xref: /titanic_44/usr/src/uts/common/os/errorq.c (revision 22eb7cb54d8a6bcf6fe2674cb4b1f0cf2d85cfb6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Kernel Error Queues
30  *
31  * A common problem when handling hardware error traps and interrupts is that
32  * these errors frequently must be handled at high interrupt level, where
33  * reliably producing error messages and safely examining and manipulating
34  * other kernel state may not be possible.  The kernel error queue primitive is
35  * a common set of routines that allow a subsystem to maintain a queue of
36  * errors that can be processed by an explicit call from a safe context or by a
37  * soft interrupt that fires at a specific lower interrupt level.  The queue
38  * management code also ensures that if the system panics, all in-transit
39  * errors are logged prior to reset.  Each queue has an associated kstat for
40  * observing the number of errors dispatched and logged, and mdb(1) debugging
41  * support is provided for live and post-mortem observability.
42  *
43  * Memory Allocation
44  *
45  * 	All of the queue data structures are allocated in advance as part of
46  * 	the errorq_create() call.  No additional memory allocations are
47  * 	performed as part of errorq_dispatch(), errorq_reserve(),
48  *	errorq_commit() or errorq_drain().  This design
49  * 	facilitates reliable error queue processing even when the system is low
50  * 	on memory, and ensures that errorq_dispatch() can be called from any
51  * 	context.  When the queue is created, the maximum queue length is
52  * 	specified as a parameter to errorq_create() errorq_nvcreate().  This
53  *	length should represent a reasonable upper bound on the number of
54  *	simultaneous errors.  If errorq_dispatch() or errorq_reserve() is
55  *	invoked and no free queue elements are available, the error is
56  *	dropped and will not be logged.  Typically, the queue will only be
57  *	exhausted by an error storm, and in this case
58  * 	the earlier errors provide the most important data for analysis.
59  * 	When a new error is dispatched, the error data is copied into the
60  * 	preallocated queue element so that the caller's buffer can be reused.
61  *
62  *	When a new error is reserved, an element is moved from the free list
63  *	and returned to the caller.  The element buffer data, eqe_data, may be
64  *	managed by the caller and dispatched to the errorq by calling
65  *	errorq_commit().  This is useful for additions to errorq's
66  *	created with errorq_nvcreate() to handle name-value pair (nvpair) data.
67  *	See below for a discussion on nvlist errorq's.
68  *
69  * Queue Drain Callback
70  *
71  *      When the error queue is drained, the caller's queue drain callback is
72  *      invoked with a pointer to the saved error data.  This function may be
73  *      called from passive kernel context or soft interrupt context at or
74  *      below LOCK_LEVEL, or as part of panic().  As such, the callback should
75  *      basically only be calling cmn_err (but NOT with the CE_PANIC flag).
76  *      The callback must not call panic(), attempt to allocate memory, or wait
77  *      on a condition variable.  The callback may not call errorq_destroy()
78  *      or errorq_drain() on the same error queue that called it.
79  *
80  *      The queue drain callback will always be called for each pending error
81  *      in the order in which errors were enqueued (oldest to newest).  The
82  *      queue drain callback is guaranteed to provide at *least* once semantics
83  *      for all errors that are successfully dispatched (i.e. for which
84  *      errorq_dispatch() has successfully completed).  If an unrelated panic
85  *      occurs while the queue drain callback is running on a vital queue, the
86  *      panic subsystem will continue the queue drain and the callback may be
87  *      invoked again for the same error.  Therefore, the callback should
88  *      restrict itself to logging messages and taking other actions that are
89  *      not destructive if repeated.
90  *
91  * Name-Value Pair Error Queues
92  *
93  *	During error handling, it may be more convenient to store error
94  *	queue element data as a fixed buffer of name-value pairs.  The
95  *	nvpair library allows construction and destruction of nvlists in
96  *	in pre-allocated memory buffers.
97  *
98  *	Error queues created via errorq_nvcreate() store queue element
99  *	data as fixed buffer nvlists (ereports).  errorq_reserve()
100  *	allocates an errorq element from eqp->eq_free and returns a valid
101  *	pointer	to a errorq_elem_t (queue element) and a pre-allocated
102  *	fixed buffer nvlist.  errorq_elem_nvl() is used to gain access
103  *	to the nvlist to add name-value ereport members prior to
104  *	dispatching the error queue element in errorq_commit().
105  *
106  *	Once dispatched, the drain function will return the element to
107  *	eqp->eq_free and reset the associated nv_alloc structure.
108  *	error_cancel() may be called to cancel an element reservation
109  *	element that was never dispatched (committed).  This is useful in
110  *	cases where a programming error prevents a queue element from being
111  *	dispatched.
112  *
113  * Queue Management
114  *
115  *      The queue element structures and error data buffers are allocated in
116  *      two contiguous chunks as part of errorq_create() or errorq_nvcreate().
117  *	Each queue element structure contains a next pointer,
118  *	a previous pointer, and a pointer to the corresponding error data
119  *	buffer.  The data buffer for a nvlist errorq is a shared buffer
120  *	for the allocation of name-value pair lists. The elements are kept on
121  *      one of three lists:
122  *
123  *      Unused elements are kept on the free list, a singly-linked list pointed
124  *      to by eqp->eq_free, and linked together using eqe_prev.  The eqe_next
125  *      pointer is not used by the free list and will be set to NULL.
