1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 62 void *segkp_lwp; /* cookie for pool of segkp resources */ 63 64 /* 65 * Create a thread that appears to be stopped at sys_rtt. 66 */ 67 klwp_t * 68 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 69 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 70 { 71 klwp_t *lwp = NULL; 72 kthread_t *t; 73 kthread_t *tx; 74 cpupart_t *oldpart = NULL; 75 size_t stksize; 76 caddr_t lwpdata = NULL; 77 processorid_t binding; 78 int err = 0; 79 kproject_t *oldkpj, *newkpj; 80 void *bufp = NULL; 81 klwp_t *curlwp = ttolwp(curthread); 82 lwpent_t *lep; 83 lwpdir_t *old_dir = NULL; 84 uint_t old_dirsz = 0; 85 lwpdir_t **old_hash = NULL; 86 uint_t old_hashsz = 0; 87 int i; 88 int rctlfail = 0; 89 90 mutex_enter(&p->p_lock); 91 mutex_enter(&p->p_zone->zone_nlwps_lock); 92 /* 93 * don't enforce rctl limits on system processes 94 */ 95 if (cid != syscid) { 96 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 97 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 98 1, 0) & RCT_DENY) 99 rctlfail = 1; 100 if (p->p_task->tk_proj->kpj_nlwps >= 101 p->p_task->tk_proj->kpj_nlwps_ctl) 102 if (rctl_test(rc_project_nlwps, 103 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 104 & RCT_DENY) 105 rctlfail = 1; 106 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 107 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 108 1, 0) & RCT_DENY) 109 rctlfail = 1; 110 } 111 if (rctlfail) { 112 mutex_exit(&p->p_zone->zone_nlwps_lock); 113 mutex_exit(&p->p_lock); 114 return (NULL); 115 } 116 p->p_task->tk_nlwps++; 117 p->p_task->tk_proj->kpj_nlwps++; 118 p->p_zone->zone_nlwps++; 119 mutex_exit(&p->p_zone->zone_nlwps_lock); 120 mutex_exit(&p->p_lock); 121 122 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 123 stksize = lwp_default_stksize; 124 125 /* 126 * Try to reclaim a <lwp,stack> from 'deathrow' 127 */ 128 if (stksize == lwp_default_stksize) { 129 if (lwp_reapcnt > 0) { 130 mutex_enter(&reaplock); 131 if ((t = lwp_deathrow) != NULL) { 132 ASSERT(t->t_swap); 133 lwp_deathrow = t->t_forw; 134 lwp_reapcnt--; 135 lwpdata = t->t_swap; 136 lwp = t->t_lwp; 137 } 138 mutex_exit(&reaplock); 139 if (t) { 140 t->t_swap = NULL; 141 lwp_stk_fini(t->t_lwp); 142 t->t_lwp = NULL; 143 t->t_forw = NULL; 144 thread_free(t); 145 } 146 } 147 if (lwpdata == NULL && 148 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 149 mutex_enter(&p->p_lock); 150 mutex_enter(&p->p_zone->zone_nlwps_lock); 151 p->p_task->tk_nlwps--; 152 p->p_task->tk_proj->kpj_nlwps--; 153 p->p_zone->zone_nlwps--; 154 mutex_exit(&p->p_zone->zone_nlwps_lock); 155 mutex_exit(&p->p_lock); 156 return (NULL); 157 } 158 } else { 159 stksize = roundup(stksize, PAGESIZE); 160 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 161 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 162 mutex_enter(&p->p_lock); 163 mutex_enter(&p->p_zone->zone_nlwps_lock); 164 p->p_task->tk_nlwps--; 165 p->p_task->tk_proj->kpj_nlwps--; 166 p->p_zone->zone_nlwps--; 167 mutex_exit(&p->p_zone->zone_nlwps_lock); 168 mutex_exit(&p->p_lock); 169 return (NULL); 170 } 171 } 172 173 /* 174 * Create a thread, initializing the stack pointer 175 */ 176 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 177 178 t->t_swap = lwpdata; /* Start of page-able data */ 179 if (lwp == NULL) 180 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 181 bzero(lwp, sizeof (*lwp)); 182 t->t_lwp = lwp; 183 184 t->t_hold = *smask; 185 lwp->lwp_thread = t; 186 lwp->lwp_procp = p; 187 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 188 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 189 lwp->lwp_childstksz = curlwp->lwp_childstksz; 190 191 t->t_stk = lwp_stk_init(lwp, t->t_stk); 192 thread_load(t, proc, arg, len); 193 194 /* 195 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 196 */ 197 if (timerisset(&p->p_rprof_timer.it_value)) 198 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 199 200 if (cid != NOCLASS) 201 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 202 203 /* 204 * Allocate an lwp directory entry for the new lwp. 205 */ 206 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 207 208 mutex_enter(&p->p_lock); 209 grow: 210 /* 211 * Grow the lwp (thread) directory and lwpid hash table if necessary. 212 * A note on the growth algorithm: 213 * The new lwp directory size is computed as: 214 * new = 2 * old + 2 215 * Starting with an initial size of 2 (see exec_common()), 216 * this yields numbers that are a power of two minus 2: 217 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 218 * The size of the lwpid hash table must be a power of two 219 * and must be commensurate in size with the lwp directory 220 * so that hash bucket chains remain short. Therefore, 221 * the lwpid hash table size is computed as: 222 * hashsz = (dirsz + 2) / 2 223 * which leads to these hash table sizes corresponding to 224 * the above directory sizes: 225 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 226 */ 227 while (p->p_lwpfree == NULL) { 228 uint_t dirsz = p->p_lwpdir_sz; 229 uint_t new_dirsz; 230 uint_t new_hashsz; 231 lwpdir_t *new_dir; 232 lwpdir_t *ldp; 233 lwpdir_t **new_hash; 234 235 mutex_exit(&p->p_lock); 236 237 if (old_dir != NULL) { 238 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 239 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 240 old_dir = NULL; 241 old_dirsz = 0; 242 old_hash = NULL; 243 old_hashsz = 0; 244 } 245 new_dirsz = 2 * dirsz + 2; 246 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 247 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 248 ldp->ld_next = ldp + 1; 249 new_hashsz = (new_dirsz + 2) / 2; 250 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 251 KM_SLEEP); 252 253 mutex_enter(&p->p_lock); 254 if (p == curproc) 255 prbarrier(p); 256 257 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 258 /* 259 * Someone else beat us to it or some lwp exited. 