xref: /titanic_44/usr/src/uts/common/os/kmem.c (revision f5488aa822e08905cde61d596e965030a1dfffcd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Kernel memory allocator, as described in the following two papers and a
30  * statement about the consolidator:
31  *
32  * Jeff Bonwick,
33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
34  * Proceedings of the Summer 1994 Usenix Conference.
35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
36  *
37  * Jeff Bonwick and Jonathan Adams,
38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39  * Arbitrary Resources.
40  * Proceedings of the 2001 Usenix Conference.
41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42  *
43  * kmem Slab Consolidator Big Theory Statement:
44  *
45  * 1. Motivation
46  *
47  * As stated in Bonwick94, slabs provide the following advantages over other
48  * allocation structures in terms of memory fragmentation:
49  *
50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
51  *  - Severe external fragmentation (unused buffers on the free list) is
52  *    unlikely.
53  *
54  * Segregating objects by size eliminates one source of external fragmentation,
55  * and according to Bonwick:
56  *
57  *   The other reason that slabs reduce external fragmentation is that all
58  *   objects in a slab are of the same type, so they have the same lifetime
59  *   distribution. The resulting segregation of short-lived and long-lived
60  *   objects at slab granularity reduces the likelihood of an entire page being
61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62  *
63  * While unlikely, severe external fragmentation remains possible. Clients that
64  * allocate both short- and long-lived objects from the same cache cannot
65  * anticipate the distribution of long-lived objects within the allocator's slab
66  * implementation. Even a small percentage of long-lived objects distributed
67  * randomly across many slabs can lead to a worst case scenario where the client
68  * frees the majority of its objects and the system gets back almost none of the
69  * slabs. Despite the client doing what it reasonably can to help the system
70  * reclaim memory, the allocator cannot shake free enough slabs because of
71  * lonely allocations stubbornly hanging on. Although the allocator is in a
72  * position to diagnose the fragmentation, there is nothing that the allocator
73  * by itself can do about it. It only takes a single allocated object to prevent
74  * an entire slab from being reclaimed, and any object handed out by
75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
76  * although the client is in a position to move a long-lived object, it has no
77  * way of knowing if the object is causing fragmentation, and if so, where to
78  * move it. A solution necessarily requires further cooperation between the
79  * allocator and the client.
80  *
81  * 2. Move Callback
82  *
83  * The kmem slab consolidator therefore adds a move callback to the
84  * allocator/client interface, improving worst-case external fragmentation in
85  * kmem caches that supply a function to move objects from one memory location
86  * to another. In a situation of low memory kmem attempts to consolidate all of
87  * a cache's slabs at once; otherwise it works slowly to bring external
88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
89  * thereby helping to avoid a low memory situation in the future.
90  *
91  * The callback has the following signature:
92  *
93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94  *
95  * It supplies the kmem client with two addresses: the allocated object that
96  * kmem wants to move and a buffer selected by kmem for the client to use as the
97  * copy destination. The callback is kmem's way of saying "Please get off of
98  * this buffer and use this one instead." kmem knows where it wants to move the
99  * object in order to best reduce fragmentation. All the client needs to know
100  * about the second argument (void *new) is that it is an allocated, constructed
101  * object ready to take the contents of the old object. When the move function
102  * is called, the system is likely to be low on memory, and the new object
103  * spares the client from having to worry about allocating memory for the
104  * requested move. The third argument supplies the size of the object, in case a
105  * single move function handles multiple caches whose objects differ only in
106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
107  * user argument passed to the constructor, destructor, and reclaim functions is
108  * also passed to the move callback.
109  *
110  * 2.1 Setting the Move Callback
111  *
112  * The client sets the move callback after creating the cache and before
113  * allocating from it:
114  *
115  *	object_cache = kmem_cache_create(...);
116  *      kmem_cache_set_move(object_cache, object_move);
117  *
118  * 2.2 Move Callback Return Values
119  *
120  * Only the client knows about its own data and when is a good time to move it.
121  * The client is cooperating with kmem to return unused memory to the system,
122  * and kmem respectfully accepts this help at the client's convenience. When
123  * asked to move an object, the client can respond with any of the following:
124  *
125  *   typedef enum kmem_cbrc {
126  *           KMEM_CBRC_YES,
127  *           KMEM_CBRC_NO,
128  *           KMEM_CBRC_LATER,
129  *           KMEM_CBRC_DONT_NEED,
130  *           KMEM_CBRC_DONT_KNOW
131  *   } kmem_cbrc_t;
132  *
133  * The client must not explicitly kmem_cache_free() either of the objects passed
134  * to the callback, since kmem wants to free them directly to the slab layer
135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
136  * objects to free:
137  *
138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
139  *        NO: (Never) The client refused, so kmem frees the new object (the
140  *            unused copy destination). kmem also marks the slab of the old
141  *            object so as not to bother the client with further callbacks for
142  *            that object as long as the slab remains on the partial slab list.
143  *            (The system won't be getting the slab back as long as the
144  *            immovable object holds it hostage, so there's no point in moving
145  *            any of its objects.)
146  *     LATER: The client is using the object and cannot move it now, so kmem
147  *            frees the new object (the unused copy destination). kmem still
148  *            attempts to move other objects off the slab, since it expects to
149  *            succeed in clearing the slab in a later callback. The client
150  *            should use LATER instead of NO if the object is likely to become
151  *            movable very soon.
152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
153  *            with the new object (the unused copy destination). This response
154  *            is the client's opportunity to be a model citizen and give back as
155  *            much as it can.
156  * DONT_KNOW: The client does not know about the object because
157  *            a) the client has just allocated the object and not yet put it
158  *               wherever it expects to find known objects
159  *            b) the client has removed the object from wherever it expects to
160  *               find known objects and is about to free it, or
161  *            c) the client has freed the object.
162  *            In all these cases (a, b, and c) kmem frees the new object (the
163  *            unused copy destination) and searches for the old object in the
164  *            magazine layer. If found, the object is removed from the magazine
165  *            layer and freed to the slab layer so it will no longer hold the
166  *            slab hostage.
167  *
168  * 2.3 Object States
169  *
170  * Neither kmem nor the client can be assumed to know the object's whereabouts
171  * at the time of the callback. An object belonging to a kmem cache may be in
172  * any of the following states:
173  *
174  * 1. Uninitialized on the slab
175  * 2. Allocated from the slab but not constructed (still uninitialized)
176  * 3. Allocated from the slab, constructed, but not yet ready for business
177  *    (not in a valid state for the move callback)
178  * 4. In use (valid and known to the client)
179  * 5. About to be freed (no longer in a valid state for the move callback)
180  * 6. Freed to a magazine (still constructed)
181  * 7. Allocated from a magazine, not yet ready for business (not in a valid
182  *    state for the move callback), and about to return to state #4
183  * 8. Deconstructed on a magazine that is about to be freed
184  * 9. Freed to the slab
185  *
186  * Since the move callback may be called at any time while the object is in any
187  * of the above states (except state #1), the client needs a safe way to
188  * determine whether or not it knows about the object. Specifically, the client
189  * needs to know whether or not the object is in state #4, the only state in
190  * which a move is valid. If the object is in any other state, the client should
191  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
192  * the object's fields.
193  *
194  * Note that although an object may be in state #4 when kmem initiates the move
195  * request, the object may no longer be in that state by the time kmem actually
196  * calls the move function. Not only does the client free objects
197  * asynchronously, kmem itself puts move requests on a queue where thay are
198  * pending until kmem processes them from another context. Also, objects freed
199  * to a magazine appear allocated from the point of view of the slab layer, so
200  * kmem may even initiate requests for objects in a state other than state #4.
201  *
202  * 2.3.1 Magazine Layer
203  *
204  * An important insight revealed by the states listed above is that the magazine
205  * layer is populated only by kmem_cache_free(). Magazines of constructed
206  * objects are never populated directly from the slab layer (which contains raw,
207  * unconstructed objects). Whenever an allocation request cannot be satisfied
208  * from the magazine layer, the magazines are bypassed and the request is
209  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
210  * the object constructor only when allocating from the slab layer, and only in
211  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
212  * the move callback. kmem does not preconstruct objects in anticipation of
213  * kmem_cache_alloc().
214  *
215  * 2.3.2 Object Constructor and Destructor
216  *
217  * If the client supplies a destructor, it must be valid to call the destructor
218  * on a newly created object (immediately after the constructor).
219  *
220  * 2.4 Recognizing Known Objects
221  *
222  * There is a simple test to determine safely whether or not the client knows
223  * about a given object in the move callback. It relies on the fact that kmem
224  * guarantees that the object of the move callback has only been touched by the
225  * client itself or else by kmem. kmem does this by ensuring that none of the
226  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
227  * callback is pending. When the last object on a slab is freed, if there is a
228  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
229  * slabs on that list until all pending callbacks are completed. That way,
230  * clients can be certain that the object of a move callback is in one of the
231  * states listed above, making it possible to distinguish known objects (in
232  * state #4) using the two low order bits of any pointer member (with the
233  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
234  * platforms).
235  *
236  * The test works as long as the client always transitions objects from state #4
237  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
238  * order bit of the client-designated pointer member. Since kmem only writes
239  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
240  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
241  * guaranteed to set at least one of the two low order bits. Therefore, given an
242  * object with a back pointer to a 'container_t *o_container', the client can
243  * test
244  *
245  *      container_t *container = object->o_container;
246  *      if ((uintptr_t)container & 0x3) {
247  *              return (KMEM_CBRC_DONT_KNOW);
248  *      }
249  *
250  * Typically, an object will have a pointer to some structure with a list or
251  * hash where objects from the cache are kept while in use. Assuming that the
252  * client has some way of knowing that the container structure is valid and will
253  * not go away during the move, and assuming that the structure includes a lock
254  * to protect whatever collection is used, then the client would continue as
255  * follows:
256  *
257  *	// Ensure that the container structure does not go away.
258  *      if (container_hold(container) == 0) {
259  *              return (KMEM_CBRC_DONT_KNOW);
260  *      }
261  *      mutex_enter(&container->c_objects_lock);
262  *      if (container != object->o_container) {
263  *              mutex_exit(&container->c_objects_lock);
264  *              container_rele(container);
265  *              return (KMEM_CBRC_DONT_KNOW);
266  *      }
267  *
268  * At this point the client knows that the object cannot be freed as long as
269  * c_objects_lock is held. Note that after acquiring the lock, the client must
270  * recheck the o_container pointer in case the object was removed just before
271  * acquiring the lock.
272  *
273  * When the client is about to free an object, it must first remove that object
274  * from the list, hash, or other structure where it is kept. At that time, to
275  * mark the object so it can be distinguished from the remaining, known objects,
276  * the client sets the designated low order bit:
277  *
278  *      mutex_enter(&container->c_objects_lock);
279  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
280  *      list_remove(&container->c_objects, object);
281  *      mutex_exit(&container->c_objects_lock);
282  *
283  * In the common case, the object is freed to the magazine layer, where it may
284  * be reused on a subsequent allocation without the overhead of calling the
285  * constructor. While in the magazine it appears allocated from the point of
286  * view of the slab layer, making it a candidate for the move callback. Most
287  * objects unrecognized by the client in the move callback fall into this
288  * category and are cheaply distinguished from known objects by the test
289  * described earlier. Since recognition is cheap for the client, and searching
290  * magazines is expensive for kmem, kmem defers searching until the client first
291  * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem
292  * elsewhere does what it can to avoid bothering the client unnecessarily.
293  *
294  * Invalidating the designated pointer member before freeing the object marks
295  * the object to be avoided in the callback, and conversely, assigning a valid
296  * value to the designated pointer member after allocating the object makes the
297  * object fair game for the callback:
298  *
299  *      ... allocate object ...
300  *      ... set any initial state not set by the constructor ...
301  *
302  *      mutex_enter(&container->c_objects_lock);
303  *      list_insert_tail(&container->c_objects, object);
304  *      membar_producer();
305  *      object->o_container = container;
306  *      mutex_exit(&container->c_objects_lock);
307  *
308  * Note that everything else must be valid before setting o_container makes the
309  * object fair game for the move callback. The membar_producer() call ensures
310  * that all the object's state is written to memory before setting the pointer
311  * that transitions the object from state #3 or #7 (allocated, constructed, not
312  * yet in use) to state #4 (in use, valid). That's important because the move
313  * function has to check the validity of the pointer before it can safely
314  * acquire the lock protecting the collection where it expects to find known
315  * objects.
316  *
317  * This method of distinguishing known objects observes the usual symmetry:
318  * invalidating the designated pointer is the first thing the client does before
319  * freeing the object, and setting the designated pointer is the last thing the
320  * client does after allocating the object. Of course, the client is not
321  * required to use this method. Fundamentally, how the client recognizes known
322  * objects is completely up to the client, but this method is recommended as an
323  * efficient and safe way to take advantage of the guarantees made by kmem. If
324  * the entire object is arbitrary data without any markable bits from a suitable
325  * pointer member, then the client must find some other method, such as
326  * searching a hash table of known objects.
327  *
328  * 2.5 Preventing Objects From Moving
329  *
330  * Besides a way to distinguish known objects, the other thing that the client
331  * needs is a strategy to ensure that an object will not move while the client
332  * is actively using it. The details of satisfying this requirement tend to be
333  * highly cache-specific. It might seem that the same rules that let a client
334  * remove an object safely should also decide when an object can be moved
335  * safely. However, any object state that makes a removal attempt invalid is
336  * likely to be long-lasting for objects that the client does not expect to
337  * remove. kmem knows nothing about the object state and is equally likely (from
338  * the client's point of view) to request a move for any object in the cache,
339  * whether prepared for removal or not. Even a low percentage of objects stuck
340  * in place by unremovability will defeat the consolidator if the stuck objects
341  * are the same long-lived allocations likely to hold slabs hostage.
342  * Fundamentally, the consolidator is not aimed at common cases. Severe external
343  * fragmentation is a worst case scenario manifested as sparsely allocated
344  * slabs, by definition a low percentage of the cache's objects. When deciding
345  * what makes an object movable, keep in mind the goal of the consolidator: to
346  * bring worst-case external fragmentation within the limits guaranteed for
347  * internal fragmentation. Removability is a poor criterion if it is likely to
348  * exclude more than an insignificant percentage of objects for long periods of
349  * time.
350  *
351  * A tricky general solution exists, and it has the advantage of letting you
352  * move any object at almost any moment, practically eliminating the likelihood
353  * that an object can hold a slab hostage. However, if there is a cache-specific
354  * way to ensure that an object is not actively in use in the vast majority of
355  * cases, a simpler solution that leverages this cache-specific knowledge is
356  * preferred.
357  *
358  * 2.5.1 Cache-Specific Solution
359  *
360  * As an example of a cache-specific solution, the ZFS znode cache takes
361  * advantage of the fact that the vast majority of znodes are only being
362  * referenced from the DNLC. (A typical case might be a few hundred in active
363  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
364  * client has established that it recognizes the znode and can access its fields
365  * safely (using the method described earlier), it then tests whether the znode
366  * is referenced by anything other than the DNLC. If so, it assumes that the
367  * znode may be in active use and is unsafe to move, so it drops its locks and
368  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
369  * else znodes are used, no change is needed to protect against the possibility
370  * of the znode moving. The disadvantage is that it remains possible for an
371  * application to hold a znode slab hostage with an open file descriptor.
372  * However, this case ought to be rare and the consolidator has a way to deal
373  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
374  * object, kmem eventually stops believing it and treats the slab as if the
375  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
376  * then focus on getting it off of the partial slab list by allocating rather
377  * than freeing all of its objects. (Either way of getting a slab off the
378  * free list reduces fragmentation.)
379  *
380  * 2.5.2 General Solution
381  *
382  * The general solution, on the other hand, requires an explicit hold everywhere
383  * the object is used to prevent it from moving. To keep the client locking
384  * strategy as uncomplicated as possible, kmem guarantees the simplifying
385  * assumption that move callbacks are sequential, even across multiple caches.
386  * Internally, a global queue processed by a single thread supports all caches
387  * implementing the callback function. No matter how many caches supply a move
388  * function, the consolidator never moves more than one object at a time, so the
389  * client does not have to worry about tricky lock ordering involving several
390  * related objects from different kmem caches.
391  *
392  * The general solution implements the explicit hold as a read-write lock, which
393  * allows multiple readers to access an object from the cache simultaneously
394  * while a single writer is excluded from moving it. A single rwlock for the
395  * entire cache would lock out all threads from using any of the cache's objects
396  * even though only a single object is being moved, so to reduce contention,
397  * the client can fan out the single rwlock into an array of rwlocks hashed by
398  * the object address, making it probable that moving one object will not
399  * prevent other threads from using a different object. The rwlock cannot be a
400  * member of the object itself, because the possibility of the object moving
401  * makes it unsafe to access any of the object's fields until the lock is
402  * acquired.
403  *
404  * Assuming a small, fixed number of locks, it's possible that multiple objects
405  * will hash to the same lock. A thread that needs to use multiple objects in
406  * the same function may acquire the same lock multiple times. Since rwlocks are
407  * reentrant for readers, and since there is never more than a single writer at
408  * a time (assuming that the client acquires the lock as a writer only when
409  * moving an object inside the callback), there would seem to be no problem.
410  * However, a client locking multiple objects in the same function must handle
411  * one case of potential deadlock: Assume that thread A needs to prevent both
412  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
413  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
414  * same lock, that thread A will acquire the lock for object 1 as a reader
415  * before thread B sets the lock's write-wanted bit, preventing thread A from
416  * reacquiring the lock for object 2 as a reader. Unable to make forward
417  * progress, thread A will never release the lock for object 1, resulting in
418  * deadlock.
419  *
420  * There are two ways of avoiding the deadlock just described. The first is to
421  * use rw_tryenter() rather than rw_enter() in the callback function when
422  * attempting to acquire the lock as a writer. If tryenter discovers that the
423  * same object (or another object hashed to the same lock) is already in use, it
424  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
425  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
426  * since it allows a thread to acquire the lock as a reader in spite of a
427  * waiting writer. This second approach insists on moving the object now, no
428  * matter how many readers the move function must wait for in order to do so,
429  * and could delay the completion of the callback indefinitely (blocking
430  * callbacks to other clients). In practice, a less insistent callback using
431  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
432  * little reason to use anything else.
433  *
434  * Avoiding deadlock is not the only problem that an implementation using an
435  * explicit hold needs to solve. Locking the object in the first place (to
436  * prevent it from moving) remains a problem, since the object could move
437  * between the time you obtain a pointer to the object and the time you acquire
438  * the rwlock hashed to that pointer value. Therefore the client needs to
439  * recheck the value of the pointer after acquiring the lock, drop the lock if
440  * the value has changed, and try again. This requires a level of indirection:
441  * something that points to the object rather than the object itself, that the
442  * client can access safely while attempting to acquire the lock. (The object
443  * itself cannot be referenced safely because it can move at any time.)
444  * The following lock-acquisition function takes whatever is safe to reference
445  * (arg), follows its pointer to the object (using function f), and tries as
446  * often as necessary to acquire the hashed lock and verify that the object
447  * still has not moved:
448  *
449  *      object_t *
450  *      object_hold(object_f f, void *arg)
451  *      {
452  *              object_t *op;
453  *
454  *              op = f(arg);
455  *              if (op == NULL) {
456  *                      return (NULL);
457  *              }
458  *
459  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
460  *              while (op != f(arg)) {
461  *                      rw_exit(OBJECT_RWLOCK(op));
462  *                      op = f(arg);
463  *                      if (op == NULL) {
464  *                              break;
465  *                      }
466  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
467  *              }
468  *
469  *              return (op);
470  *      }
471  *
472  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
473  * lock reacquisition loop, while necessary, almost never executes. The function
474  * pointer f (used to obtain the object pointer from arg) has the following type
475  * definition:
476  *
477  *      typedef object_t *(*object_f)(void *arg);
478  *
479  * An object_f implementation is likely to be as simple as accessing a structure
480  * member:
481  *
482  *      object_t *
483  *      s_object(void *arg)
484  *      {
485  *              something_t *sp = arg;
486  *              return (sp->s_object);
487  *      }
488  *
489  * The flexibility of a function pointer allows the path to the object to be
490  * arbitrarily complex and also supports the notion that depending on where you
491  * are using the object, you may need to get it from someplace different.
492  *
493  * The function that releases the explicit hold is simpler because it does not
494  * have to worry about the object moving:
495  *
496  *      void
497  *      object_rele(object_t *op)
498  *      {
499  *              rw_exit(OBJECT_RWLOCK(op));
500  *      }
501  *
502  * The caller is spared these details so that obtaining and releasing an
503  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
504  * of object_hold() only needs to know that the returned object pointer is valid
505  * if not NULL and that the object will not move until released.
506  *
507  * Although object_hold() prevents an object from moving, it does not prevent it
508  * from being freed. The caller must take measures before calling object_hold()
509  * (afterwards is too late) to ensure that the held object cannot be freed. The
510  * caller must do so without accessing the unsafe object reference, so any lock
511  * or reference count used to ensure the continued existence of the object must
512  * live outside the object itself.
