xref: /titanic_44/usr/src/uts/common/os/cpu.c (revision a0900badd8eb6bcca99411c8906b483e84f2da91)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Architecture-independent CPU control functions.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/var.h>
32 #include <sys/thread.h>
33 #include <sys/cpuvar.h>
34 #include <sys/cpu_event.h>
35 #include <sys/kstat.h>
36 #include <sys/uadmin.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/procset.h>
41 #include <sys/processor.h>
42 #include <sys/debug.h>
43 #include <sys/cpupart.h>
44 #include <sys/lgrp.h>
45 #include <sys/pset.h>
46 #include <sys/pghw.h>
47 #include <sys/kmem.h>
48 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
49 #include <sys/atomic.h>
50 #include <sys/callb.h>
51 #include <sys/vtrace.h>
52 #include <sys/cyclic.h>
53 #include <sys/bitmap.h>
54 #include <sys/nvpair.h>
55 #include <sys/pool_pset.h>
56 #include <sys/msacct.h>
57 #include <sys/time.h>
58 #include <sys/archsystm.h>
59 #include <sys/sdt.h>
60 #if defined(__x86) || defined(__amd64)
61 #include <sys/x86_archext.h>
62 #endif
63 #include <sys/callo.h>
64 
65 extern int	mp_cpu_start(cpu_t *);
66 extern int	mp_cpu_stop(cpu_t *);
67 extern int	mp_cpu_poweron(cpu_t *);
68 extern int	mp_cpu_poweroff(cpu_t *);
69 extern int	mp_cpu_configure(int);
70 extern int	mp_cpu_unconfigure(int);
71 extern void	mp_cpu_faulted_enter(cpu_t *);
72 extern void	mp_cpu_faulted_exit(cpu_t *);
73 
74 extern int cmp_cpu_to_chip(processorid_t cpuid);
75 #ifdef __sparcv9
76 extern char *cpu_fru_fmri(cpu_t *cp);
77 #endif
78 
79 static void cpu_add_active_internal(cpu_t *cp);
80 static void cpu_remove_active(cpu_t *cp);
81 static void cpu_info_kstat_create(cpu_t *cp);
82 static void cpu_info_kstat_destroy(cpu_t *cp);
83 static void cpu_stats_kstat_create(cpu_t *cp);
84 static void cpu_stats_kstat_destroy(cpu_t *cp);
85 
86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
90 
91 /*
92  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
93  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
94  * respect to related locks is:
95  *
96  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
97  *
98  * Warning:  Certain sections of code do not use the cpu_lock when
99  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
100  * all cpus are paused during modifications to this list, a solution
101  * to protect the list is too either disable kernel preemption while
102  * walking the list, *or* recheck the cpu_next pointer at each
103  * iteration in the loop.  Note that in no cases can any cached
104  * copies of the cpu pointers be kept as they may become invalid.
105  */
106 kmutex_t	cpu_lock;
107 cpu_t		*cpu_list;		/* list of all CPUs */
108 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
109 cpu_t		*cpu_active;		/* list of active CPUs */
110 static cpuset_t	cpu_available;		/* set of available CPUs */
111 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
112 
113 cpu_t		**cpu_seq;		/* ptrs to CPUs, indexed by seq_id */
114 
115 /*
116  * max_ncpus keeps the max cpus the system can have. Initially
117  * it's NCPU, but since most archs scan the devtree for cpus
118  * fairly early on during boot, the real max can be known before
119  * ncpus is set (useful for early NCPU based allocations).
120  */
121 int max_ncpus = NCPU;
122 /*
123  * platforms that set max_ncpus to maxiumum number of cpus that can be
124  * dynamically added will set boot_max_ncpus to the number of cpus found
125  * at device tree scan time during boot.
126  */
127 int boot_max_ncpus = -1;
128 int boot_ncpus = -1;
129 /*
130  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
131  * used to size arrays that are indexed by CPU id.
132  */
133 processorid_t max_cpuid = NCPU - 1;
134 
135 /*
136  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
137  * can be used to optimize NCPU loops to avoid going through CPUs which were
138  * never on-line.
139  */
140 processorid_t max_cpu_seqid_ever = 0;
141 
142 int ncpus = 1;
143 int ncpus_online = 1;
144 
145 /*
146  * CPU that we're trying to offline.  Protected by cpu_lock.
147  */
148 cpu_t *cpu_inmotion;
149 
150 /*
151  * Can be raised to suppress further weakbinding, which are instead
152  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
153  * while individual thread weakbinding synchronization is done under thread
154  * lock.
155  */
156 int weakbindingbarrier;
157 
158 /*
159  * Variables used in pause_cpus().
160  */
161 static volatile char safe_list[NCPU];
162 
163 static struct _cpu_pause_info {
164 	int		cp_spl;		/* spl saved in pause_cpus() */
165 	volatile int	cp_go;		/* Go signal sent after all ready */
166 	int		cp_count;	/* # of CPUs to pause */
167 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
168 	kthread_id_t	cp_paused;
169 } cpu_pause_info;
170 
171 static kmutex_t pause_free_mutex;
172 static kcondvar_t pause_free_cv;
173 
174 void *(*cpu_pause_func)(void *) = NULL;
175 
176 
177 static struct cpu_sys_stats_ks_data {
178 	kstat_named_t cpu_ticks_idle;
179 	kstat_named_t cpu_ticks_user;
180 	kstat_named_t cpu_ticks_kernel;
181 	kstat_named_t cpu_ticks_wait;
182 	kstat_named_t cpu_nsec_idle;
183 	kstat_named_t cpu_nsec_user;
184 	kstat_named_t cpu_nsec_kernel;
185 	kstat_named_t cpu_nsec_intr;
186 	kstat_named_t cpu_load_intr;
187 	kstat_named_t wait_ticks_io;
188 	kstat_named_t bread;
189 	kstat_named_t bwrite;
190 	kstat_named_t lread;
191 	kstat_named_t lwrite;
192 	kstat_named_t phread;
193 	kstat_named_t phwrite;
194 	kstat_named_t pswitch;
195 	kstat_named_t trap;
196 	kstat_named_t intr;
197 	kstat_named_t syscall;
198 	kstat_named_t sysread;
199 	kstat_named_t syswrite;
200 	kstat_named_t sysfork;
201 	kstat_named_t sysvfork;
202 	kstat_named_t sysexec;
203 	kstat_named_t readch;
204 	kstat_named_t writech;
205 	kstat_named_t rcvint;
206 	kstat_named_t xmtint;
207 	kstat_named_t mdmint;
208 	kstat_named_t rawch;
209 	kstat_named_t canch;
210 	kstat_named_t outch;
211 	kstat_named_t msg;
212 	kstat_named_t sema;
213 	kstat_named_t namei;
214 	kstat_named_t ufsiget;
215 	kstat_named_t ufsdirblk;
216 	kstat_named_t ufsipage;
217 	kstat_named_t ufsinopage;
218 	kstat_named_t procovf;
219 	kstat_named_t intrthread;
220 	kstat_named_t intrblk;
221 	kstat_named_t intrunpin;
222 	kstat_named_t idlethread;
223 	kstat_named_t inv_swtch;
224 	kstat_named_t nthreads;
225 	kstat_named_t cpumigrate;
226 	kstat_named_t xcalls;
227 	kstat_named_t mutex_adenters;
228 	kstat_named_t rw_rdfails;
229 	kstat_named_t rw_wrfails;
230 	kstat_named_t modload;
231 	kstat_named_t modunload;
232 	kstat_named_t bawrite;
233 	kstat_named_t iowait;
234 } cpu_sys_stats_ks_data_template = {
235 	{ "cpu_ticks_idle", 	KSTAT_DATA_UINT64 },
236 	{ "cpu_ticks_user", 	KSTAT_DATA_UINT64 },
237 	{ "cpu_ticks_kernel", 	KSTAT_DATA_UINT64 },
238 	{ "cpu_ticks_wait", 	KSTAT_DATA_UINT64 },
239 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
240 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
241 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
242 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
243 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
244 	{ "wait_ticks_io", 	KSTAT_DATA_UINT64 },
245 	{ "bread", 		KSTAT_DATA_UINT64 },
246 	{ "bwrite", 		KSTAT_DATA_UINT64 },
247 	{ "lread", 		KSTAT_DATA_UINT64 },
248 	{ "lwrite", 		KSTAT_DATA_UINT64 },
249 	{ "phread", 		KSTAT_DATA_UINT64 },
250 	{ "phwrite", 		KSTAT_DATA_UINT64 },
251 	{ "pswitch", 		KSTAT_DATA_UINT64 },
252 	{ "trap", 		KSTAT_DATA_UINT64 },
253 	{ "intr", 		KSTAT_DATA_UINT64 },
254 	{ "syscall", 		KSTAT_DATA_UINT64 },
255 	{ "sysread", 		KSTAT_DATA_UINT64 },
256 	{ "syswrite", 		KSTAT_DATA_UINT64 },
257 	{ "sysfork", 		KSTAT_DATA_UINT64 },
258 	{ "sysvfork", 		KSTAT_DATA_UINT64 },
259 	{ "sysexec", 		KSTAT_DATA_UINT64 },
260 	{ "readch", 		KSTAT_DATA_UINT64 },
261 	{ "writech", 		KSTAT_DATA_UINT64 },
262 	{ "rcvint", 		KSTAT_DATA_UINT64 },
263 	{ "xmtint", 		KSTAT_DATA_UINT64 },
264 	{ "mdmint", 		KSTAT_DATA_UINT64 },
265 	{ "rawch", 		KSTAT_DATA_UINT64 },
266 	{ "canch", 		KSTAT_DATA_UINT64 },
267 	{ "outch", 		KSTAT_DATA_UINT64 },
268 	{ "msg", 		KSTAT_DATA_UINT64 },
269 	{ "sema", 		KSTAT_DATA_UINT64 },
270 	{ "namei", 		KSTAT_DATA_UINT64 },
271 	{ "ufsiget", 		KSTAT_DATA_UINT64 },
272 	{ "ufsdirblk", 		KSTAT_DATA_UINT64 },
273 	{ "ufsipage", 		KSTAT_DATA_UINT64 },
274 	{ "ufsinopage", 	KSTAT_DATA_UINT64 },
275 	{ "procovf", 		KSTAT_DATA_UINT64 },
276 	{ "intrthread", 	KSTAT_DATA_UINT64 },
277 	{ "intrblk", 		KSTAT_DATA_UINT64 },
278 	{ "intrunpin",		KSTAT_DATA_UINT64 },
279 	{ "idlethread", 	KSTAT_DATA_UINT64 },
280 	{ "inv_swtch", 		KSTAT_DATA_UINT64 },
281 	{ "nthreads", 		KSTAT_DATA_UINT64 },
282 	{ "cpumigrate", 	KSTAT_DATA_UINT64 },
283 	{ "xcalls", 		KSTAT_DATA_UINT64 },
284 	{ "mutex_adenters", 	KSTAT_DATA_UINT64 },
285 	{ "rw_rdfails", 	KSTAT_DATA_UINT64 },
286 	{ "rw_wrfails", 	KSTAT_DATA_UINT64 },
287 	{ "modload", 		KSTAT_DATA_UINT64 },
288 	{ "modunload", 		KSTAT_DATA_UINT64 },
289 	{ "bawrite", 		KSTAT_DATA_UINT64 },
290 	{ "iowait",		KSTAT_DATA_UINT64 },
291 };
292 
293 static struct cpu_vm_stats_ks_data {
294 	kstat_named_t pgrec;
295 	kstat_named_t pgfrec;
296 	kstat_named_t pgin;
297 	kstat_named_t pgpgin;
298 	kstat_named_t pgout;
299 	kstat_named_t pgpgout;
300 	kstat_named_t swapin;
301 	kstat_named_t pgswapin;
302 	kstat_named_t swapout;
303 	kstat_named_t pgswapout;
304 	kstat_named_t zfod;
305 	kstat_named_t dfree;
306 	kstat_named_t scan;
307 	kstat_named_t rev;
308 	kstat_named_t hat_fault;
309 	kstat_named_t as_fault;
310 	kstat_named_t maj_fault;
311 	kstat_named_t cow_fault;
312 	kstat_named_t prot_fault;
313 	kstat_named_t softlock;
314 	kstat_named_t kernel_asflt;
315 	kstat_named_t pgrrun;
316 	kstat_named_t execpgin;
317 	kstat_named_t execpgout;
318 	kstat_named_t execfree;
319 	kstat_named_t anonpgin;
320 	kstat_named_t anonpgout;
321 	kstat_named_t anonfree;
322 	kstat_named_t fspgin;
323 	kstat_named_t fspgout;
324 	kstat_named_t fsfree;
325 } cpu_vm_stats_ks_data_template = {
326 	{ "pgrec",		KSTAT_DATA_UINT64 },
327 	{ "pgfrec",		KSTAT_DATA_UINT64 },
328 	{ "pgin",		KSTAT_DATA_UINT64 },
329 	{ "pgpgin",		KSTAT_DATA_UINT64 },
330 	{ "pgout",		KSTAT_DATA_UINT64 },
331 	{ "pgpgout",		KSTAT_DATA_UINT64 },
332 	{ "swapin",		KSTAT_DATA_UINT64 },
333 	{ "pgswapin",		KSTAT_DATA_UINT64 },
334 	{ "swapout",		KSTAT_DATA_UINT64 },
335 	{ "pgswapout",		KSTAT_DATA_UINT64 },
336 	{ "zfod",		KSTAT_DATA_UINT64 },
337 	{ "dfree",		KSTAT_DATA_UINT64 },
338 	{ "scan",		KSTAT_DATA_UINT64 },
339 	{ "rev",		KSTAT_DATA_UINT64 },
340 	{ "hat_fault",		KSTAT_DATA_UINT64 },
341 	{ "as_fault",		KSTAT_DATA_UINT64 },
342 	{ "maj_fault",		KSTAT_DATA_UINT64 },
343 	{ "cow_fault",		KSTAT_DATA_UINT64 },
344 	{ "prot_fault",		KSTAT_DATA_UINT64 },
345 	{ "softlock",		KSTAT_DATA_UINT64 },
346 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
347 	{ "pgrrun",		KSTAT_DATA_UINT64 },
348 	{ "execpgin",		KSTAT_DATA_UINT64 },
349 	{ "execpgout",		KSTAT_DATA_UINT64 },
350 	{ "execfree",		KSTAT_DATA_UINT64 },
351 	{ "anonpgin",		KSTAT_DATA_UINT64 },
352 	{ "anonpgout",		KSTAT_DATA_UINT64 },
353 	{ "anonfree",		KSTAT_DATA_UINT64 },
354 	{ "fspgin",		KSTAT_DATA_UINT64 },
355 	{ "fspgout",		KSTAT_DATA_UINT64 },
356 	{ "fsfree",		KSTAT_DATA_UINT64 },
357 };
358 
359 /*
360  * Force the specified thread to migrate to the appropriate processor.