126  *
127  *      Pending errors are kept on the pending list, a singly-linked list
128  *      pointed to by eqp->eq_pend, and linked together using eqe_prev.  This
129  *      list is maintained in order from newest error to oldest.  The eqe_next
130  *      pointer is not used by the pending list and will be set to NULL.
131  *
132  *      The processing list is a doubly-linked list pointed to by eqp->eq_phead
133  *      (the oldest element) and eqp->eq_ptail (the newest element).  The
134  *      eqe_next pointer is used to traverse from eq_phead to eq_ptail, and the
135  *      eqe_prev pointer is used to traverse from eq_ptail to eq_phead.  Once a
136  *      queue drain operation begins, the current pending list is moved to the
137  *      processing list in a two-phase commit fashion, allowing the panic code
138  *      to always locate and process all pending errors in the event that a
139  *      panic occurs in the middle of queue processing.
140  *
141  *	A fourth list is maintained for nvlist errorqs.  The dump list,
142  *	eq_dump is used to link all errorq elements that should be stored
143  *	in a crash dump file in the event of a system panic.  During
144  *	errorq_panic(), the list is created and subsequently traversed
145  *	in errorq_dump() during the final phases of a crash dump.
146  *
147  * Platform Considerations
148  *
149  *      In order to simplify their implementation, error queues make use of the
150  *      C wrappers for compare-and-swap.  If the platform itself does not
151  *      support compare-and-swap in hardware and the kernel emulation routines
152  *      are used instead, then the context in which errorq_dispatch() can be
153  *      safely invoked is further constrained by the implementation of the
154  *      compare-and-swap emulation.  Specifically, if errorq_dispatch() is
155  *      called from a code path that can be executed above ATOMIC_LEVEL on such
156  *      a platform, the dispatch code could potentially deadlock unless the
157  *      corresponding error interrupt is blocked or disabled prior to calling
158  *      errorq_dispatch().  Error queues should therefore be deployed with
159  *      caution on these platforms.
160  *
161  * Interfaces
162  *
163  * errorq_t *errorq_create(name, func, private, qlen, eltsize, ipl, flags);
164  * errorq_t *errorq_nvcreate(name, func, private, qlen, eltsize, ipl, flags);
165  *
166  *      Create a new error queue with the specified name, callback, and
167  *      properties.  A pointer to the new error queue is returned upon success,
168  *      or NULL is returned to indicate that the queue could not be created.
169  *      This function must be called from passive kernel context with no locks
170  *      held that can prevent a sleeping memory allocation from occurring.
171  *      errorq_create() will return failure if the queue kstats cannot be
172  *      created, or if a soft interrupt handler cannot be registered.
173  *
174  *      The queue 'name' is a string that is recorded for live and post-mortem
175  *      examination by a debugger.  The queue callback 'func' will be invoked
176  *      for each error drained from the queue, and will receive the 'private'
177  *      pointer as its first argument.  The callback must obey the rules for
178  *      callbacks described above.  The queue will have maximum length 'qlen'
179  *      and each element will be able to record up to 'eltsize' bytes of data.
180  *      The queue's soft interrupt (see errorq_dispatch(), below) will fire
181  *      at 'ipl', which should not exceed LOCK_LEVEL.  The queue 'flags' may
182  *      include the following flag:
183  *
184  *      ERRORQ_VITAL    - This queue contains information that is considered
185  *         vital to problem diagnosis.  Error queues that are marked vital will
186  *         be automatically drained by the panic subsystem prior to printing
187  *         the panic messages to the console.
188  *
189  * void errorq_destroy(errorq);
190  *
191  *      Destroy the specified error queue.  The queue is drained of any
192  *      pending elements and these are logged before errorq_destroy returns.
193  *      Once errorq_destroy() begins draining the queue, any simultaneous
194  *      calls to dispatch errors will result in the errors being dropped.
195  *      The caller must invoke a higher-level abstraction (e.g. disabling
196  *      an error interrupt) to ensure that error handling code does not
197  *      attempt to dispatch errors to the queue while it is being freed.
198  *
199  * void errorq_dispatch(errorq, data, len, flag);
200  *
201  *      Attempt to enqueue the specified error data.  If a free queue element
202  *      is available, the data is copied into a free element and placed on a
203  *      pending list.  If no free queue element is available, the error is
204  *      dropped.  The data length (len) is specified in bytes and should not
205  *      exceed the queue's maximum element size.  If the data length is less
206  *      than the maximum element size, the remainder of the queue element is
207  *      filled with zeroes.  The flag parameter should be one of:
208  *
209  *      ERRORQ_ASYNC    - Schedule a soft interrupt at the previously specified
210  *         IPL to asynchronously drain the queue on behalf of the caller.
211  *
212  *      ERRORQ_SYNC     - Do not schedule a soft interrupt to drain the queue.
213  *         The caller is presumed to be calling errorq_drain() or panic() in
214  *         the near future in order to drain the queue and log the error.
215  *
216  *      The errorq_dispatch() function may be called from any context, subject
217  *      to the Platform Considerations described above.
