xref: /titanic_44/usr/src/uts/common/os/cpu.c (revision b4820df85baba7ec3cfa9082d7579cf2349c2336)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Architecture-independent CPU control functions.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/var.h>
33 #include <sys/thread.h>
34 #include <sys/cpuvar.h>
35 #include <sys/kstat.h>
36 #include <sys/uadmin.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/procset.h>
41 #include <sys/processor.h>
42 #include <sys/debug.h>
43 #include <sys/cpupart.h>
44 #include <sys/lgrp.h>
45 #include <sys/pset.h>
46 #include <sys/pghw.h>
47 #include <sys/kmem.h>
48 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
49 #include <sys/atomic.h>
50 #include <sys/callb.h>
51 #include <sys/vtrace.h>
52 #include <sys/cyclic.h>
53 #include <sys/bitmap.h>
54 #include <sys/nvpair.h>
55 #include <sys/pool_pset.h>
56 #include <sys/msacct.h>
57 #include <sys/time.h>
58 #include <sys/archsystm.h>
59 #include <sys/sdt.h>
60 #if defined(__x86) || defined(__amd64)
61 #include <sys/x86_archext.h>
62 #endif
63 #include <sys/callo.h>
64 
65 extern int	mp_cpu_start(cpu_t *);
66 extern int	mp_cpu_stop(cpu_t *);
67 extern int	mp_cpu_poweron(cpu_t *);
68 extern int	mp_cpu_poweroff(cpu_t *);
69 extern int	mp_cpu_configure(int);
70 extern int	mp_cpu_unconfigure(int);
71 extern void	mp_cpu_faulted_enter(cpu_t *);
72 extern void	mp_cpu_faulted_exit(cpu_t *);
73 
74 extern int cmp_cpu_to_chip(processorid_t cpuid);
75 #ifdef __sparcv9
76 extern char *cpu_fru_fmri(cpu_t *cp);
77 #endif
78 
79 static void cpu_add_active_internal(cpu_t *cp);
80 static void cpu_remove_active(cpu_t *cp);
81 static void cpu_info_kstat_create(cpu_t *cp);
82 static void cpu_info_kstat_destroy(cpu_t *cp);
83 static void cpu_stats_kstat_create(cpu_t *cp);
84 static void cpu_stats_kstat_destroy(cpu_t *cp);
85 
86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
90 
91 /*
92  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
93  * and dispatch queue reallocations.  The lock ordering with respect to
94  * related locks is:
95  *
96  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
97  *
98  * Warning:  Certain sections of code do not use the cpu_lock when
99  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
100  * all cpus are paused during modifications to this list, a solution
101  * to protect the list is too either disable kernel preemption while
102  * walking the list, *or* recheck the cpu_next pointer at each
103  * iteration in the loop.  Note that in no cases can any cached
104  * copies of the cpu pointers be kept as they may become invalid.
105  */
106 kmutex_t	cpu_lock;
107 cpu_t		*cpu_list;		/* list of all CPUs */
108 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
109 cpu_t		*cpu_active;		/* list of active CPUs */
110 static cpuset_t	cpu_available;		/* set of available CPUs */
111 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
112 
113 cpu_t		**cpu_seq;		/* ptrs to CPUs, indexed by seq_id */
114 
115 /*
116  * max_ncpus keeps the max cpus the system can have. Initially
117  * it's NCPU, but since most archs scan the devtree for cpus
118  * fairly early on during boot, the real max can be known before
119  * ncpus is set (useful for early NCPU based allocations).
120  */
121 int max_ncpus = NCPU;
122 /*
123  * platforms that set max_ncpus to maxiumum number of cpus that can be
124  * dynamically added will set boot_max_ncpus to the number of cpus found
125  * at device tree scan time during boot.
126  */
127 int boot_max_ncpus = -1;
128 int boot_ncpus = -1;
129 /*
130  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
131  * used to size arrays that are indexed by CPU id.
132  */
133 processorid_t max_cpuid = NCPU - 1;
134 
135 int ncpus = 1;
136 int ncpus_online = 1;
137 
138 /*
139  * CPU that we're trying to offline.  Protected by cpu_lock.
140  */
141 cpu_t *cpu_inmotion;
142 
143 /*
144  * Can be raised to suppress further weakbinding, which are instead
145  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
146  * while individual thread weakbinding synchronisation is done under thread
147  * lock.
148  */
149 int weakbindingbarrier;
150 
151 /*
152  * Variables used in pause_cpus().
153  */
154 static volatile char safe_list[NCPU];
155 
156 static struct _cpu_pause_info {
157 	int		cp_spl;		/* spl saved in pause_cpus() */
158 	volatile int	cp_go;		/* Go signal sent after all ready */
159 	int		cp_count;	/* # of CPUs to pause */
160 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
161 	kthread_id_t	cp_paused;
162 } cpu_pause_info;
163 
164 static kmutex_t pause_free_mutex;
165 static kcondvar_t pause_free_cv;
166 
167 void *(*cpu_pause_func)(void *) = NULL;
168 
169 
170 static struct cpu_sys_stats_ks_data {
171 	kstat_named_t cpu_ticks_idle;
172 	kstat_named_t cpu_ticks_user;
173 	kstat_named_t cpu_ticks_kernel;
174 	kstat_named_t cpu_ticks_wait;
175 	kstat_named_t cpu_nsec_idle;
176 	kstat_named_t cpu_nsec_user;
177 	kstat_named_t cpu_nsec_kernel;
178 	kstat_named_t cpu_nsec_intr;
179 	kstat_named_t cpu_load_intr;
180 	kstat_named_t wait_ticks_io;
181 	kstat_named_t bread;
182 	kstat_named_t bwrite;
183 	kstat_named_t lread;
184 	kstat_named_t lwrite;
185 	kstat_named_t phread;
186 	kstat_named_t phwrite;
187 	kstat_named_t pswitch;
188 	kstat_named_t trap;
189 	kstat_named_t intr;
190 	kstat_named_t syscall;
191 	kstat_named_t sysread;
192 	kstat_named_t syswrite;
193 	kstat_named_t sysfork;
194 	kstat_named_t sysvfork;
195 	kstat_named_t sysexec;
196 	kstat_named_t readch;
197 	kstat_named_t writech;
198 	kstat_named_t rcvint;
199 	kstat_named_t xmtint;
200 	kstat_named_t mdmint;
201 	kstat_named_t rawch;
202 	kstat_named_t canch;
203 	kstat_named_t outch;
204 	kstat_named_t msg;
205 	kstat_named_t sema;
206 	kstat_named_t namei;
207 	kstat_named_t ufsiget;
208 	kstat_named_t ufsdirblk;
209 	kstat_named_t ufsipage;
210 	kstat_named_t ufsinopage;
211 	kstat_named_t procovf;
212 	kstat_named_t intrthread;
213 	kstat_named_t intrblk;
214 	kstat_named_t intrunpin;
215 	kstat_named_t idlethread;
216 	kstat_named_t inv_swtch;
217 	kstat_named_t nthreads;
218 	kstat_named_t cpumigrate;
219 	kstat_named_t xcalls;
220 	kstat_named_t mutex_adenters;
221 	kstat_named_t rw_rdfails;
222 	kstat_named_t rw_wrfails;
223 	kstat_named_t modload;
224 	kstat_named_t modunload;
225 	kstat_named_t bawrite;
226 	kstat_named_t iowait;
227 } cpu_sys_stats_ks_data_template = {
228 	{ "cpu_ticks_idle", 	KSTAT_DATA_UINT64 },
229 	{ "cpu_ticks_user", 	KSTAT_DATA_UINT64 },
230 	{ "cpu_ticks_kernel", 	KSTAT_DATA_UINT64 },
231 	{ "cpu_ticks_wait", 	KSTAT_DATA_UINT64 },
232 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
233 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
234 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
235 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
236 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
237 	{ "wait_ticks_io", 	KSTAT_DATA_UINT64 },
238 	{ "bread", 		KSTAT_DATA_UINT64 },
239 	{ "bwrite", 		KSTAT_DATA_UINT64 },
240 	{ "lread", 		KSTAT_DATA_UINT64 },
241 	{ "lwrite", 		KSTAT_DATA_UINT64 },
242 	{ "phread", 		KSTAT_DATA_UINT64 },
243 	{ "phwrite", 		KSTAT_DATA_UINT64 },
244 	{ "pswitch", 		KSTAT_DATA_UINT64 },
245 	{ "trap", 		KSTAT_DATA_UINT64 },
246 	{ "intr", 		KSTAT_DATA_UINT64 },
247 	{ "syscall", 		KSTAT_DATA_UINT64 },
248 	{ "sysread", 		KSTAT_DATA_UINT64 },
249 	{ "syswrite", 		KSTAT_DATA_UINT64 },
250 	{ "sysfork", 		KSTAT_DATA_UINT64 },
251 	{ "sysvfork", 		KSTAT_DATA_UINT64 },
252 	{ "sysexec", 		KSTAT_DATA_UINT64 },
253 	{ "readch", 		KSTAT_DATA_UINT64 },
254 	{ "writech", 		KSTAT_DATA_UINT64 },
255 	{ "rcvint", 		KSTAT_DATA_UINT64 },
256 	{ "xmtint", 		KSTAT_DATA_UINT64 },
257 	{ "mdmint", 		KSTAT_DATA_UINT64 },
258 	{ "rawch", 		KSTAT_DATA_UINT64 },
259 	{ "canch", 		KSTAT_DATA_UINT64 },
260 	{ "outch", 		KSTAT_DATA_UINT64 },
261 	{ "msg", 		KSTAT_DATA_UINT64 },
262 	{ "sema", 		KSTAT_DATA_UINT64 },
263 	{ "namei", 		KSTAT_DATA_UINT64 },
264 	{ "ufsiget", 		KSTAT_DATA_UINT64 },
265 	{ "ufsdirblk", 		KSTAT_DATA_UINT64 },
266 	{ "ufsipage", 		KSTAT_DATA_UINT64 },
267 	{ "ufsinopage", 	KSTAT_DATA_UINT64 },
268 	{ "procovf", 		KSTAT_DATA_UINT64 },
269 	{ "intrthread", 	KSTAT_DATA_UINT64 },
270 	{ "intrblk", 		KSTAT_DATA_UINT64 },
271 	{ "intrunpin",		KSTAT_DATA_UINT64 },
272 	{ "idlethread", 	KSTAT_DATA_UINT64 },
273 	{ "inv_swtch", 		KSTAT_DATA_UINT64 },
274 	{ "nthreads", 		KSTAT_DATA_UINT64 },
275 	{ "cpumigrate", 	KSTAT_DATA_UINT64 },
276 	{ "xcalls", 		KSTAT_DATA_UINT64 },
277 	{ "mutex_adenters", 	KSTAT_DATA_UINT64 },
278 	{ "rw_rdfails", 	KSTAT_DATA_UINT64 },
279 	{ "rw_wrfails", 	KSTAT_DATA_UINT64 },
280 	{ "modload", 		KSTAT_DATA_UINT64 },
281 	{ "modunload", 		KSTAT_DATA_UINT64 },
282 	{ "bawrite", 		KSTAT_DATA_UINT64 },
283 	{ "iowait",		KSTAT_DATA_UINT64 },
284 };
285 
286 static struct cpu_vm_stats_ks_data {
287 	kstat_named_t pgrec;
288 	kstat_named_t pgfrec;
289 	kstat_named_t pgin;
290 	kstat_named_t pgpgin;
291 	kstat_named_t pgout;
292 	kstat_named_t pgpgout;
293 	kstat_named_t swapin;
294 	kstat_named_t pgswapin;
295 	kstat_named_t swapout;
296 	kstat_named_t pgswapout;
297 	kstat_named_t zfod;
298 	kstat_named_t dfree;
299 	kstat_named_t scan;
300 	kstat_named_t rev;
301 	kstat_named_t hat_fault;
302 	kstat_named_t as_fault;
303 	kstat_named_t maj_fault;
304 	kstat_named_t cow_fault;
305 	kstat_named_t prot_fault;
306 	kstat_named_t softlock;
307 	kstat_named_t kernel_asflt;
308 	kstat_named_t pgrrun;
309 	kstat_named_t execpgin;
310 	kstat_named_t execpgout;
311 	kstat_named_t execfree;
312 	kstat_named_t anonpgin;
313 	kstat_named_t anonpgout;
314 	kstat_named_t anonfree;
315 	kstat_named_t fspgin;
316 	kstat_named_t fspgout;
317 	kstat_named_t fsfree;
318 } cpu_vm_stats_ks_data_template = {
319 	{ "pgrec",		KSTAT_DATA_UINT64 },
320 	{ "pgfrec",		KSTAT_DATA_UINT64 },
321 	{ "pgin",		KSTAT_DATA_UINT64 },
322 	{ "pgpgin",		KSTAT_DATA_UINT64 },
323 	{ "pgout",		KSTAT_DATA_UINT64 },
324 	{ "pgpgout",		KSTAT_DATA_UINT64 },
325 	{ "swapin",		KSTAT_DATA_UINT64 },
326 	{ "pgswapin",		KSTAT_DATA_UINT64 },
327 	{ "swapout",		KSTAT_DATA_UINT64 },
328 	{ "pgswapout",		KSTAT_DATA_UINT64 },
329 	{ "zfod",		KSTAT_DATA_UINT64 },
330 	{ "dfree",		KSTAT_DATA_UINT64 },
331 	{ "scan",		KSTAT_DATA_UINT64 },
332 	{ "rev",		KSTAT_DATA_UINT64 },
333 	{ "hat_fault",		KSTAT_DATA_UINT64 },
334 	{ "as_fault",		KSTAT_DATA_UINT64 },
335 	{ "maj_fault",		KSTAT_DATA_UINT64 },
336 	{ "cow_fault",		KSTAT_DATA_UINT64 },
337 	{ "prot_fault",		KSTAT_DATA_UINT64 },
338 	{ "softlock",		KSTAT_DATA_UINT64 },
339 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
340 	{ "pgrrun",		KSTAT_DATA_UINT64 },
341 	{ "execpgin",		KSTAT_DATA_UINT64 },
342 	{ "execpgout",		KSTAT_DATA_UINT64 },
343 	{ "execfree",		KSTAT_DATA_UINT64 },
344 	{ "anonpgin",		KSTAT_DATA_UINT64 },
345 	{ "anonpgout",		KSTAT_DATA_UINT64 },
346 	{ "anonfree",		KSTAT_DATA_UINT64 },
347 	{ "fspgin",		KSTAT_DATA_UINT64 },
348 	{ "fspgout",		KSTAT_DATA_UINT64 },
349 	{ "fsfree",		KSTAT_DATA_UINT64 },
350 };
351 
352 /*
353  * Force the specified thread to migrate to the appropriate processor.
