xref: /titanic_44/usr/src/uts/common/os/clock.c (revision e65e5c2d2f32a99e8c5f740cabae9075dab03ce7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/types.h>
32 #include <sys/tuneable.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/lgrp.h>
37 #include <sys/user.h>
38 #include <sys/proc.h>
39 #include <sys/callo.h>
40 #include <sys/kmem.h>
41 #include <sys/var.h>
42 #include <sys/cmn_err.h>
43 #include <sys/swap.h>
44 #include <sys/vmsystm.h>
45 #include <sys/class.h>
46 #include <sys/time.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/spl.h>
50 #include <sys/atomic.h>
51 #include <sys/dumphdr.h>
52 #include <sys/archsystm.h>
53 #include <sys/fs/swapnode.h>
54 #include <sys/panic.h>
55 #include <sys/disp.h>
56 #include <sys/msacct.h>
57 #include <sys/mem_cage.h>
58 
59 #include <vm/page.h>
60 #include <vm/anon.h>
61 #include <vm/rm.h>
62 #include <sys/cyclic.h>
63 #include <sys/cpupart.h>
64 #include <sys/rctl.h>
65 #include <sys/task.h>
66 #include <sys/sdt.h>
67 #include <sys/ddi_timer.h>
68 #include <sys/random.h>
69 #include <sys/modctl.h>
70 
71 /*
72  * for NTP support
73  */
74 #include <sys/timex.h>
75 #include <sys/inttypes.h>
76 
77 #include <sys/sunddi.h>
78 #include <sys/clock_impl.h>
79 
80 /*
81  * clock() is called straight from the clock cyclic; see clock_init().
82  *
83  * Functions:
84  *	reprime clock
85  *	maintain date
86  *	jab the scheduler
87  */
88 
89 extern kcondvar_t	fsflush_cv;
90 extern sysinfo_t	sysinfo;
91 extern vminfo_t	vminfo;
92 extern int	idleswtch;	/* flag set while idle in pswtch() */
93 extern hrtime_t volatile devinfo_freeze;
94 
95 /*
96  * high-precision avenrun values.  These are needed to make the
97  * regular avenrun values accurate.
98  */
99 static uint64_t hp_avenrun[3];
100 int	avenrun[3];		/* FSCALED average run queue lengths */
101 time_t	time;	/* time in seconds since 1970 - for compatibility only */
102 
103 static struct loadavg_s loadavg;
104 /*
105  * Phase/frequency-lock loop (PLL/FLL) definitions
106  *
107  * The following variables are read and set by the ntp_adjtime() system
108  * call.
109  *
110  * time_state shows the state of the system clock, with values defined
111  * in the timex.h header file.
112  *
113  * time_status shows the status of the system clock, with bits defined
114  * in the timex.h header file.
115  *
116  * time_offset is used by the PLL/FLL to adjust the system time in small
117  * increments.
118  *
119  * time_constant determines the bandwidth or "stiffness" of the PLL.
120  *
121  * time_tolerance determines maximum frequency error or tolerance of the
122  * CPU clock oscillator and is a property of the architecture; however,
123  * in principle it could change as result of the presence of external
124  * discipline signals, for instance.
125  *
126  * time_precision is usually equal to the kernel tick variable; however,
127  * in cases where a precision clock counter or external clock is
128  * available, the resolution can be much less than this and depend on
129  * whether the external clock is working or not.
130  *
131  * time_maxerror is initialized by a ntp_adjtime() call and increased by
132  * the kernel once each second to reflect the maximum error bound
133  * growth.
134  *
135  * time_esterror is set and read by the ntp_adjtime() call, but
136  * otherwise not used by the kernel.
137  */
138 int32_t time_state = TIME_OK;	/* clock state */
139 int32_t time_status = STA_UNSYNC;	/* clock status bits */
140 int32_t time_offset = 0;		/* time offset (us) */
141 int32_t time_constant = 0;		/* pll time constant */
142 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
143 int32_t time_precision = 1;	/* clock precision (us) */
144 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
145 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
146 
147 /*
148  * The following variables establish the state of the PLL/FLL and the
149  * residual time and frequency offset of the local clock. The scale
150  * factors are defined in the timex.h header file.
151  *
152  * time_phase and time_freq are the phase increment and the frequency
153  * increment, respectively, of the kernel time variable.
154  *
155  * time_freq is set via ntp_adjtime() from a value stored in a file when
156  * the synchronization daemon is first started. Its value is retrieved
157  * via ntp_adjtime() and written to the file about once per hour by the
158  * daemon.
159  *
160  * time_adj is the adjustment added to the value of tick at each timer
161  * interrupt and is recomputed from time_phase and time_freq at each
162  * seconds rollover.
163  *
164  * time_reftime is the second's portion of the system time at the last
165  * call to ntp_adjtime(). It is used to adjust the time_freq variable
166  * and to increase the time_maxerror as the time since last update
167  * increases.
168  */
169 int32_t time_phase = 0;		/* phase offset (scaled us) */
170 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
171 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
172 int32_t time_reftime = 0;		/* time at last adjustment (s) */
173 
174 /*
175  * The scale factors of the following variables are defined in the
176  * timex.h header file.
177  *
178  * pps_time contains the time at each calibration interval, as read by
179  * microtime(). pps_count counts the seconds of the calibration
180  * interval, the duration of which is nominally pps_shift in powers of
181  * two.
182  *
183  * pps_offset is the time offset produced by the time median filter
184  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
185  * this filter.
186  *
187  * pps_freq is the frequency offset produced by the frequency median
188  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
189  * by this filter.
190  *
191  * pps_usec is latched from a high resolution counter or external clock
192  * at pps_time. Here we want the hardware counter contents only, not the
193  * contents plus the time_tv.usec as usual.
194  *
195  * pps_valid counts the number of seconds since the last PPS update. It
196  * is used as a watchdog timer to disable the PPS discipline should the
197  * PPS signal be lost.
198  *
199  * pps_glitch counts the number of seconds since the beginning of an
200  * offset burst more than tick/2 from current nominal offset. It is used
201  * mainly to suppress error bursts due to priority conflicts between the
202  * PPS interrupt and timer interrupt.
203  *
204  * pps_intcnt counts the calibration intervals for use in the interval-
205  * adaptation algorithm. It's just too complicated for words.
206  */
207 struct timeval pps_time;	/* kernel time at last interval */
208 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
209 int32_t pps_offset = 0;		/* pps time offset (us) */
210 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
211 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
212 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
213 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
214 int32_t pps_usec = 0;		/* microsec counter at last interval */
215 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
216 int32_t pps_glitch = 0;		/* pps signal glitch counter */
217 int32_t pps_count = 0;		/* calibration interval counter (s) */
218 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
219 int32_t pps_intcnt = 0;		/* intervals at current duration */
220 
221 /*
222  * PPS signal quality monitors
223  *
224  * pps_jitcnt counts the seconds that have been discarded because the
225  * jitter measured by the time median filter exceeds the limit MAXTIME
226  * (100 us).
227  *
228  * pps_calcnt counts the frequency calibration intervals, which are
229  * variable from 4 s to 256 s.
230  *
231  * pps_errcnt counts the calibration intervals which have been discarded
232  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
233  * calibration interval jitter exceeds two ticks.
234  *
235  * pps_stbcnt counts the calibration intervals that have been discarded
236  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
237  */
238 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
239 int32_t pps_calcnt = 0;		/* calibration intervals */
240 int32_t pps_errcnt = 0;		/* calibration errors */
241 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
242 
243 kcondvar_t lbolt_cv;
244 
245 /*
246  * Hybrid lbolt implementation:
247  *
248  * The service historically provided by the lbolt and lbolt64 variables has
249  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
250  * original symbols removed from the system. The once clock driven variables are
251  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
252  * the appropriate clock resolution. The default event driven implementation is
253  * complemented by a cyclic driven one, active only during periods of intense
254  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
255  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
256  * rely on the original low cost of consulting a memory position.
257  *
258  * The implementation uses the number of calls to these routines and the
259  * frequency of these to determine when to transition from event to cyclic
260  * driven and vice-versa. These values are kept on a per CPU basis for
261  * scalability reasons and to prevent CPUs from constantly invalidating a single
262  * cache line when modifying a global variable. The transition from event to
263  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
264  * can cause such transition.
265  *
266  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
267  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
268  * lbolt_cyclic_driven() according to the current mode. When the thresholds
269  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
270  * fire at a nsec_per_tick interval and increment an internal variable at
271  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
272  * will simply return the value of such variable. lbolt_cyclic() will attempt
273  * to shut itself off at each threshold interval (sampling period for calls
274  * to the DDI lbolt routines), and return to the event driven mode, but will
275  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
276  *
277  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
278  * for the cyclic subsystem to be intialized.