218  *
219  * void errorq_drain(errorq);
220  *
221  *      Drain the error queue of all pending errors.  The queue's callback
222  *      function is invoked for each error in order from oldest to newest.
223  *      This function may be used at or below LOCK_LEVEL or from panic context.
224  *
225  * errorq_elem_t *errorq_reserve(errorq);
226  *
227  *	Reserve an error queue element for later processing and dispatching.
228  *	The element is returned to the caller who may add error-specific data
229  *	to element.  The element is retured to the free list when either
230  *	errorq_commit() is called and the element asynchronously processed
231  *	or immediately when errorq_cancel() is called.
232  *
233  * void errorq_commit(errorq, errorq_elem, flag);
234  *
235  *	Commit an errorq element (eqep) for dispatching, see
236  *	errorq_dispatch().
237  *
238  * void errorq_cancel(errorq, errorq_elem);
239  *
240  *	Cancel a pending errorq element reservation.  The errorq element is
241  *	returned to the free list upon cancelation.
242  */
243 
244 #include <sys/errorq_impl.h>
245 #include <sys/sysmacros.h>
246 #include <sys/machlock.h>
247 #include <sys/cmn_err.h>
248 #include <sys/atomic.h>
249 #include <sys/systm.h>
250 #include <sys/kmem.h>
251 #include <sys/conf.h>
252 #include <sys/ddi.h>
253 #include <sys/sunddi.h>
254 #include <sys/bootconf.h>
255 #include <sys/spl.h>
256 #include <sys/dumphdr.h>
257 #include <sys/compress.h>
258 #include <sys/time.h>
259 #include <sys/panic.h>
260 #include <sys/fm/protocol.h>
261 #include <sys/fm/util.h>
262 
263 static struct errorq_kstat errorq_kstat_template = {
264 	{ "dispatched", KSTAT_DATA_UINT64 },
265 	{ "dropped", KSTAT_DATA_UINT64 },
266 	{ "logged", KSTAT_DATA_UINT64 },
267 	{ "reserved", KSTAT_DATA_UINT64 },
268 	{ "reserve_fail", KSTAT_DATA_UINT64 },
269 	{ "committed", KSTAT_DATA_UINT64 },
270 	{ "commit_fail", KSTAT_DATA_UINT64 },
271 	{ "cancelled", KSTAT_DATA_UINT64 }
272 };
273 
274 static uint64_t errorq_lost = 0;
275 static errorq_t *errorq_list = NULL;
276 static kmutex_t errorq_lock;
277 static uint64_t errorq_vitalmin = 5;
278 
279 static uint_t
280 errorq_intr(caddr_t eqp)
281 {
282 	errorq_drain((errorq_t *)eqp);
283 	return (DDI_INTR_CLAIMED);
284 }
285 
286 /*
287  * Create a new error queue with the specified properties and add a software
288  * interrupt handler and kstat for it.  This function must be called from
289  * passive kernel context with no locks held that can prevent a sleeping
290  * memory allocation from occurring.  This function will return NULL if the
291  * softint or kstat for this queue cannot be created.
292  */
293 errorq_t *
294 errorq_create(const char *name, errorq_func_t func, void *private,
295     ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
296 {
297 	errorq_t *eqp = kmem_alloc(sizeof (errorq_t), KM_SLEEP);
298 	ddi_iblock_cookie_t ibc = (ddi_iblock_cookie_t)(uintptr_t)ipltospl(ipl);
299 	dev_info_t *dip = ddi_root_node();
300 
301 	errorq_elem_t *eep;
302 	ddi_softintr_t id = NULL;
303 	caddr_t data;
304 
305 	ASSERT(qlen != 0 && size != 0);
306 	ASSERT(ipl > 0 && ipl <= LOCK_LEVEL);
307 
308 	/*
309 	 * If a queue is created very early in boot before device tree services
310 	 * are available, the queue softint handler cannot be created.  We
311 	 * manually drain these queues and create their softint handlers when
312 	 * it is safe to do so as part of errorq_init(), below.
313 	 */
314 	if (modrootloaded && ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id,
315 	    &ibc, NULL, errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
316 		cmn_err(CE_WARN, "errorq_create: failed to register "
317 		    "IPL %u softint for queue %s", ipl, name);
318 		kmem_free(eqp, sizeof (errorq_t));
319 		return (NULL);
320 	}
321 
322 	if ((eqp->eq_ksp = kstat_create("unix", 0, name, "errorq",
323 	    KSTAT_TYPE_NAMED, sizeof (struct errorq_kstat) /
324 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) {
325 		cmn_err(CE_WARN, "errorq_create: failed to create kstat "
326 		    "for queue %s", name);
327 		if (id != NULL)
328 			ddi_remove_softintr(id);
329 		kmem_free(eqp, sizeof (errorq_t));
330 		return (NULL);
331 	}
332 
333 	bcopy(&errorq_kstat_template, &eqp->eq_kstat,
334 	    sizeof (struct errorq_kstat));
335 	eqp->eq_ksp->ks_data = &eqp->eq_kstat;
336 	eqp->eq_ksp->ks_private = eqp;
337 	kstat_install(eqp->eq_ksp);
338 
339 	(void) strncpy(eqp->eq_name, name, ERRORQ_NAMELEN);
340 	eqp->eq_name[ERRORQ_NAMELEN] = '\0';
341 	eqp->eq_func = func;
342 	eqp->eq_private = private;
343 	eqp->eq_data = kmem_alloc(qlen * size, KM_SLEEP);
344 	eqp->eq_qlen = qlen;
345 	eqp->eq_size = size;
346 	eqp->eq_ipl = ipl;
347 	eqp->eq_flags = flags | ERRORQ_ACTIVE;
348 	eqp->eq_id = id;
349 	mutex_init(&eqp->eq_lock, NULL, MUTEX_DEFAULT, NULL);
350 	eqp->eq_elems = kmem_alloc(qlen * sizeof (errorq_elem_t), KM_SLEEP);
351 	eqp->eq_phead = NULL;
352 	eqp->eq_ptail = NULL;
353 	eqp->eq_pend = NULL;
354 	eqp->eq_dump = NULL;
355 	eqp->eq_free = eqp->eq_elems;
356 
357 	/*
358 	 * Iterate over the array of errorq_elem_t structures and place each
359 	 * one on the free list and set its data pointer.
