1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/debug.h> 34 #include <sys/cmn_err.h> 35 #include <sys/systm.h> 36 #include <sys/sobject.h> 37 #include <sys/sleepq.h> 38 #include <sys/cpuvar.h> 39 #include <sys/condvar.h> 40 #include <sys/condvar_impl.h> 41 #include <sys/schedctl.h> 42 #include <sys/procfs.h> 43 #include <sys/sdt.h> 44 #include <sys/callo.h> 45 46 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int); 47 48 /* 49 * CV_MAX_WAITERS is the maximum number of waiters we track; once 50 * the number becomes higher than that, we look at the sleepq to 51 * see whether there are *really* any waiters. 52 */ 53 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 54 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 55 56 /* 57 * Threads don't "own" condition variables. 58 */ 59 /* ARGSUSED */ 60 static kthread_t * 61 cv_owner(void *cvp) 62 { 63 return (NULL); 64 } 65 66 /* 67 * Unsleep a thread that's blocked on a condition variable. 68 */ 69 static void 70 cv_unsleep(kthread_t *t) 71 { 72 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 73 sleepq_head_t *sqh = SQHASH(cvp); 74 75 ASSERT(THREAD_LOCK_HELD(t)); 76 77 if (cvp == NULL) 78 panic("cv_unsleep: thread %p not on sleepq %p", 79 (void *)t, (void *)sqh); 80 DTRACE_SCHED1(wakeup, kthread_t *, t); 81 sleepq_unsleep(t); 82 if (cvp->cv_waiters != CV_MAX_WAITERS) 83 cvp->cv_waiters--; 84 disp_lock_exit_high(&sqh->sq_lock); 85 CL_SETRUN(t); 86 } 87 88 /* 89 * Change the priority of a thread that's blocked on a condition variable. 90 */ 91 static void 92 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 93 { 94 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 95 sleepq_t *sqp = t->t_sleepq; 96 97 ASSERT(THREAD_LOCK_HELD(t)); 98 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 99 100 if (cvp == NULL) 101 panic("cv_change_pri: %p not on sleep queue", (void *)t); 102 sleepq_dequeue(t); 103 *t_prip = pri; 104 sleepq_insert(sqp, t); 105 } 106 107 /* 108 * The sobj_ops vector exports a set of functions needed when a thread 109 * is asleep on a synchronization object of this type. 110 */ 111 static sobj_ops_t cv_sobj_ops = { 112 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 113 }; 114 115 /* ARGSUSED */ 116 void 117 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 118 { 119 ((condvar_impl_t *)cvp)->cv_waiters = 0; 120 } 121 122 /* 123 * cv_destroy is not currently needed, but is part of the DDI. 124 * This is in case cv_init ever needs to allocate something for a cv. 125 */ 126 /* ARGSUSED */ 127 void 128 cv_destroy(kcondvar_t *cvp) 129 { 130 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 131 } 132 133 /* 134 * The cv_block() function blocks a thread on a condition variable 135 * by putting it in a hashed sleep queue associated with the 136 * synchronization object. 137 * 138 * Threads are taken off the hashed sleep queues via calls to 139 * cv_signal(), cv_broadcast(), or cv_unsleep(). 140 */ 141 static void 142 cv_block(condvar_impl_t *cvp) 143 { 144 kthread_t *t = curthread; 145 klwp_t *lwp = ttolwp(t); 146 sleepq_head_t *sqh; 147 148 ASSERT(THREAD_LOCK_HELD(t)); 149 ASSERT(t != CPU->cpu_idle_thread); 150 ASSERT(CPU_ON_INTR(CPU) == 0); 151 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 152 ASSERT(t->t_state == TS_ONPROC); 153 154 t->t_schedflag &= ~TS_SIGNALLED; 155 CL_SLEEP(t); /* assign kernel priority */ 156 t->t_wchan = (caddr_t)cvp; 157 t->t_sobj_ops = &cv_sobj_ops; 158 DTRACE_SCHED(sleep); 159 160 /* 161 * The check for t_intr is to avoid doing the 162 * account for an interrupt thread on the still-pinned 163 * lwp's statistics. 