xref: /titanic_44/usr/src/uts/common/os/fio.c (revision b56bf881a9655cb27b53cba1468312f7c6dfb0a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	All Rights Reserved */
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/conf.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/pathname.h>
41 #include <sys/file.h>
42 #include <sys/proc.h>
43 #include <sys/var.h>
44 #include <sys/cpuvar.h>
45 #include <sys/open.h>
46 #include <sys/cmn_err.h>
47 #include <sys/priocntl.h>
48 #include <sys/procset.h>
49 #include <sys/prsystm.h>
50 #include <sys/debug.h>
51 #include <sys/kmem.h>
52 #include <sys/atomic.h>
53 #include <sys/fcntl.h>
54 #include <sys/poll.h>
55 #include <sys/rctl.h>
56 #include <sys/port_impl.h>
57 
58 #include <c2/audit.h>
59 #include <sys/nbmlock.h>
60 
61 #ifdef DEBUG
62 
63 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
64 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
65 static uint32_t afd_free;	/* count of kmem_free()s */
66 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
67 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
68 #define	COUNT(x)	atomic_add_32(&x, 1)
69 
70 #else	/* DEBUG */
71 
72 #define	MAXFD(x)
73 #define	COUNT(x)
74 
75 #endif	/* DEBUG */
76 
77 kmem_cache_t *file_cache;
78 static int vpsetattr(vnode_t *, vattr_t *, int);
79 
80 static void port_close_fd(portfd_t *);
81 
82 /*
83  * File descriptor allocation.
84  *
85  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
86  * The most common case is open(2), in which minfd = 0, but we must also
87  * support fcntl(fd, F_DUPFD, minfd).
88  *
89  * The algorithm is as follows: we keep all file descriptors in an infix
90  * binary tree in which each node records the number of descriptors
91  * allocated in its right subtree, including itself.  Starting at minfd,
92  * we ascend the tree until we find a non-fully allocated right subtree.
93  * We then descend that subtree in a binary search for the smallest fd.
94  * Finally, we ascend the tree again to increment the allocation count
95  * of every subtree containing the newly-allocated fd.  Freeing an fd
96  * requires only the last step: we ascend the tree to decrement allocation
97  * counts.  Each of these three steps (ascent to find non-full subtree,
98  * descent to find lowest fd, ascent to update allocation counts) is
99  * O(log n), thus the algorithm as a whole is O(log n).
100  *
101  * We don't implement the fd tree using the customary left/right/parent
102  * pointers, but instead take advantage of the glorious mathematics of
103  * full infix binary trees.  For reference, here's an illustration of the
104  * logical structure of such a tree, rooted at 4 (binary 100), covering
105  * the range 1-7 (binary 001-111).  Our canonical trees do not include
106  * fd 0; we'll deal with that later.
107  *
108  *	      100
109  *	     /	 \
110  *	    /	  \
111  *	  010	  110
112  *	  / \	  / \
113  *	001 011 101 111
114  *
115  * We make the following observations, all of which are easily proven by
116  * induction on the depth of the tree:
117  *
118  * (T1) The least-significant bit (LSB) of any node is equal to its level
119  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
120  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
121  *
122  * (T2) The child size (CSIZE) of node N -- that is, the total number of
123  *	right-branch descendants in a child of node N, including itself -- is
124  *	given by clearing all but the least significant bit of N.  This
125  *	follows immediately from (T1).  Applying this rule to our example, we
126  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
127  *
128  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
129  *	ancestor containing node N in its right child -- is given by clearing
130  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
131  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
132  *	the fact that these are leftmost nodes.  Note that this algorithm
133  *	automatically skips generations as necessary.  For example, the parent
134  *      of node 101 is 110, which is a *right* ancestor (not what we want);
135  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
136  *      of 101 gets us to 100 directly, skipping right past the uninteresting
137  *      generation (110).
138  *
139  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
140  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
141  *
142  *	LPARENT(N) = N - CSIZE(N)
143  *
144  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
145  *
146  *	RPARENT(N) = N + CSIZE(N)
147  *
148  * (T5) For every interior node, the children differ from their parent by
149  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
150  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
151  *
152  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
153  * N, has the following form:
154  *
155  *		N = xxxx10...0
156  *
157  * That is, the binary representation of N consists of some string of bits,
158  * then a 1, then all zeroes.  This amounts to nothing more than saying that
159  * N has a least-significant bit, which is true for any N != 0.  If we look
160  * at N and N - 1 together, we see that we can combine them in useful ways:
161  *
162  *		  N = xxxx10...0
163  *	      N - 1 = xxxx01...1
164  *	------------------------
165  *	N & (N - 1) = xxxx000000
166  *	N | (N - 1) = xxxx111111
167  *	N ^ (N - 1) =     111111
168  *
169  * In particular, this suggests several easy ways to clear all but the LSB,
170  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
171  * We'll opt for this formulation:
172  *
173  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
174  *
175  * Similarly, we have an easy way to determine LPARENT(N), which requires
176  * that we clear the LSB of N:
177  *
178  *	(L1) LPARENT(N) = N & (N - 1)
179  *
180  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
181  * When combined with (T4), this yields an easy way to compute RPARENT(N):
182  *
183  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
184  *
185  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
186  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
187  * so there's no need to belabor the algebra; the revised relations become:
188  *
189  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
190  *
191  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
192  *
193  *	(R1a) RPARENT(N) = N | (N + 1)
194  *
195  * This completes the mathematical framework.  We now have all the tools
196  * we need to implement fd_find() and fd_reserve().
197  *
198  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
199  * It does not actually allocate the descriptor; that's done by fd_reserve().
200  * fd_find() proceeds in two steps:
201  *
202  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
203  *     We start at the right subtree rooted at minfd.  If this subtree is
204  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
205  *     step 1 is done.  Otherwise, we know that all fds in this subtree
206  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
207  *     this process until we either find a candidate subtree or exceed
208  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
209  *
210  * (2) Find the smallest fd in the subtree discovered by step 1.
211  *     Starting at the root of this subtree, we descend to find the
212  *     smallest available fd.  Since the left children have the smaller
213  *     fds, we will descend rightward only when the left child is full.
214  *
215  *     We begin by comparing the number of allocated fds in the root
216  *     to the number of allocated fds in its right child; if they differ
217  *     by exactly CSIZE(child), we know the left subtree is full, so we
218  *     descend right; that is, the right child becomes the search root.
219  *     Otherwise we leave the root alone and start following the right
220  *     child's left children.  As fortune would have it, this is very
221  *     simple computationally: by (T5), the right child of fd is just
222  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
223  *     we find that the right child's left child is fd + size - (size / 2) =
224  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
225  *     fd + (size / 4), and so on.  In general, fd's right child's
226  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
227  *     the right child's left descendants, we just halve the size in
228  *     each iteration of the search.
229  *
230  *     When we descend leftward, we must keep track of the number of fds
231  *     that were allocated in all the right subtrees we rejected, so we
232  *     know how many of the root fd's allocations are in the remaining
233  *     (as yet unexplored) leftmost part of its right subtree.  When we
234  *     encounter a fully-allocated left child -- that is, when we find
235  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
236  *     (as described earlier), resetting ralloc to zero.