354  * Called with thread lock held, returns with it dropped.
355  */
356 static void
357 force_thread_migrate(kthread_id_t tp)
358 {
359 	ASSERT(THREAD_LOCK_HELD(tp));
360 	if (tp == curthread) {
361 		THREAD_TRANSITION(tp);
362 		CL_SETRUN(tp);
363 		thread_unlock_nopreempt(tp);
364 		swtch();
365 	} else {
366 		if (tp->t_state == TS_ONPROC) {
367 			cpu_surrender(tp);
368 		} else if (tp->t_state == TS_RUN) {
369 			(void) dispdeq(tp);
370 			setbackdq(tp);
371 		}
372 		thread_unlock(tp);
373 	}
374 }
375 
376 /*
377  * Set affinity for a specified CPU.
378  * A reference count is incremented and the affinity is held until the
379  * reference count is decremented to zero by thread_affinity_clear().
380  * This is so regions of code requiring affinity can be nested.
381  * Caller needs to ensure that cpu_id remains valid, which can be
382  * done by holding cpu_lock across this call, unless the caller
383  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
384  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
385  */
386 void
387 thread_affinity_set(kthread_id_t t, int cpu_id)
388 {
389 	cpu_t		*cp;
390 	int		c;
391 
392 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
393 
394 	if ((c = cpu_id) == CPU_CURRENT) {
395 		mutex_enter(&cpu_lock);
396 		cpu_id = CPU->cpu_id;
397 	}
398 	/*
399 	 * We should be asserting that cpu_lock is held here, but
400 	 * the NCA code doesn't acquire it.  The following assert
401 	 * should be uncommented when the NCA code is fixed.
402 	 *
403 	 * ASSERT(MUTEX_HELD(&cpu_lock));
404 	 */
405 	ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
406 	cp = cpu[cpu_id];
407 	ASSERT(cp != NULL);		/* user must provide a good cpu_id */
408 	/*
409 	 * If there is already a hard affinity requested, and this affinity
410 	 * conflicts with that, panic.
411 	 */
412 	thread_lock(t);
413 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
414 		panic("affinity_set: setting %p but already bound to %p",
415 		    (void *)cp, (void *)t->t_bound_cpu);
416 	}
417 	t->t_affinitycnt++;
418 	t->t_bound_cpu = cp;
419 
420 	/*
421 	 * Make sure we're running on the right CPU.
422 	 */
423 	if (cp != t->t_cpu || t != curthread) {
424 		force_thread_migrate(t);	/* drops thread lock */
425 	} else {
426 		thread_unlock(t);
427 	}
428 
429 	if (c == CPU_CURRENT)
430 		mutex_exit(&cpu_lock);
431 }
432 
433 /*
434  *	Wrapper for backward compatibility.
435  */
436 void
437 affinity_set(int cpu_id)
438 {
439 	thread_affinity_set(curthread, cpu_id);
440 }
441 
442 /*
443  * Decrement the affinity reservation count and if it becomes zero,
444  * clear the CPU affinity for the current thread, or set it to the user's
445  * software binding request.
446  */
447 void
448 thread_affinity_clear(kthread_id_t t)
449 {
450 	register processorid_t binding;
451 
452 	thread_lock(t);
453 	if (--t->t_affinitycnt == 0) {
454 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
455 			/*
456 			 * Adjust disp_max_unbound_pri if necessary.
457 			 */
458 			disp_adjust_unbound_pri(t);
459 			t->t_bound_cpu = NULL;
460 			if (t->t_cpu->cpu_part != t->t_cpupart) {
461 				force_thread_migrate(t);
462 				return;
463 			}
464 		} else {
465 			t->t_bound_cpu = cpu[binding];
466 			/*
467 			 * Make sure the thread is running on the bound CPU.
468 			 */
469 			if (t->t_cpu != t->t_bound_cpu) {
470 				force_thread_migrate(t);
471 				return;		/* already dropped lock */
472 			}
473 		}
474 	}
475 	thread_unlock(t);
476 }
477 
478 /*
479  * Wrapper for backward compatibility.
480  */
481 void
482 affinity_clear(void)
483 {
484 	thread_affinity_clear(curthread);
485 }
486 
487 /*
488  * Weak cpu affinity.  Bind to the "current" cpu for short periods
489  * of time during which the thread must not block (but may be preempted).
490  * Use this instead of kpreempt_disable() when it is only "no migration"
491  * rather than "no preemption" semantics that are required - disabling
492  * preemption holds higher priority threads off of cpu and if the
493  * operation that is protected is more than momentary this is not good
494  * for realtime etc.
495  *
496  * Weakly bound threads will not prevent a cpu from being offlined -
497  * we'll only run them on the cpu to which they are weakly bound but
498  * (because they do not block) we'll always be able to move them on to
499  * another cpu at offline time if we give them just a short moment to
500  * run during which they will unbind.  To give a cpu a chance of offlining,
501  * however, we require a barrier to weak bindings that may be raised for a
502  * given cpu (offline/move code may set this and then wait a short time for
503  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
504  *
505  * There are few restrictions on the calling context of thread_nomigrate.
506  * The caller must not hold the thread lock.  Calls may be nested.
507  *
508  * After weakbinding a thread must not perform actions that may block.
509  * In particular it must not call thread_affinity_set; calling that when
510  * already weakbound is nonsensical anyway.
511  *
512  * If curthread is prevented from migrating for other reasons
513  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
514  * then the weak binding will succeed even if this cpu is the target of an
515  * offline/move request.
516  */
517 void
518 thread_nomigrate(void)
519 {
520 	cpu_t *cp;
521 	kthread_id_t t = curthread;
522 
523 again:
524 	kpreempt_disable();
525 	cp = CPU;
526 
527 	/*
528 	 * A highlevel interrupt must not modify t_nomigrate or
529 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
530 	 * interrupt thread cannot migrate and we can avoid the
531 	 * thread_lock call below by short-circuiting here.  In either
532 	 * case we can just return since no migration is possible and
533 	 * the condition will persist (ie, when we test for these again
534 	 * in thread_allowmigrate they can't have changed).   Migration
535 	 * is also impossible if we're at or above DISP_LEVEL pil.
536 	 */
537 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
538 	    getpil() >= DISP_LEVEL) {
539 		kpreempt_enable();
540 		return;
541 	}
542 
543 	/*
544 	 * We must be consistent with existing weak bindings.  Since we
545 	 * may be interrupted between the increment of t_nomigrate and
546 	 * the store to t_weakbound_cpu below we cannot assume that
547 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
548 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
549 	 * always the case.
550 	 */
551 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
552 		if (!panicstr)
553 			panic("thread_nomigrate: binding to %p but already "
554 			    "bound to %p", (void *)cp,
555 			    (void *)t->t_weakbound_cpu);
556 	}
557 
558 	/*
559 	 * At this point we have preemption disabled and we don't yet hold
560 	 * the thread lock.  So it's possible that somebody else could
561 	 * set t_bind_cpu here and not be able to force us across to the
562 	 * new cpu (since we have preemption disabled).
563 	 */
564 	thread_lock(curthread);
565 
566 	/*
567 	 * If further weak bindings are being (temporarily) suppressed then
568 	 * we'll settle for disabling kernel preemption (which assures
569 	 * no migration provided the thread does not block which it is
570 	 * not allowed to if using thread_nomigrate).  We must remember
571 	 * this disposition so we can take appropriate action in
572 	 * thread_allowmigrate.  If this is a nested call and the
573 	 * thread is already weakbound then fall through as normal.
574 	 * We remember the decision to settle for kpreempt_disable through
575 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
576 	 * weakbinding request satisfied in this way any further (nested)
577 	 * requests will continue to be satisfied in the same way,
578 	 * even if weak bindings have recommenced.
579 	 */
580 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
581 		--t->t_nomigrate;
582 		thread_unlock(curthread);
583 		return;		/* with kpreempt_disable still active */
584 	}
585 
586 	/*
587 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
588 	 * however, be running on a different cpu to which we are t_bound_cpu
589 	 * to (as explained above).  If we grant the weak binding request
590 	 * in that case then the dispatcher must favour our weak binding
591 	 * over our strong (in which case, just as when preemption is
592 	 * disabled, we can continue to run on a cpu other than the one to
593 	 * which we are strongbound; the difference in this case is that
594 	 * this thread can be preempted and so can appear on the dispatch
595 	 * queues of a cpu other than the one it is strongbound to).
596 	 *
597 	 * If the cpu we are running on does not appear to be a current
598 	 * offline target (we check cpu_inmotion to determine this - since
599 	 * we don't hold cpu_lock we may not see a recent store to that,
600 	 * so it's possible that we at times can grant a weak binding to a
601 	 * cpu that is an offline target, but that one request will not
602 	 * prevent the offline from succeeding) then we will always grant
603 	 * the weak binding request.  This includes the case above where
604 	 * we grant a weakbinding not commensurate with our strong binding.
605 	 *
606 	 * If our cpu does appear to be an offline target then we're inclined
607 	 * not to grant the weakbinding request just yet - we'd prefer to
608 	 * migrate to another cpu and grant the request there.  The
609 	 * exceptions are those cases where going through preemption code
610 	 * will not result in us changing cpu:
611 	 *
612 	 *	. interrupts have already bypassed this case (see above)
613 	 *	. we are already weakbound to this cpu (dispatcher code will
614 	 *	  always return us to the weakbound cpu)
615 	 *	. preemption was disabled even before we disabled it above
616 	 *	. we are strongbound to this cpu (if we're strongbound to
617 	 *	another and not yet running there the trip through the
618 	 *	dispatcher will move us to the strongbound cpu and we
619 	 *	will grant the weak binding there)
620 	 */
621 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
622 	    t->t_bound_cpu == cp) {
623 		/*
624 		 * Don't be tempted to store to t_weakbound_cpu only on
625 		 * the first nested bind request - if we're interrupted
626 		 * after the increment of t_nomigrate and before the
627 		 * store to t_weakbound_cpu and the interrupt calls
628 		 * thread_nomigrate then the assertion in thread_allowmigrate
629 		 * would fail.
630 		 */
631 		t->t_nomigrate++;
632 		t->t_weakbound_cpu = cp;
633 		membar_producer();
634 		thread_unlock(curthread);
635 		/*
636 		 * Now that we have dropped the thread_lock another thread
637 		 * can set our t_weakbound_cpu, and will try to migrate us
638 		 * to the strongbound cpu (which will not be prevented by
639 		 * preemption being disabled since we're about to enable
640 		 * preemption).  We have granted the weakbinding to the current
641 		 * cpu, so again we are in the position that is is is possible
642 		 * that our weak and strong bindings differ.  Again this
643 		 * is catered for by dispatcher code which will favour our
644 		 * weak binding.
645 		 */
646 		kpreempt_enable();
647 	} else {
648 		/*
649 		 * Move to another cpu before granting the request by
650 		 * forcing this thread through preemption code.  When we
651 		 * get to set{front,back}dq called from CL_PREEMPT()
652 		 * cpu_choose() will be used to select a cpu to queue
653 		 * us on - that will see cpu_inmotion and take
654 		 * steps to avoid returning us to this cpu.
655 		 */
656 		cp->cpu_kprunrun = 1;
657 		thread_unlock(curthread);
658 		kpreempt_enable();	/* will call preempt() */
659 		goto again;
660 	}
661 }
662 
663 void
664 thread_allowmigrate(void)
665 {
666 	kthread_id_t t = curthread;
667 
668 	ASSERT(t->t_weakbound_cpu == CPU ||
669 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
670 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
671 	    getpil() >= DISP_LEVEL);
672 
673 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
674 	    getpil() >= DISP_LEVEL)
675 		return;
676 
677 	if (t->t_nomigrate < 0) {
678 		/*
679 		 * This thread was granted "weak binding" in the
680 		 * stronger form of kernel preemption disabling.
681 		 * Undo a level of nesting for both t_nomigrate
682 		 * and t_preempt.
683 		 */
684 		++t->t_nomigrate;
685 		kpreempt_enable();
686 	} else if (--t->t_nomigrate == 0) {
687 		/*
688 		 * Time to drop the weak binding.  We need to cater
689 		 * for the case where we're weakbound to a different
690 		 * cpu than that to which we're strongbound (a very
691 		 * temporary arrangement that must only persist until
692 		 * weak binding drops).  We don't acquire thread_lock
693 		 * here so even as this code executes t_bound_cpu
694 		 * may be changing.  So we disable preemption and
695 		 * a) in the case that t_bound_cpu changes while we
696 		 * have preemption disabled kprunrun will be set
697 		 * asynchronously, and b) if before disabling
698 		 * preemption we were already on a different cpu to
699 		 * our t_bound_cpu then we set kprunrun ourselves
700 		 * to force a trip through the dispatcher when
701 		 * preemption is enabled.
702 		 */
703 		kpreempt_disable();
704 		if (t->t_bound_cpu &&
705 		    t->t_weakbound_cpu != t->t_bound_cpu)
706 			CPU->cpu_kprunrun = 1;
707 		t->t_weakbound_cpu = NULL;
708 		membar_producer();
709 		kpreempt_enable();
710 	}
711 }
712 
713 /*
714  * weakbinding_stop can be used to temporarily cause weakbindings made
715  * with thread_nomigrate to be satisfied through the stronger action of
716  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
717  */
718 
719 void
720 weakbinding_stop(void)
721 {
722 	ASSERT(MUTEX_HELD(&cpu_lock));
723 	weakbindingbarrier = 1;
724 	membar_producer();	/* make visible before subsequent thread_lock */
725 }
726 
727 void
728 weakbinding_start(void)
729 {
730 	ASSERT(MUTEX_HELD(&cpu_lock));
731 	weakbindingbarrier = 0;
732 }
733 
734 void
735 null_xcall(void)
736 {
737 }
738 
739 /*
740  * This routine is called to place the CPUs in a safe place so that
741  * one of them can be taken off line or placed on line.  What we are
742  * trying to do here is prevent a thread from traversing the list
743  * of active CPUs while we are changing it or from getting placed on
744  * the run queue of a CPU that has just gone off line.  We do this by
745  * creating a thread with the highest possible prio for each CPU and
746  * having it call this routine.  The advantage of this method is that
747  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
748  * This makes disp faster at the expense of making p_online() slower
749  * which is a good trade off.