164 */ 165 if (lwp != NULL && t->t_intr == NULL) { 166 lwp->lwp_ru.nvcsw++; 167 (void) new_mstate(t, LMS_SLEEP); 168 } 169 170 sqh = SQHASH(cvp); 171 disp_lock_enter_high(&sqh->sq_lock); 172 if (cvp->cv_waiters < CV_MAX_WAITERS) 173 cvp->cv_waiters++; 174 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 175 THREAD_SLEEP(t, &sqh->sq_lock); 176 sleepq_insert(&sqh->sq_queue, t); 177 /* 178 * THREAD_SLEEP() moves curthread->t_lockp to point to the 179 * lock sqh->sq_lock. This lock is later released by the caller 180 * when it calls thread_unlock() on curthread. 181 */ 182 } 183 184 #define cv_block_sig(t, cvp) \ 185 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 186 187 /* 188 * Block on the indicated condition variable and release the 189 * associated kmutex while blocked. 190 */ 191 void 192 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 193 { 194 if (panicstr) 195 return; 196 ASSERT(!quiesce_active); 197 198 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 199 thread_lock(curthread); /* lock the thread */ 200 cv_block((condvar_impl_t *)cvp); 201 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 202 mutex_exit(mp); 203 swtch(); 204 mutex_enter(mp); 205 } 206 207 static void 208 cv_wakeup(void *arg) 209 { 210 kthread_t *t = arg; 211 212 /* 213 * This mutex is acquired and released in order to make sure that 214 * the wakeup does not happen before the block itself happens. 215 */ 216 mutex_enter(&t->t_wait_mutex); 217 mutex_exit(&t->t_wait_mutex); 218 setrun(t); 219 } 220 221 /* 222 * Same as cv_wait except the thread will unblock at 'tim' 223 * (an absolute time) if it hasn't already unblocked. 224 * 225 * Returns the amount of time left from the original 'tim' value 226 * when it was unblocked. 227 */ 228 clock_t 229 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 230 { 231 hrtime_t hrtim; 232 clock_t now = ddi_get_lbolt(); 233 234 if (tim <= now) 235 return (-1); 236 237 hrtim = TICK_TO_NSEC(tim - now); 238 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 239 } 240 241 /* 242 * Same as cv_timedwait() except that the third argument is a relative 243 * timeout value, as opposed to an absolute one. There is also a fourth 244 * argument that specifies how accurately the timeout must be implemented. 245 */ 246 clock_t 247 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 248 { 249 hrtime_t exp; 250 251 ASSERT(TIME_RES_VALID(res)); 252 253 if (delta <= 0) 254 return (-1); 255 256 if ((exp = TICK_TO_NSEC(delta)) < 0) 257 exp = CY_INFINITY; 258 259 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 260 } 261 262 clock_t 263 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 264 hrtime_t res, int flag) 265 { 266 kthread_t *t = curthread; 267 callout_id_t id; 268 clock_t timeleft; 269 hrtime_t limit; 270 int signalled; 271 272 if (panicstr) 273 return (-1); 274 ASSERT(!quiesce_active); 275 276 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 277 if (tim <= limit) 278 return (-1); 279 mutex_enter(&t->t_wait_mutex); 280 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 281 tim, res, flag); 282 thread_lock(t); /* lock the thread */ 283 cv_block((condvar_impl_t *)cvp); 284 thread_unlock_nopreempt(t); 285 mutex_exit(&t->t_wait_mutex); 286 mutex_exit(mp); 287 swtch(); 288 signalled = (t->t_schedflag & TS_SIGNALLED); 289 /* 290 * Get the time left. untimeout() returns -1 if the timeout has 291 * occured or the time remaining. If the time remaining is zero, 292 * the timeout has occured between when we were awoken and 293 * we called untimeout. We will treat this as if the timeout 294 * has occured and set timeleft to -1. 