513  *
514  * Obtaining a new object is a special case where an explicit hold is impossible
515  * for the caller. Any function that returns a newly allocated object (either as
516  * a return value, or as an in-out paramter) must return it already held; after
517  * the caller gets it is too late, since the object cannot be safely accessed
518  * without the level of indirection described earlier. The following
519  * object_alloc() example uses the same code shown earlier to transition a new
520  * object into the state of being recognized (by the client) as a known object.
521  * The function must acquire the hold (rw_enter) before that state transition
522  * makes the object movable:
523  *
524  *      static object_t *
525  *      object_alloc(container_t *container)
526  *      {
527  *              object_t *object = kmem_cache_create(object_cache, 0);
528  *              ... set any initial state not set by the constructor ...
529  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
530  *              mutex_enter(&container->c_objects_lock);
531  *              list_insert_tail(&container->c_objects, object);
532  *              membar_producer();
533  *              object->o_container = container;
534  *              mutex_exit(&container->c_objects_lock);
535  *              return (object);
536  *      }
537  *
538  * Functions that implicitly acquire an object hold (any function that calls
539  * object_alloc() to supply an object for the caller) need to be carefully noted
540  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
541  * prevent all objects hashed to the affected rwlocks from ever being moved.
542  *
543  * The pointer to a held object can be hashed to the holding rwlock even after
544  * the object has been freed. Although it is possible to release the hold
545  * after freeing the object, you may decide to release the hold implicitly in
546  * whatever function frees the object, so as to release the hold as soon as
547  * possible, and for the sake of symmetry with the function that implicitly
548  * acquires the hold when it allocates the object. Here, object_free() releases
549  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
550  * matching pair with object_hold():
551  *
552  *      void
553  *      object_free(object_t *object)
554  *      {
555  *              container_t *container;
556  *
557  *              ASSERT(object_held(object));
558  *              container = object->o_container;
559  *              mutex_enter(&container->c_objects_lock);
560  *              object->o_container =
561  *                  (void *)((uintptr_t)object->o_container | 0x1);
562  *              list_remove(&container->c_objects, object);
563  *              mutex_exit(&container->c_objects_lock);
564  *              object_rele(object);
565  *              kmem_cache_free(object_cache, object);
566  *      }
567  *
568  * Note that object_free() cannot safely accept an object pointer as an argument
569  * unless the object is already held. Any function that calls object_free()
570  * needs to be carefully noted since it similarly forms a matching pair with
571  * object_hold().
572  *
573  * To complete the picture, the following callback function implements the
574  * general solution by moving objects only if they are currently unheld:
575  *
576  *      static kmem_cbrc_t
577  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
578  *      {
579  *              object_t *op = buf, *np = newbuf;
580  *              container_t *container;
581  *
582  *              container = op->o_container;
583  *              if ((uintptr_t)container & 0x3) {
584  *                      return (KMEM_CBRC_DONT_KNOW);
585  *              }
586  *
587  *	        // Ensure that the container structure does not go away.
588  *              if (container_hold(container) == 0) {
589  *                      return (KMEM_CBRC_DONT_KNOW);
590  *              }
591  *
592  *              mutex_enter(&container->c_objects_lock);
593  *              if (container != op->o_container) {
594  *                      mutex_exit(&container->c_objects_lock);
595  *                      container_rele(container);
596  *                      return (KMEM_CBRC_DONT_KNOW);
597  *              }
598  *
599  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
600  *                      mutex_exit(&container->c_objects_lock);
601  *                      container_rele(container);
602  *                      return (KMEM_CBRC_LATER);
603  *              }
604  *
605  *              object_move_impl(op, np); // critical section
606  *              rw_exit(OBJECT_RWLOCK(op));
607  *
608  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
609  *              list_link_replace(&op->o_link_node, &np->o_link_node);
610  *              mutex_exit(&container->c_objects_lock);
611  *              container_rele(container);
612  *              return (KMEM_CBRC_YES);
613  *      }
614  *
615  * Note that object_move() must invalidate the designated o_container pointer of
616  * the old object in the same way that object_free() does, since kmem will free
617  * the object in response to the KMEM_CBRC_YES return value.
618  *
619  * The lock order in object_move() differs from object_alloc(), which locks
620  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
621  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
622  * not a problem. Holding the lock on the object list in the example above
623  * through the entire callback not only prevents the object from going away, it
624  * also allows you to lock the list elsewhere and know that none of its elements
625  * will move during iteration.
626  *
627  * Adding an explicit hold everywhere an object from the cache is used is tricky
628  * and involves much more change to client code than a cache-specific solution
629  * that leverages existing state to decide whether or not an object is
630  * movable. However, this approach has the advantage that no object remains
631  * immovable for any significant length of time, making it extremely unlikely
632  * that long-lived allocations can continue holding slabs hostage; and it works
633  * for any cache.
634  *
635  * 3. Consolidator Implementation
636  *
637  * Once the client supplies a move function that a) recognizes known objects and
638  * b) avoids moving objects that are actively in use, the remaining work is up
639  * to the consolidator to decide which objects to move and when to issue
640  * callbacks.
641  *
642  * The consolidator relies on the fact that a cache's slabs are ordered by
643  * usage. Each slab has a fixed number of objects. Depending on the slab's
644  * "color" (the offset of the first object from the beginning of the slab;
645  * offsets are staggered to mitigate false sharing of cache lines) it is either
646  * the maximum number of objects per slab determined at cache creation time or
647  * else the number closest to the maximum that fits within the space remaining
648  * after the initial offset. A completely allocated slab may contribute some
649  * internal fragmentation (per-slab overhead) but no external fragmentation, so
650  * it is of no interest to the consolidator. At the other extreme, slabs whose
651  * objects have all been freed to the slab are released to the virtual memory
652  * (VM) subsystem (objects freed to magazines are still allocated as far as the
653  * slab is concerned). External fragmentation exists when there are slabs
654  * somewhere between these extremes. A partial slab has at least one but not all
655  * of its objects allocated. The more partial slabs, and the fewer allocated
656  * objects on each of them, the higher the fragmentation. Hence the
657  * consolidator's overall strategy is to reduce the number of partial slabs by
658  * moving allocated objects from the least allocated slabs to the most allocated
659  * slabs.
660  *
661  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
662  * slabs are kept separately in an unordered list. Since the majority of slabs
663  * tend to be completely allocated (a typical unfragmented cache may have
664  * thousands of complete slabs and only a single partial slab), separating
665  * complete slabs improves the efficiency of partial slab ordering, since the
666  * complete slabs do not affect the depth or balance of the AVL tree. This
667  * ordered sequence of partial slabs acts as a "free list" supplying objects for
668  * allocation requests.
669  *
670  * Objects are always allocated from the first partial slab in the free list,
671  * where the allocation is most likely to eliminate a partial slab (by
672  * completely allocating it). Conversely, when a single object from a completely
673  * allocated slab is freed to the slab, that slab is added to the front of the
674  * free list. Since most free list activity involves highly allocated slabs
675  * coming and going at the front of the list, slabs tend naturally toward the
676  * ideal order: highly allocated at the front, sparsely allocated at the back.
677  * Slabs with few allocated objects are likely to become completely free if they
678  * keep a safe distance away from the front of the free list. Slab misorders
679  * interfere with the natural tendency of slabs to become completely free or
680  * completely allocated. For example, a slab with a single allocated object
681  * needs only a single free to escape the cache; its natural desire is
682  * frustrated when it finds itself at the front of the list where a second
683  * allocation happens just before the free could have released it. Another slab
684  * with all but one object allocated might have supplied the buffer instead, so
685  * that both (as opposed to neither) of the slabs would have been taken off the
686  * free list.
687  *
688  * Although slabs tend naturally toward the ideal order, misorders allowed by a
689  * simple list implementation defeat the consolidator's strategy of merging
690  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
691  * needs another way to fix misorders to optimize its callback strategy. One
692  * approach is to periodically scan a limited number of slabs, advancing a
693  * marker to hold the current scan position, and to move extreme misorders to
694  * the front or back of the free list and to the front or back of the current
695  * scan range. By making consecutive scan ranges overlap by one slab, the least
696  * allocated slab in the current range can be carried along from the end of one
697  * scan to the start of the next.
698  *
699  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
700  * task, however. Since most of the cache's activity is in the magazine layer,
701  * and allocations from the slab layer represent only a startup cost, the
702  * overhead of maintaining a balanced tree is not a significant concern compared
703  * to the opportunity of reducing complexity by eliminating the partial slab
704  * scanner just described. The overhead of an AVL tree is minimized by
705  * maintaining only partial slabs in the tree and keeping completely allocated
706  * slabs separately in a list. To avoid increasing the size of the slab
707  * structure the AVL linkage pointers are reused for the slab's list linkage,
708  * since the slab will always be either partial or complete, never stored both
709  * ways at the same time. To further minimize the overhead of the AVL tree the
710  * compare function that orders partial slabs by usage divides the range of
711  * allocated object counts into bins such that counts within the same bin are
712  * considered equal. Binning partial slabs makes it less likely that allocating
713  * or freeing a single object will change the slab's order, requiring a tree
714  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
715  * requiring some rebalancing of the tree). Allocation counts closest to
716  * completely free and completely allocated are left unbinned (finely sorted) to
717  * better support the consolidator's strategy of merging slabs at either
718  * extreme.
719  *
720  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
721  *
722  * The consolidator piggybacks on the kmem maintenance thread and is called on
723  * the same interval as kmem_cache_update(), once per cache every fifteen
724  * seconds. kmem maintains a running count of unallocated objects in the slab
725  * layer (cache_bufslab). The consolidator checks whether that number exceeds
726  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
727  * there is a significant number of slabs in the cache (arbitrarily a minimum
728  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
729  * working set are included in the assessment, and magazines in the depot are
730  * reaped if those objects would lift cache_bufslab above the fragmentation
731  * threshold. Once the consolidator decides that a cache is fragmented, it looks
732  * for a candidate slab to reclaim, starting at the end of the partial slab free
733  * list and scanning backwards. At first the consolidator is choosy: only a slab
734  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
735  * single allocated object, regardless of percentage). If there is difficulty
736  * finding a candidate slab, kmem raises the allocation threshold incrementally,
737  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
738  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
739  * even in the worst case of every slab in the cache being almost 7/8 allocated.
740  * The threshold can also be lowered incrementally when candidate slabs are easy
741  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
742  * is no longer fragmented.
743  *
744  * 3.2 Generating Callbacks
745  *
746  * Once an eligible slab is chosen, a callback is generated for every allocated
747  * object on the slab, in the hope that the client will move everything off the
748  * slab and make it reclaimable. Objects selected as move destinations are
749  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
750  * order (most allocated at the front, least allocated at the back) and a
751  * cooperative client, the consolidator will succeed in removing slabs from both
752  * ends of the free list, completely allocating on the one hand and completely
753  * freeing on the other. Objects selected as move destinations are allocated in
754  * the kmem maintenance thread where move requests are enqueued. A separate
755  * callback thread removes pending callbacks from the queue and calls the
756  * client. The separate thread ensures that client code (the move function) does
757  * not interfere with internal kmem maintenance tasks. A map of pending
758  * callbacks keyed by object address (the object to be moved) is checked to
759  * ensure that duplicate callbacks are not generated for the same object.
760  * Allocating the move destination (the object to move to) prevents subsequent
761  * callbacks from selecting the same destination as an earlier pending callback.
762  *
763  * Move requests can also be generated by kmem_cache_reap() when the system is
764  * desperate for memory and by kmem_cache_move_notify(), called by the client to
765  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
766  * The map of pending callbacks is protected by the same lock that protects the
767  * slab layer.
768  *
769  * When the system is desperate for memory, kmem does not bother to determine
770  * whether or not the cache exceeds the fragmentation threshold, but tries to
771  * consolidate as many slabs as possible. Normally, the consolidator chews
772  * slowly, one sparsely allocated slab at a time during each maintenance
773  * interval that the cache is fragmented. When desperate, the consolidator
774  * starts at the last partial slab and enqueues callbacks for every allocated
775  * object on every partial slab, working backwards until it reaches the first
776  * partial slab. The first partial slab, meanwhile, advances in pace with the
777  * consolidator as allocations to supply move destinations for the enqueued
778  * callbacks use up the highly allocated slabs at the front of the free list.
779  * Ideally, the overgrown free list collapses like an accordion, starting at
780  * both ends and ending at the center with a single partial slab.
781  *
782  * 3.3 Client Responses
783  *
784  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
785  * marks the slab that supplied the stuck object non-reclaimable and moves it to
786  * front of the free list. The slab remains marked as long as it remains on the
787  * free list, and it appears more allocated to the partial slab compare function
788  * than any unmarked slab, no matter how many of its objects are allocated.
789  * Since even one immovable object ties up the entire slab, the goal is to
790  * completely allocate any slab that cannot be completely freed. kmem does not
791  * bother generating callbacks to move objects from a marked slab unless the
792  * system is desperate.
793  *
794  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
795  * slab. If the client responds LATER too many times, kmem disbelieves and
796  * treats the response as a NO. The count is cleared when the slab is taken off
797  * the partial slab list or when the client moves one of the slab's objects.
798  *
799  * 4. Observability
800  *
801  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
802  * the ::kmem_slabs dcmd. For a complete description of the command, enter
803  * '::help kmem_slabs' at the mdb prompt.
804  */
805 
806 #include <sys/kmem_impl.h>
807 #include <sys/vmem_impl.h>
808 #include <sys/param.h>
809 #include <sys/sysmacros.h>
810 #include <sys/vm.h>
811 #include <sys/proc.h>
812 #include <sys/tuneable.h>
813 #include <sys/systm.h>
814 #include <sys/cmn_err.h>
815 #include <sys/debug.h>
816 #include <sys/sdt.h>
817 #include <sys/mutex.h>
818 #include <sys/bitmap.h>
819 #include <sys/atomic.h>
820 #include <sys/kobj.h>
821 #include <sys/disp.h>
822 #include <vm/seg_kmem.h>
823 #include <sys/log.h>
824 #include <sys/callb.h>
825 #include <sys/taskq.h>
826 #include <sys/modctl.h>
827 #include <sys/reboot.h>
828 #include <sys/id32.h>
829 #include <sys/zone.h>
830 #include <sys/netstack.h>
831 #ifdef	DEBUG
832 #include <sys/random.h>
833 #endif
834 
835 extern void streams_msg_init(void);
836 extern int segkp_fromheap;
837 extern void segkp_cache_free(void);
838 
839 struct kmem_cache_kstat {
840 	kstat_named_t	kmc_buf_size;
841 	kstat_named_t	kmc_align;
842 	kstat_named_t	kmc_chunk_size;
843 	kstat_named_t	kmc_slab_size;
844 	kstat_named_t	kmc_alloc;
845 	kstat_named_t	kmc_alloc_fail;
846 	kstat_named_t	kmc_free;
847 	kstat_named_t	kmc_depot_alloc;
848 	kstat_named_t	kmc_depot_free;
849 	kstat_named_t	kmc_depot_contention;
850 	kstat_named_t	kmc_slab_alloc;
851 	kstat_named_t	kmc_slab_free;
852 	kstat_named_t	kmc_buf_constructed;
853 	kstat_named_t	kmc_buf_avail;
854 	kstat_named_t	kmc_buf_inuse;
855 	kstat_named_t	kmc_buf_total;
856 	kstat_named_t	kmc_buf_max;
857 	kstat_named_t	kmc_slab_create;
858 	kstat_named_t	kmc_slab_destroy;
859 	kstat_named_t	kmc_vmem_source;
860 	kstat_named_t	kmc_hash_size;
861 	kstat_named_t	kmc_hash_lookup_depth;
862 	kstat_named_t	kmc_hash_rescale;
863 	kstat_named_t	kmc_full_magazines;
864 	kstat_named_t	kmc_empty_magazines;
865 	kstat_named_t	kmc_magazine_size;
866 	kstat_named_t	kmc_move_callbacks;
867 	kstat_named_t	kmc_move_yes;
868 	kstat_named_t	kmc_move_no;
869 	kstat_named_t	kmc_move_later;
870 	kstat_named_t	kmc_move_dont_need;
871 	kstat_named_t	kmc_move_dont_know;
872 	kstat_named_t	kmc_move_hunt_found;
873 } kmem_cache_kstat = {
874 	{ "buf_size",		KSTAT_DATA_UINT64 },
875 	{ "align",		KSTAT_DATA_UINT64 },
876 	{ "chunk_size",		KSTAT_DATA_UINT64 },
877 	{ "slab_size",		KSTAT_DATA_UINT64 },
878 	{ "alloc",		KSTAT_DATA_UINT64 },
879 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
880 	{ "free",		KSTAT_DATA_UINT64 },
881 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
882 	{ "depot_free",		KSTAT_DATA_UINT64 },
883 	{ "depot_contention",	KSTAT_DATA_UINT64 },
884 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
885 	{ "slab_free",		KSTAT_DATA_UINT64 },
886 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
887 	{ "buf_avail",		KSTAT_DATA_UINT64 },
888 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
889 	{ "buf_total",		KSTAT_DATA_UINT64 },
890 	{ "buf_max",		KSTAT_DATA_UINT64 },
891 	{ "slab_create",	KSTAT_DATA_UINT64 },
892 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
893 	{ "vmem_source",	KSTAT_DATA_UINT64 },
894 	{ "hash_size",		KSTAT_DATA_UINT64 },
895 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
896 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
897 	{ "full_magazines",	KSTAT_DATA_UINT64 },
898 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
899 	{ "magazine_size",	KSTAT_DATA_UINT64 },
900 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
901 	{ "move_yes",		KSTAT_DATA_UINT64 },
902 	{ "move_no",		KSTAT_DATA_UINT64 },
903 	{ "move_later",		KSTAT_DATA_UINT64 },
904 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
905 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
906 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
907 };
908 
909 static kmutex_t kmem_cache_kstat_lock;
910 
911 /*
912  * The default set of caches to back kmem_alloc().
913  * These sizes should be reevaluated periodically.
914  *
915  * We want allocations that are multiples of the coherency granularity
916  * (64 bytes) to be satisfied from a cache which is a multiple of 64
917  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
918  * the next kmem_cache_size greater than or equal to it must be a
919  * multiple of 64.
920  */
921 static const int kmem_alloc_sizes[] = {
922 	1 * 8,
923 	2 * 8,
924 	3 * 8,
925 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
926 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
927 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
928 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
929 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
930 	P2ALIGN(8192 / 7, 64),
931 	P2ALIGN(8192 / 6, 64),
932 	P2ALIGN(8192 / 5, 64),
933 	P2ALIGN(8192 / 4, 64),
934 	P2ALIGN(8192 / 3, 64),
935 	P2ALIGN(8192 / 2, 64),
936 	P2ALIGN(8192 / 1, 64),
937 	4096 * 3,
938 	8192 * 2,
939 	8192 * 3,
940 	8192 * 4,
941 };
942 
943 #define	KMEM_MAXBUF	32768
944 
945 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
946 
947 static kmem_magtype_t kmem_magtype[] = {
948 	{ 1,	8,	3200,	65536	},
949 	{ 3,	16,	256,	32768	},
950 	{ 7,	32,	64,	16384	},
951 	{ 15,	64,	0,	8192	},
952 	{ 31,	64,	0,	4096	},
953 	{ 47,	64,	0,	2048	},
954 	{ 63,	64,	0,	1024	},
955 	{ 95,	64,	0,	512	},
956 	{ 143,	64,	0,	0	},
957 };
958 
959 static uint32_t kmem_reaping;
960 static uint32_t kmem_reaping_idspace;
961 
962 /*
963  * kmem tunables
964  */
965 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
966 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
967 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
968 int kmem_panic = 1;		/* whether to panic on error */
969 int kmem_logging = 1;		/* kmem_log_enter() override */
970 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
971 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
972 size_t kmem_content_log_size;	/* content log size [2% of memory] */
973 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
974 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
975 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
976 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
977 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
978 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
979 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
980 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
981 
982 #ifdef DEBUG
983 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
984 #else
985 int kmem_flags = 0;
986 #endif
987 int kmem_ready;
988 static boolean_t kmem_mp_init_done = B_FALSE;
989 
990 static kmem_cache_t	*kmem_slab_cache;
991 static kmem_cache_t	*kmem_bufctl_cache;
992 static kmem_cache_t	*kmem_bufctl_audit_cache;
993 
994 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
995 static list_t		kmem_caches;
996 
997 static taskq_t		*kmem_taskq;
998 static kmutex_t		kmem_flags_lock;
999 static vmem_t		*kmem_metadata_arena;
1000 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
1001 static vmem_t		*kmem_cache_arena;
1002 static vmem_t		*kmem_hash_arena;
1003 static vmem_t		*kmem_log_arena;
1004 static vmem_t		*kmem_oversize_arena;
1005 static vmem_t		*kmem_va_arena;
1006 static vmem_t		*kmem_default_arena;
1007 static vmem_t		*kmem_firewall_va_arena;
1008 static vmem_t		*kmem_firewall_arena;
1009 
1010 /*
1011  * Define KMEM_STATS to turn on statistic gathering. By default, it is only
1012  * turned on when DEBUG is also defined.
