3527 	mutex_exit(&bcall_monitor);
3528 }
3529 
3530 
3531 /*
3532  * actually run queue's service routine.
3533  */
3534 static void
3535 runservice(queue_t *q)
3536 {
3537 	qband_t *qbp;
3538 
3539 	ASSERT(q->q_qinfo->qi_srvp);
3540 again:
3541 	entersq(q->q_syncq, SQ_SVC);
3542 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3543 		"runservice starts:%p", q);
3544 
3545 	if (!(q->q_flag & QWCLOSE))
3546 		(*q->q_qinfo->qi_srvp)(q);
3547 
3548 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3549 		"runservice ends:(%p)", q);
3550 
3551 	leavesq(q->q_syncq, SQ_SVC);
3552 
3553 	mutex_enter(QLOCK(q));
3554 	if (q->q_flag & QENAB) {
3555 		q->q_flag &= ~QENAB;
3556 		mutex_exit(QLOCK(q));
3557 		goto again;
3558 	}
3559 	q->q_flag &= ~QINSERVICE;
3560 	q->q_flag &= ~QBACK;
3561 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3562 		qbp->qb_flag &= ~QB_BACK;
3563 	/*
3564 	 * Wakeup thread waiting for the service procedure
3565 	 * to be run (strclose and qdetach).
3566 	 */
3567 	cv_broadcast(&q->q_wait);
3568 
3569 	mutex_exit(QLOCK(q));
3570 }
3571 
3572 /*
3573  * Background processing of bufcalls.
3574  */
3575 void
3576 streams_bufcall_service(void)
3577 {
3578 	callb_cpr_t	cprinfo;
3579 
3580 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3581 	    "streams_bufcall_service");
3582 
3583 	mutex_enter(&strbcall_lock);
3584 
3585 	for (;;) {
3586 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3587 			mutex_exit(&strbcall_lock);
3588 			runbufcalls();
3589 			mutex_enter(&strbcall_lock);
3590 		}
3591 		if (strbcalls.bc_head != NULL) {
3592 			clock_t wt, tick;
3593 
3594 			STRSTAT(bcwaits);
3595 			/* Wait for memory to become available */
3596 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3597 			tick = SEC_TO_TICK(60);
3598 			time_to_wait(&wt, tick);
3599 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3600 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3601 		}
3602 
3603 		/* Wait for new work to arrive */
3604 		if (strbcalls.bc_head == NULL) {
3605 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3606 			cv_wait(&strbcall_cv, &strbcall_lock);
3607 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3608 		}
3609 	}
3610 }
3611 
3612 /*
3613  * Background processing of streams background tasks which failed
3614  * taskq_dispatch.
3615  */
3616 static void
3617 streams_qbkgrnd_service(void)
3618 {
3619 	callb_cpr_t cprinfo;
3620 	queue_t *q;
3621 
3622 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3623 	    "streams_bkgrnd_service");
3624 
3625 	mutex_enter(&service_queue);
3626 
3627 	for (;;) {
3628 		/*
3629 		 * Wait for work to arrive.
3630 		 */
3631 		while ((freebs_list == NULL) && (qhead == NULL)) {
3632 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3633 			cv_wait(&services_to_run, &service_queue);
3634 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3635 		}
3636 		/*
3637 		 * Handle all pending freebs requests to free memory.
3638 		 */
3639 		while (freebs_list != NULL) {
3640 			mblk_t *mp = freebs_list;
3641 			freebs_list = mp->b_next;
3642 			mutex_exit(&service_queue);
3643 			mblk_free(mp);
3644 			mutex_enter(&service_queue);
3645 		}
3646 		/*
3647 		 * Run pending queues.
3648 		 */
3649 		while (qhead != NULL) {
3650 			DQ(q, qhead, qtail, q_link);
3651 			ASSERT(q != NULL);
3652 			mutex_exit(&service_queue);
3653 			queue_service(q);
3654 			mutex_enter(&service_queue);
3655 		}
3656 		ASSERT(qhead == NULL && qtail == NULL);
3657 	}
3658 }
3659 
3660 /*
3661  * Background processing of streams background tasks which failed
3662  * taskq_dispatch.
3663  */
3664 static void
3665 streams_sqbkgrnd_service(void)
3666 {
3667 	callb_cpr_t cprinfo;
3668 	syncq_t *sq;
3669 
3670 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3671 	    "streams_sqbkgrnd_service");
3672 
3673 	mutex_enter(&service_queue);
3674 
3675 	for (;;) {
3676 		/*
3677 		 * Wait for work to arrive.
3678 		 */
3679 		while (sqhead == NULL) {
3680 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3681 			cv_wait(&syncqs_to_run, &service_queue);
3682 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3683 		}
3684 
3685 		/*
3686 		 * Run pending syncqs.
3687 		 */
3688 		while (sqhead != NULL) {
3689 			DQ(sq, sqhead, sqtail, sq_next);
3690 			ASSERT(sq != NULL);
3691 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3692 			mutex_exit(&service_queue);
3693 			syncq_service(sq);
3694 			mutex_enter(&service_queue);
3695 		}
3696 	}
3697 }
3698 
3699 /*
3700  * Disable the syncq and wait for background syncq processing to complete.
3701  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3702  * list.
3703  */
3704 void
3705 wait_sq_svc(syncq_t *sq)
3706 {
3707 	mutex_enter(SQLOCK(sq));
3708 	sq->sq_svcflags |= SQ_DISABLED;
3709 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3710 		syncq_t *sq_chase;
3711 		syncq_t *sq_curr;
3712 		int removed;
3713 
3714 		ASSERT(sq->sq_servcount == 1);
3715 		mutex_enter(&service_queue);
3716 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3717 		mutex_exit(&service_queue);
3718 		if (removed) {
3719 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3720 			sq->sq_servcount = 0;
3721 			STRSTAT(sqremoved);
3722 			goto done;
3723 		}
3724 	}
3725 	while (sq->sq_servcount != 0) {
3726 		sq->sq_flags |= SQ_WANTWAKEUP;
3727 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3728 	}
3729 done:
3730 	mutex_exit(SQLOCK(sq));
3731 }
3732 
3733 /*
3734  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3735  * Add the argument to the end of the sqhead list and set the flag
3736  * indicating this syncq has been enabled.  If it has already been
3737  * enabled, don't do anything.
3738  * This routine assumes that SQLOCK is held.
3739  * NOTE that the lock order is to have the SQLOCK first,
3740  * so if the service_syncq lock is held, we need to release it
3741  * before aquiring the SQLOCK (mostly relevant for the background
3742  * thread, and this seems to be common among the STREAMS global locks).
3743  * Note the the sq_svcflags are protected by the SQLOCK.
3744  */
3745 void
3746 sqenable(syncq_t *sq)
3747 {
3748 	/*
3749 	 * This is probably not important except for where I believe it
3750 	 * is being called.  At that point, it should be held (and it
3751 	 * is a pain to release it just for this routine, so don't do
3752 	 * it).
3753 	 */
3754 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3755 
3756 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3757 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3758 
3759 	/*
3760 	 * Do not put on list if background thread is scheduled or
3761 	 * syncq is disabled.
3762 	 */
3763 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3764 		return;
3765 
3766 	/*
3767 	 * Check whether we should enable sq at all.
3768 	 * Non PERMOD syncqs may be drained by at most one thread.
3769 	 * PERMOD syncqs may be drained by several threads but we limit the
3770 	 * total amount to the lesser of
3771 	 *	Number of queues on the squeue and
3772 	 *	Number of CPUs.
3773 	 */
3774 	if (sq->sq_servcount != 0) {
3775 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3776 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3777 			STRSTAT(sqtoomany);
3778 			return;
3779 		}
3780 	}
3781 
3782 	sq->sq_tstamp = lbolt;
3783 	STRSTAT(sqenables);
3784 
3785 	/* Attempt a taskq dispatch */
3786 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3787 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3788 	if (sq->sq_servid != NULL) {
3789 		sq->sq_servcount++;
3790 		return;
3791 	}
3792 
3793 	/*
3794 	 * This taskq dispatch failed, but a previous one may have succeeded.
3795 	 * Don't try to schedule on the background thread whilst there is
3796 	 * outstanding taskq processing.
3797 	 */
3798 	if (sq->sq_servcount != 0)
3799 		return;
3800 
3801 	/*
3802 	 * System is low on resources and can't perform a non-sleeping
3803 	 * dispatch. Schedule the syncq for a background thread and mark the
3804 	 * syncq to avoid any further taskq dispatch attempts.
3805 	 */
3806 	mutex_enter(&service_queue);
3807 	STRSTAT(taskqfails);
3808 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3809 	sq->sq_svcflags |= SQ_BGTHREAD;
3810 	sq->sq_servcount = 1;
3811 	cv_signal(&syncqs_to_run);
3812 	mutex_exit(&service_queue);
3813 }
3814 
3815 /*
3816  * Note: fifo_close() depends on the mblk_t on the queue being freed
3817  * asynchronously. The asynchronous freeing of messages breaks the
3818  * recursive call chain of fifo_close() while there are I_SENDFD type of
3819  * messages refering other file pointers on the queue. Then when
3820  * closing pipes it can avoid stack overflow in case of daisy-chained
3821  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3822  * share the same fifolock_t).
3823  */
3824 
3825 /* ARGSUSED */
3826 void
3827 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3828 {
3829 	ASSERT(dbp->db_mblk == mp);
3830 
3831 	/*
3832 	 * Check data sanity. The dblock should have non-empty free function.
3833 	 * It is better to panic here then later when the dblock is freed
3834 	 * asynchronously when the context is lost.
3835 	 */
3836 	if (dbp->db_frtnp->free_func == NULL) {
3837 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3838 		    (void *) dbp);
3839 	}
3840 
3841 	STRSTAT(freebs);
3842 	if (taskq_dispatch(streams_taskq, (task_func_t *)mblk_free, mp,
3843 	    TQ_NOSLEEP) == NULL) {
3844 		/*
3845 		 * System is low on resources and can't perform a non-sleeping
3846 		 * dispatch. Schedule for a background thread.
3847 		 */
3848 		mutex_enter(&service_queue);
3849 		STRSTAT(taskqfails);
3850 		mp->b_next = freebs_list;
3851 		freebs_list = mp;
3852 		cv_signal(&services_to_run);
3853 		mutex_exit(&service_queue);
3854 	}
3855 }
3856 
3857 /*
3858  * Set the QBACK or QB_BACK flag in the given queue for
3859  * the given priority band.
3860  */
3861 void
3862 setqback(queue_t *q, unsigned char pri)
3863 {
3864 	int i;
3865 	qband_t *qbp;
3866 	qband_t **qbpp;
3867 
3868 	ASSERT(MUTEX_HELD(QLOCK(q)));
3869 	if (pri != 0) {
3870 		if (pri > q->q_nband) {
3871 			qbpp = &q->q_bandp;
3872 			while (*qbpp)
3873 				qbpp = &(*qbpp)->qb_next;
3874 			while (pri > q->q_nband) {
3875 				if ((*qbpp = allocband()) == NULL) {
3876 					cmn_err(CE_WARN,
3877 					    "setqback: can't allocate qband\n");
3878 					return;
3879 				}
3880 				(*qbpp)->qb_hiwat = q->q_hiwat;
3881 				(*qbpp)->qb_lowat = q->q_lowat;
3882 				q->q_nband++;
3883 				qbpp = &(*qbpp)->qb_next;
3884 			}
3885 		}
3886 		qbp = q->q_bandp;
3887 		i = pri;
3888 		while (--i)
3889 			qbp = qbp->qb_next;
3890 		qbp->qb_flag |= QB_BACK;
3891 	} else {
3892 		q->q_flag |= QBACK;
3893 	}
3894 }
3895 
3896 int
3897 strcopyin(void *from, void *to, size_t len, int copyflag)
3898 {
3899 	if (copyflag & U_TO_K) {
3900 		ASSERT((copyflag & K_TO_K) == 0);
3901 		if (copyin(from, to, len))
3902 			return (EFAULT);
3903 	} else {
3904 		ASSERT(copyflag & K_TO_K);
3905 		bcopy(from, to, len);
3906 	}
3907 	return (0);
3908 }
3909 
3910 int
3911 strcopyout(void *from, void *to, size_t len, int copyflag)
3912 {
3913 	if (copyflag & U_TO_K) {
3914 		if (copyout(from, to, len))
3915 			return (EFAULT);
3916 	} else {
3917 		ASSERT(copyflag & K_TO_K);
3918 		bcopy(from, to, len);
3919 	}
3920 	return (0);
3921 }
3922 
3923 /*
3924  * strsignal_nolock() posts a signal to the process(es) at the stream head.
3925  * It assumes that the stream head lock is already held, whereas strsignal()
3926  * acquires the lock first.  This routine was created because a few callers
3927  * release the stream head lock before calling only to re-acquire it after
3928  * it returns.
3929  */
3930 void
3931 strsignal_nolock(stdata_t *stp, int sig, int32_t band)
3932 {
3933 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3934 	switch (sig) {
3935 	case SIGPOLL:
3936 		if (stp->sd_sigflags & S_MSG)
3937 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3938 		break;
3939 
3940 	default:
3941 		if (stp->sd_pgidp) {
3942 			pgsignal(stp->sd_pgidp, sig);
3943 		}
3944 		break;
3945 	}
3946 }
3947 
3948 void
3949 strsignal(stdata_t *stp, int sig, int32_t band)
3950 {
3951 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
3952 		"strsignal:%p, %X, %X", stp, sig, band);
3953 
3954 	mutex_enter(&stp->sd_lock);
3955 	switch (sig) {
3956 	case SIGPOLL:
3957 		if (stp->sd_sigflags & S_MSG)
3958 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3959 		break;
3960 
3961 	default:
3962 		if (stp->sd_pgidp) {
3963 			pgsignal(stp->sd_pgidp, sig);
3964 		}
3965 		break;
3966 	}
3967 	mutex_exit(&stp->sd_lock);
3968 }
3969 
3970 void
3971 strhup(stdata_t *stp)
3972 {
3973 	pollwakeup(&stp->sd_pollist, POLLHUP);
3974 	mutex_enter(&stp->sd_lock);
3975 	if (stp->sd_sigflags & S_HANGUP)
3976 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
3977 	mutex_exit(&stp->sd_lock);
3978 }
3979 
3980 void
3981 stralloctty(stdata_t *stp)
3982 {
3983 	proc_t *p = curproc;
3984 	sess_t *sp = p->p_sessp;
3985 
3986 	mutex_enter(&stp->sd_lock);
3987 	/*
3988 	 * No need to hold the session lock or do a TTY_HOLD() because
3989 	 * this is the only thread that can be the session leader and not
3990 	 * have a controlling tty.
3991 	 */
3992 	if ((stp->sd_flag &
3993 	    (STRHUP|STRDERR|STWRERR|STPLEX|STRISTTY)) == STRISTTY &&
3994 	    stp->sd_sidp == NULL &&		/* not allocated as ctty */
3995 	    sp->s_sidp == p->p_pidp &&		/* session leader */
3996 	    sp->s_flag != SESS_CLOSE &&		/* session is not closing */
3997 	    sp->s_vp == NULL) {			/* without ctty */
3998 		ASSERT(stp->sd_pgidp == NULL);
3999 		alloctty(p, makectty(stp->sd_vnode));
4000 
4001 		mutex_enter(&pidlock);
4002 		stp->sd_sidp = sp->s_sidp;
4003 		stp->sd_pgidp = sp->s_sidp;
4004 		PID_HOLD(stp->sd_pgidp);
4005 		PID_HOLD(stp->sd_sidp);
4006 		mutex_exit(&pidlock);
4007 	}
4008 	mutex_exit(&stp->sd_lock);
4009 }
4010 
4011 void
4012 strfreectty(stdata_t *stp)
4013 {
4014 	mutex_enter(&stp->sd_lock);
4015 	pgsignal(stp->sd_pgidp, SIGHUP);
4016 	mutex_enter(&pidlock);
4017 	PID_RELE(stp->sd_pgidp);
4018 	PID_RELE(stp->sd_sidp);
4019 	stp->sd_pgidp = NULL;
4020 	stp->sd_sidp = NULL;
4021 	mutex_exit(&pidlock);
4022 	mutex_exit(&stp->sd_lock);
4023 	if (!(stp->sd_flag & STRHUP))
4024 		strhup(stp);
4025 }
4026 /*
4027  * Backenable the first queue upstream from `q' with a service procedure.
4028  */
4029 void
4030 backenable(queue_t *q, uchar_t pri)
4031 {
4032 	queue_t	*nq;
4033 
4034 	/*
4035 	 * our presence might not prevent other modules in our own
4036 	 * stream from popping/pushing since the caller of getq might not
4037 	 * have a claim on the queue (some drivers do a getq on somebody
4038 	 * else's queue - they know that the queue itself is not going away
4039 	 * but the framework has to guarantee q_next in that stream.)
4040 	 */
4041 	claimstr(q);
4042 
4043 	/* find nearest back queue with service proc */
4044 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4045 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4046 	}
4047 
4048 	if (nq) {
4049 		kthread_t *freezer;
4050 		/*
4051 		 * backenable can be called either with no locks held
4052 		 * or with the stream frozen (the latter occurs when a module
4053 		 * calls rmvq with the stream frozen.) If the stream is frozen
4054 		 * by the caller the caller will hold all qlocks in the stream.
4055 		 */
4056 		freezer = STREAM(q)->sd_freezer;
4057 		if (freezer != curthread) {
4058 			mutex_enter(QLOCK(nq));
4059 		}
4060 #ifdef DEBUG
4061 		else {
4062 			ASSERT(frozenstr(q));
4063 			ASSERT(MUTEX_HELD(QLOCK(q)));
4064 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4065 		}
4066 #endif
4067 		setqback(nq, pri);
4068 		qenable_locked(nq);
4069 		if (freezer != curthread)
4070 			mutex_exit(QLOCK(nq));
4071 	}
4072 	releasestr(q);
4073 }
4074 
4075 /*
4076  * Return the appropriate errno when one of flags_to_check is set
4077  * in sd_flags. Uses the exported error routines if they are set.
4078  * Will return 0 if non error is set (or if the exported error routines
4079  * do not return an error).
4080  *
4081  * If there is both a read and write error to check we prefer the read error.
4082  * Also, give preference to recorded errno's over the error functions.
4083  * The flags that are handled are:
4084  *	STPLEX		return EINVAL
4085  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4086  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4087  *	STRHUP		return sd_werror
4088  *
4089  * If the caller indicates that the operation is a peek a nonpersistent error
4090  * is not cleared.
4091  */
4092 int
4093 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4094 {
4095 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4096 	int error = 0;
4097 
4098 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4099 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4100 	if (sd_flag & STPLEX)
4101 		error = EINVAL;
4102 	else if (sd_flag & STRDERR) {
4103 		error = stp->sd_rerror;
4104 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4105 			/*
4106 			 * Read errors are non-persistent i.e. discarded once
4107 			 * returned to a non-peeking caller,
4108 			 */
4109 			stp->sd_rerror = 0;
4110 			stp->sd_flag &= ~STRDERR;
4111 		}
4112 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4113 			int clearerr = 0;
4114 
4115 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4116 						&clearerr);
4117 			if (clearerr) {
4118 				stp->sd_flag &= ~STRDERR;
4119 				stp->sd_rderrfunc = NULL;
4120 			}
4121 		}
4122 	} else if (sd_flag & STWRERR) {
4123 		error = stp->sd_werror;
4124 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4125 			/*
4126 			 * Write errors are non-persistent i.e. discarded once
4127 			 * returned to a non-peeking caller,
4128 			 */
4129 			stp->sd_werror = 0;
4130 			stp->sd_flag &= ~STWRERR;
4131 		}
4132 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4133 			int clearerr = 0;
4134 
4135 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4136 						&clearerr);
4137 			if (clearerr) {
4138 				stp->sd_flag &= ~STWRERR;
4139 				stp->sd_wrerrfunc = NULL;
4140 			}
4141 		}
4142 	} else if (sd_flag & STRHUP) {
4143 		/* sd_werror set when STRHUP */
4144 		error = stp->sd_werror;
4145 	}
4146 	return (error);
4147 }
4148 
4149 
4150 /*
4151  * single-thread open/close/push/pop
4152  * for twisted streams also
4153  */
4154 int
4155 strstartplumb(stdata_t *stp, int flag, int cmd)
4156 {
4157 	int waited = 1;
4158 	int error = 0;
4159 
4160 	if (STRMATED(stp)) {
4161 		struct stdata *stmatep = stp->sd_mate;
4162 
4163 		STRLOCKMATES(stp);
4164 		while (waited) {
4165 			waited = 0;
4166 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4167 				if ((cmd == I_POP) &&
4168 				    (flag & (FNDELAY|FNONBLOCK))) {
4169 					STRUNLOCKMATES(stp);
4170 					return (EAGAIN);
4171 				}
4172 				waited = 1;
4173 				mutex_exit(&stp->sd_lock);
4174 				if (!cv_wait_sig(&stmatep->sd_monitor,
4175 				    &stmatep->sd_lock)) {
4176 					mutex_exit(&stmatep->sd_lock);
4177 					return (EINTR);
4178 				}
4179 				mutex_exit(&stmatep->sd_lock);
4180 				STRLOCKMATES(stp);
4181 			}
4182 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4183 				if ((cmd == I_POP) &&
4184 					(flag & (FNDELAY|FNONBLOCK))) {
4185 					STRUNLOCKMATES(stp);
4186 					return (EAGAIN);
4187 				}
4188 				waited = 1;
4189 				mutex_exit(&stmatep->sd_lock);
4190 				if (!cv_wait_sig(&stp->sd_monitor,
4191 				    &stp->sd_lock)) {
4192 					mutex_exit(&stp->sd_lock);
4193 					return (EINTR);
4194 				}
4195 				mutex_exit(&stp->sd_lock);
4196 				STRLOCKMATES(stp);
4197 			}
4198 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4199 				error = strgeterr(stp,
4200 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4201 				if (error != 0) {
4202 					STRUNLOCKMATES(stp);
4203 					return (error);
4204 				}
4205 			}
4206 		}
4207 		stp->sd_flag |= STRPLUMB;
4208 		STRUNLOCKMATES(stp);
4209 	} else {
4210 		mutex_enter(&stp->sd_lock);
4211 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4212 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4213 			    (flag & (FNDELAY|FNONBLOCK))) {
4214 				mutex_exit(&stp->sd_lock);
4215 				return (EAGAIN);
4216 			}
4217 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4218 				mutex_exit(&stp->sd_lock);
4219 				return (EINTR);
4220 			}
4221 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4222 				error = strgeterr(stp,
4223 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4224 				if (error != 0) {
4225 					mutex_exit(&stp->sd_lock);
4226 					return (error);
4227 				}
4228 			}
4229 		}
4230 		stp->sd_flag |= STRPLUMB;
4231 		mutex_exit(&stp->sd_lock);
4232 	}
4233 	return (0);
4234 }
4235 
4236 /*
4237  * Complete the plumbing operation associated with stream `stp'.