295 */ 296 timeleft = untimeout_default(id, 0); 297 mutex_enter(mp); 298 if (timeleft <= 0) { 299 timeleft = -1; 300 if (signalled) /* avoid consuming the cv_signal() */ 301 cv_signal(cvp); 302 } 303 return (timeleft); 304 } 305 306 int 307 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 308 { 309 kthread_t *t = curthread; 310 proc_t *p = ttoproc(t); 311 klwp_t *lwp = ttolwp(t); 312 int cancel_pending; 313 int rval = 1; 314 int signalled = 0; 315 316 if (panicstr) 317 return (rval); 318 ASSERT(!quiesce_active); 319 320 /* 321 * Threads in system processes don't process signals. This is 322 * true both for standard threads of system processes and for 323 * interrupt threads which have borrowed their pinned thread's LWP. 324 */ 325 if (lwp == NULL || (p->p_flag & SSYS)) { 326 cv_wait(cvp, mp); 327 return (rval); 328 } 329 ASSERT(t->t_intr == NULL); 330 331 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 332 cancel_pending = schedctl_cancel_pending(); 333 lwp->lwp_asleep = 1; 334 lwp->lwp_sysabort = 0; 335 thread_lock(t); 336 cv_block_sig(t, (condvar_impl_t *)cvp); 337 thread_unlock_nopreempt(t); 338 mutex_exit(mp); 339 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 340 setrun(t); 341 /* ASSERT(no locks are held) */ 342 swtch(); 343 signalled = (t->t_schedflag & TS_SIGNALLED); 344 t->t_flag &= ~T_WAKEABLE; 345 mutex_enter(mp); 346 if (ISSIG_PENDING(t, lwp, p)) { 347 mutex_exit(mp); 348 if (issig(FORREAL)) 349 rval = 0; 350 mutex_enter(mp); 351 } 352 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 353 rval = 0; 354 if (rval != 0 && cancel_pending) { 355 schedctl_cancel_eintr(); 356 rval = 0; 357 } 358 lwp->lwp_asleep = 0; 359 lwp->lwp_sysabort = 0; 360 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 361 cv_signal(cvp); 362 return (rval); 363 } 364 365 static clock_t 366 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 367 hrtime_t res, int flag) 368 { 369 kthread_t *t = curthread; 370 proc_t *p = ttoproc(t); 371 klwp_t *lwp = ttolwp(t); 372 int cancel_pending = 0; 373 callout_id_t id; 374 clock_t rval = 1; 375 hrtime_t limit; 376 int signalled = 0; 377 378 if (panicstr) 379 return (rval); 380 ASSERT(!quiesce_active); 381 382 /* 383 * Threads in system processes don't process signals. This is 384 * true both for standard threads of system processes and for 385 * interrupt threads which have borrowed their pinned thread's LWP. 386 */ 387 if (lwp == NULL || (p->p_flag & SSYS)) 388 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 389 ASSERT(t->t_intr == NULL); 390 391 /* 392 * If tim is less than or equal to current hrtime, then the timeout 393 * has already occured. So just check to see if there is a signal 394 * pending. If so return 0 indicating that there is a signal pending. 395 * Else return -1 indicating that the timeout occured. No need to 396 * wait on anything. 397 */ 398 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 399 if (tim <= limit) { 400 lwp->lwp_asleep = 1; 401 lwp->lwp_sysabort = 0; 402 rval = -1; 403 goto out; 404 } 405 406 /* 407 * Set the timeout and wait. 408 */ 409 cancel_pending = schedctl_cancel_pending(); 410 mutex_enter(&t->t_wait_mutex); 411 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 412 tim, res, flag); 413 lwp->lwp_asleep = 1; 414 lwp->lwp_sysabort = 0; 415 thread_lock(t); 416 cv_block_sig(t, (condvar_impl_t *)cvp); 417 thread_unlock_nopreempt(t); 418 mutex_exit(&t->t_wait_mutex); 419 mutex_exit(mp); 420 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 421 setrun(t); 422 /* ASSERT(no locks are held) */ 423 swtch(); 424 signalled = (t->t_schedflag & TS_SIGNALLED); 425 t->t_flag &= ~T_WAKEABLE; 426 427 /* 428 * Untimeout the thread. untimeout() returns -1 if the timeout has 429 * occured or the time remaining. If the time remaining is zero, 430 * the timeout has occured between when we were awoken and 431 * we called untimeout. We will treat this as if the timeout 432 * has occured and set rval to -1. 