260 * Set up to free our memory and take a lap. 261 */ 262 old_dir = new_dir; 263 old_dirsz = new_dirsz; 264 old_hash = new_hash; 265 old_hashsz = new_hashsz; 266 } else { 267 old_dir = p->p_lwpdir; 268 old_dirsz = p->p_lwpdir_sz; 269 old_hash = p->p_tidhash; 270 old_hashsz = p->p_tidhash_sz; 271 p->p_lwpdir = new_dir; 272 p->p_lwpfree = new_dir; 273 p->p_lwpdir_sz = new_dirsz; 274 p->p_tidhash = new_hash; 275 p->p_tidhash_sz = new_hashsz; 276 /* 277 * We simply hash in all of the old directory entries. 278 * This works because the old directory has no empty 279 * slots and the new hash table starts out empty. 280 * This reproduces the original directory ordering 281 * (required for /proc directory semantics). 282 */ 283 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 284 lwp_hash_in(p, ldp->ld_entry); 285 /* 286 * Defer freeing memory until we drop p->p_lock, 287 */ 288 } 289 } 290 291 /* 292 * Block the process against /proc while we manipulate p->p_tlist, 293 * unless lwp_create() was called by /proc for the PCAGENT operation. 294 * We want to do this early enough so that we don't drop p->p_lock 295 * until the thread is put on the p->p_tlist. 296 */ 297 if (p == curproc) { 298 prbarrier(p); 299 /* 300 * If the current lwp has been requested to stop, do so now. 301 * Otherwise we have a race condition between /proc attempting 302 * to stop the process and this thread creating a new lwp 303 * that was not seen when the /proc PCSTOP request was issued. 304 * We rely on stop() to call prbarrier(p) before returning. 305 */ 306 while ((curthread->t_proc_flag & TP_PRSTOP) && 307 !ttolwp(curthread)->lwp_nostop) 308 stop(PR_REQUESTED, 0); 309 310 /* 311 * If process is exiting, there could be a race between 312 * the agent lwp creation and the new lwp currently being 313 * created. So to prevent this race lwp creation is failed 314 * if the process is exiting. 315 */ 316 if (p->p_flag & (SEXITLWPS|SKILLED)) { 317 err = 1; 318 goto error; 319 } 320 321 /* 322 * Since we might have dropped p->p_lock, the 323 * lwp directory free list might have changed. 324 */ 325 if (p->p_lwpfree == NULL) 326 goto grow; 327 } 328 329 kpreempt_disable(); /* can't grab cpu_lock here */ 330 331 /* 332 * Inherit processor and processor set bindings from curthread, 333 * unless we're creating a new kernel process, in which case 334 * clear all bindings. 335 */ 336 if (cid == syscid) { 337 t->t_bind_cpu = binding = PBIND_NONE; 338 t->t_cpupart = oldpart = &cp_default; 339 t->t_bind_pset = PS_NONE; 340 } else { 341 binding = curthread->t_bind_cpu; 342 t->t_bind_cpu = binding; 343 oldpart = t->t_cpupart; 344 t->t_cpupart = curthread->t_cpupart; 345 t->t_bind_pset = curthread->t_bind_pset; 346 } 347 348 /* 349 * thread_create() initializes this thread's home lgroup to the root. 350 * Choose a more suitable lgroup, since this thread is associated 351 * with an lwp. 352 */ 353 ASSERT(oldpart != NULL); 354 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 355 t->t_bound_cpu = cpu[binding]; 356 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 357 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 358 } else { 359 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 360 } 361 362 kpreempt_enable(); 363 364 /* 365 * make sure lpl points to our own partition 366 */ 367 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 368 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 369 t->t_cpupart->cp_nlgrploads); 370 371 /* 372 * If we're creating a new process, then inherit the project from our 373 * parent. If we're only creating an additional lwp then use the 374 * project pointer of the target process. 375 */ 376 if (p->p_task == NULL) 377 newkpj = ttoproj(curthread); 378 else 379 newkpj = p->p_task->tk_proj; 380 381 /* 382 * It is safe to point the thread to the new project without holding it 383 * since we're holding the target process' p_lock here and therefore 384 * we're guaranteed that it will not move to another project. 385 */ 386 oldkpj = ttoproj(t); 387 if (newkpj != oldkpj) { 388 t->t_proj = newkpj; 389 (void) project_hold(newkpj); 390 project_rele(oldkpj); 391 } 392 393 if (cid != NOCLASS) { 394 /* 395 * If the lwp is being created in the current process 396 * and matches the current thread's scheduling class, 397 * we should propagate the current thread's scheduling 398 * parameters by calling CL_FORK. Otherwise just use 399 * the defaults by calling CL_ENTERCLASS. 400 */ 401 if (p != curproc || curthread->t_cid != cid) { 402 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 403 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 404 } else { 405 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 406 err = CL_FORK(curthread, t, bufp); 407 t->t_cid = cid; 408 } 409 if (err) 410 goto error; 411 else 412 bufp = NULL; 413 } 414 415 /* 416 * If we were given an lwpid then use it, else allocate one. 417 */ 418 if (lwpid != 0) 419 t->t_tid = lwpid; 420 else { 421 /* 422 * lwp/thread id 0 is never valid; reserved for special checks. 423 * lwp/thread id 1 is reserved for the main thread. 424 * Start again at 2 when INT_MAX has been reached 425 * (id_t is a signed 32-bit integer). 426 */ 427 id_t prev_id = p->p_lwpid; /* last allocated tid */ 428 429 do { /* avoid lwpid duplication */ 430 if (p->p_lwpid == INT_MAX) { 431 p->p_flag |= SLWPWRAP; 432 p->p_lwpid = 1; 433 } 434 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 435 /* 436 * All lwpids are allocated; fail the request. 437 */ 438 err = 1; 439 goto error; 440 } 441 /* 442 * We only need to worry about colliding with an id 443 * that's already in use if this process has 444 * cycled through all available lwp ids. 445 */ 446 if ((p->p_flag & SLWPWRAP) == 0) 447 break; 448 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 449 } 450 p->p_lwpcnt++; 451 t->t_waitfor = -1; 452 453 /* 454 * Turn microstate accounting on for thread if on for process. 455 */ 456 if (p->p_flag & SMSACCT) 457 t->t_proc_flag |= TP_MSACCT; 458 459 /* 460 * If the process has watchpoints, mark the new thread as such. 461 */ 462 if (pr_watch_active(p)) 463 watch_enable(t); 464 465 /* 466 * The lwp is being created in the stopped state. 