4238  */
4239 void
4240 strendplumb(stdata_t *stp)
4241 {
4242 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4243 	ASSERT(stp->sd_flag & STRPLUMB);
4244 	stp->sd_flag &= ~STRPLUMB;
4245 	cv_broadcast(&stp->sd_monitor);
4246 }
4247 
4248 /*
4249  * This describes how the STREAMS framework handles synchronization
4250  * during open/push and close/pop.
4251  * The key interfaces for open and close are qprocson and qprocsoff,
4252  * respectively. While the close case in general is harder both open
4253  * have close have significant similarities.
4254  *
4255  * During close the STREAMS framework has to both ensure that there
4256  * are no stale references to the queue pair (and syncq) that
4257  * are being closed and also provide the guarantees that are documented
4258  * in qprocsoff(9F).
4259  * If there are stale references to the queue that is closing it can
4260  * result in kernel memory corruption or kernel panics.
4261  *
4262  * Note that is it up to the module/driver to ensure that it itself
4263  * does not have any stale references to the closing queues once its close
4264  * routine returns. This includes:
4265  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4266  *    associated with the queues. For timeout and bufcall callbacks the
4267  *    module/driver also has to ensure (or wait for) any callbacks that
4268  *    are in progress.
4269  *  - If the module/driver is using esballoc it has to ensure that any
4270  *    esballoc free functions do not refer to a queue that has closed.
4271  *    (Note that in general the close routine can not wait for the esballoc'ed
4272  *    messages to be freed since that can cause a deadlock.)
4273  *  - Cancelling any interrupts that refer to the closing queues and
4274  *    also ensuring that there are no interrupts in progress that will
4275  *    refer to the closing queues once the close routine returns.
4276  *  - For multiplexors removing any driver global state that refers to
4277  *    the closing queue and also ensuring that there are no threads in
4278  *    the multiplexor that has picked up a queue pointer but not yet
4279  *    finished using it.
4280  *
4281  * In addition, a driver/module can only reference the q_next pointer
4282  * in its open, close, put, or service procedures or in a
4283  * qtimeout/qbufcall callback procedure executing "on" the correct
4284  * stream. Thus it can not reference the q_next pointer in an interrupt
4285  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4286  * it can not reference q_next of a different queue e.g. in a mux that
4287  * passes messages from one queues put/service procedure to another queue.
4288  * In all the cases when the driver/module can not access the q_next
4289  * field it must use the *next* versions e.g. canputnext instead of
4290  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4291  *
4292  *
4293  * Assuming that the driver/module conforms to the above constraints
4294  * the STREAMS framework has to avoid stale references to q_next for all
4295  * the framework internal cases which include (but are not limited to):
4296  *  - Threads in canput/canputnext/backenable and elsewhere that are
4297  *    walking q_next.
4298  *  - Messages on a syncq that have a reference to the queue through b_queue.
4299  *  - Messages on an outer perimeter (syncq) that have a reference to the
4300  *    queue through b_queue.
4301  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4302  *    Note that only canput and bcanput use q_nfsrv without any locking.
4303  *
4304  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4305  * after qprocsoff returns, the framework has to ensure that no threads can
4306  * enter the put or service routines for the closing read or write-side queue.
4307  * In addition to preventing "direct" entry into the put procedures
4308  * the framework also has to prevent messages being drained from
4309  * the syncq or the outer perimeter.
4310  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4311  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4312  * qprocsoff has returned.
4313  * Note that if a module/driver uses put(9F) on one of its own queues
4314  * it is up to the module/driver to ensure that the put() doesn't
4315  * get called when the queue is closing.
4316  *
4317  *
4318  * The framework aspects of the above "contract" is implemented by
4319  * qprocsoff, removeq, and strlock:
4320  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4321  *    entering the service procedures.
4322  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4323  *    canputnext, backenable etc from dereferencing the q_next that will
4324  *    soon change.
4325  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4326  *    or other q_next walker that uses claimstr/releasestr to finish.
4327  *  - optionally for every syncq in the stream strlock acquires all the
4328  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4329  *    that no thread executes in the put or service procedures and that no
4330  *    thread is draining into the module/driver. This ensures that no
4331  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4332  *    currently executing hence no such thread can end up with the old stale
4333  *    q_next value and no canput/backenable can have the old stale
4334  *    q_nfsrv/q_next.
4335  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4336  *    have either finished or observed the QWCLOSE flag and gone away.
4337  */
4338 
4339 
4340 /*
4341  * Get all the locks necessary to change q_next.
4342  *
4343  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4344  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4345  * the only threads inside the sqncq are threads currently calling removeq().
4346  * Since threads calling removeq() are in the process of removing their queues
4347  * from the stream, we do not need to worry about them accessing a stale q_next
4348  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4349  * for them can cause deadlock).
4350  *
4351  * This routine is subject to starvation since it does not set any flag to
4352  * prevent threads from entering a module in the stream(i.e. sq_count can
4353  * increase on some syncq while it is waiting on some other syncq.)
4354  *
4355  * Assumes that only one thread attempts to call strlock for a given
4356  * stream. If this is not the case the two threads would deadlock.
4357  * This assumption is guaranteed since strlock is only called by insertq
4358  * and removeq and streams plumbing changes are single-threaded for
4359  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4360  *
4361  * For pipes, it is not difficult to atomically designate a pair of streams
4362  * to be mated. Once mated atomically by the framework the twisted pair remain
4363  * configured that way until dismantled atomically by the framework.
4364  * When plumbing takes place on a twisted stream it is necessary to ensure that
4365  * this operation is done exclusively on the twisted stream since two such
4366  * operations, each initiated on different ends of the pipe will deadlock
4367  * waiting for each other to complete.
4368  *
4369  * On entry, no locks should be held.
4370  * The locks acquired and held by strlock depends on a few factors.
4371  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4372  *   and held on exit and all sq_count are at an acceptable level.
4373  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4374  *   sd_refcnt being zero.
4375  */
4376 
4377 static void
4378 strlock(struct stdata *stp, sqlist_t *sqlist)
4379 {
4380 	syncql_t *sql, *sql2;
4381 retry:
4382 	/*
4383 	 * Wait for any claimstr to go away.
4384 	 */
4385 	if (STRMATED(stp)) {
4386 		struct stdata *stp1, *stp2;
4387 
4388 		STRLOCKMATES(stp);
4389 		/*
4390 		 * Note that the selection of locking order is not
4391 		 * important, just that they are always aquired in
4392 		 * the same order.  To assure this, we choose this
4393 		 * order based on the value of the pointer, and since
4394 		 * the pointer will not change for the life of this
4395 		 * pair, we will always grab the locks in the same
4396 		 * order (and hence, prevent deadlocks).
4397 		 */
4398 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4399 			stp1 = stp;
4400 			stp2 = stp->sd_mate;
4401 		} else {
4402 			stp2 = stp;
4403 			stp1 = stp->sd_mate;
4404 		}
4405 		mutex_enter(&stp1->sd_reflock);
4406 		if (stp1->sd_refcnt > 0) {
4407 			STRUNLOCKMATES(stp);
4408 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4409 			mutex_exit(&stp1->sd_reflock);
4410 			goto retry;
4411 		}
4412 		mutex_enter(&stp2->sd_reflock);
4413 		if (stp2->sd_refcnt > 0) {
4414 			STRUNLOCKMATES(stp);
4415 			mutex_exit(&stp1->sd_reflock);
4416 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4417 			mutex_exit(&stp2->sd_reflock);
4418 			goto retry;
4419 		}
4420 		STREAM_PUTLOCKS_ENTER(stp1);
4421 		STREAM_PUTLOCKS_ENTER(stp2);
4422 	} else {
4423 		mutex_enter(&stp->sd_lock);
4424 		mutex_enter(&stp->sd_reflock);
4425 		while (stp->sd_refcnt > 0) {
4426 			mutex_exit(&stp->sd_lock);
4427 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4428 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4429 				mutex_exit(&stp->sd_reflock);
4430 				mutex_enter(&stp->sd_lock);
4431 				mutex_enter(&stp->sd_reflock);
4432 			}
4433 		}
4434 		STREAM_PUTLOCKS_ENTER(stp);
4435 	}
4436 
4437 	if (sqlist == NULL)
4438 		return;
4439 
4440 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4441 		syncq_t *sq = sql->sql_sq;
4442 		uint16_t count;
4443 
4444 		mutex_enter(SQLOCK(sq));
4445 		count = sq->sq_count;
4446 		ASSERT(sq->sq_rmqcount <= count);
4447 		SQ_PUTLOCKS_ENTER(sq);
4448 		SUM_SQ_PUTCOUNTS(sq, count);
4449 		if (count == sq->sq_rmqcount)
4450 			continue;
4451 
4452 		/* Failed - drop all locks that we have acquired so far */
4453 		if (STRMATED(stp)) {
4454 			STREAM_PUTLOCKS_EXIT(stp);
4455 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4456 			STRUNLOCKMATES(stp);
4457 			mutex_exit(&stp->sd_reflock);
4458 			mutex_exit(&stp->sd_mate->sd_reflock);
4459 		} else {
4460 			STREAM_PUTLOCKS_EXIT(stp);
4461 			mutex_exit(&stp->sd_lock);
4462 			mutex_exit(&stp->sd_reflock);
4463 		}
4464 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4465 		    sql2 = sql2->sql_next) {
4466 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4467 			mutex_exit(SQLOCK(sql2->sql_sq));
4468 		}
4469 
4470 		/*
4471 		 * The wait loop below may starve when there are many threads
4472 		 * claiming the syncq. This is especially a problem with permod
4473 		 * syncqs (IP). To lessen the impact of the problem we increment
4474 		 * sq_needexcl and clear fastbits so that putnexts will slow
4475 		 * down and call sqenable instead of draining right away.
4476 		 */
4477 		sq->sq_needexcl++;
4478 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4479 		while (count > sq->sq_rmqcount) {
4480 			sq->sq_flags |= SQ_WANTWAKEUP;
4481 			SQ_PUTLOCKS_EXIT(sq);
4482 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4483 			count = sq->sq_count;
4484 			SQ_PUTLOCKS_ENTER(sq);
4485 			SUM_SQ_PUTCOUNTS(sq, count);
4486 		}
4487 		sq->sq_needexcl--;
4488 		if (sq->sq_needexcl == 0)
4489 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4490 		SQ_PUTLOCKS_EXIT(sq);
4491 		ASSERT(count == sq->sq_rmqcount);
4492 		mutex_exit(SQLOCK(sq));
4493 		goto retry;
4494 	}
4495 }
4496 
4497 /*
4498  * Drop all the locks that strlock acquired.
4499  */
4500 static void
4501 strunlock(struct stdata *stp, sqlist_t *sqlist)
4502 {
4503 	syncql_t *sql;
4504 
4505 	if (STRMATED(stp)) {
4506 		STREAM_PUTLOCKS_EXIT(stp);
4507 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4508 		STRUNLOCKMATES(stp);
4509 		mutex_exit(&stp->sd_reflock);
4510 		mutex_exit(&stp->sd_mate->sd_reflock);
4511 	} else {
4512 		STREAM_PUTLOCKS_EXIT(stp);
4513 		mutex_exit(&stp->sd_lock);
4514 		mutex_exit(&stp->sd_reflock);
4515 	}
4516 
4517 	if (sqlist == NULL)
4518 		return;
4519 
4520 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4521 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4522 		mutex_exit(SQLOCK(sql->sql_sq));
4523 	}
4524 }
4525 
4526 /*
4527  * When the module has service procedure, we need check if the next
4528  * module which has service procedure is in flow control to trigger
4529  * the backenable.
4530  */
4531 static void
4532 backenable_insertedq(queue_t *q)
4533 {
4534 	qband_t	*qbp;
4535 
4536 	claimstr(q);
4537 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4538 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4539 			backenable(q, 0);
4540 
4541 		qbp = q->q_next->q_nfsrv->q_bandp;
4542 		for (; qbp != NULL; qbp = qbp->qb_next)
4543 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4544 				backenable(q, qbp->qb_first->b_band);
4545 	}
4546 	releasestr(q);
4547 }
4548 
4549 /*
4550  * Given two read queues, insert a new single one after another.
4551  *
4552  * This routine acquires all the necessary locks in order to change
4553  * q_next and related pointer using strlock().
4554  * It depends on the stream head ensuring that there are no concurrent
4555  * insertq or removeq on the same stream. The stream head ensures this
4556  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4557  *
4558  * Note that no syncq locks are held during the q_next change. This is
4559  * applied to all streams since, unlike removeq, there is no problem of stale
4560  * pointers when adding a module to the stream. Thus drivers/modules that do a
4561  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4562  * applied this optimization to all streams.
4563  */
4564 void
4565 insertq(struct stdata *stp, queue_t *new)
4566 {
4567 	queue_t	*after;
4568 	queue_t *wafter;
4569 	queue_t *wnew = _WR(new);
4570 	boolean_t have_fifo = B_FALSE;
4571 
4572 	if (new->q_flag & _QINSERTING) {
4573 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4574 		after = new->q_next;
4575 		wafter = _WR(new->q_next);
4576 	} else {
4577 		after = _RD(stp->sd_wrq);
4578 		wafter = stp->sd_wrq;
4579 	}
4580 
4581 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4582 		"insertq:%p, %p", after, new);
4583 	ASSERT(after->q_flag & QREADR);
4584 	ASSERT(new->q_flag & QREADR);
4585 
4586 	strlock(stp, NULL);
4587 
4588 	/* Do we have a FIFO? */
4589 	if (wafter->q_next == after) {
4590 		have_fifo = B_TRUE;
4591 		wnew->q_next = new;
4592 	} else {
4593 		wnew->q_next = wafter->q_next;
4594 	}
4595 	new->q_next = after;
4596 
4597 	set_nfsrv_ptr(new, wnew, after, wafter);
4598 	/*
4599 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4600 	 * so only reset this flag after calling it.
4601 	 */
4602 	new->q_flag &= ~_QINSERTING;
4603 
4604 	if (have_fifo) {
4605 		wafter->q_next = wnew;
4606 	} else {
4607 		if (wafter->q_next)
4608 			_OTHERQ(wafter->q_next)->q_next = new;
4609 		wafter->q_next = wnew;
4610 	}
4611 
4612 	set_qend(new);
4613 	/* The QEND flag might have to be updated for the upstream guy */
4614 	set_qend(after);
4615 
4616 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4617 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4618 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4619 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4620 	strsetuio(stp);
4621 
4622 	/*
4623 	 * If this was a module insertion, bump the push count.
4624 	 */
4625 	if (!(new->q_flag & QISDRV))
4626 		stp->sd_pushcnt++;
4627 
4628 	strunlock(stp, NULL);
4629 
4630 	/* check if the write Q needs backenable */
4631 	backenable_insertedq(wnew);
4632 
4633 	/* check if the read Q needs backenable */
4634 	backenable_insertedq(new);
4635 }
4636 
4637 /*
4638  * Given a read queue, unlink it from any neighbors.
4639  *
4640  * This routine acquires all the necessary locks in order to
4641  * change q_next and related pointers and also guard against
4642  * stale references (e.g. through q_next) to the queue that
4643  * is being removed. It also plays part of the role in ensuring
4644  * that the module's/driver's put procedure doesn't get called
4645  * after qprocsoff returns.
4646  *
4647  * Removeq depends on the stream head ensuring that there are
4648  * no concurrent insertq or removeq on the same stream. The
4649  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4650  * STRPLUMB.
4651  *
4652  * The set of locks needed to remove the queue is different in
4653  * different cases:
4654  *
4655  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4656  * waiting for the syncq reference count to drop to 0 indicating that no
4657  * non-close threads are present anywhere in the stream. This ensures that any
4658  * module/driver can reference q_next in its open, close, put, or service
4659  * procedures.
4660  *
4661  * The sq_rmqcount counter tracks the number of threads inside removeq().
4662  * strlock() ensures that there is either no threads executing inside perimeter
4663  * or there is only a thread calling qprocsoff().
4664  *
4665  * strlock() compares the value of sq_count with the number of threads inside
4666  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4667  * any threads waiting in strlock() when the sq_rmqcount increases.
4668  */
4669 
4670 void
4671 removeq(queue_t *qp)
4672 {
4673 	queue_t *wqp = _WR(qp);
4674 	struct stdata *stp = STREAM(qp);
4675 	sqlist_t *sqlist = NULL;
4676 	boolean_t isdriver;
4677 	int moved;
4678 	syncq_t *sq = qp->q_syncq;
4679 	syncq_t *wsq = wqp->q_syncq;
4680 
4681 	ASSERT(stp);
4682 
4683 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4684 		"removeq:%p %p", qp, wqp);
4685 	ASSERT(qp->q_flag&QREADR);
4686 
4687 	/*
4688 	 * For queues using Synchronous streams, we must wait for all threads in
4689 	 * rwnext() to drain out before proceeding.
4690 	 */
4691 	if (qp->q_flag & QSYNCSTR) {
4692 		/* First, we need wakeup any threads blocked in rwnext() */
4693 		mutex_enter(SQLOCK(sq));
4694 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4695 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4696 			cv_broadcast(&sq->sq_wait);
4697 		}
4698 		mutex_exit(SQLOCK(sq));
4699 
4700 		if (wsq != sq) {
4701 			mutex_enter(SQLOCK(wsq));
4702 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4703 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4704 				cv_broadcast(&wsq->sq_wait);
4705 			}
4706 			mutex_exit(SQLOCK(wsq));
4707 		}
4708 
4709 		mutex_enter(QLOCK(qp));
4710 		while (qp->q_rwcnt > 0) {
4711 			qp->q_flag |= QWANTRMQSYNC;
4712 			cv_wait(&qp->q_wait, QLOCK(qp));
4713 		}
4714 		mutex_exit(QLOCK(qp));
4715 
4716 		mutex_enter(QLOCK(wqp));
4717 		while (wqp->q_rwcnt > 0) {
4718 			wqp->q_flag |= QWANTRMQSYNC;
4719 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4720 		}
4721 		mutex_exit(QLOCK(wqp));
4722 	}
4723 
4724 	mutex_enter(SQLOCK(sq));
4725 	sq->sq_rmqcount++;
4726 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4727 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4728 		cv_broadcast(&sq->sq_wait);
4729 	}
4730 	mutex_exit(SQLOCK(sq));
4731 
4732 	isdriver = (qp->q_flag & QISDRV);
4733 
4734 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4735 	strlock(stp, sqlist);
4736 
4737 	reset_nfsrv_ptr(qp, wqp);
4738 
4739 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4740 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4741 	/* Do we have a FIFO? */
4742 	if (wqp->q_next == qp) {
4743 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4744 	} else {
4745 		if (wqp->q_next)
4746 			backq(qp)->q_next = qp->q_next;
4747 		if (qp->q_next)
4748 			backq(wqp)->q_next = wqp->q_next;
4749 	}
4750 
4751 	/* The QEND flag might have to be updated for the upstream guy */
4752 	if (qp->q_next)
4753 		set_qend(qp->q_next);
4754 
4755 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4756 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4757 
4758 	/*
4759 	 * Move any messages destined for the put procedures to the next
4760 	 * syncq in line. Otherwise free them.