433 */ 434 rval = untimeout_default(id, 0); 435 mutex_enter(mp); 436 if (rval <= 0) 437 rval = -1; 438 439 /* 440 * Check to see if a signal is pending. If so, regardless of whether 441 * or not we were awoken due to the signal, the signal is now pending 442 * and a return of 0 has the highest priority. 443 */ 444 out: 445 if (ISSIG_PENDING(t, lwp, p)) { 446 mutex_exit(mp); 447 if (issig(FORREAL)) 448 rval = 0; 449 mutex_enter(mp); 450 } 451 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 452 rval = 0; 453 if (rval != 0 && cancel_pending) { 454 schedctl_cancel_eintr(); 455 rval = 0; 456 } 457 lwp->lwp_asleep = 0; 458 lwp->lwp_sysabort = 0; 459 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 460 cv_signal(cvp); 461 return (rval); 462 } 463 464 /* 465 * Returns: 466 * Function result in order of precedence: 467 * 0 if a signal was received 468 * -1 if timeout occured 469 * >0 if awakened via cv_signal() or cv_broadcast(). 470 * (returns time remaining) 471 * 472 * cv_timedwait_sig() is now part of the DDI. 473 * 474 * This function is now just a wrapper for cv_timedwait_sig_hires(). 475 */ 476 clock_t 477 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 478 { 479 hrtime_t hrtim; 480 481 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 482 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 483 } 484 485 /* 486 * Wait until the specified time. 487 * If tim == -1, waits without timeout using cv_wait_sig_swap(). 488 */ 489 int 490 cv_timedwait_sig_hrtime(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim) 491 { 492 if (tim == -1) { 493 return (cv_wait_sig_swap(cvp, mp)); 494 } else { 495 return (cv_timedwait_sig_hires(cvp, mp, tim, 1, 496 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP)); 497 } 498 } 499 500 /* 501 * Same as cv_timedwait_sig() except that the third argument is a relative 502 * timeout value, as opposed to an absolute one. There is also a fourth 503 * argument that specifies how accurately the timeout must be implemented. 504 */ 505 clock_t 506 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 507 time_res_t res) 508 { 509 hrtime_t exp = 0; 510 511 ASSERT(TIME_RES_VALID(res)); 512 513 if (delta > 0) { 514 if ((exp = TICK_TO_NSEC(delta)) < 0) 515 exp = CY_INFINITY; 516 } 517 518 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 519 } 520 521 /* 522 * Like cv_wait_sig_swap but allows the caller to indicate (with a 523 * non-NULL sigret) that they will take care of signalling the cv 524 * after wakeup, if necessary. This is a vile hack that should only 525 * be used when no other option is available; almost all callers 526 * should just use cv_wait_sig_swap (which takes care of the cv_signal 527 * stuff automatically) instead. 528 */ 529 int 530 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 531 { 532 kthread_t *t = curthread; 533 proc_t *p = ttoproc(t); 534 klwp_t *lwp = ttolwp(t); 535 int cancel_pending; 536 int rval = 1; 537 int signalled = 0; 538 539 if (panicstr) 540 return (rval); 541 542 /* 543 * Threads in system processes don't process signals. This is 544 * true both for standard threads of system processes and for 545 * interrupt threads which have borrowed their pinned thread's LWP. 546 */ 547 if (lwp == NULL || (p->p_flag & SSYS)) { 548 cv_wait(cvp, mp); 549 return (rval); 550 } 551 ASSERT(t->t_intr == NULL); 552 553 cancel_pending = schedctl_cancel_pending(); 554 lwp->lwp_asleep = 1; 555 lwp->lwp_sysabort = 0; 556 thread_lock(t); 557 t->t_kpri_req = 0; /* don't need kernel priority */ 558 cv_block_sig(t, (condvar_impl_t *)cvp); 559 /* I can be swapped now */ 560 curthread->t_schedflag &= ~TS_DONT_SWAP; 561 thread_unlock_nopreempt(t); 562 mutex_exit(mp); 563 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 564 setrun(t); 565 /* ASSERT(no locks are held) */ 566 swtch(); 567 signalled = (t->t_schedflag & TS_SIGNALLED); 568 t->t_flag &= ~T_WAKEABLE; 