360 	 */
361 	for (eep = eqp->eq_free, data = eqp->eq_data; qlen > 1; qlen--) {
362 		eep->eqe_next = NULL;
363 		eep->eqe_dump = NULL;
364 		eep->eqe_prev = eep + 1;
365 		eep->eqe_data = data;
366 		data += size;
367 		eep++;
368 	}
369 
370 	eep->eqe_next = NULL;
371 	eep->eqe_prev = NULL;
372 	eep->eqe_data = data;
373 	eep->eqe_dump = NULL;
374 
375 	/*
376 	 * Once the errorq is initialized, add it to the global list of queues,
377 	 * and then return a pointer to the new queue to the caller.
378 	 */
379 	mutex_enter(&errorq_lock);
380 	eqp->eq_next = errorq_list;
381 	errorq_list = eqp;
382 	mutex_exit(&errorq_lock);
383 
384 	return (eqp);
385 }
386 
387 /*
388  * Create a new errorq as if by errorq_create(), but set the ERRORQ_NVLIST
389  * flag and initialize each element to have the start of its data region used
390  * as an errorq_nvelem_t with a nvlist allocator that consumes the data region.
391  */
392 errorq_t *
393 errorq_nvcreate(const char *name, errorq_func_t func, void *private,
394     ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
395 {
396 	errorq_t *eqp;
397 	errorq_elem_t *eep;
398 
399 	eqp = errorq_create(name, func, private, qlen,
400 	    size + sizeof (errorq_nvelem_t), ipl, flags | ERRORQ_NVLIST);
401 
402 	if (eqp == NULL)
403 		return (NULL);
404 
405 	mutex_enter(&eqp->eq_lock);
406 
407 	for (eep = eqp->eq_elems; qlen != 0; eep++, qlen--) {
408 		errorq_nvelem_t *eqnp = eep->eqe_data;
409 		eqnp->eqn_buf = (char *)eqnp + sizeof (errorq_nvelem_t);
410 		eqnp->eqn_nva = fm_nva_xcreate(eqnp->eqn_buf, size);
411 	}
412 
413 	mutex_exit(&eqp->eq_lock);
414 	return (eqp);
415 }
416 
417 /*
418  * To destroy an error queue, we mark it as disabled and then explicitly drain
419  * all pending errors.  Once the drain is complete, we can remove the queue
420  * from the global list of queues examined by errorq_panic(), and then free
421  * the various queue data structures.  The caller must use some higher-level
422  * abstraction (e.g. disabling an error interrupt) to ensure that no one will
423  * attempt to enqueue new errors while we are freeing this queue.
424  */
425 void
426 errorq_destroy(errorq_t *eqp)
427 {
428 	errorq_t *p, **pp;
429 	errorq_elem_t *eep;
430 	ulong_t i;
431 
432 	ASSERT(eqp != NULL);
433 	eqp->eq_flags &= ~ERRORQ_ACTIVE;
434 	errorq_drain(eqp);
435 
436 	mutex_enter(&errorq_lock);
437 	pp = &errorq_list;
438 
439 	for (p = errorq_list; p != NULL; p = p->eq_next) {
440 		if (p == eqp) {
441 			*pp = p->eq_next;
442 			break;
443 		}
444 		pp = &p->eq_next;
445 	}
446 
447 	mutex_exit(&errorq_lock);
448 	ASSERT(p != NULL);
449 
450 	if (eqp->eq_flags & ERRORQ_NVLIST) {
451 		for (eep = eqp->eq_elems, i = 0; i < eqp->eq_qlen; i++, eep++) {
452 			errorq_nvelem_t *eqnp = eep->eqe_data;
453 			fm_nva_xdestroy(eqnp->eqn_nva);
454 		}
455 	}
456 
457 	mutex_destroy(&eqp->eq_lock);
458 	kstat_delete(eqp->eq_ksp);
459 
460 	if (eqp->eq_id != NULL)
461 		ddi_remove_softintr(eqp->eq_id);
462 
463 	kmem_free(eqp->eq_elems, eqp->eq_qlen * sizeof (errorq_elem_t));
464 	kmem_free(eqp->eq_data, eqp->eq_qlen * eqp->eq_size);
465 
466 	kmem_free(eqp, sizeof (errorq_t));
467 }
468 
469 /*
470  * Dispatch a new error into the queue for later processing.  The specified
471  * data buffer is copied into a preallocated queue element.  If 'len' is
472  * smaller than the queue element size, the remainder of the queue element is
473  * filled with zeroes.  This function may be called from any context subject
474  * to the Platform Considerations described above.