467 * We set all the necessary flags to indicate that fact here. 468 * We omit the TS_CREATE flag from t_schedflag so that the lwp 469 * cannot be set running until the caller is finished with it, 470 * even if lwp_continue() is called on it after we drop p->p_lock. 471 * When the caller is finished with the newly-created lwp, 472 * the caller must call lwp_create_done() to allow the lwp 473 * to be set running. If the TP_HOLDLWP is left set, the 474 * lwp will suspend itself after reaching system call exit. 475 */ 476 init_mstate(t, LMS_STOPPED); 477 t->t_proc_flag |= TP_HOLDLWP; 478 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 479 t->t_whystop = PR_SUSPENDED; 480 t->t_whatstop = SUSPEND_NORMAL; 481 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 482 483 /* 484 * Set system call processing flags in case tracing or profiling 485 * is set. The first system call will evaluate these and turn 486 * them off if they aren't needed. 487 */ 488 t->t_pre_sys = 1; 489 t->t_post_sys = 1; 490 491 /* 492 * Insert the new thread into the list of all threads. 493 */ 494 if ((tx = p->p_tlist) == NULL) { 495 t->t_back = t; 496 t->t_forw = t; 497 p->p_tlist = t; 498 } else { 499 t->t_forw = tx; 500 t->t_back = tx->t_back; 501 tx->t_back->t_forw = t; 502 tx->t_back = t; 503 } 504 505 /* 506 * Insert the new lwp into an lwp directory slot position 507 * and into the lwpid hash table. 508 */ 509 lep->le_thread = t; 510 lep->le_lwpid = t->t_tid; 511 lep->le_start = t->t_start; 512 lwp_hash_in(p, lep); 513 514 if (state == TS_RUN) { 515 /* 516 * We set the new lwp running immediately. 517 */ 518 t->t_proc_flag &= ~TP_HOLDLWP; 519 lwp_create_done(t); 520 } 521 522 error: 523 if (err) { 524 /* 525 * We have failed to create an lwp, so decrement the number 526 * of lwps in the task and let the lgroup load averages know 527 * that this thread isn't going to show up. 528 */ 529 kpreempt_disable(); 530 lgrp_move_thread(t, NULL, 1); 531 kpreempt_enable(); 532 533 ASSERT(MUTEX_HELD(&p->p_lock)); 534 mutex_enter(&p->p_zone->zone_nlwps_lock); 535 p->p_task->tk_nlwps--; 536 p->p_task->tk_proj->kpj_nlwps--; 537 p->p_zone->zone_nlwps--; 538 mutex_exit(&p->p_zone->zone_nlwps_lock); 539 if (cid != NOCLASS && bufp != NULL) 540 CL_FREE(cid, bufp); 541 542 mutex_exit(&p->p_lock); 543 t->t_state = TS_FREE; 544 thread_rele(t); 545 546 /* 547 * We need to remove t from the list of all threads 548 * because thread_exit()/lwp_exit() isn't called on t. 549 */ 550 mutex_enter(&pidlock); 551 ASSERT(t != t->t_next); /* t0 never exits */ 552 t->t_next->t_prev = t->t_prev; 553 t->t_prev->t_next = t->t_next; 554 mutex_exit(&pidlock); 555 556 thread_free(t); 557 kmem_free(lep, sizeof (*lep)); 558 lwp = NULL; 559 } else { 560 mutex_exit(&p->p_lock); 561 } 562 563 if (old_dir != NULL) { 564 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 565 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 566 } 567 568 DTRACE_PROC1(lwp__create, kthread_t *, t); 569 return (lwp); 570 } 571 572 /* 573 * lwp_create_done() is called by the caller of lwp_create() to set the 574 * newly-created lwp running after the caller has finished manipulating it. 575 */ 576 void 577 lwp_create_done(kthread_t *t) 578 { 579 proc_t *p = ttoproc(t); 580 581 ASSERT(MUTEX_HELD(&p->p_lock)); 582 583 /* 584 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 585 * (The absence of the TS_CREATE flag prevents the lwp from running 586 * until we are finished with it, even if lwp_continue() is called on 587 * it by some other lwp in the process or elsewhere in the kernel.) 588 */ 589 thread_lock(t); 590 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 591 /* 592 * If TS_CSTART is set, lwp_continue(t) has been called and 593 * has already incremented p_lwprcnt; avoid doing this twice. 594 */ 595 if (!(t->t_schedflag & TS_CSTART)) 596 p->p_lwprcnt++; 597 t->t_schedflag |= (TS_CSTART | TS_CREATE); 598 setrun_locked(t); 599 thread_unlock(t); 600 } 601 602 /* 603 * Copy an LWP's active templates, and clear the latest contracts. 604 */ 605 void 606 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 607 { 608 int i; 609 610 for (i = 0; i < ct_ntypes; i++) { 611 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 612 dst->lwp_ct_latest[i] = NULL; 613 } 614 } 615 616 /* 617 * Clear an LWP's contract template state. 618 */ 619 void 620 lwp_ctmpl_clear(klwp_t *lwp) 621 { 622 ct_template_t *tmpl; 623 int i; 624 625 for (i = 0; i < ct_ntypes; i++) { 626 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 627 ctmpl_free(tmpl); 628 lwp->lwp_ct_active[i] = NULL; 629 } 630 631 if (lwp->lwp_ct_latest[i] != NULL) { 632 contract_rele(lwp->lwp_ct_latest[i]); 633 lwp->lwp_ct_latest[i] = NULL; 634 } 635 } 636 } 637 638 /* 639 * Individual lwp exit. 640 * If this is the last lwp, exit the whole process. 641 */ 642 void 643 lwp_exit(void) 644 { 645 kthread_t *t = curthread; 646 klwp_t *lwp = ttolwp(t); 647 proc_t *p = ttoproc(t); 648 649 ASSERT(MUTEX_HELD(&p->p_lock)); 650 651 mutex_exit(&p->p_lock); 652 653 #if defined(__sparc) 654 /* 655 * Ensure that the user stack is fully abandoned.. 656 */ 657 trash_user_windows(); 658 #endif 659 660 tsd_exit(); /* free thread specific data */ 661 662 kcpc_passivate(); /* Clean up performance counter state */ 663 664 pollcleanup(); 665 666 if (t->t_door) 667 door_slam(); 668 669 if (t->t_schedctl != NULL) 670 schedctl_lwp_cleanup(t); 671 672 if (t->t_upimutex != NULL) 673 upimutex_cleanup(); 674 675 mutex_enter(&p->p_lock); 676 lwp_cleanup(); 677 678 /* 679 * When this process is dumping core, its lwps are held here 680 * until the core dump is finished. Then exitlwps() is called 681 * again to release these lwps so that they can finish exiting. 682 */ 683 if (p->p_flag & SCOREDUMP) 684 stop(PR_SUSPENDED, SUSPEND_NORMAL); 685 686 /* 687 * Block the process against /proc now that we have really acquired 688 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 689 */ 690 prbarrier(p); 691 692 /* 693 * Call proc_exit() if this is the last non-daemon lwp in the process. 