361  * Called with thread lock held, returns with it dropped.
362  */
363 static void
364 force_thread_migrate(kthread_id_t tp)
365 {
366 	ASSERT(THREAD_LOCK_HELD(tp));
367 	if (tp == curthread) {
368 		THREAD_TRANSITION(tp);
369 		CL_SETRUN(tp);
370 		thread_unlock_nopreempt(tp);
371 		swtch();
372 	} else {
373 		if (tp->t_state == TS_ONPROC) {
374 			cpu_surrender(tp);
375 		} else if (tp->t_state == TS_RUN) {
376 			(void) dispdeq(tp);
377 			setbackdq(tp);
378 		}
379 		thread_unlock(tp);
380 	}
381 }
382 
383 /*
384  * Set affinity for a specified CPU.
385  * A reference count is incremented and the affinity is held until the
386  * reference count is decremented to zero by thread_affinity_clear().
387  * This is so regions of code requiring affinity can be nested.
388  * Caller needs to ensure that cpu_id remains valid, which can be
389  * done by holding cpu_lock across this call, unless the caller
390  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
391  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
392  */
393 void
394 thread_affinity_set(kthread_id_t t, int cpu_id)
395 {
396 	cpu_t		*cp;
397 	int		c;
398 
399 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
400 
401 	if ((c = cpu_id) == CPU_CURRENT) {
402 		mutex_enter(&cpu_lock);
403 		cpu_id = CPU->cpu_id;
404 	}
405 	/*
406 	 * We should be asserting that cpu_lock is held here, but
407 	 * the NCA code doesn't acquire it.  The following assert
408 	 * should be uncommented when the NCA code is fixed.
409 	 *
410 	 * ASSERT(MUTEX_HELD(&cpu_lock));
411 	 */
412 	ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
413 	cp = cpu[cpu_id];
414 	ASSERT(cp != NULL);		/* user must provide a good cpu_id */
415 	/*
416 	 * If there is already a hard affinity requested, and this affinity
417 	 * conflicts with that, panic.
418 	 */
419 	thread_lock(t);
420 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
421 		panic("affinity_set: setting %p but already bound to %p",
422 		    (void *)cp, (void *)t->t_bound_cpu);
423 	}
424 	t->t_affinitycnt++;
425 	t->t_bound_cpu = cp;
426 
427 	/*
428 	 * Make sure we're running on the right CPU.
429 	 */
430 	if (cp != t->t_cpu || t != curthread) {
431 		force_thread_migrate(t);	/* drops thread lock */
432 	} else {
433 		thread_unlock(t);
434 	}
435 
436 	if (c == CPU_CURRENT)
437 		mutex_exit(&cpu_lock);
438 }
439 
440 /*
441  *	Wrapper for backward compatibility.
442  */
443 void
444 affinity_set(int cpu_id)
445 {
446 	thread_affinity_set(curthread, cpu_id);
447 }
448 
449 /*
450  * Decrement the affinity reservation count and if it becomes zero,
451  * clear the CPU affinity for the current thread, or set it to the user's
452  * software binding request.
453  */
454 void
455 thread_affinity_clear(kthread_id_t t)
456 {
457 	register processorid_t binding;
458 
459 	thread_lock(t);
460 	if (--t->t_affinitycnt == 0) {
461 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
462 			/*
463 			 * Adjust disp_max_unbound_pri if necessary.
464 			 */
465 			disp_adjust_unbound_pri(t);
466 			t->t_bound_cpu = NULL;
467 			if (t->t_cpu->cpu_part != t->t_cpupart) {
468 				force_thread_migrate(t);
469 				return;
470 			}
471 		} else {
472 			t->t_bound_cpu = cpu[binding];
473 			/*
474 			 * Make sure the thread is running on the bound CPU.
475 			 */
476 			if (t->t_cpu != t->t_bound_cpu) {
477 				force_thread_migrate(t);
478 				return;		/* already dropped lock */
479 			}
480 		}
481 	}
482 	thread_unlock(t);
483 }
484 
485 /*
486  * Wrapper for backward compatibility.
487  */
488 void
489 affinity_clear(void)
490 {
491 	thread_affinity_clear(curthread);
492 }
493 
494 /*
495  * Weak cpu affinity.  Bind to the "current" cpu for short periods
496  * of time during which the thread must not block (but may be preempted).
497  * Use this instead of kpreempt_disable() when it is only "no migration"
498  * rather than "no preemption" semantics that are required - disabling
499  * preemption holds higher priority threads off of cpu and if the
500  * operation that is protected is more than momentary this is not good
501  * for realtime etc.
502  *
503  * Weakly bound threads will not prevent a cpu from being offlined -
504  * we'll only run them on the cpu to which they are weakly bound but
505  * (because they do not block) we'll always be able to move them on to
506  * another cpu at offline time if we give them just a short moment to
507  * run during which they will unbind.  To give a cpu a chance of offlining,
508  * however, we require a barrier to weak bindings that may be raised for a
509  * given cpu (offline/move code may set this and then wait a short time for
510  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
511  *
512  * There are few restrictions on the calling context of thread_nomigrate.
513  * The caller must not hold the thread lock.  Calls may be nested.
514  *
515  * After weakbinding a thread must not perform actions that may block.
516  * In particular it must not call thread_affinity_set; calling that when
517  * already weakbound is nonsensical anyway.
518  *
519  * If curthread is prevented from migrating for other reasons
520  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
521  * then the weak binding will succeed even if this cpu is the target of an
522  * offline/move request.
523  */
524 void
525 thread_nomigrate(void)
526 {
527 	cpu_t *cp;
528 	kthread_id_t t = curthread;
529 
530 again:
531 	kpreempt_disable();
532 	cp = CPU;
533 
534 	/*
535 	 * A highlevel interrupt must not modify t_nomigrate or
536 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
537 	 * interrupt thread cannot migrate and we can avoid the
538 	 * thread_lock call below by short-circuiting here.  In either
539 	 * case we can just return since no migration is possible and
540 	 * the condition will persist (ie, when we test for these again
541 	 * in thread_allowmigrate they can't have changed).   Migration
542 	 * is also impossible if we're at or above DISP_LEVEL pil.
543 	 */
544 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
545 	    getpil() >= DISP_LEVEL) {
546 		kpreempt_enable();
547 		return;
548 	}
549 
550 	/*
551 	 * We must be consistent with existing weak bindings.  Since we
552 	 * may be interrupted between the increment of t_nomigrate and
553 	 * the store to t_weakbound_cpu below we cannot assume that
554 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
555 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
556 	 * always the case.
557 	 */
558 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
559 		if (!panicstr)
560 			panic("thread_nomigrate: binding to %p but already "
561 			    "bound to %p", (void *)cp,
562 			    (void *)t->t_weakbound_cpu);
563 	}
564 
565 	/*
566 	 * At this point we have preemption disabled and we don't yet hold
567 	 * the thread lock.  So it's possible that somebody else could
568 	 * set t_bind_cpu here and not be able to force us across to the
569 	 * new cpu (since we have preemption disabled).
570 	 */
571 	thread_lock(curthread);
572 
573 	/*
574 	 * If further weak bindings are being (temporarily) suppressed then
575 	 * we'll settle for disabling kernel preemption (which assures
576 	 * no migration provided the thread does not block which it is
577 	 * not allowed to if using thread_nomigrate).  We must remember
578 	 * this disposition so we can take appropriate action in
579 	 * thread_allowmigrate.  If this is a nested call and the
580 	 * thread is already weakbound then fall through as normal.
581 	 * We remember the decision to settle for kpreempt_disable through
582 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
583 	 * weakbinding request satisfied in this way any further (nested)
584 	 * requests will continue to be satisfied in the same way,
585 	 * even if weak bindings have recommenced.
586 	 */
587 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
588 		--t->t_nomigrate;
589 		thread_unlock(curthread);
590 		return;		/* with kpreempt_disable still active */
591 	}
592 
593 	/*
594 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
595 	 * however, be running on a different cpu to which we are t_bound_cpu
596 	 * to (as explained above).  If we grant the weak binding request
597 	 * in that case then the dispatcher must favour our weak binding
598 	 * over our strong (in which case, just as when preemption is
599 	 * disabled, we can continue to run on a cpu other than the one to
600 	 * which we are strongbound; the difference in this case is that
601 	 * this thread can be preempted and so can appear on the dispatch
602 	 * queues of a cpu other than the one it is strongbound to).
603 	 *
604 	 * If the cpu we are running on does not appear to be a current
605 	 * offline target (we check cpu_inmotion to determine this - since
606 	 * we don't hold cpu_lock we may not see a recent store to that,
607 	 * so it's possible that we at times can grant a weak binding to a
608 	 * cpu that is an offline target, but that one request will not
609 	 * prevent the offline from succeeding) then we will always grant
610 	 * the weak binding request.  This includes the case above where
611 	 * we grant a weakbinding not commensurate with our strong binding.
612 	 *
613 	 * If our cpu does appear to be an offline target then we're inclined
614 	 * not to grant the weakbinding request just yet - we'd prefer to
615 	 * migrate to another cpu and grant the request there.  The
616 	 * exceptions are those cases where going through preemption code
617 	 * will not result in us changing cpu:
618 	 *
619 	 *	. interrupts have already bypassed this case (see above)
620 	 *	. we are already weakbound to this cpu (dispatcher code will
621 	 *	  always return us to the weakbound cpu)
622 	 *	. preemption was disabled even before we disabled it above
623 	 *	. we are strongbound to this cpu (if we're strongbound to
624 	 *	another and not yet running there the trip through the
625 	 *	dispatcher will move us to the strongbound cpu and we
626 	 *	will grant the weak binding there)
627 	 */
628 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
629 	    t->t_bound_cpu == cp) {
630 		/*
631 		 * Don't be tempted to store to t_weakbound_cpu only on
632 		 * the first nested bind request - if we're interrupted
633 		 * after the increment of t_nomigrate and before the
634 		 * store to t_weakbound_cpu and the interrupt calls
635 		 * thread_nomigrate then the assertion in thread_allowmigrate
636 		 * would fail.
637 		 */
638 		t->t_nomigrate++;
639 		t->t_weakbound_cpu = cp;
640 		membar_producer();
641 		thread_unlock(curthread);
642 		/*
643 		 * Now that we have dropped the thread_lock another thread
644 		 * can set our t_weakbound_cpu, and will try to migrate us
645 		 * to the strongbound cpu (which will not be prevented by
646 		 * preemption being disabled since we're about to enable
647 		 * preemption).  We have granted the weakbinding to the current
648 		 * cpu, so again we are in the position that is is is possible
649 		 * that our weak and strong bindings differ.  Again this
650 		 * is catered for by dispatcher code which will favour our
651 		 * weak binding.
652 		 */
653 		kpreempt_enable();
654 	} else {
655 		/*
656 		 * Move to another cpu before granting the request by
657 		 * forcing this thread through preemption code.  When we
658 		 * get to set{front,back}dq called from CL_PREEMPT()
659 		 * cpu_choose() will be used to select a cpu to queue
660 		 * us on - that will see cpu_inmotion and take
661 		 * steps to avoid returning us to this cpu.
662 		 */
663 		cp->cpu_kprunrun = 1;
664 		thread_unlock(curthread);
665 		kpreempt_enable();	/* will call preempt() */
666 		goto again;
667 	}
668 }
669 
670 void
671 thread_allowmigrate(void)
672 {
673 	kthread_id_t t = curthread;
674 
675 	ASSERT(t->t_weakbound_cpu == CPU ||
676 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
677 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
678 	    getpil() >= DISP_LEVEL);
679 
680 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
681 	    getpil() >= DISP_LEVEL)
682 		return;
683 
684 	if (t->t_nomigrate < 0) {
685 		/*
686 		 * This thread was granted "weak binding" in the
687 		 * stronger form of kernel preemption disabling.
688 		 * Undo a level of nesting for both t_nomigrate
689 		 * and t_preempt.
690 		 */
691 		++t->t_nomigrate;
692 		kpreempt_enable();
693 	} else if (--t->t_nomigrate == 0) {
694 		/*
695 		 * Time to drop the weak binding.  We need to cater
696 		 * for the case where we're weakbound to a different
697 		 * cpu than that to which we're strongbound (a very
698 		 * temporary arrangement that must only persist until
699 		 * weak binding drops).  We don't acquire thread_lock
700 		 * here so even as this code executes t_bound_cpu
701 		 * may be changing.  So we disable preemption and
702 		 * a) in the case that t_bound_cpu changes while we
703 		 * have preemption disabled kprunrun will be set
704 		 * asynchronously, and b) if before disabling
705 		 * preemption we were already on a different cpu to
706 		 * our t_bound_cpu then we set kprunrun ourselves
707 		 * to force a trip through the dispatcher when
708 		 * preemption is enabled.
709 		 */
710 		kpreempt_disable();
711 		if (t->t_bound_cpu &&
712 		    t->t_weakbound_cpu != t->t_bound_cpu)
713 			CPU->cpu_kprunrun = 1;
714 		t->t_weakbound_cpu = NULL;
715 		membar_producer();
716 		kpreempt_enable();
717 	}
718 }
719 
720 /*
721  * weakbinding_stop can be used to temporarily cause weakbindings made
722  * with thread_nomigrate to be satisfied through the stronger action of
723  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
724  */
725 
726 void
727 weakbinding_stop(void)
728 {
729 	ASSERT(MUTEX_HELD(&cpu_lock));
730 	weakbindingbarrier = 1;
731 	membar_producer();	/* make visible before subsequent thread_lock */
732 }
733 
734 void
735 weakbinding_start(void)
736 {
737 	ASSERT(MUTEX_HELD(&cpu_lock));
738 	weakbindingbarrier = 0;
739 }
740 
741 void
742 null_xcall(void)
743 {
744 }
745 
746 /*
747  * This routine is called to place the CPUs in a safe place so that
748  * one of them can be taken off line or placed on line.  What we are
749  * trying to do here is prevent a thread from traversing the list
750  * of active CPUs while we are changing it or from getting placed on
751  * the run queue of a CPU that has just gone off line.  We do this by
752  * creating a thread with the highest possible prio for each CPU and
753  * having it call this routine.  The advantage of this method is that
754  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
755  * This makes disp faster at the expense of making p_online() slower
756  * which is a good trade off.