475  */
476 void
477 errorq_dispatch(errorq_t *eqp, const void *data, size_t len, uint_t flag)
478 {
479 	errorq_elem_t *eep, *old;
480 
481 	if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
482 		atomic_add_64(&errorq_lost, 1);
483 		return; /* drop error if queue is uninitialized or disabled */
484 	}
485 
486 	while ((eep = eqp->eq_free) != NULL) {
487 		if (casptr(&eqp->eq_free, eep, eep->eqe_prev) == eep)
488 			break;
489 	}
490 
491 	if (eep == NULL) {
492 		atomic_add_64(&eqp->eq_kstat.eqk_dropped.value.ui64, 1);
493 		return;
494 	}
495 
496 	ASSERT(len <= eqp->eq_size);
497 	bcopy(data, eep->eqe_data, MIN(eqp->eq_size, len));
498 
499 	if (len < eqp->eq_size)
500 		bzero((caddr_t)eep->eqe_data + len, eqp->eq_size - len);
501 
502 	for (;;) {
503 		old = eqp->eq_pend;
504 		eep->eqe_prev = old;
505 		membar_producer();
506 
507 		if (casptr(&eqp->eq_pend, old, eep) == old)
508 			break;
509 	}
510 
511 	atomic_add_64(&eqp->eq_kstat.eqk_dispatched.value.ui64, 1);
512 
513 	if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
514 		ddi_trigger_softintr(eqp->eq_id);
515 }
516 
517 /*
518  * Drain the specified error queue by calling eq_func() for each pending error.
519  * This function must be called at or below LOCK_LEVEL or from panic context.
520  * In order to synchronize with other attempts to drain the queue, we acquire
521  * the adaptive eq_lock, blocking other consumers.  Once this lock is held,
522  * we must use compare-and-swap to move the pending list to the processing
523  * list and to return elements to the free list in order to synchronize
524  * with producers, who do not acquire any locks and only use compare-and-swap.
525  *
526  * An additional constraint on this function is that if the system panics
527  * while this function is running, the panic code must be able to detect and
528  * handle all intermediate states and correctly dequeue all errors.  The
529  * errorq_panic() function below will be used for detecting and handling
530  * these intermediate states.  The comments in errorq_drain() below explain
531  * how we make sure each intermediate state is distinct and consistent.
532  */
533 void
534 errorq_drain(errorq_t *eqp)
535 {
536 	errorq_elem_t *eep, *fep, *dep;
537 
538 	ASSERT(eqp != NULL);
539 	mutex_enter(&eqp->eq_lock);
540 
541 	/*
542 	 * If there are one or more pending errors, set eq_ptail to point to
543 	 * the first element on the pending list and then attempt to compare-
544 	 * and-swap NULL to the pending list.  We use membar_producer() to
545 	 * make sure that eq_ptail will be visible to errorq_panic() below
546 	 * before the pending list is NULLed out.  This section is labeled
547 	 * case (1) for errorq_panic, below.  If eq_ptail is not yet set (1A)
548 	 * eq_pend has all the pending errors.  If casptr fails or has not
549 	 * been called yet (1B), eq_pend still has all the pending errors.
550 	 * If casptr succeeds (1C), eq_ptail has all the pending errors.
551 	 */
552 	while ((eep = eqp->eq_pend) != NULL) {
553 		eqp->eq_ptail = eep;
554 		membar_producer();
555 
556 		if (casptr(&eqp->eq_pend, eep, NULL) == eep)
557 			break;
558 	}
559 
560 	/*
561 	 * If no errors were pending, assert that eq_ptail is set to NULL,
562 	 * drop the consumer lock, and return without doing anything.
563 	 */
564 	if (eep == NULL) {
565 		ASSERT(eqp->eq_ptail == NULL);
566 		mutex_exit(&eqp->eq_lock);
567 		return;
568 	}
569 
570 	/*
571 	 * Now iterate from eq_ptail (a.k.a. eep, the newest error) to the
572 	 * oldest error, setting the eqe_next pointer so that we can iterate
573 	 * over the errors from oldest to newest.  We use membar_producer()
574 	 * to make sure that these stores are visible before we set eq_phead.
575 	 * If we panic before, during, or just after this loop (case 2),
576 	 * errorq_panic() will simply redo this work, as described below.
577 	 */
578 	for (eep->eqe_next = NULL; eep->eqe_prev != NULL; eep = eep->eqe_prev)
579 		eep->eqe_prev->eqe_next = eep;
580 	membar_producer();
581 
582 	/*
583 	 * Now set eq_phead to the head of the processing list (the oldest
584 	 * error) and issue another membar_producer() to make sure that
585 	 * eq_phead is seen as non-NULL before we clear eq_ptail.  If we panic
586 	 * after eq_phead is set (case 3), we will detect and log these errors
587 	 * in errorq_panic(), as described below.