750  */
751 static void
752 cpu_pause(int index)
753 {
754 	int s;
755 	struct _cpu_pause_info *cpi = &cpu_pause_info;
756 	volatile char *safe = &safe_list[index];
757 	long    lindex = index;
758 
759 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
760 
761 	while (*safe != PAUSE_DIE) {
762 		*safe = PAUSE_READY;
763 		membar_enter();		/* make sure stores are flushed */
764 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
765 
766 		/*
767 		 * Wait here until all pause threads are running.  That
768 		 * indicates that it's safe to do the spl.  Until
769 		 * cpu_pause_info.cp_go is set, we don't want to spl
770 		 * because that might block clock interrupts needed
771 		 * to preempt threads on other CPUs.
772 		 */
773 		while (cpi->cp_go == 0)
774 			;
775 		/*
776 		 * Even though we are at the highest disp prio, we need
777 		 * to block out all interrupts below LOCK_LEVEL so that
778 		 * an intr doesn't come in, wake up a thread, and call
779 		 * setbackdq/setfrontdq.
780 		 */
781 		s = splhigh();
782 		/*
783 		 * if cpu_pause_func() has been set then call it using
784 		 * index as the argument, currently only used by
785 		 * cpr_suspend_cpus().  This function is used as the
786 		 * code to execute on the "paused" cpu's when a machine
787 		 * comes out of a sleep state and CPU's were powered off.
788 		 * (could also be used for hotplugging CPU's).
789 		 */
790 		if (cpu_pause_func != NULL)
791 			(*cpu_pause_func)((void *)lindex);
792 
793 		mach_cpu_pause(safe);
794 
795 		splx(s);
796 		/*
797 		 * Waiting is at an end. Switch out of cpu_pause
798 		 * loop and resume useful work.
799 		 */
800 		swtch();
801 	}
802 
803 	mutex_enter(&pause_free_mutex);
804 	*safe = PAUSE_DEAD;
805 	cv_broadcast(&pause_free_cv);
806 	mutex_exit(&pause_free_mutex);
807 }
808 
809 /*
810  * Allow the cpus to start running again.
811  */
812 void
813 start_cpus()
814 {
815 	int i;
816 
817 	ASSERT(MUTEX_HELD(&cpu_lock));
818 	ASSERT(cpu_pause_info.cp_paused);
819 	cpu_pause_info.cp_paused = NULL;
820 	for (i = 0; i < NCPU; i++)
821 		safe_list[i] = PAUSE_IDLE;
822 	membar_enter();			/* make sure stores are flushed */
823 	affinity_clear();
824 	splx(cpu_pause_info.cp_spl);
825 	kpreempt_enable();
826 }
827 
828 /*
829  * Allocate a pause thread for a CPU.
830  */
831 static void
832 cpu_pause_alloc(cpu_t *cp)
833 {
834 	kthread_id_t	t;
835 	long		cpun = cp->cpu_id;
836 
837 	/*
838 	 * Note, v.v_nglobpris will not change value as long as I hold
839 	 * cpu_lock.
840 	 */
841 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
842 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
843 	thread_lock(t);
844 	t->t_bound_cpu = cp;
845 	t->t_disp_queue = cp->cpu_disp;
846 	t->t_affinitycnt = 1;
847 	t->t_preempt = 1;
848 	thread_unlock(t);
849 	cp->cpu_pause_thread = t;
850 	/*
851 	 * Registering a thread in the callback table is usually done
852 	 * in the initialization code of the thread.  In this
853 	 * case, we do it right after thread creation because the
854 	 * thread itself may never run, and we need to register the
855 	 * fact that it is safe for cpr suspend.
856 	 */
857 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
858 }
859 
860 /*
861  * Free a pause thread for a CPU.
862  */
863 static void
864 cpu_pause_free(cpu_t *cp)
865 {
866 	kthread_id_t	t;
867 	int		cpun = cp->cpu_id;
868 
869 	ASSERT(MUTEX_HELD(&cpu_lock));
870 	/*
871 	 * We have to get the thread and tell him to die.
872 	 */
873 	if ((t = cp->cpu_pause_thread) == NULL) {
874 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
875 		return;
876 	}
877 	thread_lock(t);
878 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
879 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
880 	t->t_pri = v.v_nglobpris - 1;
881 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
882 	safe_list[cpun] = PAUSE_DIE;
883 	THREAD_TRANSITION(t);
884 	setbackdq(t);
885 	thread_unlock_nopreempt(t);
886 
887 	/*
888 	 * If we don't wait for the thread to actually die, it may try to
889 	 * run on the wrong cpu as part of an actual call to pause_cpus().
890 	 */
891 	mutex_enter(&pause_free_mutex);
892 	while (safe_list[cpun] != PAUSE_DEAD) {
893 		cv_wait(&pause_free_cv, &pause_free_mutex);
894 	}
895 	mutex_exit(&pause_free_mutex);
896 	safe_list[cpun] = PAUSE_IDLE;
897 
898 	cp->cpu_pause_thread = NULL;
899 }
900 
901 /*
902  * Initialize basic structures for pausing CPUs.
903  */
904 void
905 cpu_pause_init()
906 {
907 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
908 	/*
909 	 * Create initial CPU pause thread.
910 	 */
911 	cpu_pause_alloc(CPU);
912 }
913 
914 /*
915  * Start the threads used to pause another CPU.
916  */
917 static int
918 cpu_pause_start(processorid_t cpu_id)
919 {
920 	int	i;
921 	int	cpu_count = 0;
922 
923 	for (i = 0; i < NCPU; i++) {
924 		cpu_t		*cp;
925 		kthread_id_t	t;
926 
927 		cp = cpu[i];
928 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
929 			safe_list[i] = PAUSE_WAIT;
930 			continue;
931 		}
932 
933 		/*
934 		 * Skip CPU if it is quiesced or not yet started.
935 		 */
936 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
937 			safe_list[i] = PAUSE_WAIT;
938 			continue;
939 		}
940 
941 		/*
942 		 * Start this CPU's pause thread.
943 		 */
944 		t = cp->cpu_pause_thread;
945 		thread_lock(t);
946 		/*
947 		 * Reset the priority, since nglobpris may have
948 		 * changed since the thread was created, if someone
949 		 * has loaded the RT (or some other) scheduling
950 		 * class.
951 		 */
952 		t->t_pri = v.v_nglobpris - 1;
953 		THREAD_TRANSITION(t);
954 		setbackdq(t);
955 		thread_unlock_nopreempt(t);
956 		++cpu_count;
957 	}
958 	return (cpu_count);
959 }
960 
961 
962 /*
963  * Pause all of the CPUs except the one we are on by creating a high
964  * priority thread bound to those CPUs.
965  *
966  * Note that one must be extremely careful regarding code
967  * executed while CPUs are paused.  Since a CPU may be paused
968  * while a thread scheduling on that CPU is holding an adaptive
969  * lock, code executed with CPUs paused must not acquire adaptive
970  * (or low-level spin) locks.  Also, such code must not block,
971  * since the thread that is supposed to initiate the wakeup may
972  * never run.
973  *
974  * With a few exceptions, the restrictions on code executed with CPUs
975  * paused match those for code executed at high-level interrupt
976  * context.
977  */
978 void
979 pause_cpus(cpu_t *off_cp)
980 {
981 	processorid_t	cpu_id;
982 	int		i;
983 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
984 
985 	ASSERT(MUTEX_HELD(&cpu_lock));
986 	ASSERT(cpi->cp_paused == NULL);
987 	cpi->cp_count = 0;
988 	cpi->cp_go = 0;
989 	for (i = 0; i < NCPU; i++)
990 		safe_list[i] = PAUSE_IDLE;
991 	kpreempt_disable();
992 
993 	/*
994 	 * If running on the cpu that is going offline, get off it.
995 	 * This is so that it won't be necessary to rechoose a CPU
996 	 * when done.
997 	 */
998 	if (CPU == off_cp)
999 		cpu_id = off_cp->cpu_next_part->cpu_id;
1000 	else
1001 		cpu_id = CPU->cpu_id;
1002 	affinity_set(cpu_id);
1003 
1004 	/*
1005 	 * Start the pause threads and record how many were started
1006 	 */
1007 	cpi->cp_count = cpu_pause_start(cpu_id);
1008 
1009 	/*
1010 	 * Now wait for all CPUs to be running the pause thread.
1011 	 */
1012 	while (cpi->cp_count > 0) {
1013 		/*
1014 		 * Spin reading the count without grabbing the disp
1015 		 * lock to make sure we don't prevent the pause
1016 		 * threads from getting the lock.
1017 		 */
1018 		while (sema_held(&cpi->cp_sem))
1019 			;
1020 		if (sema_tryp(&cpi->cp_sem))
1021 			--cpi->cp_count;
1022 	}
1023 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1024 
1025 	/*
1026 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1027 	 * to PAUSE_WAIT.)
1028 	 */
1029 	for (i = 0; i < NCPU; i++) {
1030 		while (safe_list[i] != PAUSE_WAIT)
1031 			;
1032 	}
1033 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1034 	cpi->cp_paused = curthread;
1035 }
1036 
1037 /*
1038  * Check whether the current thread has CPUs paused
1039  */
1040 int
1041 cpus_paused(void)
1042 {
1043 	if (cpu_pause_info.cp_paused != NULL) {
1044 		ASSERT(cpu_pause_info.cp_paused == curthread);
1045 		return (1);
1046 	}
1047 	return (0);
1048 }
1049 
1050 static cpu_t *
1051 cpu_get_all(processorid_t cpun)
1052 {
1053 	ASSERT(MUTEX_HELD(&cpu_lock));
1054 
1055 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1056 		return (NULL);
1057 	return (cpu[cpun]);
1058 }
1059 
1060 /*
1061  * Check whether cpun is a valid processor id and whether it should be
1062  * visible from the current zone. If it is, return a pointer to the
1063  * associated CPU structure.
1064  */
1065 cpu_t *
1066 cpu_get(processorid_t cpun)
1067 {
1068 	cpu_t *c;
1069 
1070 	ASSERT(MUTEX_HELD(&cpu_lock));
1071 	c = cpu_get_all(cpun);
1072 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1073 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1074 		return (NULL);
1075 	return (c);
1076 }
1077 
1078 /*
1079  * The following functions should be used to check CPU states in the kernel.
1080  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1081  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1082  * states.  Those are for user-land (and system call) use only.
1083  */
1084 
1085 /*
1086  * Determine whether the CPU is online and handling interrupts.
1087  */
1088 int
1089 cpu_is_online(cpu_t *cpu)
1090 {
1091 	ASSERT(MUTEX_HELD(&cpu_lock));
1092 	return (cpu_flagged_online(cpu->cpu_flags));
1093 }
1094 
1095 /*
1096  * Determine whether the CPU is offline (this includes spare and faulted).
1097  */
1098 int
1099 cpu_is_offline(cpu_t *cpu)
1100 {
1101 	ASSERT(MUTEX_HELD(&cpu_lock));
1102 	return (cpu_flagged_offline(cpu->cpu_flags));
1103 }
1104 
1105 /*
1106  * Determine whether the CPU is powered off.
1107  */
1108 int
1109 cpu_is_poweredoff(cpu_t *cpu)
1110 {
1111 	ASSERT(MUTEX_HELD(&cpu_lock));
1112 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1113 }
1114 
1115 /*
1116  * Determine whether the CPU is handling interrupts.
1117  */
1118 int
1119 cpu_is_nointr(cpu_t *cpu)
1120 {
1121 	ASSERT(MUTEX_HELD(&cpu_lock));
1122 	return (cpu_flagged_nointr(cpu->cpu_flags));
1123 }
1124 
1125 /*
1126  * Determine whether the CPU is active (scheduling threads).
1127  */
1128 int
1129 cpu_is_active(cpu_t *cpu)
1130 {
1131 	ASSERT(MUTEX_HELD(&cpu_lock));
1132 	return (cpu_flagged_active(cpu->cpu_flags));
1133 }
1134 
1135 /*
1136  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1137  */
1138 int
1139 cpu_flagged_online(cpu_flag_t cpu_flags)
1140 {
1141 	return (cpu_flagged_active(cpu_flags) &&
1142 	    (cpu_flags & CPU_ENABLE));
1143 }
1144 
1145 int
1146 cpu_flagged_offline(cpu_flag_t cpu_flags)
1147 {
1148 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1149 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1150 }
1151 
1152 int
1153 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1154 {
1155 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1156 }
1157 
1158 int
1159 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1160 {
1161 	return (cpu_flagged_active(cpu_flags) &&
1162 	    (cpu_flags & CPU_ENABLE) == 0);
1163 }
1164 
1165 int
1166 cpu_flagged_active(cpu_flag_t cpu_flags)
1167 {
1168 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1169 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1170 }
1171 
1172 /*
1173  * Bring the indicated CPU online.
1174  */
1175 int
1176 cpu_online(cpu_t *cp)
1177 {
1178 	int	error = 0;
1179 
1180 	/*
1181 	 * Handle on-line request.
1182 	 *	This code must put the new CPU on the active list before
1183 	 *	starting it because it will not be paused, and will start
1184 	 * 	using the active list immediately.  The real start occurs
1185 	 *	when the CPU_QUIESCED flag is turned off.
1186 	 */
1187 
1188 	ASSERT(MUTEX_HELD(&cpu_lock));
1189 
1190 	/*
1191 	 * Put all the cpus into a known safe place.
1192 	 * No mutexes can be entered while CPUs are paused.