1013  */
1014 #ifdef	DEBUG
1015 #define	KMEM_STATS
1016 #endif	/* DEBUG */
1017 
1018 #ifdef	KMEM_STATS
1019 #define	KMEM_STAT_ADD(stat)			((stat)++)
1020 #define	KMEM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
1021 #else
1022 #define	KMEM_STAT_ADD(stat)			/* nothing */
1023 #define	KMEM_STAT_COND_ADD(cond, stat)		/* nothing */
1024 #endif	/* KMEM_STATS */
1025 
1026 /*
1027  * kmem slab consolidator thresholds (tunables)
1028  */
1029 static size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1030 static size_t kmem_frag_numer = 1;	/* free buffers (numerator) */
1031 static size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1032 /*
1033  * Maximum number of slabs from which to move buffers during a single
1034  * maintenance interval while the system is not low on memory.
1035  */
1036 static size_t kmem_reclaim_max_slabs = 1;
1037 /*
1038  * Number of slabs to scan backwards from the end of the partial slab list
1039  * when searching for buffers to relocate.
1040  */
1041 static size_t kmem_reclaim_scan_range = 12;
1042 
1043 #ifdef	KMEM_STATS
1044 static struct {
1045 	uint64_t kms_callbacks;
1046 	uint64_t kms_yes;
1047 	uint64_t kms_no;
1048 	uint64_t kms_later;
1049 	uint64_t kms_dont_need;
1050 	uint64_t kms_dont_know;
1051 	uint64_t kms_hunt_found_slab;
1052 	uint64_t kms_hunt_found_mag;
1053 	uint64_t kms_hunt_alloc_fail;
1054 	uint64_t kms_hunt_lucky;
1055 	uint64_t kms_notify;
1056 	uint64_t kms_notify_callbacks;
1057 	uint64_t kms_disbelief;
1058 	uint64_t kms_already_pending;
1059 	uint64_t kms_callback_alloc_fail;
1060 	uint64_t kms_endscan_slab_destroyed;
1061 	uint64_t kms_endscan_nomem;
1062 	uint64_t kms_endscan_slab_all_used;
1063 	uint64_t kms_endscan_refcnt_changed;
1064 	uint64_t kms_endscan_nomove_changed;
1065 	uint64_t kms_endscan_freelist;
1066 	uint64_t kms_avl_update;
1067 	uint64_t kms_avl_noupdate;
1068 	uint64_t kms_no_longer_reclaimable;
1069 	uint64_t kms_notify_no_longer_reclaimable;
1070 	uint64_t kms_alloc_fail;
1071 	uint64_t kms_constructor_fail;
1072 	uint64_t kms_dead_slabs_freed;
1073 	uint64_t kms_defrags;
1074 	uint64_t kms_scan_depot_ws_reaps;
1075 	uint64_t kms_debug_reaps;
1076 	uint64_t kms_debug_move_scans;
1077 } kmem_move_stats;
1078 #endif	/* KMEM_STATS */
1079 
1080 /* consolidator knobs */
1081 static boolean_t kmem_move_noreap;
1082 static boolean_t kmem_move_blocked;
1083 static boolean_t kmem_move_fulltilt;
1084 static boolean_t kmem_move_any_partial;
1085 
1086 #ifdef	DEBUG
1087 /*
1088  * Ensure code coverage by occasionally running the consolidator even when the
1089  * caches are not fragmented (they may never be). These intervals are mean time
1090  * in cache maintenance intervals (kmem_cache_update).
1091  */
1092 static int kmem_mtb_move = 60;		/* defrag 1 slab (~15min) */
1093 static int kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1094 #endif	/* DEBUG */
1095 
1096 static kmem_cache_t	*kmem_defrag_cache;
1097 static kmem_cache_t	*kmem_move_cache;
1098 static taskq_t		*kmem_move_taskq;
1099 
1100 static void kmem_cache_scan(kmem_cache_t *);
1101 static void kmem_cache_defrag(kmem_cache_t *);
1102 
1103 
1104 kmem_log_header_t	*kmem_transaction_log;
1105 kmem_log_header_t	*kmem_content_log;
1106 kmem_log_header_t	*kmem_failure_log;
1107 kmem_log_header_t	*kmem_slab_log;
1108 
1109 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1110 
1111 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
1112 	if ((count) > 0) {						\
1113 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
1114 		pc_t *_e;						\
1115 		/* memmove() the old entries down one notch */		\
1116 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
1117 			*_e = *(_e - 1);				\
1118 		*_s = (uintptr_t)(caller);				\
1119 	}
1120 
1121 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
1122 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
1123 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
1124 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
1125 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
1126 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
1127 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
1128 #define	KMERR_BADSIZE	7	/* alloc size != free size */
1129 #define	KMERR_BADBASE	8	/* buffer base address wrong */
1130 
1131 struct {
1132 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
1133 	int		kmp_error;	/* type of kmem error */
1134 	void		*kmp_buffer;	/* buffer that induced panic */
1135 	void		*kmp_realbuf;	/* real start address for buffer */
1136 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
1137 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
1138 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
1139 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
1140 } kmem_panic_info;
1141 
1142 
1143 static void
1144 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1145 {
1146 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1147 	uint64_t *buf = buf_arg;
1148 
1149 	while (buf < bufend)
1150 		*buf++ = pattern;
1151 }
1152 
1153 static void *
1154 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1155 {
1156 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1157 	uint64_t *buf;
1158 
1159 	for (buf = buf_arg; buf < bufend; buf++)
1160 		if (*buf != pattern)
1161 			return (buf);
1162 	return (NULL);
1163 }
1164 
1165 static void *
1166 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1167 {
1168 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1169 	uint64_t *buf;
1170 
1171 	for (buf = buf_arg; buf < bufend; buf++) {
1172 		if (*buf != old) {
1173 			copy_pattern(old, buf_arg,
1174 			    (char *)buf - (char *)buf_arg);
1175 			return (buf);
1176 		}
1177 		*buf = new;
1178 	}
1179 
1180 	return (NULL);
1181 }
1182 
1183 static void
1184 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1185 {
1186 	kmem_cache_t *cp;
1187 
1188 	mutex_enter(&kmem_cache_lock);
1189 	for (cp = list_head(&kmem_caches); cp != NULL;
1190 	    cp = list_next(&kmem_caches, cp))
1191 		if (tq != NULL)
1192 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1193 			    tqflag);
1194 		else
1195 			func(cp);
1196 	mutex_exit(&kmem_cache_lock);
1197 }
1198 
1199 static void
1200 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1201 {
1202 	kmem_cache_t *cp;
1203 
1204 	mutex_enter(&kmem_cache_lock);
1205 	for (cp = list_head(&kmem_caches); cp != NULL;
1206 	    cp = list_next(&kmem_caches, cp)) {
1207 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
1208 			continue;
1209 		if (tq != NULL)
1210 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1211 			    tqflag);
1212 		else
1213 			func(cp);
1214 	}
1215 	mutex_exit(&kmem_cache_lock);
1216 }
1217 
1218 /*
1219  * Debugging support.  Given a buffer address, find its slab.
1220  */
1221 static kmem_slab_t *
1222 kmem_findslab(kmem_cache_t *cp, void *buf)
1223 {
1224 	kmem_slab_t *sp;
1225 
1226 	mutex_enter(&cp->cache_lock);
1227 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1228 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1229 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 			mutex_exit(&cp->cache_lock);
1231 			return (sp);
1232 		}
1233 	}
1234 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1235 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1236 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1237 			mutex_exit(&cp->cache_lock);
1238 			return (sp);
1239 		}
1240 	}
1241 	mutex_exit(&cp->cache_lock);
1242 
1243 	return (NULL);
1244 }
1245 
1246 static void
1247 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1248 {
1249 	kmem_buftag_t *btp = NULL;
1250 	kmem_bufctl_t *bcp = NULL;
1251 	kmem_cache_t *cp = cparg;
1252 	kmem_slab_t *sp;
1253 	uint64_t *off;
1254 	void *buf = bufarg;
1255 
1256 	kmem_logging = 0;	/* stop logging when a bad thing happens */
1257 
1258 	kmem_panic_info.kmp_timestamp = gethrtime();
1259 
1260 	sp = kmem_findslab(cp, buf);
1261 	if (sp == NULL) {
1262 		for (cp = list_tail(&kmem_caches); cp != NULL;
1263 		    cp = list_prev(&kmem_caches, cp)) {
1264 			if ((sp = kmem_findslab(cp, buf)) != NULL)
1265 				break;
1266 		}
1267 	}
1268 
1269 	if (sp == NULL) {
1270 		cp = NULL;
1271 		error = KMERR_BADADDR;
1272 	} else {
1273 		if (cp != cparg)
1274 			error = KMERR_BADCACHE;
1275 		else
1276 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1277 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1278 		if (buf != bufarg)
1279 			error = KMERR_BADBASE;
1280 		if (cp->cache_flags & KMF_BUFTAG)
1281 			btp = KMEM_BUFTAG(cp, buf);
1282 		if (cp->cache_flags & KMF_HASH) {
1283 			mutex_enter(&cp->cache_lock);
1284 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1285 				if (bcp->bc_addr == buf)
1286 					break;
1287 			mutex_exit(&cp->cache_lock);
1288 			if (bcp == NULL && btp != NULL)
1289 				bcp = btp->bt_bufctl;
1290 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1291 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1292 			    bcp->bc_addr != buf) {
1293 				error = KMERR_BADBUFCTL;
1294 				bcp = NULL;
1295 			}
1296 		}
1297 	}
1298 
1299 	kmem_panic_info.kmp_error = error;
1300 	kmem_panic_info.kmp_buffer = bufarg;
1301 	kmem_panic_info.kmp_realbuf = buf;
1302 	kmem_panic_info.kmp_cache = cparg;
1303 	kmem_panic_info.kmp_realcache = cp;
1304 	kmem_panic_info.kmp_slab = sp;
1305 	kmem_panic_info.kmp_bufctl = bcp;
1306 
1307 	printf("kernel memory allocator: ");
1308 
1309 	switch (error) {
1310 
1311 	case KMERR_MODIFIED:
1312 		printf("buffer modified after being freed\n");
1313 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1314 		if (off == NULL)	/* shouldn't happen */
1315 			off = buf;
1316 		printf("modification occurred at offset 0x%lx "
1317 		    "(0x%llx replaced by 0x%llx)\n",
1318 		    (uintptr_t)off - (uintptr_t)buf,
1319 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1320 		break;
1321 
1322 	case KMERR_REDZONE:
1323 		printf("redzone violation: write past end of buffer\n");
1324 		break;
1325 
1326 	case KMERR_BADADDR:
1327 		printf("invalid free: buffer not in cache\n");
1328 		break;
1329 
1330 	case KMERR_DUPFREE:
1331 		printf("duplicate free: buffer freed twice\n");
1332 		break;
1333 
1334 	case KMERR_BADBUFTAG:
1335 		printf("boundary tag corrupted\n");
1336 		printf("bcp ^ bxstat = %lx, should be %lx\n",
1337 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1338 		    KMEM_BUFTAG_FREE);
1339 		break;
1340 
1341 	case KMERR_BADBUFCTL:
1342 		printf("bufctl corrupted\n");
1343 		break;
1344 
1345 	case KMERR_BADCACHE:
1346 		printf("buffer freed to wrong cache\n");
1347 		printf("buffer was allocated from %s,\n", cp->cache_name);
1348 		printf("caller attempting free to %s.\n", cparg->cache_name);
1349 		break;
1350 
1351 	case KMERR_BADSIZE:
1352 		printf("bad free: free size (%u) != alloc size (%u)\n",
1353 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1354 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1355 		break;
1356 
1357 	case KMERR_BADBASE:
1358 		printf("bad free: free address (%p) != alloc address (%p)\n",
1359 		    bufarg, buf);
1360 		break;
1361 	}
1362 
1363 	printf("buffer=%p  bufctl=%p  cache: %s\n",
1364 	    bufarg, (void *)bcp, cparg->cache_name);
1365 
1366 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1367 	    error != KMERR_BADBUFCTL) {
1368 		int d;
1369 		timestruc_t ts;
1370 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1371 
1372 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1373 		printf("previous transaction on buffer %p:\n", buf);
1374 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1375 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1376 		    (void *)sp, cp->cache_name);
1377 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1378 			ulong_t off;
1379 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1380 			printf("%s+%lx\n", sym ? sym : "?", off);
1381 		}
1382 	}
1383 	if (kmem_panic > 0)
1384 		panic("kernel heap corruption detected");
1385 	if (kmem_panic == 0)
1386 		debug_enter(NULL);
1387 	kmem_logging = 1;	/* resume logging */
1388 }
1389 
1390 static kmem_log_header_t *
1391 kmem_log_init(size_t logsize)
1392 {
1393 	kmem_log_header_t *lhp;
1394 	int nchunks = 4 * max_ncpus;
1395 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1396 	int i;
1397 
1398 	/*
1399 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1400 	 * to prevent false sharing of cache lines.
1401 	 */
1402 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1403 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1404 	    NULL, NULL, VM_SLEEP);
1405 	bzero(lhp, lhsize);
1406 
1407 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1408 	lhp->lh_nchunks = nchunks;
1409 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1410 	lhp->lh_base = vmem_alloc(kmem_log_arena,
1411 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
1412 	lhp->lh_free = vmem_alloc(kmem_log_arena,
1413 	    nchunks * sizeof (int), VM_SLEEP);
1414 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1415 
1416 	for (i = 0; i < max_ncpus; i++) {
1417 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1418 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1419 		clhp->clh_chunk = i;
1420 	}
1421 
1422 	for (i = max_ncpus; i < nchunks; i++)
1423 		lhp->lh_free[i] = i;
1424 
1425 	lhp->lh_head = max_ncpus;
1426 	lhp->lh_tail = 0;
1427 
1428 	return (lhp);
1429 }
1430 
1431 static void *
1432 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1433 {
1434 	void *logspace;
1435 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1436 
1437 	if (lhp == NULL || kmem_logging == 0 || panicstr)
1438 		return (NULL);
1439 
1440 	mutex_enter(&clhp->clh_lock);
1441 	clhp->clh_hits++;
1442 	if (size > clhp->clh_avail) {
1443 		mutex_enter(&lhp->lh_lock);
1444 		lhp->lh_hits++;
1445 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1446 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1447 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1448 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1449 		clhp->clh_current = lhp->lh_base +
1450 		    clhp->clh_chunk * lhp->lh_chunksize;
1451 		clhp->clh_avail = lhp->lh_chunksize;
1452 		if (size > lhp->lh_chunksize)
1453 			size = lhp->lh_chunksize;
1454 		mutex_exit(&lhp->lh_lock);
1455 	}
1456 	logspace = clhp->clh_current;
1457 	clhp->clh_current += size;
1458 	clhp->clh_avail -= size;
1459 	bcopy(data, logspace, size);
1460 	mutex_exit(&clhp->clh_lock);
1461 	return (logspace);
1462 }
1463 
1464 #define	KMEM_AUDIT(lp, cp, bcp)						\
1465 {									\
1466 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
1467 	_bcp->bc_timestamp = gethrtime();				\
1468 	_bcp->bc_thread = curthread;					\
1469 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
1470 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
1471 }
1472 
1473 static void
1474 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1475 	kmem_slab_t *sp, void *addr)
1476 {
1477 	kmem_bufctl_audit_t bca;
1478 
1479 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
1480 	bca.bc_addr = addr;
1481 	bca.bc_slab = sp;
1482 	bca.bc_cache = cp;
1483 	KMEM_AUDIT(lp, cp, &bca);
1484 }
1485 
1486 /*
1487  * Create a new slab for cache cp.
1488  */
1489 static kmem_slab_t *
1490 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1491 {
1492 	size_t slabsize = cp->cache_slabsize;
1493 	size_t chunksize = cp->cache_chunksize;
1494 	int cache_flags = cp->cache_flags;
1495 	size_t color, chunks;
1496 	char *buf, *slab;
1497 	kmem_slab_t *sp;
1498 	kmem_bufctl_t *bcp;
1499 	vmem_t *vmp = cp->cache_arena;
1500 
1501 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1502 
1503 	color = cp->cache_color + cp->cache_align;
1504 	if (color > cp->cache_maxcolor)
1505 		color = cp->cache_mincolor;
1506 	cp->cache_color = color;
1507 
1508 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1509 
1510 	if (slab == NULL)
1511 		goto vmem_alloc_failure;
1512 
1513 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1514 
1515 	/*
1516 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1517 	 * consolidator depends (for correctness) on slabs being initialized
1518 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1519 	 * clients to distinguish uninitialized memory from known objects).
1520 	 */
1521 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1522 	if (!(cp->cache_cflags & KMC_NOTOUCH))
1523 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1524 
1525 	if (cache_flags & KMF_HASH) {
1526 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1527 			goto slab_alloc_failure;
1528 		chunks = (slabsize - color) / chunksize;
1529 	} else {
1530 		sp = KMEM_SLAB(cp, slab);
1531 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1532 	}
1533 
1534 	sp->slab_cache	= cp;
1535 	sp->slab_head	= NULL;
1536 	sp->slab_refcnt	= 0;
1537 	sp->slab_base	= buf = slab + color;
1538 	sp->slab_chunks	= chunks;
1539 	sp->slab_stuck_offset = (uint32_t)-1;
1540 	sp->slab_later_count = 0;
1541 	sp->slab_flags = 0;
1542 
1543 	ASSERT(chunks > 0);
1544 	while (chunks-- != 0) {
1545 		if (cache_flags & KMF_HASH) {
1546 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1547 			if (bcp == NULL)
1548 				goto bufctl_alloc_failure;
1549 			if (cache_flags & KMF_AUDIT) {
1550 				kmem_bufctl_audit_t *bcap =
1551 				    (kmem_bufctl_audit_t *)bcp;
1552 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
1553 				bcap->bc_cache = cp;
1554 			}
1555 			bcp->bc_addr = buf;
1556 			bcp->bc_slab = sp;
1557 		} else {
1558 			bcp = KMEM_BUFCTL(cp, buf);
1559 		}
1560 		if (cache_flags & KMF_BUFTAG) {
1561 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1562 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1563 			btp->bt_bufctl = bcp;
1564 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1565 			if (cache_flags & KMF_DEADBEEF) {
1566 				copy_pattern(KMEM_FREE_PATTERN, buf,
1567 				    cp->cache_verify);
1568 			}
1569 		}
1570 		bcp->bc_next = sp->slab_head;
1571 		sp->slab_head = bcp;
1572 		buf += chunksize;
1573 	}
1574 
1575 	kmem_log_event(kmem_slab_log, cp, sp, slab);
1576 
1577 	return (sp);
1578 
1579 bufctl_alloc_failure:
1580 
1581 	while ((bcp = sp->slab_head) != NULL) {
1582 		sp->slab_head = bcp->bc_next;
1583 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
1584 	}
1585 	kmem_cache_free(kmem_slab_cache, sp);
1586 
1587 slab_alloc_failure:
1588 
1589 	vmem_free(vmp, slab, slabsize);
1590 
1591 vmem_alloc_failure:
1592 
1593 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1594 	atomic_add_64(&cp->cache_alloc_fail, 1);
1595 
1596 	return (NULL);
1597 }
1598 
1599 /*
1600  * Destroy a slab.
1601  */
1602 static void
1603 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1604 {
1605 	vmem_t *vmp = cp->cache_arena;
1606 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1607 
1608 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1609 	ASSERT(sp->slab_refcnt == 0);
1610 
1611 	if (cp->cache_flags & KMF_HASH) {
1612 		kmem_bufctl_t *bcp;
1613 		while ((bcp = sp->slab_head) != NULL) {
1614 			sp->slab_head = bcp->bc_next;
1615 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
1616 		}
1617 		kmem_cache_free(kmem_slab_cache, sp);
1618 	}
1619 	vmem_free(vmp, slab, cp->cache_slabsize);
1620 }
1621 
1622 static void *
1623 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp)
1624 {
1625 	kmem_bufctl_t *bcp, **hash_bucket;
1626 	void *buf;
1627 
1628 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1629 	/*
1630 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1631 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1632 	 * slab is newly created (sp->slab_refcnt == 0).
1633 	 */
1634 	ASSERT((sp->slab_refcnt == 0) || (KMEM_SLAB_IS_PARTIAL(sp) &&
1635 	    (sp == avl_first(&cp->cache_partial_slabs))));
1636 	ASSERT(sp->slab_cache == cp);
1637 
1638 	cp->cache_slab_alloc++;
1639 	cp->cache_bufslab--;
1640 	sp->slab_refcnt++;
1641 
1642 	bcp = sp->slab_head;
1643 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1644 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1645 		if (sp->slab_refcnt == 1) {
1646 			ASSERT(sp->slab_chunks == 1);
1647 		} else {
1648 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1649 			avl_remove(&cp->cache_partial_slabs, sp);
1650 			sp->slab_later_count = 0; /* clear history */
1651 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1652 			sp->slab_stuck_offset = (uint32_t)-1;
1653 		}
1654 		list_insert_head(&cp->cache_complete_slabs, sp);
1655 		cp->cache_complete_slab_count++;
1656 	} else {
1657 		ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1658 		if (sp->slab_refcnt == 1) {
1659 			avl_add(&cp->cache_partial_slabs, sp);
1660 		} else {
1661 			/*
1662 			 * The slab is now more allocated than it was, so the
1663 			 * order remains unchanged.
1664 			 */
1665 			ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1666 		}
1667 	}
1668 
1669 	if (cp->cache_flags & KMF_HASH) {
1670 		/*
1671 		 * Add buffer to allocated-address hash table.