588 	 */
589 	eqp->eq_phead = eep;
590 	membar_producer();
591 
592 	eqp->eq_ptail = NULL;
593 	membar_producer();
594 
595 	/*
596 	 * If we enter from errorq_panic_drain(), we may already have
597 	 * errorq elements on the dump list.  Find the tail of
598 	 * the list ready for append.
599 	 */
600 	if (panicstr && (dep = eqp->eq_dump) != NULL) {
601 		while (dep->eqe_dump != NULL)
602 			dep = dep->eqe_dump;
603 	}
604 
605 	/*
606 	 * Now iterate over the processing list from oldest (eq_phead) to
607 	 * newest and log each error.  Once an error is logged, we use
608 	 * compare-and-swap to return it to the free list.  If we panic before,
609 	 * during, or after calling eq_func() (case 4), the error will still be
610 	 * found on eq_phead and will be logged in errorq_panic below.
611 	 */
612 
613 	while ((eep = eqp->eq_phead) != NULL) {
614 		eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
615 		eqp->eq_kstat.eqk_logged.value.ui64++;
616 
617 		eqp->eq_phead = eep->eqe_next;
618 		membar_producer();
619 
620 		eep->eqe_next = NULL;
621 
622 		/*
623 		 * On panic, we add the element to the dump list for each
624 		 * nvlist errorq.  Elements are stored oldest to newest.
625 		 * Then continue, so we don't free and subsequently overwrite
626 		 * any elements which we've put on the dump queue.
627 		 */
628 		if (panicstr && (eqp->eq_flags & ERRORQ_NVLIST)) {
629 			if (eqp->eq_dump == NULL)
630 				dep = eqp->eq_dump = eep;
631 			else
632 				dep = dep->eqe_dump = eep;
633 			membar_producer();
634 			continue;
635 		}
636 
637 		for (;;) {
638 			fep = eqp->eq_free;
639 			eep->eqe_prev = fep;
640 			membar_producer();
641 
642 			if (casptr(&eqp->eq_free, fep, eep) == fep)
643 				break;
644 		}
645 	}
646 
647 	mutex_exit(&eqp->eq_lock);
648 }
649 
650 /*
651  * Now that device tree services are available, set up the soft interrupt
652  * handlers for any queues that were created early in boot.  We then
653  * manually drain these queues to report any pending early errors.
654  */
655 void
656 errorq_init(void)
657 {
658 	dev_info_t *dip = ddi_root_node();
659 	ddi_softintr_t id;
660 	errorq_t *eqp;
661 
662 	ASSERT(modrootloaded != 0);
663 	ASSERT(dip != NULL);
664 
665 	mutex_enter(&errorq_lock);
666 
667 	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
668 		ddi_iblock_cookie_t ibc =
669 		    (ddi_iblock_cookie_t)(uintptr_t)ipltospl(eqp->eq_ipl);
670 
671 		if (eqp->eq_id != NULL)
672 			continue; /* softint already initialized */
673 
674 		if (ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id, &ibc, NULL,
675 		    errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
676 			panic("errorq_init: failed to register IPL %u softint "
677 			    "for queue %s", eqp->eq_ipl, eqp->eq_name);
678 		}
679 
680 		eqp->eq_id = id;
681 		errorq_drain(eqp);
682 	}
683 
684 	mutex_exit(&errorq_lock);
685 }
686 
687 /*
688  * This function is designed to be called from panic context only, and
689  * therefore does not need to acquire errorq_lock when iterating over
690  * errorq_list.  This function must be called no more than once for each
691  * 'what' value (if you change this then review the manipulation of 'dep'.
692  */
693 static uint64_t
694 errorq_panic_drain(uint_t what)
695 {
696 	errorq_elem_t *eep, *nep, *fep, *dep;
697 	errorq_t *eqp;
698 	uint64_t loggedtmp;
699 	uint64_t logged = 0;
700 
701 	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
702 		if ((eqp->eq_flags & (ERRORQ_VITAL | ERRORQ_NVLIST)) != what)
703 			continue; /* do not drain this queue on this pass */
704 
705 		loggedtmp = eqp->eq_kstat.eqk_logged.value.ui64;
706 
707 		/*
708 		 * In case (1B) above, eq_ptail may be set but the casptr may
709 		 * not have been executed yet or may have failed.  Either way,
710 		 * we must log errors in chronological order.  So we search
711 		 * the pending list for the error pointed to by eq_ptail.  If
712 		 * it is found, we know that all subsequent errors are also
713 		 * still on the pending list, so just NULL out eq_ptail and let
714 		 * errorq_drain(), below, take care of the logging.
715 		 */
716 		for (eep = eqp->eq_pend; eep != NULL; eep = eep->eqe_prev) {
717 			if (eep == eqp->eq_ptail) {
718 				ASSERT(eqp->eq_phead == NULL);
719 				eqp->eq_ptail = NULL;
720 				break;
721 			}
722 		}
723 
724 		/*
725 		 * In cases (1C) and (2) above, eq_ptail will be set to the
726 		 * newest error on the processing list but eq_phead will still
727 		 * be NULL.  We set the eqe_next pointers so we can iterate
728 		 * over the processing list in order from oldest error to the
729 		 * newest error.  We then set eq_phead to point to the oldest
730 		 * error and fall into the for-loop below.