694 */ 695 if (!(t->t_proc_flag & TP_DAEMON) && 696 p->p_lwpcnt == p->p_lwpdaemon + 1) { 697 int why, what; 698 699 if (p->p_flag & SEXITLWPS) { 700 why = CLD_KILLED; 701 what = SIGKILL; 702 } else { 703 why = CLD_EXITED; 704 what = 0; 705 } 706 mutex_exit(&p->p_lock); 707 if (proc_exit(why, what) == 0) { 708 /* Restarting init. */ 709 return; 710 } 711 712 /* 713 * proc_exit() returns a non-zero value when some other 714 * lwp got there first. We just have to continue in 715 * lwp_exit(). 716 */ 717 mutex_enter(&p->p_lock); 718 ASSERT(curproc->p_flag & SEXITLWPS); 719 prbarrier(p); 720 } 721 722 DTRACE_PROC(lwp__exit); 723 724 /* 725 * If the lwp is a detached lwp or if the process is exiting, 726 * remove (lwp_hash_out()) the lwp from the lwp directory. 727 * Otherwise null out the lwp's le_thread pointer in the lwp 728 * directory so that other threads will see it as a zombie lwp. 729 */ 730 prlwpexit(t); /* notify /proc */ 731 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 732 lwp_hash_out(p, t->t_tid); 733 else { 734 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 735 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 736 p->p_zombcnt++; 737 cv_broadcast(&p->p_lwpexit); 738 } 739 if (t->t_proc_flag & TP_DAEMON) { 740 p->p_lwpdaemon--; 741 t->t_proc_flag &= ~TP_DAEMON; 742 } 743 t->t_proc_flag &= ~TP_TWAIT; 744 745 /* 746 * Maintain accurate lwp count for task.max-lwps resource control. 747 */ 748 mutex_enter(&p->p_zone->zone_nlwps_lock); 749 p->p_task->tk_nlwps--; 750 p->p_task->tk_proj->kpj_nlwps--; 751 p->p_zone->zone_nlwps--; 752 mutex_exit(&p->p_zone->zone_nlwps_lock); 753 754 CL_EXIT(t); /* tell the scheduler that t is exiting */ 755 ASSERT(p->p_lwpcnt != 0); 756 p->p_lwpcnt--; 757 758 /* 759 * If all remaining non-daemon lwps are waiting in lwp_wait(), 760 * wake them up so someone can return EDEADLK. 761 * (See the block comment preceeding lwp_wait().) 762 */ 763 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 764 cv_broadcast(&p->p_lwpexit); 765 766 t->t_proc_flag |= TP_LWPEXIT; 767 term_mstate(t); 768 #ifndef NPROBE 769 /* Kernel probe */ 770 if (t->t_tnf_tpdp) 771 tnf_thread_exit(); 772 #endif /* NPROBE */ 773 774 t->t_forw->t_back = t->t_back; 775 t->t_back->t_forw = t->t_forw; 776 if (t == p->p_tlist) 777 p->p_tlist = t->t_forw; 778 779 /* 780 * Clean up the signal state. 781 */ 782 if (t->t_sigqueue != NULL) 783 sigdelq(p, t, 0); 784 if (lwp->lwp_curinfo != NULL) { 785 siginfofree(lwp->lwp_curinfo); 786 lwp->lwp_curinfo = NULL; 787 } 788 789 thread_rele(t); 790 791 /* 792 * Terminated lwps are associated with process zero and are put onto 793 * death-row by resume(). Avoid preemption after resetting t->t_procp. 794 */ 795 t->t_preempt++; 796 t->t_procp = &p0; 797 798 /* 799 * Notify the HAT about the change of address space 800 */ 801 hat_thread_exit(t); 802 /* 803 * When this is the last running lwp in this process and some lwp is 804 * waiting for this condition to become true, or this thread was being 805 * suspended, then the waiting lwp is awakened. 806 * 807 * Also, if the process is exiting, we may have a thread waiting in 808 * exitlwps() that needs to be notified. 809 */ 810 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 811 (p->p_flag & SEXITLWPS)) 812 cv_broadcast(&p->p_holdlwps); 813 814 /* 815 * Need to drop p_lock so we can reacquire pidlock. 816 */ 817 mutex_exit(&p->p_lock); 818 mutex_enter(&pidlock); 819 820 ASSERT(t != t->t_next); /* t0 never exits */ 821 t->t_next->t_prev = t->t_prev; 822 t->t_prev->t_next = t->t_next; 823 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 824 mutex_exit(&pidlock); 825 826 lwp_pcb_exit(); 827 828 if (t->t_ctx != NULL) 829 exitctx(t); 830 831 t->t_state = TS_ZOMB; 832 swtch_from_zombie(); 833 /* never returns */ 834 } 835 836 837 /* 838 * Cleanup function for an exiting lwp. 839 * Called both from lwp_exit() and from proc_exit(). 840 * p->p_lock is repeatedly released and grabbed in this function. 841 */ 842 void 843 lwp_cleanup(void) 844 { 845 kthread_t *t = curthread; 846 proc_t *p = ttoproc(t); 847 848 ASSERT(MUTEX_HELD(&p->p_lock)); 849 850 /* untimeout any lwp-bound realtime timers */ 851 if (p->p_itimer != NULL) 852 timer_lwpexit(); 853 854 /* 855 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 856 * so it appears that the agent never existed, and clear p_agenttp. 857 */ 858 if (t == p->p_agenttp) { 859 ASSERT(t->t_tid == p->p_lwpid); 860 p->p_lwpid--; 861 p->p_agenttp = NULL; 862 } 863 864 /* 865 * Do lgroup bookkeeping to account for thread exiting. 866 */ 867 kpreempt_disable(); 868 lgrp_move_thread(t, NULL, 1); 869 kpreempt_enable(); 870 871 lwp_ctmpl_clear(ttolwp(t)); 872 } 873 874 int 875 lwp_suspend(kthread_t *t) 876 { 877 int tid; 878 proc_t *p = ttoproc(t); 879 880 ASSERT(MUTEX_HELD(&p->p_lock)); 881 882 /* 883 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 884 * If an lwp is stopping itself, there is no need to wait. 885 */ 886 t->t_proc_flag |= TP_HOLDLWP; 887 if (t == curthread) { 888 t->t_sig_check = 1; 889 } else { 890 /* 891 * Make sure the lwp stops promptly. 892 */ 893 thread_lock(t); 894 t->t_sig_check = 1; 895 /* 896 * XXX Should use virtual stop like /proc does instead of 897 * XXX waking the thread to get it to stop. 898 */ 899 if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) 900 setrun_locked(t); 901 else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 902 poke_cpu(t->t_cpu->cpu_id); 903 tid = t->t_tid; /* remember thread ID */ 904 /* 905 * Wait for lwp to stop 906 */ 907 while (!SUSPENDED(t)) { 908 /* 909 * Drop the thread lock before waiting and reacquire it 910 * afterwards, so the thread can change its t_state 911 * field. 912 */ 913 thread_unlock(t); 914 915 /* 916 * Check if aborted by exitlwps(). 917 */ 918 if (p->p_flag & SEXITLWPS) 919 lwp_exit(); 920 921 /* 922 * Cooperate with jobcontrol signals and /proc stopping 923 * by calling cv_wait_sig() to wait for the target 924 * lwp to stop. Just using cv_wait() can lead to 925 * deadlock because, if some other lwp has stopped 926 * by either of these mechanisms, then p_lwprcnt will 927 * never become zero if we do a cv_wait(). 