569 /* TS_DONT_SWAP set by disp() */ 570 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 571 mutex_enter(mp); 572 if (ISSIG_PENDING(t, lwp, p)) { 573 mutex_exit(mp); 574 if (issig(FORREAL)) 575 rval = 0; 576 mutex_enter(mp); 577 } 578 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 579 rval = 0; 580 if (rval != 0 && cancel_pending) { 581 schedctl_cancel_eintr(); 582 rval = 0; 583 } 584 lwp->lwp_asleep = 0; 585 lwp->lwp_sysabort = 0; 586 if (rval == 0) { 587 if (sigret != NULL) 588 *sigret = signalled; /* just tell the caller */ 589 else if (signalled) 590 cv_signal(cvp); /* avoid consuming the cv_signal() */ 591 } 592 return (rval); 593 } 594 595 /* 596 * Same as cv_wait_sig but the thread can be swapped out while waiting. 597 * This should only be used when we know we aren't holding any locks. 598 */ 599 int 600 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 601 { 602 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 603 } 604 605 void 606 cv_signal(kcondvar_t *cvp) 607 { 608 condvar_impl_t *cp = (condvar_impl_t *)cvp; 609 610 /* make sure the cv_waiters field looks sane */ 611 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 612 if (cp->cv_waiters > 0) { 613 sleepq_head_t *sqh = SQHASH(cp); 614 disp_lock_enter(&sqh->sq_lock); 615 ASSERT(CPU_ON_INTR(CPU) == 0); 616 if (cp->cv_waiters & CV_WAITERS_MASK) { 617 kthread_t *t; 618 cp->cv_waiters--; 619 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 620 /* 621 * If cv_waiters is non-zero (and less than 622 * CV_MAX_WAITERS) there should be a thread 623 * in the queue. 624 */ 625 ASSERT(t != NULL); 626 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 627 cp->cv_waiters = 0; 628 } 629 disp_lock_exit(&sqh->sq_lock); 630 } 631 } 632 633 void 634 cv_broadcast(kcondvar_t *cvp) 635 { 636 condvar_impl_t *cp = (condvar_impl_t *)cvp; 637 638 /* make sure the cv_waiters field looks sane */ 639 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 640 if (cp->cv_waiters > 0) { 641 sleepq_head_t *sqh = SQHASH(cp); 642 disp_lock_enter(&sqh->sq_lock); 643 ASSERT(CPU_ON_INTR(CPU) == 0); 644 sleepq_wakeall_chan(&sqh->sq_queue, cp); 645 cp->cv_waiters = 0; 646 disp_lock_exit(&sqh->sq_lock); 647 } 648 } 649 650 /* 651 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 652 * for requests to stop, like cv_wait_sig() but without dealing with signals. 653 * This is a horrible kludge. It is evil. It is vile. It is swill. 654 * If your code has to call this function then your code is the same. 655 */ 656 void 657 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 658 { 659 kthread_t *t = curthread; 660 klwp_t *lwp = ttolwp(t); 661 proc_t *p = ttoproc(t); 662 callout_id_t id; 663 clock_t tim; 664 665 if (panicstr) 666 return; 667 668 /* 669 * Threads in system processes don't process signals. This is 670 * true both for standard threads of system processes and for 671 * interrupt threads which have borrowed their pinned thread's LWP. 672 */ 673 if (lwp == NULL || (p->p_flag & SSYS)) { 674 cv_wait(cvp, mp); 675 return; 676 } 677 ASSERT(t->t_intr == NULL); 678 679 /* 680 * Wakeup in wakeup_time milliseconds, i.e., human time. 681 */ 682 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 683 mutex_enter(&t->t_wait_mutex); 684 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 685 tim - ddi_get_lbolt()); 686 thread_lock(t); /* lock the thread */ 687 cv_block((condvar_impl_t *)cvp); 688 thread_unlock_nopreempt(t); 689 mutex_exit(&t->t_wait_mutex); 690 mutex_exit(mp); 691 /* ASSERT(no locks are held); */ 692 swtch(); 693 (void) untimeout_default(id, 0); 694 695 /* 696 * Check for reasons to stop, if lwp_nostop is not true. 697 * See issig_forreal() for explanations of the various stops. 