757  */
758 static void
759 cpu_pause(int index)
760 {
761 	int s;
762 	struct _cpu_pause_info *cpi = &cpu_pause_info;
763 	volatile char *safe = &safe_list[index];
764 	long    lindex = index;
765 
766 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
767 
768 	while (*safe != PAUSE_DIE) {
769 		*safe = PAUSE_READY;
770 		membar_enter();		/* make sure stores are flushed */
771 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
772 
773 		/*
774 		 * Wait here until all pause threads are running.  That
775 		 * indicates that it's safe to do the spl.  Until
776 		 * cpu_pause_info.cp_go is set, we don't want to spl
777 		 * because that might block clock interrupts needed
778 		 * to preempt threads on other CPUs.
779 		 */
780 		while (cpi->cp_go == 0)
781 			;
782 		/*
783 		 * Even though we are at the highest disp prio, we need
784 		 * to block out all interrupts below LOCK_LEVEL so that
785 		 * an intr doesn't come in, wake up a thread, and call
786 		 * setbackdq/setfrontdq.
787 		 */
788 		s = splhigh();
789 		/*
790 		 * if cpu_pause_func() has been set then call it using
791 		 * index as the argument, currently only used by
792 		 * cpr_suspend_cpus().  This function is used as the
793 		 * code to execute on the "paused" cpu's when a machine
794 		 * comes out of a sleep state and CPU's were powered off.
795 		 * (could also be used for hotplugging CPU's).
796 		 */
797 		if (cpu_pause_func != NULL)
798 			(*cpu_pause_func)((void *)lindex);
799 
800 		mach_cpu_pause(safe);
801 
802 		splx(s);
803 		/*
804 		 * Waiting is at an end. Switch out of cpu_pause
805 		 * loop and resume useful work.
806 		 */
807 		swtch();
808 	}
809 
810 	mutex_enter(&pause_free_mutex);
811 	*safe = PAUSE_DEAD;
812 	cv_broadcast(&pause_free_cv);
813 	mutex_exit(&pause_free_mutex);
814 }
815 
816 /*
817  * Allow the cpus to start running again.
818  */
819 void
820 start_cpus()
821 {
822 	int i;
823 
824 	ASSERT(MUTEX_HELD(&cpu_lock));
825 	ASSERT(cpu_pause_info.cp_paused);
826 	cpu_pause_info.cp_paused = NULL;
827 	for (i = 0; i < NCPU; i++)
828 		safe_list[i] = PAUSE_IDLE;
829 	membar_enter();			/* make sure stores are flushed */
830 	affinity_clear();
831 	splx(cpu_pause_info.cp_spl);
832 	kpreempt_enable();
833 }
834 
835 /*
836  * Allocate a pause thread for a CPU.
837  */
838 static void
839 cpu_pause_alloc(cpu_t *cp)
840 {
841 	kthread_id_t	t;
842 	long		cpun = cp->cpu_id;
843 
844 	/*
845 	 * Note, v.v_nglobpris will not change value as long as I hold
846 	 * cpu_lock.
847 	 */
848 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
849 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
850 	thread_lock(t);
851 	t->t_bound_cpu = cp;
852 	t->t_disp_queue = cp->cpu_disp;
853 	t->t_affinitycnt = 1;
854 	t->t_preempt = 1;
855 	thread_unlock(t);
856 	cp->cpu_pause_thread = t;
857 	/*
858 	 * Registering a thread in the callback table is usually done
859 	 * in the initialization code of the thread.  In this
860 	 * case, we do it right after thread creation because the
861 	 * thread itself may never run, and we need to register the
862 	 * fact that it is safe for cpr suspend.
863 	 */
864 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
865 }
866 
867 /*
868  * Free a pause thread for a CPU.
869  */
870 static void
871 cpu_pause_free(cpu_t *cp)
872 {
873 	kthread_id_t	t;
874 	int		cpun = cp->cpu_id;
875 
876 	ASSERT(MUTEX_HELD(&cpu_lock));
877 	/*
878 	 * We have to get the thread and tell him to die.
879 	 */
880 	if ((t = cp->cpu_pause_thread) == NULL) {
881 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
882 		return;
883 	}
884 	thread_lock(t);
885 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
886 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
887 	t->t_pri = v.v_nglobpris - 1;
888 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
889 	safe_list[cpun] = PAUSE_DIE;
890 	THREAD_TRANSITION(t);
891 	setbackdq(t);
892 	thread_unlock_nopreempt(t);
893 
894 	/*
895 	 * If we don't wait for the thread to actually die, it may try to
896 	 * run on the wrong cpu as part of an actual call to pause_cpus().
897 	 */
898 	mutex_enter(&pause_free_mutex);
899 	while (safe_list[cpun] != PAUSE_DEAD) {
900 		cv_wait(&pause_free_cv, &pause_free_mutex);
901 	}
902 	mutex_exit(&pause_free_mutex);
903 	safe_list[cpun] = PAUSE_IDLE;
904 
905 	cp->cpu_pause_thread = NULL;
906 }
907 
908 /*
909  * Initialize basic structures for pausing CPUs.
910  */
911 void
912 cpu_pause_init()
913 {
914 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
915 	/*
916 	 * Create initial CPU pause thread.
917 	 */
918 	cpu_pause_alloc(CPU);
919 }
920 
921 /*
922  * Start the threads used to pause another CPU.
923  */
924 static int
925 cpu_pause_start(processorid_t cpu_id)
926 {
927 	int	i;
928 	int	cpu_count = 0;
929 
930 	for (i = 0; i < NCPU; i++) {
931 		cpu_t		*cp;
932 		kthread_id_t	t;
933 
934 		cp = cpu[i];
935 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
936 			safe_list[i] = PAUSE_WAIT;
937 			continue;
938 		}
939 
940 		/*
941 		 * Skip CPU if it is quiesced or not yet started.
942 		 */
943 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
944 			safe_list[i] = PAUSE_WAIT;
945 			continue;
946 		}
947 
948 		/*
949 		 * Start this CPU's pause thread.
950 		 */
951 		t = cp->cpu_pause_thread;
952 		thread_lock(t);
953 		/*
954 		 * Reset the priority, since nglobpris may have
955 		 * changed since the thread was created, if someone
956 		 * has loaded the RT (or some other) scheduling
957 		 * class.
958 		 */
959 		t->t_pri = v.v_nglobpris - 1;
960 		THREAD_TRANSITION(t);
961 		setbackdq(t);
962 		thread_unlock_nopreempt(t);
963 		++cpu_count;
964 	}
965 	return (cpu_count);
966 }
967 
968 
969 /*
970  * Pause all of the CPUs except the one we are on by creating a high
971  * priority thread bound to those CPUs.
972  *
973  * Note that one must be extremely careful regarding code
974  * executed while CPUs are paused.  Since a CPU may be paused
975  * while a thread scheduling on that CPU is holding an adaptive
976  * lock, code executed with CPUs paused must not acquire adaptive
977  * (or low-level spin) locks.  Also, such code must not block,
978  * since the thread that is supposed to initiate the wakeup may
979  * never run.
980  *
981  * With a few exceptions, the restrictions on code executed with CPUs
982  * paused match those for code executed at high-level interrupt
983  * context.
984  */
985 void
986 pause_cpus(cpu_t *off_cp)
987 {
988 	processorid_t	cpu_id;
989 	int		i;
990 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
991 
992 	ASSERT(MUTEX_HELD(&cpu_lock));
993 	ASSERT(cpi->cp_paused == NULL);
994 	cpi->cp_count = 0;
995 	cpi->cp_go = 0;
996 	for (i = 0; i < NCPU; i++)
997 		safe_list[i] = PAUSE_IDLE;
998 	kpreempt_disable();
999 
1000 	/*
1001 	 * If running on the cpu that is going offline, get off it.
1002 	 * This is so that it won't be necessary to rechoose a CPU
1003 	 * when done.
1004 	 */
1005 	if (CPU == off_cp)
1006 		cpu_id = off_cp->cpu_next_part->cpu_id;
1007 	else
1008 		cpu_id = CPU->cpu_id;
1009 	affinity_set(cpu_id);
1010 
1011 	/*
1012 	 * Start the pause threads and record how many were started
1013 	 */
1014 	cpi->cp_count = cpu_pause_start(cpu_id);
1015 
1016 	/*
1017 	 * Now wait for all CPUs to be running the pause thread.
1018 	 */
1019 	while (cpi->cp_count > 0) {
1020 		/*
1021 		 * Spin reading the count without grabbing the disp
1022 		 * lock to make sure we don't prevent the pause
1023 		 * threads from getting the lock.
1024 		 */
1025 		while (sema_held(&cpi->cp_sem))
1026 			;
1027 		if (sema_tryp(&cpi->cp_sem))
1028 			--cpi->cp_count;
1029 	}
1030 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1031 
1032 	/*
1033 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1034 	 * to PAUSE_WAIT.)
1035 	 */
1036 	for (i = 0; i < NCPU; i++) {
1037 		while (safe_list[i] != PAUSE_WAIT)
1038 			;
1039 	}
1040 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1041 	cpi->cp_paused = curthread;
1042 }
1043 
1044 /*
1045  * Check whether the current thread has CPUs paused
1046  */
1047 int
1048 cpus_paused(void)
1049 {
1050 	if (cpu_pause_info.cp_paused != NULL) {
1051 		ASSERT(cpu_pause_info.cp_paused == curthread);
1052 		return (1);
1053 	}
1054 	return (0);
1055 }
1056 
1057 static cpu_t *
1058 cpu_get_all(processorid_t cpun)
1059 {
1060 	ASSERT(MUTEX_HELD(&cpu_lock));
1061 
1062 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1063 		return (NULL);
1064 	return (cpu[cpun]);
1065 }
1066 
1067 /*
1068  * Check whether cpun is a valid processor id and whether it should be
1069  * visible from the current zone. If it is, return a pointer to the
1070  * associated CPU structure.
1071  */
1072 cpu_t *
1073 cpu_get(processorid_t cpun)
1074 {
1075 	cpu_t *c;
1076 
1077 	ASSERT(MUTEX_HELD(&cpu_lock));
1078 	c = cpu_get_all(cpun);
1079 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1080 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1081 		return (NULL);
1082 	return (c);
1083 }
1084 
1085 /*
1086  * The following functions should be used to check CPU states in the kernel.
1087  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1088  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1089  * states.  Those are for user-land (and system call) use only.
1090  */
1091 
1092 /*
1093  * Determine whether the CPU is online and handling interrupts.
1094  */
1095 int
1096 cpu_is_online(cpu_t *cpu)
1097 {
1098 	ASSERT(MUTEX_HELD(&cpu_lock));
1099 	return (cpu_flagged_online(cpu->cpu_flags));
1100 }
1101 
1102 /*
1103  * Determine whether the CPU is offline (this includes spare and faulted).
1104  */
1105 int
1106 cpu_is_offline(cpu_t *cpu)
1107 {
1108 	ASSERT(MUTEX_HELD(&cpu_lock));
1109 	return (cpu_flagged_offline(cpu->cpu_flags));
1110 }
1111 
1112 /*
1113  * Determine whether the CPU is powered off.
1114  */
1115 int
1116 cpu_is_poweredoff(cpu_t *cpu)
1117 {
1118 	ASSERT(MUTEX_HELD(&cpu_lock));
1119 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1120 }
1121 
1122 /*
1123  * Determine whether the CPU is handling interrupts.
1124  */
1125 int
1126 cpu_is_nointr(cpu_t *cpu)
1127 {
1128 	ASSERT(MUTEX_HELD(&cpu_lock));
1129 	return (cpu_flagged_nointr(cpu->cpu_flags));
1130 }
1131 
1132 /*
1133  * Determine whether the CPU is active (scheduling threads).
1134  */
1135 int
1136 cpu_is_active(cpu_t *cpu)
1137 {
1138 	ASSERT(MUTEX_HELD(&cpu_lock));
1139 	return (cpu_flagged_active(cpu->cpu_flags));
1140 }
1141 
1142 /*
1143  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1144  */
1145 int
1146 cpu_flagged_online(cpu_flag_t cpu_flags)
1147 {
1148 	return (cpu_flagged_active(cpu_flags) &&
1149 	    (cpu_flags & CPU_ENABLE));
1150 }
1151 
1152 int
1153 cpu_flagged_offline(cpu_flag_t cpu_flags)
1154 {
1155 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1156 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1157 }
1158 
1159 int
1160 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1161 {
1162 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1163 }
1164 
1165 int
1166 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1167 {
1168 	return (cpu_flagged_active(cpu_flags) &&
1169 	    (cpu_flags & CPU_ENABLE) == 0);
1170 }
1171 
1172 int
1173 cpu_flagged_active(cpu_flag_t cpu_flags)
1174 {
1175 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1176 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1177 }
1178 
1179 /*
1180  * Bring the indicated CPU online.
1181  */
1182 int
1183 cpu_online(cpu_t *cp)
1184 {
1185 	int	error = 0;
1186 
1187 	/*
1188 	 * Handle on-line request.
1189 	 *	This code must put the new CPU on the active list before
1190 	 *	starting it because it will not be paused, and will start
1191 	 * 	using the active list immediately.  The real start occurs
1192 	 *	when the CPU_QUIESCED flag is turned off.
1193 	 */
1194 
1195 	ASSERT(MUTEX_HELD(&cpu_lock));
1196 
1197 	/*
1198 	 * Put all the cpus into a known safe place.
1199 	 * No mutexes can be entered while CPUs are paused.
1200 	 */
1201 	error = mp_cpu_start(cp);	/* arch-dep hook */
1202 	if (error == 0) {
1203 		pg_cpupart_in(cp, cp->cpu_part);
1204 		pause_cpus(NULL);
1205 		cpu_add_active_internal(cp);
1206 		if (cp->cpu_flags & CPU_FAULTED) {
1207 			cp->cpu_flags &= ~CPU_FAULTED;
1208 			mp_cpu_faulted_exit(cp);
1209 		}
1210 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1211 		    CPU_SPARE);
1212 		CPU_NEW_GENERATION(cp);
1213 		start_cpus();
1214 		cpu_stats_kstat_create(cp);
1215 		cpu_create_intrstat(cp);
1216 		lgrp_kstat_create(cp);
1217 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1218 		cpu_intr_enable(cp);	/* arch-dep hook */
1219 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1220 		cpu_set_state(cp);
1221 		cyclic_online(cp);
1222 		/*
1223 		 * This has to be called only after cyclic_online(). This
1224 		 * function uses cyclics.