1672 		 */
1673 		buf = bcp->bc_addr;
1674 		hash_bucket = KMEM_HASH(cp, buf);
1675 		bcp->bc_next = *hash_bucket;
1676 		*hash_bucket = bcp;
1677 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1678 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1679 		}
1680 	} else {
1681 		buf = KMEM_BUF(cp, bcp);
1682 	}
1683 
1684 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1685 	return (buf);
1686 }
1687 
1688 /*
1689  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1690  */
1691 static void *
1692 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1693 {
1694 	kmem_slab_t *sp;
1695 	void *buf;
1696 
1697 	mutex_enter(&cp->cache_lock);
1698 	sp = avl_first(&cp->cache_partial_slabs);
1699 	if (sp == NULL) {
1700 		ASSERT(cp->cache_bufslab == 0);
1701 
1702 		/*
1703 		 * The freelist is empty.  Create a new slab.
1704 		 */
1705 		mutex_exit(&cp->cache_lock);
1706 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1707 			return (NULL);
1708 		}
1709 		mutex_enter(&cp->cache_lock);
1710 		cp->cache_slab_create++;
1711 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1712 			cp->cache_bufmax = cp->cache_buftotal;
1713 		cp->cache_bufslab += sp->slab_chunks;
1714 	}
1715 
1716 	buf = kmem_slab_alloc_impl(cp, sp);
1717 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1718 	    (cp->cache_complete_slab_count +
1719 	    avl_numnodes(&cp->cache_partial_slabs) +
1720 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1721 	mutex_exit(&cp->cache_lock);
1722 
1723 	return (buf);
1724 }
1725 
1726 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1727 
1728 /*
1729  * Free a raw (unconstructed) buffer to cp's slab layer.
1730  */
1731 static void
1732 kmem_slab_free(kmem_cache_t *cp, void *buf)
1733 {
1734 	kmem_slab_t *sp;
1735 	kmem_bufctl_t *bcp, **prev_bcpp;
1736 
1737 	ASSERT(buf != NULL);
1738 
1739 	mutex_enter(&cp->cache_lock);
1740 	cp->cache_slab_free++;
1741 
1742 	if (cp->cache_flags & KMF_HASH) {
1743 		/*
1744 		 * Look up buffer in allocated-address hash table.
1745 		 */
1746 		prev_bcpp = KMEM_HASH(cp, buf);
1747 		while ((bcp = *prev_bcpp) != NULL) {
1748 			if (bcp->bc_addr == buf) {
1749 				*prev_bcpp = bcp->bc_next;
1750 				sp = bcp->bc_slab;
1751 				break;
1752 			}
1753 			cp->cache_lookup_depth++;
1754 			prev_bcpp = &bcp->bc_next;
1755 		}
1756 	} else {
1757 		bcp = KMEM_BUFCTL(cp, buf);
1758 		sp = KMEM_SLAB(cp, buf);
1759 	}
1760 
1761 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1762 		mutex_exit(&cp->cache_lock);
1763 		kmem_error(KMERR_BADADDR, cp, buf);
1764 		return;
1765 	}
1766 
1767 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1768 		/*
1769 		 * If this is the buffer that prevented the consolidator from
1770 		 * clearing the slab, we can reset the slab flags now that the
1771 		 * buffer is freed. (It makes sense to do this in
1772 		 * kmem_cache_free(), where the client gives up ownership of the
1773 		 * buffer, but on the hot path the test is too expensive.)
1774 		 */
1775 		kmem_slab_move_yes(cp, sp, buf);
1776 	}
1777 
1778 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1779 		if (cp->cache_flags & KMF_CONTENTS)
1780 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
1781 			    kmem_log_enter(kmem_content_log, buf,
1782 			    cp->cache_contents);
1783 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1784 	}
1785 
1786 	bcp->bc_next = sp->slab_head;
1787 	sp->slab_head = bcp;
1788 
1789 	cp->cache_bufslab++;
1790 	ASSERT(sp->slab_refcnt >= 1);
1791 
1792 	if (--sp->slab_refcnt == 0) {
1793 		/*
1794 		 * There are no outstanding allocations from this slab,
1795 		 * so we can reclaim the memory.
1796 		 */
1797 		if (sp->slab_chunks == 1) {
1798 			list_remove(&cp->cache_complete_slabs, sp);
1799 			cp->cache_complete_slab_count--;
1800 		} else {
1801 			avl_remove(&cp->cache_partial_slabs, sp);
1802 		}
1803 
1804 		cp->cache_buftotal -= sp->slab_chunks;
1805 		cp->cache_bufslab -= sp->slab_chunks;
1806 		/*
1807 		 * Defer releasing the slab to the virtual memory subsystem
1808 		 * while there is a pending move callback, since we guarantee
1809 		 * that buffers passed to the move callback have only been
1810 		 * touched by kmem or by the client itself. Since the memory
1811 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1812 		 * set at least one of the two lowest order bits, the client can
1813 		 * test those bits in the move callback to determine whether or
1814 		 * not it knows about the buffer (assuming that the client also
1815 		 * sets one of those low order bits whenever it frees a buffer).
1816 		 */
1817 		if (cp->cache_defrag == NULL ||
1818 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1819 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1820 			cp->cache_slab_destroy++;
1821 			mutex_exit(&cp->cache_lock);
1822 			kmem_slab_destroy(cp, sp);
1823 		} else {
1824 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1825 			/*
1826 			 * Slabs are inserted at both ends of the deadlist to
1827 			 * distinguish between slabs freed while move callbacks
1828 			 * are pending (list head) and a slab freed while the
1829 			 * lock is dropped in kmem_move_buffers() (list tail) so
1830 			 * that in both cases slab_destroy() is called from the
1831 			 * right context.
1832 			 */
1833 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1834 				list_insert_tail(deadlist, sp);
1835 			} else {
1836 				list_insert_head(deadlist, sp);
1837 			}
1838 			cp->cache_defrag->kmd_deadcount++;
1839 			mutex_exit(&cp->cache_lock);
1840 		}
1841 		return;
1842 	}
1843 
1844 	if (bcp->bc_next == NULL) {
1845 		/* Transition the slab from completely allocated to partial. */
1846 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1847 		ASSERT(sp->slab_chunks > 1);
1848 		list_remove(&cp->cache_complete_slabs, sp);
1849 		cp->cache_complete_slab_count--;
1850 		avl_add(&cp->cache_partial_slabs, sp);
1851 	} else {
1852 #ifdef	DEBUG
1853 		if (avl_update_gt(&cp->cache_partial_slabs, sp)) {
1854 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_update);
1855 		} else {
1856 			KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate);
1857 		}
1858 #else
1859 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1860 #endif
1861 	}
1862 
1863 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1864 	    (cp->cache_complete_slab_count +
1865 	    avl_numnodes(&cp->cache_partial_slabs) +
1866 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1867 	mutex_exit(&cp->cache_lock);
1868 }
1869 
1870 /*
1871  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1872  */
1873 static int
1874 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1875     caddr_t caller)
1876 {
1877 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1878 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1879 	uint32_t mtbf;
1880 
1881 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1882 		kmem_error(KMERR_BADBUFTAG, cp, buf);
1883 		return (-1);
1884 	}
1885 
1886 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1887 
1888 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1889 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1890 		return (-1);
1891 	}
1892 
1893 	if (cp->cache_flags & KMF_DEADBEEF) {
1894 		if (!construct && (cp->cache_flags & KMF_LITE)) {
1895 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1896 				kmem_error(KMERR_MODIFIED, cp, buf);
1897 				return (-1);
1898 			}
1899 			if (cp->cache_constructor != NULL)
1900 				*(uint64_t *)buf = btp->bt_redzone;
1901 			else
1902 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1903 		} else {
1904 			construct = 1;
1905 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1906 			    KMEM_UNINITIALIZED_PATTERN, buf,
1907 			    cp->cache_verify)) {
1908 				kmem_error(KMERR_MODIFIED, cp, buf);
1909 				return (-1);
1910 			}
1911 		}
1912 	}
1913 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
1914 
1915 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1916 	    gethrtime() % mtbf == 0 &&
1917 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1918 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1919 		if (!construct && cp->cache_destructor != NULL)
1920 			cp->cache_destructor(buf, cp->cache_private);
1921 	} else {
1922 		mtbf = 0;
1923 	}
1924 
1925 	if (mtbf || (construct && cp->cache_constructor != NULL &&
1926 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1927 		atomic_add_64(&cp->cache_alloc_fail, 1);
1928 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1929 		if (cp->cache_flags & KMF_DEADBEEF)
1930 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1931 		kmem_slab_free(cp, buf);
1932 		return (1);
1933 	}
1934 
1935 	if (cp->cache_flags & KMF_AUDIT) {
1936 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1937 	}
1938 
1939 	if ((cp->cache_flags & KMF_LITE) &&
1940 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1941 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1942 	}
1943 
1944 	return (0);
1945 }
1946 
1947 static int
1948 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1949 {
1950 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1951 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1952 	kmem_slab_t *sp;
1953 
1954 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1955 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1956 			kmem_error(KMERR_DUPFREE, cp, buf);
1957 			return (-1);
1958 		}
1959 		sp = kmem_findslab(cp, buf);
1960 		if (sp == NULL || sp->slab_cache != cp)
1961 			kmem_error(KMERR_BADADDR, cp, buf);
1962 		else
1963 			kmem_error(KMERR_REDZONE, cp, buf);
1964 		return (-1);
1965 	}
1966 
1967 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1968 
1969 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1970 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1971 		return (-1);
1972 	}
1973 
1974 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1975 		kmem_error(KMERR_REDZONE, cp, buf);
1976 		return (-1);
1977 	}
1978 
1979 	if (cp->cache_flags & KMF_AUDIT) {
1980 		if (cp->cache_flags & KMF_CONTENTS)
1981 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
1982 			    buf, cp->cache_contents);
1983 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1984 	}
1985 
1986 	if ((cp->cache_flags & KMF_LITE) &&
1987 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1988 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1989 	}
1990 
1991 	if (cp->cache_flags & KMF_DEADBEEF) {
1992 		if (cp->cache_flags & KMF_LITE)
1993 			btp->bt_redzone = *(uint64_t *)buf;
1994 		else if (cp->cache_destructor != NULL)
1995 			cp->cache_destructor(buf, cp->cache_private);
1996 
1997 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1998 	}
1999 
2000 	return (0);
2001 }
2002 
2003 /*
2004  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2005  */
2006 static void
2007 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2008 {
2009 	int round;
2010 
2011 	ASSERT(!list_link_active(&cp->cache_link) ||
2012 	    taskq_member(kmem_taskq, curthread));
2013 
2014 	for (round = 0; round < nrounds; round++) {
2015 		void *buf = mp->mag_round[round];
2016 
2017 		if (cp->cache_flags & KMF_DEADBEEF) {
2018 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
2019 			    cp->cache_verify) != NULL) {
2020 				kmem_error(KMERR_MODIFIED, cp, buf);
2021 				continue;
2022 			}
2023 			if ((cp->cache_flags & KMF_LITE) &&
2024 			    cp->cache_destructor != NULL) {
2025 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2026 				*(uint64_t *)buf = btp->bt_redzone;
2027 				cp->cache_destructor(buf, cp->cache_private);
2028 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
2029 			}
2030 		} else if (cp->cache_destructor != NULL) {
2031 			cp->cache_destructor(buf, cp->cache_private);
2032 		}
2033 
2034 		kmem_slab_free(cp, buf);
2035 	}
2036 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2037 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2038 }
2039 
2040 /*
2041  * Allocate a magazine from the depot.
2042  */
2043 static kmem_magazine_t *
2044 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2045 {
2046 	kmem_magazine_t *mp;
2047 
2048 	/*
2049 	 * If we can't get the depot lock without contention,
2050 	 * update our contention count.  We use the depot
2051 	 * contention rate to determine whether we need to
2052 	 * increase the magazine size for better scalability.
2053 	 */
2054 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
2055 		mutex_enter(&cp->cache_depot_lock);
2056 		cp->cache_depot_contention++;
2057 	}
2058 
2059 	if ((mp = mlp->ml_list) != NULL) {
2060 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2061 		mlp->ml_list = mp->mag_next;
2062 		if (--mlp->ml_total < mlp->ml_min)
2063 			mlp->ml_min = mlp->ml_total;
2064 		mlp->ml_alloc++;
2065 	}
2066 
2067 	mutex_exit(&cp->cache_depot_lock);
2068 
2069 	return (mp);
2070 }
2071 
2072 /*
2073  * Free a magazine to the depot.
2074  */
2075 static void
2076 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2077 {
2078 	mutex_enter(&cp->cache_depot_lock);
2079 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2080 	mp->mag_next = mlp->ml_list;
2081 	mlp->ml_list = mp;
2082 	mlp->ml_total++;
2083 	mutex_exit(&cp->cache_depot_lock);
2084 }
2085 
2086 /*
2087  * Update the working set statistics for cp's depot.
2088  */
2089 static void
2090 kmem_depot_ws_update(kmem_cache_t *cp)
2091 {
2092 	mutex_enter(&cp->cache_depot_lock);
2093 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2094 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2095 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2096 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2097 	mutex_exit(&cp->cache_depot_lock);
2098 }
2099 
2100 /*
2101  * Reap all magazines that have fallen out of the depot's working set.
2102  */
2103 static void
2104 kmem_depot_ws_reap(kmem_cache_t *cp)
2105 {
2106 	long reap;
2107 	kmem_magazine_t *mp;
2108 
2109 	ASSERT(!list_link_active(&cp->cache_link) ||
2110 	    taskq_member(kmem_taskq, curthread));
2111 
2112 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2113 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
2114 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2115 
2116 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2117 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
2118 		kmem_magazine_destroy(cp, mp, 0);
2119 }
2120 
2121 static void
2122 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2123 {
2124 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2125 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2126 	ASSERT(ccp->cc_magsize > 0);
2127 
2128 	ccp->cc_ploaded = ccp->cc_loaded;
2129 	ccp->cc_prounds = ccp->cc_rounds;
2130 	ccp->cc_loaded = mp;
2131 	ccp->cc_rounds = rounds;
2132 }
2133 
2134 /*
2135  * Allocate a constructed object from cache cp.
2136  */
2137 void *
2138 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2139 {
2140 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2141 	kmem_magazine_t *fmp;
2142 	void *buf;
2143 
2144 	mutex_enter(&ccp->cc_lock);
2145 	for (;;) {
2146 		/*
2147 		 * If there's an object available in the current CPU's
2148 		 * loaded magazine, just take it and return.
2149 		 */
2150 		if (ccp->cc_rounds > 0) {
2151 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2152 			ccp->cc_alloc++;
2153 			mutex_exit(&ccp->cc_lock);
2154 			if ((ccp->cc_flags & KMF_BUFTAG) &&
2155 			    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2156 			    caller()) != 0) {
2157 				if (kmflag & KM_NOSLEEP)
2158 					return (NULL);
2159 				mutex_enter(&ccp->cc_lock);
2160 				continue;
2161 			}
2162 			return (buf);
2163 		}
2164 
2165 		/*
2166 		 * The loaded magazine is empty.  If the previously loaded
2167 		 * magazine was full, exchange them and try again.
2168 		 */
2169 		if (ccp->cc_prounds > 0) {
2170 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2171 			continue;
2172 		}
2173 
2174 		/*
2175 		 * If the magazine layer is disabled, break out now.
2176 		 */
2177 		if (ccp->cc_magsize == 0)
2178 			break;
2179 
2180 		/*
2181 		 * Try to get a full magazine from the depot.
2182 		 */
2183 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
2184 		if (fmp != NULL) {
2185 			if (ccp->cc_ploaded != NULL)
2186 				kmem_depot_free(cp, &cp->cache_empty,
2187 				    ccp->cc_ploaded);
2188 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2189 			continue;
2190 		}
2191 
2192 		/*
2193 		 * There are no full magazines in the depot,
2194 		 * so fall through to the slab layer.
2195 		 */
2196 		break;
2197 	}
2198 	mutex_exit(&ccp->cc_lock);
2199 
2200 	/*
2201 	 * We couldn't allocate a constructed object from the magazine layer,
2202 	 * so get a raw buffer from the slab layer and apply its constructor.
2203 	 */
2204 	buf = kmem_slab_alloc(cp, kmflag);
2205 
2206 	if (buf == NULL)
2207 		return (NULL);
2208 
2209 	if (cp->cache_flags & KMF_BUFTAG) {
2210 		/*
2211 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
2212 		 */
2213 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2214 		if (rc != 0) {
2215 			if (kmflag & KM_NOSLEEP)
2216 				return (NULL);
2217 			/*
2218 			 * kmem_cache_alloc_debug() detected corruption
2219 			 * but didn't panic (kmem_panic <= 0). We should not be
2220 			 * here because the constructor failed (indicated by a
2221 			 * return code of 1). Try again.
2222 			 */
2223 			ASSERT(rc == -1);
2224 			return (kmem_cache_alloc(cp, kmflag));
2225 		}
2226 		return (buf);
2227 	}
2228 
2229 	if (cp->cache_constructor != NULL &&
2230 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2231 		atomic_add_64(&cp->cache_alloc_fail, 1);
2232 		kmem_slab_free(cp, buf);
2233 		return (NULL);
2234 	}
2235 
2236 	return (buf);
2237 }
2238 
2239 /*
2240  * The freed argument tells whether or not kmem_cache_free_debug() has already
2241  * been called so that we can avoid the duplicate free error. For example, a
2242  * buffer on a magazine has already been freed by the client but is still
2243  * constructed.
2244  */
2245 static void
2246 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2247 {
2248 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2249 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2250 			return;
2251 
2252 	/*
2253 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2254 	 * kmem_cache_free_debug() will have already applied the destructor.
2255 	 */
2256 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2257 	    cp->cache_destructor != NULL) {
2258 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2259 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2260 			*(uint64_t *)buf = btp->bt_redzone;
2261 			cp->cache_destructor(buf, cp->cache_private);
2262 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2263 		} else {
2264 			cp->cache_destructor(buf, cp->cache_private);
2265 		}
2266 	}
2267 
2268 	kmem_slab_free(cp, buf);
2269 }
2270 
2271 /*
2272  * Free a constructed object to cache cp.
2273  */
2274 void
2275 kmem_cache_free(kmem_cache_t *cp, void *buf)
2276 {
2277 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2278 	kmem_magazine_t *emp;
2279 	kmem_magtype_t *mtp;
2280 
2281 	/*
2282 	 * The client must not free either of the buffers passed to the move
2283 	 * callback function.
2284 	 */
2285 	ASSERT(cp->cache_defrag == NULL ||
2286 	    cp->cache_defrag->kmd_thread != curthread ||
2287 	    (buf != cp->cache_defrag->kmd_from_buf &&
2288 	    buf != cp->cache_defrag->kmd_to_buf));
2289 
2290 	if (ccp->cc_flags & KMF_BUFTAG)
2291 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2292 			return;
2293 
2294 	mutex_enter(&ccp->cc_lock);
2295 	for (;;) {
2296 		/*
2297 		 * If there's a slot available in the current CPU's
2298 		 * loaded magazine, just put the object there and return.
2299 		 */
2300 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2301 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2302 			ccp->cc_free++;
2303 			mutex_exit(&ccp->cc_lock);
2304 			return;
2305 		}
2306 
2307 		/*
2308 		 * The loaded magazine is full.  If the previously loaded
2309 		 * magazine was empty, exchange them and try again.
2310 		 */
2311 		if (ccp->cc_prounds == 0) {
2312 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2313 			continue;
2314 		}
2315 
2316 		/*
2317 		 * If the magazine layer is disabled, break out now.
2318 		 */
2319 		if (ccp->cc_magsize == 0)
2320 			break;
2321 
2322 		/*
2323 		 * Try to get an empty magazine from the depot.
2324 		 */
2325 		emp = kmem_depot_alloc(cp, &cp->cache_empty);
2326 		if (emp != NULL) {
2327 			if (ccp->cc_ploaded != NULL)
2328 				kmem_depot_free(cp, &cp->cache_full,
2329 				    ccp->cc_ploaded);
2330 			kmem_cpu_reload(ccp, emp, 0);
2331 			continue;
2332 		}
2333 
2334 		/*
2335 		 * There are no empty magazines in the depot,
2336 		 * so try to allocate a new one.  We must drop all locks
2337 		 * across kmem_cache_alloc() because lower layers may
2338 		 * attempt to allocate from this cache.
2339 		 */
2340 		mtp = cp->cache_magtype;
2341 		mutex_exit(&ccp->cc_lock);
2342 		emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2343 		mutex_enter(&ccp->cc_lock);
2344 
2345 		if (emp != NULL) {
2346 			/*
2347 			 * We successfully allocated an empty magazine.
2348 			 * However, we had to drop ccp->cc_lock to do it,
2349 			 * so the cache's magazine size may have changed.
2350 			 * If so, free the magazine and try again.
2351 			 */
2352 			if (ccp->cc_magsize != mtp->mt_magsize) {
2353 				mutex_exit(&ccp->cc_lock);
2354 				kmem_cache_free(mtp->mt_cache, emp);
2355 				mutex_enter(&ccp->cc_lock);
2356 				continue;
2357 			}
2358 
2359 			/*
2360 			 * We got a magazine of the right size.  Add it to
2361 			 * the depot and try the whole dance again.