4761 	 */
4762 	moved = 0;
4763 	/*
4764 	 * Quick check to see whether there are any messages or events.
4765 	 */
4766 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4767 		moved += propagate_syncq(qp);
4768 	if (wqp->q_syncqmsgs != 0 ||
4769 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4770 		moved += propagate_syncq(wqp);
4771 
4772 	strsetuio(stp);
4773 
4774 	/*
4775 	 * If this was a module removal, decrement the push count.
4776 	 */
4777 	if (!isdriver)
4778 		stp->sd_pushcnt--;
4779 
4780 	strunlock(stp, sqlist);
4781 	sqlist_free(sqlist);
4782 
4783 	/*
4784 	 * Make sure any messages that were propagated are drained.
4785 	 * Also clear any QFULL bit caused by messages that were propagated.
4786 	 */
4787 
4788 	if (qp->q_next != NULL) {
4789 		clr_qfull(qp);
4790 		/*
4791 		 * For the driver calling qprocsoff, propagate_syncq
4792 		 * frees all the messages instead of putting it in
4793 		 * the stream head
4794 		 */
4795 		if (!isdriver && (moved > 0))
4796 			emptysq(qp->q_next->q_syncq);
4797 	}
4798 	if (wqp->q_next != NULL) {
4799 		clr_qfull(wqp);
4800 		/*
4801 		 * We come here for any pop of a module except for the
4802 		 * case of driver being removed. We don't call emptysq
4803 		 * if we did not move any messages. This will avoid holding
4804 		 * PERMOD syncq locks in emptysq
4805 		 */
4806 		if (moved > 0)
4807 			emptysq(wqp->q_next->q_syncq);
4808 	}
4809 
4810 	mutex_enter(SQLOCK(sq));
4811 	sq->sq_rmqcount--;
4812 	mutex_exit(SQLOCK(sq));
4813 }
4814 
4815 /*
4816  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4817  * SQ_WRITER) on a syncq.
4818  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4819  * sync queue and waits until sq_count reaches maxcnt.
4820  *
4821  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4822  * does not care about putnext threads that are in the middle of calling put
4823  * entry points.
4824  *
4825  * This routine is used for both inner and outer syncqs.
4826  */
4827 static void
4828 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4829 {
4830 	uint16_t count = 0;
4831 
4832 	mutex_enter(SQLOCK(sq));
4833 	/*
4834 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4835 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4836 	 * queue which also refers to this "shared" syncq.
4837 	 * SQ_BLOCKED will be set if there is "off" queue which also
4838 	 * refers to this "shared" syncq.
4839 	 */
4840 	if (maxcnt != -1) {
4841 		count = sq->sq_count;
4842 		SQ_PUTLOCKS_ENTER(sq);
4843 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4844 		SUM_SQ_PUTCOUNTS(sq, count);
4845 	}
4846 	sq->sq_needexcl++;
4847 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
4848 
4849 	while ((sq->sq_flags & flag) ||
4850 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
4851 		sq->sq_flags |= SQ_WANTWAKEUP;
4852 		if (maxcnt != -1) {
4853 			SQ_PUTLOCKS_EXIT(sq);
4854 		}
4855 		cv_wait(&sq->sq_wait, SQLOCK(sq));
4856 		if (maxcnt != -1) {
4857 			count = sq->sq_count;
4858 			SQ_PUTLOCKS_ENTER(sq);
4859 			SUM_SQ_PUTCOUNTS(sq, count);
4860 		}
4861 	}
4862 	sq->sq_needexcl--;
4863 	sq->sq_flags |= flag;
4864 	ASSERT(maxcnt == -1 || count == maxcnt);
4865 	if (maxcnt != -1) {
4866 		if (sq->sq_needexcl == 0) {
4867 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4868 		}
4869 		SQ_PUTLOCKS_EXIT(sq);
4870 	} else if (sq->sq_needexcl == 0) {
4871 		SQ_PUTCOUNT_SETFAST(sq);
4872 	}
4873 
4874 	mutex_exit(SQLOCK(sq));
4875 }
4876 
4877 /*
4878  * Reset a flag that was set with blocksq.
4879  *
4880  * Can not use this routine to reset SQ_WRITER.
4881  *
4882  * If "isouter" is set then the syncq is assumed to be an outer perimeter
4883  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
4884  * to handle the queued qwriter operations.
4885  *
4886  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4887  * sq_putlocks are used.
4888  */
4889 static void
4890 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
4891 {
4892 	uint16_t flags;
4893 
4894 	mutex_enter(SQLOCK(sq));
4895 	ASSERT(resetflag != SQ_WRITER);
4896 	ASSERT(sq->sq_flags & resetflag);
4897 	flags = sq->sq_flags & ~resetflag;
4898 	sq->sq_flags = flags;
4899 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
4900 		if (flags & SQ_WANTWAKEUP) {
4901 			flags &= ~SQ_WANTWAKEUP;
4902 			cv_broadcast(&sq->sq_wait);
4903 		}
4904 		sq->sq_flags = flags;
4905 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4906 			if (!isouter) {
4907 				/* drain_syncq drops SQLOCK */
4908 				drain_syncq(sq);
4909 				return;
4910 			}
4911 		}
4912 	}
4913 	mutex_exit(SQLOCK(sq));
4914 }
4915 
4916 /*
4917  * Reset a flag that was set with blocksq.
4918  * Does not drain the syncq. Use emptysq() for that.
4919  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
4920  *
4921  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4922  * sq_putlocks are used.
4923  */
4924 static int
4925 dropsq(syncq_t *sq, uint16_t resetflag)
4926 {
4927 	uint16_t flags;
4928 
4929 	mutex_enter(SQLOCK(sq));
4930 	ASSERT(sq->sq_flags & resetflag);
4931 	flags = sq->sq_flags & ~resetflag;
4932 	if (flags & SQ_WANTWAKEUP) {
4933 		flags &= ~SQ_WANTWAKEUP;
4934 		cv_broadcast(&sq->sq_wait);
4935 	}
4936 	sq->sq_flags = flags;
4937 	mutex_exit(SQLOCK(sq));
4938 	if (flags & SQ_QUEUED)
4939 		return (1);
4940 	return (0);
4941 }
4942 
4943 /*
4944  * Empty all the messages on a syncq.
4945  *
4946  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4947  * sq_putlocks are used.
4948  */
4949 static void
4950 emptysq(syncq_t *sq)
4951 {
4952 	uint16_t flags;
4953 
4954 	mutex_enter(SQLOCK(sq));
4955 	flags = sq->sq_flags;
4956 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4957 		/*
4958 		 * To prevent potential recursive invocation of drain_syncq we
4959 		 * do not call drain_syncq if count is non-zero.
4960 		 */
4961 		if (sq->sq_count == 0) {
4962 			/* drain_syncq() drops SQLOCK */
4963 			drain_syncq(sq);
4964 			return;
4965 		} else
4966 			sqenable(sq);
4967 	}
4968 	mutex_exit(SQLOCK(sq));
4969 }
4970 
4971 /*
4972  * Ordered insert while removing duplicates.
4973  */
4974 static void
4975 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
4976 {
4977 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
4978 
4979 	prev_sqlpp = &sqlist->sqlist_head;
4980 	while ((sqlp = *prev_sqlpp) != NULL) {
4981 		if (sqlp->sql_sq >= sqp) {
4982 			if (sqlp->sql_sq == sqp)	/* duplicate */
4983 				return;
4984 			break;
4985 		}
4986 		prev_sqlpp = &sqlp->sql_next;
4987 	}
4988 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
4989 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
4990 	new_sqlp->sql_next = sqlp;
4991 	new_sqlp->sql_sq = sqp;
4992 	*prev_sqlpp = new_sqlp;
4993 }
4994 
4995 /*
4996  * Walk the write side queues until we hit either the driver
4997  * or a twist in the stream (_SAMESTR will return false in both
4998  * these cases) then turn around and walk the read side queues
4999  * back up to the stream head.
5000  */
5001 static void
5002 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5003 {
5004 	while (q != NULL) {
5005 		sqlist_insert(sqlist, q->q_syncq);
5006 
5007 		if (_SAMESTR(q))
5008 			q = q->q_next;
5009 		else if (!(q->q_flag & QREADR))
5010 			q = _RD(q);
5011 		else
5012 			q = NULL;
5013 	}
5014 }
5015 
5016 /*
5017  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5018  * associated with the "q" parameter. The resulting list is sorted in a
5019  * canonical order and is free of duplicates.
5020  * Assumes the passed queue is a _RD(q).
5021  */
5022 static sqlist_t *
5023 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5024 {
5025 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5026 
5027 	/*
5028 	 * start with the current queue/qpair
5029 	 */
5030 	ASSERT(q->q_flag & QREADR);
5031 
5032 	sqlist_insert(sqlist, q->q_syncq);
5033 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5034 
5035 	sqlist_insertall(sqlist, stp->sd_wrq);
5036 	if (do_twist)
5037 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5038 
5039 	return (sqlist);
5040 }
5041 
5042 static sqlist_t *
5043 sqlist_alloc(struct stdata *stp, int kmflag)
5044 {
5045 	size_t sqlist_size;
5046 	sqlist_t *sqlist;
5047 
5048 	/*
5049 	 * Allocate 2 syncql_t's for each pushed module. Note that
5050 	 * the sqlist_t structure already has 4 syncql_t's built in:
5051 	 * 2 for the stream head, and 2 for the driver/other stream head.
5052 	 */
5053 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5054 		sizeof (sqlist_t);
5055 	if (STRMATED(stp))
5056 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5057 	sqlist = kmem_alloc(sqlist_size, kmflag);
5058 
5059 	sqlist->sqlist_head = NULL;
5060 	sqlist->sqlist_size = sqlist_size;
5061 	sqlist->sqlist_index = 0;
5062 
5063 	return (sqlist);
5064 }
5065 
5066 /*
5067  * Free the list created by sqlist_alloc()
5068  */
5069 static void
5070 sqlist_free(sqlist_t *sqlist)
5071 {
5072 	kmem_free(sqlist, sqlist->sqlist_size);
5073 }
5074 
5075 /*
5076  * Prevent any new entries into any syncq in this stream.
5077  * Used by freezestr.
5078  */
5079 void
5080 strblock(queue_t *q)
5081 {
5082 	struct stdata	*stp;
5083 	syncql_t	*sql;
5084 	sqlist_t	*sqlist;
5085 
5086 	q = _RD(q);
5087 
5088 	stp = STREAM(q);
5089 	ASSERT(stp != NULL);
5090 
5091 	/*
5092 	 * Get a sorted list with all the duplicates removed containing
5093 	 * all the syncqs referenced by this stream.
5094 	 */
5095 	sqlist = sqlist_build(q, stp, B_FALSE);
5096 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5097 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5098 	sqlist_free(sqlist);
5099 }
5100 
5101 /*
5102  * Release the block on new entries into this stream
5103  */
5104 void
5105 strunblock(queue_t *q)
5106 {
5107 	struct stdata	*stp;
5108 	syncql_t	*sql;
5109 	sqlist_t	*sqlist;
5110 	int		drain_needed;
5111 
5112 	q = _RD(q);
5113 
5114 	/*
5115 	 * Get a sorted list with all the duplicates removed containing
5116 	 * all the syncqs referenced by this stream.
5117 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5118 	 * starting to drain them; otherwise the draining might
5119 	 * cause a freezestr in some module on the stream (which
5120 	 * would deadlock.)
5121 	 */
5122 	stp = STREAM(q);
5123 	ASSERT(stp != NULL);
5124 	sqlist = sqlist_build(q, stp, B_FALSE);
5125 	drain_needed = 0;
5126 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5127 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5128 	if (drain_needed) {
5129 		for (sql = sqlist->sqlist_head; sql != NULL;
5130 		    sql = sql->sql_next)
5131 			emptysq(sql->sql_sq);
5132 	}
5133 	sqlist_free(sqlist);
5134 }
5135 
5136 #ifdef DEBUG
5137 static int
5138 qprocsareon(queue_t *rq)
5139 {
5140 	if (rq->q_next == NULL)
5141 		return (0);
5142 	return (_WR(rq->q_next)->q_next == _WR(rq));
5143 }
5144 
5145 int
5146 qclaimed(queue_t *q)
5147 {
5148 	uint_t count;
5149 
5150 	count = q->q_syncq->sq_count;
5151 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5152 	return (count != 0);
5153 }
5154 
5155 /*
5156  * Check if anyone has frozen this stream with freezestr
5157  */
5158 int
5159 frozenstr(queue_t *q)
5160 {
5161 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5162 }
5163 #endif /* DEBUG */
5164 
5165 /*
5166  * Enter a queue.
5167  * Obsoleted interface. Should not be used.
5168  */
5169 void
5170 enterq(queue_t *q)
5171 {
5172 	entersq(q->q_syncq, SQ_CALLBACK);
5173 }
5174 
5175 void
5176 leaveq(queue_t *q)
5177 {
5178 	leavesq(q->q_syncq, SQ_CALLBACK);
5179 }
5180 
5181 /*
5182  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5183  * to check.
5184  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5185  * calls and the running of open, close and service procedures.
5186  *
5187  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5188  * if other threads have entered or are entering put entry point.
5189  *
5190  * if c_inner bit is set it might have been posible to use
5191  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5192  * open/close path for IP) but since the count may need to be decremented in
5193  * qwait() we wouldn't know which counter to decrement. Currently counter is
5194  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5195  * in the future we might use curthread id bits to select the counter and this
5196  * would stay constant across routine calls.
5197  */
5198 void
5199 entersq(syncq_t *sq, int entrypoint)
5200 {
5201 	uint16_t	count = 0;
5202 	uint16_t	flags;
5203 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5204 	uint16_t	type;
5205 	uint_t		c_inner = entrypoint & SQ_CI;
5206 	uint_t		c_outer = entrypoint & SQ_CO;
5207 
5208 	/*
5209 	 * Increment ref count to keep closes out of this queue.
5210 	 */
5211 	ASSERT(sq);
5212 	ASSERT(c_inner && c_outer);
5213 	mutex_enter(SQLOCK(sq));
5214 	flags = sq->sq_flags;
5215 	type = sq->sq_type;
5216 	if (!(type & c_inner)) {
5217 		/* Make sure all putcounts now use slowlock. */
5218 		count = sq->sq_count;
5219 		SQ_PUTLOCKS_ENTER(sq);
5220 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5221 		SUM_SQ_PUTCOUNTS(sq, count);
5222 		sq->sq_needexcl++;
5223 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5224 		waitflags |= SQ_MESSAGES;
5225 	}
5226 	/*
5227 	 * Wait until we can enter the inner perimeter.
5228 	 * If we want exclusive access we wait until sq_count is 0.
5229 	 * We have to do this before entering the outer perimeter in order
5230 	 * to preserve put/close message ordering.
5231 	 */
5232 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5233 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5234 		if (!(type & c_inner)) {
5235 			SQ_PUTLOCKS_EXIT(sq);
5236 		}
5237 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5238 		if (!(type & c_inner)) {
5239 			count = sq->sq_count;
5240 			SQ_PUTLOCKS_ENTER(sq);
5241 			SUM_SQ_PUTCOUNTS(sq, count);
5242 		}
5243 		flags = sq->sq_flags;
5244 	}
5245 
5246 	if (!(type & c_inner)) {
5247 		ASSERT(sq->sq_needexcl > 0);
5248 		sq->sq_needexcl--;
5249 		if (sq->sq_needexcl == 0) {
5250 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5251 		}
5252 	}
5253 
5254 	/* Check if we need to enter the outer perimeter */
5255 	if (!(type & c_outer)) {
5256 		/*
5257 		 * We have to enter the outer perimeter exclusively before
5258 		 * we can increment sq_count to avoid deadlock. This implies
5259 		 * that we have to re-check sq_flags and sq_count.
5260 		 *
5261 		 * is it possible to have c_inner set when c_outer is not set?
5262 		 */
5263 		if (!(type & c_inner)) {
5264 			SQ_PUTLOCKS_EXIT(sq);
5265 		}
5266 		mutex_exit(SQLOCK(sq));
5267 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5268 		mutex_enter(SQLOCK(sq));
5269 		flags = sq->sq_flags;
5270 		/*
5271 		 * there should be no need to recheck sq_putcounts
5272 		 * because outer_enter() has already waited for them to clear
5273 		 * after setting SQ_WRITER.
5274 		 */
5275 		count = sq->sq_count;
5276 #ifdef DEBUG
5277 		/*
5278 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5279 		 * of doing an ASSERT internally. Others should do
5280 		 * something like
5281 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5282 		 * without the need to #ifdef DEBUG it.
5283 		 */
5284 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5285 #endif
5286 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5287 		    (!(type & c_inner) && count != 0)) {
5288 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5289 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5290 			count = sq->sq_count;
5291 			flags = sq->sq_flags;
5292 		}
5293 	}
5294 
5295 	sq->sq_count++;
5296 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5297 	if (!(type & c_inner)) {
5298 		/* Exclusive entry */
5299 		ASSERT(sq->sq_count == 1);
5300 		sq->sq_flags |= SQ_EXCL;
5301 		if (type & c_outer) {
5302 			SQ_PUTLOCKS_EXIT(sq);
5303 		}
5304 	}
5305 	mutex_exit(SQLOCK(sq));
5306 }
5307 
5308 /*
5309  * leave a syncq. announce to framework that closes may proceed.
5310  * c_inner and c_outer specifies which concurrency bits
5311  * to check.
5312  *
5313  * must never be called from driver or module put entry point.
5314  *
5315  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5316  * sq_putlocks are used.
5317  */
5318 void
5319 leavesq(syncq_t *sq, int entrypoint)
5320 {
5321 	uint16_t	flags;
5322 	uint16_t	type;
5323 	uint_t		c_outer = entrypoint & SQ_CO;
5324 #ifdef DEBUG
5325 	uint_t		c_inner = entrypoint & SQ_CI;
5326 #endif
5327 
5328 	/*
5329 	 * decrement ref count, drain the syncq if possible, and wake up
5330 	 * any waiting close.
5331 	 */
5332 	ASSERT(sq);
5333 	ASSERT(c_inner && c_outer);
5334 	mutex_enter(SQLOCK(sq));
5335 	flags = sq->sq_flags;
5336 	type = sq->sq_type;
5337 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5338 
5339 		if (flags & SQ_WANTWAKEUP) {
5340 			flags &= ~SQ_WANTWAKEUP;
5341 			cv_broadcast(&sq->sq_wait);
5342 		}
5343 		if (flags & SQ_WANTEXWAKEUP) {
5344 			flags &= ~SQ_WANTEXWAKEUP;
5345 			cv_broadcast(&sq->sq_exitwait);
5346 		}
5347 
5348 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5349 			/*
5350 			 * The syncq needs to be drained. "Exit" the syncq
5351 			 * before calling drain_syncq.
5352 			 */
5353 			ASSERT(sq->sq_count != 0);
5354 			sq->sq_count--;
5355 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5356 			sq->sq_flags = flags & ~SQ_EXCL;
5357 			drain_syncq(sq);
5358 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5359 			/* Check if we need to exit the outer perimeter */
5360 			/* XXX will this ever be true? */
5361 			if (!(type & c_outer))
5362 				outer_exit(sq->sq_outer);
5363 			return;
5364 		}
5365 	}
5366 	ASSERT(sq->sq_count != 0);
5367 	sq->sq_count--;
5368 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5369 	sq->sq_flags = flags & ~SQ_EXCL;
5370 	mutex_exit(SQLOCK(sq));
5371 
5372 	/* Check if we need to exit the outer perimeter */
5373 	if (!(sq->sq_type & c_outer))
5374 		outer_exit(sq->sq_outer);
5375 }
5376 
5377 /*
5378  * Prevent q_next from changing in this stream by incrementing sq_count.
5379  *
5380  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5381  * sq_putlocks are used.
5382  */
5383 void
5384 claimq(queue_t *qp)
5385 {
5386 	syncq_t	*sq = qp->q_syncq;
5387 
5388 	mutex_enter(SQLOCK(sq));
5389 	sq->sq_count++;
5390 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5391 	mutex_exit(SQLOCK(sq));
5392 }
5393 
5394 /*
5395  * Undo claimq.
5396  *
5397  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5398  * sq_putlocks are used.