1193 	 */
1194 	error = mp_cpu_start(cp);	/* arch-dep hook */
1195 	if (error == 0) {
1196 		pg_cpupart_in(cp, cp->cpu_part);
1197 		pause_cpus(NULL);
1198 		cpu_add_active_internal(cp);
1199 		if (cp->cpu_flags & CPU_FAULTED) {
1200 			cp->cpu_flags &= ~CPU_FAULTED;
1201 			mp_cpu_faulted_exit(cp);
1202 		}
1203 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1204 		    CPU_SPARE);
1205 		start_cpus();
1206 		cpu_stats_kstat_create(cp);
1207 		cpu_create_intrstat(cp);
1208 		lgrp_kstat_create(cp);
1209 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1210 		cpu_intr_enable(cp);	/* arch-dep hook */
1211 		cpu_set_state(cp);
1212 		cyclic_online(cp);
1213 		/*
1214 		 * This has to be called only after cyclic_online(). This
1215 		 * function uses cyclics.
1216 		 */
1217 		callout_cpu_online(cp);
1218 		poke_cpu(cp->cpu_id);
1219 	}
1220 
1221 	return (error);
1222 }
1223 
1224 /*
1225  * Take the indicated CPU offline.
1226  */
1227 int
1228 cpu_offline(cpu_t *cp, int flags)
1229 {
1230 	cpupart_t *pp;
1231 	int	error = 0;
1232 	cpu_t	*ncp;
1233 	int	intr_enable;
1234 	int	cyclic_off = 0;
1235 	int	callout_off = 0;
1236 	int	loop_count;
1237 	int	no_quiesce = 0;
1238 	int	(*bound_func)(struct cpu *, int);
1239 	kthread_t *t;
1240 	lpl_t	*cpu_lpl;
1241 	proc_t	*p;
1242 	int	lgrp_diff_lpl;
1243 	boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1244 
1245 	ASSERT(MUTEX_HELD(&cpu_lock));
1246 
1247 	/*
1248 	 * If we're going from faulted or spare to offline, just
1249 	 * clear these flags and update CPU state.
1250 	 */
1251 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1252 		if (cp->cpu_flags & CPU_FAULTED) {
1253 			cp->cpu_flags &= ~CPU_FAULTED;
1254 			mp_cpu_faulted_exit(cp);
1255 		}
1256 		cp->cpu_flags &= ~CPU_SPARE;
1257 		cpu_set_state(cp);
1258 		return (0);
1259 	}
1260 
1261 	/*
1262 	 * Handle off-line request.
1263 	 */
1264 	pp = cp->cpu_part;
1265 	/*
1266 	 * Don't offline last online CPU in partition
1267 	 */
1268 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1269 		return (EBUSY);
1270 	/*
1271 	 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1272 	 * if we were asked to.
1273 	 */
1274 	error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1275 	if (error != 0)
1276 		return (error);
1277 	/*
1278 	 * We shouldn't be bound to this CPU ourselves.
1279 	 */
1280 	if (curthread->t_bound_cpu == cp)
1281 		return (EBUSY);
1282 
1283 	/*
1284 	 * Tell interested parties that this CPU is going offline.
1285 	 */
1286 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1287 
1288 	/*
1289 	 * Tell the PG subsystem that the CPU is leaving the partition
1290 	 */
1291 	pg_cpupart_out(cp, pp);
1292 
1293 	/*
1294 	 * Take the CPU out of interrupt participation so we won't find
1295 	 * bound kernel threads.  If the architecture cannot completely
1296 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1297 	 * run anything but interrupt thread... this is indicated by
1298 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1299 	 * off.
1300 	 */
1301 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1302 	if (intr_enable)
1303 		no_quiesce = cpu_intr_disable(cp);
1304 
1305 	/*
1306 	 * Record that we are aiming to offline this cpu.  This acts as
1307 	 * a barrier to further weak binding requests in thread_nomigrate
1308 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1309 	 * lean away from this cpu.  Further strong bindings are already
1310 	 * avoided since we hold cpu_lock.  Since threads that are set
1311 	 * runnable around now and others coming off the target cpu are
1312 	 * directed away from the target, existing strong and weak bindings
1313 	 * (especially the latter) to the target cpu stand maximum chance of
1314 	 * being able to unbind during the short delay loop below (if other
1315 	 * unbound threads compete they may not see cpu in time to unbind
1316 	 * even if they would do so immediately.
1317 	 */
1318 	cpu_inmotion = cp;
1319 	membar_enter();
1320 
1321 	/*
1322 	 * Check for kernel threads (strong or weak) bound to that CPU.
1323 	 * Strongly bound threads may not unbind, and we'll have to return
1324 	 * EBUSY.  Weakly bound threads should always disappear - we've
1325 	 * stopped more weak binding with cpu_inmotion and existing
1326 	 * bindings will drain imminently (they may not block).  Nonetheless
1327 	 * we will wait for a fixed period for all bound threads to disappear.
1328 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1329 	 * state).  If test finds some bound threads, wait a few ticks
1330 	 * to give short-lived threads (such as interrupts) chance to
1331 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1332 	 * is required to service interrupts, then we take the route
1333 	 * that permits interrupt threads to be active (or bypassed).
1334 	 */
1335 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1336 
1337 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1338 		if (loop_count >= 5) {
1339 			error = EBUSY;	/* some threads still bound */
1340 			break;
1341 		}
1342 
1343 		/*
1344 		 * If some threads were assigned, give them
1345 		 * a chance to complete or move.
1346 		 *
1347 		 * This assumes that the clock_thread is not bound
1348 		 * to any CPU, because the clock_thread is needed to
1349 		 * do the delay(hz/100).
1350 		 *
1351 		 * Note: we still hold the cpu_lock while waiting for
1352 		 * the next clock tick.  This is OK since it isn't
1353 		 * needed for anything else except processor_bind(2),
1354 		 * and system initialization.  If we drop the lock,
1355 		 * we would risk another p_online disabling the last
1356 		 * processor.
1357 		 */
1358 		delay(hz/100);
1359 	}
1360 
1361 	if (error == 0 && callout_off == 0) {
1362 		callout_cpu_offline(cp);
1363 		callout_off = 1;
1364 	}
1365 
1366 	if (error == 0 && cyclic_off == 0) {
1367 		if (!cyclic_offline(cp)) {
1368 			/*
1369 			 * We must have bound cyclics...
1370 			 */
1371 			error = EBUSY;
1372 			goto out;
1373 		}
1374 		cyclic_off = 1;
1375 	}
1376 
1377 	/*
1378 	 * Call mp_cpu_stop() to perform any special operations
1379 	 * needed for this machine architecture to offline a CPU.
1380 	 */
1381 	if (error == 0)
1382 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1383 
1384 	/*
1385 	 * If that all worked, take the CPU offline and decrement
1386 	 * ncpus_online.
1387 	 */
1388 	if (error == 0) {
1389 		/*
1390 		 * Put all the cpus into a known safe place.
1391 		 * No mutexes can be entered while CPUs are paused.
1392 		 */
1393 		pause_cpus(cp);
1394 		/*
1395 		 * Repeat the operation, if necessary, to make sure that
1396 		 * all outstanding low-level interrupts run to completion
1397 		 * before we set the CPU_QUIESCED flag.  It's also possible
1398 		 * that a thread has weak bound to the cpu despite our raising
1399 		 * cpu_inmotion above since it may have loaded that
1400 		 * value before the barrier became visible (this would have
1401 		 * to be the thread that was on the target cpu at the time
1402 		 * we raised the barrier).
1403 		 */
1404 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1405 		    (*bound_func)(cp, 1)) {
1406 			start_cpus();
1407 			(void) mp_cpu_start(cp);
1408 			goto again;
1409 		}
1410 		ncp = cp->cpu_next_part;
1411 		cpu_lpl = cp->cpu_lpl;
1412 		ASSERT(cpu_lpl != NULL);
1413 
1414 		/*
1415 		 * Remove the CPU from the list of active CPUs.
1416 		 */
1417 		cpu_remove_active(cp);
1418 
1419 		/*
1420 		 * Walk the active process list and look for threads
1421 		 * whose home lgroup needs to be updated, or
1422 		 * the last CPU they run on is the one being offlined now.
1423 		 */
1424 
1425 		ASSERT(curthread->t_cpu != cp);
1426 		for (p = practive; p != NULL; p = p->p_next) {
1427 
1428 			t = p->p_tlist;
1429 
1430 			if (t == NULL)
1431 				continue;
1432 
1433 			lgrp_diff_lpl = 0;
1434 
1435 			do {
1436 				ASSERT(t->t_lpl != NULL);
1437 				/*
1438 				 * Taking last CPU in lpl offline
1439 				 * Rehome thread if it is in this lpl
1440 				 * Otherwise, update the count of how many
1441 				 * threads are in this CPU's lgroup but have
1442 				 * a different lpl.
1443 				 */
1444 
1445 				if (cpu_lpl->lpl_ncpu == 0) {
1446 					if (t->t_lpl == cpu_lpl)
1447 						lgrp_move_thread(t,
1448 						    lgrp_choose(t,
1449 						    t->t_cpupart), 0);
1450 					else if (t->t_lpl->lpl_lgrpid ==
1451 					    cpu_lpl->lpl_lgrpid)
1452 						lgrp_diff_lpl++;
1453 				}
1454 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1455 
1456 				/*
1457 				 * Update CPU last ran on if it was this CPU
1458 				 */
1459 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1460 					t->t_cpu = disp_lowpri_cpu(ncp,
1461 					    t->t_lpl, t->t_pri, NULL);
1462 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1463 				    t->t_weakbound_cpu == cp);
1464 
1465 				t = t->t_forw;
1466 			} while (t != p->p_tlist);
1467 
1468 			/*
1469 			 * Didn't find any threads in the same lgroup as this
1470 			 * CPU with a different lpl, so remove the lgroup from
1471 			 * the process lgroup bitmask.
1472 			 */
1473 
1474 			if (lgrp_diff_lpl == 0)
1475 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1476 		}
1477 
1478 		/*
1479 		 * Walk thread list looking for threads that need to be
1480 		 * rehomed, since there are some threads that are not in
1481 		 * their process's p_tlist.
1482 		 */
1483 
1484 		t = curthread;
1485 		do {
1486 			ASSERT(t != NULL && t->t_lpl != NULL);
1487 
1488 			/*
1489 			 * Rehome threads with same lpl as this CPU when this
1490 			 * is the last CPU in the lpl.
1491 			 */
1492 
1493 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1494 				lgrp_move_thread(t,
1495 				    lgrp_choose(t, t->t_cpupart), 1);
1496 
1497 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1498 
1499 			/*
1500 			 * Update CPU last ran on if it was this CPU
1501 			 */
1502 
1503 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1504 				t->t_cpu = disp_lowpri_cpu(ncp,
1505 				    t->t_lpl, t->t_pri, NULL);
1506 			}
1507 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1508 			    t->t_weakbound_cpu == cp);
1509 			t = t->t_next;
1510 
1511 		} while (t != curthread);
1512 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1513 		cp->cpu_flags |= CPU_OFFLINE;
1514 		disp_cpu_inactive(cp);
1515 		if (!no_quiesce)
1516 			cp->cpu_flags |= CPU_QUIESCED;
1517 		ncpus_online--;
1518 		cpu_set_state(cp);
1519 		cpu_inmotion = NULL;
1520 		start_cpus();
1521 		cpu_stats_kstat_destroy(cp);
1522 		cpu_delete_intrstat(cp);
1523 		lgrp_kstat_destroy(cp);
1524 	}
1525 
1526 out:
1527 	cpu_inmotion = NULL;
1528 
1529 	/*
1530 	 * If we failed, re-enable interrupts.
1531 	 * Do this even if cpu_intr_disable returned an error, because
1532 	 * it may have partially disabled interrupts.
1533 	 */
1534 	if (error && intr_enable)
1535 		cpu_intr_enable(cp);
1536 
1537 	/*
1538 	 * If we failed, but managed to offline the cyclic subsystem on this
1539 	 * CPU, bring it back online.
1540 	 */
1541 	if (error && cyclic_off)
1542 		cyclic_online(cp);
1543 
1544 	/*
1545 	 * If we failed, but managed to offline callouts on this CPU,
1546 	 * bring it back online.
1547 	 */
1548 	if (error && callout_off)
1549 		callout_cpu_online(cp);
1550 
1551 	/*
1552 	 * If we failed, tell the PG subsystem that the CPU is back
1553 	 */
1554 	pg_cpupart_in(cp, pp);
1555 
1556 	/*
1557 	 * If we failed, we need to notify everyone that this CPU is back on.
1558 	 */
1559 	if (error != 0)
1560 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1561 
1562 	return (error);
1563 }
1564 
1565 /*
1566  * Mark the indicated CPU as faulted, taking it offline.
1567  */
1568 int
1569 cpu_faulted(cpu_t *cp, int flags)
1570 {
1571 	int	error = 0;
1572 
1573 	ASSERT(MUTEX_HELD(&cpu_lock));
1574 	ASSERT(!cpu_is_poweredoff(cp));
1575 
1576 	if (cpu_is_offline(cp)) {
1577 		cp->cpu_flags &= ~CPU_SPARE;
1578 		cp->cpu_flags |= CPU_FAULTED;
1579 		mp_cpu_faulted_enter(cp);
1580 		cpu_set_state(cp);
1581 		return (0);
1582 	}
1583 
1584 	if ((error = cpu_offline(cp, flags)) == 0) {
1585 		cp->cpu_flags |= CPU_FAULTED;
1586 		mp_cpu_faulted_enter(cp);
1587 		cpu_set_state(cp);
1588 	}
1589 
1590 	return (error);
1591 }
1592 
1593 /*
1594  * Mark the indicated CPU as a spare, taking it offline.
1595  */
1596 int
1597 cpu_spare(cpu_t *cp, int flags)
1598 {
1599 	int	error = 0;
1600 
1601 	ASSERT(MUTEX_HELD(&cpu_lock));
1602 	ASSERT(!cpu_is_poweredoff(cp));
1603 
1604 	if (cpu_is_offline(cp)) {
1605 		if (cp->cpu_flags & CPU_FAULTED) {
1606 			cp->cpu_flags &= ~CPU_FAULTED;
1607 			mp_cpu_faulted_exit(cp);
1608 		}
1609 		cp->cpu_flags |= CPU_SPARE;
1610 		cpu_set_state(cp);
1611 		return (0);
1612 	}
1613 
1614 	if ((error = cpu_offline(cp, flags)) == 0) {
1615 		cp->cpu_flags |= CPU_SPARE;
1616 		cpu_set_state(cp);
1617 	}
1618 
1619 	return (error);
1620 }
1621 
1622 /*
1623  * Take the indicated CPU from poweroff to offline.