1225 		 */
1226 		callout_cpu_online(cp);
1227 		poke_cpu(cp->cpu_id);
1228 	}
1229 
1230 	return (error);
1231 }
1232 
1233 /*
1234  * Take the indicated CPU offline.
1235  */
1236 int
1237 cpu_offline(cpu_t *cp, int flags)
1238 {
1239 	cpupart_t *pp;
1240 	int	error = 0;
1241 	cpu_t	*ncp;
1242 	int	intr_enable;
1243 	int	cyclic_off = 0;
1244 	int	callout_off = 0;
1245 	int	loop_count;
1246 	int	no_quiesce = 0;
1247 	int	(*bound_func)(struct cpu *, int);
1248 	kthread_t *t;
1249 	lpl_t	*cpu_lpl;
1250 	proc_t	*p;
1251 	int	lgrp_diff_lpl;
1252 	boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1253 
1254 	ASSERT(MUTEX_HELD(&cpu_lock));
1255 
1256 	/*
1257 	 * If we're going from faulted or spare to offline, just
1258 	 * clear these flags and update CPU state.
1259 	 */
1260 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1261 		if (cp->cpu_flags & CPU_FAULTED) {
1262 			cp->cpu_flags &= ~CPU_FAULTED;
1263 			mp_cpu_faulted_exit(cp);
1264 		}
1265 		cp->cpu_flags &= ~CPU_SPARE;
1266 		cpu_set_state(cp);
1267 		return (0);
1268 	}
1269 
1270 	/*
1271 	 * Handle off-line request.
1272 	 */
1273 	pp = cp->cpu_part;
1274 	/*
1275 	 * Don't offline last online CPU in partition
1276 	 */
1277 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1278 		return (EBUSY);
1279 	/*
1280 	 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1281 	 * if we were asked to.
1282 	 */
1283 	error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1284 	if (error != 0)
1285 		return (error);
1286 	/*
1287 	 * We shouldn't be bound to this CPU ourselves.
1288 	 */
1289 	if (curthread->t_bound_cpu == cp)
1290 		return (EBUSY);
1291 
1292 	/*
1293 	 * Tell interested parties that this CPU is going offline.
1294 	 */
1295 	CPU_NEW_GENERATION(cp);
1296 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1297 
1298 	/*
1299 	 * Tell the PG subsystem that the CPU is leaving the partition
1300 	 */
1301 	pg_cpupart_out(cp, pp);
1302 
1303 	/*
1304 	 * Take the CPU out of interrupt participation so we won't find
1305 	 * bound kernel threads.  If the architecture cannot completely
1306 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1307 	 * run anything but interrupt thread... this is indicated by
1308 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1309 	 * off.
1310 	 */
1311 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1312 	if (intr_enable)
1313 		no_quiesce = cpu_intr_disable(cp);
1314 
1315 	/*
1316 	 * Record that we are aiming to offline this cpu.  This acts as
1317 	 * a barrier to further weak binding requests in thread_nomigrate
1318 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1319 	 * lean away from this cpu.  Further strong bindings are already
1320 	 * avoided since we hold cpu_lock.  Since threads that are set
1321 	 * runnable around now and others coming off the target cpu are
1322 	 * directed away from the target, existing strong and weak bindings
1323 	 * (especially the latter) to the target cpu stand maximum chance of
1324 	 * being able to unbind during the short delay loop below (if other
1325 	 * unbound threads compete they may not see cpu in time to unbind
1326 	 * even if they would do so immediately.
1327 	 */
1328 	cpu_inmotion = cp;
1329 	membar_enter();
1330 
1331 	/*
1332 	 * Check for kernel threads (strong or weak) bound to that CPU.
1333 	 * Strongly bound threads may not unbind, and we'll have to return
1334 	 * EBUSY.  Weakly bound threads should always disappear - we've
1335 	 * stopped more weak binding with cpu_inmotion and existing
1336 	 * bindings will drain imminently (they may not block).  Nonetheless
1337 	 * we will wait for a fixed period for all bound threads to disappear.
1338 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1339 	 * state).  If test finds some bound threads, wait a few ticks
1340 	 * to give short-lived threads (such as interrupts) chance to
1341 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1342 	 * is required to service interrupts, then we take the route
1343 	 * that permits interrupt threads to be active (or bypassed).
1344 	 */
1345 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1346 
1347 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1348 		if (loop_count >= 5) {
1349 			error = EBUSY;	/* some threads still bound */
1350 			break;
1351 		}
1352 
1353 		/*
1354 		 * If some threads were assigned, give them
1355 		 * a chance to complete or move.
1356 		 *
1357 		 * This assumes that the clock_thread is not bound
1358 		 * to any CPU, because the clock_thread is needed to
1359 		 * do the delay(hz/100).
1360 		 *
1361 		 * Note: we still hold the cpu_lock while waiting for
1362 		 * the next clock tick.  This is OK since it isn't
1363 		 * needed for anything else except processor_bind(2),
1364 		 * and system initialization.  If we drop the lock,
1365 		 * we would risk another p_online disabling the last
1366 		 * processor.
1367 		 */
1368 		delay(hz/100);
1369 	}
1370 
1371 	if (error == 0 && callout_off == 0) {
1372 		callout_cpu_offline(cp);
1373 		callout_off = 1;
1374 	}
1375 
1376 	if (error == 0 && cyclic_off == 0) {
1377 		if (!cyclic_offline(cp)) {
1378 			/*
1379 			 * We must have bound cyclics...
1380 			 */
1381 			error = EBUSY;
1382 			goto out;
1383 		}
1384 		cyclic_off = 1;
1385 	}
1386 
1387 	/*
1388 	 * Call mp_cpu_stop() to perform any special operations
1389 	 * needed for this machine architecture to offline a CPU.
1390 	 */
1391 	if (error == 0)
1392 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1393 
1394 	/*
1395 	 * If that all worked, take the CPU offline and decrement
1396 	 * ncpus_online.
1397 	 */
1398 	if (error == 0) {
1399 		/*
1400 		 * Put all the cpus into a known safe place.
1401 		 * No mutexes can be entered while CPUs are paused.
1402 		 */
1403 		pause_cpus(cp);
1404 		/*
1405 		 * Repeat the operation, if necessary, to make sure that
1406 		 * all outstanding low-level interrupts run to completion
1407 		 * before we set the CPU_QUIESCED flag.  It's also possible
1408 		 * that a thread has weak bound to the cpu despite our raising
1409 		 * cpu_inmotion above since it may have loaded that
1410 		 * value before the barrier became visible (this would have
1411 		 * to be the thread that was on the target cpu at the time
1412 		 * we raised the barrier).
1413 		 */
1414 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1415 		    (*bound_func)(cp, 1)) {
1416 			start_cpus();
1417 			(void) mp_cpu_start(cp);
1418 			goto again;
1419 		}
1420 		ncp = cp->cpu_next_part;
1421 		cpu_lpl = cp->cpu_lpl;
1422 		ASSERT(cpu_lpl != NULL);
1423 
1424 		/*
1425 		 * Remove the CPU from the list of active CPUs.
1426 		 */
1427 		cpu_remove_active(cp);
1428 
1429 		/*
1430 		 * Walk the active process list and look for threads
1431 		 * whose home lgroup needs to be updated, or
1432 		 * the last CPU they run on is the one being offlined now.
1433 		 */
1434 
1435 		ASSERT(curthread->t_cpu != cp);
1436 		for (p = practive; p != NULL; p = p->p_next) {
1437 
1438 			t = p->p_tlist;
1439 
1440 			if (t == NULL)
1441 				continue;
1442 
1443 			lgrp_diff_lpl = 0;
1444 
1445 			do {
1446 				ASSERT(t->t_lpl != NULL);
1447 				/*
1448 				 * Taking last CPU in lpl offline
1449 				 * Rehome thread if it is in this lpl
1450 				 * Otherwise, update the count of how many
1451 				 * threads are in this CPU's lgroup but have
1452 				 * a different lpl.
1453 				 */
1454 
1455 				if (cpu_lpl->lpl_ncpu == 0) {
1456 					if (t->t_lpl == cpu_lpl)
1457 						lgrp_move_thread(t,
1458 						    lgrp_choose(t,
1459 						    t->t_cpupart), 0);
1460 					else if (t->t_lpl->lpl_lgrpid ==
1461 					    cpu_lpl->lpl_lgrpid)
1462 						lgrp_diff_lpl++;
1463 				}
1464 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1465 
1466 				/*
1467 				 * Update CPU last ran on if it was this CPU
1468 				 */
1469 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1470 					t->t_cpu = disp_lowpri_cpu(ncp,
1471 					    t->t_lpl, t->t_pri, NULL);
1472 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1473 				    t->t_weakbound_cpu == cp);
1474 
1475 				t = t->t_forw;
1476 			} while (t != p->p_tlist);
1477 
1478 			/*
1479 			 * Didn't find any threads in the same lgroup as this
1480 			 * CPU with a different lpl, so remove the lgroup from
1481 			 * the process lgroup bitmask.
1482 			 */
1483 
1484 			if (lgrp_diff_lpl == 0)
1485 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1486 		}
1487 
1488 		/*
1489 		 * Walk thread list looking for threads that need to be
1490 		 * rehomed, since there are some threads that are not in
1491 		 * their process's p_tlist.
1492 		 */
1493 
1494 		t = curthread;
1495 		do {
1496 			ASSERT(t != NULL && t->t_lpl != NULL);
1497 
1498 			/*
1499 			 * Rehome threads with same lpl as this CPU when this
1500 			 * is the last CPU in the lpl.
1501 			 */
1502 
1503 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1504 				lgrp_move_thread(t,
1505 				    lgrp_choose(t, t->t_cpupart), 1);
1506 
1507 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1508 
1509 			/*
1510 			 * Update CPU last ran on if it was this CPU
1511 			 */
1512 
1513 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1514 				t->t_cpu = disp_lowpri_cpu(ncp,
1515 				    t->t_lpl, t->t_pri, NULL);
1516 			}
1517 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1518 			    t->t_weakbound_cpu == cp);
1519 			t = t->t_next;
1520 
1521 		} while (t != curthread);
1522 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1523 		cp->cpu_flags |= CPU_OFFLINE;
1524 		disp_cpu_inactive(cp);
1525 		if (!no_quiesce)
1526 			cp->cpu_flags |= CPU_QUIESCED;
1527 		ncpus_online--;
1528 		cpu_set_state(cp);
1529 		cpu_inmotion = NULL;
1530 		start_cpus();
1531 		cpu_stats_kstat_destroy(cp);
1532 		cpu_delete_intrstat(cp);
1533 		lgrp_kstat_destroy(cp);
1534 	}
1535 
1536 out:
1537 	cpu_inmotion = NULL;
1538 
1539 	/*
1540 	 * If we failed, re-enable interrupts.
1541 	 * Do this even if cpu_intr_disable returned an error, because
1542 	 * it may have partially disabled interrupts.
1543 	 */
1544 	if (error && intr_enable)
1545 		cpu_intr_enable(cp);
1546 
1547 	/*
1548 	 * If we failed, but managed to offline the cyclic subsystem on this
1549 	 * CPU, bring it back online.
1550 	 */
1551 	if (error && cyclic_off)
1552 		cyclic_online(cp);
1553 
1554 	/*
1555 	 * If we failed, but managed to offline callouts on this CPU,
1556 	 * bring it back online.
1557 	 */
1558 	if (error && callout_off)
1559 		callout_cpu_online(cp);
1560 
1561 	/*
1562 	 * If we failed, tell the PG subsystem that the CPU is back
1563 	 */
1564 	pg_cpupart_in(cp, pp);
1565 
1566 	/*
1567 	 * If we failed, we need to notify everyone that this CPU is back on.
1568 	 */
1569 	if (error != 0) {
1570 		CPU_NEW_GENERATION(cp);
1571 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1572 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1573 	}
1574 
1575 	return (error);
1576 }
1577 
1578 /*
1579  * Mark the indicated CPU as faulted, taking it offline.
1580  */
1581 int
1582 cpu_faulted(cpu_t *cp, int flags)
1583 {
1584 	int	error = 0;
1585 
1586 	ASSERT(MUTEX_HELD(&cpu_lock));
1587 	ASSERT(!cpu_is_poweredoff(cp));
1588 
1589 	if (cpu_is_offline(cp)) {
1590 		cp->cpu_flags &= ~CPU_SPARE;
1591 		cp->cpu_flags |= CPU_FAULTED;
1592 		mp_cpu_faulted_enter(cp);
1593 		cpu_set_state(cp);
1594 		return (0);
1595 	}
1596 
1597 	if ((error = cpu_offline(cp, flags)) == 0) {
1598 		cp->cpu_flags |= CPU_FAULTED;
1599 		mp_cpu_faulted_enter(cp);
1600 		cpu_set_state(cp);
1601 	}
1602 
1603 	return (error);
1604 }
1605 
1606 /*
1607  * Mark the indicated CPU as a spare, taking it offline.
1608  */
1609 int
1610 cpu_spare(cpu_t *cp, int flags)
1611 {
1612 	int	error = 0;
1613 
1614 	ASSERT(MUTEX_HELD(&cpu_lock));
1615 	ASSERT(!cpu_is_poweredoff(cp));
1616 
1617 	if (cpu_is_offline(cp)) {
1618 		if (cp->cpu_flags & CPU_FAULTED) {
1619 			cp->cpu_flags &= ~CPU_FAULTED;
1620 			mp_cpu_faulted_exit(cp);
1621 		}
1622 		cp->cpu_flags |= CPU_SPARE;
1623 		cpu_set_state(cp);
1624 		return (0);
1625 	}
1626 
1627 	if ((error = cpu_offline(cp, flags)) == 0) {
1628 		cp->cpu_flags |= CPU_SPARE;
1629 		cpu_set_state(cp);
1630 	}
1631 
1632 	return (error);
1633 }
1634 
1635 /*
1636  * Take the indicated CPU from poweroff to offline.