237  *
238  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
239  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
240  * the leftmost ancestors (see (T3)) and updates the allocation counts.
241  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
242  *
243  * flist_minsize() finds the minimal tree that still covers all
244  * used fds; as long as the allocation count of a root node is zero, we
245  * don't need that node or its right subtree.
246  *
247  * flist_nalloc() counts the number of allocated fds in the tree, by starting
248  * at the top of the tree and summing the right-subtree allocation counts as
249  * it descends leftwards.
250  *
251  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
252  * 2^n - 1.  This ensures that the fd trees are always full, which saves
253  * quite a bit of boundary checking.
254  */
255 static int
256 fd_find(uf_info_t *fip, int minfd)
257 {
258 	int size, ralloc, fd;
259 
260 	ASSERT(MUTEX_HELD(&fip->fi_lock));
261 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
262 
263 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
264 		size = fd ^ (fd | (fd + 1));
265 		if (fip->fi_list[fd].uf_alloc == size)
266 			continue;
267 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
268 			ralloc += fip->fi_list[fd + size].uf_alloc;
269 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
270 				fd += size;
271 				ralloc = 0;
272 			}
273 		}
274 		return (fd);
275 	}
276 	return (-1);
277 }
278 
279 static void
280 fd_reserve(uf_info_t *fip, int fd, int incr)
281 {
282 	int pfd;
283 	uf_entry_t *ufp = &fip->fi_list[fd];
284 
285 	ASSERT((uint_t)fd < fip->fi_nfiles);
286 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
287 	    (ufp->uf_busy == 1 && incr == -1));
288 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
289 	ASSERT(MUTEX_HELD(&fip->fi_lock));
290 
291 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
292 		fip->fi_list[pfd].uf_alloc += incr;
293 
294 	ufp->uf_busy += incr;
295 }
296 
297 static int
298 flist_minsize(uf_info_t *fip)
299 {
300 	int fd;
301 
302 	/*
303 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
304 	 * by flist_fork(), which relies on other mechanisms for mutual
305 	 * exclusion.
306 	 */
307 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
308 
309 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
310 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
311 			break;
312 
313 	return (fd);
314 }
315 
316 static int
317 flist_nalloc(uf_info_t *fip)
318 {
319 	int fd;
320 	int nalloc = 0;
321 
322 	ASSERT(MUTEX_HELD(&fip->fi_lock));
323 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
324 
325 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
326 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
327 
328 	return (nalloc);
329 }
330 
331 /*
332  * Increase size of the fi_list array to accommodate at least maxfd.
333  * We keep the size of the form 2^n - 1 for benefit of fd_find().
334  */
335 static void
336 flist_grow(int maxfd)
337 {
338 	uf_info_t *fip = P_FINFO(curproc);
339 	int newcnt, oldcnt;
340 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
341 	uf_rlist_t *urp;
342 
343 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
344 		continue;
345 
346 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
347 
348 	mutex_enter(&fip->fi_lock);
349 	oldcnt = fip->fi_nfiles;
350 	if (newcnt <= oldcnt) {
351 		mutex_exit(&fip->fi_lock);
352 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
353 		return;
354 	}
355 	ASSERT((newcnt & (newcnt + 1)) == 0);
356 	oldlist = fip->fi_list;
357 	oldend = oldlist + oldcnt;
358 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
359 
360 	/*
361 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
362 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
363 	 * (Locks beyond the end of oldcnt aren't visible until we store
364 	 * the new fi_nfiles, which is the last thing we do before dropping
365 	 * all the locks, so there's no need to acquire these locks).
366 	 * Holding the new locks is necessary because when fi_list changes
367 	 * to point to the new list, fi_nfiles won't have been stored yet.
368 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
369 	 * could see the new fi_list, grab the new uf_lock, and then see
370 	 * fi_nfiles change while the lock is held -- in violation of
371 	 * UF_ENTER() semantics.
372 	 */
373 	for (src = oldlist; src < oldend; src++)
374 		mutex_enter(&src->uf_lock);
375 
376 	for (dst = newlist; dst < newend; dst++)
377 		mutex_enter(&dst->uf_lock);
378 
379 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
380 		dst->uf_file = src->uf_file;
381 		dst->uf_fpollinfo = src->uf_fpollinfo;
382 		dst->uf_refcnt = src->uf_refcnt;
383 		dst->uf_alloc = src->uf_alloc;
384 		dst->uf_flag = src->uf_flag;
385 		dst->uf_busy = src->uf_busy;
386 		dst->uf_portfd = src->uf_portfd;
387 	}
388 
389 	/*
390 	 * As soon as we store the new flist, future locking operations
391 	 * will use it.  Therefore, we must ensure that all the state
392 	 * we've just established reaches global visibility before the
393 	 * new flist does.
394 	 */
395 	membar_producer();
396 	fip->fi_list = newlist;
397 
398 	/*
399 	 * Routines like getf() make an optimistic check on the validity
400 	 * of the supplied file descriptor: if it's less than the current
401 	 * value of fi_nfiles -- examined without any locks -- then it's
402 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
403 	 * assumption because fi_nfiles only increases).  Therefore, it
404 	 * is critical that the new value of fi_nfiles not reach global
405 	 * visibility until after the new fi_list: if it happened the
406 	 * other way around, getf() could see the new fi_nfiles and attempt
407 	 * a UF_ENTER() on the old fi_list, which would write beyond its
408 	 * end if the fd exceeded the old fi_nfiles.
409 	 */
410 	membar_producer();
411 	fip->fi_nfiles = newcnt;
412 
413 	/*
414 	 * The new state is consistent now, so we can drop all the locks.
415 	 */
416 	for (dst = newlist; dst < newend; dst++)
417 		mutex_exit(&dst->uf_lock);
418 
419 	for (src = oldlist; src < oldend; src++) {
420 		/*
421 		 * If any threads are blocked on the old cvs, wake them.
422 		 * This will force them to wake up, discover that fi_list
423 		 * has changed, and go back to sleep on the new cvs.
424 		 */
425 		cv_broadcast(&src->uf_wanted_cv);
426 		cv_broadcast(&src->uf_closing_cv);
427 		mutex_exit(&src->uf_lock);
428 	}
429 
430 	mutex_exit(&fip->fi_lock);
431 
432 	/*
433 	 * Retire the old flist.  We can't actually kmem_free() it now
434 	 * because someone may still have a pointer to it.  Instead,
435 	 * we link it onto a list of retired flists.  The new flist
436 	 * is at least double the size of the previous flist, so the
437 	 * total size of all retired flists will be less than the size
438 	 * of the current one (to prove, consider the sum of a geometric
439 	 * series in powers of 2).  exit() frees the retired flists.
440 	 */
441 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
442 	urp->ur_list = oldlist;
443 	urp->ur_nfiles = oldcnt;
444 
445 	mutex_enter(&fip->fi_lock);
446 	urp->ur_next = fip->fi_rlist;
447 	fip->fi_rlist = urp;
448 	mutex_exit(&fip->fi_lock);
449 }
450 
451 /*
452  * Utility functions for keeping track of the active file descriptors.