279  *
280  */
281 int64_t lbolt_bootstrap(void);
282 int64_t lbolt_event_driven(void);
283 int64_t lbolt_cyclic_driven(void);
284 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
285 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
286 
287 /*
288  * lbolt's cyclic, installed by clock_init().
289  */
290 static void lbolt_cyclic(void);
291 
292 /*
293  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
294  * from switching back to event driven, once it reaches cyclic mode.
295  */
296 static boolean_t lbolt_cyc_only = B_FALSE;
297 
298 /*
299  * Cache aligned, per CPU structure with lbolt usage statistics.
300  */
301 static lbolt_cpu_t *lb_cpu;
302 
303 /*
304  * Single, cache aligned, structure with all the information required by
305  * the lbolt implementation.
306  */
307 lbolt_info_t *lb_info;
308 
309 
310 int one_sec = 1; /* turned on once every second */
311 static int fsflushcnt;	/* counter for t_fsflushr */
312 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
313 int	tod_needsync = 0;	/* need to sync tod chip with software time */
314 static int tod_broken = 0;	/* clock chip doesn't work */
315 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
316 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
317 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
318 cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
319 
320 extern void	clock_tick_schedule(int);
321 
322 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
323 
324 /*
325  * for tod fault detection
326  */
327 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
328 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
329 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
330 #define	TOD_FILTER_N		4
331 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
332 static int tod_faulted = TOD_NOFAULT;
333 
334 static int tod_status_flag = 0;		/* used by tod_validate() */
335 
336 static hrtime_t prev_set_tick = 0;	/* gethrtime() prior to tod_set() */
337 static time_t prev_set_tod = 0;		/* tv_sec value passed to tod_set() */
338 
339 /* patchable via /etc/system */
340 int tod_validate_enable = 1;
341 
342 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
343 int			delay_from_interrupt_diagnose = 0;
344 volatile uint32_t	delay_from_interrupt_msg = 20;
345 
346 /*
347  * On non-SPARC systems, TOD validation must be deferred until gethrtime
348  * returns non-zero values (after mach_clkinit's execution).
349  * On SPARC systems, it must be deferred until after hrtime_base
350  * and hres_last_tick are set (in the first invocation of hres_tick).
351  * Since in both cases the prerequisites occur before the invocation of
352  * tod_get() in clock(), the deferment is lifted there.
353  */
354 static boolean_t tod_validate_deferred = B_TRUE;
355 
356 /*
357  * tod_fault_table[] must be aligned with
358  * enum tod_fault_type in systm.h
359  */
360 static char *tod_fault_table[] = {
361 	"Reversed",			/* TOD_REVERSED */
362 	"Stalled",			/* TOD_STALLED */
363 	"Jumped",			/* TOD_JUMPED */
364 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
365 	"Is Read-Only"			/* TOD_RDONLY */
366 	/*
367 	 * no strings needed for TOD_NOFAULT
368 	 */
369 };
370 
371 /*
372  * test hook for tod broken detection in tod_validate
373  */
374 int tod_unit_test = 0;
375 time_t tod_test_injector;
376 
377 #define	CLOCK_ADJ_HIST_SIZE	4
378 
379 static int	adj_hist_entry;
380 
381 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
382 
383 static void calcloadavg(int, uint64_t *);
384 static int genloadavg(struct loadavg_s *);
385 static void loadavg_update();
386 
387 void (*cmm_clock_callout)() = NULL;
388 void (*cpucaps_clock_callout)() = NULL;
389 
390 extern clock_t clock_tick_proc_max;
391 
392 static int64_t deadman_counter = 0;
393 
394 static void
395 clock(void)
396 {
397 	kthread_t	*t;
398 	uint_t	nrunnable;
399 	uint_t	w_io;
400 	cpu_t	*cp;
401 	cpupart_t *cpupart;
402 	extern void set_anoninfo();
403 	extern	void	set_freemem();
404 	void	(*funcp)();
405 	int32_t ltemp;
406 	int64_t lltemp;
407 	int s;
408 	int do_lgrp_load;
409 	int i;
410 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
411 
412 	if (panicstr)
413 		return;
414 
415 	set_anoninfo();
416 	/*
417 	 * Make sure that 'freemem' do not drift too far from the truth
418 	 */
419 	set_freemem();
420 
421 
422 	/*
423 	 * Before the section which is repeated is executed, we do
424 	 * the time delta processing which occurs every clock tick
425 	 *
426 	 * There is additional processing which happens every time
427 	 * the nanosecond counter rolls over which is described
428 	 * below - see the section which begins with : if (one_sec)
429 	 *
430 	 * This section marks the beginning of the precision-kernel
431 	 * code fragment.
432 	 *
433 	 * First, compute the phase adjustment. If the low-order bits
434 	 * (time_phase) of the update overflow, bump the higher order
435 	 * bits (time_update).
436 	 */
437 	time_phase += time_adj;
438 	if (time_phase <= -FINEUSEC) {
439 		ltemp = -time_phase / SCALE_PHASE;
440 		time_phase += ltemp * SCALE_PHASE;
441 		s = hr_clock_lock();
442 		timedelta -= ltemp * (NANOSEC/MICROSEC);
443 		hr_clock_unlock(s);
444 	} else if (time_phase >= FINEUSEC) {
445 		ltemp = time_phase / SCALE_PHASE;
446 		time_phase -= ltemp * SCALE_PHASE;
447 		s = hr_clock_lock();
448 		timedelta += ltemp * (NANOSEC/MICROSEC);
449 		hr_clock_unlock(s);
450 	}
451 
452 	/*
453 	 * End of precision-kernel code fragment which is processed
454 	 * every timer interrupt.
455 	 *
456 	 * Continue with the interrupt processing as scheduled.
457 	 */
458 	/*
459 	 * Count the number of runnable threads and the number waiting
460 	 * for some form of I/O to complete -- gets added to
461 	 * sysinfo.waiting.  To know the state of the system, must add
462 	 * wait counts from all CPUs.  Also add up the per-partition
463 	 * statistics.
464 	 */
465 	w_io = 0;
466 	nrunnable = 0;
467 
468 	/*
469 	 * keep track of when to update lgrp/part loads
470 	 */
471 
472 	do_lgrp_load = 0;
473 	if (lgrp_ticks++ >= hz / 10) {
474 		lgrp_ticks = 0;
475 		do_lgrp_load = 1;
476 	}
477 
478 	if (one_sec) {
479 		loadavg_update();
480 		deadman_counter++;
481 	}
482 
483 	/*
484 	 * First count the threads waiting on kpreempt queues in each
485 	 * CPU partition.
486 	 */
487 
488 	cpupart = cp_list_head;
489 	do {
490 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
491 
492 		cpupart->cp_updates++;
493 		nrunnable += cpupart_nrunnable;
494 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
495 		if (one_sec) {
496 			cpupart->cp_nrunning = 0;
497 			cpupart->cp_nrunnable = cpupart_nrunnable;
498 		}
499 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
500 
501 
502 	/* Now count the per-CPU statistics. */
503 	cp = cpu_list;
504 	do {
505 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
506 
507 		nrunnable += cpu_nrunnable;
508 		cpupart = cp->cpu_part;
509 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
510 		if (one_sec) {
511 			cpupart->cp_nrunnable += cpu_nrunnable;
512 			/*
513 			 * Update user, system, and idle cpu times.
514 			 */
515 			cpupart->cp_nrunning++;
516 			/*
517 			 * w_io is used to update sysinfo.waiting during
518 			 * one_second processing below.  Only gather w_io
519 			 * information when we walk the list of cpus if we're
520 			 * going to perform one_second processing.
521 			 */
522 			w_io += CPU_STATS(cp, sys.iowait);
523 		}
524 
525 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
526 			int i, load, change;
527 			hrtime_t intracct, intrused;
528 			const hrtime_t maxnsec = 1000000000;
529 			const int precision = 100;
530 
531 			/*
532 			 * Estimate interrupt load on this cpu each second.
533 			 * Computes cpu_intrload as %utilization (0-99).