928 */ 929 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 930 return (EINTR); 931 932 /* 933 * Check to see if thread died while we were 934 * waiting for it to suspend. 935 */ 936 if (idtot(p, tid) == NULL) 937 return (ESRCH); 938 939 thread_lock(t); 940 /* 941 * If TP_HOLDLWP flag goes away, lwp_continue() must 942 * have been called while we were waiting, so cancel 943 * the suspend. 944 */ 945 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 946 thread_unlock(t); 947 return (0); 948 } 949 } 950 thread_unlock(t); 951 } 952 return (0); 953 } 954 955 /* 956 * continue a lwp that's been stopped by lwp_suspend(). 957 */ 958 void 959 lwp_continue(kthread_t *t) 960 { 961 proc_t *p = ttoproc(t); 962 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 963 964 ASSERT(MUTEX_HELD(&p->p_lock)); 965 966 t->t_proc_flag &= ~TP_HOLDLWP; 967 thread_lock(t); 968 if (SUSPENDED(t) && 969 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 970 p->p_lwprcnt++; 971 t->t_schedflag |= TS_CSTART; 972 setrun_locked(t); 973 } 974 thread_unlock(t); 975 /* 976 * Wakeup anyone waiting for this thread to be suspended 977 */ 978 if (was_suspended) 979 cv_broadcast(&p->p_holdlwps); 980 } 981 982 /* 983 * ******************************** 984 * Miscellaneous lwp routines * 985 * ******************************** 986 */ 987 /* 988 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 989 * This will cause the process's lwps to stop at a hold point. A hold 990 * point is where a kernel thread has a flat stack. This is at the 991 * return from a system call and at the return from a user level trap. 992 * 993 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 994 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 995 * hold point. The lwps in the process are not being cloned, so they 996 * are held at the usual hold points and also within issig_forreal(). 997 * This has the side-effect that their system calls do not return 998 * showing EINTR. 999 * 1000 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1001 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1002 * lwp is waiting for the target lwp to be stopped. 1003 */ 1004 void 1005 holdlwp(void) 1006 { 1007 proc_t *p = curproc; 1008 kthread_t *t = curthread; 1009 1010 mutex_enter(&p->p_lock); 1011 /* 1012 * Don't terminate immediately if the process is dumping core. 1013 * Once the process has dumped core, all lwps are terminated. 1014 */ 1015 if (!(p->p_flag & SCOREDUMP)) { 1016 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1017 lwp_exit(); 1018 } 1019 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1020 mutex_exit(&p->p_lock); 1021 return; 1022 } 1023 /* 1024 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1025 * when p->p_lwprcnt becomes zero. 1026 */ 1027 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1028 if (p->p_flag & SEXITLWPS) 1029 lwp_exit(); 1030 mutex_exit(&p->p_lock); 1031 } 1032 1033 /* 1034 * Have all lwps within the process hold at a point where they are 1035 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1036 */ 1037 int 1038 holdlwps(int holdflag) 1039 { 1040 proc_t *p = curproc; 1041 1042 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1043 mutex_enter(&p->p_lock); 1044 schedctl_finish_sigblock(curthread); 1045 again: 1046 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1047 /* 1048 * If another lwp is doing a forkall() or proc_exit(), bail out. 1049 */ 1050 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1051 mutex_exit(&p->p_lock); 1052 return (0); 1053 } 1054 /* 1055 * Another lwp is doing a fork1() or is undergoing 1056 * watchpoint activity. We hold here for it to complete. 1057 */ 1058 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1059 } 1060 p->p_flag |= holdflag; 1061 pokelwps(p); 1062 --p->p_lwprcnt; 1063 /* 1064 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1065 */ 1066 while (p->p_lwprcnt > 0) { 1067 /* 1068 * Check if aborted by exitlwps(). 1069 * Also check if SHOLDWATCH is set; it takes precedence. 1070 */ 1071 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1072 p->p_lwprcnt++; 1073 p->p_flag &= ~holdflag; 1074 cv_broadcast(&p->p_holdlwps); 1075 goto again; 1076 } 1077 /* 1078 * Cooperate with jobcontrol signals and /proc stopping. 1079 * If some other lwp has stopped by either of these 1080 * mechanisms, then p_lwprcnt will never become zero 1081 * and the process will appear deadlocked unless we 1082 * stop here in sympathy with the other lwp before 1083 * doing the cv_wait() below. 1084 * 1085 * If the other lwp stops after we do the cv_wait(), it 1086 * will wake us up to loop around and do the sympathy stop. 1087 * 1088 * Since stop() drops p->p_lock, we must start from 1089 * the top again on returning from stop(). 1090 */ 1091 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1092 int whystop = p->p_stopsig? PR_JOBCONTROL : 1093 PR_REQUESTED; 1094 p->p_lwprcnt++; 1095 p->p_flag &= ~holdflag; 1096 stop(whystop, p->p_stopsig); 1097 goto again; 1098 } 1099 cv_wait(&p->p_holdlwps, &p->p_lock); 1100 } 1101 p->p_lwprcnt++; 1102 p->p_flag &= ~holdflag; 1103 mutex_exit(&p->p_lock); 1104 return (1); 1105 } 1106 1107 /* 1108 * See comments for holdwatch(), below. 1109 */ 1110 static int 1111 holdcheck(int clearflags) 1112 { 1113 proc_t *p = curproc; 1114 1115 /* 1116 * If we are trying to exit, that takes precedence over anything else. 1117 */ 1118 if (p->p_flag & SEXITLWPS) { 1119 p->p_lwprcnt++; 1120 p->p_flag &= ~clearflags; 1121 lwp_exit(); 1122 } 1123 1124 /* 1125 * If another thread is calling fork1(), stop the current thread so the 1126 * other can complete. 1127 */ 1128 if (p->p_flag & SHOLDFORK1) { 1129 p->p_lwprcnt++; 1130 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1131 if (p->p_flag & SEXITLWPS) { 1132 p->p_flag &= ~clearflags; 1133 lwp_exit(); 1134 } 1135 return (-1); 1136 } 1137 1138 /* 1139 * If another thread is calling fork(), then indicate we are doing 1140 * watchpoint activity. This will cause holdlwps() above to stop the 1141 * forking thread, at which point we can continue with watchpoint 1142 * activity. 