1624  */
1625 int
1626 cpu_poweron(cpu_t *cp)
1627 {
1628 	int	error = ENOTSUP;
1629 
1630 	ASSERT(MUTEX_HELD(&cpu_lock));
1631 	ASSERT(cpu_is_poweredoff(cp));
1632 
1633 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1634 	if (error == 0)
1635 		cpu_set_state(cp);
1636 
1637 	return (error);
1638 }
1639 
1640 /*
1641  * Take the indicated CPU from any inactive state to powered off.
1642  */
1643 int
1644 cpu_poweroff(cpu_t *cp)
1645 {
1646 	int	error = ENOTSUP;
1647 
1648 	ASSERT(MUTEX_HELD(&cpu_lock));
1649 	ASSERT(cpu_is_offline(cp));
1650 
1651 	if (!(cp->cpu_flags & CPU_QUIESCED))
1652 		return (EBUSY);		/* not completely idle */
1653 
1654 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1655 	if (error == 0)
1656 		cpu_set_state(cp);
1657 
1658 	return (error);
1659 }
1660 
1661 /*
1662  * Initialize the Sequential CPU id lookup table
1663  */
1664 void
1665 cpu_seq_tbl_init()
1666 {
1667 	cpu_t	**tbl;
1668 
1669 	tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1670 	tbl[0] = CPU;
1671 
1672 	cpu_seq = tbl;
1673 }
1674 
1675 /*
1676  * Initialize the CPU lists for the first CPU.
1677  */
1678 void
1679 cpu_list_init(cpu_t *cp)
1680 {
1681 	cp->cpu_next = cp;
1682 	cp->cpu_prev = cp;
1683 	cpu_list = cp;
1684 	clock_cpu_list = cp;
1685 
1686 	cp->cpu_next_onln = cp;
1687 	cp->cpu_prev_onln = cp;
1688 	cpu_active = cp;
1689 
1690 	cp->cpu_seqid = 0;
1691 	CPUSET_ADD(cpu_seqid_inuse, 0);
1692 
1693 	/*
1694 	 * Bootstrap cpu_seq using cpu_list
1695 	 * The cpu_seq[] table will be dynamically allocated
1696 	 * when kmem later becomes available (but before going MP)
1697 	 */
1698 	cpu_seq = &cpu_list;
1699 
1700 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1701 	cp_default.cp_cpulist = cp;
1702 	cp_default.cp_ncpus = 1;
1703 	cp->cpu_next_part = cp;
1704 	cp->cpu_prev_part = cp;
1705 	cp->cpu_part = &cp_default;
1706 
1707 	CPUSET_ADD(cpu_available, cp->cpu_id);
1708 }
1709 
1710 /*
1711  * Insert a CPU into the list of available CPUs.
1712  */
1713 void
1714 cpu_add_unit(cpu_t *cp)
1715 {
1716 	int seqid;
1717 
1718 	ASSERT(MUTEX_HELD(&cpu_lock));
1719 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1720 
1721 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1722 
1723 	/*
1724 	 * Note: most users of the cpu_list will grab the
1725 	 * cpu_lock to insure that it isn't modified.  However,
1726 	 * certain users can't or won't do that.  To allow this
1727 	 * we pause the other cpus.  Users who walk the list
1728 	 * without cpu_lock, must disable kernel preemption
1729 	 * to insure that the list isn't modified underneath
1730 	 * them.  Also, any cached pointers to cpu structures
1731 	 * must be revalidated by checking to see if the
1732 	 * cpu_next pointer points to itself.  This check must
1733 	 * be done with the cpu_lock held or kernel preemption
1734 	 * disabled.  This check relies upon the fact that
1735 	 * old cpu structures are not free'ed or cleared after
1736 	 * then are removed from the cpu_list.
1737 	 *
1738 	 * Note that the clock code walks the cpu list dereferencing
1739 	 * the cpu_part pointer, so we need to initialize it before
1740 	 * adding the cpu to the list.
1741 	 */
1742 	cp->cpu_part = &cp_default;
1743 	(void) pause_cpus(NULL);
1744 	cp->cpu_next = cpu_list;
1745 	cp->cpu_prev = cpu_list->cpu_prev;
1746 	cpu_list->cpu_prev->cpu_next = cp;
1747 	cpu_list->cpu_prev = cp;
1748 	start_cpus();
1749 
1750 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1751 		continue;
1752 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1753 	cp->cpu_seqid = seqid;
1754 	ASSERT(ncpus < max_ncpus);
1755 	ncpus++;
1756 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1757 	cpu[cp->cpu_id] = cp;
1758 	CPUSET_ADD(cpu_available, cp->cpu_id);
1759 	cpu_seq[cp->cpu_seqid] = cp;
1760 
1761 	/*
1762 	 * allocate a pause thread for this CPU.
1763 	 */
1764 	cpu_pause_alloc(cp);
1765 
1766 	/*
1767 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1768 	 * link them into a list of just that CPU.
1769 	 * This is so that disp_lowpri_cpu will work for thread_create in
1770 	 * pause_cpus() when called from the startup thread in a new CPU.
1771 	 */
1772 	cp->cpu_next_onln = cp;
1773 	cp->cpu_prev_onln = cp;
1774 	cpu_info_kstat_create(cp);
1775 	cp->cpu_next_part = cp;
1776 	cp->cpu_prev_part = cp;
1777 
1778 	init_cpu_mstate(cp, CMS_SYSTEM);
1779 
1780 	pool_pset_mod = gethrtime();
1781 }
1782 
1783 /*
1784  * Do the opposite of cpu_add_unit().
1785  */
1786 void
1787 cpu_del_unit(int cpuid)
1788 {
1789 	struct cpu	*cp, *cpnext;
1790 
1791 	ASSERT(MUTEX_HELD(&cpu_lock));
1792 	cp = cpu[cpuid];
1793 	ASSERT(cp != NULL);
1794 
1795 	ASSERT(cp->cpu_next_onln == cp);
1796 	ASSERT(cp->cpu_prev_onln == cp);
1797 	ASSERT(cp->cpu_next_part == cp);
1798 	ASSERT(cp->cpu_prev_part == cp);
1799 
1800 	/*
1801 	 * Tear down the CPU's physical ID cache, and update any
1802 	 * processor groups
1803 	 */
1804 	pg_cpu_fini(cp);
1805 	pghw_physid_destroy(cp);
1806 
1807 	/*
1808 	 * Destroy kstat stuff.
1809 	 */
1810 	cpu_info_kstat_destroy(cp);
1811 	term_cpu_mstate(cp);
1812 	/*
1813 	 * Free up pause thread.
1814 	 */
1815 	cpu_pause_free(cp);
1816 	CPUSET_DEL(cpu_available, cp->cpu_id);
1817 	cpu[cp->cpu_id] = NULL;
1818 	cpu_seq[cp->cpu_seqid] = NULL;
1819 
1820 	/*
1821 	 * The clock thread and mutex_vector_enter cannot hold the
1822 	 * cpu_lock while traversing the cpu list, therefore we pause
1823 	 * all other threads by pausing the other cpus. These, and any
1824 	 * other routines holding cpu pointers while possibly sleeping
1825 	 * must be sure to call kpreempt_disable before processing the
1826 	 * list and be sure to check that the cpu has not been deleted
1827 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1828 	 * to keep the deleted cpu structure around.
1829 	 *
1830 	 * Note that this MUST be done AFTER cpu_available
1831 	 * has been updated so that we don't waste time
1832 	 * trying to pause the cpu we're trying to delete.
1833 	 */
1834 	(void) pause_cpus(NULL);
1835 
1836 	cpnext = cp->cpu_next;
1837 	cp->cpu_prev->cpu_next = cp->cpu_next;
1838 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1839 	if (cp == cpu_list)
1840 		cpu_list = cpnext;
1841 
1842 	/*
1843 	 * Signals that the cpu has been deleted (see above).
1844 	 */
1845 	cp->cpu_next = NULL;
1846 	cp->cpu_prev = NULL;
1847 
1848 	start_cpus();
1849 
1850 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1851 	ncpus--;
1852 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1853 
1854 	pool_pset_mod = gethrtime();
1855 }
1856 
1857 /*
1858  * Add a CPU to the list of active CPUs.
1859  *	This routine must not get any locks, because other CPUs are paused.
1860  */
1861 static void
1862 cpu_add_active_internal(cpu_t *cp)
1863 {
1864 	cpupart_t	*pp = cp->cpu_part;
1865 
1866 	ASSERT(MUTEX_HELD(&cpu_lock));
1867 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1868 
1869 	ncpus_online++;
1870 	cpu_set_state(cp);
1871 	cp->cpu_next_onln = cpu_active;
1872 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1873 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1874 	cpu_active->cpu_prev_onln = cp;
1875 
1876 	if (pp->cp_cpulist) {
1877 		cp->cpu_next_part = pp->cp_cpulist;
1878 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1879 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1880 		pp->cp_cpulist->cpu_prev_part = cp;
1881 	} else {
1882 		ASSERT(pp->cp_ncpus == 0);
1883 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1884 	}
1885 	pp->cp_ncpus++;
1886 	if (pp->cp_ncpus == 1) {
1887 		cp_numparts_nonempty++;
1888 		ASSERT(cp_numparts_nonempty != 0);
1889 	}
1890 
1891 	pg_cpu_active(cp);
1892 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1893 
1894 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1895 }
1896 
1897 /*
1898  * Add a CPU to the list of active CPUs.
1899  *	This is called from machine-dependent layers when a new CPU is started.
1900  */
1901 void
1902 cpu_add_active(cpu_t *cp)
1903 {
1904 	pg_cpupart_in(cp, cp->cpu_part);
1905 
1906 	pause_cpus(NULL);
1907 	cpu_add_active_internal(cp);
1908 	start_cpus();
1909 
1910 	cpu_stats_kstat_create(cp);
1911 	cpu_create_intrstat(cp);
1912 	lgrp_kstat_create(cp);
1913 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1914 }
1915 
1916 
1917 /*
1918  * Remove a CPU from the list of active CPUs.
1919  *	This routine must not get any locks, because other CPUs are paused.
1920  */
1921 /* ARGSUSED */
1922 static void
1923 cpu_remove_active(cpu_t *cp)
1924 {
1925 	cpupart_t	*pp = cp->cpu_part;
1926 
1927 	ASSERT(MUTEX_HELD(&cpu_lock));
1928 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1929 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1930 
1931 	pg_cpu_inactive(cp);
1932 
1933 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1934 
1935 	if (cp == clock_cpu_list)
1936 		clock_cpu_list = cp->cpu_next_onln;
1937 
1938 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1939 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1940 	if (cpu_active == cp) {
1941 		cpu_active = cp->cpu_next_onln;
1942 	}
1943 	cp->cpu_next_onln = cp;
1944 	cp->cpu_prev_onln = cp;
1945 
1946 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1947 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1948 	if (pp->cp_cpulist == cp) {
1949 		pp->cp_cpulist = cp->cpu_next_part;
1950 		ASSERT(pp->cp_cpulist != cp);
1951 	}
1952 	cp->cpu_next_part = cp;
1953 	cp->cpu_prev_part = cp;
1954 	pp->cp_ncpus--;
1955 	if (pp->cp_ncpus == 0) {
1956 		cp_numparts_nonempty--;
1957 		ASSERT(cp_numparts_nonempty != 0);
1958 	}
1959 }
1960 
1961 /*
1962  * Routine used to setup a newly inserted CPU in preparation for starting
1963  * it running code.
1964  */
1965 int
1966 cpu_configure(int cpuid)
1967 {
1968 	int retval = 0;
1969 
1970 	ASSERT(MUTEX_HELD(&cpu_lock));
1971 
1972 	/*
1973 	 * Some structures are statically allocated based upon
1974 	 * the maximum number of cpus the system supports.  Do not
1975 	 * try to add anything beyond this limit.
1976 	 */
1977 	if (cpuid < 0 || cpuid >= NCPU) {
1978 		return (EINVAL);
1979 	}
1980 
1981 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
1982 		return (EALREADY);
1983 	}
1984 
1985 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
1986 		return (retval);
1987 	}
1988 
1989 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
1990 	cpu_set_state(cpu[cpuid]);
1991 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
1992 	if (retval != 0)
1993 		(void) mp_cpu_unconfigure(cpuid);
1994 
1995 	return (retval);
1996 }
1997 
1998 /*
1999  * Routine used to cleanup a CPU that has been powered off.  This will
2000  * destroy all per-cpu information related to this cpu.
2001  */
2002 int
2003 cpu_unconfigure(int cpuid)
2004 {
2005 	int error;
2006 
2007 	ASSERT(MUTEX_HELD(&cpu_lock));
2008 
2009 	if (cpu[cpuid] == NULL) {
2010 		return (ENODEV);
2011 	}
2012 
2013 	if (cpu[cpuid]->cpu_flags == 0) {
2014 		return (EALREADY);
2015 	}
2016 
2017 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2018 		return (EBUSY);
2019 	}
2020 
2021 	if (cpu[cpuid]->cpu_props != NULL) {
2022 		(void) nvlist_free(cpu[cpuid]->cpu_props);
2023 		cpu[cpuid]->cpu_props = NULL;
2024 	}
2025 
2026 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2027 
2028 	if (error != 0)
2029 		return (error);
2030 
2031 	return (mp_cpu_unconfigure(cpuid));
2032 }
2033 
2034 /*
2035  * Routines for registering and de-registering cpu_setup callback functions.
2036  *
2037  * Caller's context
2038  *	These routines must not be called from a driver's attach(9E) or
2039  *	detach(9E) entry point.
2040  *
2041  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2042  */
2043 
2044 /*
2045  * Ideally, these would be dynamically allocated and put into a linked
2046  * list; however that is not feasible because the registration routine
2047  * has to be available before the kmem allocator is working (in fact,
2048  * it is called by the kmem allocator init code).  In any case, there
2049  * are quite a few extra entries for future users.