534 			 */
535 
536 			/* add up interrupt time from all micro states */
537 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
538 				intracct += cp->cpu_intracct[i];
539 			scalehrtime(&intracct);
540 
541 			/* compute nsec used in the past second */
542 			intrused = intracct - cp->cpu_intrlast;
543 			cp->cpu_intrlast = intracct;
544 
545 			/* limit the value for safety (and the first pass) */
546 			if (intrused >= maxnsec)
547 				intrused = maxnsec - 1;
548 
549 			/* calculate %time in interrupt */
550 			load = (precision * intrused) / maxnsec;
551 			ASSERT(load >= 0 && load < precision);
552 			change = cp->cpu_intrload - load;
553 
554 			/* jump to new max, or decay the old max */
555 			if (change < 0)
556 				cp->cpu_intrload = load;
557 			else if (change > 0)
558 				cp->cpu_intrload -= (change + 3) / 4;
559 
560 			DTRACE_PROBE3(cpu_intrload,
561 			    cpu_t *, cp,
562 			    hrtime_t, intracct,
563 			    hrtime_t, intrused);
564 		}
565 
566 		if (do_lgrp_load &&
567 		    (cp->cpu_flags & CPU_EXISTS)) {
568 			/*
569 			 * When updating the lgroup's load average,
570 			 * account for the thread running on the CPU.
571 			 * If the CPU is the current one, then we need
572 			 * to account for the underlying thread which
573 			 * got the clock interrupt not the thread that is
574 			 * handling the interrupt and caculating the load
575 			 * average
576 			 */
577 			t = cp->cpu_thread;
578 			if (CPU == cp)
579 				t = t->t_intr;
580 
581 			/*
582 			 * Account for the load average for this thread if
583 			 * it isn't the idle thread or it is on the interrupt
584 			 * stack and not the current CPU handling the clock
585 			 * interrupt
586 			 */
587 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
588 			    CPU_ON_INTR(cp))) {
589 				if (t->t_lpl == cp->cpu_lpl) {
590 					/* local thread */
591 					cpu_nrunnable++;
592 				} else {
593 					/*
594 					 * This is a remote thread, charge it
595 					 * against its home lgroup.  Note that
596 					 * we notice that a thread is remote
597 					 * only if it's currently executing.
598 					 * This is a reasonable approximation,
599 					 * since queued remote threads are rare.
600 					 * Note also that if we didn't charge
601 					 * it to its home lgroup, remote
602 					 * execution would often make a system
603 					 * appear balanced even though it was
604 					 * not, and thread placement/migration
605 					 * would often not be done correctly.
606 					 */
607 					lgrp_loadavg(t->t_lpl,
608 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
609 				}
610 			}
611 			lgrp_loadavg(cp->cpu_lpl,
612 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
613 		}
614 	} while ((cp = cp->cpu_next) != cpu_list);
615 
616 	clock_tick_schedule(one_sec);
617 
618 	/*
619 	 * Check for a callout that needs be called from the clock
620 	 * thread to support the membership protocol in a clustered
621 	 * system.  Copy the function pointer so that we can reset
622 	 * this to NULL if needed.
623 	 */
624 	if ((funcp = cmm_clock_callout) != NULL)
625 		(*funcp)();
626 
627 	if ((funcp = cpucaps_clock_callout) != NULL)
628 		(*funcp)();
629 
630 	/*
631 	 * Wakeup the cageout thread waiters once per second.
632 	 */
633 	if (one_sec)
634 		kcage_tick();
635 
636 	if (one_sec) {
637 
638 		int drift, absdrift;
639 		timestruc_t tod;
640 		int s;
641 
642 		/*
643 		 * Beginning of precision-kernel code fragment executed
644 		 * every second.
645 		 *
646 		 * On rollover of the second the phase adjustment to be
647 		 * used for the next second is calculated.  Also, the
648 		 * maximum error is increased by the tolerance.  If the
649 		 * PPS frequency discipline code is present, the phase is
650 		 * increased to compensate for the CPU clock oscillator
651 		 * frequency error.
652 		 *
653 		 * On a 32-bit machine and given parameters in the timex.h
654 		 * header file, the maximum phase adjustment is +-512 ms
655 		 * and maximum frequency offset is (a tad less than)
656 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
657 		 */
658 		time_maxerror += time_tolerance / SCALE_USEC;
659 
660 		/*
661 		 * Leap second processing. If in leap-insert state at
662 		 * the end of the day, the system clock is set back one
663 		 * second; if in leap-delete state, the system clock is
664 		 * set ahead one second. The microtime() routine or
665 		 * external clock driver will insure that reported time
666 		 * is always monotonic. The ugly divides should be
667 		 * replaced.
668 		 */
669 		switch (time_state) {
670 
671 		case TIME_OK:
672 			if (time_status & STA_INS)
673 				time_state = TIME_INS;
674 			else if (time_status & STA_DEL)
675 				time_state = TIME_DEL;
676 			break;
677 
678 		case TIME_INS:
679 			if (hrestime.tv_sec % 86400 == 0) {
680 				s = hr_clock_lock();
681 				hrestime.tv_sec--;
682 				hr_clock_unlock(s);
683 				time_state = TIME_OOP;
684 			}
685 			break;
686 
687 		case TIME_DEL:
688 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
689 				s = hr_clock_lock();
690 				hrestime.tv_sec++;
691 				hr_clock_unlock(s);
692 				time_state = TIME_WAIT;
693 			}
694 			break;
695 
696 		case TIME_OOP:
697 			time_state = TIME_WAIT;
698 			break;
699 
700 		case TIME_WAIT:
701 			if (!(time_status & (STA_INS | STA_DEL)))
702 				time_state = TIME_OK;
703 		default:
704 			break;
705 		}
706 
707 		/*
708 		 * Compute the phase adjustment for the next second. In
709 		 * PLL mode, the offset is reduced by a fixed factor
710 		 * times the time constant. In FLL mode the offset is
711 		 * used directly. In either mode, the maximum phase
712 		 * adjustment for each second is clamped so as to spread
713 		 * the adjustment over not more than the number of
714 		 * seconds between updates.
715 		 */
716 		if (time_offset == 0)
717 			time_adj = 0;
718 		else if (time_offset < 0) {
719 			lltemp = -time_offset;
720 			if (!(time_status & STA_FLL)) {
721 				if ((1 << time_constant) >= SCALE_KG)
722 					lltemp *= (1 << time_constant) /
723 					    SCALE_KG;
724 				else
725 					lltemp = (lltemp / SCALE_KG) >>
726 					    time_constant;
727 			}
728 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
729 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
730 			time_offset += lltemp;
731 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
732 		} else {
733 			lltemp = time_offset;
734 			if (!(time_status & STA_FLL)) {
735 				if ((1 << time_constant) >= SCALE_KG)
736 					lltemp *= (1 << time_constant) /
737 					    SCALE_KG;
738 				else
739 					lltemp = (lltemp / SCALE_KG) >>
740 					    time_constant;
741 			}
742 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
743 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
744 			time_offset -= lltemp;
745 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
746 		}
747 
748 		/*
749 		 * Compute the frequency estimate and additional phase
750 		 * adjustment due to frequency error for the next
751 		 * second. When the PPS signal is engaged, gnaw on the
752 		 * watchdog counter and update the frequency computed by
753 		 * the pll and the PPS signal.
754 		 */
755 		pps_valid++;
756 		if (pps_valid == PPS_VALID) {
757 			pps_jitter = MAXTIME;
758 			pps_stabil = MAXFREQ;
759 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
760 			    STA_PPSWANDER | STA_PPSERROR);
761 		}
762 		lltemp = time_freq + pps_freq;
763 
764 		if (lltemp)
765 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
766 
767 		/*
768 		 * End of precision kernel-code fragment
769 		 *
770 		 * The section below should be modified if we are planning
771 		 * to use NTP for synchronization.
772 		 *
773 		 * Note: the clock synchronization code now assumes
774 		 * the following:
775 		 *   - if dosynctodr is 1, then compute the drift between
776 		 *	the tod chip and software time and adjust one or
777 		 *	the other depending on the circumstances
778 		 *
779 		 *   - if dosynctodr is 0, then the tod chip is independent
780 		 *	of the software clock and should not be adjusted,
781 		 *	but allowed to free run.  this allows NTP to sync.
782 		 *	hrestime without any interference from the tod chip.
783 		 */
784 
785 		tod_validate_deferred = B_FALSE;
786 		mutex_enter(&tod_lock);
787 		tod = tod_get();
788 		drift = tod.tv_sec - hrestime.tv_sec;
789 		absdrift = (drift >= 0) ? drift : -drift;
790 		if (tod_needsync || absdrift > 1) {
791 			int s;
792 			if (absdrift > 2) {
793 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
794 					s = hr_clock_lock();
795 					hrestime = tod;
796 					membar_enter();	/* hrestime visible */
797 					timedelta = 0;
798 					timechanged++;
799 					tod_needsync = 0;
800 					hr_clock_unlock(s);
801 					callout_hrestime();
802 
803 				}
804 			} else {
805 				if (tod_needsync || !dosynctodr) {
806 					gethrestime(&tod);
807 					tod_set(tod);
808 					s = hr_clock_lock();
809 					if (timedelta == 0)
810 						tod_needsync = 0;
811 					hr_clock_unlock(s);
812 				} else {
813 					/*
814 					 * If the drift is 2 seconds on the
815 					 * money, then the TOD is adjusting
816 					 * the clock;  record that.