1143 */ 1144 if (p->p_flag & SHOLDFORK) { 1145 p->p_lwprcnt++; 1146 while (p->p_flag & SHOLDFORK) { 1147 p->p_flag |= SHOLDWATCH; 1148 cv_broadcast(&p->p_holdlwps); 1149 cv_wait(&p->p_holdlwps, &p->p_lock); 1150 p->p_flag &= ~SHOLDWATCH; 1151 } 1152 return (-1); 1153 } 1154 1155 return (0); 1156 } 1157 1158 /* 1159 * Stop all lwps within the process, holding themselves in the kernel while the 1160 * active lwp undergoes watchpoint activity. This is more complicated than 1161 * expected because stop() relies on calling holdwatch() in order to copyin data 1162 * from the user's address space. A double barrier is used to prevent an 1163 * infinite loop. 1164 * 1165 * o The first thread into holdwatch() is the 'master' thread and does 1166 * the following: 1167 * 1168 * - Sets SHOLDWATCH on the current process 1169 * - Sets TP_WATCHSTOP on the current thread 1170 * - Waits for all threads to be either stopped or have 1171 * TP_WATCHSTOP set. 1172 * - Sets the SWATCHOK flag on the process 1173 * - Unsets TP_WATCHSTOP 1174 * - Waits for the other threads to completely stop 1175 * - Unsets SWATCHOK 1176 * 1177 * o If SHOLDWATCH is already set when we enter this function, then another 1178 * thread is already trying to stop this thread. This 'slave' thread 1179 * does the following: 1180 * 1181 * - Sets TP_WATCHSTOP on the current thread 1182 * - Waits for SWATCHOK flag to be set 1183 * - Calls stop() 1184 * 1185 * o If SWATCHOK is set on the process, then this function immediately 1186 * returns, as we must have been called via stop(). 1187 * 1188 * In addition, there are other flags that take precedence over SHOLDWATCH: 1189 * 1190 * o If SEXITLWPS is set, exit immediately. 1191 * 1192 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1193 * 1194 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1195 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1196 * 1197 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1198 * stop the current thread. 1199 * 1200 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1201 * threads were stopped, or the list of watched pages has changed. 1202 */ 1203 int 1204 holdwatch(void) 1205 { 1206 proc_t *p = curproc; 1207 kthread_t *t = curthread; 1208 int ret = 0; 1209 1210 mutex_enter(&p->p_lock); 1211 1212 p->p_lwprcnt--; 1213 1214 /* 1215 * Check for bail-out conditions as outlined above. 1216 */ 1217 if (holdcheck(0) != 0) { 1218 mutex_exit(&p->p_lock); 1219 return (-1); 1220 } 1221 1222 if (!(p->p_flag & SHOLDWATCH)) { 1223 /* 1224 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1225 * the other threads. 1226 */ 1227 p->p_flag |= SHOLDWATCH; 1228 pokelwps(p); 1229 1230 /* 1231 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1232 */ 1233 while (pr_allstopped(p, 1) > 0) { 1234 if (holdcheck(SHOLDWATCH) != 0) { 1235 p->p_flag &= ~SHOLDWATCH; 1236 mutex_exit(&p->p_lock); 1237 return (-1); 1238 } 1239 1240 cv_wait(&p->p_holdlwps, &p->p_lock); 1241 } 1242 1243 /* 1244 * All threads are now stopped or in the process of stopping. 1245 * Set SWATCHOK and let them stop completely. 1246 */ 1247 p->p_flag |= SWATCHOK; 1248 t->t_proc_flag &= ~TP_WATCHSTOP; 1249 cv_broadcast(&p->p_holdlwps); 1250 1251 while (pr_allstopped(p, 0) > 0) { 1252 /* 1253 * At first glance, it may appear that we don't need a 1254 * call to holdcheck() here. But if the process gets a 1255 * SIGKILL signal, one of our stopped threads may have 1256 * been awakened and is waiting in exitlwps(), which 1257 * takes precedence over watchpoints. 1258 */ 1259 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1260 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1261 mutex_exit(&p->p_lock); 1262 return (-1); 1263 } 1264 1265 cv_wait(&p->p_holdlwps, &p->p_lock); 1266 } 1267 1268 /* 1269 * All threads are now completely stopped. 1270 */ 1271 p->p_flag &= ~SWATCHOK; 1272 p->p_flag &= ~SHOLDWATCH; 1273 p->p_lwprcnt++; 1274 1275 } else if (!(p->p_flag & SWATCHOK)) { 1276 1277 /* 1278 * SHOLDWATCH is set, so another thread is trying to do 1279 * watchpoint activity. Indicate this thread is stopping, and 1280 * wait for the OK from the master thread. 1281 */ 1282 t->t_proc_flag |= TP_WATCHSTOP; 1283 cv_broadcast(&p->p_holdlwps); 1284 1285 while (!(p->p_flag & SWATCHOK)) { 1286 if (holdcheck(0) != 0) { 1287 t->t_proc_flag &= ~TP_WATCHSTOP; 1288 mutex_exit(&p->p_lock); 1289 return (-1); 1290 } 1291 1292 cv_wait(&p->p_holdlwps, &p->p_lock); 1293 } 1294 1295 /* 1296 * Once the master thread has given the OK, this thread can 1297 * actually call stop(). 1298 */ 1299 t->t_proc_flag &= ~TP_WATCHSTOP; 1300 p->p_lwprcnt++; 1301 1302 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1303 1304 /* 1305 * It's not OK to do watchpoint activity, notify caller to 1306 * retry. 1307 */ 1308 ret = -1; 1309 1310 } else { 1311 1312 /* 1313 * The only way we can hit the case where SHOLDWATCH is set and 1314 * SWATCHOK is set is if we are triggering this from within a 1315 * stop() call. Assert that this is the case. 1316 */ 1317 1318 ASSERT(t->t_proc_flag & TP_STOPPING); 1319 p->p_lwprcnt++; 1320 } 1321 1322 mutex_exit(&p->p_lock); 1323 1324 return (ret); 1325 } 1326 1327 /* 1328 * force all interruptible lwps to trap into the kernel. 1329 */ 1330 void 1331 pokelwps(proc_t *p) 1332 { 1333 kthread_t *t; 1334 1335 ASSERT(MUTEX_HELD(&p->p_lock)); 1336 1337 t = p->p_tlist; 1338 do { 1339 if (t == curthread) 1340 continue; 1341 thread_lock(t); 1342 aston(t); /* make thread trap or do post_syscall */ 1343 if (t->t_state == TS_SLEEP) { 1344 if (t->t_flag & T_WAKEABLE) 1345 setrun_locked(t); 1346 } else if (t->t_state == TS_STOPPED) { 1347 /* 1348 * Ensure that proc_exit() is not blocked by lwps 1349 * that were stopped via jobcontrol or /proc. 1350 */ 1351 if (p->p_flag & SEXITLWPS) { 1352 p->p_stopsig = 0; 1353 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1354 setrun_locked(t); 1355 } 1356 /* 1357 * If we are holding lwps for a forkall(), 1358 * force lwps that have been suspended via 1359 * lwp_suspend() and are suspended inside 1360 * of a system call to proceed to their 1361 * holdlwp() points where they are clonable. 