1637  */
1638 int
1639 cpu_poweron(cpu_t *cp)
1640 {
1641 	int	error = ENOTSUP;
1642 
1643 	ASSERT(MUTEX_HELD(&cpu_lock));
1644 	ASSERT(cpu_is_poweredoff(cp));
1645 
1646 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1647 	if (error == 0)
1648 		cpu_set_state(cp);
1649 
1650 	return (error);
1651 }
1652 
1653 /*
1654  * Take the indicated CPU from any inactive state to powered off.
1655  */
1656 int
1657 cpu_poweroff(cpu_t *cp)
1658 {
1659 	int	error = ENOTSUP;
1660 
1661 	ASSERT(MUTEX_HELD(&cpu_lock));
1662 	ASSERT(cpu_is_offline(cp));
1663 
1664 	if (!(cp->cpu_flags & CPU_QUIESCED))
1665 		return (EBUSY);		/* not completely idle */
1666 
1667 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1668 	if (error == 0)
1669 		cpu_set_state(cp);
1670 
1671 	return (error);
1672 }
1673 
1674 /*
1675  * Initialize the Sequential CPU id lookup table
1676  */
1677 void
1678 cpu_seq_tbl_init()
1679 {
1680 	cpu_t	**tbl;
1681 
1682 	tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1683 	tbl[0] = CPU;
1684 
1685 	cpu_seq = tbl;
1686 }
1687 
1688 /*
1689  * Initialize the CPU lists for the first CPU.
1690  */
1691 void
1692 cpu_list_init(cpu_t *cp)
1693 {
1694 	cp->cpu_next = cp;
1695 	cp->cpu_prev = cp;
1696 	cpu_list = cp;
1697 	clock_cpu_list = cp;
1698 
1699 	cp->cpu_next_onln = cp;
1700 	cp->cpu_prev_onln = cp;
1701 	cpu_active = cp;
1702 
1703 	cp->cpu_seqid = 0;
1704 	CPUSET_ADD(cpu_seqid_inuse, 0);
1705 
1706 	/*
1707 	 * Bootstrap cpu_seq using cpu_list
1708 	 * The cpu_seq[] table will be dynamically allocated
1709 	 * when kmem later becomes available (but before going MP)
1710 	 */
1711 	cpu_seq = &cpu_list;
1712 
1713 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1714 	cp_default.cp_cpulist = cp;
1715 	cp_default.cp_ncpus = 1;
1716 	cp->cpu_next_part = cp;
1717 	cp->cpu_prev_part = cp;
1718 	cp->cpu_part = &cp_default;
1719 
1720 	CPUSET_ADD(cpu_available, cp->cpu_id);
1721 }
1722 
1723 /*
1724  * Insert a CPU into the list of available CPUs.
1725  */
1726 void
1727 cpu_add_unit(cpu_t *cp)
1728 {
1729 	int seqid;
1730 
1731 	ASSERT(MUTEX_HELD(&cpu_lock));
1732 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1733 
1734 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1735 
1736 	/*
1737 	 * Note: most users of the cpu_list will grab the
1738 	 * cpu_lock to insure that it isn't modified.  However,
1739 	 * certain users can't or won't do that.  To allow this
1740 	 * we pause the other cpus.  Users who walk the list
1741 	 * without cpu_lock, must disable kernel preemption
1742 	 * to insure that the list isn't modified underneath
1743 	 * them.  Also, any cached pointers to cpu structures
1744 	 * must be revalidated by checking to see if the
1745 	 * cpu_next pointer points to itself.  This check must
1746 	 * be done with the cpu_lock held or kernel preemption
1747 	 * disabled.  This check relies upon the fact that
1748 	 * old cpu structures are not free'ed or cleared after
1749 	 * then are removed from the cpu_list.
1750 	 *
1751 	 * Note that the clock code walks the cpu list dereferencing
1752 	 * the cpu_part pointer, so we need to initialize it before
1753 	 * adding the cpu to the list.
1754 	 */
1755 	cp->cpu_part = &cp_default;
1756 	(void) pause_cpus(NULL);
1757 	cp->cpu_next = cpu_list;
1758 	cp->cpu_prev = cpu_list->cpu_prev;
1759 	cpu_list->cpu_prev->cpu_next = cp;
1760 	cpu_list->cpu_prev = cp;
1761 	start_cpus();
1762 
1763 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1764 		continue;
1765 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1766 	cp->cpu_seqid = seqid;
1767 
1768 	if (seqid > max_cpu_seqid_ever)
1769 		max_cpu_seqid_ever = seqid;
1770 
1771 	ASSERT(ncpus < max_ncpus);
1772 	ncpus++;
1773 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1774 	cpu[cp->cpu_id] = cp;
1775 	CPUSET_ADD(cpu_available, cp->cpu_id);
1776 	cpu_seq[cp->cpu_seqid] = cp;
1777 
1778 	/*
1779 	 * allocate a pause thread for this CPU.
1780 	 */
1781 	cpu_pause_alloc(cp);
1782 
1783 	/*
1784 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1785 	 * link them into a list of just that CPU.
1786 	 * This is so that disp_lowpri_cpu will work for thread_create in
1787 	 * pause_cpus() when called from the startup thread in a new CPU.
1788 	 */
1789 	cp->cpu_next_onln = cp;
1790 	cp->cpu_prev_onln = cp;
1791 	cpu_info_kstat_create(cp);
1792 	cp->cpu_next_part = cp;
1793 	cp->cpu_prev_part = cp;
1794 
1795 	init_cpu_mstate(cp, CMS_SYSTEM);
1796 
1797 	pool_pset_mod = gethrtime();
1798 }
1799 
1800 /*
1801  * Do the opposite of cpu_add_unit().
1802  */
1803 void
1804 cpu_del_unit(int cpuid)
1805 {
1806 	struct cpu	*cp, *cpnext;
1807 
1808 	ASSERT(MUTEX_HELD(&cpu_lock));
1809 	cp = cpu[cpuid];
1810 	ASSERT(cp != NULL);
1811 
1812 	ASSERT(cp->cpu_next_onln == cp);
1813 	ASSERT(cp->cpu_prev_onln == cp);
1814 	ASSERT(cp->cpu_next_part == cp);
1815 	ASSERT(cp->cpu_prev_part == cp);
1816 
1817 	/*
1818 	 * Tear down the CPU's physical ID cache, and update any
1819 	 * processor groups
1820 	 */
1821 	pg_cpu_fini(cp, NULL);
1822 	pghw_physid_destroy(cp);
1823 
1824 	/*
1825 	 * Destroy kstat stuff.
1826 	 */
1827 	cpu_info_kstat_destroy(cp);
1828 	term_cpu_mstate(cp);
1829 	/*
1830 	 * Free up pause thread.
1831 	 */
1832 	cpu_pause_free(cp);
1833 	CPUSET_DEL(cpu_available, cp->cpu_id);
1834 	cpu[cp->cpu_id] = NULL;
1835 	cpu_seq[cp->cpu_seqid] = NULL;
1836 
1837 	/*
1838 	 * The clock thread and mutex_vector_enter cannot hold the
1839 	 * cpu_lock while traversing the cpu list, therefore we pause
1840 	 * all other threads by pausing the other cpus. These, and any
1841 	 * other routines holding cpu pointers while possibly sleeping
1842 	 * must be sure to call kpreempt_disable before processing the
1843 	 * list and be sure to check that the cpu has not been deleted
1844 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1845 	 * to keep the deleted cpu structure around.
1846 	 *
1847 	 * Note that this MUST be done AFTER cpu_available
1848 	 * has been updated so that we don't waste time
1849 	 * trying to pause the cpu we're trying to delete.
1850 	 */
1851 	(void) pause_cpus(NULL);
1852 
1853 	cpnext = cp->cpu_next;
1854 	cp->cpu_prev->cpu_next = cp->cpu_next;
1855 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1856 	if (cp == cpu_list)
1857 		cpu_list = cpnext;
1858 
1859 	/*
1860 	 * Signals that the cpu has been deleted (see above).
1861 	 */
1862 	cp->cpu_next = NULL;
1863 	cp->cpu_prev = NULL;
1864 
1865 	start_cpus();
1866 
1867 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1868 	ncpus--;
1869 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1870 
1871 	pool_pset_mod = gethrtime();
1872 }
1873 
1874 /*
1875  * Add a CPU to the list of active CPUs.
1876  *	This routine must not get any locks, because other CPUs are paused.
1877  */
1878 static void
1879 cpu_add_active_internal(cpu_t *cp)
1880 {
1881 	cpupart_t	*pp = cp->cpu_part;
1882 
1883 	ASSERT(MUTEX_HELD(&cpu_lock));
1884 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1885 
1886 	ncpus_online++;
1887 	cpu_set_state(cp);
1888 	cp->cpu_next_onln = cpu_active;
1889 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1890 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1891 	cpu_active->cpu_prev_onln = cp;
1892 
1893 	if (pp->cp_cpulist) {
1894 		cp->cpu_next_part = pp->cp_cpulist;
1895 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1896 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1897 		pp->cp_cpulist->cpu_prev_part = cp;
1898 	} else {
1899 		ASSERT(pp->cp_ncpus == 0);
1900 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1901 	}
1902 	pp->cp_ncpus++;
1903 	if (pp->cp_ncpus == 1) {
1904 		cp_numparts_nonempty++;
1905 		ASSERT(cp_numparts_nonempty != 0);
1906 	}
1907 
1908 	pg_cpu_active(cp);
1909 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1910 
1911 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1912 }
1913 
1914 /*
1915  * Add a CPU to the list of active CPUs.
1916  *	This is called from machine-dependent layers when a new CPU is started.
1917  */
1918 void
1919 cpu_add_active(cpu_t *cp)
1920 {
1921 	pg_cpupart_in(cp, cp->cpu_part);
1922 
1923 	pause_cpus(NULL);
1924 	cpu_add_active_internal(cp);
1925 	start_cpus();
1926 
1927 	cpu_stats_kstat_create(cp);
1928 	cpu_create_intrstat(cp);
1929 	lgrp_kstat_create(cp);
1930 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1931 }
1932 
1933 
1934 /*
1935  * Remove a CPU from the list of active CPUs.
1936  *	This routine must not get any locks, because other CPUs are paused.
1937  */
1938 /* ARGSUSED */
1939 static void
1940 cpu_remove_active(cpu_t *cp)
1941 {
1942 	cpupart_t	*pp = cp->cpu_part;
1943 
1944 	ASSERT(MUTEX_HELD(&cpu_lock));
1945 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1946 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1947 
1948 	pg_cpu_inactive(cp);
1949 
1950 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1951 
1952 	if (cp == clock_cpu_list)
1953 		clock_cpu_list = cp->cpu_next_onln;
1954 
1955 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1956 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1957 	if (cpu_active == cp) {
1958 		cpu_active = cp->cpu_next_onln;
1959 	}
1960 	cp->cpu_next_onln = cp;
1961 	cp->cpu_prev_onln = cp;
1962 
1963 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1964 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1965 	if (pp->cp_cpulist == cp) {
1966 		pp->cp_cpulist = cp->cpu_next_part;
1967 		ASSERT(pp->cp_cpulist != cp);
1968 	}
1969 	cp->cpu_next_part = cp;
1970 	cp->cpu_prev_part = cp;
1971 	pp->cp_ncpus--;
1972 	if (pp->cp_ncpus == 0) {
1973 		cp_numparts_nonempty--;
1974 		ASSERT(cp_numparts_nonempty != 0);
1975 	}
1976 }
1977 
1978 /*
1979  * Routine used to setup a newly inserted CPU in preparation for starting
1980  * it running code.
1981  */
1982 int
1983 cpu_configure(int cpuid)
1984 {
1985 	int retval = 0;
1986 
1987 	ASSERT(MUTEX_HELD(&cpu_lock));
1988 
1989 	/*
1990 	 * Some structures are statically allocated based upon
1991 	 * the maximum number of cpus the system supports.  Do not
1992 	 * try to add anything beyond this limit.
1993 	 */
1994 	if (cpuid < 0 || cpuid >= NCPU) {
1995 		return (EINVAL);
1996 	}
1997 
1998 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
1999 		return (EALREADY);
2000 	}
2001 
2002 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
2003 		return (retval);
2004 	}
2005 
2006 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2007 	cpu_set_state(cpu[cpuid]);
2008 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2009 	if (retval != 0)
2010 		(void) mp_cpu_unconfigure(cpuid);
2011 
2012 	return (retval);
2013 }
2014 
2015 /*
2016  * Routine used to cleanup a CPU that has been powered off.  This will
2017  * destroy all per-cpu information related to this cpu.
2018  */
2019 int
2020 cpu_unconfigure(int cpuid)
2021 {
2022 	int error;
2023 
2024 	ASSERT(MUTEX_HELD(&cpu_lock));
2025 
2026 	if (cpu[cpuid] == NULL) {
2027 		return (ENODEV);
2028 	}
2029 
2030 	if (cpu[cpuid]->cpu_flags == 0) {
2031 		return (EALREADY);
2032 	}
2033 
2034 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2035 		return (EBUSY);
2036 	}
2037 
2038 	if (cpu[cpuid]->cpu_props != NULL) {
2039 		(void) nvlist_free(cpu[cpuid]->cpu_props);
2040 		cpu[cpuid]->cpu_props = NULL;
2041 	}
2042 
2043 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2044 
2045 	if (error != 0)
2046 		return (error);
2047 
2048 	return (mp_cpu_unconfigure(cpuid));
2049 }
2050 
2051 /*
2052  * Routines for registering and de-registering cpu_setup callback functions.
2053  *
2054  * Caller's context
2055  *	These routines must not be called from a driver's attach(9E) or
2056  *	detach(9E) entry point.
2057  *
2058  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2059  */
2060 
2061 /*
2062  * Ideally, these would be dynamically allocated and put into a linked
2063  * list; however that is not feasible because the registration routine
2064  * has to be available before the kmem allocator is working (in fact,
2065  * it is called by the kmem allocator init code).  In any case, there
2066  * are quite a few extra entries for future users.