817 					 */
818 					clock_adj_hist[adj_hist_entry++ %
819 					    CLOCK_ADJ_HIST_SIZE] = now;
820 					s = hr_clock_lock();
821 					timedelta = (int64_t)drift*NANOSEC;
822 					hr_clock_unlock(s);
823 				}
824 			}
825 		}
826 		one_sec = 0;
827 		time = gethrestime_sec();  /* for crusty old kmem readers */
828 		mutex_exit(&tod_lock);
829 
830 		/*
831 		 * Some drivers still depend on this... XXX
832 		 */
833 		cv_broadcast(&lbolt_cv);
834 
835 		vminfo.freemem += freemem;
836 		{
837 			pgcnt_t maxswap, resv, free;
838 			pgcnt_t avail =
839 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
840 
841 			maxswap = k_anoninfo.ani_mem_resv +
842 			    k_anoninfo.ani_max +avail;
843 			free = k_anoninfo.ani_free + avail;
844 			resv = k_anoninfo.ani_phys_resv +
845 			    k_anoninfo.ani_mem_resv;
846 
847 			vminfo.swap_resv += resv;
848 			/* number of reserved and allocated pages */
849 #ifdef	DEBUG
850 			if (maxswap < free)
851 				cmn_err(CE_WARN, "clock: maxswap < free");
852 			if (maxswap < resv)
853 				cmn_err(CE_WARN, "clock: maxswap < resv");
854 #endif
855 			vminfo.swap_alloc += maxswap - free;
856 			vminfo.swap_avail += maxswap - resv;
857 			vminfo.swap_free += free;
858 		}
859 		vminfo.updates++;
860 		if (nrunnable) {
861 			sysinfo.runque += nrunnable;
862 			sysinfo.runocc++;
863 		}
864 		if (nswapped) {
865 			sysinfo.swpque += nswapped;
866 			sysinfo.swpocc++;
867 		}
868 		sysinfo.waiting += w_io;
869 		sysinfo.updates++;
870 
871 		/*
872 		 * Wake up fsflush to write out DELWRI
873 		 * buffers, dirty pages and other cached
874 		 * administrative data, e.g. inodes.
875 		 */
876 		if (--fsflushcnt <= 0) {
877 			fsflushcnt = tune.t_fsflushr;
878 			cv_signal(&fsflush_cv);
879 		}
880 
881 		vmmeter();
882 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
883 		for (i = 0; i < 3; i++)
884 			/*
885 			 * At the moment avenrun[] can only hold 31
886 			 * bits of load average as it is a signed
887 			 * int in the API. We need to ensure that
888 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
889 			 * too large. If it is, we put the largest value
890 			 * that we can use into avenrun[i]. This is
891 			 * kludgey, but about all we can do until we
892 			 * avenrun[] is declared as an array of uint64[]
893 			 */
894 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
895 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
896 				    (16 - FSHIFT));
897 			else
898 				avenrun[i] = 0x7fffffff;
899 
900 		cpupart = cp_list_head;
901 		do {
902 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
903 			    cpupart->cp_hp_avenrun);
904 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
905 
906 		/*
907 		 * Wake up the swapper thread if necessary.
908 		 */
909 		if (runin ||
910 		    (runout && (avefree < desfree || wake_sched_sec))) {
911 			t = &t0;
912 			thread_lock(t);
913 			if (t->t_state == TS_STOPPED) {
914 				runin = runout = 0;
915 				wake_sched_sec = 0;
916 				t->t_whystop = 0;
917 				t->t_whatstop = 0;
918 				t->t_schedflag &= ~TS_ALLSTART;
919 				THREAD_TRANSITION(t);
920 				setfrontdq(t);
921 			}
922 			thread_unlock(t);
923 		}
924 	}
925 
926 	/*
927 	 * Wake up the swapper if any high priority swapped-out threads
928 	 * became runable during the last tick.
929 	 */
930 	if (wake_sched) {
931 		t = &t0;
932 		thread_lock(t);
933 		if (t->t_state == TS_STOPPED) {
934 			runin = runout = 0;
935 			wake_sched = 0;
936 			t->t_whystop = 0;
937 			t->t_whatstop = 0;
938 			t->t_schedflag &= ~TS_ALLSTART;
939 			THREAD_TRANSITION(t);
940 			setfrontdq(t);
941 		}
942 		thread_unlock(t);
943 	}
944 }
945 
946 void
947 clock_init(void)
948 {
949 	cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
950 	cyc_time_t clk_when, lbolt_when;
951 	int i, sz;
952 	intptr_t buf;
953 
954 	/*
955 	 * Setup handler and timer for the clock cyclic.
956 	 */
957 	clk_hdlr.cyh_func = (cyc_func_t)clock;
958 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
959 	clk_hdlr.cyh_arg = NULL;
960 
961 	clk_when.cyt_when = 0;
962 	clk_when.cyt_interval = nsec_per_tick;
963 
964 	/*
965 	 * cyclic_timer is dedicated to the ddi interface, which
966 	 * uses the same clock resolution as the system one.
967 	 */
968 	timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
969 	timer_hdlr.cyh_level = CY_LOCK_LEVEL;
970 	timer_hdlr.cyh_arg = NULL;
971 
972 	/*
973 	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
974 	 * interval to satisfy performance needs of the DDI lbolt consumers.
975 	 * It is off by default.
976 	 */
977 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
978 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
979 	lbolt_hdlr.cyh_arg = NULL;
980 
981 	lbolt_when.cyt_interval = nsec_per_tick;
982 
983 	/*
984 	 * Allocate cache line aligned space for the per CPU lbolt data and
985 	 * lbolt info structures, and initialize them with their default
986 	 * values. Note that these structures are also cache line sized.
987 	 */
988 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
989 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
990 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
991 
992 	if (hz != HZ_DEFAULT)
993 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
994 		    hz/HZ_DEFAULT;
995 	else
996 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
997 
998 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
999 
1000 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
1001 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
1002 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
1003 
1004 	for (i = 0; i < max_ncpus; i++)
1005 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1006 
1007 	/*
1008 	 * Install the softint used to switch between event and cyclic driven
1009 	 * lbolt. We use a soft interrupt to make sure the context of the
1010 	 * cyclic reprogram call is safe.
1011 	 */
1012 	lbolt_softint_add();
1013 
1014 	/*
1015 	 * Since the hybrid lbolt implementation is based on a hardware counter
1016 	 * that is reset at every hardware reboot and that we'd like to have
1017 	 * the lbolt value starting at zero after both a hardware and a fast
1018 	 * reboot, we calculate the number of clock ticks the system's been up
1019 	 * and store it in the lbi_debug_time field of the lbolt info structure.
1020 	 * The value of this field will be subtracted from lbolt before
1021 	 * returning it.
1022 	 */
1023 	lb_info->lbi_internal = lb_info->lbi_debug_time =
1024 	    (gethrtime()/nsec_per_tick);
1025 
1026 	/*
1027 	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1028 	 * and lbolt_debug_{enter,return} use this value as an indication that
1029 	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1030 	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1031 	 * that the lbolt related structures can be used.
1032 	 */
1033 	if (lbolt_cyc_only) {
1034 		lbolt_when.cyt_when = 0;
1035 		lbolt_hybrid = lbolt_cyclic_driven;
1036 	} else {
1037 		lbolt_when.cyt_when = CY_INFINITY;
1038 		lbolt_hybrid = lbolt_event_driven;
1039 	}
1040 
1041 	/*
1042 	 * Grab cpu_lock and install all three cyclics.
1043 	 */
1044 	mutex_enter(&cpu_lock);
1045 
1046 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1047 	ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
1048 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1049 
1050 	mutex_exit(&cpu_lock);
1051 }
1052 
1053 /*
1054  * Called before calcloadavg to get 10-sec moving loadavg together
1055  */
1056 
1057 static int
1058 genloadavg(struct loadavg_s *avgs)
1059 {
1060 	int avg;
1061 	int spos; /* starting position */
1062 	int cpos; /* moving current position */
1063 	int i;
1064 	int slen;
1065 	hrtime_t hr_avg;
1066 
1067 	/* 10-second snapshot, calculate first positon */
1068 	if (avgs->lg_len == 0) {
1069 		return (0);
1070 	}
1071 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1072 
1073 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1074 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1075 	for (i = hr_avg = 0; i < slen; i++) {
1076 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1077 		hr_avg += avgs->lg_loads[cpos];
1078 	}
1079 
1080 	hr_avg = hr_avg / slen;
1081 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1082 
1083 	return (avg);
1084 }
1085 
1086 /*
1087  * Run every second from clock () to update the loadavg count available to the
1088  * system and cpu-partitions.