2362 			 */
2363 			kmem_depot_free(cp, &cp->cache_empty, emp);
2364 			continue;
2365 		}
2366 
2367 		/*
2368 		 * We couldn't allocate an empty magazine,
2369 		 * so fall through to the slab layer.
2370 		 */
2371 		break;
2372 	}
2373 	mutex_exit(&ccp->cc_lock);
2374 
2375 	/*
2376 	 * We couldn't free our constructed object to the magazine layer,
2377 	 * so apply its destructor and free it to the slab layer.
2378 	 */
2379 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2380 }
2381 
2382 void *
2383 kmem_zalloc(size_t size, int kmflag)
2384 {
2385 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
2386 	void *buf;
2387 
2388 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
2389 		kmem_cache_t *cp = kmem_alloc_table[index];
2390 		buf = kmem_cache_alloc(cp, kmflag);
2391 		if (buf != NULL) {
2392 			if (cp->cache_flags & KMF_BUFTAG) {
2393 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2394 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2395 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2396 
2397 				if (cp->cache_flags & KMF_LITE) {
2398 					KMEM_BUFTAG_LITE_ENTER(btp,
2399 					    kmem_lite_count, caller());
2400 				}
2401 			}
2402 			bzero(buf, size);
2403 		}
2404 	} else {
2405 		buf = kmem_alloc(size, kmflag);
2406 		if (buf != NULL)
2407 			bzero(buf, size);
2408 	}
2409 	return (buf);
2410 }
2411 
2412 void *
2413 kmem_alloc(size_t size, int kmflag)
2414 {
2415 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
2416 	void *buf;
2417 
2418 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
2419 		kmem_cache_t *cp = kmem_alloc_table[index];
2420 		buf = kmem_cache_alloc(cp, kmflag);
2421 		if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) {
2422 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2423 			((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2424 			((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2425 
2426 			if (cp->cache_flags & KMF_LITE) {
2427 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2428 				    caller());
2429 			}
2430 		}
2431 		return (buf);
2432 	}
2433 	if (size == 0)
2434 		return (NULL);
2435 	buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS);
2436 	if (buf == NULL)
2437 		kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size);
2438 	return (buf);
2439 }
2440 
2441 void
2442 kmem_free(void *buf, size_t size)
2443 {
2444 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
2445 
2446 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
2447 		kmem_cache_t *cp = kmem_alloc_table[index];
2448 		if (cp->cache_flags & KMF_BUFTAG) {
2449 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2450 			uint32_t *ip = (uint32_t *)btp;
2451 			if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2452 				if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2453 					kmem_error(KMERR_DUPFREE, cp, buf);
2454 					return;
2455 				}
2456 				if (KMEM_SIZE_VALID(ip[1])) {
2457 					ip[0] = KMEM_SIZE_ENCODE(size);
2458 					kmem_error(KMERR_BADSIZE, cp, buf);
2459 				} else {
2460 					kmem_error(KMERR_REDZONE, cp, buf);
2461 				}
2462 				return;
2463 			}
2464 			if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2465 				kmem_error(KMERR_REDZONE, cp, buf);
2466 				return;
2467 			}
2468 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
2469 			if (cp->cache_flags & KMF_LITE) {
2470 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2471 				    caller());
2472 			}
2473 		}
2474 		kmem_cache_free(cp, buf);
2475 	} else {
2476 		if (buf == NULL && size == 0)
2477 			return;
2478 		vmem_free(kmem_oversize_arena, buf, size);
2479 	}
2480 }
2481 
2482 void *
2483 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2484 {
2485 	size_t realsize = size + vmp->vm_quantum;
2486 	void *addr;
2487 
2488 	/*
2489 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2490 	 * vm_quantum will cause integer wraparound.  Check for this, and
2491 	 * blow off the firewall page in this case.  Note that such a
2492 	 * giant allocation (the entire kernel address space) can never
2493 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2494 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2495 	 * corresponding check in kmem_firewall_va_free().
2496 	 */
2497 	if (realsize < size)
2498 		realsize = size;
2499 
2500 	/*
2501 	 * While boot still owns resource management, make sure that this
2502 	 * redzone virtual address allocation is properly accounted for in
2503 	 * OBPs "virtual-memory" "available" lists because we're
2504 	 * effectively claiming them for a red zone.  If we don't do this,
2505 	 * the available lists become too fragmented and too large for the
2506 	 * current boot/kernel memory list interface.
2507 	 */
2508 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2509 
2510 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2511 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2512 
2513 	return (addr);
2514 }
2515 
2516 void
2517 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2518 {
2519 	ASSERT((kvseg.s_base == NULL ?
2520 	    va_to_pfn((char *)addr + size) :
2521 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2522 
2523 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2524 }
2525 
2526 /*
2527  * Try to allocate at least `size' bytes of memory without sleeping or
2528  * panicking. Return actual allocated size in `asize'. If allocation failed,
2529  * try final allocation with sleep or panic allowed.
2530  */
2531 void *
2532 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2533 {
2534 	void *p;
2535 
2536 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
2537 	do {
2538 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2539 		if (p != NULL)
2540 			return (p);
2541 		*asize += KMEM_ALIGN;
2542 	} while (*asize <= PAGESIZE);
2543 
2544 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
2545 	return (kmem_alloc(*asize, kmflag));
2546 }
2547 
2548 /*
2549  * Reclaim all unused memory from a cache.
2550  */
2551 static void
2552 kmem_cache_reap(kmem_cache_t *cp)
2553 {
2554 	ASSERT(taskq_member(kmem_taskq, curthread));
2555 
2556 	/*
2557 	 * Ask the cache's owner to free some memory if possible.
2558 	 * The idea is to handle things like the inode cache, which
2559 	 * typically sits on a bunch of memory that it doesn't truly
2560 	 * *need*.  Reclaim policy is entirely up to the owner; this
2561 	 * callback is just an advisory plea for help.
2562 	 */
2563 	if (cp->cache_reclaim != NULL) {
2564 		long delta;
2565 
2566 		/*
2567 		 * Reclaimed memory should be reapable (not included in the
2568 		 * depot's working set).
2569 		 */
2570 		delta = cp->cache_full.ml_total;
2571 		cp->cache_reclaim(cp->cache_private);
2572 		delta = cp->cache_full.ml_total - delta;
2573 		if (delta > 0) {
2574 			mutex_enter(&cp->cache_depot_lock);
2575 			cp->cache_full.ml_reaplimit += delta;
2576 			cp->cache_full.ml_min += delta;
2577 			mutex_exit(&cp->cache_depot_lock);
2578 		}
2579 	}
2580 
2581 	kmem_depot_ws_reap(cp);
2582 
2583 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
2584 		kmem_cache_defrag(cp);
2585 	}
2586 }
2587 
2588 static void
2589 kmem_reap_timeout(void *flag_arg)
2590 {
2591 	uint32_t *flag = (uint32_t *)flag_arg;
2592 
2593 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
2594 	*flag = 0;
2595 }
2596 
2597 static void
2598 kmem_reap_done(void *flag)
2599 {
2600 	(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
2601 }
2602 
2603 static void
2604 kmem_reap_start(void *flag)
2605 {
2606 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
2607 
2608 	if (flag == &kmem_reaping) {
2609 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
2610 		/*
2611 		 * if we have segkp under heap, reap segkp cache.
2612 		 */
2613 		if (segkp_fromheap)
2614 			segkp_cache_free();
2615 	}
2616 	else
2617 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
2618 
2619 	/*
2620 	 * We use taskq_dispatch() to schedule a timeout to clear
2621 	 * the flag so that kmem_reap() becomes self-throttling:
2622 	 * we won't reap again until the current reap completes *and*
2623 	 * at least kmem_reap_interval ticks have elapsed.
2624 	 */
2625 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
2626 		kmem_reap_done(flag);
2627 }
2628 
2629 static void
2630 kmem_reap_common(void *flag_arg)
2631 {
2632 	uint32_t *flag = (uint32_t *)flag_arg;
2633 
2634 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
2635 	    cas32(flag, 0, 1) != 0)
2636 		return;
2637 
2638 	/*
2639 	 * It may not be kosher to do memory allocation when a reap is called
2640 	 * is called (for example, if vmem_populate() is in the call chain).
2641 	 * So we start the reap going with a TQ_NOALLOC dispatch.  If the
2642 	 * dispatch fails, we reset the flag, and the next reap will try again.
2643 	 */
2644 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
2645 		*flag = 0;
2646 }
2647 
2648 /*
2649  * Reclaim all unused memory from all caches.  Called from the VM system
2650  * when memory gets tight.
2651  */
2652 void
2653 kmem_reap(void)
2654 {
2655 	kmem_reap_common(&kmem_reaping);
2656 }
2657 
2658 /*
2659  * Reclaim all unused memory from identifier arenas, called when a vmem
2660  * arena not back by memory is exhausted.  Since reaping memory-backed caches
2661  * cannot help with identifier exhaustion, we avoid both a large amount of
2662  * work and unwanted side-effects from reclaim callbacks.
2663  */
2664 void
2665 kmem_reap_idspace(void)
2666 {
2667 	kmem_reap_common(&kmem_reaping_idspace);
2668 }
2669 
2670 /*
2671  * Purge all magazines from a cache and set its magazine limit to zero.
2672  * All calls are serialized by the kmem_taskq lock, except for the final
2673  * call from kmem_cache_destroy().
2674  */
2675 static void
2676 kmem_cache_magazine_purge(kmem_cache_t *cp)
2677 {
2678 	kmem_cpu_cache_t *ccp;
2679 	kmem_magazine_t *mp, *pmp;
2680 	int rounds, prounds, cpu_seqid;
2681 
2682 	ASSERT(!list_link_active(&cp->cache_link) ||
2683 	    taskq_member(kmem_taskq, curthread));
2684 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
2685 
2686 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
2687 		ccp = &cp->cache_cpu[cpu_seqid];
2688 
2689 		mutex_enter(&ccp->cc_lock);
2690 		mp = ccp->cc_loaded;
2691 		pmp = ccp->cc_ploaded;
2692 		rounds = ccp->cc_rounds;
2693 		prounds = ccp->cc_prounds;
2694 		ccp->cc_loaded = NULL;
2695 		ccp->cc_ploaded = NULL;
2696 		ccp->cc_rounds = -1;
2697 		ccp->cc_prounds = -1;
2698 		ccp->cc_magsize = 0;
2699 		mutex_exit(&ccp->cc_lock);
2700 
2701 		if (mp)
2702 			kmem_magazine_destroy(cp, mp, rounds);
2703 		if (pmp)
2704 			kmem_magazine_destroy(cp, pmp, prounds);
2705 	}
2706 
2707 	/*
2708 	 * Updating the working set statistics twice in a row has the
2709 	 * effect of setting the working set size to zero, so everything
2710 	 * is eligible for reaping.
2711 	 */
2712 	kmem_depot_ws_update(cp);
2713 	kmem_depot_ws_update(cp);
2714 
2715 	kmem_depot_ws_reap(cp);
2716 }
2717 
2718 /*
2719  * Enable per-cpu magazines on a cache.
2720  */
2721 static void
2722 kmem_cache_magazine_enable(kmem_cache_t *cp)
2723 {
2724 	int cpu_seqid;
2725 
2726 	if (cp->cache_flags & KMF_NOMAGAZINE)
2727 		return;
2728 
2729 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
2730 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2731 		mutex_enter(&ccp->cc_lock);
2732 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2733 		mutex_exit(&ccp->cc_lock);
2734 	}
2735 
2736 }
2737 
2738 /*
2739  * Reap (almost) everything right now.  See kmem_cache_magazine_purge()
2740  * for explanation of the back-to-back kmem_depot_ws_update() calls.
2741  */
2742 void
2743 kmem_cache_reap_now(kmem_cache_t *cp)
2744 {
2745 	ASSERT(list_link_active(&cp->cache_link));
2746 
2747 	kmem_depot_ws_update(cp);
2748 	kmem_depot_ws_update(cp);
2749 
2750 	(void) taskq_dispatch(kmem_taskq,
2751 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
2752 	taskq_wait(kmem_taskq);
2753 }
2754 
2755 /*
2756  * Recompute a cache's magazine size.  The trade-off is that larger magazines
2757  * provide a higher transfer rate with the depot, while smaller magazines
2758  * reduce memory consumption.  Magazine resizing is an expensive operation;
2759  * it should not be done frequently.
2760  *
2761  * Changes to the magazine size are serialized by the kmem_taskq lock.
2762  *
2763  * Note: at present this only grows the magazine size.  It might be useful
2764  * to allow shrinkage too.
2765  */
2766 static void
2767 kmem_cache_magazine_resize(kmem_cache_t *cp)
2768 {
2769 	kmem_magtype_t *mtp = cp->cache_magtype;
2770 
2771 	ASSERT(taskq_member(kmem_taskq, curthread));
2772 
2773 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
2774 		kmem_cache_magazine_purge(cp);
2775 		mutex_enter(&cp->cache_depot_lock);
2776 		cp->cache_magtype = ++mtp;
2777 		cp->cache_depot_contention_prev =
2778 		    cp->cache_depot_contention + INT_MAX;
2779 		mutex_exit(&cp->cache_depot_lock);
2780 		kmem_cache_magazine_enable(cp);
2781 	}
2782 }
2783 
2784 /*
2785  * Rescale a cache's hash table, so that the table size is roughly the
2786  * cache size.  We want the average lookup time to be extremely small.
2787  */
2788 static void
2789 kmem_hash_rescale(kmem_cache_t *cp)
2790 {
2791 	kmem_bufctl_t **old_table, **new_table, *bcp;
2792 	size_t old_size, new_size, h;
2793 
2794 	ASSERT(taskq_member(kmem_taskq, curthread));
2795 
2796 	new_size = MAX(KMEM_HASH_INITIAL,
2797 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2798 	old_size = cp->cache_hash_mask + 1;
2799 
2800 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2801 		return;
2802 
2803 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
2804 	    VM_NOSLEEP);
2805 	if (new_table == NULL)
2806 		return;
2807 	bzero(new_table, new_size * sizeof (void *));
2808 
2809 	mutex_enter(&cp->cache_lock);
2810 
2811 	old_size = cp->cache_hash_mask + 1;
2812 	old_table = cp->cache_hash_table;
2813 
2814 	cp->cache_hash_mask = new_size - 1;
2815 	cp->cache_hash_table = new_table;
2816 	cp->cache_rescale++;
2817 
2818 	for (h = 0; h < old_size; h++) {
2819 		bcp = old_table[h];
2820 		while (bcp != NULL) {
2821 			void *addr = bcp->bc_addr;
2822 			kmem_bufctl_t *next_bcp = bcp->bc_next;
2823 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
2824 			bcp->bc_next = *hash_bucket;
2825 			*hash_bucket = bcp;
2826 			bcp = next_bcp;
2827 		}
2828 	}
2829 
2830 	mutex_exit(&cp->cache_lock);
2831 
2832 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
2833 }
2834 
2835 /*
2836  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
2837  * update, magazine resizing, and slab consolidation.
2838  */
2839 static void
2840 kmem_cache_update(kmem_cache_t *cp)
2841 {
2842 	int need_hash_rescale = 0;
2843 	int need_magazine_resize = 0;
2844 
2845 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
2846 
2847 	/*
2848 	 * If the cache has become much larger or smaller than its hash table,
2849 	 * fire off a request to rescale the hash table.
2850 	 */
2851 	mutex_enter(&cp->cache_lock);
2852 
2853 	if ((cp->cache_flags & KMF_HASH) &&
2854 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2855 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2856 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
2857 		need_hash_rescale = 1;
2858 
2859 	mutex_exit(&cp->cache_lock);
2860 
2861 	/*
2862 	 * Update the depot working set statistics.
2863 	 */
2864 	kmem_depot_ws_update(cp);
2865 
2866 	/*
2867 	 * If there's a lot of contention in the depot,
2868 	 * increase the magazine size.
2869 	 */
2870 	mutex_enter(&cp->cache_depot_lock);
2871 
2872 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2873 	    (int)(cp->cache_depot_contention -
2874 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
2875 		need_magazine_resize = 1;
2876 
2877 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
2878 
2879 	mutex_exit(&cp->cache_depot_lock);
2880 
2881 	if (need_hash_rescale)
2882 		(void) taskq_dispatch(kmem_taskq,
2883 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
2884 
2885 	if (need_magazine_resize)
2886 		(void) taskq_dispatch(kmem_taskq,
2887 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
2888 
2889 	if (cp->cache_defrag != NULL)
2890 		(void) taskq_dispatch(kmem_taskq,
2891 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
2892 }
2893 
2894 static void
2895 kmem_update_timeout(void *dummy)
2896 {
2897 	static void kmem_update(void *);
2898 
2899 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
2900 }
2901 
2902 static void
2903 kmem_update(void *dummy)
2904 {
2905 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
2906 
2907 	/*
2908 	 * We use taskq_dispatch() to reschedule the timeout so that
2909 	 * kmem_update() becomes self-throttling: it won't schedule
2910 	 * new tasks until all previous tasks have completed.
2911 	 */
2912 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
2913 		kmem_update_timeout(NULL);
2914 }
2915 
2916 static int
2917 kmem_cache_kstat_update(kstat_t *ksp, int rw)
2918 {
2919 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
2920 	kmem_cache_t *cp = ksp->ks_private;
2921 	uint64_t cpu_buf_avail;
2922 	uint64_t buf_avail = 0;
2923 	int cpu_seqid;
2924 
2925 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
2926 
2927 	if (rw == KSTAT_WRITE)
2928 		return (EACCES);
2929 
2930 	mutex_enter(&cp->cache_lock);
2931 
2932 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
2933 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
2934 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
2935 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
2936 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
2937 
2938 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
2939 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2940 
2941 		mutex_enter(&ccp->cc_lock);
2942 
2943 		cpu_buf_avail = 0;
2944 		if (ccp->cc_rounds > 0)
2945 			cpu_buf_avail += ccp->cc_rounds;
2946 		if (ccp->cc_prounds > 0)
2947 			cpu_buf_avail += ccp->cc_prounds;
2948 
2949 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
2950 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
2951 		buf_avail			+= cpu_buf_avail;
2952 
2953 		mutex_exit(&ccp->cc_lock);
2954 	}
2955 
2956 	mutex_enter(&cp->cache_depot_lock);
2957 
2958 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
2959 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
2960 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
2961 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
2962 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
2963 	kmcp->kmc_magazine_size.value.ui64	=
2964 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
2965 	    0 : cp->cache_magtype->mt_magsize;
2966 
2967 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
2968 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
2969 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
2970 
2971 	mutex_exit(&cp->cache_depot_lock);
2972 
2973 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
2974 	kmcp->kmc_align.value.ui64	= cp->cache_align;
2975 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
2976 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
2977 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
2978 	buf_avail += cp->cache_bufslab;
2979 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
2980 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
2981 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
2982 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
2983 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
2984 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
2985 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
2986 	    cp->cache_hash_mask + 1 : 0;
2987 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
2988 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
2989 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
2990 
2991 	if (cp->cache_defrag == NULL) {
2992 		kmcp->kmc_move_callbacks.value.ui64	= 0;
2993 		kmcp->kmc_move_yes.value.ui64		= 0;
2994 		kmcp->kmc_move_no.value.ui64		= 0;
2995 		kmcp->kmc_move_later.value.ui64		= 0;
2996 		kmcp->kmc_move_dont_need.value.ui64	= 0;
2997 		kmcp->kmc_move_dont_know.value.ui64	= 0;
2998 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
2999 	} else {
3000 		kmem_defrag_t *kd = cp->cache_defrag;
3001 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3002 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3003 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3004 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3005 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3006 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3007 		kmcp->kmc_move_hunt_found.value.ui64	= kd->kmd_hunt_found;
3008 	}
3009 
3010 	mutex_exit(&cp->cache_lock);
3011 	return (0);
3012 }
3013 
3014 /*
3015  * Return a named statistic about a particular cache.
3016  * This shouldn't be called very often, so it's currently designed for
3017  * simplicity (leverages existing kstat support) rather than efficiency.
3018  */
3019 uint64_t
3020 kmem_cache_stat(kmem_cache_t *cp, char *name)
3021 {
3022 	int i;
3023 	kstat_t *ksp = cp->cache_kstat;
3024 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3025 	uint64_t value = 0;
3026 
3027 	if (ksp != NULL) {
3028 		mutex_enter(&kmem_cache_kstat_lock);
3029 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3030 		for (i = 0; i < ksp->ks_ndata; i++) {
3031 			if (strcmp(knp[i].name, name) == 0) {
3032 				value = knp[i].value.ui64;
3033 				break;
3034 			}
3035 		}
3036 		mutex_exit(&kmem_cache_kstat_lock);
3037 	}
3038 	return (value);
3039 }
3040 
3041 /*
3042  * Return an estimate of currently available kernel heap memory.
3043  * On 32-bit systems, physical memory may exceed virtual memory,
3044  * we just truncate the result at 1GB.