2067  */
2068 #define	NCPU_SETUPS	20
2069 
2070 struct cpu_setup {
2071 	cpu_setup_func_t *func;
2072 	void *arg;
2073 } cpu_setups[NCPU_SETUPS];
2074 
2075 void
2076 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2077 {
2078 	int i;
2079 
2080 	ASSERT(MUTEX_HELD(&cpu_lock));
2081 
2082 	for (i = 0; i < NCPU_SETUPS; i++)
2083 		if (cpu_setups[i].func == NULL)
2084 			break;
2085 	if (i >= NCPU_SETUPS)
2086 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2087 
2088 	cpu_setups[i].func = func;
2089 	cpu_setups[i].arg = arg;
2090 }
2091 
2092 void
2093 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2094 {
2095 	int i;
2096 
2097 	ASSERT(MUTEX_HELD(&cpu_lock));
2098 
2099 	for (i = 0; i < NCPU_SETUPS; i++)
2100 		if ((cpu_setups[i].func == func) &&
2101 		    (cpu_setups[i].arg == arg))
2102 			break;
2103 	if (i >= NCPU_SETUPS)
2104 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2105 		    "deregister");
2106 
2107 	cpu_setups[i].func = NULL;
2108 	cpu_setups[i].arg = 0;
2109 }
2110 
2111 /*
2112  * Call any state change hooks for this CPU, ignore any errors.
2113  */
2114 void
2115 cpu_state_change_notify(int id, cpu_setup_t what)
2116 {
2117 	int i;
2118 
2119 	ASSERT(MUTEX_HELD(&cpu_lock));
2120 
2121 	for (i = 0; i < NCPU_SETUPS; i++) {
2122 		if (cpu_setups[i].func != NULL) {
2123 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2124 		}
2125 	}
2126 }
2127 
2128 /*
2129  * Call any state change hooks for this CPU, undo it if error found.
2130  */
2131 static int
2132 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2133 {
2134 	int i;
2135 	int retval = 0;
2136 
2137 	ASSERT(MUTEX_HELD(&cpu_lock));
2138 
2139 	for (i = 0; i < NCPU_SETUPS; i++) {
2140 		if (cpu_setups[i].func != NULL) {
2141 			retval = cpu_setups[i].func(what, id,
2142 			    cpu_setups[i].arg);
2143 			if (retval) {
2144 				for (i--; i >= 0; i--) {
2145 					if (cpu_setups[i].func != NULL)
2146 						cpu_setups[i].func(undo,
2147 						    id, cpu_setups[i].arg);
2148 				}
2149 				break;
2150 			}
2151 		}
2152 	}
2153 	return (retval);
2154 }
2155 
2156 /*
2157  * Export information about this CPU via the kstat mechanism.
2158  */
2159 static struct {
2160 	kstat_named_t ci_state;
2161 	kstat_named_t ci_state_begin;
2162 	kstat_named_t ci_cpu_type;
2163 	kstat_named_t ci_fpu_type;
2164 	kstat_named_t ci_clock_MHz;
2165 	kstat_named_t ci_chip_id;
2166 	kstat_named_t ci_implementation;
2167 	kstat_named_t ci_brandstr;
2168 	kstat_named_t ci_core_id;
2169 	kstat_named_t ci_curr_clock_Hz;
2170 	kstat_named_t ci_supp_freq_Hz;
2171 	kstat_named_t ci_pg_id;
2172 #if defined(__sparcv9)
2173 	kstat_named_t ci_device_ID;
2174 	kstat_named_t ci_cpu_fru;
2175 #endif
2176 #if defined(__x86)
2177 	kstat_named_t ci_vendorstr;
2178 	kstat_named_t ci_family;
2179 	kstat_named_t ci_model;
2180 	kstat_named_t ci_step;
2181 	kstat_named_t ci_clogid;
2182 	kstat_named_t ci_pkg_core_id;
2183 	kstat_named_t ci_ncpuperchip;
2184 	kstat_named_t ci_ncoreperchip;
2185 	kstat_named_t ci_max_cstates;
2186 	kstat_named_t ci_curr_cstate;
2187 	kstat_named_t ci_cacheid;
2188 	kstat_named_t ci_sktstr;
2189 #endif
2190 } cpu_info_template = {
2191 	{ "state",			KSTAT_DATA_CHAR },
2192 	{ "state_begin",		KSTAT_DATA_LONG },
2193 	{ "cpu_type",			KSTAT_DATA_CHAR },
2194 	{ "fpu_type",			KSTAT_DATA_CHAR },
2195 	{ "clock_MHz",			KSTAT_DATA_LONG },
2196 	{ "chip_id",			KSTAT_DATA_LONG },
2197 	{ "implementation",		KSTAT_DATA_STRING },
2198 	{ "brand",			KSTAT_DATA_STRING },
2199 	{ "core_id",			KSTAT_DATA_LONG },
2200 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2201 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2202 	{ "pg_id",			KSTAT_DATA_LONG },
2203 #if defined(__sparcv9)
2204 	{ "device_ID",			KSTAT_DATA_UINT64 },
2205 	{ "cpu_fru",			KSTAT_DATA_STRING },
2206 #endif
2207 #if defined(__x86)
2208 	{ "vendor_id",			KSTAT_DATA_STRING },
2209 	{ "family",			KSTAT_DATA_INT32 },
2210 	{ "model",			KSTAT_DATA_INT32 },
2211 	{ "stepping",			KSTAT_DATA_INT32 },
2212 	{ "clog_id",			KSTAT_DATA_INT32 },
2213 	{ "pkg_core_id",		KSTAT_DATA_LONG },
2214 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2215 	{ "ncore_per_chip",		KSTAT_DATA_INT32 },
2216 	{ "supported_max_cstates",	KSTAT_DATA_INT32 },
2217 	{ "current_cstate",		KSTAT_DATA_INT32 },
2218 	{ "cache_id",			KSTAT_DATA_INT32 },
2219 	{ "socket_type",		KSTAT_DATA_STRING },
2220 #endif
2221 };
2222 
2223 static kmutex_t cpu_info_template_lock;
2224 
2225 static int
2226 cpu_info_kstat_update(kstat_t *ksp, int rw)
2227 {
2228 	cpu_t	*cp = ksp->ks_private;
2229 	const char *pi_state;
2230 
2231 	if (rw == KSTAT_WRITE)
2232 		return (EACCES);
2233 
2234 #if defined(__x86)
2235 	/* Is the cpu still initialising itself? */
2236 	if (cpuid_checkpass(cp, 1) == 0)
2237 		return (ENXIO);
2238 #endif
2239 	switch (cp->cpu_type_info.pi_state) {
2240 	case P_ONLINE:
2241 		pi_state = PS_ONLINE;
2242 		break;
2243 	case P_POWEROFF:
2244 		pi_state = PS_POWEROFF;
2245 		break;
2246 	case P_NOINTR:
2247 		pi_state = PS_NOINTR;
2248 		break;
2249 	case P_FAULTED:
2250 		pi_state = PS_FAULTED;
2251 		break;
2252 	case P_SPARE:
2253 		pi_state = PS_SPARE;
2254 		break;
2255 	case P_OFFLINE:
2256 		pi_state = PS_OFFLINE;
2257 		break;
2258 	default:
2259 		pi_state = "unknown";
2260 	}
2261 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2262 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2263 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2264 	    cp->cpu_type_info.pi_processor_type, 15);
2265 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2266 	    cp->cpu_type_info.pi_fputypes, 15);
2267 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2268 	cpu_info_template.ci_chip_id.value.l =
2269 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2270 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2271 	    cp->cpu_idstr);
2272 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2273 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2274 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2275 	    cp->cpu_curr_clock;
2276 	cpu_info_template.ci_pg_id.value.l =
2277 	    cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2278 	    cp->cpu_pg->cmt_lineage->pg_id : -1;
2279 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2280 	    cp->cpu_supp_freqs);
2281 #if defined(__sparcv9)
2282 	cpu_info_template.ci_device_ID.value.ui64 =
2283 	    cpunodes[cp->cpu_id].device_id;
2284 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2285 #endif
2286 #if defined(__x86)
2287 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2288 	    cpuid_getvendorstr(cp));
2289 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2290 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2291 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2292 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2293 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2294 	cpu_info_template.ci_ncoreperchip.value.l =
2295 	    cpuid_get_ncore_per_chip(cp);
2296 	cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2297 	cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2298 	cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2299 	cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2300 	kstat_named_setstr(&cpu_info_template.ci_sktstr,
2301 	    cpuid_getsocketstr(cp));
2302 #endif
2303 
2304 	return (0);
2305 }
2306 
2307 static void
2308 cpu_info_kstat_create(cpu_t *cp)
2309 {
2310 	zoneid_t zoneid;
2311 
2312 	ASSERT(MUTEX_HELD(&cpu_lock));
2313 
2314 	if (pool_pset_enabled())
2315 		zoneid = GLOBAL_ZONEID;
2316 	else
2317 		zoneid = ALL_ZONES;
2318 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2319 	    NULL, "misc", KSTAT_TYPE_NAMED,
2320 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2321 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2322 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2323 #if defined(__sparcv9)
2324 		cp->cpu_info_kstat->ks_data_size +=
2325 		    strlen(cpu_fru_fmri(cp)) + 1;
2326 #endif
2327 #if defined(__x86)
2328 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2329 #endif
2330 		if (cp->cpu_supp_freqs != NULL)
2331 			cp->cpu_info_kstat->ks_data_size +=
2332 			    strlen(cp->cpu_supp_freqs) + 1;
2333 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2334 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2335 		cp->cpu_info_kstat->ks_private = cp;
2336 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2337 		kstat_install(cp->cpu_info_kstat);
2338 	}
2339 }
2340 
2341 static void
2342 cpu_info_kstat_destroy(cpu_t *cp)
2343 {
2344 	ASSERT(MUTEX_HELD(&cpu_lock));
2345 
2346 	kstat_delete(cp->cpu_info_kstat);
2347 	cp->cpu_info_kstat = NULL;
2348 }
2349 
2350 /*
2351  * Create and install kstats for the boot CPU.
2352  */
2353 void
2354 cpu_kstat_init(cpu_t *cp)
2355 {
2356 	mutex_enter(&cpu_lock);
2357 	cpu_info_kstat_create(cp);
2358 	cpu_stats_kstat_create(cp);
2359 	cpu_create_intrstat(cp);
2360 	cpu_set_state(cp);
2361 	mutex_exit(&cpu_lock);
2362 }
2363 
2364 /*
2365  * Make visible to the zone that subset of the cpu information that would be
2366  * initialized when a cpu is configured (but still offline).
2367  */
2368 void
2369 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2370 {
2371 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2372 
2373 	ASSERT(MUTEX_HELD(&cpu_lock));
2374 	ASSERT(pool_pset_enabled());
2375 	ASSERT(cp != NULL);
2376 
2377 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2378 		zone->zone_ncpus++;
2379 		ASSERT(zone->zone_ncpus <= ncpus);
2380 	}
2381 	if (cp->cpu_info_kstat != NULL)
2382 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2383 }
2384 
2385 /*
2386  * Make visible to the zone that subset of the cpu information that would be
2387  * initialized when a previously configured cpu is onlined.
2388  */
2389 void
2390 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2391 {
2392 	kstat_t *ksp;
2393 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2394 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2395 	processorid_t cpun;
2396 
2397 	ASSERT(MUTEX_HELD(&cpu_lock));
2398 	ASSERT(pool_pset_enabled());
2399 	ASSERT(cp != NULL);
2400 	ASSERT(cpu_is_active(cp));
2401 
2402 	cpun = cp->cpu_id;
2403 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2404 		zone->zone_ncpus_online++;
2405 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2406 	}
2407 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2408 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2409 	    != NULL) {
2410 		kstat_zone_add(ksp, zoneid);
2411 		kstat_rele(ksp);
2412 	}
2413 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2414 		kstat_zone_add(ksp, zoneid);
2415 		kstat_rele(ksp);
2416 	}
2417 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2418 		kstat_zone_add(ksp, zoneid);
2419 		kstat_rele(ksp);
2420 	}
2421 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2422 	    NULL) {
2423 		kstat_zone_add(ksp, zoneid);
2424 		kstat_rele(ksp);
2425 	}
2426 }
2427 
2428 /*
2429  * Update relevant kstats such that cpu is now visible to processes
2430  * executing in specified zone.
2431  */
2432 void
2433 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2434 {
2435 	cpu_visibility_configure(cp, zone);
2436 	if (cpu_is_active(cp))
2437 		cpu_visibility_online(cp, zone);
2438 }
2439 
2440 /*
2441  * Make invisible to the zone that subset of the cpu information that would be
2442  * torn down when a previously offlined cpu is unconfigured.
2443  */
2444 void
2445 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2446 {
2447 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2448 
2449 	ASSERT(MUTEX_HELD(&cpu_lock));
2450 	ASSERT(pool_pset_enabled());
2451 	ASSERT(cp != NULL);
2452 
2453 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2454 		ASSERT(zone->zone_ncpus != 0);
2455 		zone->zone_ncpus--;
2456 	}
2457 	if (cp->cpu_info_kstat)
2458 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2459 }
2460 
2461 /*
2462  * Make invisible to the zone that subset of the cpu information that would be
2463  * torn down when a cpu is offlined (but still configured).
2464  */
2465 void
2466 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2467 {
2468 	kstat_t *ksp;
2469 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2470 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2471 	processorid_t cpun;
2472 
2473 	ASSERT(MUTEX_HELD(&cpu_lock));
2474 	ASSERT(pool_pset_enabled());
2475 	ASSERT(cp != NULL);
2476 	ASSERT(cpu_is_active(cp));
2477 
2478 	cpun = cp->cpu_id;
2479 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2480 		ASSERT(zone->zone_ncpus_online != 0);
2481 		zone->zone_ncpus_online--;
2482 	}
2483 
2484 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2485 	    NULL) {
2486 		kstat_zone_remove(ksp, zoneid);
2487 		kstat_rele(ksp);
2488 	}
2489 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2490 		kstat_zone_remove(ksp, zoneid);
2491 		kstat_rele(ksp);
2492 	}
2493 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2494 		kstat_zone_remove(ksp, zoneid);
2495 		kstat_rele(ksp);
2496 	}
2497 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2498 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2499 	    != NULL) {
2500 		kstat_zone_remove(ksp, zoneid);
2501 		kstat_rele(ksp);
2502 	}
2503 }
2504 
2505 /*
2506  * Update relevant kstats such that cpu is no longer visible to processes
2507  * executing in specified zone.
2508  */
2509 void
2510 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2511 {
2512 	if (cpu_is_active(cp))
2513 		cpu_visibility_offline(cp, zone);
2514 	cpu_visibility_unconfigure(cp, zone);
2515 }
2516 
2517 /*
2518  * Bind a thread to a CPU as requested.