453  */
454 void
455 clear_stale_fd()		/* called from post_syscall() */
456 {
457 	afd_t *afd = &curthread->t_activefd;
458 	int i;
459 
460 	/* uninitialized is ok here, a_nfd is then zero */
461 	for (i = 0; i < afd->a_nfd; i++) {
462 		/* assert that this should not be necessary */
463 		ASSERT(afd->a_fd[i] == -1);
464 		afd->a_fd[i] = -1;
465 	}
466 	afd->a_stale = 0;
467 }
468 
469 void
470 free_afd(afd_t *afd)		/* called below and from thread_free() */
471 {
472 	int i;
473 
474 	/* free the buffer if it was kmem_alloc()ed */
475 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
476 		COUNT(afd_free);
477 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
478 	}
479 
480 	/* (re)initialize the structure */
481 	afd->a_fd = &afd->a_buf[0];
482 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
483 	afd->a_stale = 0;
484 	for (i = 0; i < afd->a_nfd; i++)
485 		afd->a_fd[i] = -1;
486 }
487 
488 static void
489 set_active_fd(int fd)
490 {
491 	afd_t *afd = &curthread->t_activefd;
492 	int i;
493 	int *old_fd;
494 	int old_nfd;
495 	int *new_fd;
496 	int new_nfd;
497 
498 	if (afd->a_nfd == 0) {	/* first time initialization */
499 		ASSERT(fd == -1);
500 		mutex_enter(&afd->a_fdlock);
501 		free_afd(afd);
502 		mutex_exit(&afd->a_fdlock);
503 	}
504 
505 	/* insert fd into vacant slot, if any */
506 	for (i = 0; i < afd->a_nfd; i++) {
507 		if (afd->a_fd[i] == -1) {
508 			afd->a_fd[i] = fd;
509 			return;
510 		}
511 	}
512 
513 	/*
514 	 * Reallocate the a_fd[] array to add one more slot.
515 	 */
516 	ASSERT(fd == -1);
517 	old_nfd = afd->a_nfd;
518 	old_fd = afd->a_fd;
519 	new_nfd = old_nfd + 1;
520 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
521 	MAXFD(new_nfd);
522 	COUNT(afd_alloc);
523 
524 	mutex_enter(&afd->a_fdlock);
525 	afd->a_fd = new_fd;
526 	afd->a_nfd = new_nfd;
527 	for (i = 0; i < old_nfd; i++)
528 		afd->a_fd[i] = old_fd[i];
529 	afd->a_fd[i] = fd;
530 	mutex_exit(&afd->a_fdlock);
531 
532 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
533 		COUNT(afd_free);
534 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
535 	}
536 }
537 
538 void
539 clear_active_fd(int fd)		/* called below and from aio.c */
540 {
541 	afd_t *afd = &curthread->t_activefd;
542 	int i;
543 
544 	for (i = 0; i < afd->a_nfd; i++) {
545 		if (afd->a_fd[i] == fd) {
546 			afd->a_fd[i] = -1;
547 			break;
548 		}
549 	}
550 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
551 }
552 
553 /*
554  * Does this thread have this fd active?
555  */
556 static int
557 is_active_fd(kthread_t *t, int fd)
558 {
559 	afd_t *afd = &t->t_activefd;
560 	int i;
561 
562 	ASSERT(t != curthread);
563 	mutex_enter(&afd->a_fdlock);
564 	/* uninitialized is ok here, a_nfd is then zero */
565 	for (i = 0; i < afd->a_nfd; i++) {
566 		if (afd->a_fd[i] == fd) {
567 			mutex_exit(&afd->a_fdlock);
568 			return (1);
569 		}
570 	}
571 	mutex_exit(&afd->a_fdlock);
572 	return (0);
573 }
574 
575 /*
576  * Convert a user supplied file descriptor into a pointer to a file
577  * structure.  Only task is to check range of the descriptor (soft
578  * resource limit was enforced at open time and shouldn't be checked
579  * here).
580  */
581 file_t *
582 getf(int fd)
583 {
584 	uf_info_t *fip = P_FINFO(curproc);
585 	uf_entry_t *ufp;
586 	file_t *fp;
587 
588 	if ((uint_t)fd >= fip->fi_nfiles)
589 		return (NULL);
590 
591 	/*
592 	 * Reserve a slot in the active fd array now so we can call
593 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
594 	 */
595 	set_active_fd(-1);
596 
597 	UF_ENTER(ufp, fip, fd);
598 
599 	if ((fp = ufp->uf_file) == NULL) {
600 		UF_EXIT(ufp);
601 
602 		if (fd == fip->fi_badfd && fip->fi_action > 0)
603 			tsignal(curthread, fip->fi_action);
604 
605 		return (NULL);
606 	}
607 	ufp->uf_refcnt++;
608 
609 	/*
610 	 * archive per file audit data
611 	 */
612 	if (AU_AUDITING())
613 		(void) audit_getf(fd);
614 
615 	set_active_fd(fd);	/* record the active file descriptor */
616 
617 	UF_EXIT(ufp);
618 
619 	return (fp);
620 }
621 
622 /*
623  * Close whatever file currently occupies the file descriptor slot
624  * and install the new file, usually NULL, in the file descriptor slot.
625  * The close must complete before we release the file descriptor slot.
626  * If newfp != NULL we only return an error if we can't allocate the
627  * slot so the caller knows that it needs to free the filep;
628  * in the other cases we return the error number from closef().
629  */
630 int
631 closeandsetf(int fd, file_t *newfp)
632 {
633 	proc_t *p = curproc;
634 	uf_info_t *fip = P_FINFO(p);
635 	uf_entry_t *ufp;
636 	file_t *fp;
637 	fpollinfo_t *fpip;
638 	portfd_t *pfd;
639 	int error;
640 
641 	if ((uint_t)fd >= fip->fi_nfiles) {
642 		if (newfp == NULL)
643 			return (EBADF);
644 		flist_grow(fd);
645 	}
646 
647 	if (newfp != NULL) {
648 		/*
649 		 * If ufp is reserved but has no file pointer, it's in the
650 		 * transition between ufalloc() and setf().  We must wait
651 		 * for this transition to complete before assigning the
652 		 * new non-NULL file pointer.
653 		 */
654 		mutex_enter(&fip->fi_lock);
655 		if (fd == fip->fi_badfd) {
656 			mutex_exit(&fip->fi_lock);
657 			if (fip->fi_action > 0)
658 				tsignal(curthread, fip->fi_action);
659 			return (EBADF);
660 		}
661 		UF_ENTER(ufp, fip, fd);
662 		while (ufp->uf_busy && ufp->uf_file == NULL) {
663 			mutex_exit(&fip->fi_lock);
664 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
665 			UF_EXIT(ufp);
666 			mutex_enter(&fip->fi_lock);
667 			UF_ENTER(ufp, fip, fd);
668 		}
669 		if ((fp = ufp->uf_file) == NULL) {
670 			ASSERT(ufp->uf_fpollinfo == NULL);
671 			ASSERT(ufp->uf_flag == 0);
672 			fd_reserve(fip, fd, 1);
673 			ufp->uf_file = newfp;
674 			UF_EXIT(ufp);
675 			mutex_exit(&fip->fi_lock);
676 			return (0);
677 		}
678 		mutex_exit(&fip->fi_lock);
679 	} else {
680 		UF_ENTER(ufp, fip, fd);
681 		if ((fp = ufp->uf_file) == NULL) {
682 			UF_EXIT(ufp);
683 			return (EBADF);
684 		}
685 	}
686 
687 	/*
688 	 * archive per file audit data
689 	 */
690 	if (AU_AUDITING())
691 		(void) audit_getf(fd);
692 	ASSERT(ufp->uf_busy);
693 	ufp->uf_file = NULL;
694 	ufp->uf_flag = 0;
695 
696 	/*
697 	 * If the file descriptor reference count is non-zero, then
698 	 * some other lwp in the process is performing system call
699 	 * activity on the file.  To avoid blocking here for a long
700 	 * time (the other lwp might be in a long term sleep in its
701 	 * system call), we scan all other lwps in the process to
702 	 * find the ones with this fd as one of their active fds,
703 	 * set their a_stale flag, and set them running if they
704 	 * are in an interruptible sleep so they will emerge from
705 	 * their system calls immediately.  post_syscall() will
706 	 * test the a_stale flag and set errno to EBADF.