2050  */
2051 #define	NCPU_SETUPS	20
2052 
2053 struct cpu_setup {
2054 	cpu_setup_func_t *func;
2055 	void *arg;
2056 } cpu_setups[NCPU_SETUPS];
2057 
2058 void
2059 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2060 {
2061 	int i;
2062 
2063 	ASSERT(MUTEX_HELD(&cpu_lock));
2064 
2065 	for (i = 0; i < NCPU_SETUPS; i++)
2066 		if (cpu_setups[i].func == NULL)
2067 			break;
2068 	if (i >= NCPU_SETUPS)
2069 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2070 
2071 	cpu_setups[i].func = func;
2072 	cpu_setups[i].arg = arg;
2073 }
2074 
2075 void
2076 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2077 {
2078 	int i;
2079 
2080 	ASSERT(MUTEX_HELD(&cpu_lock));
2081 
2082 	for (i = 0; i < NCPU_SETUPS; i++)
2083 		if ((cpu_setups[i].func == func) &&
2084 		    (cpu_setups[i].arg == arg))
2085 			break;
2086 	if (i >= NCPU_SETUPS)
2087 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2088 		    "deregister");
2089 
2090 	cpu_setups[i].func = NULL;
2091 	cpu_setups[i].arg = 0;
2092 }
2093 
2094 /*
2095  * Call any state change hooks for this CPU, ignore any errors.
2096  */
2097 void
2098 cpu_state_change_notify(int id, cpu_setup_t what)
2099 {
2100 	int i;
2101 
2102 	ASSERT(MUTEX_HELD(&cpu_lock));
2103 
2104 	for (i = 0; i < NCPU_SETUPS; i++) {
2105 		if (cpu_setups[i].func != NULL) {
2106 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2107 		}
2108 	}
2109 }
2110 
2111 /*
2112  * Call any state change hooks for this CPU, undo it if error found.
2113  */
2114 static int
2115 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2116 {
2117 	int i;
2118 	int retval = 0;
2119 
2120 	ASSERT(MUTEX_HELD(&cpu_lock));
2121 
2122 	for (i = 0; i < NCPU_SETUPS; i++) {
2123 		if (cpu_setups[i].func != NULL) {
2124 			retval = cpu_setups[i].func(what, id,
2125 			    cpu_setups[i].arg);
2126 			if (retval) {
2127 				for (i--; i >= 0; i--) {
2128 					if (cpu_setups[i].func != NULL)
2129 						cpu_setups[i].func(undo,
2130 						    id, cpu_setups[i].arg);
2131 				}
2132 				break;
2133 			}
2134 		}
2135 	}
2136 	return (retval);
2137 }
2138 
2139 /*
2140  * Export information about this CPU via the kstat mechanism.
2141  */
2142 static struct {
2143 	kstat_named_t ci_state;
2144 	kstat_named_t ci_state_begin;
2145 	kstat_named_t ci_cpu_type;
2146 	kstat_named_t ci_fpu_type;
2147 	kstat_named_t ci_clock_MHz;
2148 	kstat_named_t ci_chip_id;
2149 	kstat_named_t ci_implementation;
2150 	kstat_named_t ci_brandstr;
2151 	kstat_named_t ci_core_id;
2152 	kstat_named_t ci_curr_clock_Hz;
2153 	kstat_named_t ci_supp_freq_Hz;
2154 #if defined(__sparcv9)
2155 	kstat_named_t ci_device_ID;
2156 	kstat_named_t ci_cpu_fru;
2157 #endif
2158 #if defined(__x86)
2159 	kstat_named_t ci_vendorstr;
2160 	kstat_named_t ci_family;
2161 	kstat_named_t ci_model;
2162 	kstat_named_t ci_step;
2163 	kstat_named_t ci_clogid;
2164 	kstat_named_t ci_pkg_core_id;
2165 	kstat_named_t ci_ncpuperchip;
2166 	kstat_named_t ci_ncoreperchip;
2167 	kstat_named_t ci_max_cstates;
2168 	kstat_named_t ci_curr_cstate;
2169 #endif
2170 } cpu_info_template = {
2171 	{ "state",			KSTAT_DATA_CHAR },
2172 	{ "state_begin",		KSTAT_DATA_LONG },
2173 	{ "cpu_type",			KSTAT_DATA_CHAR },
2174 	{ "fpu_type",			KSTAT_DATA_CHAR },
2175 	{ "clock_MHz",			KSTAT_DATA_LONG },
2176 	{ "chip_id",			KSTAT_DATA_LONG },
2177 	{ "implementation",		KSTAT_DATA_STRING },
2178 	{ "brand",			KSTAT_DATA_STRING },
2179 	{ "core_id",			KSTAT_DATA_LONG },
2180 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2181 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2182 #if defined(__sparcv9)
2183 	{ "device_ID",			KSTAT_DATA_UINT64 },
2184 	{ "cpu_fru",			KSTAT_DATA_STRING },
2185 #endif
2186 #if defined(__x86)
2187 	{ "vendor_id",			KSTAT_DATA_STRING },
2188 	{ "family",			KSTAT_DATA_INT32 },
2189 	{ "model",			KSTAT_DATA_INT32 },
2190 	{ "stepping",			KSTAT_DATA_INT32 },
2191 	{ "clog_id",			KSTAT_DATA_INT32 },
2192 	{ "pkg_core_id",		KSTAT_DATA_LONG },
2193 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2194 	{ "ncore_per_chip",		KSTAT_DATA_INT32 },
2195 	{ "supported_max_cstates",	KSTAT_DATA_INT32 },
2196 	{ "current_cstate",		KSTAT_DATA_INT32 },
2197 #endif
2198 };
2199 
2200 static kmutex_t cpu_info_template_lock;
2201 
2202 static int
2203 cpu_info_kstat_update(kstat_t *ksp, int rw)
2204 {
2205 	cpu_t	*cp = ksp->ks_private;
2206 	const char *pi_state;
2207 
2208 	if (rw == KSTAT_WRITE)
2209 		return (EACCES);
2210 
2211 	switch (cp->cpu_type_info.pi_state) {
2212 	case P_ONLINE:
2213 		pi_state = PS_ONLINE;
2214 		break;
2215 	case P_POWEROFF:
2216 		pi_state = PS_POWEROFF;
2217 		break;
2218 	case P_NOINTR:
2219 		pi_state = PS_NOINTR;
2220 		break;
2221 	case P_FAULTED:
2222 		pi_state = PS_FAULTED;
2223 		break;
2224 	case P_SPARE:
2225 		pi_state = PS_SPARE;
2226 		break;
2227 	case P_OFFLINE:
2228 		pi_state = PS_OFFLINE;
2229 		break;
2230 	default:
2231 		pi_state = "unknown";
2232 	}
2233 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2234 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2235 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2236 	    cp->cpu_type_info.pi_processor_type, 15);
2237 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2238 	    cp->cpu_type_info.pi_fputypes, 15);
2239 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2240 	cpu_info_template.ci_chip_id.value.l =
2241 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2242 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2243 	    cp->cpu_idstr);
2244 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2245 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2246 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2247 	    cp->cpu_curr_clock;
2248 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2249 	    cp->cpu_supp_freqs);
2250 #if defined(__sparcv9)
2251 	cpu_info_template.ci_device_ID.value.ui64 =
2252 	    cpunodes[cp->cpu_id].device_id;
2253 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2254 #endif
2255 #if defined(__x86)
2256 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2257 	    cpuid_getvendorstr(cp));
2258 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2259 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2260 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2261 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2262 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2263 	cpu_info_template.ci_ncoreperchip.value.l =
2264 	    cpuid_get_ncore_per_chip(cp);
2265 	cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2266 	cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2267 	cpu_info_template.ci_curr_cstate.value.l = cp->cpu_m.curr_cstate;
2268 #endif
2269 
2270 	return (0);
2271 }
2272 
2273 static void
2274 cpu_info_kstat_create(cpu_t *cp)
2275 {
2276 	zoneid_t zoneid;
2277 
2278 	ASSERT(MUTEX_HELD(&cpu_lock));
2279 
2280 	if (pool_pset_enabled())
2281 		zoneid = GLOBAL_ZONEID;
2282 	else
2283 		zoneid = ALL_ZONES;
2284 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2285 	    NULL, "misc", KSTAT_TYPE_NAMED,
2286 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2287 	    KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) {
2288 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2289 #if defined(__sparcv9)
2290 		cp->cpu_info_kstat->ks_data_size +=
2291 		    strlen(cpu_fru_fmri(cp)) + 1;
2292 #endif
2293 #if defined(__x86)
2294 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2295 #endif
2296 		if (cp->cpu_supp_freqs != NULL)
2297 			cp->cpu_info_kstat->ks_data_size +=
2298 			    strlen(cp->cpu_supp_freqs) + 1;
2299 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2300 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2301 		cp->cpu_info_kstat->ks_private = cp;
2302 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2303 		kstat_install(cp->cpu_info_kstat);
2304 	}
2305 }
2306 
2307 static void
2308 cpu_info_kstat_destroy(cpu_t *cp)
2309 {
2310 	ASSERT(MUTEX_HELD(&cpu_lock));
2311 
2312 	kstat_delete(cp->cpu_info_kstat);
2313 	cp->cpu_info_kstat = NULL;
2314 }
2315 
2316 /*
2317  * Create and install kstats for the boot CPU.
2318  */
2319 void
2320 cpu_kstat_init(cpu_t *cp)
2321 {
2322 	mutex_enter(&cpu_lock);
2323 	cpu_info_kstat_create(cp);
2324 	cpu_stats_kstat_create(cp);
2325 	cpu_create_intrstat(cp);
2326 	cpu_set_state(cp);
2327 	mutex_exit(&cpu_lock);
2328 }
2329 
2330 /*
2331  * Make visible to the zone that subset of the cpu information that would be
2332  * initialized when a cpu is configured (but still offline).
2333  */
2334 void
2335 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2336 {
2337 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2338 
2339 	ASSERT(MUTEX_HELD(&cpu_lock));
2340 	ASSERT(pool_pset_enabled());
2341 	ASSERT(cp != NULL);
2342 
2343 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2344 		zone->zone_ncpus++;
2345 		ASSERT(zone->zone_ncpus <= ncpus);
2346 	}
2347 	if (cp->cpu_info_kstat != NULL)
2348 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2349 }
2350 
2351 /*
2352  * Make visible to the zone that subset of the cpu information that would be
2353  * initialized when a previously configured cpu is onlined.
2354  */
2355 void
2356 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2357 {
2358 	kstat_t *ksp;
2359 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2360 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2361 	processorid_t cpun;
2362 
2363 	ASSERT(MUTEX_HELD(&cpu_lock));
2364 	ASSERT(pool_pset_enabled());
2365 	ASSERT(cp != NULL);
2366 	ASSERT(cpu_is_active(cp));
2367 
2368 	cpun = cp->cpu_id;
2369 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2370 		zone->zone_ncpus_online++;
2371 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2372 	}
2373 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2374 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2375 	    != NULL) {
2376 		kstat_zone_add(ksp, zoneid);
2377 		kstat_rele(ksp);
2378 	}
2379 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2380 		kstat_zone_add(ksp, zoneid);
2381 		kstat_rele(ksp);
2382 	}
2383 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2384 		kstat_zone_add(ksp, zoneid);
2385 		kstat_rele(ksp);
2386 	}
2387 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2388 	    NULL) {
2389 		kstat_zone_add(ksp, zoneid);
2390 		kstat_rele(ksp);
2391 	}
2392 }
2393 
2394 /*
2395  * Update relevant kstats such that cpu is now visible to processes
2396  * executing in specified zone.
2397  */
2398 void
2399 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2400 {
2401 	cpu_visibility_configure(cp, zone);
2402 	if (cpu_is_active(cp))
2403 		cpu_visibility_online(cp, zone);
2404 }
2405 
2406 /*
2407  * Make invisible to the zone that subset of the cpu information that would be
2408  * torn down when a previously offlined cpu is unconfigured.
2409  */
2410 void
2411 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2412 {
2413 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2414 
2415 	ASSERT(MUTEX_HELD(&cpu_lock));
2416 	ASSERT(pool_pset_enabled());
2417 	ASSERT(cp != NULL);
2418 
2419 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2420 		ASSERT(zone->zone_ncpus != 0);
2421 		zone->zone_ncpus--;
2422 	}
2423 	if (cp->cpu_info_kstat)
2424 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2425 }
2426 
2427 /*
2428  * Make invisible to the zone that subset of the cpu information that would be
2429  * torn down when a cpu is offlined (but still configured).
2430  */
2431 void
2432 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2433 {
2434 	kstat_t *ksp;
2435 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2436 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2437 	processorid_t cpun;
2438 
2439 	ASSERT(MUTEX_HELD(&cpu_lock));
2440 	ASSERT(pool_pset_enabled());
2441 	ASSERT(cp != NULL);
2442 	ASSERT(cpu_is_active(cp));
2443 
2444 	cpun = cp->cpu_id;
2445 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2446 		ASSERT(zone->zone_ncpus_online != 0);
2447 		zone->zone_ncpus_online--;
2448 	}
2449 
2450 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2451 	    NULL) {
2452 		kstat_zone_remove(ksp, zoneid);
2453 		kstat_rele(ksp);
2454 	}
2455 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2456 		kstat_zone_remove(ksp, zoneid);
2457 		kstat_rele(ksp);
2458 	}
2459 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2460 		kstat_zone_remove(ksp, zoneid);
2461 		kstat_rele(ksp);
2462 	}
2463 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2464 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2465 	    != NULL) {
2466 		kstat_zone_remove(ksp, zoneid);
2467 		kstat_rele(ksp);
2468 	}
2469 }
2470 
2471 /*
2472  * Update relevant kstats such that cpu is no longer visible to processes
2473  * executing in specified zone.
2474  */
2475 void
2476 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2477 {
2478 	if (cpu_is_active(cp))
2479 		cpu_visibility_offline(cp, zone);
2480 	cpu_visibility_unconfigure(cp, zone);
2481 }
2482 
2483 /*
2484  * Bind a thread to a CPU as requested.