1089  *
1090  * This works by sampling the previous usr, sys, wait time elapsed,
1091  * computing a delta, and adding that delta to the elapsed usr, sys,
1092  * wait increase.
1093  */
1094 
1095 static void
1096 loadavg_update()
1097 {
1098 	cpu_t *cp;
1099 	cpupart_t *cpupart;
1100 	hrtime_t cpu_total;
1101 	int prev;
1102 
1103 	cp = cpu_list;
1104 	loadavg.lg_total = 0;
1105 
1106 	/*
1107 	 * first pass totals up per-cpu statistics for system and cpu
1108 	 * partitions
1109 	 */
1110 
1111 	do {
1112 		struct loadavg_s *lavg;
1113 
1114 		lavg = &cp->cpu_loadavg;
1115 
1116 		cpu_total = cp->cpu_acct[CMS_USER] +
1117 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1118 		/* compute delta against last total */
1119 		scalehrtime(&cpu_total);
1120 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1121 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1122 		if (lavg->lg_loads[prev] <= 0) {
1123 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1124 			cpu_total = 0;
1125 		} else {
1126 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1127 			cpu_total = cpu_total - lavg->lg_loads[prev];
1128 			if (cpu_total < 0)
1129 				cpu_total = 0;
1130 		}
1131 
1132 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1133 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1134 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1135 
1136 		loadavg.lg_total += cpu_total;
1137 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1138 
1139 	} while ((cp = cp->cpu_next) != cpu_list);
1140 
1141 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1142 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1143 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1144 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1145 	/*
1146 	 * Second pass updates counts
1147 	 */
1148 	cpupart = cp_list_head;
1149 
1150 	do {
1151 		struct loadavg_s *lavg;
1152 
1153 		lavg = &cpupart->cp_loadavg;
1154 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1155 		lavg->lg_total = 0;
1156 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1157 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1158 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1159 
1160 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1161 
1162 }
1163 
1164 /*
1165  * clock_update() - local clock update
1166  *
1167  * This routine is called by ntp_adjtime() to update the local clock
1168  * phase and frequency. The implementation is of an
1169  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1170  * routine computes new time and frequency offset estimates for each
1171  * call.  The PPS signal itself determines the new time offset,
1172  * instead of the calling argument.  Presumably, calls to
1173  * ntp_adjtime() occur only when the caller believes the local clock
1174  * is valid within some bound (+-128 ms with NTP). If the caller's
1175  * time is far different than the PPS time, an argument will ensue,
1176  * and it's not clear who will lose.
1177  *
1178  * For uncompensated quartz crystal oscillatores and nominal update
1179  * intervals less than 1024 s, operation should be in phase-lock mode
1180  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1181  * intervals greater than this, operation should be in frequency-lock
1182  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1183  *
1184  * Note: mutex(&tod_lock) is in effect.
1185  */
1186 void
1187 clock_update(int offset)
1188 {
1189 	int ltemp, mtemp, s;
1190 
1191 	ASSERT(MUTEX_HELD(&tod_lock));
1192 
1193 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1194 		return;
1195 	ltemp = offset;
1196 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1197 		ltemp = pps_offset;
1198 
1199 	/*
1200 	 * Scale the phase adjustment and clamp to the operating range.
1201 	 */
1202 	if (ltemp > MAXPHASE)
1203 		time_offset = MAXPHASE * SCALE_UPDATE;
1204 	else if (ltemp < -MAXPHASE)
1205 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1206 	else
1207 		time_offset = ltemp * SCALE_UPDATE;
1208 
1209 	/*
1210 	 * Select whether the frequency is to be controlled and in which
1211 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1212 	 * multiply/divide should be replaced someday.
1213 	 */
1214 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1215 		time_reftime = hrestime.tv_sec;
1216 
1217 	mtemp = hrestime.tv_sec - time_reftime;
1218 	time_reftime = hrestime.tv_sec;
1219 
1220 	if (time_status & STA_FLL) {
1221 		if (mtemp >= MINSEC) {
1222 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1223 			    SCALE_UPDATE));
1224 			if (ltemp)
1225 				time_freq += ltemp / SCALE_KH;
1226 		}
1227 	} else {
1228 		if (mtemp < MAXSEC) {
1229 			ltemp *= mtemp;
1230 			if (ltemp)
1231 				time_freq += (int)(((int64_t)ltemp *
1232 				    SCALE_USEC) / SCALE_KF)
1233 				    / (1 << (time_constant * 2));
1234 		}
1235 	}
1236 	if (time_freq > time_tolerance)
1237 		time_freq = time_tolerance;
1238 	else if (time_freq < -time_tolerance)
1239 		time_freq = -time_tolerance;
1240 
1241 	s = hr_clock_lock();
1242 	tod_needsync = 1;
1243 	hr_clock_unlock(s);
1244 }
1245 
1246 /*
1247  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1248  *
1249  * This routine is called at each PPS interrupt in order to discipline
1250  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1251  * and leaves it in a handy spot for the clock() routine. It
1252  * integrates successive PPS phase differences and calculates the
1253  * frequency offset. This is used in clock() to discipline the CPU
1254  * clock oscillator so that intrinsic frequency error is cancelled out.
1255  * The code requires the caller to capture the time and hardware counter
1256  * value at the on-time PPS signal transition.
1257  *
1258  * Note that, on some Unix systems, this routine runs at an interrupt
1259  * priority level higher than the timer interrupt routine clock().
1260  * Therefore, the variables used are distinct from the clock()
1261  * variables, except for certain exceptions: The PPS frequency pps_freq
1262  * and phase pps_offset variables are determined by this routine and
1263  * updated atomically. The time_tolerance variable can be considered a
1264  * constant, since it is infrequently changed, and then only when the
1265  * PPS signal is disabled. The watchdog counter pps_valid is updated
1266  * once per second by clock() and is atomically cleared in this
1267  * routine.
1268  *
1269  * tvp is the time of the last tick; usec is a microsecond count since the
1270  * last tick.
1271  *
1272  * Note: In Solaris systems, the tick value is actually given by
1273  *       usec_per_tick.  This is called from the serial driver cdintr(),
1274  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1275  *	 highresolution time, the following code can accept either
1276  *	 the traditional argument pair, or the current highres timestamp
1277  *       in tvp and zero in usec.
1278  */
1279 void
1280 ddi_hardpps(struct timeval *tvp, int usec)
1281 {
1282 	int u_usec, v_usec, bigtick;
1283 	time_t cal_sec;
1284 	int cal_usec;
1285 
1286 	/*
1287 	 * An occasional glitch can be produced when the PPS interrupt
1288 	 * occurs in the clock() routine before the time variable is
1289 	 * updated. Here the offset is discarded when the difference
1290 	 * between it and the last one is greater than tick/2, but not
1291 	 * if the interval since the first discard exceeds 30 s.
1292 	 */
1293 	time_status |= STA_PPSSIGNAL;
1294 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1295 	pps_valid = 0;
1296 	u_usec = -tvp->tv_usec;
1297 	if (u_usec < -(MICROSEC/2))
1298 		u_usec += MICROSEC;
1299 	v_usec = pps_offset - u_usec;
1300 	if (v_usec < 0)
1301 		v_usec = -v_usec;
1302 	if (v_usec > (usec_per_tick >> 1)) {
1303 		if (pps_glitch > MAXGLITCH) {
1304 			pps_glitch = 0;
1305 			pps_tf[2] = u_usec;
1306 			pps_tf[1] = u_usec;
1307 		} else {
1308 			pps_glitch++;
1309 			u_usec = pps_offset;
1310 		}
1311 	} else
1312 		pps_glitch = 0;
1313 
1314 	/*
1315 	 * A three-stage median filter is used to help deglitch the pps
1316 	 * time. The median sample becomes the time offset estimate; the
1317 	 * difference between the other two samples becomes the time
1318 	 * dispersion (jitter) estimate.