707 	 */
708 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
709 	if (ufp->uf_refcnt > 0) {
710 		kthread_t *t;
711 
712 		/*
713 		 * We call sprlock_proc(p) to ensure that the thread
714 		 * list will not change while we are scanning it.
715 		 * To do this, we must drop ufp->uf_lock and then
716 		 * reacquire it (so we are not holding both p->p_lock
717 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
718 		 * must be held for is_active_fd() to be correct
719 		 * (set_active_fd() is called while holding ufp->uf_lock).
720 		 *
721 		 * This is a convoluted dance, but it is better than
722 		 * the old brute-force method of stopping every thread
723 		 * in the process by calling holdlwps(SHOLDFORK1).
724 		 */
725 
726 		UF_EXIT(ufp);
727 		COUNT(afd_wait);
728 
729 		mutex_enter(&p->p_lock);
730 		sprlock_proc(p);
731 		mutex_exit(&p->p_lock);
732 
733 		UF_ENTER(ufp, fip, fd);
734 		ASSERT(ufp->uf_file == NULL);
735 
736 		if (ufp->uf_refcnt > 0) {
737 			for (t = curthread->t_forw;
738 			    t != curthread;
739 			    t = t->t_forw) {
740 				if (is_active_fd(t, fd)) {
741 					thread_lock(t);
742 					t->t_activefd.a_stale = 1;
743 					t->t_post_sys = 1;
744 					if (ISWAKEABLE(t))
745 						setrun_locked(t);
746 					thread_unlock(t);
747 				}
748 			}
749 		}
750 
751 		UF_EXIT(ufp);
752 
753 		mutex_enter(&p->p_lock);
754 		sprunlock(p);
755 
756 		UF_ENTER(ufp, fip, fd);
757 		ASSERT(ufp->uf_file == NULL);
758 	}
759 
760 	/*
761 	 * Wait for other lwps to stop using this file descriptor.
762 	 */
763 	while (ufp->uf_refcnt > 0) {
764 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
765 		/*
766 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
767 		 * can change.  Drop the lock on our (possibly) stale
768 		 * ufp and let UF_ENTER() find and lock the current ufp.
769 		 */
770 		UF_EXIT(ufp);
771 		UF_ENTER(ufp, fip, fd);
772 	}
773 
774 #ifdef DEBUG
775 	/*
776 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
777 	 */
778 	if (ufp->uf_fpollinfo != NULL)
779 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
780 #endif	/* DEBUG */
781 
782 	/*
783 	 * We may need to cleanup some cached poll states in t_pollstate
784 	 * before the fd can be reused. It is important that we don't
785 	 * access a stale thread structure. We will do the cleanup in two
786 	 * phases to avoid deadlock and holding uf_lock for too long.
787 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
788 	 * state in t_pollstate struct so that a thread does not exit on
789 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
790 	 */
791 	pfd = ufp->uf_portfd;
792 	ufp->uf_portfd = NULL;
793 	fpip = ufp->uf_fpollinfo;
794 	ufp->uf_fpollinfo = NULL;
795 	if (fpip != NULL)
796 		pollblockexit(fpip);
797 	UF_EXIT(ufp);
798 	if (fpip != NULL)
799 		pollcacheclean(fpip, fd);
800 	if (pfd)
801 		port_close_fd(pfd);
802 
803 	/*
804 	 * Keep the file descriptor entry reserved across the closef().
805 	 */
806 	error = closef(fp);
807 
808 	setf(fd, newfp);
809 
810 	/* Only return closef() error when closing is all we do */
811 	return (newfp == NULL ? error : 0);
812 }
813 
814 /*
815  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
816  */
817 void
818 releasef(int fd)
819 {
820 	uf_info_t *fip = P_FINFO(curproc);
821 	uf_entry_t *ufp;
822 
823 	UF_ENTER(ufp, fip, fd);
824 	ASSERT(ufp->uf_refcnt > 0);
825 	clear_active_fd(fd);	/* clear the active file descriptor */
826 	if (--ufp->uf_refcnt == 0)
827 		cv_broadcast(&ufp->uf_closing_cv);
828 	UF_EXIT(ufp);
829 }
830 
831 /*
832  * Identical to releasef() but can be called from another process.
833  */
834 void
835 areleasef(int fd, uf_info_t *fip)
836 {
837 	uf_entry_t *ufp;
838 
839 	UF_ENTER(ufp, fip, fd);
840 	ASSERT(ufp->uf_refcnt > 0);
841 	if (--ufp->uf_refcnt == 0)
842 		cv_broadcast(&ufp->uf_closing_cv);
843 	UF_EXIT(ufp);
844 }
845 
846 /*
847  * Duplicate all file descriptors across a fork.
848  */
849 void
850 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
851 {
852 	int fd, nfiles;
853 	uf_entry_t *pufp, *cufp;
854 
855 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
856 	cfip->fi_rlist = NULL;
857 
858 	/*
859 	 * We don't need to hold fi_lock because all other lwp's in the
860 	 * parent have been held.
861 	 */
862 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
863 
864 	cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
865 
866 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
867 	    fd++, pufp++, cufp++) {
868 		cufp->uf_file = pufp->uf_file;
869 		cufp->uf_alloc = pufp->uf_alloc;
870 		cufp->uf_flag = pufp->uf_flag;
871 		cufp->uf_busy = pufp->uf_busy;
872 		if (pufp->uf_file == NULL) {
873 			ASSERT(pufp->uf_flag == 0);
874 			if (pufp->uf_busy) {
875 				/*
876 				 * Grab locks to appease ASSERTs in fd_reserve
877 				 */
878 				mutex_enter(&cfip->fi_lock);
879 				mutex_enter(&cufp->uf_lock);
880 				fd_reserve(cfip, fd, -1);
881 				mutex_exit(&cufp->uf_lock);
882 				mutex_exit(&cfip->fi_lock);
883 			}
884 		}
885 	}
886 }
887 
888 /*
889  * Close all open file descriptors for the current process.
890  * This is only called from exit(), which is single-threaded,
891  * so we don't need any locking.