5399  */
5400 void
5401 releaseq(queue_t *qp)
5402 {
5403 	syncq_t	*sq = qp->q_syncq;
5404 	uint16_t flags;
5405 
5406 	mutex_enter(SQLOCK(sq));
5407 	ASSERT(sq->sq_count > 0);
5408 	sq->sq_count--;
5409 
5410 	flags = sq->sq_flags;
5411 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5412 		if (flags & SQ_WANTWAKEUP) {
5413 			flags &= ~SQ_WANTWAKEUP;
5414 			cv_broadcast(&sq->sq_wait);
5415 		}
5416 		sq->sq_flags = flags;
5417 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5418 			/*
5419 			 * To prevent potential recursive invocation of
5420 			 * drain_syncq we do not call drain_syncq if count is
5421 			 * non-zero.
5422 			 */
5423 			if (sq->sq_count == 0) {
5424 				drain_syncq(sq);
5425 				return;
5426 			} else
5427 				sqenable(sq);
5428 		}
5429 	}
5430 	mutex_exit(SQLOCK(sq));
5431 }
5432 
5433 /*
5434  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5435  */
5436 void
5437 claimstr(queue_t *qp)
5438 {
5439 	struct stdata *stp = STREAM(qp);
5440 
5441 	mutex_enter(&stp->sd_reflock);
5442 	stp->sd_refcnt++;
5443 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5444 	mutex_exit(&stp->sd_reflock);
5445 }
5446 
5447 /*
5448  * Undo claimstr.
5449  */
5450 void
5451 releasestr(queue_t *qp)
5452 {
5453 	struct stdata *stp = STREAM(qp);
5454 
5455 	mutex_enter(&stp->sd_reflock);
5456 	ASSERT(stp->sd_refcnt != 0);
5457 	if (--stp->sd_refcnt == 0)
5458 		cv_broadcast(&stp->sd_refmonitor);
5459 	mutex_exit(&stp->sd_reflock);
5460 }
5461 
5462 static syncq_t *
5463 new_syncq(void)
5464 {
5465 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5466 }
5467 
5468 static void
5469 free_syncq(syncq_t *sq)
5470 {
5471 	ASSERT(sq->sq_head == NULL);
5472 	ASSERT(sq->sq_outer == NULL);
5473 	ASSERT(sq->sq_callbpend == NULL);
5474 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5475 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5476 
5477 	if (sq->sq_ciputctrl != NULL) {
5478 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5479 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5480 		    sq->sq_nciputctrl, 0);
5481 		ASSERT(ciputctrl_cache != NULL);
5482 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5483 	}
5484 
5485 	sq->sq_tail = NULL;
5486 	sq->sq_evhead = NULL;
5487 	sq->sq_evtail = NULL;
5488 	sq->sq_ciputctrl = NULL;
5489 	sq->sq_nciputctrl = 0;
5490 	sq->sq_count = 0;
5491 	sq->sq_rmqcount = 0;
5492 	sq->sq_callbflags = 0;
5493 	sq->sq_cancelid = 0;
5494 	sq->sq_next = NULL;
5495 	sq->sq_needexcl = 0;
5496 	sq->sq_svcflags = 0;
5497 	sq->sq_nqueues = 0;
5498 	sq->sq_pri = 0;
5499 	sq->sq_onext = NULL;
5500 	sq->sq_oprev = NULL;
5501 	sq->sq_flags = 0;
5502 	sq->sq_type = 0;
5503 	sq->sq_servcount = 0;
5504 
5505 	kmem_cache_free(syncq_cache, sq);
5506 }
5507 
5508 /* Outer perimeter code */
5509 
5510 /*
5511  * The outer syncq uses the fields and flags in the syncq slightly
5512  * differently from the inner syncqs.
5513  *	sq_count	Incremented when there are pending or running
5514  *			writers at the outer perimeter to prevent the set of
5515  *			inner syncqs that belong to the outer perimeter from
5516  *			changing.
5517  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5518  *
5519  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5520  *			inner syncqs are added to or removed from the
5521  *			outer perimeter.
5522  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5523  *
5524  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5525  *			setting the SQ_WRITER flag.
5526  */
5527 
5528 /*
5529  * Get write access at the outer perimeter.
5530  * Note that read access is done by entersq, putnext, and put by simply
5531  * incrementing sq_count in the inner syncq.
5532  *
5533  * Waits until "flags" is no longer set in the outer to prevent multiple
5534  * threads from having write access at the same time. SQ_WRITER has to be part
5535  * of "flags".
5536  *
5537  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5538  * until the outer_exit is finished.
5539  *
5540  * outer_enter is vulnerable to starvation since it does not prevent new
5541  * threads from entering the inner syncqs while it is waiting for sq_count to
5542  * go to zero.
5543  */
5544 void
5545 outer_enter(syncq_t *outer, uint16_t flags)
5546 {
5547 	syncq_t	*sq;
5548 	int	wait_needed;
5549 	uint16_t	count;
5550 
5551 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5552 	    outer->sq_oprev != NULL);
5553 	ASSERT(flags & SQ_WRITER);
5554 
5555 retry:
5556 	mutex_enter(SQLOCK(outer));
5557 	while (outer->sq_flags & flags) {
5558 		outer->sq_flags |= SQ_WANTWAKEUP;
5559 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5560 	}
5561 
5562 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5563 	outer->sq_flags |= SQ_WRITER;
5564 	outer->sq_count++;
5565 	ASSERT(outer->sq_count != 0);	/* wraparound */
5566 	wait_needed = 0;
5567 	/*
5568 	 * Set SQ_WRITER on all the inner syncqs while holding
5569 	 * the SQLOCK on the outer syncq. This ensures that the changing
5570 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5571 	 */
5572 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5573 		mutex_enter(SQLOCK(sq));
5574 		count = sq->sq_count;
5575 		SQ_PUTLOCKS_ENTER(sq);
5576 		sq->sq_flags |= SQ_WRITER;
5577 		SUM_SQ_PUTCOUNTS(sq, count);
5578 		if (count != 0)
5579 			wait_needed = 1;
5580 		SQ_PUTLOCKS_EXIT(sq);
5581 		mutex_exit(SQLOCK(sq));
5582 	}
5583 	mutex_exit(SQLOCK(outer));
5584 
5585 	/*
5586 	 * Get everybody out of the syncqs sequentially.
5587 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5588 	 * we have already cleared the fastbit, and set QWRITER.  By
5589 	 * definition, the count can not increase since putnext will
5590 	 * take the slowlock path (and the purpose of aquiring the
5591 	 * putlocks was to make sure it didn't increase while we were
5592 	 * waiting).
5593 	 *
5594 	 * Note that we still aquire the PUTLOCKS to be safe.
5595 	 */
5596 	if (wait_needed) {
5597 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5598 			mutex_enter(SQLOCK(sq));
5599 			count = sq->sq_count;
5600 			SQ_PUTLOCKS_ENTER(sq);
5601 			SUM_SQ_PUTCOUNTS(sq, count);
5602 			while (count != 0) {
5603 				sq->sq_flags |= SQ_WANTWAKEUP;
5604 				SQ_PUTLOCKS_EXIT(sq);
5605 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5606 				count = sq->sq_count;
5607 				SQ_PUTLOCKS_ENTER(sq);
5608 				SUM_SQ_PUTCOUNTS(sq, count);
5609 			}
5610 			SQ_PUTLOCKS_EXIT(sq);
5611 			mutex_exit(SQLOCK(sq));
5612 		}
5613 		/*
5614 		 * Verify that none of the flags got set while we
5615 		 * were waiting for the sq_counts to drop.
5616 		 * If this happens we exit and retry entering the
5617 		 * outer perimeter.
5618 		 */
5619 		mutex_enter(SQLOCK(outer));
5620 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5621 			mutex_exit(SQLOCK(outer));
5622 			outer_exit(outer);
5623 			goto retry;
5624 		}
5625 		mutex_exit(SQLOCK(outer));
5626 	}
5627 }
5628 
5629 /*
5630  * Drop the write access at the outer perimeter.
5631  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5632  * decrementing sq_count.
5633  */
5634 void
5635 outer_exit(syncq_t *outer)
5636 {
5637 	syncq_t	*sq;
5638 	int	 drain_needed;
5639 	uint16_t flags;
5640 
5641 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5642 	    outer->sq_oprev != NULL);
5643 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5644 
5645 	/*
5646 	 * Atomically (from the perspective of threads calling become_writer)
5647 	 * drop the write access at the outer perimeter by holding
5648 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5649 	 * SQ_WRITER.
5650 	 * This defines a locking order between the outer perimeter
5651 	 * SQLOCK and the inner perimeter SQLOCKs.
5652 	 */
5653 	mutex_enter(SQLOCK(outer));
5654 	flags = outer->sq_flags;
5655 	ASSERT(outer->sq_flags & SQ_WRITER);
5656 	if (flags & SQ_QUEUED) {
5657 		write_now(outer);
5658 		flags = outer->sq_flags;
5659 	}
5660 
5661 	/*
5662 	 * sq_onext is stable since sq_count has not yet been decreased.
5663 	 * Reset the SQ_WRITER flags in all syncqs.
5664 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5665 	 * inner syncqs.
5666 	 */
5667 	drain_needed = 0;
5668 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5669 		drain_needed += dropsq(sq, SQ_WRITER);
5670 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5671 	flags &= ~SQ_WRITER;
5672 	if (drain_needed) {
5673 		outer->sq_flags = flags;
5674 		mutex_exit(SQLOCK(outer));
5675 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5676 			emptysq(sq);
5677 		mutex_enter(SQLOCK(outer));
5678 		flags = outer->sq_flags;
5679 	}
5680 	if (flags & SQ_WANTWAKEUP) {
5681 		flags &= ~SQ_WANTWAKEUP;
5682 		cv_broadcast(&outer->sq_wait);
5683 	}
5684 	outer->sq_flags = flags;
5685 	ASSERT(outer->sq_count > 0);
5686 	outer->sq_count--;
5687 	mutex_exit(SQLOCK(outer));
5688 }
5689 
5690 /*
5691  * Add another syncq to an outer perimeter.
5692  * Block out all other access to the outer perimeter while it is being
5693  * changed using blocksq.
5694  * Assumes that the caller has *not* done an outer_enter.
5695  *
5696  * Vulnerable to starvation in blocksq.
5697  */
5698 static void
5699 outer_insert(syncq_t *outer, syncq_t *sq)
5700 {
5701 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5702 	    outer->sq_oprev != NULL);
5703 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5704 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5705 
5706 	/* Get exclusive access to the outer perimeter list */
5707 	blocksq(outer, SQ_BLOCKED, 0);
5708 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5709 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5710 
5711 	mutex_enter(SQLOCK(sq));
5712 	sq->sq_outer = outer;
5713 	outer->sq_onext->sq_oprev = sq;
5714 	sq->sq_onext = outer->sq_onext;
5715 	outer->sq_onext = sq;
5716 	sq->sq_oprev = outer;
5717 	mutex_exit(SQLOCK(sq));
5718 	unblocksq(outer, SQ_BLOCKED, 1);
5719 }
5720 
5721 /*
5722  * Remove a syncq from an outer perimeter.
5723  * Block out all other access to the outer perimeter while it is being
5724  * changed using blocksq.
5725  * Assumes that the caller has *not* done an outer_enter.
5726  *
5727  * Vulnerable to starvation in blocksq.
5728  */
5729 static void
5730 outer_remove(syncq_t *outer, syncq_t *sq)
5731 {
5732 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5733 	    outer->sq_oprev != NULL);
5734 	ASSERT(sq->sq_outer == outer);
5735 
5736 	/* Get exclusive access to the outer perimeter list */
5737 	blocksq(outer, SQ_BLOCKED, 0);
5738 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5739 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5740 
5741 	mutex_enter(SQLOCK(sq));
5742 	sq->sq_outer = NULL;
5743 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5744 	sq->sq_oprev->sq_onext = sq->sq_onext;
5745 	sq->sq_oprev = sq->sq_onext = NULL;
5746 	mutex_exit(SQLOCK(sq));
5747 	unblocksq(outer, SQ_BLOCKED, 1);
5748 }
5749 
5750 /*
5751  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5752  * If this is the first callback for this outer perimeter then add
5753  * this outer perimeter to the list of outer perimeters that
5754  * the qwriter_outer_thread will process.
5755  *
5756  * Increments sq_count in the outer syncq to prevent the membership
5757  * of the outer perimeter (in terms of inner syncqs) to change while
5758  * the callback is pending.
5759  */
5760 static void
5761 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5762 {
5763 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5764 
5765 	mp->b_prev = (mblk_t *)func;
5766 	mp->b_queue = q;
5767 	mp->b_next = NULL;
5768 	outer->sq_count++;	/* Decremented when dequeued */
5769 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5770 	if (outer->sq_evhead == NULL) {
5771 		/* First message. */
5772 		outer->sq_evhead = outer->sq_evtail = mp;
5773 		outer->sq_flags |= SQ_EVENTS;
5774 		mutex_exit(SQLOCK(outer));
5775 		STRSTAT(qwr_outer);
5776 		(void) taskq_dispatch(streams_taskq,
5777 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5778 	} else {
5779 		ASSERT(outer->sq_flags & SQ_EVENTS);
5780 		outer->sq_evtail->b_next = mp;
5781 		outer->sq_evtail = mp;
5782 		mutex_exit(SQLOCK(outer));
5783 	}
5784 }
5785 
5786 /*
5787  * Try and upgrade to write access at the outer perimeter. If this can
5788  * not be done without blocking then queue the callback to be done
5789  * by the qwriter_outer_thread.
5790  *
5791  * This routine can only be called from put or service procedures plus
5792  * asynchronous callback routines that have properly entered to
5793  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5794  * on the syncq associated with q.
5795  */
5796 void
5797 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5798 {
5799 	syncq_t	*osq, *sq, *outer;
5800 	int	failed;
5801 	uint16_t flags;
5802 
5803 	osq = q->q_syncq;
5804 	outer = osq->sq_outer;
5805 	if (outer == NULL)
5806 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5807 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5808 	    outer->sq_oprev != NULL);
5809 
5810 	mutex_enter(SQLOCK(outer));
5811 	flags = outer->sq_flags;
5812 	/*
5813 	 * If some thread is traversing sq_next, or if we are blocked by
5814 	 * outer_insert or outer_remove, or if the we already have queued
5815 	 * callbacks, then queue this callback for later processing.
5816 	 *
5817 	 * Also queue the qwriter for an interrupt thread in order
5818 	 * to reduce the time spent running at high IPL.
5819 	 * to identify there are events.
5820 	 */
5821 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5822 		/*
5823 		 * Queue the become_writer request.
5824 		 * The queueing is atomic under SQLOCK(outer) in order
5825 		 * to synchronize with outer_exit.
5826 		 * queue_writer will drop the outer SQLOCK
5827 		 */
5828 		if (flags & SQ_BLOCKED) {
5829 			/* Must set SQ_WRITER on inner perimeter */
5830 			mutex_enter(SQLOCK(osq));
5831 			osq->sq_flags |= SQ_WRITER;
5832 			mutex_exit(SQLOCK(osq));
5833 		} else {
5834 			if (!(flags & SQ_WRITER)) {
5835 				/*
5836 				 * The outer could have been SQ_BLOCKED thus
5837 				 * SQ_WRITER might not be set on the inner.
5838 				 */
5839 				mutex_enter(SQLOCK(osq));
5840 				osq->sq_flags |= SQ_WRITER;
5841 				mutex_exit(SQLOCK(osq));
5842 			}
5843 			ASSERT(osq->sq_flags & SQ_WRITER);
5844 		}
5845 		queue_writer(outer, func, q, mp);
5846 		return;
5847 	}
5848 	/*
5849 	 * We are half-way to exclusive access to the outer perimeter.
5850 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
5851 	 * while the inner syncqs are traversed.
5852 	 */
5853 	outer->sq_count++;
5854 	ASSERT(outer->sq_count != 0);	/* wraparound */
5855 	flags |= SQ_WRITER;
5856 	/*
5857 	 * Check if we can run the function immediately. Mark all
5858 	 * syncqs with the writer flag to prevent new entries into
5859 	 * put and service procedures.
5860 	 *
5861 	 * Set SQ_WRITER on all the inner syncqs while holding
5862 	 * the SQLOCK on the outer syncq. This ensures that the changing
5863 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5864 	 */
5865 	failed = 0;
5866 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5867 		uint16_t count;
5868 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
5869 
5870 		mutex_enter(SQLOCK(sq));
5871 		count = sq->sq_count;
5872 		SQ_PUTLOCKS_ENTER(sq);
5873 		SUM_SQ_PUTCOUNTS(sq, count);
5874 		if (sq->sq_count > maxcnt)
5875 			failed = 1;
5876 		sq->sq_flags |= SQ_WRITER;
5877 		SQ_PUTLOCKS_EXIT(sq);
5878 		mutex_exit(SQLOCK(sq));
5879 	}
5880 	if (failed) {
5881 		/*
5882 		 * Some other thread has a read claim on the outer perimeter.
5883 		 * Queue the callback for deferred processing.
5884 		 *
5885 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
5886 		 * so that other qwriter(OUTER) calls will queue their
5887 		 * callbacks as well. queue_writer increments sq_count so we
5888 		 * decrement to compensate for the our increment.
5889 		 *
5890 		 * Dropping SQ_WRITER enables the writer thread to work
5891 		 * on this outer perimeter.
5892 		 */
5893 		outer->sq_flags = flags;
5894 		queue_writer(outer, func, q, mp);
5895 		/* queue_writer dropper the lock */
5896 		mutex_enter(SQLOCK(outer));
5897 		ASSERT(outer->sq_count > 0);
5898 		outer->sq_count--;
5899 		ASSERT(outer->sq_flags & SQ_WRITER);
5900 		flags = outer->sq_flags;
5901 		flags &= ~SQ_WRITER;
5902 		if (flags & SQ_WANTWAKEUP) {
5903 			flags &= ~SQ_WANTWAKEUP;
5904 			cv_broadcast(&outer->sq_wait);
5905 		}
5906 		outer->sq_flags = flags;
5907 		mutex_exit(SQLOCK(outer));
5908 		return;
5909 	} else {
5910 		outer->sq_flags = flags;
5911 		mutex_exit(SQLOCK(outer));
5912 	}
5913 
5914 	/* Can run it immediately */
5915 	(*func)(q, mp);
5916 
5917 	outer_exit(outer);
5918 }
5919 
5920 /*
5921  * Dequeue all writer callbacks from the outer perimeter and run them.
5922  */
5923 static void
5924 write_now(syncq_t *outer)
5925 {
5926 	mblk_t		*mp;
5927 	queue_t		*q;
5928 	void	(*func)();
5929 
5930 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5931 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5932 	    outer->sq_oprev != NULL);
5933 	while ((mp = outer->sq_evhead) != NULL) {
5934 		/*
5935 		 * queues cannot be placed on the queuelist on the outer
5936 		 * perimiter.
5937 		 */
5938 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
5939 		ASSERT((outer->sq_flags & SQ_EVENTS));
5940 
5941 		outer->sq_evhead = mp->b_next;
5942 		if (outer->sq_evhead == NULL) {
5943 			outer->sq_evtail = NULL;
5944 			outer->sq_flags &= ~SQ_EVENTS;
5945 		}
5946 		ASSERT(outer->sq_count != 0);
5947 		outer->sq_count--;	/* Incremented when enqueued. */
5948 		mutex_exit(SQLOCK(outer));
5949 		/*
5950 		 * Drop the message if the queue is closing.
5951 		 * Make sure that the queue is "claimed" when the callback
5952 		 * is run in order to satisfy various ASSERTs.
5953 		 */
5954 		q = mp->b_queue;
5955 		func = (void (*)())mp->b_prev;
5956 		ASSERT(func != NULL);
5957 		mp->b_next = mp->b_prev = NULL;
5958 		if (q->q_flag & QWCLOSE) {
5959 			freemsg(mp);
5960 		} else {
5961 			claimq(q);
5962 			(*func)(q, mp);
5963 			releaseq(q);
5964 		}
5965 		mutex_enter(SQLOCK(outer));
5966 	}
5967 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5968 }
5969 
5970 /*
5971  * The list of messages on the inner syncq is effectively hashed
5972  * by destination queue.  These destination queues are doubly
5973  * linked lists (hopefully) in priority order.  Messages are then
5974  * put on the queue referenced by the q_sqhead/q_sqtail elements.
5975  * Additional messages are linked together by the b_next/b_prev
5976  * elements in the mblk, with (similar to putq()) the first message
5977  * having a NULL b_prev and the last message having a NULL b_next.
5978  *
5979  * Events, such as qwriter callbacks, are put onto a list in FIFO
5980  * order referenced by sq_evhead, and sq_evtail.  This is a singly
5981  * linked list, and messages here MUST be processed in the order queued.
5982  */
5983 
5984 /*
5985  * Run the events on the syncq event list (sq_evhead).
5986  * Assumes there is only one claim on the syncq, it is
5987  * already exclusive (SQ_EXCL set), and the SQLOCK held.
5988  * Messages here are processed in order, with the SQ_EXCL bit
5989  * held all the way through till the last message is processed.