3045  */
3046 size_t
3047 kmem_avail(void)
3048 {
3049 	spgcnt_t rmem = availrmem - tune.t_minarmem;
3050 	spgcnt_t fmem = freemem - minfree;
3051 
3052 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3053 	    1 << (30 - PAGESHIFT))));
3054 }
3055 
3056 /*
3057  * Return the maximum amount of memory that is (in theory) allocatable
3058  * from the heap. This may be used as an estimate only since there
3059  * is no guarentee this space will still be available when an allocation
3060  * request is made, nor that the space may be allocated in one big request
3061  * due to kernel heap fragmentation.
3062  */
3063 size_t
3064 kmem_maxavail(void)
3065 {
3066 	spgcnt_t pmem = availrmem - tune.t_minarmem;
3067 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3068 
3069 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3070 }
3071 
3072 /*
3073  * Indicate whether memory-intensive kmem debugging is enabled.
3074  */
3075 int
3076 kmem_debugging(void)
3077 {
3078 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3079 }
3080 
3081 /* binning function, sorts finely at the two extremes */
3082 #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3083 	((((sp)->slab_refcnt <= (binshift)) ||				\
3084 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3085 	    ? -(sp)->slab_refcnt					\
3086 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3087 
3088 /*
3089  * Minimizing the number of partial slabs on the freelist minimizes
3090  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3091  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3092  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3093  * the most-used slabs at the front of the list where they have the best chance
3094  * of being completely allocated, and the least-used slabs at a safe distance
3095  * from the front to improve the odds that the few remaining buffers will all be
3096  * freed before another allocation can tie up the slab. For that reason a slab
3097  * with a higher slab_refcnt sorts less than than a slab with a lower
3098  * slab_refcnt.
3099  *
3100  * However, if a slab has at least one buffer that is deemed unfreeable, we
3101  * would rather have that slab at the front of the list regardless of
3102  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3103  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3104  * callback, the slab is marked unfreeable for as long as it remains on the
3105  * freelist.
3106  */
3107 static int
3108 kmem_partial_slab_cmp(const void *p0, const void *p1)
3109 {
3110 	const kmem_cache_t *cp;
3111 	const kmem_slab_t *s0 = p0;
3112 	const kmem_slab_t *s1 = p1;
3113 	int w0, w1;
3114 	size_t binshift;
3115 
3116 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3117 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3118 	ASSERT(s0->slab_cache == s1->slab_cache);
3119 	cp = s1->slab_cache;
3120 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3121 	binshift = cp->cache_partial_binshift;
3122 
3123 	/* weight of first slab */
3124 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3125 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3126 		w0 -= cp->cache_maxchunks;
3127 	}
3128 
3129 	/* weight of second slab */
3130 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3131 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3132 		w1 -= cp->cache_maxchunks;
3133 	}
3134 
3135 	if (w0 < w1)
3136 		return (-1);
3137 	if (w0 > w1)
3138 		return (1);
3139 
3140 	/* compare pointer values */
3141 	if ((uintptr_t)s0 < (uintptr_t)s1)
3142 		return (-1);
3143 	if ((uintptr_t)s0 > (uintptr_t)s1)
3144 		return (1);
3145 
3146 	return (0);
3147 }
3148 
3149 static void
3150 kmem_check_destructor(kmem_cache_t *cp)
3151 {
3152 	void *buf;
3153 
3154 	if (cp->cache_destructor == NULL)
3155 		return;
3156 
3157 	/*
3158 	 * Assert that it is valid to call the destructor on a newly constructed
3159 	 * object without any intervening client code using the object.
3160 	 * Allocate from the slab layer to ensure that the client has not
3161 	 * touched the buffer.
3162 	 */
3163 	buf = kmem_slab_alloc(cp, KM_NOSLEEP);
3164 	if (buf == NULL)
3165 		return;
3166 
3167 	if (cp->cache_flags & KMF_BUFTAG) {
3168 		if (kmem_cache_alloc_debug(cp, buf, KM_NOSLEEP, 1,
3169 		    caller()) != 0)
3170 			return;
3171 	} else if (cp->cache_constructor != NULL &&
3172 	    cp->cache_constructor(buf, cp->cache_private, KM_NOSLEEP) != 0) {
3173 		atomic_add_64(&cp->cache_alloc_fail, 1);
3174 		kmem_slab_free(cp, buf);
3175 		return;
3176 	}
3177 
3178 	kmem_slab_free_constructed(cp, buf, B_FALSE);
3179 }
3180 
3181 /*
3182  * It must be valid to call the destructor (if any) on a newly created object.
3183  * That is, the constructor (if any) must leave the object in a valid state for
3184  * the destructor.
3185  */
3186 kmem_cache_t *
3187 kmem_cache_create(
3188 	char *name,		/* descriptive name for this cache */
3189 	size_t bufsize,		/* size of the objects it manages */
3190 	size_t align,		/* required object alignment */
3191 	int (*constructor)(void *, void *, int), /* object constructor */
3192 	void (*destructor)(void *, void *),	/* object destructor */
3193 	void (*reclaim)(void *), /* memory reclaim callback */
3194 	void *private,		/* pass-thru arg for constr/destr/reclaim */
3195 	vmem_t *vmp,		/* vmem source for slab allocation */
3196 	int cflags)		/* cache creation flags */
3197 {
3198 	int cpu_seqid;
3199 	size_t chunksize;
3200 	kmem_cache_t *cp;
3201 	kmem_magtype_t *mtp;
3202 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3203 
3204 #ifdef	DEBUG
3205 	/*
3206 	 * Cache names should conform to the rules for valid C identifiers
3207 	 */
3208 	if (!strident_valid(name)) {
3209 		cmn_err(CE_CONT,
3210 		    "kmem_cache_create: '%s' is an invalid cache name\n"
3211 		    "cache names must conform to the rules for "
3212 		    "C identifiers\n", name);
3213 	}
3214 #endif	/* DEBUG */
3215 
3216 	if (vmp == NULL)
3217 		vmp = kmem_default_arena;
3218 
3219 	/*
3220 	 * If this kmem cache has an identifier vmem arena as its source, mark
3221 	 * it such to allow kmem_reap_idspace().
3222 	 */
3223 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3224 	if (vmp->vm_cflags & VMC_IDENTIFIER)
3225 		cflags |= KMC_IDENTIFIER;
3226 
3227 	/*
3228 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3229 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3230 	 * false sharing of per-CPU data.
3231 	 */
3232 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3233 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3234 	bzero(cp, csize);
3235 	list_link_init(&cp->cache_link);
3236 
3237 	if (align == 0)
3238 		align = KMEM_ALIGN;
3239 
3240 	/*
3241 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
3242 	 * memory to hold bufctl information (because we can't safely
3243 	 * perform word loads and stores on it).
3244 	 */
3245 	if (align < KMEM_ALIGN)
3246 		cflags |= KMC_NOTOUCH;
3247 
3248 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
3249 		panic("kmem_cache_create: bad alignment %lu", align);
3250 
3251 	mutex_enter(&kmem_flags_lock);
3252 	if (kmem_flags & KMF_RANDOMIZE)
3253 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3254 		    KMF_RANDOMIZE;
3255 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3256 	mutex_exit(&kmem_flags_lock);
3257 
3258 	/*
3259 	 * Make sure all the various flags are reasonable.
3260 	 */
3261 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3262 
3263 	if (cp->cache_flags & KMF_LITE) {
3264 		if (bufsize >= kmem_lite_minsize &&
3265 		    align <= kmem_lite_maxalign &&
3266 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3267 			cp->cache_flags |= KMF_BUFTAG;
3268 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3269 		} else {
3270 			cp->cache_flags &= ~KMF_DEBUG;
3271 		}
3272 	}
3273 
3274 	if (cp->cache_flags & KMF_DEADBEEF)
3275 		cp->cache_flags |= KMF_REDZONE;
3276 
3277 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3278 		cp->cache_flags |= KMF_NOMAGAZINE;
3279 
3280 	if (cflags & KMC_NODEBUG)
3281 		cp->cache_flags &= ~KMF_DEBUG;
3282 
3283 	if (cflags & KMC_NOTOUCH)
3284 		cp->cache_flags &= ~KMF_TOUCH;
3285 
3286 	if (cflags & KMC_NOHASH)
3287 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3288 
3289 	if (cflags & KMC_NOMAGAZINE)
3290 		cp->cache_flags |= KMF_NOMAGAZINE;
3291 
3292 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3293 		cp->cache_flags |= KMF_REDZONE;
3294 
3295 	if (!(cp->cache_flags & KMF_AUDIT))
3296 		cp->cache_flags &= ~KMF_CONTENTS;
3297 
3298 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3299 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3300 		cp->cache_flags |= KMF_FIREWALL;
3301 
3302 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3303 		cp->cache_flags &= ~KMF_FIREWALL;
3304 
3305 	if (cp->cache_flags & KMF_FIREWALL) {
3306 		cp->cache_flags &= ~KMF_BUFTAG;
3307 		cp->cache_flags |= KMF_NOMAGAZINE;
3308 		ASSERT(vmp == kmem_default_arena);
3309 		vmp = kmem_firewall_arena;
3310 	}
3311 
3312 	/*
3313 	 * Set cache properties.
3314 	 */
3315 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3316 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3317 	cp->cache_bufsize = bufsize;
3318 	cp->cache_align = align;
3319 	cp->cache_constructor = constructor;
3320 	cp->cache_destructor = destructor;
3321 	cp->cache_reclaim = reclaim;
3322 	cp->cache_private = private;
3323 	cp->cache_arena = vmp;
3324 	cp->cache_cflags = cflags;
3325 
3326 	/*
3327 	 * Determine the chunk size.
3328 	 */
3329 	chunksize = bufsize;
3330 
3331 	if (align >= KMEM_ALIGN) {
3332 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3333 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
3334 	}
3335 
3336 	if (cp->cache_flags & KMF_BUFTAG) {
3337 		cp->cache_bufctl = chunksize;
3338 		cp->cache_buftag = chunksize;
3339 		if (cp->cache_flags & KMF_LITE)
3340 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3341 		else
3342 			chunksize += sizeof (kmem_buftag_t);
3343 	}
3344 
3345 	if (cp->cache_flags & KMF_DEADBEEF) {
3346 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3347 		if (cp->cache_flags & KMF_LITE)
3348 			cp->cache_verify = sizeof (uint64_t);
3349 	}
3350 
3351 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3352 
3353 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3354 
3355 	/*
3356 	 * Now that we know the chunk size, determine the optimal slab size.
3357 	 */
3358 	if (vmp == kmem_firewall_arena) {
3359 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3360 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
3361 		cp->cache_maxcolor = cp->cache_mincolor;
3362 		cp->cache_flags |= KMF_HASH;
3363 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3364 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3365 	    !(cp->cache_flags & KMF_AUDIT) &&
3366 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3367 		cp->cache_slabsize = vmp->vm_quantum;
3368 		cp->cache_mincolor = 0;
3369 		cp->cache_maxcolor =
3370 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3371 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3372 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
3373 	} else {
3374 		size_t chunks, bestfit, waste, slabsize;
3375 		size_t minwaste = LONG_MAX;
3376 
3377 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3378 			slabsize = P2ROUNDUP(chunksize * chunks,
3379 			    vmp->vm_quantum);
3380 			chunks = slabsize / chunksize;
3381 			waste = (slabsize % chunksize) / chunks;
3382 			if (waste < minwaste) {
3383 				minwaste = waste;
3384 				bestfit = slabsize;
3385 			}
3386 		}
3387 		if (cflags & KMC_QCACHE)
3388 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3389 		cp->cache_slabsize = bestfit;
3390 		cp->cache_mincolor = 0;
3391 		cp->cache_maxcolor = bestfit % chunksize;
3392 		cp->cache_flags |= KMF_HASH;
3393 	}
3394 
3395 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3396 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3397 
3398 	if (cp->cache_flags & KMF_HASH) {
3399 		ASSERT(!(cflags & KMC_NOHASH));
3400 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3401 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
3402 	}
3403 
3404 	if (cp->cache_maxcolor >= vmp->vm_quantum)
3405 		cp->cache_maxcolor = vmp->vm_quantum - 1;
3406 
3407 	cp->cache_color = cp->cache_mincolor;
3408 
3409 	/*
3410 	 * Initialize the rest of the slab layer.
3411 	 */
3412 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3413 
3414 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3415 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3416 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3417 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3418 	/* reuse partial slab AVL linkage for complete slab list linkage */
3419 	list_create(&cp->cache_complete_slabs,
3420 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3421 
3422 	if (cp->cache_flags & KMF_HASH) {
3423 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3424 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3425 		bzero(cp->cache_hash_table,
3426 		    KMEM_HASH_INITIAL * sizeof (void *));
3427 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3428 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3429 	}
3430 
3431 	/*
3432 	 * Initialize the depot.
3433 	 */
3434 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3435 
3436 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3437 		continue;
3438 
3439 	cp->cache_magtype = mtp;
3440 
3441 	/*
3442 	 * Initialize the CPU layer.
3443 	 */
3444 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3445 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3446 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3447 		ccp->cc_flags = cp->cache_flags;
3448 		ccp->cc_rounds = -1;
3449 		ccp->cc_prounds = -1;
3450 	}
3451 
3452 	/*
3453 	 * Create the cache's kstats.
3454 	 */
3455 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3456 	    "kmem_cache", KSTAT_TYPE_NAMED,
3457 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3458 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
3459 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
3460 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3461 		cp->cache_kstat->ks_private = cp;
3462 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3463 		kstat_install(cp->cache_kstat);
3464 	}
3465 
3466 	/*
3467 	 * Add the cache to the global list.  This makes it visible
3468 	 * to kmem_update(), so the cache must be ready for business.
3469 	 */
3470 	mutex_enter(&kmem_cache_lock);
3471 	list_insert_tail(&kmem_caches, cp);
3472 	mutex_exit(&kmem_cache_lock);
3473 
3474 	if (kmem_ready)
3475 		kmem_cache_magazine_enable(cp);
3476 
3477 	if (kmem_mp_init_done && cp->cache_destructor != NULL) {
3478 		kmem_check_destructor(cp);
3479 	}
3480 
3481 	return (cp);
3482 }
3483 
3484 static int
3485 kmem_move_cmp(const void *buf, const void *p)
3486 {
3487 	const kmem_move_t *kmm = p;
3488 	uintptr_t v1 = (uintptr_t)buf;
3489 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3490 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3491 }
3492 
3493 static void
3494 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3495 {
3496 	kmd->kmd_reclaim_numer = 1;
3497 }
3498 
3499 /*
3500  * Initially, when choosing candidate slabs for buffers to move, we want to be
3501  * very selective and take only slabs that are less than
3502  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3503  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3504  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3505  * longer fragmented.
3506  */
3507 static void
3508 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3509 {
3510 	if (direction > 0) {
3511 		/* make it easier to find a candidate slab */
3512 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3513 			kmd->kmd_reclaim_numer++;
3514 		}
3515 	} else {
3516 		/* be more selective */
3517 		if (kmd->kmd_reclaim_numer > 1) {
3518 			kmd->kmd_reclaim_numer--;
3519 		}
3520 	}
3521 }
3522 
3523 void
3524 kmem_cache_set_move(kmem_cache_t *cp,
3525     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3526 {
3527 	kmem_defrag_t *defrag;
3528 
3529 	ASSERT(move != NULL);
3530 	/*
3531 	 * The consolidator does not support NOTOUCH caches because kmem cannot
3532 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3533 	 * a low order bit usable by clients to distinguish uninitialized memory
3534 	 * from known objects (see kmem_slab_create).
3535 	 */
3536 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
3537 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
3538 
3539 	/*
3540 	 * We should not be holding anyone's cache lock when calling
3541 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
3542 	 * lock.
3543 	 */
3544 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
3545 
3546 	mutex_enter(&cp->cache_lock);
3547 
3548 	if (KMEM_IS_MOVABLE(cp)) {
3549 		if (cp->cache_move == NULL) {
3550 			/*
3551 			 * We want to assert that the client has not allocated
3552 			 * any objects from this cache before setting a move
3553 			 * callback function. However, it's possible that
3554 			 * kmem_check_destructor() has created a slab between
3555 			 * the time that the client called kmem_cache_create()
3556 			 * and this call to kmem_cache_set_move(). Currently
3557 			 * there are no correctness issues involved; the client
3558 			 * could allocate many objects before setting a
3559 			 * callback, but we want to enforce the rule anyway to
3560 			 * allow the greatest flexibility for the consolidator
3561 			 * in the future.
3562 			 *
3563 			 * It's possible that kmem_check_destructor() can be
3564 			 * called twice for the same cache.
3565 			 */
3566 			ASSERT(cp->cache_slab_alloc <= 2);
3567 
3568 			cp->cache_defrag = defrag;
3569 			defrag = NULL; /* nothing to free */
3570 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
3571 			avl_create(&cp->cache_defrag->kmd_moves_pending,
3572 			    kmem_move_cmp, sizeof (kmem_move_t),
3573 			    offsetof(kmem_move_t, kmm_entry));
3574 			/* LINTED: E_TRUE_LOGICAL_EXPR */
3575 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3576 			/* reuse the slab's AVL linkage for deadlist linkage */
3577 			list_create(&cp->cache_defrag->kmd_deadlist,
3578 			    sizeof (kmem_slab_t),
3579 			    offsetof(kmem_slab_t, slab_link));
3580 			kmem_reset_reclaim_threshold(cp->cache_defrag);
3581 		}
3582 		cp->cache_move = move;
3583 	}
3584 
3585 	mutex_exit(&cp->cache_lock);
3586 
3587 	if (defrag != NULL) {
3588 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
3589 	}
3590 }
3591 
3592 void
3593 kmem_cache_destroy(kmem_cache_t *cp)
3594 {
3595 	int cpu_seqid;
3596 
3597 	/*
3598 	 * Remove the cache from the global cache list so that no one else
3599 	 * can schedule tasks on its behalf, wait for any pending tasks to
3600 	 * complete, purge the cache, and then destroy it.
3601 	 */
3602 	mutex_enter(&kmem_cache_lock);
3603 	list_remove(&kmem_caches, cp);
3604 	mutex_exit(&kmem_cache_lock);
3605 
3606 	if (kmem_taskq != NULL)
3607 		taskq_wait(kmem_taskq);
3608 	if (kmem_move_taskq != NULL)
3609 		taskq_wait(kmem_move_taskq);
3610 
3611 	kmem_cache_magazine_purge(cp);
3612 
3613 	mutex_enter(&cp->cache_lock);
3614 	if (cp->cache_buftotal != 0)
3615 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
3616 		    cp->cache_name, (void *)cp);
3617 	if (cp->cache_defrag != NULL) {
3618 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
3619 		list_destroy(&cp->cache_defrag->kmd_deadlist);
3620 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
3621 		cp->cache_defrag = NULL;
3622 	}
3623 	/*
3624 	 * The cache is now dead.  There should be no further activity.  We
3625 	 * enforce this by setting land mines in the constructor, destructor,
3626 	 * reclaim, and move routines that induce a kernel text fault if
3627 	 * invoked.
3628 	 */
3629 	cp->cache_constructor = (int (*)(void *, void *, int))1;
3630 	cp->cache_destructor = (void (*)(void *, void *))2;
3631 	cp->cache_reclaim = (void (*)(void *))3;
3632 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
3633 	mutex_exit(&cp->cache_lock);
3634 
3635 	kstat_delete(cp->cache_kstat);
3636 
3637 	if (cp->cache_hash_table != NULL)
3638 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
3639 		    (cp->cache_hash_mask + 1) * sizeof (void *));
3640 
3641 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
3642 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
3643 
3644 	mutex_destroy(&cp->cache_depot_lock);
3645 	mutex_destroy(&cp->cache_lock);
3646 
3647 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
3648 }
3649 
3650 /*ARGSUSED*/
3651 static int
3652 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
3653 {
3654 	ASSERT(MUTEX_HELD(&cpu_lock));
3655 	if (what == CPU_UNCONFIG) {
3656 		kmem_cache_applyall(kmem_cache_magazine_purge,
3657 		    kmem_taskq, TQ_SLEEP);
3658 		kmem_cache_applyall(kmem_cache_magazine_enable,
3659 		    kmem_taskq, TQ_SLEEP);
3660 	}
3661 	return (0);
3662 }
3663 
3664 static void
3665 kmem_cache_init(int pass, int use_large_pages)
3666 {
3667 	int i;
3668 	size_t size;
3669 	kmem_cache_t *cp;
3670 	kmem_magtype_t *mtp;
3671 	char name[KMEM_CACHE_NAMELEN + 1];
3672 
3673 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
3674 		mtp = &kmem_magtype[i];
3675 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
3676 		mtp->mt_cache = kmem_cache_create(name,
3677 		    (mtp->mt_magsize + 1) * sizeof (void *),
3678 		    mtp->mt_align, NULL, NULL, NULL, NULL,
3679 		    kmem_msb_arena, KMC_NOHASH);
3680 	}
3681 
3682 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
3683 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
3684 	    kmem_msb_arena, KMC_NOHASH);
3685 
3686 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
3687 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
3688 	    kmem_msb_arena, KMC_NOHASH);
3689 
3690 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
3691 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
3692 	    kmem_msb_arena, KMC_NOHASH);
3693 
3694 	if (pass == 2) {
3695 		kmem_va_arena = vmem_create("kmem_va",
3696 		    NULL, 0, PAGESIZE,
3697 		    vmem_alloc, vmem_free, heap_arena,
3698 		    8 * PAGESIZE, VM_SLEEP);
3699 
3700 		if (use_large_pages) {
3701 			kmem_default_arena = vmem_xcreate("kmem_default",
3702 			    NULL, 0, PAGESIZE,
3703 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
3704 			    0, VM_SLEEP);
3705 		} else {
3706 			kmem_default_arena = vmem_create("kmem_default",
3707 			    NULL, 0, PAGESIZE,
3708 			    segkmem_alloc, segkmem_free, kmem_va_arena,
3709 			    0, VM_SLEEP);
3710 		}
3711 	} else {
3712 		/*
3713 		 * During the first pass, the kmem_alloc_* caches
3714 		 * are treated as metadata.