892  */
893 void
894 closeall(uf_info_t *fip)
895 {
896 	int fd;
897 	file_t *fp;
898 	uf_entry_t *ufp;
899 
900 	ufp = fip->fi_list;
901 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
902 		if ((fp = ufp->uf_file) != NULL) {
903 			ufp->uf_file = NULL;
904 			if (ufp->uf_portfd != NULL) {
905 				portfd_t *pfd;
906 				/* remove event port association */
907 				pfd = ufp->uf_portfd;
908 				ufp->uf_portfd = NULL;
909 				port_close_fd(pfd);
910 			}
911 			ASSERT(ufp->uf_fpollinfo == NULL);
912 			(void) closef(fp);
913 		}
914 	}
915 
916 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
917 	fip->fi_list = NULL;
918 	fip->fi_nfiles = 0;
919 	while (fip->fi_rlist != NULL) {
920 		uf_rlist_t *urp = fip->fi_rlist;
921 		fip->fi_rlist = urp->ur_next;
922 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
923 		kmem_free(urp, sizeof (uf_rlist_t));
924 	}
925 }
926 
927 /*
928  * Internal form of close.  Decrement reference count on file
929  * structure.  Decrement reference count on the vnode following
930  * removal of the referencing file structure.
931  */
932 int
933 closef(file_t *fp)
934 {
935 	vnode_t *vp;
936 	int error;
937 	int count;
938 	int flag;
939 	offset_t offset;
940 
941 	/*
942 	 * audit close of file (may be exit)
943 	 */
944 	if (AU_AUDITING())
945 		audit_closef(fp);
946 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
947 
948 	mutex_enter(&fp->f_tlock);
949 
950 	ASSERT(fp->f_count > 0);
951 
952 	count = fp->f_count--;
953 	flag = fp->f_flag;
954 	offset = fp->f_offset;
955 
956 	vp = fp->f_vnode;
957 
958 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
959 
960 	if (count > 1) {
961 		mutex_exit(&fp->f_tlock);
962 		return (error);
963 	}
964 	ASSERT(fp->f_count == 0);
965 	mutex_exit(&fp->f_tlock);
966 
967 	VN_RELE(vp);
968 	/*
969 	 * deallocate resources to audit_data
970 	 */
971 	if (audit_active)
972 		audit_unfalloc(fp);
973 	crfree(fp->f_cred);
974 	kmem_cache_free(file_cache, fp);
975 	return (error);
976 }
977 
978 /*
979  * This is a combination of ufalloc() and setf().
980  */
981 int
982 ufalloc_file(int start, file_t *fp)
983 {
984 	proc_t *p = curproc;
985 	uf_info_t *fip = P_FINFO(p);
986 	int filelimit;
987 	uf_entry_t *ufp;
988 	int nfiles;
989 	int fd;
990 
991 	/*
992 	 * Assertion is to convince the correctness of the following
993 	 * assignment for filelimit after casting to int.
994 	 */
995 	ASSERT(p->p_fno_ctl <= INT_MAX);
996 	filelimit = (int)p->p_fno_ctl;
997 
998 	for (;;) {
999 		mutex_enter(&fip->fi_lock);
1000 		fd = fd_find(fip, start);
1001 		if (fd >= 0 && fd == fip->fi_badfd) {
1002 			start = fd + 1;
1003 			mutex_exit(&fip->fi_lock);
1004 			continue;
1005 		}
1006 		if ((uint_t)fd < filelimit)
1007 			break;
1008 		if (fd >= filelimit) {
1009 			mutex_exit(&fip->fi_lock);
1010 			mutex_enter(&p->p_lock);
1011 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1012 			    p->p_rctls, p, RCA_SAFE);
1013 			mutex_exit(&p->p_lock);
1014 			return (-1);
1015 		}
1016 		/* fd_find() returned -1 */
1017 		nfiles = fip->fi_nfiles;
1018 		mutex_exit(&fip->fi_lock);
1019 		flist_grow(MAX(start, nfiles));
1020 	}
1021 
1022 	UF_ENTER(ufp, fip, fd);
1023 	fd_reserve(fip, fd, 1);
1024 	ASSERT(ufp->uf_file == NULL);
1025 	ufp->uf_file = fp;
1026 	UF_EXIT(ufp);
1027 	mutex_exit(&fip->fi_lock);
1028 	return (fd);
1029 }
1030 
1031 /*
1032  * Allocate a user file descriptor greater than or equal to "start".
1033  */
1034 int
1035 ufalloc(int start)
1036 {
1037 	return (ufalloc_file(start, NULL));
1038 }
1039 
1040 /*
1041  * Check that a future allocation of count fds on proc p has a good
1042  * chance of succeeding.  If not, do rctl processing as if we'd failed
1043  * the allocation.
1044  *
1045  * Our caller must guarantee that p cannot disappear underneath us.
1046  */
1047 int
1048 ufcanalloc(proc_t *p, uint_t count)
1049 {
1050 	uf_info_t *fip = P_FINFO(p);
1051 	int filelimit;
1052 	int current;
1053 
1054 	if (count == 0)
1055 		return (1);
1056 
1057 	ASSERT(p->p_fno_ctl <= INT_MAX);
1058 	filelimit = (int)p->p_fno_ctl;
1059 
1060 	mutex_enter(&fip->fi_lock);
1061 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1062 	mutex_exit(&fip->fi_lock);
1063 
1064 	/*
1065 	 * If count is a positive integer, the worst that can happen is
1066 	 * an overflow to a negative value, which is caught by the >= 0 check.
1067 	 */
1068 	current += count;
1069 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1070 		return (1);
1071 
1072 	mutex_enter(&p->p_lock);
1073 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1074 	    p->p_rctls, p, RCA_SAFE);
1075 	mutex_exit(&p->p_lock);
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Allocate a user file descriptor and a file structure.
1081  * Initialize the descriptor to point at the file structure.
1082  * If fdp is NULL, the user file descriptor will not be allocated.
1083  */
1084 int
1085 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1086 {
1087 	file_t *fp;
1088 	int fd;
1089 
1090 	if (fdp) {
1091 		if ((fd = ufalloc(0)) == -1)
1092 			return (EMFILE);
1093 	}
1094 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1095 	/*
1096 	 * Note: falloc returns the fp locked
1097 	 */
1098 	mutex_enter(&fp->f_tlock);
1099 	fp->f_count = 1;
1100 	fp->f_flag = (ushort_t)flag;
1101 	fp->f_vnode = vp;
1102 	fp->f_offset = 0;
1103 	fp->f_audit_data = 0;
1104 	crhold(fp->f_cred = CRED());
1105 	/*
1106 	 * allocate resources to audit_data
1107 	 */
1108 	if (audit_active)
1109 		audit_falloc(fp);
1110 	*fpp = fp;
1111 	if (fdp)
1112 		*fdp = fd;
1113 	return (0);
1114 }
1115 
1116 /*ARGSUSED*/
1117 static int
1118 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1119 {
1120 	file_t *fp = buf;
1121 
1122 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1123 	return (0);
1124 }
1125 
1126 /*ARGSUSED*/
1127 static void
1128 file_cache_destructor(void *buf, void *cdrarg)
1129 {
1130 	file_t *fp = buf;
1131 
1132 	mutex_destroy(&fp->f_tlock);
1133 }
1134 
1135 void
1136 finit()
1137 {
1138 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1139 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1140 }
1141 
1142 void
1143 unfalloc(file_t *fp)
1144 {
1145 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1146 	if (--fp->f_count <= 0) {
1147 		/*
1148 		 * deallocate resources to audit_data
1149 		 */
1150 		if (audit_active)
1151 			audit_unfalloc(fp);
1152 		crfree(fp->f_cred);
1153 		mutex_exit(&fp->f_tlock);
1154 		kmem_cache_free(file_cache, fp);
1155 	} else
1156 		mutex_exit(&fp->f_tlock);
1157 }
1158 
1159 /*
1160  * Given a file descriptor, set the user's
1161  * file pointer to the given parameter.