2485  */
2486 int
2487 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2488     int *error)
2489 {
2490 	processorid_t	binding;
2491 	cpu_t		*cp = NULL;
2492 
2493 	ASSERT(MUTEX_HELD(&cpu_lock));
2494 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2495 
2496 	thread_lock(tp);
2497 
2498 	/*
2499 	 * Record old binding, but change the obind, which was initialized
2500 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2501 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2502 	 */
2503 	binding = tp->t_bind_cpu;
2504 	if (binding != PBIND_NONE)
2505 		*obind = binding;	/* record old binding */
2506 
2507 	switch (bind) {
2508 	case PBIND_QUERY:
2509 		/* Just return the old binding */
2510 		thread_unlock(tp);
2511 		return (0);
2512 
2513 	case PBIND_QUERY_TYPE:
2514 		/* Return the binding type */
2515 		*obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2516 		thread_unlock(tp);
2517 		return (0);
2518 
2519 	case PBIND_SOFT:
2520 		/*
2521 		 *  Set soft binding for this thread and return the actual
2522 		 *  binding
2523 		 */
2524 		TB_CPU_SOFT_SET(tp);
2525 		thread_unlock(tp);
2526 		return (0);
2527 
2528 	case PBIND_HARD:
2529 		/*
2530 		 *  Set hard binding for this thread and return the actual
2531 		 *  binding
2532 		 */
2533 		TB_CPU_HARD_SET(tp);
2534 		thread_unlock(tp);
2535 		return (0);
2536 
2537 	default:
2538 		break;
2539 	}
2540 
2541 	/*
2542 	 * If this thread/LWP cannot be bound because of permission
2543 	 * problems, just note that and return success so that the
2544 	 * other threads/LWPs will be bound.  This is the way
2545 	 * processor_bind() is defined to work.
2546 	 *
2547 	 * Binding will get EPERM if the thread is of system class
2548 	 * or hasprocperm() fails.
2549 	 */
2550 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2551 		*error = EPERM;
2552 		thread_unlock(tp);
2553 		return (0);
2554 	}
2555 
2556 	binding = bind;
2557 	if (binding != PBIND_NONE) {
2558 		cp = cpu_get((processorid_t)binding);
2559 		/*
2560 		 * Make sure binding is valid and is in right partition.
2561 		 */
2562 		if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2563 			*error = EINVAL;
2564 			thread_unlock(tp);
2565 			return (0);
2566 		}
2567 	}
2568 	tp->t_bind_cpu = binding;	/* set new binding */
2569 
2570 	/*
2571 	 * If there is no system-set reason for affinity, set
2572 	 * the t_bound_cpu field to reflect the binding.
2573 	 */
2574 	if (tp->t_affinitycnt == 0) {
2575 		if (binding == PBIND_NONE) {
2576 			/*
2577 			 * We may need to adjust disp_max_unbound_pri
2578 			 * since we're becoming unbound.
2579 			 */
2580 			disp_adjust_unbound_pri(tp);
2581 
2582 			tp->t_bound_cpu = NULL;	/* set new binding */
2583 
2584 			/*
2585 			 * Move thread to lgroup with strongest affinity
2586 			 * after unbinding
2587 			 */
2588 			if (tp->t_lgrp_affinity)
2589 				lgrp_move_thread(tp,
2590 				    lgrp_choose(tp, tp->t_cpupart), 1);
2591 
2592 			if (tp->t_state == TS_ONPROC &&
2593 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2594 				cpu_surrender(tp);
2595 		} else {
2596 			lpl_t	*lpl;
2597 
2598 			tp->t_bound_cpu = cp;
2599 			ASSERT(cp->cpu_lpl != NULL);
2600 
2601 			/*
2602 			 * Set home to lgroup with most affinity containing CPU
2603 			 * that thread is being bound or minimum bounding
2604 			 * lgroup if no affinities set
2605 			 */
2606 			if (tp->t_lgrp_affinity)
2607 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2608 				    LGRP_NONE, B_FALSE);
2609 			else
2610 				lpl = cp->cpu_lpl;
2611 
2612 			if (tp->t_lpl != lpl) {
2613 				/* can't grab cpu_lock */
2614 				lgrp_move_thread(tp, lpl, 1);
2615 			}
2616 
2617 			/*
2618 			 * Make the thread switch to the bound CPU.
2619 			 * If the thread is runnable, we need to
2620 			 * requeue it even if t_cpu is already set
2621 			 * to the right CPU, since it may be on a
2622 			 * kpreempt queue and need to move to a local
2623 			 * queue.  We could check t_disp_queue to
2624 			 * avoid unnecessary overhead if it's already
2625 			 * on the right queue, but since this isn't
2626 			 * a performance-critical operation it doesn't
2627 			 * seem worth the extra code and complexity.
2628 			 *
2629 			 * If the thread is weakbound to the cpu then it will
2630 			 * resist the new binding request until the weak
2631 			 * binding drops.  The cpu_surrender or requeueing
2632 			 * below could be skipped in such cases (since it
2633 			 * will have no effect), but that would require
2634 			 * thread_allowmigrate to acquire thread_lock so
2635 			 * we'll take the very occasional hit here instead.
2636 			 */
2637 			if (tp->t_state == TS_ONPROC) {
2638 				cpu_surrender(tp);
2639 			} else if (tp->t_state == TS_RUN) {
2640 				cpu_t *ocp = tp->t_cpu;
2641 
2642 				(void) dispdeq(tp);
2643 				setbackdq(tp);
2644 				/*
2645 				 * Either on the bound CPU's disp queue now,
2646 				 * or swapped out or on the swap queue.
2647 				 */
2648 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2649 				    tp->t_weakbound_cpu == ocp ||
2650 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2651 				    != TS_LOAD);
2652 			}
2653 		}
2654 	}
2655 
2656 	/*
2657 	 * Our binding has changed; set TP_CHANGEBIND.
2658 	 */
2659 	tp->t_proc_flag |= TP_CHANGEBIND;
2660 	aston(tp);
2661 
2662 	thread_unlock(tp);
2663 
2664 	return (0);
2665 }
2666 
2667 #if CPUSET_WORDS > 1
2668 
2669 /*
2670  * Functions for implementing cpuset operations when a cpuset is more
2671  * than one word.  On platforms where a cpuset is a single word these
2672  * are implemented as macros in cpuvar.h.
2673  */
2674 
2675 void
2676 cpuset_all(cpuset_t *s)
2677 {
2678 	int i;
2679 
2680 	for (i = 0; i < CPUSET_WORDS; i++)
2681 		s->cpub[i] = ~0UL;
2682 }
2683 
2684 void
2685 cpuset_all_but(cpuset_t *s, uint_t cpu)
2686 {
2687 	cpuset_all(s);
2688 	CPUSET_DEL(*s, cpu);
2689 }
2690 
2691 void
2692 cpuset_only(cpuset_t *s, uint_t cpu)
2693 {
2694 	CPUSET_ZERO(*s);
2695 	CPUSET_ADD(*s, cpu);
2696 }
2697 
2698 int
2699 cpuset_isnull(cpuset_t *s)
2700 {
2701 	int i;
2702 
2703 	for (i = 0; i < CPUSET_WORDS; i++)
2704 		if (s->cpub[i] != 0)
2705 			return (0);
2706 	return (1);
2707 }
2708 
2709 int
2710 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2711 {
2712 	int i;
2713 
2714 	for (i = 0; i < CPUSET_WORDS; i++)
2715 		if (s1->cpub[i] != s2->cpub[i])
2716 			return (0);
2717 	return (1);
2718 }
2719 
2720 uint_t
2721 cpuset_find(cpuset_t *s)
2722 {
2723 
2724 	uint_t	i;
2725 	uint_t	cpu = (uint_t)-1;
2726 
2727 	/*
2728 	 * Find a cpu in the cpuset
2729 	 */
2730 	for (i = 0; i < CPUSET_WORDS; i++) {
2731 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2732 		if (cpu != (uint_t)-1) {
2733 			cpu += i * BT_NBIPUL;
2734 			break;
2735 		}
2736 	}
2737 	return (cpu);
2738 }
2739 
2740 void
2741 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2742 {
2743 	int	i, j;
2744 	uint_t	bit;
2745 
2746 	/*
2747 	 * First, find the smallest cpu id in the set.
2748 	 */
2749 	for (i = 0; i < CPUSET_WORDS; i++) {
2750 		if (s->cpub[i] != 0) {
2751 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2752 			ASSERT(bit != (uint_t)-1);
2753 			*smallestid = bit + (i * BT_NBIPUL);
2754 
2755 			/*
2756 			 * Now find the largest cpu id in
2757 			 * the set and return immediately.
2758 			 * Done in an inner loop to avoid
2759 			 * having to break out of the first
2760 			 * loop.
2761 			 */
2762 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2763 				if (s->cpub[j] != 0) {
2764 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2765 					ASSERT(bit != (uint_t)-1);
2766 					*largestid = bit + (j * BT_NBIPUL);
2767 					ASSERT(*largestid >= *smallestid);
2768 					return;
2769 				}
2770 			}
2771 
2772 			/*
2773 			 * If this code is reached, a
2774 			 * smallestid was found, but not a
2775 			 * largestid. The cpuset must have
2776 			 * been changed during the course
2777 			 * of this function call.
2778 			 */
2779 			ASSERT(0);
2780 		}
2781 	}
2782 	*smallestid = *largestid = CPUSET_NOTINSET;
2783 }
2784 
2785 #endif	/* CPUSET_WORDS */
2786 
2787 /*
2788  * Unbind threads bound to specified CPU.
2789  *
2790  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2791  * CPU. Otherwise unbind all soft-bound user threads.
2792  */
2793 int
2794 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2795 {
2796 	processorid_t obind;
2797 	kthread_t *tp;
2798 	int ret = 0;
2799 	proc_t *pp;
2800 	int err, berr = 0;
2801 
2802 	ASSERT(MUTEX_HELD(&cpu_lock));
2803 
2804 	mutex_enter(&pidlock);
2805 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2806 		mutex_enter(&pp->p_lock);
2807 		tp = pp->p_tlist;
2808 		/*
2809 		 * Skip zombies, kernel processes, and processes in
2810 		 * other zones, if called from a non-global zone.
2811 		 */
2812 		if (tp == NULL || (pp->p_flag & SSYS) ||
2813 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2814 			mutex_exit(&pp->p_lock);
2815 			continue;
2816 		}
2817 		do {
2818 			if (tp->t_bind_cpu != cpu)
2819 				continue;
2820 			/*
2821 			 * Skip threads with hard binding when
2822 			 * `unbind_all_threads' is not specified.
2823 			 */
2824 			if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2825 				continue;
2826 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2827 			if (ret == 0)
2828 				ret = err;
2829 		} while ((tp = tp->t_forw) != pp->p_tlist);
2830 		mutex_exit(&pp->p_lock);
2831 	}
2832 	mutex_exit(&pidlock);
2833 	if (ret == 0)
2834 		ret = berr;
2835 	return (ret);
2836 }
2837 
2838 
2839 /*
2840  * Destroy all remaining bound threads on a cpu.
2841  */
2842 void
2843 cpu_destroy_bound_threads(cpu_t *cp)
2844 {
2845 	extern id_t syscid;
2846 	register kthread_id_t	t, tlist, tnext;
2847 
2848 	/*
2849 	 * Destroy all remaining bound threads on the cpu.  This
2850 	 * should include both the interrupt threads and the idle thread.
2851 	 * This requires some care, since we need to traverse the
2852 	 * thread list with the pidlock mutex locked, but thread_free
2853 	 * also locks the pidlock mutex.  So, we collect the threads
2854 	 * we're going to reap in a list headed by "tlist", then we
2855 	 * unlock the pidlock mutex and traverse the tlist list,
2856 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
2857 	 * Also, this depends on thread_free not mucking with the
2858 	 * t_next and t_prev links of the thread.
2859 	 */
2860 
2861 	if ((t = curthread) != NULL) {
2862 
2863 		tlist = NULL;
2864 		mutex_enter(&pidlock);
2865 		do {
2866 			tnext = t->t_next;
2867 			if (t->t_bound_cpu == cp) {
2868 
2869 				/*
2870 				 * We've found a bound thread, carefully unlink
2871 				 * it out of the thread list, and add it to
2872 				 * our "tlist".	 We "know" we don't have to
2873 				 * worry about unlinking curthread (the thread
2874 				 * that is executing this code).
2875 				 */
2876 				t->t_next->t_prev = t->t_prev;
2877 				t->t_prev->t_next = t->t_next;
2878 				t->t_next = tlist;
2879 				tlist = t;
2880 				ASSERT(t->t_cid == syscid);
2881 				/* wake up anyone blocked in thread_join */
2882 				cv_broadcast(&t->t_joincv);
2883 				/*
2884 				 * t_lwp set by interrupt threads and not
2885 				 * cleared.
2886 				 */
2887 				t->t_lwp = NULL;
2888 				/*
2889 				 * Pause and idle threads always have
2890 				 * t_state set to TS_ONPROC.
2891 				 */
2892 				t->t_state = TS_FREE;
2893 				t->t_prev = NULL;	/* Just in case */
2894 			}
2895 
2896 		} while ((t = tnext) != curthread);
2897 
2898 		mutex_exit(&pidlock);
2899 
2900 		mutex_sync();
2901 		for (t = tlist; t != NULL; t = tnext) {
2902 			tnext = t->t_next;
2903 			thread_free(t);
2904 		}
2905 	}
2906 }
2907 
2908 /*
2909  * Update the cpu_supp_freqs of this cpu. This information is returned
2910  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2911  * maintain the kstat data size.
2912  */
2913 void
2914 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2915 {
2916 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2917 	const char *lfreqs = clkstr;
2918 	boolean_t kstat_exists = B_FALSE;
2919 	kstat_t *ksp;
2920 	size_t len;
2921 
2922 	/*
2923 	 * A NULL pointer means we only support one speed.
2924 	 */
2925 	if (freqs == NULL)
2926 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2927 		    cp->cpu_curr_clock);
2928 	else
2929 		lfreqs = freqs;
2930 
2931 	/*
2932 	 * Make sure the frequency doesn't change while a snapshot is
2933 	 * going on. Of course, we only need to worry about this if
2934 	 * the kstat exists.
2935 	 */
2936 	if ((ksp = cp->cpu_info_kstat) != NULL) {
2937 		mutex_enter(ksp->ks_lock);
2938 		kstat_exists = B_TRUE;
2939 	}
2940 
2941 	/*
2942 	 * Free any previously allocated string and if the kstat
2943 	 * already exists, then update its data size.
2944 	 */
2945 	if (cp->cpu_supp_freqs != NULL) {
2946 		len = strlen(cp->cpu_supp_freqs) + 1;
2947 		kmem_free(cp->cpu_supp_freqs, len);
2948 		if (kstat_exists)
2949 			ksp->ks_data_size -= len;
2950 	}
2951 
2952 	/*
2953 	 * Allocate the new string and set the pointer.