5990  */
5991 void
5992 sq_run_events(syncq_t *sq)
5993 {
5994 	mblk_t		*bp;
5995 	queue_t		*qp;
5996 	uint16_t	flags = sq->sq_flags;
5997 	void		(*func)();
5998 
5999 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6000 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6001 		sq->sq_oprev == NULL) ||
6002 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6003 		sq->sq_oprev != NULL));
6004 
6005 	ASSERT(flags & SQ_EXCL);
6006 	ASSERT(sq->sq_count == 1);
6007 
6008 	/*
6009 	 * We need to process all of the events on this list.  It
6010 	 * is possible that new events will be added while we are
6011 	 * away processing a callback, so on every loop, we start
6012 	 * back at the beginning of the list.
6013 	 */
6014 	/*
6015 	 * We have to reaccess sq_evhead since there is a
6016 	 * possibility of a new entry while we were running
6017 	 * the callback.
6018 	 */
6019 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6020 		ASSERT(bp->b_queue->q_syncq == sq);
6021 		ASSERT(sq->sq_flags & SQ_EVENTS);
6022 
6023 		qp = bp->b_queue;
6024 		func = (void (*)())bp->b_prev;
6025 		ASSERT(func != NULL);
6026 
6027 		/*
6028 		 * Messages from the event queue must be taken off in
6029 		 * FIFO order.
6030 		 */
6031 		ASSERT(sq->sq_evhead == bp);
6032 		sq->sq_evhead = bp->b_next;
6033 
6034 		if (bp->b_next == NULL) {
6035 			/* Deleting last */
6036 			ASSERT(sq->sq_evtail == bp);
6037 			sq->sq_evtail = NULL;
6038 			sq->sq_flags &= ~SQ_EVENTS;
6039 		}
6040 		bp->b_prev = bp->b_next = NULL;
6041 		ASSERT(bp->b_datap->db_ref != 0);
6042 
6043 		mutex_exit(SQLOCK(sq));
6044 
6045 		(*func)(qp, bp);
6046 
6047 		mutex_enter(SQLOCK(sq));
6048 		/*
6049 		 * re-read the flags, since they could have changed.
6050 		 */
6051 		flags = sq->sq_flags;
6052 		ASSERT(flags & SQ_EXCL);
6053 	}
6054 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6055 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6056 
6057 	if (flags & SQ_WANTWAKEUP) {
6058 		flags &= ~SQ_WANTWAKEUP;
6059 		cv_broadcast(&sq->sq_wait);
6060 	}
6061 	if (flags & SQ_WANTEXWAKEUP) {
6062 		flags &= ~SQ_WANTEXWAKEUP;
6063 		cv_broadcast(&sq->sq_exitwait);
6064 	}
6065 	sq->sq_flags = flags;
6066 }
6067 
6068 /*
6069  * Put messages on the event list.
6070  * If we can go exclusive now, do so and process the event list, otherwise
6071  * let the last claim service this list (or wake the sqthread).
6072  * This procedure assumes SQLOCK is held.  To run the event list, it
6073  * must be called with no claims.
6074  */
6075 static void
6076 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6077 {
6078 	uint16_t count;
6079 
6080 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6081 	ASSERT(func != NULL);
6082 
6083 	/*
6084 	 * This is a callback.  Add it to the list of callbacks
6085 	 * and see about upgrading.
6086 	 */
6087 	mp->b_prev = (mblk_t *)func;
6088 	mp->b_queue = q;
6089 	mp->b_next = NULL;
6090 	if (sq->sq_evhead == NULL) {
6091 		sq->sq_evhead = sq->sq_evtail = mp;
6092 		sq->sq_flags |= SQ_EVENTS;
6093 	} else {
6094 		ASSERT(sq->sq_evtail != NULL);
6095 		ASSERT(sq->sq_evtail->b_next == NULL);
6096 		ASSERT(sq->sq_flags & SQ_EVENTS);
6097 		sq->sq_evtail->b_next = mp;
6098 		sq->sq_evtail = mp;
6099 	}
6100 	/*
6101 	 * We have set SQ_EVENTS, so threads will have to
6102 	 * unwind out of the perimiter, and new entries will
6103 	 * not grab a putlock.  But we still need to know
6104 	 * how many threads have already made a claim to the
6105 	 * syncq, so grab the putlocks, and sum the counts.
6106 	 * If there are no claims on the syncq, we can upgrade
6107 	 * to exclusive, and run the event list.
6108 	 * NOTE: We hold the SQLOCK, so we can just grab the
6109 	 * putlocks.
6110 	 */
6111 	count = sq->sq_count;
6112 	SQ_PUTLOCKS_ENTER(sq);
6113 	SUM_SQ_PUTCOUNTS(sq, count);
6114 	/*
6115 	 * We have no claim, so we need to check if there
6116 	 * are no others, then we can upgrade.
6117 	 */
6118 	/*
6119 	 * There are currently no claims on
6120 	 * the syncq by this thread (at least on this entry). The thread who has
6121 	 * the claim should drain syncq.
6122 	 */
6123 	if (count > 0) {
6124 		/*
6125 		 * Can't upgrade - other threads inside.
6126 		 */
6127 		SQ_PUTLOCKS_EXIT(sq);
6128 		mutex_exit(SQLOCK(sq));
6129 		return;
6130 	}
6131 	/*
6132 	 * Need to set SQ_EXCL and make a claim on the syncq.
6133 	 */
6134 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6135 	sq->sq_flags |= SQ_EXCL;
6136 	ASSERT(sq->sq_count == 0);
6137 	sq->sq_count++;
6138 	SQ_PUTLOCKS_EXIT(sq);
6139 
6140 	/* Process the events list */
6141 	sq_run_events(sq);
6142 
6143 	/*
6144 	 * Release our claim...
6145 	 */
6146 	sq->sq_count--;
6147 
6148 	/*
6149 	 * And release SQ_EXCL.
6150 	 * We don't need to acquire the putlocks to release
6151 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6152 	 */
6153 	sq->sq_flags &= ~SQ_EXCL;
6154 
6155 	/*
6156 	 * sq_run_events should have released SQ_EXCL
6157 	 */
6158 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6159 
6160 	/*
6161 	 * If anything happened while we were running the
6162 	 * events (or was there before), we need to process
6163 	 * them now.  We shouldn't be exclusive sine we
6164 	 * released the perimiter above (plus, we asserted
6165 	 * for it).
6166 	 */
6167 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6168 		drain_syncq(sq);
6169 	else
6170 		mutex_exit(SQLOCK(sq));
6171 }
6172 
6173 /*
6174  * Perform delayed processing. The caller has to make sure that it is safe
6175  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6176  * set.)
6177  *
6178  * Assume that the caller has NO claims on the syncq.  However, a claim
6179  * on the syncq does not indicate that a thread is draining the syncq.
6180  * There may be more claims on the syncq than there are threads draining
6181  * (i.e.  #_threads_draining <= sq_count)
6182  *
6183  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6184  * in order to preserve qwriter(OUTER) ordering constraints.
6185  *
6186  * sq_putcount only needs to be checked when dispatching the queued
6187  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6188  */
6189 void
6190 drain_syncq(syncq_t *sq)
6191 {
6192 	queue_t		*qp;
6193 	uint16_t	count;
6194 	uint16_t	type = sq->sq_type;
6195 	uint16_t	flags = sq->sq_flags;
6196 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6197 
6198 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6199 		"drain_syncq start:%p", sq);
6200 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6201 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6202 		sq->sq_oprev == NULL) ||
6203 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6204 		sq->sq_oprev != NULL));
6205 
6206 	/*
6207 	 * Drop SQ_SERVICE flag.
6208 	 */
6209 	if (bg_service)
6210 		sq->sq_svcflags &= ~SQ_SERVICE;
6211 
6212 	/*
6213 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6214 	 * finish the job.
6215 	 */
6216 	if (flags & SQ_EXCL) {
6217 		if (bg_service) {
6218 			ASSERT(sq->sq_servcount != 0);
6219 			sq->sq_servcount--;
6220 		}
6221 		mutex_exit(SQLOCK(sq));
6222 		return;
6223 	}
6224 
6225 	/*
6226 	 * This routine can be called by a background thread if
6227 	 * it was scheduled by a hi-priority thread.  SO, if there are
6228 	 * NOT messages queued, return (remember, we have the SQLOCK,
6229 	 * and it cannot change until we release it). Wakeup any waiters also.
6230 	 */
6231 	if (!(flags & SQ_QUEUED)) {
6232 		if (flags & SQ_WANTWAKEUP) {
6233 			flags &= ~SQ_WANTWAKEUP;
6234 			cv_broadcast(&sq->sq_wait);
6235 		}
6236 		if (flags & SQ_WANTEXWAKEUP) {
6237 			flags &= ~SQ_WANTEXWAKEUP;
6238 			cv_broadcast(&sq->sq_exitwait);
6239 		}
6240 		sq->sq_flags = flags;
6241 		if (bg_service) {
6242 			ASSERT(sq->sq_servcount != 0);
6243 			sq->sq_servcount--;
6244 		}
6245 		mutex_exit(SQLOCK(sq));
6246 		return;
6247 	}
6248 
6249 	/*
6250 	 * If this is not a concurrent put perimiter, we need to
6251 	 * become exclusive to drain.  Also, if not CIPUT, we would
6252 	 * not have acquired a putlock, so we don't need to check
6253 	 * the putcounts.  If not entering with a claim, we test
6254 	 * for sq_count == 0.
6255 	 */
6256 	type = sq->sq_type;
6257 	if (!(type & SQ_CIPUT)) {
6258 		if (sq->sq_count > 1) {
6259 			if (bg_service) {
6260 				ASSERT(sq->sq_servcount != 0);
6261 				sq->sq_servcount--;
6262 			}
6263 			mutex_exit(SQLOCK(sq));
6264 			return;
6265 		}
6266 		sq->sq_flags |= SQ_EXCL;
6267 	}
6268 
6269 	/*
6270 	 * This is where we make a claim to the syncq.
6271 	 * This can either be done by incrementing a putlock, or
6272 	 * the sq_count.  But since we already have the SQLOCK
6273 	 * here, we just bump the sq_count.
6274 	 *
6275 	 * Note that after we make a claim, we need to let the code
6276 	 * fall through to the end of this routine to clean itself
6277 	 * up.  A return in the while loop will put the syncq in a
6278 	 * very bad state.
6279 	 */
6280 	sq->sq_count++;
6281 	ASSERT(sq->sq_count != 0);	/* wraparound */
6282 
6283 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6284 		/*
6285 		 * If we are told to stayaway or went exclusive,
6286 		 * we are done.
6287 		 */
6288 		if (flags & (SQ_STAYAWAY)) {
6289 			break;
6290 		}
6291 
6292 		/*
6293 		 * If there are events to run, do so.
6294 		 * We have one claim to the syncq, so if there are
6295 		 * more than one, other threads are running.
6296 		 */
6297 		if (sq->sq_evhead != NULL) {
6298 			ASSERT(sq->sq_flags & SQ_EVENTS);
6299 
6300 			count = sq->sq_count;
6301 			SQ_PUTLOCKS_ENTER(sq);
6302 			SUM_SQ_PUTCOUNTS(sq, count);
6303 			if (count > 1) {
6304 				SQ_PUTLOCKS_EXIT(sq);
6305 				/* Can't upgrade - other threads inside */
6306 				break;
6307 			}
6308 			ASSERT((flags & SQ_EXCL) == 0);
6309 			sq->sq_flags = flags | SQ_EXCL;
6310 			SQ_PUTLOCKS_EXIT(sq);
6311 			/*
6312 			 * we have the only claim, run the events,
6313 			 * sq_run_events will clear the SQ_EXCL flag.
6314 			 */
6315 			sq_run_events(sq);
6316 
6317 			/*
6318 			 * If this is a CIPUT perimiter, we need
6319 			 * to drop the SQ_EXCL flag so we can properly
6320 			 * continue draining the syncq.
6321 			 */
6322 			if (type & SQ_CIPUT) {
6323 				ASSERT(sq->sq_flags & SQ_EXCL);
6324 				sq->sq_flags &= ~SQ_EXCL;
6325 			}
6326 
6327 			/*
6328 			 * And go back to the beginning just in case
6329 			 * anything changed while we were away.
6330 			 */
6331 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6332 			continue;
6333 		}
6334 
6335 		ASSERT(sq->sq_evhead == NULL);
6336 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6337 
6338 		/*
6339 		 * Find the queue that is not draining.
6340 		 *
6341 		 * q_draining is protected by QLOCK which we do not hold.
6342 		 * But if it was set, then a thread was draining, and if it gets
6343 		 * cleared, then it was because the thread has successfully
6344 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6345 		 * state to happen, a thread needs the SQLOCK which we hold, and
6346 		 * if there was such a flag, we whould have already seen it.
6347 		 */
6348 
6349 		for (qp = sq->sq_head;
6350 		    qp != NULL && (qp->q_draining ||
6351 			(qp->q_sqflags & Q_SQDRAINING));
6352 		    qp = qp->q_sqnext)
6353 			;
6354 
6355 		if (qp == NULL)
6356 			break;
6357 
6358 		/*
6359 		 * We have a queue to work on, and we hold the
6360 		 * SQLOCK and one claim, call qdrain_syncq.
6361 		 * This means we need to release the SQLOCK and
6362 		 * aquire the QLOCK (OK since we have a claim).
6363 		 * Note that qdrain_syncq will actually dequeue
6364 		 * this queue from the sq_head list when it is
6365 		 * convinced all the work is done and release
6366 		 * the QLOCK before returning.
6367 		 */
6368 		qp->q_sqflags |= Q_SQDRAINING;
6369 		mutex_exit(SQLOCK(sq));
6370 		mutex_enter(QLOCK(qp));
6371 		qdrain_syncq(sq, qp);
6372 		mutex_enter(SQLOCK(sq));
6373 
6374 		/* The queue is drained */
6375 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6376 		qp->q_sqflags &= ~Q_SQDRAINING;
6377 		/*
6378 		 * NOTE: After this point qp should not be used since it may be
6379 		 * closed.
6380 		 */
6381 	}
6382 
6383 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6384 	flags = sq->sq_flags;
6385 
6386 	/*
6387 	 * sq->sq_head cannot change because we hold the
6388 	 * sqlock. However, a thread CAN decide that it is no longer
6389 	 * going to drain that queue.  However, this should be due to
6390 	 * a GOAWAY state, and we should see that here.
6391 	 *
6392 	 * This loop is not very efficient. One solution may be adding a second
6393 	 * pointer to the "draining" queue, but it is difficult to do when
6394 	 * queues are inserted in the middle due to priority ordering. Another
6395 	 * possibility is to yank the queue out of the sq list and put it onto
6396 	 * the "draining list" and then put it back if it can't be drained.
6397 	 */
6398 
6399 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6400 		(type & SQ_CI) || sq->sq_head->q_draining);
6401 
6402 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6403 	if (!(type & SQ_CIPUT))
6404 		flags &= ~SQ_EXCL;
6405 	ASSERT((flags & SQ_EXCL) == 0);
6406 
6407 	/* Wake up any waiters. */
6408 	if (flags & SQ_WANTWAKEUP) {
6409 		flags &= ~SQ_WANTWAKEUP;
6410 		cv_broadcast(&sq->sq_wait);
6411 	}
6412 	if (flags & SQ_WANTEXWAKEUP) {
6413 		flags &= ~SQ_WANTEXWAKEUP;
6414 		cv_broadcast(&sq->sq_exitwait);
6415 	}
6416 	sq->sq_flags = flags;
6417 
6418 	ASSERT(sq->sq_count != 0);
6419 	/* Release our claim. */
6420 	sq->sq_count--;
6421 
6422 	if (bg_service) {
6423 		ASSERT(sq->sq_servcount != 0);
6424 		sq->sq_servcount--;
6425 	}
6426 
6427 	mutex_exit(SQLOCK(sq));
6428 
6429 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6430 		"drain_syncq end:%p", sq);
6431 }
6432 
6433 
6434 /*
6435  *
6436  * qdrain_syncq can be called (currently) from only one of two places:
6437  *	drain_syncq
6438  * 	putnext  (or some variation of it).
6439  * and eventually
6440  * 	qwait(_sig)
6441  *
6442  * If called from drain_syncq, we found it in the list
6443  * of queue's needing service, so there is work to be done (or it
6444  * wouldn't be on the list).
6445  *
6446  * If called from some putnext variation, it was because the
6447  * perimiter is open, but messages are blocking a putnext and
6448  * there is not a thread working on it.  Now a thread could start
6449  * working on it while we are getting ready to do so ourself, but
6450  * the thread would set the q_draining flag, and we can spin out.
6451  *
6452  * As for qwait(_sig), I think I shall let it continue to call
6453  * drain_syncq directly (after all, it will get here eventually).
6454  *
6455  * qdrain_syncq has to terminate when:
6456  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6457  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6458  *
6459  * ASSUMES:
6460  *	One claim
6461  * 	QLOCK held
6462  * 	SQLOCK not held
6463  *	Will release QLOCK before returning
6464  */
6465 void
6466 qdrain_syncq(syncq_t *sq, queue_t *q)
6467 {
6468 	mblk_t		*bp;
6469 	boolean_t	do_clr;
6470 #ifdef DEBUG
6471 	uint16_t	count;
6472 #endif
6473 
6474 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6475 		"drain_syncq start:%p", sq);
6476 	ASSERT(q->q_syncq == sq);
6477 	ASSERT(MUTEX_HELD(QLOCK(q)));
6478 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6479 	/*
6480 	 * For non-CIPUT perimiters, we should be called with the
6481 	 * exclusive bit set already.  For non-CIPUT perimiters we
6482 	 * will be doing a concurrent drain, so it better not be set.
6483 	 */
6484 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6485 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6486 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6487 	/*
6488 	 * All outer pointers are set, or none of them are
6489 	 */
6490 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6491 		sq->sq_oprev == NULL) ||
6492 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6493 		sq->sq_oprev != NULL));
6494 #ifdef DEBUG
6495 	count = sq->sq_count;
6496 	/*
6497 	 * This is OK without the putlocks, because we have one
6498 	 * claim either from the sq_count, or a putcount.  We could
6499 	 * get an erroneous value from other counts, but ours won't
6500 	 * change, so one way or another, we will have at least a
6501 	 * value of one.
6502 	 */
6503 	SUM_SQ_PUTCOUNTS(sq, count);
6504 	ASSERT(count >= 1);
6505 #endif /* DEBUG */
6506 
6507 	/*
6508 	 * The first thing to do here, is find out if a thread is already
6509 	 * draining this queue or the queue is closing. If so, we are done,
6510 	 * just return. Also, if there are no messages, we are done as well.
6511 	 * Note that we check the q_sqhead since there is s window of
6512 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6513 	 * not anymore.
6514 	 */
6515 	if (q->q_draining || (q->q_sqhead == NULL)) {
6516 		mutex_exit(QLOCK(q));
6517 		return;
6518 	}
6519 
6520 	/*
6521 	 * If the perimiter is exclusive, there is nothing we can
6522 	 * do right now, go away.
6523 	 * Note that there is nothing to prevent this case from changing
6524 	 * right after this check, but the spin-out will catch it.
6525 	 */
6526 
6527 	/* Tell other threads that we are draining this queue */
6528 	q->q_draining = 1;	/* Protected by QLOCK */
6529 
6530 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6531 
6532 		/*
6533 		 * Because we can enter this routine just because
6534 		 * a putnext is blocked, we need to spin out if
6535 		 * the perimiter wants to go exclusive as well
6536 		 * as just blocked. We need to spin out also if
6537 		 * events are queued on the syncq.
6538 		 * Don't check for SQ_EXCL, because non-CIPUT
6539 		 * perimiters would set it, and it can't become
6540 		 * exclusive while we hold a claim.
6541 		 */
6542 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6543 			break;
6544 		}
6545 
6546 #ifdef DEBUG
6547 		/*
6548 		 * Since we are in qdrain_syncq, we already know the queue,
6549 		 * but for sanity, we want to check this against the qp that
6550 		 * was passed in by bp->b_queue.
6551 		 */
6552 
6553 		ASSERT(bp->b_queue == q);
6554 		ASSERT(bp->b_queue->q_syncq == sq);
6555 		bp->b_queue = NULL;
6556 
6557 		/*
6558 		 * We would have the following check in the DEBUG code:
6559 		 *
6560 		 * if (bp->b_prev != NULL)  {
6561 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6562 		 * }
6563 		 *
6564 		 * This can't be done, however, since IP modifies qinfo
6565 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6566 		 * qinfo), invalidating the check.
6567 		 * So the assignment to func is left here, but the ASSERT itself
6568 		 * is removed until the whole issue is resolved.