1162  */
1163 void
1164 setf(int fd, file_t *fp)
1165 {
1166 	uf_info_t *fip = P_FINFO(curproc);
1167 	uf_entry_t *ufp;
1168 
1169 	if (AU_AUDITING())
1170 		audit_setf(fp, fd);
1171 
1172 	if (fp == NULL) {
1173 		mutex_enter(&fip->fi_lock);
1174 		UF_ENTER(ufp, fip, fd);
1175 		fd_reserve(fip, fd, -1);
1176 		mutex_exit(&fip->fi_lock);
1177 	} else {
1178 		UF_ENTER(ufp, fip, fd);
1179 		ASSERT(ufp->uf_busy);
1180 	}
1181 	ASSERT(ufp->uf_fpollinfo == NULL);
1182 	ASSERT(ufp->uf_flag == 0);
1183 	ufp->uf_file = fp;
1184 	cv_broadcast(&ufp->uf_wanted_cv);
1185 	UF_EXIT(ufp);
1186 }
1187 
1188 /*
1189  * Given a file descriptor, return the file table flags, plus,
1190  * if this is a socket in asynchronous mode, the FASYNC flag.
1191  * getf() may or may not have been called before calling f_getfl().
1192  */
1193 int
1194 f_getfl(int fd, int *flagp)
1195 {
1196 	uf_info_t *fip = P_FINFO(curproc);
1197 	uf_entry_t *ufp;
1198 	file_t *fp;
1199 	int error;
1200 
1201 	if ((uint_t)fd >= fip->fi_nfiles)
1202 		error = EBADF;
1203 	else {
1204 		UF_ENTER(ufp, fip, fd);
1205 		if ((fp = ufp->uf_file) == NULL)
1206 			error = EBADF;
1207 		else {
1208 			vnode_t *vp = fp->f_vnode;
1209 			int flag = fp->f_flag;
1210 
1211 			/*
1212 			 * BSD fcntl() FASYNC compatibility.
1213 			 */
1214 			if (vp->v_type == VSOCK)
1215 				flag |= sock_getfasync(vp);
1216 			*flagp = flag;
1217 			error = 0;
1218 		}
1219 		UF_EXIT(ufp);
1220 	}
1221 
1222 	return (error);
1223 }
1224 
1225 /*
1226  * Given a file descriptor, return the user's file flags.
1227  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1228  * getf() may or may not have been called before calling f_getfd_error().
1229  */
1230 int
1231 f_getfd_error(int fd, int *flagp)
1232 {
1233 	uf_info_t *fip = P_FINFO(curproc);
1234 	uf_entry_t *ufp;
1235 	file_t *fp;
1236 	int flag;
1237 	int error;
1238 
1239 	if ((uint_t)fd >= fip->fi_nfiles)
1240 		error = EBADF;
1241 	else {
1242 		UF_ENTER(ufp, fip, fd);
1243 		if ((fp = ufp->uf_file) == NULL)
1244 			error = EBADF;
1245 		else {
1246 			flag = ufp->uf_flag;
1247 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1248 				flag |= FD_CLOEXEC;
1249 			*flagp = flag;
1250 			error = 0;
1251 		}
1252 		UF_EXIT(ufp);
1253 	}
1254 
1255 	return (error);
1256 }
1257 
1258 /*
1259  * getf() must have been called before calling f_getfd().
1260  */
1261 char
1262 f_getfd(int fd)
1263 {
1264 	int flag = 0;
1265 	(void) f_getfd_error(fd, &flag);
1266 	return ((char)flag);
1267 }
1268 
1269 /*
1270  * Given a file descriptor and file flags, set the user's file flags.
1271  * At present, the only valid flag is FD_CLOEXEC.
1272  * getf() may or may not have been called before calling f_setfd_error().
1273  */
1274 int
1275 f_setfd_error(int fd, int flags)
1276 {
1277 	uf_info_t *fip = P_FINFO(curproc);
1278 	uf_entry_t *ufp;
1279 	int error;
1280 
1281 	if ((uint_t)fd >= fip->fi_nfiles)
1282 		error = EBADF;
1283 	else {
1284 		UF_ENTER(ufp, fip, fd);
1285 		if (ufp->uf_file == NULL)
1286 			error = EBADF;
1287 		else {
1288 			ufp->uf_flag = flags & FD_CLOEXEC;
1289 			error = 0;
1290 		}
1291 		UF_EXIT(ufp);
1292 	}
1293 	return (error);
1294 }
1295 
1296 void
1297 f_setfd(int fd, char flags)
1298 {
1299 	(void) f_setfd_error(fd, flags);
1300 }
1301 
1302 #define	BADFD_MIN	3
1303 #define	BADFD_MAX	255
1304 
1305 /*
1306  * Attempt to allocate a file descriptor which is bad and which
1307  * is "poison" to the application.  It cannot be closed (except
1308  * on exec), allocated for a different use, etc.
1309  */
1310 int
1311 f_badfd(int start, int *fdp, int action)
1312 {
1313 	int fdr;
1314 	int badfd;
1315 	uf_info_t *fip = P_FINFO(curproc);
1316 
1317 #ifdef _LP64
1318 	/* No restrictions on 64 bit _file */
1319 	if (get_udatamodel() != DATAMODEL_ILP32)
1320 		return (EINVAL);
1321 #endif
1322 
1323 	if (start > BADFD_MAX || start < BADFD_MIN)
1324 		return (EINVAL);
1325 
1326 	if (action >= NSIG || action < 0)
1327 		return (EINVAL);
1328 
1329 	mutex_enter(&fip->fi_lock);
1330 	badfd = fip->fi_badfd;
1331 	mutex_exit(&fip->fi_lock);
1332 
1333 	if (badfd != -1)
1334 		return (EAGAIN);
1335 
1336 	fdr = ufalloc(start);
1337 
1338 	if (fdr > BADFD_MAX) {
1339 		setf(fdr, NULL);
1340 		return (EMFILE);
1341 	}
1342 	if (fdr < 0)
1343 		return (EMFILE);
1344 
1345 	mutex_enter(&fip->fi_lock);
1346 	if (fip->fi_badfd != -1) {
1347 		/* Lost race */
1348 		mutex_exit(&fip->fi_lock);
1349 		setf(fdr, NULL);
1350 		return (EAGAIN);
1351 	}
1352 	fip->fi_action = action;
1353 	fip->fi_badfd = fdr;
1354 	mutex_exit(&fip->fi_lock);
1355 	setf(fdr, NULL);
1356 
1357 	*fdp = fdr;
1358 
1359 	return (0);
1360 }
1361 
1362 /*
1363  * Allocate a file descriptor and assign it to the vnode "*vpp",
1364  * performing the usual open protocol upon it and returning the
1365  * file descriptor allocated.  It is the responsibility of the
1366  * caller to dispose of "*vpp" if any error occurs.