1319 	 */
1320 	pps_tf[2] = pps_tf[1];
1321 	pps_tf[1] = pps_tf[0];
1322 	pps_tf[0] = u_usec;
1323 	if (pps_tf[0] > pps_tf[1]) {
1324 		if (pps_tf[1] > pps_tf[2]) {
1325 			pps_offset = pps_tf[1];		/* 0 1 2 */
1326 			v_usec = pps_tf[0] - pps_tf[2];
1327 		} else if (pps_tf[2] > pps_tf[0]) {
1328 			pps_offset = pps_tf[0];		/* 2 0 1 */
1329 			v_usec = pps_tf[2] - pps_tf[1];
1330 		} else {
1331 			pps_offset = pps_tf[2];		/* 0 2 1 */
1332 			v_usec = pps_tf[0] - pps_tf[1];
1333 		}
1334 	} else {
1335 		if (pps_tf[1] < pps_tf[2]) {
1336 			pps_offset = pps_tf[1];		/* 2 1 0 */
1337 			v_usec = pps_tf[2] - pps_tf[0];
1338 		} else  if (pps_tf[2] < pps_tf[0]) {
1339 			pps_offset = pps_tf[0];		/* 1 0 2 */
1340 			v_usec = pps_tf[1] - pps_tf[2];
1341 		} else {
1342 			pps_offset = pps_tf[2];		/* 1 2 0 */
1343 			v_usec = pps_tf[1] - pps_tf[0];
1344 		}
1345 	}
1346 	if (v_usec > MAXTIME)
1347 		pps_jitcnt++;
1348 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1349 	pps_jitter += v_usec / (1 << PPS_AVG);
1350 	if (pps_jitter > (MAXTIME >> 1))
1351 		time_status |= STA_PPSJITTER;
1352 
1353 	/*
1354 	 * During the calibration interval adjust the starting time when
1355 	 * the tick overflows. At the end of the interval compute the
1356 	 * duration of the interval and the difference of the hardware
1357 	 * counters at the beginning and end of the interval. This code
1358 	 * is deliciously complicated by the fact valid differences may
1359 	 * exceed the value of tick when using long calibration
1360 	 * intervals and small ticks. Note that the counter can be
1361 	 * greater than tick if caught at just the wrong instant, but
1362 	 * the values returned and used here are correct.
1363 	 */
1364 	bigtick = (int)usec_per_tick * SCALE_USEC;
1365 	pps_usec -= pps_freq;
1366 	if (pps_usec >= bigtick)
1367 		pps_usec -= bigtick;
1368 	if (pps_usec < 0)
1369 		pps_usec += bigtick;
1370 	pps_time.tv_sec++;
1371 	pps_count++;
1372 	if (pps_count < (1 << pps_shift))
1373 		return;
1374 	pps_count = 0;
1375 	pps_calcnt++;
1376 	u_usec = usec * SCALE_USEC;
1377 	v_usec = pps_usec - u_usec;
1378 	if (v_usec >= bigtick >> 1)
1379 		v_usec -= bigtick;
1380 	if (v_usec < -(bigtick >> 1))
1381 		v_usec += bigtick;
1382 	if (v_usec < 0)
1383 		v_usec = -(-v_usec >> pps_shift);
1384 	else
1385 		v_usec = v_usec >> pps_shift;
1386 	pps_usec = u_usec;
1387 	cal_sec = tvp->tv_sec;
1388 	cal_usec = tvp->tv_usec;
1389 	cal_sec -= pps_time.tv_sec;
1390 	cal_usec -= pps_time.tv_usec;
1391 	if (cal_usec < 0) {
1392 		cal_usec += MICROSEC;
1393 		cal_sec--;
1394 	}
1395 	pps_time = *tvp;
1396 
1397 	/*
1398 	 * Check for lost interrupts, noise, excessive jitter and
1399 	 * excessive frequency error. The number of timer ticks during
1400 	 * the interval may vary +-1 tick. Add to this a margin of one
1401 	 * tick for the PPS signal jitter and maximum frequency
1402 	 * deviation. If the limits are exceeded, the calibration
1403 	 * interval is reset to the minimum and we start over.
1404 	 */
1405 	u_usec = (int)usec_per_tick << 1;
1406 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1407 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1408 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1409 		pps_errcnt++;
1410 		pps_shift = PPS_SHIFT;
1411 		pps_intcnt = 0;
1412 		time_status |= STA_PPSERROR;
1413 		return;
1414 	}
1415 
1416 	/*
1417 	 * A three-stage median filter is used to help deglitch the pps
1418 	 * frequency. The median sample becomes the frequency offset
1419 	 * estimate; the difference between the other two samples
1420 	 * becomes the frequency dispersion (stability) estimate.
1421 	 */
1422 	pps_ff[2] = pps_ff[1];
1423 	pps_ff[1] = pps_ff[0];
1424 	pps_ff[0] = v_usec;
1425 	if (pps_ff[0] > pps_ff[1]) {
1426 		if (pps_ff[1] > pps_ff[2]) {
1427 			u_usec = pps_ff[1];		/* 0 1 2 */
1428 			v_usec = pps_ff[0] - pps_ff[2];
1429 		} else if (pps_ff[2] > pps_ff[0]) {
1430 			u_usec = pps_ff[0];		/* 2 0 1 */
1431 			v_usec = pps_ff[2] - pps_ff[1];
1432 		} else {
1433 			u_usec = pps_ff[2];		/* 0 2 1 */
1434 			v_usec = pps_ff[0] - pps_ff[1];
1435 		}
1436 	} else {
1437 		if (pps_ff[1] < pps_ff[2]) {
1438 			u_usec = pps_ff[1];		/* 2 1 0 */
1439 			v_usec = pps_ff[2] - pps_ff[0];
1440 		} else  if (pps_ff[2] < pps_ff[0]) {
1441 			u_usec = pps_ff[0];		/* 1 0 2 */
1442 			v_usec = pps_ff[1] - pps_ff[2];
1443 		} else {
1444 			u_usec = pps_ff[2];		/* 1 2 0 */
1445 			v_usec = pps_ff[1] - pps_ff[0];
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Here the frequency dispersion (stability) is updated. If it
1451 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1452 	 * offset is updated as well, but clamped to the tolerance. It
1453 	 * will be processed later by the clock() routine.
1454 	 */
1455 	v_usec = (v_usec >> 1) - pps_stabil;
1456 	if (v_usec < 0)
1457 		pps_stabil -= -v_usec >> PPS_AVG;
1458 	else
1459 		pps_stabil += v_usec >> PPS_AVG;
1460 	if (pps_stabil > MAXFREQ >> 2) {
1461 		pps_stbcnt++;
1462 		time_status |= STA_PPSWANDER;
1463 		return;
1464 	}
1465 	if (time_status & STA_PPSFREQ) {
1466 		if (u_usec < 0) {
1467 			pps_freq -= -u_usec >> PPS_AVG;
1468 			if (pps_freq < -time_tolerance)
1469 				pps_freq = -time_tolerance;
1470 			u_usec = -u_usec;
1471 		} else {
1472 			pps_freq += u_usec >> PPS_AVG;
1473 			if (pps_freq > time_tolerance)
1474 				pps_freq = time_tolerance;
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * Here the calibration interval is adjusted. If the maximum
1480 	 * time difference is greater than tick / 4, reduce the interval
1481 	 * by half. If this is not the case for four consecutive
1482 	 * intervals, double the interval.
1483 	 */
1484 	if (u_usec << pps_shift > bigtick >> 2) {
1485 		pps_intcnt = 0;
1486 		if (pps_shift > PPS_SHIFT)
1487 			pps_shift--;
1488 	} else if (pps_intcnt >= 4) {
1489 		pps_intcnt = 0;
1490 		if (pps_shift < PPS_SHIFTMAX)
1491 			pps_shift++;
1492 	} else
1493 		pps_intcnt++;
1494 
1495 	/*
1496 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1497 	 * If we took an early exit above, then we don't yet have a stable
1498 	 * calibration signal to lock onto, so don't mark the tod for sync
1499 	 * until we get all the way here.
1500 	 */
1501 	{
1502 		int s = hr_clock_lock();
1503 
1504 		tod_needsync = 1;
1505 		hr_clock_unlock(s);
1506 	}
1507 }
1508 
1509 /*
1510  * Handle clock tick processing for a thread.
1511  * Check for timer action, enforce CPU rlimit, do profiling etc.