6569 		 */
6570 #endif
6571 		ASSERT(q->q_sqhead == bp);
6572 		q->q_sqhead = bp->b_next;
6573 		bp->b_prev = bp->b_next = NULL;
6574 		ASSERT(q->q_syncqmsgs > 0);
6575 		mutex_exit(QLOCK(q));
6576 
6577 		ASSERT(bp->b_datap->db_ref != 0);
6578 
6579 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6580 
6581 		mutex_enter(QLOCK(q));
6582 		/*
6583 		 * We should decrement q_syncqmsgs only after executing the
6584 		 * put procedure to avoid a possible race with putnext().
6585 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6586 		 * an optimization which allows putnext to call the put
6587 		 * procedure directly if (q_syncqmsgs == 0) and thus
6588 		 * a message reodering could otherwise occur.
6589 		 */
6590 		q->q_syncqmsgs--;
6591 
6592 		/*
6593 		 * Clear QFULL in the next service procedure queue if
6594 		 * this is the last message destined to that queue.
6595 		 *
6596 		 * It would make better sense to have some sort of
6597 		 * tunable for the low water mark, but these symantics
6598 		 * are not yet defined.  So, alas, we use a constant.
6599 		 */
6600 		do_clr = (q->q_syncqmsgs == 0);
6601 		mutex_exit(QLOCK(q));
6602 
6603 		if (do_clr)
6604 			clr_qfull(q);
6605 
6606 		mutex_enter(QLOCK(q));
6607 		/*
6608 		 * Always clear SQ_EXCL when CIPUT in order to handle
6609 		 * qwriter(INNER).
6610 		 */
6611 		/*
6612 		 * The putp() can call qwriter and get exclusive access
6613 		 * IFF this is the only claim.  So, we need to test for
6614 		 * this possibility so we can aquire the mutex and clear
6615 		 * the bit.
6616 		 */
6617 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6618 			mutex_enter(SQLOCK(sq));
6619 			sq->sq_flags &= ~SQ_EXCL;
6620 			mutex_exit(SQLOCK(sq));
6621 		}
6622 	}
6623 
6624 	/*
6625 	 * We should either have no queues on the syncq, or we were
6626 	 * told to goaway by a waiter (which we will wake up at the
6627 	 * end of this function).
6628 	 */
6629 	ASSERT((q->q_sqhead == NULL) ||
6630 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6631 
6632 	ASSERT(MUTEX_HELD(QLOCK(q)));
6633 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6634 
6635 	/*
6636 	 * Remove the q from the syncq list if all the messages are
6637 	 * drained.
6638 	 */
6639 	if (q->q_sqhead == NULL) {
6640 		mutex_enter(SQLOCK(sq));
6641 		if (q->q_sqflags & Q_SQQUEUED)
6642 			SQRM_Q(sq, q);
6643 		mutex_exit(SQLOCK(sq));
6644 		/*
6645 		 * Since the queue is removed from the list, reset its priority.
6646 		 */
6647 		q->q_spri = 0;
6648 	}
6649 
6650 	/*
6651 	 * Remember, the q_draining flag is used to let another
6652 	 * thread know that there is a thread currently draining
6653 	 * the messages for a queue.  Since we are now done with
6654 	 * this queue (even if there may be messages still there),
6655 	 * we need to clear this flag so some thread will work
6656 	 * on it if needed.
6657 	 */
6658 	ASSERT(q->q_draining);
6659 	q->q_draining = 0;
6660 
6661 	/* called with a claim, so OK to drop all locks. */
6662 	mutex_exit(QLOCK(q));
6663 
6664 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6665 		"drain_syncq end:%p", sq);
6666 }
6667 /* END OF QDRAIN_SYNCQ  */
6668 
6669 
6670 /*
6671  * This is the mate to qdrain_syncq, except that it is putting the
6672  * message onto the the queue instead draining.  Since the
6673  * message is destined for the queue that is selected, there is
6674  * no need to identify the function because the message is
6675  * intended for the put routine for the queue.  But this
6676  * routine will do it anyway just in case (but only for debug kernels).
6677  *
6678  * After the message is enqueued on the syncq, it calls putnext_tail()
6679  * which will schedule a background thread to actually process the message.
6680  *
6681  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6682  * SQLOCK(sq) and QLOCK(q) are not held.
6683  */
6684 void
6685 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6686 {
6687 	queue_t		*fq = NULL;
6688 
6689 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6690 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6691 	ASSERT(sq->sq_count > 0);
6692 	ASSERT(q->q_syncq == sq);
6693 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6694 		sq->sq_oprev == NULL) ||
6695 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6696 		sq->sq_oprev != NULL));
6697 
6698 	mutex_enter(QLOCK(q));
6699 
6700 	/*
6701 	 * Set QFULL in next service procedure queue (that cares) if not
6702 	 * already set and if there are already more messages on the syncq
6703 	 * than sq_max_size.  If sq_max_size is 0, no flow control will be
6704 	 * asserted on any syncq.
6705 	 *
6706 	 * The fq here is the next queue with a service procedure.
6707 	 * This is where we would fail canputnext, so this is where we
6708 	 * need to set QFULL.
6709 	 *
6710 	 * LOCKING HIERARCHY: In the case when fq != q we need to
6711 	 *  a) Take QLOCK(fq) to set QFULL flag and
6712 	 *  b) Take sd_reflock in the case of the hot stream to update
6713 	 *  	sd_refcnt.
6714 	 * We already have QLOCK at this point. To avoid cross-locks with
6715 	 * freezestr() which grabs all QLOCKs and with strlock() which grabs
6716 	 * both SQLOCK and sd_reflock, we need to drop respective locks first.
6717 	 */
6718 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
6719 	    (q->q_syncqmsgs > sq_max_size)) {
6720 		if ((fq = q->q_nfsrv) == q) {
6721 			fq->q_flag |= QFULL;
6722 		} else {
6723 			mutex_exit(QLOCK(q));
6724 			mutex_enter(QLOCK(fq));
6725 			fq->q_flag |= QFULL;
6726 			mutex_exit(QLOCK(fq));
6727 			mutex_enter(QLOCK(q));
6728 		}
6729 	}
6730 
6731 #ifdef DEBUG
6732 	/*
6733 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6734 	 * to trace the queue that the message is intended for.  Note
6735 	 * that the original use was to identify the queue and function
6736 	 * to call on the drain.  In the new syncq, we have the context
6737 	 * of the queue that we are draining, so call it's putproc and
6738 	 * don't rely on the saved values.  But for debug this is still
6739 	 * usefull information.
6740 	 */
6741 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6742 	mp->b_queue = q;
6743 	mp->b_next = NULL;
6744 #endif
6745 	ASSERT(q->q_syncq == sq);
6746 	/*
6747 	 * Enqueue the message on the list.
6748 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6749 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6750 	 */
6751 	SQPUT_MP(q, mp);
6752 	mutex_enter(SQLOCK(sq));
6753 
6754 	/*
6755 	 * And queue on syncq for scheduling, if not already queued.
6756 	 * Note that we need the SQLOCK for this, and for testing flags
6757 	 * at the end to see if we will drain.  So grab it now, and
6758 	 * release it before we call qdrain_syncq or return.
6759 	 */
6760 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6761 		q->q_spri = curthread->t_pri;
6762 		SQPUT_Q(sq, q);
6763 	}
6764 #ifdef DEBUG
6765 	else {
6766 		/*
6767 		 * All of these conditions MUST be true!
6768 		 */
6769 		ASSERT(sq->sq_tail != NULL);
6770 		if (sq->sq_tail == sq->sq_head) {
6771 			ASSERT((q->q_sqprev == NULL) &&
6772 			    (q->q_sqnext == NULL));
6773 		} else {
6774 			ASSERT((q->q_sqprev != NULL) ||
6775 			    (q->q_sqnext != NULL));
6776 		}
6777 		ASSERT(sq->sq_flags & SQ_QUEUED);
6778 		ASSERT(q->q_syncqmsgs != 0);
6779 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6780 	}
6781 #endif
6782 	mutex_exit(QLOCK(q));
6783 	/*
6784 	 * SQLOCK is still held, so sq_count can be safely decremented.
6785 	 */
6786 	sq->sq_count--;
6787 
6788 	putnext_tail(sq, q, 0);
6789 	/* Should not reference sq or q after this point. */
6790 }
6791 
6792 /*  End of qfill_syncq  */
6793 
6794 /*
6795  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6796  * that would be put into qp by drain_syncq.
6797  * Used when deleting the syncq (qp == NULL) or when detaching
6798  * a queue (qp != NULL).
6799  * Return non-zero if one or more messages were freed.
6800  *
6801  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6802  * sq_putlocks are used.
6803  *
6804  * NOTE: This function assumes that it is called from the close() context and
6805  * that all the queues in the syncq are going aay. For this reason it doesn't
6806  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6807  * currently valid, but it is useful to rethink this function to behave properly
6808  * in other cases.
6809  */
6810 int
6811 flush_syncq(syncq_t *sq, queue_t *qp)
6812 {
6813 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6814 	queue_t		*q;
6815 	int		ret = 0;
6816 
6817 	mutex_enter(SQLOCK(sq));
6818 
6819 	/*
6820 	 * Before we leave, we need to make sure there are no
6821 	 * events listed for this queue.  All events for this queue
6822 	 * will just be freed.
6823 	 */
6824 	if (qp != NULL && sq->sq_evhead != NULL) {
6825 		ASSERT(sq->sq_flags & SQ_EVENTS);
6826 
6827 		mp_prev = NULL;
6828 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6829 			mp_next = bp->b_next;
6830 			if (bp->b_queue == qp) {
6831 				/* Delete this message */
6832 				if (mp_prev != NULL) {
6833 					mp_prev->b_next = mp_next;
6834 					/*
6835 					 * Update sq_evtail if the last element
6836 					 * is removed.
6837 					 */
6838 					if (bp == sq->sq_evtail) {
6839 						ASSERT(mp_next == NULL);
6840 						sq->sq_evtail = mp_prev;
6841 					}
6842 				} else
6843 					sq->sq_evhead = mp_next;
6844 				if (sq->sq_evhead == NULL)
6845 					sq->sq_flags &= ~SQ_EVENTS;
6846 				bp->b_prev = bp->b_next = NULL;
6847 				freemsg(bp);
6848 				ret++;
6849 			} else {
6850 				mp_prev = bp;
6851 			}
6852 		}
6853 	}
6854 
6855 	/*
6856 	 * Walk sq_head and:
6857 	 *	- match qp if qp is set, remove it's messages
6858 	 *	- all if qp is not set
6859 	 */
6860 	q = sq->sq_head;
6861 	while (q != NULL) {
6862 		ASSERT(q->q_syncq == sq);
6863 		if ((qp == NULL) || (qp == q)) {
6864 			/*
6865 			 * Yank the messages as a list off the queue
6866 			 */
6867 			mp_head = q->q_sqhead;
6868 			/*
6869 			 * We do not have QLOCK(q) here (which is safe due to
6870 			 * assumptions mentioned above). To obtain the lock we
6871 			 * need to release SQLOCK which may allow lots of things
6872 			 * to change upon us. This place requires more analysis.
6873 			 */
6874 			q->q_sqhead = q->q_sqtail = NULL;
6875 			ASSERT(mp_head->b_queue &&
6876 			    mp_head->b_queue->q_syncq == sq);
6877 
6878 			/*
6879 			 * Free each of the messages.
6880 			 */
6881 			for (bp = mp_head; bp != NULL; bp = mp_next) {
6882 				mp_next = bp->b_next;
6883 				bp->b_prev = bp->b_next = NULL;
6884 				freemsg(bp);
6885 				ret++;
6886 			}
6887 			/*
6888 			 * Now remove the queue from the syncq.
6889 			 */
6890 			ASSERT(q->q_sqflags & Q_SQQUEUED);
6891 			SQRM_Q(sq, q);
6892 			q->q_spri = 0;
6893 			q->q_syncqmsgs = 0;
6894 
6895 			/*
6896 			 * If qp was specified, we are done with it and are
6897 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
6898 			 * waiters while we still have the SQLOCK.
6899 			 */
6900 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
6901 				sq->sq_flags &= ~SQ_WANTWAKEUP;
6902 				cv_broadcast(&sq->sq_wait);
6903 			}
6904 			/* Drop SQLOCK across clr_qfull */
6905 			mutex_exit(SQLOCK(sq));
6906 
6907 			/*
6908 			 * We avoid doing the test that drain_syncq does and
6909 			 * unconditionally clear qfull for every flushed
6910 			 * message. Since flush_syncq is only called during
6911 			 * close this should not be a problem.
6912 			 */
6913 			clr_qfull(q);
6914 			if (qp != NULL) {
6915 				return (ret);
6916 			} else {
6917 				mutex_enter(SQLOCK(sq));
6918 				/*
6919 				 * The head was removed by SQRM_Q above.
6920 				 * reread the new head and flush it.
6921 				 */
6922 				q = sq->sq_head;
6923 			}
6924 		} else {
6925 			q = q->q_sqnext;
6926 		}
6927 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
6928 	}
6929 
6930 	if (sq->sq_flags & SQ_WANTWAKEUP) {
6931 		sq->sq_flags &= ~SQ_WANTWAKEUP;
6932 		cv_broadcast(&sq->sq_wait);
6933 	}
6934 
6935 	mutex_exit(SQLOCK(sq));
6936 	return (ret);
6937 }
6938 
6939 /*
6940  * Propagate all messages from a syncq to the next syncq that are associated
6941  * with the specified queue. If the queue is attached to a driver or if the
6942  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
6943  *
6944  * Assumes that the stream is strlock()'ed. We don't come here if there
6945  * are no messages to propagate.
6946  *
6947  * NOTE : If the queue is attached to a driver, all the messages are freed
6948  * as there is no point in propagating the messages from the driver syncq
6949  * to the closing stream head which will in turn get freed later.
6950  */
6951 static int
6952 propagate_syncq(queue_t *qp)
6953 {
6954 	mblk_t		*bp, *head, *tail, *prev, *next;
6955 	syncq_t 	*sq;
6956 	queue_t		*nqp;
6957 	syncq_t		*nsq;
6958 	boolean_t	isdriver;
6959 	int 		moved = 0;
6960 	uint16_t	flags;
6961 	pri_t		priority = curthread->t_pri;
6962 #ifdef DEBUG
6963 	void		(*func)();
6964 #endif
6965 
6966 	sq = qp->q_syncq;
6967 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6968 	/* debug macro */
6969 	SQ_PUTLOCKS_HELD(sq);
6970 	/*
6971 	 * As entersq() does not increment the sq_count for
6972 	 * the write side, check sq_count for non-QPERQ
6973 	 * perimeters alone.
6974 	 */
6975 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
6976 
6977 	/*
6978 	 * propagate_syncq() can be called because of either messages on the
6979 	 * queue syncq or because on events on the queue syncq. Do actual
6980 	 * message propagations if there are any messages.
6981 	 */
6982 	if (qp->q_syncqmsgs) {
6983 		isdriver = (qp->q_flag & QISDRV);
6984 
6985 		if (!isdriver) {
6986 			nqp = qp->q_next;
6987 			nsq = nqp->q_syncq;
6988 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
6989 			/* debug macro */
6990 			SQ_PUTLOCKS_HELD(nsq);
6991 #ifdef DEBUG
6992 			func = (void (*)())nqp->q_qinfo->qi_putp;
6993 #endif
6994 		}
6995 
6996 		SQRM_Q(sq, qp);
6997 		priority = MAX(qp->q_spri, priority);
6998 		qp->q_spri = 0;
6999 		head = qp->q_sqhead;
7000 		tail = qp->q_sqtail;
7001 		qp->q_sqhead = qp->q_sqtail = NULL;
7002 		qp->q_syncqmsgs = 0;
7003 
7004 		/*
7005 		 * Walk the list of messages, and free them if this is a driver,
7006 		 * otherwise reset the b_prev and b_queue value to the new putp.
7007 		 * Afterward, we will just add the head to the end of the next
7008 		 * syncq, and point the tail to the end of this one.
7009 		 */
7010 
7011 		for (bp = head; bp != NULL; bp = next) {
7012 			next = bp->b_next;
7013 			if (isdriver) {
7014 				bp->b_prev = bp->b_next = NULL;
7015 				freemsg(bp);
7016 				continue;
7017 			}
7018 			/* Change the q values for this message */
7019 			bp->b_queue = nqp;
7020 #ifdef DEBUG
7021 			bp->b_prev = (mblk_t *)func;
7022 #endif
7023 			moved++;
7024 		}
7025 		/*
7026 		 * Attach list of messages to the end of the new queue (if there
7027 		 * is a list of messages).
7028 		 */
7029 
7030 		if (!isdriver && head != NULL) {
7031 			ASSERT(tail != NULL);
7032 			if (nqp->q_sqhead == NULL) {
7033 				nqp->q_sqhead = head;
7034 			} else {
7035 				ASSERT(nqp->q_sqtail != NULL);
7036 				nqp->q_sqtail->b_next = head;
7037 			}
7038 			nqp->q_sqtail = tail;
7039 			/*
7040 			 * When messages are moved from high priority queue to
7041 			 * another queue, the destination queue priority is
7042 			 * upgraded.
7043 			 */
7044 
7045 			if (priority > nqp->q_spri)
7046 				nqp->q_spri = priority;
7047 
7048 			SQPUT_Q(nsq, nqp);
7049 
7050 			nqp->q_syncqmsgs += moved;
7051 			ASSERT(nqp->q_syncqmsgs != 0);
7052 		}
7053 	}
7054 
7055 	/*
7056 	 * Before we leave, we need to make sure there are no
7057 	 * events listed for this queue.  All events for this queue
7058 	 * will just be freed.
7059 	 */
7060 	if (sq->sq_evhead != NULL) {
7061 		ASSERT(sq->sq_flags & SQ_EVENTS);
7062 		prev = NULL;
7063 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7064 			next = bp->b_next;
7065 			if (bp->b_queue == qp) {
7066 				/* Delete this message */
7067 				if (prev != NULL) {
7068 					prev->b_next = next;
7069 					/*
7070 					 * Update sq_evtail if the last element
7071 					 * is removed.
7072 					 */
7073 					if (bp == sq->sq_evtail) {
7074 						ASSERT(next == NULL);
7075 						sq->sq_evtail = prev;
7076 					}
7077 				} else
7078 					sq->sq_evhead = next;
7079 				if (sq->sq_evhead == NULL)
7080 					sq->sq_flags &= ~SQ_EVENTS;
7081 				bp->b_prev = bp->b_next = NULL;
7082 				freemsg(bp);
7083 			} else {
7084 				prev = bp;
7085 			}
7086 		}
7087 	}
7088 
7089 	flags = sq->sq_flags;
7090 
7091 	/* Wake up any waiter before leaving. */
7092 	if (flags & SQ_WANTWAKEUP) {
7093 		flags &= ~SQ_WANTWAKEUP;
7094 		cv_broadcast(&sq->sq_wait);
7095 	}
7096 	sq->sq_flags = flags;
7097 
7098 	return (moved);
7099 }
7100 
7101 /*
7102  * Try and upgrade to exclusive access at the inner perimeter. If this can
7103  * not be done without blocking then request will be queued on the syncq
7104  * and drain_syncq will run it later.
7105  *
7106  * This routine can only be called from put or service procedures plus
7107  * asynchronous callback routines that have properly entered to
7108  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7109  * on the syncq associated with q.
7110  */
7111 void
7112 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7113 {
7114 	syncq_t	*sq = q->q_syncq;
7115 	uint16_t count;
7116 
7117 	mutex_enter(SQLOCK(sq));
7118 	count = sq->sq_count;
7119 	SQ_PUTLOCKS_ENTER(sq);
7120 	SUM_SQ_PUTCOUNTS(sq, count);
7121 	ASSERT(count >= 1);
7122 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7123 
7124 	if (count == 1) {
7125 		/*
7126 		 * Can upgrade. This case also handles nested qwriter calls
7127 		 * (when the qwriter callback function calls qwriter). In that
7128 		 * case SQ_EXCL is already set.
7129 		 */
7130 		sq->sq_flags |= SQ_EXCL;
7131 		SQ_PUTLOCKS_EXIT(sq);
7132 		mutex_exit(SQLOCK(sq));
7133 		(*func)(q, mp);
7134 		/*
7135 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7136 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7137 		 * until putnext, leavesq, or drain_syncq drops it.
7138 		 * That way we handle nested qwriter(INNER) without dropping
7139 		 * SQ_EXCL until the outermost qwriter callback routine is
7140 		 * done.
7141 		 */
7142 		return;
7143 	}
7144 	SQ_PUTLOCKS_EXIT(sq);
7145 	sqfill_events(sq, q, mp, func);
7146 }
7147 
7148 /*
7149  * Synchronous callback support functions
7150  */
7151 
7152 /*
7153  * Allocate a callback parameter structure.
7154  * Assumes that caller initializes the flags and the id.
7155  * Acquires SQLOCK(sq) if non-NULL is returned.
7156  */
7157 callbparams_t *
7158 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7159 {
7160 	callbparams_t *cbp;
7161 	size_t size = sizeof (callbparams_t);
7162 
7163 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7164 
7165 	/*
7166 	 * Only try tryhard allocation if the caller is ready to panic.