1367  */
1368 int
1369 fassign(vnode_t **vpp, int mode, int *fdp)
1370 {
1371 	file_t *fp;
1372 	int error;
1373 	int fd;
1374 
1375 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1376 		return (error);
1377 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1378 		setf(fd, NULL);
1379 		unfalloc(fp);
1380 		return (error);
1381 	}
1382 	fp->f_vnode = *vpp;
1383 	mutex_exit(&fp->f_tlock);
1384 	/*
1385 	 * Fill in the slot falloc reserved.
1386 	 */
1387 	setf(fd, fp);
1388 	*fdp = fd;
1389 	return (0);
1390 }
1391 
1392 /*
1393  * When a process forks it must increment the f_count of all file pointers
1394  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1395  * Since we are called when there is only 1 active lwp we don't need to
1396  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1397  * fcnt_add(fip, -1) to restore the counts.
1398  */
1399 void
1400 fcnt_add(uf_info_t *fip, int incr)
1401 {
1402 	int i;
1403 	uf_entry_t *ufp;
1404 	file_t *fp;
1405 
1406 	ufp = fip->fi_list;
1407 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1408 		if ((fp = ufp->uf_file) != NULL) {
1409 			mutex_enter(&fp->f_tlock);
1410 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1411 			    (incr == -1 && fp->f_count >= 2));
1412 			fp->f_count += incr;
1413 			mutex_exit(&fp->f_tlock);
1414 		}
1415 	}
1416 }
1417 
1418 /*
1419  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1420  * set and also to close all self-open for write /proc file descriptors.
1421  */
1422 void
1423 close_exec(uf_info_t *fip)
1424 {
1425 	int fd;
1426 	file_t *fp;
1427 	fpollinfo_t *fpip;
1428 	uf_entry_t *ufp;
1429 	portfd_t *pfd;
1430 
1431 	ufp = fip->fi_list;
1432 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1433 		if ((fp = ufp->uf_file) != NULL &&
1434 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1435 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1436 			fpip = ufp->uf_fpollinfo;
1437 			mutex_enter(&fip->fi_lock);
1438 			mutex_enter(&ufp->uf_lock);
1439 			fd_reserve(fip, fd, -1);
1440 			mutex_exit(&fip->fi_lock);
1441 			ufp->uf_file = NULL;
1442 			ufp->uf_fpollinfo = NULL;
1443 			ufp->uf_flag = 0;
1444 			/*
1445 			 * We may need to cleanup some cached poll states
1446 			 * in t_pollstate before the fd can be reused. It
1447 			 * is important that we don't access a stale thread
1448 			 * structure. We will do the cleanup in two
1449 			 * phases to avoid deadlock and holding uf_lock for
1450 			 * too long. In phase 1, hold the uf_lock and call
1451 			 * pollblockexit() to set state in t_pollstate struct
1452 			 * so that a thread does not exit on us. In phase 2,
1453 			 * we drop the uf_lock and call pollcacheclean().
1454 			 */
1455 			pfd = ufp->uf_portfd;
1456 			ufp->uf_portfd = NULL;
1457 			if (fpip != NULL)
1458 				pollblockexit(fpip);
1459 			mutex_exit(&ufp->uf_lock);
1460 			if (fpip != NULL)
1461 				pollcacheclean(fpip, fd);
1462 			if (pfd)
1463 				port_close_fd(pfd);
1464 			(void) closef(fp);
1465 		}
1466 	}
1467 
1468 	/* Reset bad fd */
1469 	fip->fi_badfd = -1;
1470 	fip->fi_action = -1;
1471 }
1472 
1473 /*
1474  * Common routine for modifying attributes of named files.
1475  */
1476 int
1477 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags)
1478 {
1479 	vnode_t *vp;
1480 	int error = 0;
1481 
1482 	if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp))
1483 		return (set_errno(error));
1484 	if (error = vpsetattr(vp, vap, flags))
1485 		(void) set_errno(error);
1486 	VN_RELE(vp);
1487 	return (error);
1488 }
1489 
1490 /*
1491  * Common routine for modifying attributes of files referenced
1492  * by descriptor.
1493  */
1494 int
1495 fdsetattr(int fd, vattr_t *vap)
1496 {
1497 	file_t *fp;
1498 	vnode_t *vp;
1499 	int error = 0;
1500 
1501 	if ((fp = getf(fd)) != NULL) {
1502 		vp = fp->f_vnode;
1503 		if (error = vpsetattr(vp, vap, 0)) {
1504 			(void) set_errno(error);
1505 		}
1506 		releasef(fd);
1507 	} else
1508 		error = set_errno(EBADF);
1509 	return (error);
1510 }
1511 
1512 /*
1513  * Common routine to set the attributes for the given vnode.
1514  * If the vnode is a file and the filesize is being manipulated,
1515  * this makes sure that there are no conflicting non-blocking
1516  * mandatory locks in that region.
1517  */
1518 static int
1519 vpsetattr(vnode_t *vp, vattr_t *vap, int flags)
1520 {
1521 	int error = 0;
1522 	int in_crit = 0;
1523 	u_offset_t	begin;
1524 	vattr_t	vattr;
1525 	ssize_t	length;
1526 
1527 	if (vn_is_readonly(vp)) {
1528 		error = EROFS;
1529 	}
1530 	if (!error && (vap->va_mask & AT_SIZE) &&
1531 	    nbl_need_check(vp)) {
1532 		nbl_start_crit(vp, RW_READER);
1533 		in_crit = 1;
1534 		vattr.va_mask = AT_SIZE;
1535 		if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1536 			begin = vap->va_size > vattr.va_size ?
1537 			    vattr.va_size : vap->va_size;
1538 			length = vattr.va_size > vap->va_size ?
1539 			    vattr.va_size - vap->va_size :
1540 			    vap->va_size - vattr.va_size;
1541 
1542 			if (nbl_conflict(vp, NBL_WRITE, begin, length, 0,
1543 			    NULL)) {
1544 				error = EACCES;
1545 			}
1546 		}
1547 	}
1548 	if (!error)
1549 		error = VOP_SETATTR(vp, vap, flags, CRED(), NULL);
1550 
1551 	if (in_crit)
1552 		nbl_end_crit(vp);
1553 
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Return true if the given vnode is referenced by any
1559  * entry in the current process's file descriptor table.
1560  */
1561 int
1562 fisopen(vnode_t *vp)
1563 {
1564 	int fd;
1565 	file_t *fp;
1566 	vnode_t *ovp;
1567 	uf_info_t *fip = P_FINFO(curproc);
1568 	uf_entry_t *ufp;
1569 
1570 	mutex_enter(&fip->fi_lock);
1571 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1572 		UF_ENTER(ufp, fip, fd);
1573 		if ((fp = ufp->uf_file) != NULL &&
1574 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1575 			UF_EXIT(ufp);
1576 			mutex_exit(&fip->fi_lock);
1577 			return (1);
1578 		}
1579 		UF_EXIT(ufp);
1580 	}
1581 	mutex_exit(&fip->fi_lock);
1582 	return (0);
1583 }
1584 
1585 /*
1586  * Return zero if at least one file currently open (by curproc) shouldn't be
1587  * allowed to change zones.