3715 		 */
3716 		kmem_default_arena = kmem_msb_arena;
3717 	}
3718 
3719 	/*
3720 	 * Set up the default caches to back kmem_alloc()
3721 	 */
3722 	size = KMEM_ALIGN;
3723 	for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) {
3724 		size_t align = KMEM_ALIGN;
3725 		size_t cache_size = kmem_alloc_sizes[i];
3726 		/*
3727 		 * If they allocate a multiple of the coherency granularity,
3728 		 * they get a coherency-granularity-aligned address.
3729 		 */
3730 		if (IS_P2ALIGNED(cache_size, 64))
3731 			align = 64;
3732 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
3733 			align = PAGESIZE;
3734 		(void) sprintf(name, "kmem_alloc_%lu", cache_size);
3735 		cp = kmem_cache_create(name, cache_size, align,
3736 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
3737 		while (size <= cache_size) {
3738 			kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp;
3739 			size += KMEM_ALIGN;
3740 		}
3741 	}
3742 }
3743 
3744 void
3745 kmem_init(void)
3746 {
3747 	kmem_cache_t *cp;
3748 	int old_kmem_flags = kmem_flags;
3749 	int use_large_pages = 0;
3750 	size_t maxverify, minfirewall;
3751 
3752 	kstat_init();
3753 
3754 	/*
3755 	 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
3756 	 */
3757 	if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
3758 		kmem_flags = 0;
3759 
3760 	/*
3761 	 * Don't do firewalled allocations if the heap is less than 1TB
3762 	 * (i.e. on a 32-bit kernel)
3763 	 * The resulting VM_NEXTFIT allocations would create too much
3764 	 * fragmentation in a small heap.
3765 	 */
3766 #if defined(_LP64)
3767 	maxverify = minfirewall = PAGESIZE / 2;
3768 #else
3769 	maxverify = minfirewall = ULONG_MAX;
3770 #endif
3771 
3772 	/* LINTED */
3773 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
3774 
3775 	list_create(&kmem_caches, sizeof (kmem_cache_t),
3776 	    offsetof(kmem_cache_t, cache_link));
3777 
3778 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
3779 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
3780 	    VM_SLEEP | VMC_NO_QCACHE);
3781 
3782 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
3783 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
3784 	    VM_SLEEP);
3785 
3786 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
3787 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
3788 
3789 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
3790 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
3791 
3792 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
3793 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3794 
3795 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
3796 	    NULL, 0, PAGESIZE,
3797 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
3798 	    0, VM_SLEEP);
3799 
3800 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
3801 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP);
3802 
3803 	/* temporary oversize arena for mod_read_system_file */
3804 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
3805 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3806 
3807 	kmem_reap_interval = 15 * hz;
3808 
3809 	/*
3810 	 * Read /etc/system.  This is a chicken-and-egg problem because
3811 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
3812 	 * needs to use the allocator.  The simplest solution is to create
3813 	 * all the standard kmem caches, read /etc/system, destroy all the
3814 	 * caches we just created, and then create them all again in light
3815 	 * of the (possibly) new kmem_flags and other kmem tunables.
3816 	 */
3817 	kmem_cache_init(1, 0);
3818 
3819 	mod_read_system_file(boothowto & RB_ASKNAME);
3820 
3821 	while ((cp = list_tail(&kmem_caches)) != NULL)
3822 		kmem_cache_destroy(cp);
3823 
3824 	vmem_destroy(kmem_oversize_arena);
3825 
3826 	if (old_kmem_flags & KMF_STICKY)
3827 		kmem_flags = old_kmem_flags;
3828 
3829 	if (!(kmem_flags & KMF_AUDIT))
3830 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
3831 
3832 	if (kmem_maxverify == 0)
3833 		kmem_maxverify = maxverify;
3834 
3835 	if (kmem_minfirewall == 0)
3836 		kmem_minfirewall = minfirewall;
3837 
3838 	/*
3839 	 * give segkmem a chance to figure out if we are using large pages
3840 	 * for the kernel heap
3841 	 */
3842 	use_large_pages = segkmem_lpsetup();
3843 
3844 	/*
3845 	 * To protect against corruption, we keep the actual number of callers
3846 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
3847 	 * to 16, since the overhead for small buffers quickly gets out of
3848 	 * hand.
3849 	 *
3850 	 * The real limit would depend on the needs of the largest KMC_NOHASH
3851 	 * cache.
3852 	 */
3853 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
3854 	kmem_lite_pcs = kmem_lite_count;
3855 
3856 	/*
3857 	 * Normally, we firewall oversized allocations when possible, but
3858 	 * if we are using large pages for kernel memory, and we don't have
3859 	 * any non-LITE debugging flags set, we want to allocate oversized
3860 	 * buffers from large pages, and so skip the firewalling.
3861 	 */
3862 	if (use_large_pages &&
3863 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
3864 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
3865 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
3866 		    0, VM_SLEEP);
3867 	} else {
3868 		kmem_oversize_arena = vmem_create("kmem_oversize",
3869 		    NULL, 0, PAGESIZE,
3870 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
3871 		    kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP);
3872 	}
3873 
3874 	kmem_cache_init(2, use_large_pages);
3875 
3876 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
3877 		if (kmem_transaction_log_size == 0)
3878 			kmem_transaction_log_size = kmem_maxavail() / 50;
3879 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
3880 	}
3881 
3882 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
3883 		if (kmem_content_log_size == 0)
3884 			kmem_content_log_size = kmem_maxavail() / 50;
3885 		kmem_content_log = kmem_log_init(kmem_content_log_size);
3886 	}
3887 
3888 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
3889 
3890 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
3891 
3892 	/*
3893 	 * Initialize STREAMS message caches so allocb() is available.
3894 	 * This allows us to initialize the logging framework (cmn_err(9F),
3895 	 * strlog(9F), etc) so we can start recording messages.
3896 	 */
3897 	streams_msg_init();
3898 
3899 	/*
3900 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
3901 	 * can register their callbacks.
3902 	 */
3903 	zone_zsd_init();
3904 
3905 	log_init();
3906 	taskq_init();
3907 
3908 	/*
3909 	 * Warn about invalid or dangerous values of kmem_flags.
3910 	 * Always warn about unsupported values.
3911 	 */
3912 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
3913 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
3914 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
3915 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
3916 		    "See the Solaris Tunable Parameters Reference Manual.",
3917 		    kmem_flags);
3918 
3919 #ifdef DEBUG
3920 	if ((kmem_flags & KMF_DEBUG) == 0)
3921 		cmn_err(CE_NOTE, "kmem debugging disabled.");
3922 #else
3923 	/*
3924 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
3925 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
3926 	 * if KMF_AUDIT is set). We should warn the user about the performance
3927 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
3928 	 * isn't set (since that disables AUDIT).
3929 	 */
3930 	if (!(kmem_flags & KMF_LITE) &&
3931 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
3932 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
3933 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
3934 		    "and large memory overhead possible. See the Solaris "
3935 		    "Tunable Parameters Reference Manual.", kmem_flags);
3936 #endif /* not DEBUG */
3937 
3938 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
3939 
3940 	kmem_ready = 1;
3941 
3942 	/*
3943 	 * Initialize the platform-specific aligned/DMA memory allocator.
3944 	 */
3945 	ka_init();
3946 
3947 	/*
3948 	 * Initialize 32-bit ID cache.
3949 	 */
3950 	id32_init();
3951 
3952 	/*
3953 	 * Initialize the networking stack so modules loaded can
3954 	 * register their callbacks.
3955 	 */
3956 	netstack_init();
3957 }
3958 
3959 static void
3960 kmem_move_init(void)
3961 {
3962 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
3963 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
3964 	    kmem_msb_arena, KMC_NOHASH);
3965 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
3966 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
3967 	    kmem_msb_arena, KMC_NOHASH);
3968 
3969 	/*
3970 	 * kmem guarantees that move callbacks are sequential and that even
3971 	 * across multiple caches no two moves ever execute simultaneously.
3972 	 * Move callbacks are processed on a separate taskq so that client code
3973 	 * does not interfere with internal maintenance tasks.
3974 	 */
3975 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
3976 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
3977 }
3978 
3979 void
3980 kmem_thread_init(void)
3981 {
3982 	kmem_move_init();
3983 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
3984 	    300, INT_MAX, TASKQ_PREPOPULATE);
3985 }
3986 
3987 void
3988 kmem_mp_init(void)
3989 {
3990 	mutex_enter(&cpu_lock);
3991 	register_cpu_setup_func(kmem_cpu_setup, NULL);
3992 	mutex_exit(&cpu_lock);
3993 
3994 	kmem_update_timeout(NULL);
3995 
3996 	kmem_mp_init_done = B_TRUE;
3997 	/*
3998 	 * Defer checking destructors until now to avoid constructor
3999 	 * dependencies during startup.
4000 	 */
4001 	kmem_cache_applyall(kmem_check_destructor, NULL, 0);
4002 }
4003 
4004 /*
4005  * Return the slab of the allocated buffer, or NULL if the buffer is not
4006  * allocated. This function may be called with a known slab address to determine
4007  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4008  * an allocated buffer's slab.
4009  */
4010 static kmem_slab_t *
4011 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4012 {
4013 	kmem_bufctl_t *bcp, *bufbcp;
4014 
4015 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4016 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4017 
4018 	if (cp->cache_flags & KMF_HASH) {
4019 		for (bcp = *KMEM_HASH(cp, buf);
4020 		    (bcp != NULL) && (bcp->bc_addr != buf);
4021 		    bcp = bcp->bc_next) {
4022 			continue;
4023 		}
4024 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4025 		return (bcp == NULL ? NULL : bcp->bc_slab);
4026 	}
4027 
4028 	if (sp == NULL) {
4029 		sp = KMEM_SLAB(cp, buf);
4030 	}
4031 	bufbcp = KMEM_BUFCTL(cp, buf);
4032 	for (bcp = sp->slab_head;
4033 	    (bcp != NULL) && (bcp != bufbcp);
4034 	    bcp = bcp->bc_next) {
4035 		continue;
4036 	}
4037 	return (bcp == NULL ? sp : NULL);
4038 }
4039 
4040 static boolean_t
4041 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4042 {
4043 	long refcnt;
4044 
4045 	ASSERT(cp->cache_defrag != NULL);
4046 
4047 	/* If we're desperate, we don't care if the client said NO. */
4048 	refcnt = sp->slab_refcnt;
4049 	if (flags & KMM_DESPERATE) {
4050 		return (refcnt < sp->slab_chunks); /* any partial */
4051 	}
4052 
4053 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4054 		return (B_FALSE);
4055 	}
4056 
4057 	if (kmem_move_any_partial) {
4058 		return (refcnt < sp->slab_chunks);
4059 	}
4060 
4061 	if ((refcnt == 1) && (refcnt < sp->slab_chunks)) {
4062 		return (B_TRUE);
4063 	}
4064 
4065 	/*
4066 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4067 	 * slabs with a progressively higher percentage of used buffers can be
4068 	 * reclaimed until the cache as a whole is no longer fragmented.
4069 	 *
4070 	 *	sp->slab_refcnt   kmd_reclaim_numer
4071 	 *	--------------- < ------------------
4072 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4073 	 */
4074 	return ((refcnt * KMEM_VOID_FRACTION) <
4075 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4076 }
4077 
4078 static void *
4079 kmem_hunt_mag(kmem_cache_t *cp, kmem_magazine_t *m, int n, void *buf,
4080     void *tbuf)
4081 {
4082 	int i;		/* magazine round index */
4083 
4084 	for (i = 0; i < n; i++) {
4085 		if (buf == m->mag_round[i]) {
4086 			if (cp->cache_flags & KMF_BUFTAG) {
4087 				(void) kmem_cache_free_debug(cp, tbuf,
4088 				    caller());
4089 			}
4090 			m->mag_round[i] = tbuf;
4091 			return (buf);
4092 		}
4093 	}
4094 
4095 	return (NULL);
4096 }
4097 
4098 /*
4099  * Hunt the magazine layer for the given buffer. If found, the buffer is
4100  * removed from the magazine layer and returned, otherwise NULL is returned.
4101  * The state of the returned buffer is freed and constructed.
4102  */
4103 static void *
4104 kmem_hunt_mags(kmem_cache_t *cp, void *buf)
4105 {
4106 	kmem_cpu_cache_t *ccp;
4107 	kmem_magazine_t	*m;
4108 	int cpu_seqid;
4109 	int n;		/* magazine rounds */
4110 	void *tbuf;	/* temporary swap buffer */
4111 
4112 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4113 
4114 	/*
4115 	 * Allocated a buffer to swap with the one we hope to pull out of a
4116 	 * magazine when found.
4117 	 */
4118 	tbuf = kmem_cache_alloc(cp, KM_NOSLEEP);
4119 	if (tbuf == NULL) {
4120 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_alloc_fail);
4121 		return (NULL);
4122 	}
4123 	if (tbuf == buf) {
4124 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_lucky);
4125 		if (cp->cache_flags & KMF_BUFTAG) {
4126 			(void) kmem_cache_free_debug(cp, buf, caller());
4127 		}
4128 		return (buf);
4129 	}
4130 
4131 	/* Hunt the depot. */
4132 	mutex_enter(&cp->cache_depot_lock);
4133 	n = cp->cache_magtype->mt_magsize;
4134 	for (m = cp->cache_full.ml_list; m != NULL; m = m->mag_next) {
4135 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4136 			mutex_exit(&cp->cache_depot_lock);
4137 			return (buf);
4138 		}
4139 	}
4140 	mutex_exit(&cp->cache_depot_lock);
4141 
4142 	/* Hunt the per-CPU magazines. */
4143 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
4144 		ccp = &cp->cache_cpu[cpu_seqid];
4145 
4146 		mutex_enter(&ccp->cc_lock);
4147 		m = ccp->cc_loaded;
4148 		n = ccp->cc_rounds;
4149 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4150 			mutex_exit(&ccp->cc_lock);
4151 			return (buf);
4152 		}
4153 		m = ccp->cc_ploaded;
4154 		n = ccp->cc_prounds;
4155 		if (kmem_hunt_mag(cp, m, n, buf, tbuf) != NULL) {
4156 			mutex_exit(&ccp->cc_lock);
4157 			return (buf);
4158 		}
4159 		mutex_exit(&ccp->cc_lock);
4160 	}
4161 
4162 	kmem_cache_free(cp, tbuf);
4163 	return (NULL);
4164 }
4165 
4166 /*
4167  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4168  * or when the buffer is freed.
4169  */
4170 static void
4171 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4172 {
4173 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4174 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4175 
4176 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4177 		return;
4178 	}
4179 
4180 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4181 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4182 			avl_remove(&cp->cache_partial_slabs, sp);
4183 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4184 			sp->slab_stuck_offset = (uint32_t)-1;
4185 			avl_add(&cp->cache_partial_slabs, sp);
4186 		}
4187 	} else {
4188 		sp->slab_later_count = 0;
4189 		sp->slab_stuck_offset = (uint32_t)-1;
4190 	}
4191 }
4192 
4193 static void
4194 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4195 {
4196 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4197 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4198 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4199 
4200 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4201 		return;
4202 	}
4203 
4204 	avl_remove(&cp->cache_partial_slabs, sp);
4205 	sp->slab_later_count = 0;
4206 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4207 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4208 	avl_add(&cp->cache_partial_slabs, sp);
4209 }
4210 
4211 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4212 
4213 /*
4214  * The move callback takes two buffer addresses, the buffer to be moved, and a
4215  * newly allocated and constructed buffer selected by kmem as the destination.
4216  * It also takes the size of the buffer and an optional user argument specified
4217  * at cache creation time. kmem guarantees that the buffer to be moved has not
4218  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4219  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4220  * the client to safely determine whether or not it is still using the buffer.
4221  * The client must not free either of the buffers passed to the move callback,
4222  * since kmem wants to free them directly to the slab layer. The client response
4223  * tells kmem which of the two buffers to free:
4224  *
4225  * YES		kmem frees the old buffer (the move was successful)
4226  * NO		kmem frees the new buffer, marks the slab of the old buffer
4227  *              non-reclaimable to avoid bothering the client again
4228  * LATER	kmem frees the new buffer, increments slab_later_count
4229  * DONT_KNOW	kmem frees the new buffer, searches mags for the old buffer
4230  * DONT_NEED	kmem frees both the old buffer and the new buffer
4231  *
4232  * The pending callback argument now being processed contains both of the
4233  * buffers (old and new) passed to the move callback function, the slab of the
4234  * old buffer, and flags related to the move request, such as whether or not the
4235  * system was desperate for memory.
4236  */
4237 static void
4238 kmem_move_buffer(kmem_move_t *callback)
4239 {
4240 	kmem_cbrc_t response;
4241 	kmem_slab_t *sp = callback->kmm_from_slab;
4242 	kmem_cache_t *cp = sp->slab_cache;
4243 	boolean_t free_on_slab;
4244 
4245 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4246 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4247 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4248 
4249 	/*
4250 	 * The number of allocated buffers on the slab may have changed since we
4251 	 * last checked the slab's reclaimability (when the pending move was
4252 	 * enqueued), or the client may have responded NO when asked to move
4253 	 * another buffer on the same slab.
4254 	 */
4255 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4256 		KMEM_STAT_ADD(kmem_move_stats.kms_no_longer_reclaimable);
4257 		KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4258 		    kmem_move_stats.kms_notify_no_longer_reclaimable);
4259 		kmem_slab_free(cp, callback->kmm_to_buf);
4260 		kmem_move_end(cp, callback);
4261 		return;
4262 	}
4263 
4264 	/*
4265 	 * Hunting magazines is expensive, so we'll wait to do that until the
4266 	 * client responds KMEM_CBRC_DONT_KNOW. However, checking the slab layer
4267 	 * is cheap, so we might as well do that here in case we can avoid
4268 	 * bothering the client.