7167 	 * Otherwise just fail.
7168 	 */
7169 	if (cbp == NULL) {
7170 		if (kmflags & KM_PANIC)
7171 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7172 			    &size, kmflags);
7173 		else
7174 			return (NULL);
7175 	}
7176 
7177 	ASSERT(size >= sizeof (callbparams_t));
7178 	cbp->cbp_size = size;
7179 	cbp->cbp_sq = sq;
7180 	cbp->cbp_func = func;
7181 	cbp->cbp_arg = arg;
7182 	mutex_enter(SQLOCK(sq));
7183 	cbp->cbp_next = sq->sq_callbpend;
7184 	sq->sq_callbpend = cbp;
7185 	return (cbp);
7186 }
7187 
7188 void
7189 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7190 {
7191 	callbparams_t **pp, *p;
7192 
7193 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7194 
7195 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7196 		if (p == cbp) {
7197 			*pp = p->cbp_next;
7198 			kmem_free(p, p->cbp_size);
7199 			return;
7200 		}
7201 	}
7202 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7203 	    "callbparams_free: not found\n"));
7204 }
7205 
7206 void
7207 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7208 {
7209 	callbparams_t **pp, *p;
7210 
7211 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7212 
7213 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7214 		if (p->cbp_id == id && p->cbp_flags == flag) {
7215 			*pp = p->cbp_next;
7216 			kmem_free(p, p->cbp_size);
7217 			return;
7218 		}
7219 	}
7220 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7221 	    "callbparams_free_id: not found\n"));
7222 }
7223 
7224 /*
7225  * Callback wrapper function used by once-only callbacks that can be
7226  * cancelled (qtimeout and qbufcall)
7227  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7228  * cancelled by the qun* functions.
7229  */
7230 void
7231 qcallbwrapper(void *arg)
7232 {
7233 	callbparams_t *cbp = arg;
7234 	syncq_t	*sq;
7235 	uint16_t count = 0;
7236 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7237 	uint16_t type;
7238 
7239 	sq = cbp->cbp_sq;
7240 	mutex_enter(SQLOCK(sq));
7241 	type = sq->sq_type;
7242 	if (!(type & SQ_CICB)) {
7243 		count = sq->sq_count;
7244 		SQ_PUTLOCKS_ENTER(sq);
7245 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7246 		SUM_SQ_PUTCOUNTS(sq, count);
7247 		sq->sq_needexcl++;
7248 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7249 		waitflags |= SQ_MESSAGES;
7250 	}
7251 	/* Can not handle exlusive entry at outer perimeter */
7252 	ASSERT(type & SQ_COCB);
7253 
7254 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7255 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7256 		    (sq->sq_cancelid == cbp->cbp_id)) {
7257 			/* timeout has been cancelled */
7258 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7259 			callbparams_free(sq, cbp);
7260 			if (!(type & SQ_CICB)) {
7261 				ASSERT(sq->sq_needexcl > 0);
7262 				sq->sq_needexcl--;
7263 				if (sq->sq_needexcl == 0) {
7264 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7265 				}
7266 				SQ_PUTLOCKS_EXIT(sq);
7267 			}
7268 			mutex_exit(SQLOCK(sq));
7269 			return;
7270 		}
7271 		sq->sq_flags |= SQ_WANTWAKEUP;
7272 		if (!(type & SQ_CICB)) {
7273 			SQ_PUTLOCKS_EXIT(sq);
7274 		}
7275 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7276 		if (!(type & SQ_CICB)) {
7277 			count = sq->sq_count;
7278 			SQ_PUTLOCKS_ENTER(sq);
7279 			SUM_SQ_PUTCOUNTS(sq, count);
7280 		}
7281 	}
7282 
7283 	sq->sq_count++;
7284 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7285 	if (!(type & SQ_CICB)) {
7286 		ASSERT(count == 0);
7287 		sq->sq_flags |= SQ_EXCL;
7288 		ASSERT(sq->sq_needexcl > 0);
7289 		sq->sq_needexcl--;
7290 		if (sq->sq_needexcl == 0) {
7291 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7292 		}
7293 		SQ_PUTLOCKS_EXIT(sq);
7294 	}
7295 
7296 	mutex_exit(SQLOCK(sq));
7297 
7298 	cbp->cbp_func(cbp->cbp_arg);
7299 
7300 	/*
7301 	 * We drop the lock only for leavesq to re-acquire it.
7302 	 * Possible optimization is inline of leavesq.
7303 	 */
7304 	mutex_enter(SQLOCK(sq));
7305 	callbparams_free(sq, cbp);
7306 	mutex_exit(SQLOCK(sq));
7307 	leavesq(sq, SQ_CALLBACK);
7308 }
7309 
7310 /*
7311  * no need to grab sq_putlocks here. See comment in strsubr.h that
7312  * explains when sq_putlocks are used.
7313  *
7314  * sq_count (or one of the sq_putcounts) has already been
7315  * decremented by the caller, and if SQ_QUEUED, we need to call
7316  * drain_syncq (the global syncq drain).
7317  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7318  * one of two states, non-CIPUT perimiter, and we need to clear
7319  * it, or we went exclusive in the put procedure.  In any case,
7320  * we want to clear the bit now, and it is probably easier to do
7321  * this at the beginning of this function (remember, we hold
7322  * the SQLOCK).  Lastly, if there are other messages queued
7323  * on the syncq (and not for our destination), enable the syncq
7324  * for background work.
7325  */
7326 
7327 /* ARGSUSED */
7328 void
7329 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7330 {
7331 	uint16_t	flags = sq->sq_flags;
7332 
7333 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7334 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7335 
7336 	/* Clear SQ_EXCL if set in passflags */
7337 	if (passflags & SQ_EXCL) {
7338 		flags &= ~SQ_EXCL;
7339 	}
7340 	if (flags & SQ_WANTWAKEUP) {
7341 		flags &= ~SQ_WANTWAKEUP;
7342 		cv_broadcast(&sq->sq_wait);
7343 	}
7344 	if (flags & SQ_WANTEXWAKEUP) {
7345 		flags &= ~SQ_WANTEXWAKEUP;
7346 		cv_broadcast(&sq->sq_exitwait);
7347 	}
7348 	sq->sq_flags = flags;
7349 
7350 	/*
7351 	 * We have cleared SQ_EXCL if we were asked to, and started
7352 	 * the wakeup process for waiters.  If there are no writers
7353 	 * then we need to drain the syncq if we were told to, or
7354 	 * enable the background thread to do it.
7355 	 */
7356 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7357 		if ((passflags & SQ_QUEUED) ||
7358 		    (sq->sq_svcflags & SQ_DISABLED)) {
7359 			/* drain_syncq will take care of events in the list */
7360 			drain_syncq(sq);
7361 			return;
7362 		} else if (flags & SQ_QUEUED) {
7363 			sqenable(sq);
7364 		}
7365 	}
7366 	/* Drop the SQLOCK on exit */
7367 	mutex_exit(SQLOCK(sq));
7368 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7369 		"putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7370 }
7371 
7372 void
7373 set_qend(queue_t *q)
7374 {
7375 	mutex_enter(QLOCK(q));
7376 	if (!O_SAMESTR(q))
7377 		q->q_flag |= QEND;
7378 	else
7379 		q->q_flag &= ~QEND;
7380 	mutex_exit(QLOCK(q));
7381 	q = _OTHERQ(q);
7382 	mutex_enter(QLOCK(q));
7383 	if (!O_SAMESTR(q))
7384 		q->q_flag |= QEND;
7385 	else
7386 		q->q_flag &= ~QEND;
7387 	mutex_exit(QLOCK(q));
7388 }
7389 
7390 
7391 void
7392 clr_qfull(queue_t *q)
7393 {
7394 	queue_t	*oq = q;
7395 
7396 	q = q->q_nfsrv;
7397 	/* Fast check if there is any work to do before getting the lock. */
7398 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7399 		return;
7400 	}
7401 
7402 	/*
7403 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7404 	 * for QFULL being set.
7405 	 */
7406 	mutex_enter(QLOCK(q));
7407 	/*
7408 	 * If both q_count and q_mblkcnt are less than the hiwat mark
7409 	 */
7410 	if ((q->q_count < q->q_hiwat) && (q->q_mblkcnt < q->q_hiwat)) {
7411 		q->q_flag &= ~QFULL;
7412 		/*
7413 		 * A little more confusing, how about this way:
7414 		 * if someone wants to write,
7415 		 * AND
7416 		 *    both counts are less than the lowat mark
7417 		 *    OR
7418 		 *    the lowat mark is zero
7419 		 * THEN
7420 		 * backenable
7421 		 */
7422 		if ((q->q_flag & QWANTW) &&
7423 		    (((q->q_count < q->q_lowat) &&
7424 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7425 			q->q_flag &= ~QWANTW;
7426 			mutex_exit(QLOCK(q));
7427 			backenable(oq, 0);
7428 		} else
7429 			mutex_exit(QLOCK(q));
7430 	} else
7431 		mutex_exit(QLOCK(q));
7432 }
7433 
7434 /*
7435  * Set the forward service procedure pointer.
7436  *
7437  * Called at insert-time to cache a queue's next forward service procedure in
7438  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7439  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7440  * inserted does not have a service procedure, then q_nfsrv points to the next
7441  * queue forward that has a service procedure.  If the queue is at the logical
7442  * end of the stream (driver for write side, stream head for the read side)
7443  * and does not have a service procedure, then q_nfsrv also points to itself.
7444  */
7445 void
7446 set_nfsrv_ptr(
7447 	queue_t  *rnew,		/* read queue pointer to new module */
7448 	queue_t  *wnew,		/* write queue pointer to new module */
7449 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7450 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7451 {
7452 	queue_t *qp;
7453 
7454 	if (prev_wq->q_next == NULL) {
7455 		/*
7456 		 * Insert the driver, initialize the driver and stream head.
7457 		 * In this case, prev_rq/prev_wq should be the stream head.
7458 		 * _I_INSERT does not allow inserting a driver.  Make sure
7459 		 * that it is not an insertion.
7460 		 */
7461 		ASSERT(!(rnew->q_flag & _QINSERTING));
7462 		wnew->q_nfsrv = wnew;
7463 		if (rnew->q_qinfo->qi_srvp)
7464 			rnew->q_nfsrv = rnew;
7465 		else
7466 			rnew->q_nfsrv = prev_rq;
7467 		prev_rq->q_nfsrv = prev_rq;
7468 		prev_wq->q_nfsrv = prev_wq;
7469 	} else {
7470 		/*
7471 		 * set up read side q_nfsrv pointer.  This MUST be done
7472 		 * before setting the write side, because the setting of
7473 		 * the write side for a fifo may depend on it.
7474 		 *
7475 		 * Suppose we have a fifo that only has pipemod pushed.
7476 		 * pipemod has no read or write service procedures, so
7477 		 * nfsrv for both pipemod queues points to prev_rq (the
7478 		 * stream read head).  Now push bufmod (which has only a
7479 		 * read service procedure).  Doing the write side first,
7480 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7481 		 * is WRONG; the next queue forward from wnew with a
7482 		 * service procedure will be rnew, not the stream read head.
7483 		 * Since the downstream queue (which in the case of a fifo
7484 		 * is the read queue rnew) can affect upstream queues, it
7485 		 * needs to be done first.  Setting up the read side first
7486 		 * sets nfsrv for both pipemod queues to rnew and then
7487 		 * when the write side is set up, wnew-q_nfsrv will also
7488 		 * point to rnew.
7489 		 */
7490 		if (rnew->q_qinfo->qi_srvp) {
7491 			/*
7492 			 * use _OTHERQ() because, if this is a pipe, next
7493 			 * module may have been pushed from other end and
7494 			 * q_next could be a read queue.
7495 			 */
7496 			qp = _OTHERQ(prev_wq->q_next);
7497 			while (qp && qp->q_nfsrv != qp) {
7498 				qp->q_nfsrv = rnew;
7499 				qp = backq(qp);
7500 			}
7501 			rnew->q_nfsrv = rnew;
7502 		} else
7503 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7504 
7505 		/* set up write side q_nfsrv pointer */
7506 		if (wnew->q_qinfo->qi_srvp) {
7507 			wnew->q_nfsrv = wnew;
7508 
7509 			/*
7510 			 * For insertion, need to update nfsrv of the modules
7511 			 * above which do not have a service routine.
7512 			 */
7513 			if (rnew->q_flag & _QINSERTING) {
7514 				for (qp = prev_wq;
7515 				    qp != NULL && qp->q_nfsrv != qp;
7516 				    qp = backq(qp)) {
7517 					qp->q_nfsrv = wnew->q_nfsrv;
7518 				}
7519 			}
7520 		} else {
7521 			if (prev_wq->q_next == prev_rq)
7522 				/*
7523 				 * Since prev_wq/prev_rq are the middle of a
7524 				 * fifo, wnew/rnew will also be the middle of
7525 				 * a fifo and wnew's nfsrv is same as rnew's.
7526 				 */
7527 				wnew->q_nfsrv = rnew->q_nfsrv;
7528 			else
7529 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7530 		}
7531 	}
7532 }
7533 
7534 /*
7535  * Reset the forward service procedure pointer; called at remove-time.
7536  */
7537 void
7538 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7539 {
7540 	queue_t *tmp_qp;
7541 
7542 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7543 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7544 		for (tmp_qp = backq(wqp);
7545 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7546 		    tmp_qp = backq(tmp_qp)) {
7547 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7548 		}
7549 	}
7550 
7551 	/* reset the read side q_nfsrv pointer */
7552 	if (rqp->q_qinfo->qi_srvp) {
7553 		if (wqp->q_next) {	/* non-driver case */
7554 			tmp_qp = _OTHERQ(wqp->q_next);
7555 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7556 				/* Note that rqp->q_next cannot be NULL */
7557 				ASSERT(rqp->q_next != NULL);
7558 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7559 				tmp_qp = backq(tmp_qp);
7560 			}
7561 		}
7562 	}
7563 }
7564 
7565 /*
7566  * This routine should be called after all stream geometry changes to update
7567  * the stream head cached struio() rd/wr queue pointers. Note must be called
7568  * with the streamlock()ed.
7569  *
7570  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7571  *	 an explicit synchronous barrier module queue. That is, a queue that
7572  *	 has specified a struio() type.
7573  */
7574 static void
7575 strsetuio(stdata_t *stp)
7576 {
7577 	queue_t *wrq;
7578 
7579 	if (stp->sd_flag & STPLEX) {
7580 		/*
7581 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7582 		 */
7583 		stp->sd_struiowrq = NULL;
7584 		stp->sd_struiordq = NULL;
7585 		return;
7586 	}
7587 	/*
7588 	 * Scan the write queue(s) while synchronous
7589 	 * until we find a qinfo uio type specified.
7590 	 */
7591 	wrq = stp->sd_wrq->q_next;
7592 	while (wrq) {
7593 		if (wrq->q_struiot == STRUIOT_NONE) {
7594 			wrq = 0;
7595 			break;
7596 		}
7597 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7598 			break;
7599 		if (! _SAMESTR(wrq)) {
7600 			wrq = 0;
7601 			break;
7602 		}
7603 		wrq = wrq->q_next;
7604 	}
7605 	stp->sd_struiowrq = wrq;
7606 	/*
7607 	 * Scan the read queue(s) while synchronous
7608 	 * until we find a qinfo uio type specified.
7609 	 */
7610 	wrq = stp->sd_wrq->q_next;
7611 	while (wrq) {
7612 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7613 			wrq = 0;
7614 			break;
7615 		}
7616 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7617 			break;
7618 		if (! _SAMESTR(wrq)) {
7619 			wrq = 0;
7620 			break;
7621 		}
7622 		wrq = wrq->q_next;
7623 	}
7624 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7625 }
7626 
7627 /*
7628  * pass_wput, unblocks the passthru queues, so that
7629  * messages can arrive at muxs lower read queue, before
7630  * I_LINK/I_UNLINK is acked/nacked.
7631  */
7632 static void
7633 pass_wput(queue_t *q, mblk_t *mp)
7634 {
7635 	syncq_t *sq;
7636 
7637 	sq = _RD(q)->q_syncq;
7638 	if (sq->sq_flags & SQ_BLOCKED)
7639 		unblocksq(sq, SQ_BLOCKED, 0);
7640 	putnext(q, mp);
7641 }
7642 
7643 /*
7644  * Set up queues for the link/unlink.
7645  * Create a new queue and block it and then insert it
7646  * below the stream head on the lower stream.
7647  * This prevents any messages from arriving during the setq
7648  * as well as while the mux is processing the LINK/I_UNLINK.
7649  * The blocked passq is unblocked once the LINK/I_UNLINK has
7650  * been acked or nacked or if a message is generated and sent
7651  * down muxs write put procedure.
7652  * see pass_wput().
7653  *
7654  * After the new queue is inserted, all messages coming from below are
7655  * blocked. The call to strlock will ensure that all activity in the stream head
7656  * read queue syncq is stopped (sq_count drops to zero).
7657  */
7658 static queue_t *
7659 link_addpassthru(stdata_t *stpdown)
7660 {
7661 	queue_t *passq;
7662 	sqlist_t sqlist;
7663 
7664 	passq = allocq();
7665 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7666 	/* setq might sleep in allocator - avoid holding locks. */
7667 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7668 	    SQ_CI|SQ_CO, B_FALSE);
7669 	claimq(passq);
7670 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7671 	insertq(STREAM(passq), passq);
7672 
7673 	/*
7674 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7675 	 * since we are going to change q_ptr in the stream head.  Note that
7676 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7677 	 */
7678 	sqlist.sqlist_head = NULL;
7679 	sqlist.sqlist_index = 0;
7680 	sqlist.sqlist_size = sizeof (sqlist_t);
7681 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7682 	strlock(stpdown, &sqlist);
7683 	strunlock(stpdown, &sqlist);
7684 
7685 	releaseq(passq);
7686 	return (passq);
7687 }
7688 
7689 /*
7690  * Let messages flow up into the mux by removing
7691  * the passq.
7692  */
7693 static void
7694 link_rempassthru(queue_t *passq)
7695 {
7696 	claimq(passq);
7697 	removeq(passq);
7698 	releaseq(passq);
7699 	freeq(passq);
7700 }
7701 
7702 /*
7703  * Wait for the condition variable pointed to by `cvp' to be signaled,
7704  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7705  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7706  * then the wait will be non-interruptible.
7707  *
7708  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7709  */
7710 clock_t
7711 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7712 {
7713 	clock_t ret, now, tick;
7714 
7715 	if (tim < 0) {
7716 		if (nosigs) {
7717 			cv_wait(cvp, mp);
7718 			ret = 1;
7719 		} else {
7720 			ret = cv_wait_sig(cvp, mp);
7721 		}
7722 	} else if (tim > 0) {
7723 		/*
7724 		 * convert milliseconds to clock ticks
7725 		 */
7726 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7727 		time_to_wait(&now, tick);
7728 		if (nosigs) {
7729 			ret = cv_timedwait(cvp, mp, now);
7730 		} else {
7731 			ret = cv_timedwait_sig(cvp, mp, now);
7732 		}
7733 	} else {
7734 		ret = -1;
7735 	}
7736 	return (ret);
7737 }
7738 
7739 /*
7740  * Wait until the stream head can determine if it is at the mark but
7741  * don't wait forever to prevent a race condition between the "mark" state
7742  * in the stream head and any mark state in the caller/user of this routine.
7743  *
7744  * This is used by sockets and for a socket it would be incorrect
7745  * to return a failure for SIOCATMARK when there is no data in the receive
7746  * queue and the marked urgent data is traveling up the stream.
7747  *
7748  * This routine waits until the mark is known by waiting for one of these
7749  * three events:
7750  *	The stream head read queue becoming non-empty (including an EOF)
7751  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7752  *	The STRNOTATMARK flag being set (which indicates that the transport
7753  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7754  *	the mark).
7755  *
7756  * The routine returns 1 if the stream is at the mark; 0 if it can
7757  * be determined that the stream is not at the mark.
7758  * If the wait times out and it can't determine
7759  * whether or not the stream might be at the mark the routine will return -1.
7760  *
7761  * Note: This routine should only be used when a mark is pending i.e.,
7762  * in the socket case the SIGURG has been posted.
7763  * Note2: This can not wakeup just because synchronous streams indicate
7764  * that data is available since it is not possible to use the synchronous
7765  * streams interfaces to determine the b_flag value for the data queued below
7766  * the stream head.