1588  */
1589 int
1590 files_can_change_zones(void)
1591 {
1592 	int fd;
1593 	file_t *fp;
1594 	uf_info_t *fip = P_FINFO(curproc);
1595 	uf_entry_t *ufp;
1596 
1597 	mutex_enter(&fip->fi_lock);
1598 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1599 		UF_ENTER(ufp, fip, fd);
1600 		if ((fp = ufp->uf_file) != NULL &&
1601 		    !vn_can_change_zones(fp->f_vnode)) {
1602 			UF_EXIT(ufp);
1603 			mutex_exit(&fip->fi_lock);
1604 			return (0);
1605 		}
1606 		UF_EXIT(ufp);
1607 	}
1608 	mutex_exit(&fip->fi_lock);
1609 	return (1);
1610 }
1611 
1612 #ifdef DEBUG
1613 
1614 /*
1615  * The following functions are only used in ASSERT()s elsewhere.
1616  * They do not modify the state of the system.
1617  */
1618 
1619 /*
1620  * Return true (1) if the current thread is in the fpollinfo
1621  * list for this file descriptor, else false (0).
1622  */
1623 static int
1624 curthread_in_plist(uf_entry_t *ufp)
1625 {
1626 	fpollinfo_t *fpip;
1627 
1628 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1629 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1630 		if (fpip->fp_thread == curthread)
1631 			return (1);
1632 	return (0);
1633 }
1634 
1635 /*
1636  * Sanity check to make sure that after lwp_exit(),
1637  * curthread does not appear on any fd's fpollinfo list.
1638  */
1639 void
1640 checkfpollinfo(void)
1641 {
1642 	int fd;
1643 	uf_info_t *fip = P_FINFO(curproc);
1644 	uf_entry_t *ufp;
1645 
1646 	mutex_enter(&fip->fi_lock);
1647 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1648 		UF_ENTER(ufp, fip, fd);
1649 		ASSERT(!curthread_in_plist(ufp));
1650 		UF_EXIT(ufp);
1651 	}
1652 	mutex_exit(&fip->fi_lock);
1653 }
1654 
1655 /*
1656  * Return true (1) if the current thread is in the fpollinfo
1657  * list for this file descriptor, else false (0).
1658  * This is the same as curthread_in_plist(),
1659  * but is called w/o holding uf_lock.
1660  */
1661 int
1662 infpollinfo(int fd)
1663 {
1664 	uf_info_t *fip = P_FINFO(curproc);
1665 	uf_entry_t *ufp;
1666 	int rc;
1667 
1668 	UF_ENTER(ufp, fip, fd);
1669 	rc = curthread_in_plist(ufp);
1670 	UF_EXIT(ufp);
1671 	return (rc);
1672 }
1673 
1674 #endif	/* DEBUG */
1675 
1676 /*
1677  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1678  * thread's poll cache. Each lwp polling this file descriptor should call
1679  * this routine once.
1680  */
1681 void
1682 addfpollinfo(int fd)
1683 {
1684 	struct uf_entry *ufp;
1685 	fpollinfo_t *fpip;
1686 	uf_info_t *fip = P_FINFO(curproc);
1687 
1688 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1689 	fpip->fp_thread = curthread;
1690 	UF_ENTER(ufp, fip, fd);
1691 	/*
1692 	 * Assert we are not already on the list, that is, that
1693 	 * this lwp did not call addfpollinfo twice for the same fd.
1694 	 */
1695 	ASSERT(!curthread_in_plist(ufp));
1696 	/*
1697 	 * addfpollinfo is always done inside the getf/releasef pair.
1698 	 */
1699 	ASSERT(ufp->uf_refcnt >= 1);
1700 	fpip->fp_next = ufp->uf_fpollinfo;
1701 	ufp->uf_fpollinfo = fpip;
1702 	UF_EXIT(ufp);
1703 }
1704 
1705 /*
1706  * Delete curthread from fpollinfo list if it is there.
1707  */
1708 void
1709 delfpollinfo(int fd)
1710 {
1711 	struct uf_entry *ufp;
1712 	struct fpollinfo *fpip;
1713 	struct fpollinfo **fpipp;
1714 	uf_info_t *fip = P_FINFO(curproc);
1715 
1716 	UF_ENTER(ufp, fip, fd);
1717 	for (fpipp = &ufp->uf_fpollinfo;
1718 	    (fpip = *fpipp) != NULL;
1719 	    fpipp = &fpip->fp_next) {
1720 		if (fpip->fp_thread == curthread) {
1721 			*fpipp = fpip->fp_next;
1722 			kmem_free(fpip, sizeof (fpollinfo_t));
1723 			break;
1724 		}
1725 	}
1726 	/*
1727 	 * Assert that we are not still on the list, that is, that
1728 	 * this lwp did not call addfpollinfo twice for the same fd.
1729 	 */
1730 	ASSERT(!curthread_in_plist(ufp));
1731 	UF_EXIT(ufp);
1732 }
1733 
1734 /*
1735  * fd is associated with a port. pfd is a pointer to the fd entry in the
1736  * cache of the port.
1737  */
1738 
1739 void
1740 addfd_port(int fd, portfd_t *pfd)
1741 {
1742 	struct uf_entry *ufp;
1743 	uf_info_t *fip = P_FINFO(curproc);
1744 
1745 	UF_ENTER(ufp, fip, fd);
1746 	/*
1747 	 * addfd_port is always done inside the getf/releasef pair.
1748 	 */
1749 	ASSERT(ufp->uf_refcnt >= 1);
1750 	if (ufp->uf_portfd == NULL) {
1751 		/* first entry */
1752 		ufp->uf_portfd = pfd;
1753 		pfd->pfd_next = NULL;
1754 	} else {
1755 		pfd->pfd_next = ufp->uf_portfd;
1756 		ufp->uf_portfd = pfd;
1757 		pfd->pfd_next->pfd_prev = pfd;
1758 	}
1759 	UF_EXIT(ufp);
1760 }
1761 
1762 void
1763 delfd_port(int fd, portfd_t *pfd)
1764 {
1765 	struct uf_entry *ufp;
1766 	uf_info_t *fip = P_FINFO(curproc);
1767 
1768 	UF_ENTER(ufp, fip, fd);
1769 	/*
1770 	 * delfd_port is always done inside the getf/releasef pair.
1771 	 */
1772 	ASSERT(ufp->uf_refcnt >= 1);
1773 	if (ufp->uf_portfd == pfd) {
1774 		/* remove first entry */
1775 		ufp->uf_portfd = pfd->pfd_next;
1776 	} else {
1777 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1778 		if (pfd->pfd_next != NULL)
1779 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1780 	}
1781 	UF_EXIT(ufp);
1782 }
1783 
1784 static void
1785 port_close_fd(portfd_t *pfd)
1786 {
1787 	portfd_t	*pfdn;
1788 
1789 	/*
1790 	 * At this point, no other thread should access
1791 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1792 	 * pointers in the uf_entry_t struct for this fd would
1793 	 * be set to NULL.
1794 	 */
1795 	for (; pfd != NULL; pfd = pfdn) {
1796 		pfdn = pfd->pfd_next;
1797 		port_close_pfd(pfd);
1798 	}
1799 }
1800