731 		 */
732 		if (eqp->eq_phead == NULL && (eep = eqp->eq_ptail) != NULL) {
733 			for (eep->eqe_next = NULL; eep->eqe_prev != NULL;
734 			    eep = eep->eqe_prev)
735 				eep->eqe_prev->eqe_next = eep;
736 
737 			eqp->eq_phead = eep;
738 			eqp->eq_ptail = NULL;
739 		}
740 
741 		/*
742 		 * In cases (3) and (4) above (or after case (1C/2) handling),
743 		 * eq_phead will be set to the oldest error on the processing
744 		 * list.  We log each error and return it to the free list.
745 		 *
746 		 * Unlike errorq_drain(), we don't need to worry about updating
747 		 * eq_phead because errorq_panic() will be called at most once.
748 		 * However, we must use casptr to update the freelist in case
749 		 * errors are still being enqueued during panic.
750 		 */
751 		for (eep = eqp->eq_phead; eep != NULL; eep = nep) {
752 			eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
753 			eqp->eq_kstat.eqk_logged.value.ui64++;
754 
755 			nep = eep->eqe_next;
756 			eep->eqe_next = NULL;
757 
758 			/*
759 			 * On panic, we add the element to the dump list for
760 			 * each nvlist errorq, stored oldest to newest. Then
761 			 * continue, so we don't free and subsequently overwrite
762 			 * any elements which we've put on the dump queue.
763 			 */
764 			if (eqp->eq_flags & ERRORQ_NVLIST) {
765 				if (eqp->eq_dump == NULL)
766 					dep = eqp->eq_dump = eep;
767 				else
768 					dep = dep->eqe_dump = eep;
769 				membar_producer();
770 				continue;
771 			}
772 
773 			for (;;) {
774 				fep = eqp->eq_free;
775 				eep->eqe_prev = fep;
776 				membar_producer();
777 
778 				if (casptr(&eqp->eq_free, fep, eep) == fep)
779 					break;
780 			}
781 		}
782 
783 		/*
784 		 * Now go ahead and drain any other errors on the pending list.
785 		 * This call transparently handles case (1A) above, as well as
786 		 * any other errors that were dispatched after errorq_drain()
787 		 * completed its first compare-and-swap.
788 		 */
789 		errorq_drain(eqp);
790 
791 		logged += eqp->eq_kstat.eqk_logged.value.ui64 - loggedtmp;
792 	}
793 	return (logged);
794 }
795 
796 /*
797  * Drain all error queues - called only from panic context.  Some drain
798  * functions may enqueue errors to ERRORQ_NVLIST error queues so that
799  * they may be written out in the panic dump - so ERRORQ_NVLIST queues
800  * must be drained last.  Drain ERRORQ_VITAL queues before nonvital queues
801  * so that vital errors get to fill the ERRORQ_NVLIST queues first, and
802  * do not drain the nonvital queues if there are many vital errors.
803  */
804 void
805 errorq_panic(void)
806 {
807 	ASSERT(panicstr != NULL);
808 
809 	if (errorq_panic_drain(ERRORQ_VITAL) <= errorq_vitalmin)
810 		(void) errorq_panic_drain(0);
811 	(void) errorq_panic_drain(ERRORQ_VITAL | ERRORQ_NVLIST);
812 	(void) errorq_panic_drain(ERRORQ_NVLIST);
813 }
814 
815 /*
816  * Reserve an error queue element for later processing and dispatching.  The
817  * element is returned to the caller who may add error-specific data to
818  * element.  The element is retured to the free list when either
819  * errorq_commit() is called and the element asynchronously processed
820  * or immediately when errorq_cancel() is called.
821  */
822 errorq_elem_t *
823 errorq_reserve(errorq_t *eqp)
824 {
825 	errorq_elem_t *eqep;
826 
827 	if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
828 		atomic_add_64(&errorq_lost, 1);
829 		return (NULL);
830 	}
831 
832 	while ((eqep = eqp->eq_free) != NULL) {
833 		if (casptr(&eqp->eq_free, eqep, eqep->eqe_prev) == eqep)
834 			break;
835 	}
836 
837 	if (eqep == NULL) {
838 		atomic_add_64(&eqp->eq_kstat.eqk_dropped.value.ui64, 1);
839 		return (NULL);
840 	}
841 
842 	if (eqp->eq_flags & ERRORQ_NVLIST) {
843 		errorq_nvelem_t *eqnp = eqep->eqe_data;
844 		nv_alloc_reset(eqnp->eqn_nva);
845 		eqnp->eqn_nvl = fm_nvlist_create(eqnp->eqn_nva);
846 	}
847 
848 	atomic_add_64(&eqp->eq_kstat.eqk_reserved.value.ui64, 1);
849 	return (eqep);
850 }
851 
852 /*
853  * Commit an errorq element (eqep) for dispatching.
854  * This function may be called from any context subject
855  * to the Platform Considerations described above.