698 */ 699 mutex_enter(&p->p_lock); 700 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 701 /* 702 * Hold the lwp here for watchpoint manipulation. 703 */ 704 if (t->t_proc_flag & TP_PAUSE) { 705 stop(PR_SUSPENDED, SUSPEND_PAUSE); 706 continue; 707 } 708 /* 709 * System checkpoint. 710 */ 711 if (t->t_proc_flag & TP_CHKPT) { 712 stop(PR_CHECKPOINT, 0); 713 continue; 714 } 715 /* 716 * Honor fork1(), watchpoint activity (remapping a page), 717 * and lwp_suspend() requests. 718 */ 719 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 720 (t->t_proc_flag & TP_HOLDLWP)) { 721 stop(PR_SUSPENDED, SUSPEND_NORMAL); 722 continue; 723 } 724 /* 725 * Honor /proc requested stop. 726 */ 727 if (t->t_proc_flag & TP_PRSTOP) { 728 stop(PR_REQUESTED, 0); 729 } 730 /* 731 * If some lwp in the process has already stopped 732 * showing PR_JOBCONTROL, stop in sympathy with it. 733 */ 734 if (p->p_stopsig && t != p->p_agenttp) { 735 stop(PR_JOBCONTROL, p->p_stopsig); 736 continue; 737 } 738 break; 739 } 740 mutex_exit(&p->p_lock); 741 mutex_enter(mp); 742 } 743 744 /* 745 * Like cv_timedwait_sig(), but takes an absolute hires future time 746 * rather than a future time in clock ticks. Will not return showing 747 * that a timeout occurred until the future time is passed. 748 * If 'when' is a NULL pointer, no timeout will occur. 749 * Returns: 750 * Function result in order of precedence: 751 * 0 if a signal was received 752 * -1 if timeout occured 753 * >0 if awakened via cv_signal() or cv_broadcast() 754 * or by a spurious wakeup. 755 * (might return time remaining) 756 * As a special test, if someone abruptly resets the system time 757 * (but not through adjtime(2); drifting of the clock is allowed and 758 * expected [see timespectohz_adj()]), then we force a return of -1 759 * so the caller can return a premature timeout to the calling process 760 * so it can reevaluate the situation in light of the new system time. 761 * (The system clock has been reset if timecheck != timechanged.) 762 * 763 * Generally, cv_timedwait_sig_hrtime() should be used instead of this 764 * routine. It waits based on hrtime rather than wall-clock time and therefore 765 * does not need to deal with the time changing. 766 */ 767 int 768 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 769 timestruc_t *when, int timecheck) 770 { 771 timestruc_t now; 772 timestruc_t delta; 773 hrtime_t interval; 774 int rval; 775 776 if (when == NULL) 777 return (cv_wait_sig_swap(cvp, mp)); 778 779 gethrestime(&now); 780 delta = *when; 781 timespecsub(&delta, &now); 782 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 783 /* 784 * We have already reached the absolute future time. 785 * Call cv_timedwait_sig() just to check for signals. 786 * We will return immediately with either 0 or -1. 787 */ 788 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 789 } else { 790 if (timecheck == timechanged) { 791 /* 792 * Make sure that the interval is atleast one tick. 793 * This is to prevent a user from flooding the system 794 * with very small, high resolution timers. 795 */ 796 interval = ts2hrt(&delta); 797 if (interval < nsec_per_tick) 798 interval = nsec_per_tick; 799 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 800 CALLOUT_FLAG_HRESTIME); 801 } else { 802 /* 803 * Someone reset the system time; 804 * just force an immediate timeout. 805 */ 806 rval = -1; 807 } 808 if (rval == -1 && timecheck == timechanged) { 809 /* 810 * Even though cv_timedwait_sig() returned showing a 811 * timeout, the future time may not have passed yet. 812 * If not, change rval to indicate a normal wakeup. 813 */ 814 gethrestime(&now); 815 delta = *when; 816 timespecsub(&delta, &now); 817 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 818 delta.tv_nsec > 0)) 819 rval = 1; 820 } 821 } 822 return (rval); 823 } 824