2954 	 */
2955 	len = strlen(lfreqs) + 1;
2956 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2957 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
2958 
2959 	/*
2960 	 * If the kstat already exists then update the data size and
2961 	 * free the lock.
2962 	 */
2963 	if (kstat_exists) {
2964 		ksp->ks_data_size += len;
2965 		mutex_exit(ksp->ks_lock);
2966 	}
2967 }
2968 
2969 /*
2970  * Indicate the current CPU's clock freqency (in Hz).
2971  * The calling context must be such that CPU references are safe.
2972  */
2973 void
2974 cpu_set_curr_clock(uint64_t new_clk)
2975 {
2976 	uint64_t old_clk;
2977 
2978 	old_clk = CPU->cpu_curr_clock;
2979 	CPU->cpu_curr_clock = new_clk;
2980 
2981 	/*
2982 	 * The cpu-change-speed DTrace probe exports the frequency in Hz
2983 	 */
2984 	DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
2985 	    uint64_t, old_clk, uint64_t, new_clk);
2986 }
2987 
2988 /*
2989  * processor_info(2) and p_online(2) status support functions
2990  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
2991  *   for use in communicating processor state information to userland.  Kernel
2992  *   subsystems should only be using the cpu_flags value directly.  Subsystems
2993  *   modifying cpu_flags should record the state change via a call to the
2994  *   cpu_set_state().
2995  */
2996 
2997 /*
2998  * Update the pi_state of this CPU.  This function provides the CPU status for
2999  * the information returned by processor_info(2).
3000  */
3001 void
3002 cpu_set_state(cpu_t *cpu)
3003 {
3004 	ASSERT(MUTEX_HELD(&cpu_lock));
3005 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3006 	cpu->cpu_state_begin = gethrestime_sec();
3007 	pool_cpu_mod = gethrtime();
3008 }
3009 
3010 /*
3011  * Return offline/online/other status for the indicated CPU.  Use only for
3012  * communication with user applications; cpu_flags provides the in-kernel
3013  * interface.
3014  */
3015 int
3016 cpu_get_state(cpu_t *cpu)
3017 {
3018 	ASSERT(MUTEX_HELD(&cpu_lock));
3019 	if (cpu->cpu_flags & CPU_POWEROFF)
3020 		return (P_POWEROFF);
3021 	else if (cpu->cpu_flags & CPU_FAULTED)
3022 		return (P_FAULTED);
3023 	else if (cpu->cpu_flags & CPU_SPARE)
3024 		return (P_SPARE);
3025 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3026 		return (P_OFFLINE);
3027 	else if (cpu->cpu_flags & CPU_ENABLE)
3028 		return (P_ONLINE);
3029 	else
3030 		return (P_NOINTR);
3031 }
3032 
3033 /*
3034  * Return processor_info(2) state as a string.
3035  */
3036 const char *
3037 cpu_get_state_str(cpu_t *cpu)
3038 {
3039 	const char *string;
3040 
3041 	switch (cpu_get_state(cpu)) {
3042 	case P_ONLINE:
3043 		string = PS_ONLINE;
3044 		break;
3045 	case P_POWEROFF:
3046 		string = PS_POWEROFF;
3047 		break;
3048 	case P_NOINTR:
3049 		string = PS_NOINTR;
3050 		break;
3051 	case P_SPARE:
3052 		string = PS_SPARE;
3053 		break;
3054 	case P_FAULTED:
3055 		string = PS_FAULTED;
3056 		break;
3057 	case P_OFFLINE:
3058 		string = PS_OFFLINE;
3059 		break;
3060 	default:
3061 		string = "unknown";
3062 		break;
3063 	}
3064 	return (string);
3065 }
3066 
3067 /*
3068  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3069  * kstats, respectively.  This is done when a CPU is initialized or placed
3070  * online via p_online(2).
3071  */
3072 static void
3073 cpu_stats_kstat_create(cpu_t *cp)
3074 {
3075 	int 	instance = cp->cpu_id;
3076 	char 	*module = "cpu";
3077 	char 	*class = "misc";
3078 	kstat_t	*ksp;
3079 	zoneid_t zoneid;
3080 
3081 	ASSERT(MUTEX_HELD(&cpu_lock));
3082 
3083 	if (pool_pset_enabled())
3084 		zoneid = GLOBAL_ZONEID;
3085 	else
3086 		zoneid = ALL_ZONES;
3087 	/*
3088 	 * Create named kstats
3089 	 */
3090 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3091 	ksp = kstat_create_zone(module, instance, (name), class,         \
3092 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3093 	    zoneid);                                                     \
3094 	if (ksp != NULL) {                                               \
3095 		ksp->ks_private = cp;                                    \
3096 		ksp->ks_update = (update_func);                          \
3097 		kstat_install(ksp);                                      \
3098 	} else                                                           \
3099 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3100 		    module, instance, (name));
3101 
3102 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3103 	    cpu_sys_stats_ks_update);
3104 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3105 	    cpu_vm_stats_ks_update);
3106 
3107 	/*
3108 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3109 	 */
3110 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3111 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3112 	if (ksp != NULL) {
3113 		ksp->ks_update = cpu_stat_ks_update;
3114 		ksp->ks_private = cp;
3115 		kstat_install(ksp);
3116 	}
3117 }
3118 
3119 static void
3120 cpu_stats_kstat_destroy(cpu_t *cp)
3121 {
3122 	char ks_name[KSTAT_STRLEN];
3123 
3124 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3125 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3126 
3127 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3128 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3129 }
3130 
3131 static int
3132 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3133 {
3134 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3135 	struct cpu_sys_stats_ks_data *csskd;
3136 	cpu_sys_stats_t *css;
3137 	hrtime_t msnsecs[NCMSTATES];
3138 	int	i;
3139 
3140 	if (rw == KSTAT_WRITE)
3141 		return (EACCES);
3142 
3143 	csskd = ksp->ks_data;
3144 	css = &cp->cpu_stats.sys;
3145 
3146 	/*
3147 	 * Read CPU mstate, but compare with the last values we
3148 	 * received to make sure that the returned kstats never
3149 	 * decrease.
3150 	 */
3151 
3152 	get_cpu_mstate(cp, msnsecs);
3153 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3154 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3155 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3156 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3157 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3158 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3159 
3160 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3161 	    sizeof (cpu_sys_stats_ks_data_template));
3162 
3163 	csskd->cpu_ticks_wait.value.ui64 = 0;
3164 	csskd->wait_ticks_io.value.ui64 = 0;
3165 
3166 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3167 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3168 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3169 	csskd->cpu_ticks_idle.value.ui64 =
3170 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3171 	csskd->cpu_ticks_user.value.ui64 =
3172 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3173 	csskd->cpu_ticks_kernel.value.ui64 =
3174 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3175 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3176 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3177 	csskd->bread.value.ui64 = css->bread;
3178 	csskd->bwrite.value.ui64 = css->bwrite;
3179 	csskd->lread.value.ui64 = css->lread;
3180 	csskd->lwrite.value.ui64 = css->lwrite;
3181 	csskd->phread.value.ui64 = css->phread;
3182 	csskd->phwrite.value.ui64 = css->phwrite;
3183 	csskd->pswitch.value.ui64 = css->pswitch;
3184 	csskd->trap.value.ui64 = css->trap;
3185 	csskd->intr.value.ui64 = 0;
3186 	for (i = 0; i < PIL_MAX; i++)
3187 		csskd->intr.value.ui64 += css->intr[i];
3188 	csskd->syscall.value.ui64 = css->syscall;
3189 	csskd->sysread.value.ui64 = css->sysread;
3190 	csskd->syswrite.value.ui64 = css->syswrite;
3191 	csskd->sysfork.value.ui64 = css->sysfork;
3192 	csskd->sysvfork.value.ui64 = css->sysvfork;
3193 	csskd->sysexec.value.ui64 = css->sysexec;
3194 	csskd->readch.value.ui64 = css->readch;
3195 	csskd->writech.value.ui64 = css->writech;
3196 	csskd->rcvint.value.ui64 = css->rcvint;
3197 	csskd->xmtint.value.ui64 = css->xmtint;
3198 	csskd->mdmint.value.ui64 = css->mdmint;
3199 	csskd->rawch.value.ui64 = css->rawch;
3200 	csskd->canch.value.ui64 = css->canch;
3201 	csskd->outch.value.ui64 = css->outch;
3202 	csskd->msg.value.ui64 = css->msg;
3203 	csskd->sema.value.ui64 = css->sema;
3204 	csskd->namei.value.ui64 = css->namei;
3205 	csskd->ufsiget.value.ui64 = css->ufsiget;
3206 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3207 	csskd->ufsipage.value.ui64 = css->ufsipage;
3208 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3209 	csskd->procovf.value.ui64 = css->procovf;
3210 	csskd->intrthread.value.ui64 = 0;
3211 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3212 		csskd->intrthread.value.ui64 += css->intr[i];
3213 	csskd->intrblk.value.ui64 = css->intrblk;
3214 	csskd->intrunpin.value.ui64 = css->intrunpin;
3215 	csskd->idlethread.value.ui64 = css->idlethread;
3216 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3217 	csskd->nthreads.value.ui64 = css->nthreads;
3218 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3219 	csskd->xcalls.value.ui64 = css->xcalls;
3220 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3221 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3222 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3223 	csskd->modload.value.ui64 = css->modload;
3224 	csskd->modunload.value.ui64 = css->modunload;
3225 	csskd->bawrite.value.ui64 = css->bawrite;
3226 	csskd->iowait.value.ui64 = css->iowait;
3227 
3228 	return (0);
3229 }
3230 
3231 static int
3232 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3233 {
3234 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3235 	struct cpu_vm_stats_ks_data *cvskd;
3236 	cpu_vm_stats_t *cvs;
3237 
3238 	if (rw == KSTAT_WRITE)
3239 		return (EACCES);
3240 
3241 	cvs = &cp->cpu_stats.vm;
3242 	cvskd = ksp->ks_data;
3243 
3244 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3245 	    sizeof (cpu_vm_stats_ks_data_template));
3246 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3247 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3248 	cvskd->pgin.value.ui64 = cvs->pgin;
3249 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3250 	cvskd->pgout.value.ui64 = cvs->pgout;
3251 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3252 	cvskd->swapin.value.ui64 = cvs->swapin;
3253 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3254 	cvskd->swapout.value.ui64 = cvs->swapout;
3255 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3256 	cvskd->zfod.value.ui64 = cvs->zfod;
3257 	cvskd->dfree.value.ui64 = cvs->dfree;
3258 	cvskd->scan.value.ui64 = cvs->scan;
3259 	cvskd->rev.value.ui64 = cvs->rev;
3260 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3261 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3262 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3263 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3264 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3265 	cvskd->softlock.value.ui64 = cvs->softlock;
3266 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3267 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3268 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3269 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3270 	cvskd->execfree.value.ui64 = cvs->execfree;
3271 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3272 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3273 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3274 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3275 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3276 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3277 
3278 	return (0);
3279 }
3280 
3281 static int
3282 cpu_stat_ks_update(kstat_t *ksp, int rw)
3283 {
3284 	cpu_stat_t *cso;
3285 	cpu_t *cp;
3286 	int i;
3287 	hrtime_t msnsecs[NCMSTATES];
3288 
3289 	cso = (cpu_stat_t *)ksp->ks_data;
3290 	cp = (cpu_t *)ksp->ks_private;
3291 
3292 	if (rw == KSTAT_WRITE)
3293 		return (EACCES);
3294 
3295 	/*
3296 	 * Read CPU mstate, but compare with the last values we
3297 	 * received to make sure that the returned kstats never
3298 	 * decrease.
3299 	 */
3300 
3301 	get_cpu_mstate(cp, msnsecs);
3302 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3303 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3304 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3305 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3306 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3307 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3308 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3309 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3310 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3311 	cso->cpu_sysinfo.cpu[CPU_WAIT] 	= 0;
3312 	cso->cpu_sysinfo.wait[W_IO] 	= 0;
3313 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3314 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3315 	cso->cpu_sysinfo.bread 		= CPU_STATS(cp, sys.bread);
3316 	cso->cpu_sysinfo.bwrite 	= CPU_STATS(cp, sys.bwrite);
3317 	cso->cpu_sysinfo.lread 		= CPU_STATS(cp, sys.lread);
3318 	cso->cpu_sysinfo.lwrite 	= CPU_STATS(cp, sys.lwrite);
3319 	cso->cpu_sysinfo.phread 	= CPU_STATS(cp, sys.phread);
3320 	cso->cpu_sysinfo.phwrite 	= CPU_STATS(cp, sys.phwrite);
3321 	cso->cpu_sysinfo.pswitch 	= CPU_STATS(cp, sys.pswitch);
3322 	cso->cpu_sysinfo.trap 		= CPU_STATS(cp, sys.trap);
3323 	cso->cpu_sysinfo.intr		= 0;
3324 	for (i = 0; i < PIL_MAX; i++)
3325 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3326 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3327 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3328 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3329 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3330 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3331 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3332 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3333 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3334 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3335 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3336 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3337 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3338 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3339 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3340 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3341 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3342 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3343 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3344 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3345 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3346 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3347 	cso->cpu_sysinfo.inodeovf	= 0;
3348 	cso->cpu_sysinfo.fileovf	= 0;
3349 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3350 	cso->cpu_sysinfo.intrthread	= 0;
3351 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3352 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3353 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3354 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3355 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3356 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3357 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3358 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3359 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3360 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3361 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3362 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3363 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3364 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3365 	cso->cpu_sysinfo.rw_enters	= 0;
3366 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3367 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3368 	cso->cpu_sysinfo.win_so_cnt	= 0;
3369 	cso->cpu_sysinfo.win_su_cnt	= 0;
3370 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3371 
3372 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3373 	cso->cpu_syswait.swap		= 0;
3374 	cso->cpu_syswait.physio		= 0;
3375 
3376 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3377 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3378 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3379 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3380 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3381 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3382 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3383 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3384 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3385 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3386 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3387 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3388 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3389 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3390 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3391 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3392 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3393 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3394 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3395 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3396 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3397 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3398 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3399 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3400 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3401 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3402 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3403 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3404 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3405 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3406 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3407 
3408 	return (0);
3409 }
3410