1512  */
1513 void
1514 clock_tick(kthread_t *t, int pending)
1515 {
1516 	struct proc *pp;
1517 	klwp_id_t    lwp;
1518 	struct as *as;
1519 	clock_t	ticks;
1520 	int	poke = 0;		/* notify another CPU */
1521 	int	user_mode;
1522 	size_t	 rss;
1523 	int i, total_usec, usec;
1524 	rctl_qty_t secs;
1525 
1526 	ASSERT(pending > 0);
1527 
1528 	/* Must be operating on a lwp/thread */
1529 	if ((lwp = ttolwp(t)) == NULL) {
1530 		panic("clock_tick: no lwp");
1531 		/*NOTREACHED*/
1532 	}
1533 
1534 	for (i = 0; i < pending; i++) {
1535 		CL_TICK(t);	/* Class specific tick processing */
1536 		DTRACE_SCHED1(tick, kthread_t *, t);
1537 	}
1538 
1539 	pp = ttoproc(t);
1540 
1541 	/* pp->p_lock makes sure that the thread does not exit */
1542 	ASSERT(MUTEX_HELD(&pp->p_lock));
1543 
1544 	user_mode = (lwp->lwp_state == LWP_USER);
1545 
1546 	ticks = (pp->p_utime + pp->p_stime) % hz;
1547 	/*
1548 	 * Update process times. Should use high res clock and state
1549 	 * changes instead of statistical sampling method. XXX
1550 	 */
1551 	if (user_mode) {
1552 		pp->p_utime += pending;
1553 	} else {
1554 		pp->p_stime += pending;
1555 	}
1556 
1557 	pp->p_ttime += pending;
1558 	as = pp->p_as;
1559 
1560 	/*
1561 	 * Update user profiling statistics. Get the pc from the
1562 	 * lwp when the AST happens.
1563 	 */
1564 	if (pp->p_prof.pr_scale) {
1565 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1566 		if (user_mode) {
1567 			poke = 1;
1568 			aston(t);
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * If CPU was in user state, process lwp-virtual time
1574 	 * interval timer. The value passed to itimerdecr() has to be
1575 	 * in microseconds and has to be less than one second. Hence
1576 	 * this loop.
1577 	 */
1578 	total_usec = usec_per_tick * pending;
1579 	while (total_usec > 0) {
1580 		usec = MIN(total_usec, (MICROSEC - 1));
1581 		if (user_mode &&
1582 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1583 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1584 			poke = 1;
1585 			sigtoproc(pp, t, SIGVTALRM);
1586 		}
1587 		total_usec -= usec;
1588 	}
1589 
1590 	/*
1591 	 * If CPU was in user state, process lwp-profile
1592 	 * interval timer.
1593 	 */
1594 	total_usec = usec_per_tick * pending;
1595 	while (total_usec > 0) {
1596 		usec = MIN(total_usec, (MICROSEC - 1));
1597 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1598 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1599 			poke = 1;
1600 			sigtoproc(pp, t, SIGPROF);
1601 		}
1602 		total_usec -= usec;
1603 	}
1604 
1605 	/*
1606 	 * Enforce CPU resource controls:
1607 	 *   (a) process.max-cpu-time resource control
1608 	 *
1609 	 * Perform the check only if we have accumulated more a second.
1610 	 */
1611 	if ((ticks + pending) >= hz) {
1612 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1613 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1614 	}
1615 
1616 	/*
1617 	 *   (b) task.max-cpu-time resource control
1618 	 *
1619 	 * If we have accumulated enough ticks, increment the task CPU
1620 	 * time usage and test for the resource limit. This minimizes the
1621 	 * number of calls to the rct_test(). The task CPU time mutex
1622 	 * is highly contentious as many processes can be sharing a task.
1623 	 */
1624 	if (pp->p_ttime >= clock_tick_proc_max) {
1625 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1626 		pp->p_ttime = 0;
1627 		if (secs) {
1628 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1629 			    pp, secs, RCA_UNSAFE_SIGINFO);
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * Update memory usage for the currently running process.
1635 	 */
1636 	rss = rm_asrss(as);
1637 	PTOU(pp)->u_mem += rss;
1638 	if (rss > PTOU(pp)->u_mem_max)
1639 		PTOU(pp)->u_mem_max = rss;
1640 
1641 	/*
1642 	 * Notify the CPU the thread is running on.
1643 	 */
1644 	if (poke && t->t_cpu != CPU)
1645 		poke_cpu(t->t_cpu->cpu_id);
1646 }
1647 
1648 void
1649 profil_tick(uintptr_t upc)
1650 {
1651 	int ticks;
1652 	proc_t *p = ttoproc(curthread);
1653 	klwp_t *lwp = ttolwp(curthread);
1654 	struct prof *pr = &p->p_prof;
1655 
1656 	do {
1657 		ticks = lwp->lwp_oweupc;
1658 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1659 
1660 	mutex_enter(&p->p_pflock);
1661 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1662 		/*
1663 		 * Old-style profiling
1664 		 */
1665 		uint16_t *slot = pr->pr_base;
1666 		uint16_t old, new;
1667 		if (pr->pr_scale != 2) {
1668 			uintptr_t delta = upc - pr->pr_off;
1669 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1670 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1671 			if (byteoff >= (uintptr_t)pr->pr_size) {
1672 				mutex_exit(&p->p_pflock);
1673 				return;
1674 			}
1675 			slot += byteoff / sizeof (uint16_t);
1676 		}
1677 		if (fuword16(slot, &old) < 0 ||
1678 		    (new = old + ticks) > SHRT_MAX ||
1679 		    suword16(slot, new) < 0) {
1680 			pr->pr_scale = 0;
1681 		}
1682 	} else if (pr->pr_scale == 1) {
1683 		/*
1684 		 * PC Sampling
1685 		 */
1686 		model_t model = lwp_getdatamodel(lwp);
1687 		int result;
1688 #ifdef __lint
1689 		model = model;
1690 #endif
1691 		while (ticks-- > 0) {
1692 			if (pr->pr_samples == pr->pr_size) {
1693 				/* buffer full, turn off sampling */
1694 				pr->pr_scale = 0;
1695 				break;
1696 			}
1697 			switch (SIZEOF_PTR(model)) {
1698 			case sizeof (uint32_t):
1699 				result = suword32(pr->pr_base, (uint32_t)upc);
1700 				break;
1701 #ifdef _LP64
1702 			case sizeof (uint64_t):
1703 				result = suword64(pr->pr_base, (uint64_t)upc);
1704 				break;
1705 #endif
1706 			default:
1707 				cmn_err(CE_WARN, "profil_tick: unexpected "
1708 				    "data model");
1709 				result = -1;
1710 				break;
1711 			}
1712 			if (result != 0) {
1713 				pr->pr_scale = 0;
1714 				break;
1715 			}
1716 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1717 			pr->pr_samples++;
1718 		}
1719 	}
1720 	mutex_exit(&p->p_pflock);
1721 }
1722 
1723 static void
1724 delay_wakeup(void *arg)
1725 {
1726 	kthread_t	*t = arg;
1727 
1728 	mutex_enter(&t->t_delay_lock);
1729 	cv_signal(&t->t_delay_cv);
1730 	mutex_exit(&t->t_delay_lock);
1731 }
1732 
1733 /*
1734  * The delay(9F) man page indicates that it can only be called from user or
1735  * kernel context - detect and diagnose bad calls. The following macro will
1736  * produce a limited number of messages identifying bad callers.  This is done
1737  * in a macro so that caller() is meaningful. When a bad caller is identified,
1738  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1739  */
1740 #define	DELAY_CONTEXT_CHECK()	{					\
1741 	uint32_t	m;						\
1742 	char		*f;						\
1743 	ulong_t		off;						\
1744 									\
1745 	m = delay_from_interrupt_msg;					\
1746 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1747 	    !panicstr && !devinfo_freeze &&				\
1748 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1749 		f = modgetsymname((uintptr_t)caller(), &off);		\
1750 		cmn_err(CE_WARN, "delay(9F) called from "		\
1751 		    "interrupt context: %s`%s",				\
1752 		    mod_containing_pc(caller()), f ? f : "...");	\
1753 	}								\
1754 }
1755 
1756 /*
1757  * delay_common: common delay code.
1758  */
1759 static void
1760 delay_common(clock_t ticks)
1761 {
1762 	kthread_t	*t = curthread;
1763 	clock_t		deadline;
1764 	clock_t		timeleft;
1765 	callout_id_t	id;
1766 
1767 	/* If timeouts aren't running all we can do is spin. */
1768 	if (panicstr || devinfo_freeze) {
1769 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1770 		if (ticks > 0)
1771 			drv_usecwait(TICK_TO_USEC(ticks));
1772 		return;
1773 	}
1774 
1775 	deadline = ddi_get_lbolt() + ticks;
1776 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1777 		mutex_enter(&t->t_delay_lock);
1778 		id = timeout_default(delay_wakeup, t, timeleft);
1779 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1780 		mutex_exit(&t->t_delay_lock);
1781 		(void) untimeout_default(id, 0);
1782 	}
1783 }
1784 
1785 /*
1786  * Delay specified number of clock ticks.