1362 */ 1363 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1364 if ((t->t_schedflag & TS_CSTART) == 0) { 1365 p->p_lwprcnt++; 1366 t->t_schedflag |= TS_CSTART; 1367 setrun_locked(t); 1368 } 1369 } 1370 } else if (t->t_state == TS_ONPROC) { 1371 if (t->t_cpu != CPU) 1372 poke_cpu(t->t_cpu->cpu_id); 1373 } 1374 thread_unlock(t); 1375 } while ((t = t->t_forw) != p->p_tlist); 1376 } 1377 1378 /* 1379 * undo the effects of holdlwps() or holdwatch(). 1380 */ 1381 void 1382 continuelwps(proc_t *p) 1383 { 1384 kthread_t *t; 1385 1386 /* 1387 * If this flag is set, then the original holdwatch() didn't actually 1388 * stop the process. See comments for holdwatch(). 1389 */ 1390 if (p->p_flag & SWATCHOK) { 1391 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1392 return; 1393 } 1394 1395 ASSERT(MUTEX_HELD(&p->p_lock)); 1396 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1397 1398 t = p->p_tlist; 1399 do { 1400 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1401 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1402 p->p_lwprcnt++; 1403 t->t_schedflag |= TS_CSTART; 1404 setrun_locked(t); 1405 } 1406 thread_unlock(t); 1407 } while ((t = t->t_forw) != p->p_tlist); 1408 } 1409 1410 /* 1411 * Force all other LWPs in the current process other than the caller to exit, 1412 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1413 * is typically used in these situations: 1414 * 1415 * (a) prior to an exec() system call 1416 * (b) prior to dumping a core file 1417 * (c) prior to a uadmin() shutdown 1418 * 1419 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1420 * Multiple threads in the process can call this function at one time by 1421 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1422 * to declare one particular thread the winner who gets to kill the others. 1423 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1424 * appropriate errno value is returned to caller for its system call to return. 1425 */ 1426 int 1427 exitlwps(int coredump) 1428 { 1429 proc_t *p = curproc; 1430 int heldcnt; 1431 1432 if (curthread->t_door) 1433 door_slam(); 1434 if (p->p_door_list) 1435 door_revoke_all(); 1436 if (curthread->t_schedctl != NULL) 1437 schedctl_lwp_cleanup(curthread); 1438 1439 /* 1440 * Ensure that before starting to wait for other lwps to exit, 1441 * cleanup all upimutexes held by curthread. Otherwise, some other 1442 * lwp could be waiting (uninterruptibly) for a upimutex held by 1443 * curthread, and the call to pokelwps() below would deadlock. 1444 * Even if a blocked upimutex_lock is made interruptible, 1445 * curthread's upimutexes need to be unlocked: do it here. 1446 */ 1447 if (curthread->t_upimutex != NULL) 1448 upimutex_cleanup(); 1449 1450 /* 1451 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1452 * We must also block any further /proc access from this point forward. 1453 */ 1454 mutex_enter(&p->p_lock); 1455 prbarrier(p); 1456 1457 if (p->p_flag & SEXITLWPS) { 1458 mutex_exit(&p->p_lock); 1459 aston(curthread); /* force a trip through post_syscall */ 1460 return (set_errno(EINTR)); 1461 } 1462 1463 p->p_flag |= SEXITLWPS; 1464 if (coredump) /* tell other lwps to stop, not exit */ 1465 p->p_flag |= SCOREDUMP; 1466 1467 /* 1468 * Give precedence to exitlwps() if a holdlwps() is 1469 * in progress. The lwp doing the holdlwps() operation 1470 * is aborted when it is awakened. 1471 */ 1472 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1473 cv_broadcast(&p->p_holdlwps); 1474 cv_wait(&p->p_holdlwps, &p->p_lock); 1475 } 1476 p->p_flag |= SHOLDFORK; 1477 pokelwps(p); 1478 1479 /* 1480 * Wait for process to become quiescent. 1481 */ 1482 --p->p_lwprcnt; 1483 while (p->p_lwprcnt > 0) 1484 cv_wait(&p->p_holdlwps, &p->p_lock); 1485 p->p_lwprcnt++; 1486 ASSERT(p->p_lwprcnt == 1); 1487 1488 /* 1489 * The SCOREDUMP flag puts the process into a quiescent 1490 * state. The process's lwps remain attached to this 1491 * process until exitlwps() is called again without the 1492 * 'coredump' flag set, then the lwps are terminated 1493 * and the process can exit. 1494 */ 1495 if (coredump) { 1496 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1497 goto out; 1498 } 1499 1500 /* 1501 * Determine if there are any lwps left dangling in 1502 * the stopped state. This happens when exitlwps() 1503 * aborts a holdlwps() operation. 1504 */ 1505 p->p_flag &= ~SHOLDFORK; 1506 if ((heldcnt = p->p_lwpcnt) > 1) { 1507 kthread_t *t; 1508 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1509 t->t_proc_flag &= ~TP_TWAIT; 1510 lwp_continue(t); 1511 } 1512 } 1513 1514 /* 1515 * Wait for all other lwps to exit. 1516 */ 1517 --p->p_lwprcnt; 1518 while (p->p_lwpcnt > 1) 1519 cv_wait(&p->p_holdlwps, &p->p_lock); 1520 ++p->p_lwprcnt; 1521 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1522 1523 p->p_flag &= ~SEXITLWPS; 1524 curthread->t_proc_flag &= ~TP_TWAIT; 1525 1526 out: 1527 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1528 lwpdir_t *ldp; 1529 lwpent_t *lep; 1530 int i; 1531 1532 prbarrier(p); 1533 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1534 lep = ldp->ld_entry; 1535 if (lep != NULL && lep->le_thread != curthread) { 1536 ASSERT(lep->le_thread == NULL); 1537 p->p_zombcnt--; 1538 lwp_hash_out(p, lep->le_lwpid); 1539 } 1540 } 1541 ASSERT(p->p_zombcnt == 0); 1542 } 1543 1544 /* 1545 * If some other LWP in the process wanted us to suspend ourself, 1546 * then we will not do it. The other LWP is now terminated and 1547 * no one will ever continue us again if we suspend ourself. 