2519  */
2520 int
2521 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2522     int *error)
2523 {
2524 	processorid_t	binding;
2525 	cpu_t		*cp = NULL;
2526 
2527 	ASSERT(MUTEX_HELD(&cpu_lock));
2528 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2529 
2530 	thread_lock(tp);
2531 
2532 	/*
2533 	 * Record old binding, but change the obind, which was initialized
2534 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2535 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2536 	 */
2537 	binding = tp->t_bind_cpu;
2538 	if (binding != PBIND_NONE)
2539 		*obind = binding;	/* record old binding */
2540 
2541 	switch (bind) {
2542 	case PBIND_QUERY:
2543 		/* Just return the old binding */
2544 		thread_unlock(tp);
2545 		return (0);
2546 
2547 	case PBIND_QUERY_TYPE:
2548 		/* Return the binding type */
2549 		*obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2550 		thread_unlock(tp);
2551 		return (0);
2552 
2553 	case PBIND_SOFT:
2554 		/*
2555 		 *  Set soft binding for this thread and return the actual
2556 		 *  binding
2557 		 */
2558 		TB_CPU_SOFT_SET(tp);
2559 		thread_unlock(tp);
2560 		return (0);
2561 
2562 	case PBIND_HARD:
2563 		/*
2564 		 *  Set hard binding for this thread and return the actual
2565 		 *  binding
2566 		 */
2567 		TB_CPU_HARD_SET(tp);
2568 		thread_unlock(tp);
2569 		return (0);
2570 
2571 	default:
2572 		break;
2573 	}
2574 
2575 	/*
2576 	 * If this thread/LWP cannot be bound because of permission
2577 	 * problems, just note that and return success so that the
2578 	 * other threads/LWPs will be bound.  This is the way
2579 	 * processor_bind() is defined to work.
2580 	 *
2581 	 * Binding will get EPERM if the thread is of system class
2582 	 * or hasprocperm() fails.
2583 	 */
2584 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2585 		*error = EPERM;
2586 		thread_unlock(tp);
2587 		return (0);
2588 	}
2589 
2590 	binding = bind;
2591 	if (binding != PBIND_NONE) {
2592 		cp = cpu_get((processorid_t)binding);
2593 		/*
2594 		 * Make sure binding is valid and is in right partition.
2595 		 */
2596 		if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2597 			*error = EINVAL;
2598 			thread_unlock(tp);
2599 			return (0);
2600 		}
2601 	}
2602 	tp->t_bind_cpu = binding;	/* set new binding */
2603 
2604 	/*
2605 	 * If there is no system-set reason for affinity, set
2606 	 * the t_bound_cpu field to reflect the binding.
2607 	 */
2608 	if (tp->t_affinitycnt == 0) {
2609 		if (binding == PBIND_NONE) {
2610 			/*
2611 			 * We may need to adjust disp_max_unbound_pri
2612 			 * since we're becoming unbound.
2613 			 */
2614 			disp_adjust_unbound_pri(tp);
2615 
2616 			tp->t_bound_cpu = NULL;	/* set new binding */
2617 
2618 			/*
2619 			 * Move thread to lgroup with strongest affinity
2620 			 * after unbinding
2621 			 */
2622 			if (tp->t_lgrp_affinity)
2623 				lgrp_move_thread(tp,
2624 				    lgrp_choose(tp, tp->t_cpupart), 1);
2625 
2626 			if (tp->t_state == TS_ONPROC &&
2627 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2628 				cpu_surrender(tp);
2629 		} else {
2630 			lpl_t	*lpl;
2631 
2632 			tp->t_bound_cpu = cp;
2633 			ASSERT(cp->cpu_lpl != NULL);
2634 
2635 			/*
2636 			 * Set home to lgroup with most affinity containing CPU
2637 			 * that thread is being bound or minimum bounding
2638 			 * lgroup if no affinities set
2639 			 */
2640 			if (tp->t_lgrp_affinity)
2641 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2642 				    LGRP_NONE, B_FALSE);
2643 			else
2644 				lpl = cp->cpu_lpl;
2645 
2646 			if (tp->t_lpl != lpl) {
2647 				/* can't grab cpu_lock */
2648 				lgrp_move_thread(tp, lpl, 1);
2649 			}
2650 
2651 			/*
2652 			 * Make the thread switch to the bound CPU.
2653 			 * If the thread is runnable, we need to
2654 			 * requeue it even if t_cpu is already set
2655 			 * to the right CPU, since it may be on a
2656 			 * kpreempt queue and need to move to a local
2657 			 * queue.  We could check t_disp_queue to
2658 			 * avoid unnecessary overhead if it's already
2659 			 * on the right queue, but since this isn't
2660 			 * a performance-critical operation it doesn't
2661 			 * seem worth the extra code and complexity.
2662 			 *
2663 			 * If the thread is weakbound to the cpu then it will
2664 			 * resist the new binding request until the weak
2665 			 * binding drops.  The cpu_surrender or requeueing
2666 			 * below could be skipped in such cases (since it
2667 			 * will have no effect), but that would require
2668 			 * thread_allowmigrate to acquire thread_lock so
2669 			 * we'll take the very occasional hit here instead.
2670 			 */
2671 			if (tp->t_state == TS_ONPROC) {
2672 				cpu_surrender(tp);
2673 			} else if (tp->t_state == TS_RUN) {
2674 				cpu_t *ocp = tp->t_cpu;
2675 
2676 				(void) dispdeq(tp);
2677 				setbackdq(tp);
2678 				/*
2679 				 * Either on the bound CPU's disp queue now,
2680 				 * or swapped out or on the swap queue.
2681 				 */
2682 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2683 				    tp->t_weakbound_cpu == ocp ||
2684 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2685 				    != TS_LOAD);
2686 			}
2687 		}
2688 	}
2689 
2690 	/*
2691 	 * Our binding has changed; set TP_CHANGEBIND.
2692 	 */
2693 	tp->t_proc_flag |= TP_CHANGEBIND;
2694 	aston(tp);
2695 
2696 	thread_unlock(tp);
2697 
2698 	return (0);
2699 }
2700 
2701 #if CPUSET_WORDS > 1
2702 
2703 /*
2704  * Functions for implementing cpuset operations when a cpuset is more
2705  * than one word.  On platforms where a cpuset is a single word these
2706  * are implemented as macros in cpuvar.h.
2707  */
2708 
2709 void
2710 cpuset_all(cpuset_t *s)
2711 {
2712 	int i;
2713 
2714 	for (i = 0; i < CPUSET_WORDS; i++)
2715 		s->cpub[i] = ~0UL;
2716 }
2717 
2718 void
2719 cpuset_all_but(cpuset_t *s, uint_t cpu)
2720 {
2721 	cpuset_all(s);
2722 	CPUSET_DEL(*s, cpu);
2723 }
2724 
2725 void
2726 cpuset_only(cpuset_t *s, uint_t cpu)
2727 {
2728 	CPUSET_ZERO(*s);
2729 	CPUSET_ADD(*s, cpu);
2730 }
2731 
2732 int
2733 cpuset_isnull(cpuset_t *s)
2734 {
2735 	int i;
2736 
2737 	for (i = 0; i < CPUSET_WORDS; i++)
2738 		if (s->cpub[i] != 0)
2739 			return (0);
2740 	return (1);
2741 }
2742 
2743 int
2744 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2745 {
2746 	int i;
2747 
2748 	for (i = 0; i < CPUSET_WORDS; i++)
2749 		if (s1->cpub[i] != s2->cpub[i])
2750 			return (0);
2751 	return (1);
2752 }
2753 
2754 uint_t
2755 cpuset_find(cpuset_t *s)
2756 {
2757 
2758 	uint_t	i;
2759 	uint_t	cpu = (uint_t)-1;
2760 
2761 	/*
2762 	 * Find a cpu in the cpuset
2763 	 */
2764 	for (i = 0; i < CPUSET_WORDS; i++) {
2765 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2766 		if (cpu != (uint_t)-1) {
2767 			cpu += i * BT_NBIPUL;
2768 			break;
2769 		}
2770 	}
2771 	return (cpu);
2772 }
2773 
2774 void
2775 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2776 {
2777 	int	i, j;
2778 	uint_t	bit;
2779 
2780 	/*
2781 	 * First, find the smallest cpu id in the set.
2782 	 */
2783 	for (i = 0; i < CPUSET_WORDS; i++) {
2784 		if (s->cpub[i] != 0) {
2785 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2786 			ASSERT(bit != (uint_t)-1);
2787 			*smallestid = bit + (i * BT_NBIPUL);
2788 
2789 			/*
2790 			 * Now find the largest cpu id in
2791 			 * the set and return immediately.
2792 			 * Done in an inner loop to avoid
2793 			 * having to break out of the first
2794 			 * loop.
2795 			 */
2796 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2797 				if (s->cpub[j] != 0) {
2798 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2799 					ASSERT(bit != (uint_t)-1);
2800 					*largestid = bit + (j * BT_NBIPUL);
2801 					ASSERT(*largestid >= *smallestid);
2802 					return;
2803 				}
2804 			}
2805 
2806 			/*
2807 			 * If this code is reached, a
2808 			 * smallestid was found, but not a
2809 			 * largestid. The cpuset must have
2810 			 * been changed during the course
2811 			 * of this function call.
2812 			 */
2813 			ASSERT(0);
2814 		}
2815 	}
2816 	*smallestid = *largestid = CPUSET_NOTINSET;
2817 }
2818 
2819 #endif	/* CPUSET_WORDS */
2820 
2821 /*
2822  * Unbind threads bound to specified CPU.
2823  *
2824  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2825  * CPU. Otherwise unbind all soft-bound user threads.
2826  */
2827 int
2828 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2829 {
2830 	processorid_t obind;
2831 	kthread_t *tp;
2832 	int ret = 0;
2833 	proc_t *pp;
2834 	int err, berr = 0;
2835 
2836 	ASSERT(MUTEX_HELD(&cpu_lock));
2837 
2838 	mutex_enter(&pidlock);
2839 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2840 		mutex_enter(&pp->p_lock);
2841 		tp = pp->p_tlist;
2842 		/*
2843 		 * Skip zombies, kernel processes, and processes in
2844 		 * other zones, if called from a non-global zone.
2845 		 */
2846 		if (tp == NULL || (pp->p_flag & SSYS) ||
2847 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2848 			mutex_exit(&pp->p_lock);
2849 			continue;
2850 		}
2851 		do {
2852 			if (tp->t_bind_cpu != cpu)
2853 				continue;
2854 			/*
2855 			 * Skip threads with hard binding when
2856 			 * `unbind_all_threads' is not specified.
2857 			 */
2858 			if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2859 				continue;
2860 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2861 			if (ret == 0)
2862 				ret = err;
2863 		} while ((tp = tp->t_forw) != pp->p_tlist);
2864 		mutex_exit(&pp->p_lock);
2865 	}
2866 	mutex_exit(&pidlock);
2867 	if (ret == 0)
2868 		ret = berr;
2869 	return (ret);
2870 }
2871 
2872 
2873 /*
2874  * Destroy all remaining bound threads on a cpu.
2875  */
2876 void
2877 cpu_destroy_bound_threads(cpu_t *cp)
2878 {
2879 	extern id_t syscid;
2880 	register kthread_id_t	t, tlist, tnext;
2881 
2882 	/*
2883 	 * Destroy all remaining bound threads on the cpu.  This
2884 	 * should include both the interrupt threads and the idle thread.
2885 	 * This requires some care, since we need to traverse the
2886 	 * thread list with the pidlock mutex locked, but thread_free
2887 	 * also locks the pidlock mutex.  So, we collect the threads
2888 	 * we're going to reap in a list headed by "tlist", then we
2889 	 * unlock the pidlock mutex and traverse the tlist list,
2890 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
2891 	 * Also, this depends on thread_free not mucking with the
2892 	 * t_next and t_prev links of the thread.
2893 	 */
2894 
2895 	if ((t = curthread) != NULL) {
2896 
2897 		tlist = NULL;
2898 		mutex_enter(&pidlock);
2899 		do {
2900 			tnext = t->t_next;
2901 			if (t->t_bound_cpu == cp) {
2902 
2903 				/*
2904 				 * We've found a bound thread, carefully unlink
2905 				 * it out of the thread list, and add it to
2906 				 * our "tlist".	 We "know" we don't have to
2907 				 * worry about unlinking curthread (the thread
2908 				 * that is executing this code).
2909 				 */
2910 				t->t_next->t_prev = t->t_prev;
2911 				t->t_prev->t_next = t->t_next;
2912 				t->t_next = tlist;
2913 				tlist = t;
2914 				ASSERT(t->t_cid == syscid);
2915 				/* wake up anyone blocked in thread_join */
2916 				cv_broadcast(&t->t_joincv);
2917 				/*
2918 				 * t_lwp set by interrupt threads and not
2919 				 * cleared.
2920 				 */
2921 				t->t_lwp = NULL;
2922 				/*
2923 				 * Pause and idle threads always have
2924 				 * t_state set to TS_ONPROC.
2925 				 */
2926 				t->t_state = TS_FREE;
2927 				t->t_prev = NULL;	/* Just in case */
2928 			}
2929 
2930 		} while ((t = tnext) != curthread);
2931 
2932 		mutex_exit(&pidlock);
2933 
2934 		mutex_sync();
2935 		for (t = tlist; t != NULL; t = tnext) {
2936 			tnext = t->t_next;
2937 			thread_free(t);
2938 		}
2939 	}
2940 }
2941 
2942 /*
2943  * Update the cpu_supp_freqs of this cpu. This information is returned
2944  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2945  * maintain the kstat data size.
2946  */
2947 void
2948 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2949 {
2950 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2951 	const char *lfreqs = clkstr;
2952 	boolean_t kstat_exists = B_FALSE;
2953 	kstat_t *ksp;
2954 	size_t len;
2955 
2956 	/*
2957 	 * A NULL pointer means we only support one speed.
2958 	 */
2959 	if (freqs == NULL)
2960 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2961 		    cp->cpu_curr_clock);
2962 	else
2963 		lfreqs = freqs;
2964 
2965 	/*
2966 	 * Make sure the frequency doesn't change while a snapshot is
2967 	 * going on. Of course, we only need to worry about this if
2968 	 * the kstat exists.
2969 	 */
2970 	if ((ksp = cp->cpu_info_kstat) != NULL) {
2971 		mutex_enter(ksp->ks_lock);
2972 		kstat_exists = B_TRUE;
2973 	}
2974 
2975 	/*
2976 	 * Free any previously allocated string and if the kstat
2977 	 * already exists, then update its data size.