4269 	 */
4270 	mutex_enter(&cp->cache_lock);
4271 	free_on_slab = (kmem_slab_allocated(cp, sp,
4272 	    callback->kmm_from_buf) == NULL);
4273 	mutex_exit(&cp->cache_lock);
4274 
4275 	if (free_on_slab) {
4276 		KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_slab);
4277 		kmem_slab_free(cp, callback->kmm_to_buf);
4278 		kmem_move_end(cp, callback);
4279 		return;
4280 	}
4281 
4282 	if (cp->cache_flags & KMF_BUFTAG) {
4283 		/*
4284 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4285 		 */
4286 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4287 		    KM_NOSLEEP, 1, caller()) != 0) {
4288 			KMEM_STAT_ADD(kmem_move_stats.kms_alloc_fail);
4289 			kmem_move_end(cp, callback);
4290 			return;
4291 		}
4292 	} else if (cp->cache_constructor != NULL &&
4293 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4294 	    KM_NOSLEEP) != 0) {
4295 		atomic_add_64(&cp->cache_alloc_fail, 1);
4296 		KMEM_STAT_ADD(kmem_move_stats.kms_constructor_fail);
4297 		kmem_slab_free(cp, callback->kmm_to_buf);
4298 		kmem_move_end(cp, callback);
4299 		return;
4300 	}
4301 
4302 	KMEM_STAT_ADD(kmem_move_stats.kms_callbacks);
4303 	KMEM_STAT_COND_ADD((callback->kmm_flags & KMM_NOTIFY),
4304 	    kmem_move_stats.kms_notify_callbacks);
4305 	cp->cache_defrag->kmd_callbacks++;
4306 	cp->cache_defrag->kmd_thread = curthread;
4307 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4308 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4309 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4310 	    callback);
4311 
4312 	response = cp->cache_move(callback->kmm_from_buf,
4313 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4314 
4315 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4316 	    callback, kmem_cbrc_t, response);
4317 	cp->cache_defrag->kmd_thread = NULL;
4318 	cp->cache_defrag->kmd_from_buf = NULL;
4319 	cp->cache_defrag->kmd_to_buf = NULL;
4320 
4321 	if (response == KMEM_CBRC_YES) {
4322 		KMEM_STAT_ADD(kmem_move_stats.kms_yes);
4323 		cp->cache_defrag->kmd_yes++;
4324 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4325 		mutex_enter(&cp->cache_lock);
4326 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4327 		mutex_exit(&cp->cache_lock);
4328 		kmem_move_end(cp, callback);
4329 		return;
4330 	}
4331 
4332 	switch (response) {
4333 	case KMEM_CBRC_NO:
4334 		KMEM_STAT_ADD(kmem_move_stats.kms_no);
4335 		cp->cache_defrag->kmd_no++;
4336 		mutex_enter(&cp->cache_lock);
4337 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4338 		mutex_exit(&cp->cache_lock);
4339 		break;
4340 	case KMEM_CBRC_LATER:
4341 		KMEM_STAT_ADD(kmem_move_stats.kms_later);
4342 		cp->cache_defrag->kmd_later++;
4343 		mutex_enter(&cp->cache_lock);
4344 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4345 			mutex_exit(&cp->cache_lock);
4346 			break;
4347 		}
4348 
4349 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4350 			KMEM_STAT_ADD(kmem_move_stats.kms_disbelief);
4351 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4352 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4353 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4354 			    callback->kmm_from_buf);
4355 		}
4356 		mutex_exit(&cp->cache_lock);
4357 		break;
4358 	case KMEM_CBRC_DONT_NEED:
4359 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_need);
4360 		cp->cache_defrag->kmd_dont_need++;
4361 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4362 		mutex_enter(&cp->cache_lock);
4363 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4364 		mutex_exit(&cp->cache_lock);
4365 		break;
4366 	case KMEM_CBRC_DONT_KNOW:
4367 		KMEM_STAT_ADD(kmem_move_stats.kms_dont_know);
4368 		cp->cache_defrag->kmd_dont_know++;
4369 		if (kmem_hunt_mags(cp, callback->kmm_from_buf) != NULL) {
4370 			KMEM_STAT_ADD(kmem_move_stats.kms_hunt_found_mag);
4371 			cp->cache_defrag->kmd_hunt_found++;
4372 			kmem_slab_free_constructed(cp, callback->kmm_from_buf,
4373 			    B_TRUE);
4374 			mutex_enter(&cp->cache_lock);
4375 			kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4376 			mutex_exit(&cp->cache_lock);
4377 		}
4378 		break;
4379 	default:
4380 		panic("'%s' (%p) unexpected move callback response %d\n",
4381 		    cp->cache_name, (void *)cp, response);
4382 	}
4383 
4384 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4385 	kmem_move_end(cp, callback);
4386 }
4387 
4388 /* Return B_FALSE if there is insufficient memory for the move request. */
4389 static boolean_t
4390 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4391 {
4392 	void *to_buf;
4393 	avl_index_t index;
4394 	kmem_move_t *callback, *pending;
4395 
4396 	ASSERT(taskq_member(kmem_taskq, curthread));
4397 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4398 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4399 
4400 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4401 	if (callback == NULL) {
4402 		KMEM_STAT_ADD(kmem_move_stats.kms_callback_alloc_fail);
4403 		return (B_FALSE);
4404 	}
4405 
4406 	callback->kmm_from_slab = sp;
4407 	callback->kmm_from_buf = buf;
4408 	callback->kmm_flags = flags;
4409 
4410 	mutex_enter(&cp->cache_lock);
4411 
4412 	if (avl_numnodes(&cp->cache_partial_slabs) <= 1) {
4413 		mutex_exit(&cp->cache_lock);
4414 		kmem_cache_free(kmem_move_cache, callback);
4415 		return (B_TRUE); /* there is no need for the move request */
4416 	}
4417 
4418 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4419 	if (pending != NULL) {
4420 		/*
4421 		 * If the move is already pending and we're desperate now,
4422 		 * update the move flags.
4423 		 */
4424 		if (flags & KMM_DESPERATE) {
4425 			pending->kmm_flags |= KMM_DESPERATE;
4426 		}
4427 		mutex_exit(&cp->cache_lock);
4428 		KMEM_STAT_ADD(kmem_move_stats.kms_already_pending);
4429 		kmem_cache_free(kmem_move_cache, callback);
4430 		return (B_TRUE);
4431 	}
4432 
4433 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs));
4434 	callback->kmm_to_buf = to_buf;
4435 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4436 
4437 	mutex_exit(&cp->cache_lock);
4438 
4439 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4440 	    callback, TQ_NOSLEEP)) {
4441 		mutex_enter(&cp->cache_lock);
4442 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4443 		mutex_exit(&cp->cache_lock);
4444 		kmem_slab_free_constructed(cp, to_buf, B_FALSE);
4445 		kmem_cache_free(kmem_move_cache, callback);
4446 		return (B_FALSE);
4447 	}
4448 
4449 	return (B_TRUE);
4450 }
4451 
4452 static void
4453 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4454 {
4455 	avl_index_t index;
4456 
4457 	ASSERT(cp->cache_defrag != NULL);
4458 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4459 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4460 
4461 	mutex_enter(&cp->cache_lock);
4462 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4463 	    callback->kmm_from_buf, &index) != NULL);
4464 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4465 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4466 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4467 		kmem_slab_t *sp;
4468 
4469 		/*
4470 		 * The last pending move completed. Release all slabs from the
4471 		 * front of the dead list except for any slab at the tail that
4472 		 * needs to be released from the context of kmem_move_buffers().
4473 		 * kmem deferred unmapping the buffers on these slabs in order
4474 		 * to guarantee that buffers passed to the move callback have
4475 		 * been touched only by kmem or by the client itself.
4476 		 */
4477 		while ((sp = list_remove_head(deadlist)) != NULL) {
4478 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4479 				list_insert_tail(deadlist, sp);
4480 				break;
4481 			}
4482 			cp->cache_defrag->kmd_deadcount--;
4483 			cp->cache_slab_destroy++;
4484 			mutex_exit(&cp->cache_lock);
4485 			kmem_slab_destroy(cp, sp);
4486 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4487 			mutex_enter(&cp->cache_lock);
4488 		}
4489 	}
4490 	mutex_exit(&cp->cache_lock);
4491 	kmem_cache_free(kmem_move_cache, callback);
4492 }
4493 
4494 /*
4495  * Move buffers from least used slabs first by scanning backwards from the end
4496  * of the partial slab list. Scan at most max_scan candidate slabs and move
4497  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4498  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4499  * skip slabs with a ratio of allocated buffers at or above the current
4500  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4501  * scan is aborted) so that the caller can adjust the reclaimability threshold
4502  * depending on how many reclaimable slabs it finds.
4503  *
4504  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4505  * move request, since it is not valid for kmem_move_begin() to call
4506  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4507  */
4508 static int
4509 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4510     int flags)
4511 {
4512 	kmem_slab_t *sp;
4513 	void *buf;
4514 	int i, j; /* slab index, buffer index */
4515 	int s; /* reclaimable slabs */
4516 	int b; /* allocated (movable) buffers on reclaimable slab */
4517 	boolean_t success;
4518 	int refcnt;
4519 	int nomove;
4520 
4521 	ASSERT(taskq_member(kmem_taskq, curthread));
4522 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4523 	ASSERT(kmem_move_cache != NULL);
4524 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4525 	ASSERT(avl_numnodes(&cp->cache_partial_slabs) > 1);
4526 
4527 	if (kmem_move_blocked) {
4528 		return (0);
4529 	}
4530 
4531 	if (kmem_move_fulltilt) {
4532 		max_slabs = 0;
4533 		flags |= KMM_DESPERATE;
4534 	}
4535 
4536 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4537 		/*
4538 		 * Scan as many slabs as needed to find the desired number of
4539 		 * candidate slabs.
4540 		 */
4541 		max_scan = (size_t)-1;
4542 	}
4543 
4544 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4545 		/* Find as many candidate slabs as possible. */
4546 		max_slabs = (size_t)-1;
4547 	}
4548 
4549 	sp = avl_last(&cp->cache_partial_slabs);
4550 	ASSERT(sp != NULL && KMEM_SLAB_IS_PARTIAL(sp));
4551 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) &&
4552 	    (sp != avl_first(&cp->cache_partial_slabs));
4553 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4554 
4555 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4556 			continue;
4557 		}
4558 		s++;
4559 
4560 		/* Look for allocated buffers to move. */
4561 		for (j = 0, b = 0, buf = sp->slab_base;
4562 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4563 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4564 
4565 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4566 				continue;
4567 			}
4568 
4569 			b++;
4570 
4571 			/*
4572 			 * Prevent the slab from being destroyed while we drop
4573 			 * cache_lock and while the pending move is not yet
4574 			 * registered. Flag the pending move while
4575 			 * kmd_moves_pending may still be empty, since we can't
4576 			 * yet rely on a non-zero pending move count to prevent
4577 			 * the slab from being destroyed.
4578 			 */
4579 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4580 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4581 			/*
4582 			 * Recheck refcnt and nomove after reacquiring the lock,
4583 			 * since these control the order of partial slabs, and
4584 			 * we want to know if we can pick up the scan where we
4585 			 * left off.
4586 			 */
4587 			refcnt = sp->slab_refcnt;
4588 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
4589 			mutex_exit(&cp->cache_lock);
4590 
4591 			success = kmem_move_begin(cp, sp, buf, flags);
4592 
4593 			/*
4594 			 * Now, before the lock is reacquired, kmem could
4595 			 * process all pending move requests and purge the
4596 			 * deadlist, so that upon reacquiring the lock, sp has
4597 			 * been remapped. Therefore, the KMEM_SLAB_MOVE_PENDING
4598 			 * flag causes the slab to be put at the end of the
4599 			 * deadlist and prevents it from being purged, since we
4600 			 * plan to destroy it here after reacquiring the lock.
4601 			 */
4602 			mutex_enter(&cp->cache_lock);
4603 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4604 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4605 
4606 			/*
4607 			 * Destroy the slab now if it was completely freed while
4608 			 * we dropped cache_lock.
4609 			 */
4610 			if (sp->slab_refcnt == 0) {
4611 				list_t *deadlist =
4612 				    &cp->cache_defrag->kmd_deadlist;
4613 
4614 				ASSERT(!list_is_empty(deadlist));
4615 				ASSERT(list_link_active((list_node_t *)
4616 				    &sp->slab_link));
4617 
4618 				list_remove(deadlist, sp);
4619 				cp->cache_defrag->kmd_deadcount--;
4620 				cp->cache_slab_destroy++;
4621 				mutex_exit(&cp->cache_lock);
4622 				kmem_slab_destroy(cp, sp);
4623 				KMEM_STAT_ADD(kmem_move_stats.
4624 				    kms_dead_slabs_freed);
4625 				KMEM_STAT_ADD(kmem_move_stats.
4626 				    kms_endscan_slab_destroyed);
4627 				mutex_enter(&cp->cache_lock);
4628 				/*
4629 				 * Since we can't pick up the scan where we left
4630 				 * off, abort the scan and say nothing about the
4631 				 * number of reclaimable slabs.
4632 				 */
4633 				return (-1);
4634 			}
4635 
4636 			if (!success) {
4637 				/*
4638 				 * Abort the scan if there is not enough memory
4639 				 * for the request and say nothing about the
4640 				 * number of reclaimable slabs.
4641 				 */
4642 				KMEM_STAT_ADD(
4643 				    kmem_move_stats.kms_endscan_nomem);
4644 				return (-1);
4645 			}
4646 
4647 			/*
4648 			 * The slab may have been completely allocated while the
4649 			 * lock was dropped.
4650 			 */
4651 			if (KMEM_SLAB_IS_ALL_USED(sp)) {
4652 				KMEM_STAT_ADD(
4653 				    kmem_move_stats.kms_endscan_slab_all_used);
4654 				return (-1);
4655 			}
4656 
4657 			/*
4658 			 * The slab's position changed while the lock was
4659 			 * dropped, so we don't know where we are in the
4660 			 * sequence any more.
4661 			 */
4662 			if (sp->slab_refcnt != refcnt) {
4663 				KMEM_STAT_ADD(
4664 				    kmem_move_stats.kms_endscan_refcnt_changed);
4665 				return (-1);
4666 			}
4667 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) {
4668 				KMEM_STAT_ADD(
4669 				    kmem_move_stats.kms_endscan_nomove_changed);
4670 				return (-1);
4671 			}
4672 
4673 			/*
4674 			 * Generating a move request allocates a destination
4675 			 * buffer from the slab layer, bumping the first slab if
4676 			 * it is completely allocated.
4677 			 */
4678 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
4679 			if (sp == avl_first(&cp->cache_partial_slabs)) {
4680 				goto end_scan;
4681 			}
4682 		}
4683 	}
4684 end_scan:
4685 
4686 	KMEM_STAT_COND_ADD(sp == avl_first(&cp->cache_partial_slabs),
4687 	    kmem_move_stats.kms_endscan_freelist);
4688 
4689 	return (s);
4690 }
4691 
4692 typedef struct kmem_move_notify_args {
4693 	kmem_cache_t *kmna_cache;
4694 	void *kmna_buf;
4695 } kmem_move_notify_args_t;
4696 
4697 static void
4698 kmem_cache_move_notify_task(void *arg)
4699 {
4700 	kmem_move_notify_args_t *args = arg;
4701 	kmem_cache_t *cp = args->kmna_cache;
4702 	void *buf = args->kmna_buf;
4703 	kmem_slab_t *sp;
4704 
4705 	ASSERT(taskq_member(kmem_taskq, curthread));
4706 	ASSERT(list_link_active(&cp->cache_link));
4707 
4708 	kmem_free(args, sizeof (kmem_move_notify_args_t));
4709 	mutex_enter(&cp->cache_lock);
4710 	sp = kmem_slab_allocated(cp, NULL, buf);
4711 
4712 	/* Ignore the notification if the buffer is no longer allocated. */
4713 	if (sp == NULL) {
4714 		mutex_exit(&cp->cache_lock);
4715 		return;
4716 	}
4717 
4718 	/* Ignore the notification if there's no reason to move the buffer. */
4719 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4720 		/*
4721 		 * So far the notification is not ignored. Ignore the
4722 		 * notification if the slab is not marked by an earlier refusal
4723 		 * to move a buffer.
4724 		 */
4725 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
4726 		    (sp->slab_later_count == 0)) {
4727 			mutex_exit(&cp->cache_lock);
4728 			return;
4729 		}
4730 
4731 		kmem_slab_move_yes(cp, sp, buf);
4732 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4733 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4734 		mutex_exit(&cp->cache_lock);
4735 		/* see kmem_move_buffers() about dropping the lock */
4736 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
4737 		mutex_enter(&cp->cache_lock);
4738 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4739 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
4740 		if (sp->slab_refcnt == 0) {
4741 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4742 
4743 			ASSERT(!list_is_empty(deadlist));
4744 			ASSERT(list_link_active((list_node_t *)
4745 			    &sp->slab_link));
4746 
4747 			list_remove(deadlist, sp);
4748 			cp->cache_defrag->kmd_deadcount--;
4749 			cp->cache_slab_destroy++;
4750 			mutex_exit(&cp->cache_lock);
4751 			kmem_slab_destroy(cp, sp);
4752 			KMEM_STAT_ADD(kmem_move_stats.kms_dead_slabs_freed);
4753 			return;
4754 		}
4755 	} else {
4756 		kmem_slab_move_yes(cp, sp, buf);
4757 	}
4758 	mutex_exit(&cp->cache_lock);
4759 }
4760 
4761 void
4762 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
4763 {
4764 	kmem_move_notify_args_t *args;
4765 
4766 	KMEM_STAT_ADD(kmem_move_stats.kms_notify);
4767 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
4768 	if (args != NULL) {
4769 		args->kmna_cache = cp;
4770 		args->kmna_buf = buf;
4771 		if (!taskq_dispatch(kmem_taskq,
4772 		    (task_func_t *)kmem_cache_move_notify_task, args,
4773 		    TQ_NOSLEEP))
4774 			kmem_free(args, sizeof (kmem_move_notify_args_t));
4775 	}
4776 }
4777 
4778 static void
4779 kmem_cache_defrag(kmem_cache_t *cp)
4780 {
4781 	size_t n;
4782 
4783 	ASSERT(cp->cache_defrag != NULL);
4784 
4785 	mutex_enter(&cp->cache_lock);
4786 	n = avl_numnodes(&cp->cache_partial_slabs);
4787 	if (n > 1) {
4788 		/* kmem_move_buffers() drops and reacquires cache_lock */
4789 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
4790 		KMEM_STAT_ADD(kmem_move_stats.kms_defrags);
4791 	}
4792 	mutex_exit(&cp->cache_lock);
4793 }
4794 
4795 /* Is this cache above the fragmentation threshold? */
4796 static boolean_t
4797 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
4798 {
4799 	if (avl_numnodes(&cp->cache_partial_slabs) <= 1)
4800 		return (B_FALSE);
4801 
4802 	/*
4803 	 *	nfree		kmem_frag_numer
4804 	 * ------------------ > ---------------
4805 	 * cp->cache_buftotal	kmem_frag_denom
4806 	 */
4807 	return ((nfree * kmem_frag_denom) >
4808 	    (cp->cache_buftotal * kmem_frag_numer));
4809 }
4810 
4811 static boolean_t
4812 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
4813 {
4814 	boolean_t fragmented;
4815 	uint64_t nfree;
4816 
4817 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4818 	*doreap = B_FALSE;
4819 
4820 	if (!kmem_move_fulltilt && ((cp->cache_complete_slab_count +
4821 	    avl_numnodes(&cp->cache_partial_slabs)) < kmem_frag_minslabs))
4822 		return (B_FALSE);
4823 
4824 	nfree = cp->cache_bufslab;
4825 	fragmented = kmem_cache_frag_threshold(cp, nfree);
4826 	/*
4827 	 * Free buffers in the magazine layer appear allocated from the point of
4828 	 * view of the slab layer. We want to know if the slab layer would
4829 	 * appear fragmented if we included free buffers from magazines that
4830 	 * have fallen out of the working set.
4831 	 */
4832 	if (!fragmented) {
4833 		long reap;
4834 
4835 		mutex_enter(&cp->cache_depot_lock);
4836 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
4837 		reap = MIN(reap, cp->cache_full.ml_total);
4838 		mutex_exit(&cp->cache_depot_lock);
4839 
4840 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
4841 		if (kmem_cache_frag_threshold(cp, nfree)) {
4842 			*doreap = B_TRUE;
4843 		}
4844 	}
4845 
4846 	return (fragmented);
4847 }
4848 
4849 /* Called periodically from kmem_taskq */
4850 static void
4851 kmem_cache_scan(kmem_cache_t *cp)
4852 {
4853 	boolean_t reap = B_FALSE;
4854 
4855 	ASSERT(taskq_member(kmem_taskq, curthread));
4856 	ASSERT(cp->cache_defrag != NULL);
4857 
4858 	mutex_enter(&cp->cache_lock);
4859 
4860 	if (kmem_cache_is_fragmented(cp, &reap)) {
4861 		kmem_defrag_t *kmd = cp->cache_defrag;
4862 		size_t slabs_found;
4863 
4864 		/*
4865 		 * Consolidate reclaimable slabs from the end of the partial
4866 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
4867 		 * reclaimable slabs). Keep track of how many candidate slabs we
4868 		 * looked for and how many we actually found so we can adjust
4869 		 * the definition of a candidate slab if we're having trouble
4870 		 * finding them.
4871 		 *
4872 		 * kmem_move_buffers() drops and reacquires cache_lock.
4873 		 */
4874 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
4875 		    kmem_reclaim_max_slabs, 0);
4876 		if (slabs_found >= 0) {
4877 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
4878 			kmd->kmd_slabs_found += slabs_found;
4879 		}
4880 
4881 		if (++kmd->kmd_scans >= kmem_reclaim_scan_range) {
4882 			kmd->kmd_scans = 0;
4883 
4884 			/*
4885 			 * If we had difficulty finding candidate slabs in
4886 			 * previous scans, adjust the threshold so that
4887 			 * candidates are easier to find.
4888 			 */
4889 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
4890 				kmem_adjust_reclaim_threshold(kmd, -1);
4891 			} else if ((kmd->kmd_slabs_found * 2) <
4892 			    kmd->kmd_slabs_sought) {
4893 				kmem_adjust_reclaim_threshold(kmd, 1);
4894 			}
4895 			kmd->kmd_slabs_sought = 0;
4896 			kmd->kmd_slabs_found = 0;
4897 		}
4898 	} else {
4899 		kmem_reset_reclaim_threshold(cp->cache_defrag);
4900 #ifdef	DEBUG
4901 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
4902 			/*
4903 			 * In a debug kernel we want the consolidator to
4904 			 * run occasionally even when there is plenty of
4905 			 * memory.
4906 			 */
4907 			uint32_t debug_rand;
4908 
4909 			(void) random_get_bytes((uint8_t *)&debug_rand, 4);
4910 			if (!kmem_move_noreap &&
4911 			    ((debug_rand % kmem_mtb_reap) == 0)) {
4912 				mutex_exit(&cp->cache_lock);
4913 				kmem_cache_reap(cp);
4914 				KMEM_STAT_ADD(kmem_move_stats.kms_debug_reaps);
4915 				return;
4916 			} else if ((debug_rand % kmem_mtb_move) == 0) {
4917 				(void) kmem_move_buffers(cp,
4918 				    kmem_reclaim_scan_range, 1, 0);
4919 				KMEM_STAT_ADD(kmem_move_stats.
4920 				    kms_debug_move_scans);
4921 			}
4922 		}
4923 #endif	/* DEBUG */
4924 	}
4925 
4926 	mutex_exit(&cp->cache_lock);
4927 
4928 	if (reap) {
4929 		KMEM_STAT_ADD(kmem_move_stats.kms_scan_depot_ws_reaps);
4930 		kmem_depot_ws_reap(cp);
4931 	}
4932 }
4933