856  */
857 void
858 errorq_commit(errorq_t *eqp, errorq_elem_t *eqep, uint_t flag)
859 {
860 	errorq_elem_t *old;
861 
862 	if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
863 		atomic_add_64(&eqp->eq_kstat.eqk_commit_fail.value.ui64, 1);
864 		return;
865 	}
866 
867 	for (;;) {
868 		old = eqp->eq_pend;
869 		eqep->eqe_prev = old;
870 		membar_producer();
871 
872 		if (casptr(&eqp->eq_pend, old, eqep) == old)
873 			break;
874 	}
875 
876 	atomic_add_64(&eqp->eq_kstat.eqk_committed.value.ui64, 1);
877 
878 	if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
879 		ddi_trigger_softintr(eqp->eq_id);
880 }
881 
882 /*
883  * Cancel an errorq element reservation by returning the specified element
884  * to the free list.  Duplicate or invalid frees are not supported.
885  */
886 void
887 errorq_cancel(errorq_t *eqp, errorq_elem_t *eqep)
888 {
889 	errorq_elem_t *fep;
890 
891 	if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE))
892 		return;
893 
894 	for (;;) {
895 		fep = eqp->eq_free;
896 		eqep->eqe_prev = fep;
897 		membar_producer();
898 
899 		if (casptr(&eqp->eq_free, fep, eqep) == fep)
900 			break;
901 	}
902 
903 	atomic_add_64(&eqp->eq_kstat.eqk_cancelled.value.ui64, 1);
904 }
905 
906 /*
907  * Write elements on the dump list of each nvlist errorq to the dump device.
908  * Upon reboot, fmd(1M) will extract and replay them for diagnosis.
909  */
910 void
911 errorq_dump(void)
912 {
913 	errorq_elem_t *eep;
914 	errorq_t *eqp;
915 
916 	if (ereport_dumpbuf == NULL)
917 		return; /* reboot or panic before errorq is even set up */
918 
919 	for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
920 		if (!(eqp->eq_flags & ERRORQ_NVLIST) ||
921 		    !(eqp->eq_flags & ERRORQ_ACTIVE))
922 			continue; /* do not dump this queue on panic */
923 
924 		for (eep = eqp->eq_dump; eep != NULL; eep = eep->eqe_dump) {
925 			errorq_nvelem_t *eqnp = eep->eqe_data;
926 			size_t len = 0;
927 			erpt_dump_t ed;
928 			int err;
929 
930 			(void) nvlist_size(eqnp->eqn_nvl,
931 			    &len, NV_ENCODE_NATIVE);
932 
933 			if (len > ereport_dumplen || len == 0) {
934 				cmn_err(CE_WARN, "%s: unable to save error "
935 				    "report %p due to size %lu\n",
936 				    eqp->eq_name, (void *)eep, len);
937 				continue;
938 			}
939 
940 			if ((err = nvlist_pack(eqnp->eqn_nvl,
941 			    (char **)&ereport_dumpbuf, &ereport_dumplen,
942 			    NV_ENCODE_NATIVE, KM_NOSLEEP)) != 0) {
943 				cmn_err(CE_WARN, "%s: unable to save error "
944 				    "report %p due to pack error %d\n",
945 				    eqp->eq_name, (void *)eep, err);
946 				continue;
947 			}
948 
949 			ed.ed_magic = ERPT_MAGIC;
950 			ed.ed_chksum = checksum32(ereport_dumpbuf, len);
951 			ed.ed_size = (uint32_t)len;
952 			ed.ed_pad = 0;
953 			ed.ed_hrt_nsec = 0;
954 			ed.ed_hrt_base = panic_hrtime;
955 			ed.ed_tod_base.sec = panic_hrestime.tv_sec;
956 			ed.ed_tod_base.nsec = panic_hrestime.tv_nsec;
957 
958 			dumpvp_write(&ed, sizeof (ed));
959 			dumpvp_write(ereport_dumpbuf, len);
960 		}
961 	}
962 }
963 
964 nvlist_t *
965 errorq_elem_nvl(errorq_t *eqp, const errorq_elem_t *eqep)
966 {
967 	errorq_nvelem_t *eqnp = eqep->eqe_data;
968 
969 	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);
970 
971 	return (eqnp->eqn_nvl);
972 }
973 
974 nv_alloc_t *
975 errorq_elem_nva(errorq_t *eqp, const errorq_elem_t *eqep)
976 {
977 	errorq_nvelem_t *eqnp = eqep->eqe_data;
978 
979 	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);
980 
981 	return (eqnp->eqn_nva);
982 }
983 
984 /*
985  * Reserve a new element and duplicate the data of the original into it.
986  */
987 void *
988 errorq_elem_dup(errorq_t *eqp, const errorq_elem_t *eqep, errorq_elem_t **neqep)
989 {
990 	ASSERT(eqp->eq_flags & ERRORQ_ACTIVE);
991 	ASSERT(!(eqp->eq_flags & ERRORQ_NVLIST));
992 
993 	if ((*neqep = errorq_reserve(eqp)) == NULL)
994 		return (NULL);
995 
996 	bcopy(eqep->eqe_data, (*neqep)->eqe_data, eqp->eq_size);
997 	return ((*neqep)->eqe_data);
998 }
999