2978 	 */
2979 	if (cp->cpu_supp_freqs != NULL) {
2980 		len = strlen(cp->cpu_supp_freqs) + 1;
2981 		kmem_free(cp->cpu_supp_freqs, len);
2982 		if (kstat_exists)
2983 			ksp->ks_data_size -= len;
2984 	}
2985 
2986 	/*
2987 	 * Allocate the new string and set the pointer.
2988 	 */
2989 	len = strlen(lfreqs) + 1;
2990 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2991 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
2992 
2993 	/*
2994 	 * If the kstat already exists then update the data size and
2995 	 * free the lock.
2996 	 */
2997 	if (kstat_exists) {
2998 		ksp->ks_data_size += len;
2999 		mutex_exit(ksp->ks_lock);
3000 	}
3001 }
3002 
3003 /*
3004  * Indicate the current CPU's clock freqency (in Hz).
3005  * The calling context must be such that CPU references are safe.
3006  */
3007 void
3008 cpu_set_curr_clock(uint64_t new_clk)
3009 {
3010 	uint64_t old_clk;
3011 
3012 	old_clk = CPU->cpu_curr_clock;
3013 	CPU->cpu_curr_clock = new_clk;
3014 
3015 	/*
3016 	 * The cpu-change-speed DTrace probe exports the frequency in Hz
3017 	 */
3018 	DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3019 	    uint64_t, old_clk, uint64_t, new_clk);
3020 }
3021 
3022 /*
3023  * processor_info(2) and p_online(2) status support functions
3024  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3025  *   for use in communicating processor state information to userland.  Kernel
3026  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3027  *   modifying cpu_flags should record the state change via a call to the
3028  *   cpu_set_state().
3029  */
3030 
3031 /*
3032  * Update the pi_state of this CPU.  This function provides the CPU status for
3033  * the information returned by processor_info(2).
3034  */
3035 void
3036 cpu_set_state(cpu_t *cpu)
3037 {
3038 	ASSERT(MUTEX_HELD(&cpu_lock));
3039 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3040 	cpu->cpu_state_begin = gethrestime_sec();
3041 	pool_cpu_mod = gethrtime();
3042 }
3043 
3044 /*
3045  * Return offline/online/other status for the indicated CPU.  Use only for
3046  * communication with user applications; cpu_flags provides the in-kernel
3047  * interface.
3048  */
3049 int
3050 cpu_get_state(cpu_t *cpu)
3051 {
3052 	ASSERT(MUTEX_HELD(&cpu_lock));
3053 	if (cpu->cpu_flags & CPU_POWEROFF)
3054 		return (P_POWEROFF);
3055 	else if (cpu->cpu_flags & CPU_FAULTED)
3056 		return (P_FAULTED);
3057 	else if (cpu->cpu_flags & CPU_SPARE)
3058 		return (P_SPARE);
3059 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3060 		return (P_OFFLINE);
3061 	else if (cpu->cpu_flags & CPU_ENABLE)
3062 		return (P_ONLINE);
3063 	else
3064 		return (P_NOINTR);
3065 }
3066 
3067 /*
3068  * Return processor_info(2) state as a string.
3069  */
3070 const char *
3071 cpu_get_state_str(cpu_t *cpu)
3072 {
3073 	const char *string;
3074 
3075 	switch (cpu_get_state(cpu)) {
3076 	case P_ONLINE:
3077 		string = PS_ONLINE;
3078 		break;
3079 	case P_POWEROFF:
3080 		string = PS_POWEROFF;
3081 		break;
3082 	case P_NOINTR:
3083 		string = PS_NOINTR;
3084 		break;
3085 	case P_SPARE:
3086 		string = PS_SPARE;
3087 		break;
3088 	case P_FAULTED:
3089 		string = PS_FAULTED;
3090 		break;
3091 	case P_OFFLINE:
3092 		string = PS_OFFLINE;
3093 		break;
3094 	default:
3095 		string = "unknown";
3096 		break;
3097 	}
3098 	return (string);
3099 }
3100 
3101 /*
3102  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3103  * kstats, respectively.  This is done when a CPU is initialized or placed
3104  * online via p_online(2).
3105  */
3106 static void
3107 cpu_stats_kstat_create(cpu_t *cp)
3108 {
3109 	int 	instance = cp->cpu_id;
3110 	char 	*module = "cpu";
3111 	char 	*class = "misc";
3112 	kstat_t	*ksp;
3113 	zoneid_t zoneid;
3114 
3115 	ASSERT(MUTEX_HELD(&cpu_lock));
3116 
3117 	if (pool_pset_enabled())
3118 		zoneid = GLOBAL_ZONEID;
3119 	else
3120 		zoneid = ALL_ZONES;
3121 	/*
3122 	 * Create named kstats
3123 	 */
3124 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3125 	ksp = kstat_create_zone(module, instance, (name), class,         \
3126 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3127 	    zoneid);                                                     \
3128 	if (ksp != NULL) {                                               \
3129 		ksp->ks_private = cp;                                    \
3130 		ksp->ks_update = (update_func);                          \
3131 		kstat_install(ksp);                                      \
3132 	} else                                                           \
3133 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3134 		    module, instance, (name));
3135 
3136 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3137 	    cpu_sys_stats_ks_update);
3138 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3139 	    cpu_vm_stats_ks_update);
3140 
3141 	/*
3142 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3143 	 */
3144 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3145 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3146 	if (ksp != NULL) {
3147 		ksp->ks_update = cpu_stat_ks_update;
3148 		ksp->ks_private = cp;
3149 		kstat_install(ksp);
3150 	}
3151 }
3152 
3153 static void
3154 cpu_stats_kstat_destroy(cpu_t *cp)
3155 {
3156 	char ks_name[KSTAT_STRLEN];
3157 
3158 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3159 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3160 
3161 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3162 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3163 }
3164 
3165 static int
3166 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3167 {
3168 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3169 	struct cpu_sys_stats_ks_data *csskd;
3170 	cpu_sys_stats_t *css;
3171 	hrtime_t msnsecs[NCMSTATES];
3172 	int	i;
3173 
3174 	if (rw == KSTAT_WRITE)
3175 		return (EACCES);
3176 
3177 	csskd = ksp->ks_data;
3178 	css = &cp->cpu_stats.sys;
3179 
3180 	/*
3181 	 * Read CPU mstate, but compare with the last values we
3182 	 * received to make sure that the returned kstats never
3183 	 * decrease.
3184 	 */
3185 
3186 	get_cpu_mstate(cp, msnsecs);
3187 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3188 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3189 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3190 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3191 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3192 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3193 
3194 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3195 	    sizeof (cpu_sys_stats_ks_data_template));
3196 
3197 	csskd->cpu_ticks_wait.value.ui64 = 0;
3198 	csskd->wait_ticks_io.value.ui64 = 0;
3199 
3200 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3201 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3202 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3203 	csskd->cpu_ticks_idle.value.ui64 =
3204 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3205 	csskd->cpu_ticks_user.value.ui64 =
3206 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3207 	csskd->cpu_ticks_kernel.value.ui64 =
3208 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3209 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3210 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3211 	csskd->bread.value.ui64 = css->bread;
3212 	csskd->bwrite.value.ui64 = css->bwrite;
3213 	csskd->lread.value.ui64 = css->lread;
3214 	csskd->lwrite.value.ui64 = css->lwrite;
3215 	csskd->phread.value.ui64 = css->phread;
3216 	csskd->phwrite.value.ui64 = css->phwrite;
3217 	csskd->pswitch.value.ui64 = css->pswitch;
3218 	csskd->trap.value.ui64 = css->trap;
3219 	csskd->intr.value.ui64 = 0;
3220 	for (i = 0; i < PIL_MAX; i++)
3221 		csskd->intr.value.ui64 += css->intr[i];
3222 	csskd->syscall.value.ui64 = css->syscall;
3223 	csskd->sysread.value.ui64 = css->sysread;
3224 	csskd->syswrite.value.ui64 = css->syswrite;
3225 	csskd->sysfork.value.ui64 = css->sysfork;
3226 	csskd->sysvfork.value.ui64 = css->sysvfork;
3227 	csskd->sysexec.value.ui64 = css->sysexec;
3228 	csskd->readch.value.ui64 = css->readch;
3229 	csskd->writech.value.ui64 = css->writech;
3230 	csskd->rcvint.value.ui64 = css->rcvint;
3231 	csskd->xmtint.value.ui64 = css->xmtint;
3232 	csskd->mdmint.value.ui64 = css->mdmint;
3233 	csskd->rawch.value.ui64 = css->rawch;
3234 	csskd->canch.value.ui64 = css->canch;
3235 	csskd->outch.value.ui64 = css->outch;
3236 	csskd->msg.value.ui64 = css->msg;
3237 	csskd->sema.value.ui64 = css->sema;
3238 	csskd->namei.value.ui64 = css->namei;
3239 	csskd->ufsiget.value.ui64 = css->ufsiget;
3240 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3241 	csskd->ufsipage.value.ui64 = css->ufsipage;
3242 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3243 	csskd->procovf.value.ui64 = css->procovf;
3244 	csskd->intrthread.value.ui64 = 0;
3245 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3246 		csskd->intrthread.value.ui64 += css->intr[i];
3247 	csskd->intrblk.value.ui64 = css->intrblk;
3248 	csskd->intrunpin.value.ui64 = css->intrunpin;
3249 	csskd->idlethread.value.ui64 = css->idlethread;
3250 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3251 	csskd->nthreads.value.ui64 = css->nthreads;
3252 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3253 	csskd->xcalls.value.ui64 = css->xcalls;
3254 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3255 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3256 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3257 	csskd->modload.value.ui64 = css->modload;
3258 	csskd->modunload.value.ui64 = css->modunload;
3259 	csskd->bawrite.value.ui64 = css->bawrite;
3260 	csskd->iowait.value.ui64 = css->iowait;
3261 
3262 	return (0);
3263 }
3264 
3265 static int
3266 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3267 {
3268 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3269 	struct cpu_vm_stats_ks_data *cvskd;
3270 	cpu_vm_stats_t *cvs;
3271 
3272 	if (rw == KSTAT_WRITE)
3273 		return (EACCES);
3274 
3275 	cvs = &cp->cpu_stats.vm;
3276 	cvskd = ksp->ks_data;
3277 
3278 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3279 	    sizeof (cpu_vm_stats_ks_data_template));
3280 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3281 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3282 	cvskd->pgin.value.ui64 = cvs->pgin;
3283 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3284 	cvskd->pgout.value.ui64 = cvs->pgout;
3285 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3286 	cvskd->swapin.value.ui64 = cvs->swapin;
3287 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3288 	cvskd->swapout.value.ui64 = cvs->swapout;
3289 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3290 	cvskd->zfod.value.ui64 = cvs->zfod;
3291 	cvskd->dfree.value.ui64 = cvs->dfree;
3292 	cvskd->scan.value.ui64 = cvs->scan;
3293 	cvskd->rev.value.ui64 = cvs->rev;
3294 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3295 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3296 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3297 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3298 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3299 	cvskd->softlock.value.ui64 = cvs->softlock;
3300 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3301 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3302 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3303 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3304 	cvskd->execfree.value.ui64 = cvs->execfree;
3305 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3306 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3307 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3308 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3309 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3310 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3311 
3312 	return (0);
3313 }
3314 
3315 static int
3316 cpu_stat_ks_update(kstat_t *ksp, int rw)
3317 {
3318 	cpu_stat_t *cso;
3319 	cpu_t *cp;
3320 	int i;
3321 	hrtime_t msnsecs[NCMSTATES];
3322 
3323 	cso = (cpu_stat_t *)ksp->ks_data;
3324 	cp = (cpu_t *)ksp->ks_private;
3325 
3326 	if (rw == KSTAT_WRITE)
3327 		return (EACCES);
3328 
3329 	/*
3330 	 * Read CPU mstate, but compare with the last values we
3331 	 * received to make sure that the returned kstats never
3332 	 * decrease.
3333 	 */
3334 
3335 	get_cpu_mstate(cp, msnsecs);
3336 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3337 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3338 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3339 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3340 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3341 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3342 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3343 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3344 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3345 	cso->cpu_sysinfo.cpu[CPU_WAIT] 	= 0;
3346 	cso->cpu_sysinfo.wait[W_IO] 	= 0;
3347 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3348 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3349 	cso->cpu_sysinfo.bread 		= CPU_STATS(cp, sys.bread);
3350 	cso->cpu_sysinfo.bwrite 	= CPU_STATS(cp, sys.bwrite);
3351 	cso->cpu_sysinfo.lread 		= CPU_STATS(cp, sys.lread);
3352 	cso->cpu_sysinfo.lwrite 	= CPU_STATS(cp, sys.lwrite);
3353 	cso->cpu_sysinfo.phread 	= CPU_STATS(cp, sys.phread);
3354 	cso->cpu_sysinfo.phwrite 	= CPU_STATS(cp, sys.phwrite);
3355 	cso->cpu_sysinfo.pswitch 	= CPU_STATS(cp, sys.pswitch);
3356 	cso->cpu_sysinfo.trap 		= CPU_STATS(cp, sys.trap);
3357 	cso->cpu_sysinfo.intr		= 0;
3358 	for (i = 0; i < PIL_MAX; i++)
3359 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3360 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3361 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3362 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3363 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3364 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3365 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3366 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3367 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3368 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3369 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3370 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3371 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3372 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3373 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3374 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3375 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3376 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3377 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3378 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3379 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3380 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3381 	cso->cpu_sysinfo.inodeovf	= 0;
3382 	cso->cpu_sysinfo.fileovf	= 0;
3383 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3384 	cso->cpu_sysinfo.intrthread	= 0;
3385 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3386 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3387 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3388 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3389 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3390 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3391 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3392 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3393 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3394 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3395 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3396 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3397 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3398 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3399 	cso->cpu_sysinfo.rw_enters	= 0;
3400 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3401 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3402 	cso->cpu_sysinfo.win_so_cnt	= 0;
3403 	cso->cpu_sysinfo.win_su_cnt	= 0;
3404 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3405 
3406 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3407 	cso->cpu_syswait.swap		= 0;
3408 	cso->cpu_syswait.physio		= 0;
3409 
3410 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3411 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3412 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3413 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3414 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3415 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3416 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3417 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3418 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3419 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3420 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3421 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3422 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3423 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3424 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3425 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3426 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3427 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3428 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3429 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3430 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3431 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3432 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3433 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3434 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3435 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3436 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3437 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3438 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3439 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3440 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3441 
3442 	return (0);
3443 }
3444