7767  */
7768 int
7769 strwaitmark(vnode_t *vp)
7770 {
7771 	struct stdata *stp = vp->v_stream;
7772 	queue_t *rq = _RD(stp->sd_wrq);
7773 	int mark;
7774 
7775 	mutex_enter(&stp->sd_lock);
7776 	while (rq->q_first == NULL &&
7777 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7778 		stp->sd_flag |= RSLEEP;
7779 
7780 		/* Wait for 100 milliseconds for any state change. */
7781 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7782 			mutex_exit(&stp->sd_lock);
7783 			return (-1);
7784 		}
7785 	}
7786 	if (stp->sd_flag & STRATMARK)
7787 		mark = 1;
7788 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7789 		mark = 1;
7790 	else
7791 		mark = 0;
7792 
7793 	mutex_exit(&stp->sd_lock);
7794 	return (mark);
7795 }
7796 
7797 /*
7798  * Set a read side error. If persist is set change the socket error
7799  * to persistent. If errfunc is set install the function as the exported
7800  * error handler.
7801  */
7802 void
7803 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7804 {
7805 	struct stdata *stp = vp->v_stream;
7806 
7807 	mutex_enter(&stp->sd_lock);
7808 	stp->sd_rerror = error;
7809 	if (error == 0 && errfunc == NULL)
7810 		stp->sd_flag &= ~STRDERR;
7811 	else
7812 		stp->sd_flag |= STRDERR;
7813 	if (persist) {
7814 		stp->sd_flag &= ~STRDERRNONPERSIST;
7815 	} else {
7816 		stp->sd_flag |= STRDERRNONPERSIST;
7817 	}
7818 	stp->sd_rderrfunc = errfunc;
7819 	if (error != 0 || errfunc != NULL) {
7820 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7821 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7822 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7823 
7824 		mutex_exit(&stp->sd_lock);
7825 		pollwakeup(&stp->sd_pollist, POLLERR);
7826 		mutex_enter(&stp->sd_lock);
7827 
7828 		if (stp->sd_sigflags & S_ERROR)
7829 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7830 	}
7831 	mutex_exit(&stp->sd_lock);
7832 }
7833 
7834 /*
7835  * Set a write side error. If persist is set change the socket error
7836  * to persistent.
7837  */
7838 void
7839 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7840 {
7841 	struct stdata *stp = vp->v_stream;
7842 
7843 	mutex_enter(&stp->sd_lock);
7844 	stp->sd_werror = error;
7845 	if (error == 0 && errfunc == NULL)
7846 		stp->sd_flag &= ~STWRERR;
7847 	else
7848 		stp->sd_flag |= STWRERR;
7849 	if (persist) {
7850 		stp->sd_flag &= ~STWRERRNONPERSIST;
7851 	} else {
7852 		stp->sd_flag |= STWRERRNONPERSIST;
7853 	}
7854 	stp->sd_wrerrfunc = errfunc;
7855 	if (error != 0 || errfunc != NULL) {
7856 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7857 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7858 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7859 
7860 		mutex_exit(&stp->sd_lock);
7861 		pollwakeup(&stp->sd_pollist, POLLERR);
7862 		mutex_enter(&stp->sd_lock);
7863 
7864 		if (stp->sd_sigflags & S_ERROR)
7865 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7866 	}
7867 	mutex_exit(&stp->sd_lock);
7868 }
7869 
7870 /*
7871  * Make the stream return 0 (EOF) when all data has been read.
7872  * No effect on write side.
7873  */
7874 void
7875 strseteof(vnode_t *vp, int eof)
7876 {
7877 	struct stdata *stp = vp->v_stream;
7878 
7879 	mutex_enter(&stp->sd_lock);
7880 	if (!eof) {
7881 		stp->sd_flag &= ~STREOF;
7882 		mutex_exit(&stp->sd_lock);
7883 		return;
7884 	}
7885 	stp->sd_flag |= STREOF;
7886 	if (stp->sd_flag & RSLEEP) {
7887 		stp->sd_flag &= ~RSLEEP;
7888 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
7889 	}
7890 
7891 	mutex_exit(&stp->sd_lock);
7892 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
7893 	mutex_enter(&stp->sd_lock);
7894 
7895 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
7896 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
7897 	mutex_exit(&stp->sd_lock);
7898 }
7899 
7900 void
7901 strflushrq(vnode_t *vp, int flag)
7902 {
7903 	struct stdata *stp = vp->v_stream;
7904 
7905 	mutex_enter(&stp->sd_lock);
7906 	flushq(_RD(stp->sd_wrq), flag);
7907 	mutex_exit(&stp->sd_lock);
7908 }
7909 
7910 void
7911 strsetrputhooks(vnode_t *vp, uint_t flags,
7912 		msgfunc_t protofunc, msgfunc_t miscfunc)
7913 {
7914 	struct stdata *stp = vp->v_stream;
7915 
7916 	mutex_enter(&stp->sd_lock);
7917 
7918 	if (protofunc == NULL)
7919 		stp->sd_rprotofunc = strrput_proto;
7920 	else
7921 		stp->sd_rprotofunc = protofunc;
7922 
7923 	if (miscfunc == NULL)
7924 		stp->sd_rmiscfunc = strrput_misc;
7925 	else
7926 		stp->sd_rmiscfunc = miscfunc;
7927 
7928 	if (flags & SH_CONSOL_DATA)
7929 		stp->sd_rput_opt |= SR_CONSOL_DATA;
7930 	else
7931 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
7932 
7933 	if (flags & SH_SIGALLDATA)
7934 		stp->sd_rput_opt |= SR_SIGALLDATA;
7935 	else
7936 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
7937 
7938 	if (flags & SH_IGN_ZEROLEN)
7939 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
7940 	else
7941 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
7942 
7943 	mutex_exit(&stp->sd_lock);
7944 }
7945 
7946 void
7947 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
7948 {
7949 	struct stdata *stp = vp->v_stream;
7950 
7951 	mutex_enter(&stp->sd_lock);
7952 	stp->sd_closetime = closetime;
7953 
7954 	if (flags & SH_SIGPIPE)
7955 		stp->sd_wput_opt |= SW_SIGPIPE;
7956 	else
7957 		stp->sd_wput_opt &= ~SW_SIGPIPE;
7958 	if (flags & SH_RECHECK_ERR)
7959 		stp->sd_wput_opt |= SW_RECHECK_ERR;
7960 	else
7961 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
7962 
7963 	mutex_exit(&stp->sd_lock);
7964 }
7965 
7966 /* Used within framework when the queue is already locked */
7967 void
7968 qenable_locked(queue_t *q)
7969 {
7970 	stdata_t *stp = STREAM(q);
7971 
7972 	ASSERT(MUTEX_HELD(QLOCK(q)));
7973 
7974 	if (!q->q_qinfo->qi_srvp)
7975 		return;
7976 
7977 	/*
7978 	 * Do not place on run queue if already enabled or closing.
7979 	 */
7980 	if (q->q_flag & (QWCLOSE|QENAB))
7981 		return;
7982 
7983 	/*
7984 	 * mark queue enabled and place on run list if it is not already being
7985 	 * serviced. If it is serviced, the runservice() function will detect
7986 	 * that QENAB is set and call service procedure before clearing
7987 	 * QINSERVICE flag.
7988 	 */
7989 	q->q_flag |= QENAB;
7990 	if (q->q_flag & QINSERVICE)
7991 		return;
7992 
7993 	/* Record the time of qenable */
7994 	q->q_qtstamp = lbolt;
7995 
7996 	/*
7997 	 * Put the queue in the stp list and schedule it for background
7998 	 * processing if it is not already scheduled or if stream head does not
7999 	 * intent to process it in the foreground later by setting
8000 	 * STRS_WILLSERVICE flag.
8001 	 */
8002 	mutex_enter(&stp->sd_qlock);
8003 	/*
8004 	 * If there are already something on the list, stp flags should show
8005 	 * intention to drain it.
8006 	 */
8007 	IMPLY(STREAM_NEEDSERVICE(stp),
8008 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8009 
8010 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8011 	stp->sd_nqueues++;
8012 
8013 	/*
8014 	 * If no one will drain this stream we are the first producer and
8015 	 * need to schedule it for background thread.
8016 	 */
8017 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8018 		/*
8019 		 * No one will service this stream later, so we have to
8020 		 * schedule it now.
8021 		 */
8022 		STRSTAT(stenables);
8023 		stp->sd_svcflags |= STRS_SCHEDULED;
8024 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8025 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8026 
8027 		if (stp->sd_servid == NULL) {
8028 			/*
8029 			 * Task queue failed so fail over to the backup
8030 			 * servicing thread.
8031 			 */
8032 			STRSTAT(taskqfails);
8033 			/*
8034 			 * It is safe to clear STRS_SCHEDULED flag because it
8035 			 * was set by this thread above.
8036 			 */
8037 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8038 
8039 			/*
8040 			 * Failover scheduling is protected by service_queue
8041 			 * lock.
8042 			 */
8043 			mutex_enter(&service_queue);
8044 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8045 			ASSERT(q->q_link == NULL);
8046 			/*
8047 			 * Append the queue to qhead/qtail list.
8048 			 */
8049 			if (qhead == NULL)
8050 				qhead = q;
8051 			else
8052 				qtail->q_link = q;
8053 			qtail = q;
8054 			/*
8055 			 * Clear stp queue list.
8056 			 */
8057 			stp->sd_qhead = stp->sd_qtail = NULL;
8058 			stp->sd_nqueues = 0;
8059 			/*
8060 			 * Wakeup background queue processing thread.
8061 			 */
8062 			cv_signal(&services_to_run);
8063 			mutex_exit(&service_queue);
8064 		}
8065 	}
8066 	mutex_exit(&stp->sd_qlock);
8067 }
8068 
8069 static void
8070 queue_service(queue_t *q)
8071 {
8072 	/*
8073 	 * The queue in the list should have
8074 	 * QENAB flag set and should not have
8075 	 * QINSERVICE flag set. QINSERVICE is
8076 	 * set when the queue is dequeued and
8077 	 * qenable_locked doesn't enqueue a
8078 	 * queue with QINSERVICE set.
8079 	 */
8080 
8081 	ASSERT(!(q->q_flag & QINSERVICE));
8082 	ASSERT((q->q_flag & QENAB));
8083 	mutex_enter(QLOCK(q));
8084 	q->q_flag &= ~QENAB;
8085 	q->q_flag |= QINSERVICE;
8086 	mutex_exit(QLOCK(q));
8087 	runservice(q);
8088 }
8089 
8090 static void
8091 syncq_service(syncq_t *sq)
8092 {
8093 	STRSTAT(syncqservice);
8094 	mutex_enter(SQLOCK(sq));
8095 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8096 	ASSERT(sq->sq_servcount != 0);
8097 	ASSERT(sq->sq_next == NULL);
8098 
8099 	/* if we came here from the background thread, clear the flag */
8100 	if (sq->sq_svcflags & SQ_BGTHREAD)
8101 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8102 
8103 	/* let drain_syncq know that it's being called in the background */
8104 	sq->sq_svcflags |= SQ_SERVICE;
8105 	drain_syncq(sq);
8106 }
8107 
8108 static void
8109 qwriter_outer_service(syncq_t *outer)
8110 {
8111 	/*
8112 	 * Note that SQ_WRITER is used on the outer perimeter
8113 	 * to signal that a qwriter(OUTER) is either investigating
8114 	 * running or that it is actually running a function.
8115 	 */
8116 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8117 
8118 	/*
8119 	 * All inner syncq are empty and have SQ_WRITER set
8120 	 * to block entering the outer perimeter.
8121 	 *
8122 	 * We do not need to explicitly call write_now since
8123 	 * outer_exit does it for us.
8124 	 */
8125 	outer_exit(outer);
8126 }
8127 
8128 static void
8129 mblk_free(mblk_t *mp)
8130 {
8131 	dblk_t *dbp = mp->b_datap;
8132 	frtn_t *frp = dbp->db_frtnp;
8133 
8134 	mp->b_next = NULL;
8135 	if (dbp->db_fthdr != NULL)
8136 		str_ftfree(dbp);
8137 
8138 	ASSERT(dbp->db_fthdr == NULL);
8139 	frp->free_func(frp->free_arg);
8140 	ASSERT(dbp->db_mblk == mp);
8141 
8142 	if (dbp->db_credp != NULL) {
8143 		crfree(dbp->db_credp);
8144 		dbp->db_credp = NULL;
8145 	}
8146 	dbp->db_cpid = -1;
8147 	dbp->db_struioflag = 0;
8148 	dbp->db_struioun.cksum.flags = 0;
8149 
8150 	kmem_cache_free(dbp->db_cache, dbp);
8151 }
8152 
8153 /*
8154  * Background processing of the stream queue list.
8155  */
8156 static void
8157 stream_service(stdata_t *stp)
8158 {
8159 	queue_t *q;
8160 
8161 	mutex_enter(&stp->sd_qlock);
8162 
8163 	STR_SERVICE(stp, q);
8164 
8165 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8166 	stp->sd_servid = NULL;
8167 	cv_signal(&stp->sd_qcv);
8168 	mutex_exit(&stp->sd_qlock);
8169 }
8170 
8171 /*
8172  * Foreground processing of the stream queue list.
8173  */
8174 void
8175 stream_runservice(stdata_t *stp)
8176 {
8177 	queue_t *q;
8178 
8179 	mutex_enter(&stp->sd_qlock);
8180 	STRSTAT(rservice);
8181 	/*
8182 	 * We are going to drain this stream queue list, so qenable_locked will
8183 	 * not schedule it until we finish.
8184 	 */
8185 	stp->sd_svcflags |= STRS_WILLSERVICE;
8186 
8187 	STR_SERVICE(stp, q);
8188 
8189 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8190 	mutex_exit(&stp->sd_qlock);
8191 	/*
8192 	 * Help backup background thread to drain the qhead/qtail list.
8193 	 */
8194 	while (qhead != NULL) {
8195 		STRSTAT(qhelps);
8196 		mutex_enter(&service_queue);
8197 		DQ(q, qhead, qtail, q_link);
8198 		mutex_exit(&service_queue);
8199 		if (q != NULL)
8200 			queue_service(q);
8201 	}
8202 }
8203 
8204 void
8205 stream_willservice(stdata_t *stp)
8206 {
8207 	mutex_enter(&stp->sd_qlock);
8208 	stp->sd_svcflags |= STRS_WILLSERVICE;
8209 	mutex_exit(&stp->sd_qlock);
8210 }
8211 
8212 /*
8213  * Replace the cred currently in the mblk with a different one.
8214  */
8215 void
8216 mblk_setcred(mblk_t *mp, cred_t *cr)
8217 {
8218 	cred_t *ocr = DB_CRED(mp);
8219 
8220 	ASSERT(cr != NULL);
8221 
8222 	if (cr != ocr) {
8223 		crhold(mp->b_datap->db_credp = cr);
8224 		if (ocr != NULL)
8225 			crfree(ocr);
8226 	}
8227 }
8228 
8229 int
8230 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8231     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8232     uint32_t flags, int km_flags)
8233 {
8234 	int rc = 0;
8235 
8236 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8237 	if (mp->b_datap->db_type == M_DATA) {
8238 		/* Associate values for M_DATA type */
8239 		mp->b_datap->db_cksumstart = (intptr_t)start;
8240 		mp->b_datap->db_cksumstuff = (intptr_t)stuff;
8241 		mp->b_datap->db_cksumend = (intptr_t)end;
8242 		mp->b_datap->db_struioun.cksum.flags = flags;
8243 		mp->b_datap->db_cksum16 = (uint16_t)value;
8244 
8245 	} else {
8246 		pattrinfo_t pa_info;
8247 
8248 		ASSERT(mmd != NULL);
8249 
8250 		pa_info.type = PATTR_HCKSUM;
8251 		pa_info.len = sizeof (pattr_hcksum_t);
8252 
8253 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8254 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8255 
8256 			hck->hcksum_start_offset = start;
8257 			hck->hcksum_stuff_offset = stuff;
8258 			hck->hcksum_end_offset = end;
8259 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8260 			hck->hcksum_flags = flags;
8261 		}
8262 	}
8263 	return (rc);
8264 }
8265 
8266 void
8267 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8268     uint32_t *start, uint32_t *stuff, uint32_t *end,
8269     uint32_t *value, uint32_t *flags)
8270 {
8271 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8272 	if (mp->b_datap->db_type == M_DATA) {
8273 		if (flags != NULL) {
8274 			*flags = mp->b_datap->db_struioun.cksum.flags;
8275 			if (*flags & HCK_PARTIALCKSUM) {
8276 				if (start != NULL)
8277 					*start = (uint32_t)
8278 					    mp->b_datap->db_cksumstart;
8279 				if (stuff != NULL)
8280 					*stuff = (uint32_t)
8281 					    mp->b_datap->db_cksumstuff;
8282 				if (end != NULL)
8283 					*end =
8284 					    (uint32_t)mp->b_datap->db_cksumend;
8285 				if (value != NULL)
8286 					*value =
8287 					    (uint32_t)mp->b_datap->db_cksum16;
8288 			}
8289 		}
8290 	} else {
8291 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8292 
8293 		ASSERT(mmd != NULL);
8294 
8295 		/* get hardware checksum attribute */
8296 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8297 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8298 
8299 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8300 			if (flags != NULL)
8301 				*flags = hck->hcksum_flags;
8302 			if (start != NULL)
8303 				*start = hck->hcksum_start_offset;
8304 			if (stuff != NULL)
8305 				*stuff = hck->hcksum_stuff_offset;
8306 			if (end != NULL)
8307 				*end = hck->hcksum_end_offset;
8308 			if (value != NULL)
8309 				*value = (uint32_t)
8310 				    hck->hcksum_cksum_val.inet_cksum;
8311 		}
8312 	}
8313 }
8314 
8315 /*
8316  * Checksum buffer *bp for len bytes with psum partial checksum,
8317  * or 0 if none, and return the 16 bit partial checksum.
8318  */
8319 unsigned
8320 bcksum(uchar_t *bp, int len, unsigned int psum)
8321 {
8322 	int odd = len & 1;
8323 	extern unsigned int ip_ocsum();
8324 
8325 	if (((intptr_t)bp & 1) == 0 && !odd) {
8326 		/*
8327 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8328 		 */
8329 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8330 	}
8331 	if (((intptr_t)bp & 1) != 0) {
8332 		/*
8333 		 * Bp isn't 16 bit aligned.
8334 		 */
8335 		unsigned int tsum;
8336 
8337 #ifdef _LITTLE_ENDIAN
8338 		psum += *bp;
8339 #else
8340 		psum += *bp << 8;
8341 #endif
8342 		len--;
8343 		bp++;
8344 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8345 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8346 		if (len & 1) {
8347 			bp += len - 1;
8348 #ifdef _LITTLE_ENDIAN
8349 			psum += *bp << 8;
8350 #else
8351 			psum += *bp;
8352 #endif
8353 		}
8354 	} else {
8355 		/*
8356 		 * Bp is 16 bit aligned.
8357 		 */
8358 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8359 		if (odd) {
8360 			bp += len - 1;
8361 #ifdef _LITTLE_ENDIAN
8362 			psum += *bp;
8363 #else
8364 			psum += *bp << 8;
8365 #endif
8366 		}
8367 	}
8368 	/*
8369 	 * Normalize psum to 16 bits before returning the new partial
8370 	 * checksum. The max psum value before normalization is 0x3FDFE.
8371 	 */
8372 	return ((psum >> 16) + (psum & 0xFFFF));
8373 }
8374 
8375 boolean_t
8376 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8377 {
8378 	boolean_t rc;
8379 
8380 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8381 	if (DB_TYPE(mp) == M_DATA) {
8382 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8383 	} else {
8384 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8385 
8386 		ASSERT(mmd != NULL);
8387 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8388 	}
8389 	return (rc);
8390 }
8391 
8392 void
8393 freemsgchain(mblk_t *mp)
8394 {
8395 	mblk_t	*next;
8396 
8397 	while (mp != NULL) {
8398 		next = mp->b_next;
8399 		mp->b_next = NULL;
8400 
8401 		freemsg(mp);
8402 		mp = next;
8403 	}
8404 }
8405 
8406 mblk_t *
8407 copymsgchain(mblk_t *mp)
8408 {
8409 	mblk_t	*nmp = NULL;
8410 	mblk_t	**nmpp = &nmp;
8411 
8412 	for (; mp != NULL; mp = mp->b_next) {
8413 		if ((*nmpp = copymsg(mp)) == NULL) {
8414 			freemsgchain(nmp);
8415 			return (NULL);
8416 		}
8417 
8418 		nmpp = &((*nmpp)->b_next);
8419 	}
8420 
8421 	return (nmp);
8422 }
8423 
8424 /* NOTE: Do not add code after this point. */
8425 #undef QLOCK
8426 
8427 /*
8428  * replacement for QLOCK macro for those that can't use it.
8429  */
8430 kmutex_t *
8431 QLOCK(queue_t *q)
8432 {
8433 	return (&(q)->q_lock);
8434 }
8435 
8436 /*
8437  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8438  */
8439 #undef runqueues
8440 void
8441 runqueues(void)
8442 {
8443 }
8444 
8445 #undef queuerun
8446 void
8447 queuerun(void)
8448 {
8449 }
8450