1548 */ 1549 curthread->t_proc_flag &= ~TP_HOLDLWP; 1550 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1551 mutex_exit(&p->p_lock); 1552 return (0); 1553 } 1554 1555 /* 1556 * duplicate a lwp. 1557 */ 1558 klwp_t * 1559 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1560 { 1561 klwp_t *clwp; 1562 void *tregs, *tfpu; 1563 kthread_t *t = lwptot(lwp); 1564 kthread_t *ct; 1565 proc_t *p = lwptoproc(lwp); 1566 int cid; 1567 void *bufp; 1568 int val; 1569 1570 ASSERT(p == curproc); 1571 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1572 1573 #if defined(__sparc) 1574 if (t == curthread) 1575 (void) flush_user_windows_to_stack(NULL); 1576 #endif 1577 1578 if (t == curthread) 1579 /* copy args out of registers first */ 1580 (void) save_syscall_args(); 1581 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1582 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1583 if (clwp == NULL) 1584 return (NULL); 1585 1586 /* 1587 * most of the parent's lwp can be copied to its duplicate, 1588 * except for the fields that are unique to each lwp, like 1589 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1590 */ 1591 ct = clwp->lwp_thread; 1592 tregs = clwp->lwp_regs; 1593 tfpu = clwp->lwp_fpu; 1594 1595 /* copy parent lwp to child lwp */ 1596 *clwp = *lwp; 1597 1598 /* fix up child's lwp */ 1599 1600 clwp->lwp_pcb.pcb_flags = 0; 1601 #if defined(__sparc) 1602 clwp->lwp_pcb.pcb_step = STEP_NONE; 1603 #endif 1604 clwp->lwp_cursig = 0; 1605 clwp->lwp_extsig = 0; 1606 clwp->lwp_curinfo = (struct sigqueue *)0; 1607 clwp->lwp_thread = ct; 1608 ct->t_sysnum = t->t_sysnum; 1609 clwp->lwp_regs = tregs; 1610 clwp->lwp_fpu = tfpu; 1611 clwp->lwp_ap = clwp->lwp_arg; 1612 clwp->lwp_procp = cp; 1613 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1614 init_mstate(ct, LMS_STOPPED); 1615 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1616 clwp->lwp_lastfault = 0; 1617 clwp->lwp_lastfaddr = 0; 1618 1619 /* copy parent's struct regs to child. */ 1620 lwp_forkregs(lwp, clwp); 1621 1622 /* 1623 * fork device context, if any. 1624 * 1625 * Someday we could do the work to support the possibility of 1626 * forkctx() or lwp_createctx() failing. Currently, this would 1627 * only be needed on x86 for the occasional process using a 1628 * private LDT. 1629 */ 1630 if (t->t_ctx) 1631 forkctx(t, ct); 1632 1633 /* fix door state in the child */ 1634 if (t->t_door) 1635 door_fork(t, ct); 1636 1637 /* copy current contract templates, clear latest contracts */ 1638 lwp_ctmpl_copy(clwp, lwp); 1639 1640 mutex_enter(&cp->p_lock); 1641 /* lwp_create() set the TP_HOLDLWP flag */ 1642 if (!(t->t_proc_flag & TP_HOLDLWP)) 1643 ct->t_proc_flag &= ~TP_HOLDLWP; 1644 if (cp->p_flag & SMSACCT) 1645 ct->t_proc_flag |= TP_MSACCT; 1646 mutex_exit(&cp->p_lock); 1647 1648 retry: 1649 cid = t->t_cid; 1650 1651 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1652 ASSERT(val == 0); 1653 1654 mutex_enter(&p->p_lock); 1655 if (cid != t->t_cid) { 1656 /* 1657 * Someone just changed this thread's scheduling class, 1658 * so try pre-allocating the buffer again. Hopefully we 1659 * don't hit this often. 1660 */ 1661 mutex_exit(&p->p_lock); 1662 CL_FREE(cid, bufp); 1663 goto retry; 1664 } 1665 1666 ct->t_unpark = t->t_unpark; 1667 ct->t_clfuncs = t->t_clfuncs; 1668 CL_FORK(t, ct, bufp); 1669 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1670 mutex_exit(&p->p_lock); 1671 1672 return (clwp); 1673 } 1674 1675 /* 1676 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1677 */ 1678 void 1679 lwp_hash_in(proc_t *p, lwpent_t *lep) 1680 { 1681 lwpdir_t **ldpp; 1682 lwpdir_t *ldp; 1683 kthread_t *t; 1684 1685 /* 1686 * Allocate a directory element from the free list. 1687 * Code elsewhere guarantees a free slot. 1688 */ 1689 ldp = p->p_lwpfree; 1690 p->p_lwpfree = ldp->ld_next; 1691 ASSERT(ldp->ld_entry == NULL); 1692 ldp->ld_entry = lep; 1693 1694 /* 1695 * Insert it into the lwpid hash table. 1696 */ 1697 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1698 ldp->ld_next = *ldpp; 1699 *ldpp = ldp; 1700 1701 /* 1702 * Set the active thread's directory slot entry. 1703 */ 1704 if ((t = lep->le_thread) != NULL) { 1705 ASSERT(lep->le_lwpid == t->t_tid); 1706 t->t_dslot = (int)(ldp - p->p_lwpdir); 1707 } 1708 } 1709 1710 /* 1711 * Remove an lwp from the lwpid hash table and free its directory entry. 1712 * This is done when a detached lwp exits in lwp_exit() or 1713 * when a non-detached lwp is waited for in lwp_wait() or 1714 * when a zombie lwp is detached in lwp_detach(). 1715 */ 1716 void 1717 lwp_hash_out(proc_t *p, id_t lwpid) 1718 { 1719 lwpdir_t **ldpp; 1720 lwpdir_t *ldp; 1721 lwpent_t *lep; 1722 1723 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1724 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1725 lep = ldp->ld_entry; 1726 if (lep->le_lwpid == lwpid) { 1727 prlwpfree(p, lep); /* /proc deals with le_trace */ 1728 *ldpp = ldp->ld_next; 1729 ldp->ld_entry = NULL; 1730 ldp->ld_next = p->p_lwpfree; 1731 p->p_lwpfree = ldp; 1732 kmem_free(lep, sizeof (*lep)); 1733 break; 1734 } 1735 } 1736 } 1737 1738 /* 1739 * Lookup an lwp in the lwpid hash table by lwpid. 1740 */ 1741 lwpdir_t * 1742 lwp_hash_lookup(proc_t *p, id_t lwpid) 1743 { 1744 lwpdir_t *ldp; 1745 1746 /* 1747 * The process may be exiting, after p_tidhash has been set to NULL in 1748 * proc_exit() but before prfee() has been called. Return failure in 1749 * this case. 1750 */ 1751 if (p->p_tidhash == NULL) 1752 return (NULL); 1753 1754 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1755 ldp != NULL; ldp = ldp->ld_next) { 1756 if (ldp->ld_entry->le_lwpid == lwpid) 1757 return (ldp); 1758 } 1759 1760 return (NULL); 1761 } 1762 1763 /* 1764 * Update the indicated LWP usage statistic for the current LWP. 1765 */ 1766 void 1767 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1768 { 1769 klwp_t *lwp = ttolwp(curthread); 1770 1771 if (lwp == NULL) 1772 return; 1773 1774 switch (lwp_stat_id) { 1775 case LWP_STAT_INBLK: 1776 lwp->lwp_ru.inblock += inc; 1777 break; 1778 case LWP_STAT_OUBLK: 1779 lwp->lwp_ru.oublock += inc; 1780 break; 1781 case LWP_STAT_MSGRCV: 1782 lwp->lwp_ru.msgrcv += inc; 1783 break; 1784 case LWP_STAT_MSGSND: 1785 lwp->lwp_ru.msgsnd += inc; 1786 break; 1787 default: 1788 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1789 } 1790 } 1791