1787  */
1788 void
1789 delay(clock_t ticks)
1790 {
1791 	DELAY_CONTEXT_CHECK();
1792 
1793 	delay_common(ticks);
1794 }
1795 
1796 /*
1797  * Delay a random number of clock ticks between 1 and ticks.
1798  */
1799 void
1800 delay_random(clock_t ticks)
1801 {
1802 	int	r;
1803 
1804 	DELAY_CONTEXT_CHECK();
1805 
1806 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1807 	if (ticks == 0)
1808 		ticks = 1;
1809 	ticks = (r % ticks) + 1;
1810 	delay_common(ticks);
1811 }
1812 
1813 /*
1814  * Like delay, but interruptible by a signal.
1815  */
1816 int
1817 delay_sig(clock_t ticks)
1818 {
1819 	kthread_t	*t = curthread;
1820 	clock_t		deadline;
1821 	clock_t		rc;
1822 
1823 	/* If timeouts aren't running all we can do is spin. */
1824 	if (panicstr || devinfo_freeze) {
1825 		if (ticks > 0)
1826 			drv_usecwait(TICK_TO_USEC(ticks));
1827 		return (0);
1828 	}
1829 
1830 	deadline = ddi_get_lbolt() + ticks;
1831 	mutex_enter(&t->t_delay_lock);
1832 	do {
1833 		rc = cv_timedwait_sig(&t->t_delay_cv,
1834 		    &t->t_delay_lock, deadline);
1835 		/* loop until past deadline or signaled */
1836 	} while (rc > 0);
1837 	mutex_exit(&t->t_delay_lock);
1838 	if (rc == 0)
1839 		return (EINTR);
1840 	return (0);
1841 }
1842 
1843 
1844 #define	SECONDS_PER_DAY 86400
1845 
1846 /*
1847  * Initialize the system time based on the TOD chip.  approx is used as
1848  * an approximation of time (e.g. from the filesystem) in the event that
1849  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1850  * means the filesystem doesn't keep time.
1851  */
1852 void
1853 clkset(time_t approx)
1854 {
1855 	timestruc_t ts;
1856 	int spl;
1857 	int set_clock = 0;
1858 
1859 	mutex_enter(&tod_lock);
1860 	ts = tod_get();
1861 
1862 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1863 		/*
1864 		 * If the TOD chip is reporting some time after 1971,
1865 		 * then it probably didn't lose power or become otherwise
1866 		 * cleared in the recent past;  check to assure that
1867 		 * the time coming from the filesystem isn't in the future
1868 		 * according to the TOD chip.
1869 		 */
1870 		if (approx != -1 && approx > ts.tv_sec) {
1871 			cmn_err(CE_WARN, "Last shutdown is later "
1872 			    "than time on time-of-day chip; check date.");
1873 		}
1874 	} else {
1875 		/*
1876 		 * If the TOD chip isn't giving correct time, set it to the
1877 		 * greater of i) approx and ii) 1987. That way if approx
1878 		 * is negative or is earlier than 1987, we set the clock
1879 		 * back to a time when Oliver North, ALF and Dire Straits
1880 		 * were all on the collective brain:  1987.
1881 		 */
1882 		timestruc_t tmp;
1883 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1884 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1885 		ts.tv_nsec = 0;
1886 
1887 		/*
1888 		 * Attempt to write the new time to the TOD chip.  Set spl high
1889 		 * to avoid getting preempted between the tod_set and tod_get.
1890 		 */
1891 		spl = splhi();
1892 		tod_set(ts);
1893 		tmp = tod_get();
1894 		splx(spl);
1895 
1896 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1897 			tod_broken = 1;
1898 			dosynctodr = 0;
1899 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1900 		} else {
1901 			cmn_err(CE_WARN, "Time-of-day chip had "
1902 			    "incorrect date; check and reset.");
1903 		}
1904 		set_clock = 1;
1905 	}
1906 
1907 	if (!boot_time) {
1908 		boot_time = ts.tv_sec;
1909 		set_clock = 1;
1910 	}
1911 
1912 	if (set_clock)
1913 		set_hrestime(&ts);
1914 
1915 	mutex_exit(&tod_lock);
1916 }
1917 
1918 int	timechanged;	/* for testing if the system time has been reset */
1919 
1920 void
1921 set_hrestime(timestruc_t *ts)
1922 {
1923 	int spl = hr_clock_lock();
1924 	hrestime = *ts;
1925 	membar_enter();	/* hrestime must be visible before timechanged++ */
1926 	timedelta = 0;
1927 	timechanged++;
1928 	hr_clock_unlock(spl);
1929 	callout_hrestime();
1930 }
1931 
1932 static uint_t deadman_seconds;
1933 static uint32_t deadman_panics;
1934 static int deadman_enabled = 0;
1935 static int deadman_panic_timers = 1;
1936 
1937 static void
1938 deadman(void)
1939 {
1940 	if (panicstr) {
1941 		/*
1942 		 * During panic, other CPUs besides the panic
1943 		 * master continue to handle cyclics and some other
1944 		 * interrupts.  The code below is intended to be
1945 		 * single threaded, so any CPU other than the master
1946 		 * must keep out.
1947 		 */
1948 		if (CPU->cpu_id != panic_cpu.cpu_id)
1949 			return;
1950 
1951 		if (!deadman_panic_timers)
1952 			return; /* allow all timers to be manually disabled */
1953 
1954 		/*
1955 		 * If we are generating a crash dump or syncing filesystems and
1956 		 * the corresponding timer is set, decrement it and re-enter
1957 		 * the panic code to abort it and advance to the next state.
1958 		 * The panic states and triggers are explained in panic.c.
1959 		 */
1960 		if (panic_dump) {
1961 			if (dump_timeleft && (--dump_timeleft == 0)) {
1962 				panic("panic dump timeout");
1963 				/*NOTREACHED*/
1964 			}
1965 		} else if (panic_sync) {
1966 			if (sync_timeleft && (--sync_timeleft == 0)) {
1967 				panic("panic sync timeout");
1968 				/*NOTREACHED*/
1969 			}
1970 		}
1971 
1972 		return;
1973 	}
1974 
1975 	if (deadman_counter != CPU->cpu_deadman_counter) {
1976 		CPU->cpu_deadman_counter = deadman_counter;
1977 		CPU->cpu_deadman_countdown = deadman_seconds;
1978 		return;
1979 	}
1980 
1981 	if (--CPU->cpu_deadman_countdown > 0)
1982 		return;
1983 
1984 	/*
1985 	 * Regardless of whether or not we actually bring the system down,
1986 	 * bump the deadman_panics variable.
1987 	 *
1988 	 * N.B. deadman_panics is incremented once for each CPU that
1989 	 * passes through here.  It's expected that all the CPUs will
1990 	 * detect this condition within one second of each other, so
1991 	 * when deadman_enabled is off, deadman_panics will
1992 	 * typically be a multiple of the total number of CPUs in
1993 	 * the system.
1994 	 */
1995 	atomic_add_32(&deadman_panics, 1);
1996 
1997 	if (!deadman_enabled) {
1998 		CPU->cpu_deadman_countdown = deadman_seconds;
1999 		return;
2000 	}
2001 
2002 	/*
2003 	 * If we're here, we want to bring the system down.
2004 	 */
2005 	panic("deadman: timed out after %d seconds of clock "
2006 	    "inactivity", deadman_seconds);
2007 	/*NOTREACHED*/
2008 }
2009 
2010 /*ARGSUSED*/
2011 static void
2012 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2013 {
2014 	cpu->cpu_deadman_counter = 0;
2015 	cpu->cpu_deadman_countdown = deadman_seconds;
2016 
2017 	hdlr->cyh_func = (cyc_func_t)deadman;
2018 	hdlr->cyh_level = CY_HIGH_LEVEL;
2019 	hdlr->cyh_arg = NULL;
2020 
2021 	/*
2022 	 * Stagger the CPUs so that they don't all run deadman() at
2023 	 * the same time.  Simplest reason to do this is to make it
2024 	 * more likely that only one CPU will panic in case of a
2025 	 * timeout.  This is (strictly speaking) an aesthetic, not a
2026 	 * technical consideration.
2027 	 */
2028 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2029 	when->cyt_interval = NANOSEC;
2030 }
2031 
2032 
2033 void
2034 deadman_init(void)
2035 {
2036 	cyc_omni_handler_t hdlr;
2037 
2038 	if (deadman_seconds == 0)
2039 		deadman_seconds = snoop_interval / MICROSEC;
2040 
2041 	if (snooping)
2042 		deadman_enabled = 1;
2043 
2044 	hdlr.cyo_online = deadman_online;
2045 	hdlr.cyo_offline = NULL;
2046 	hdlr.cyo_arg = NULL;
2047 
2048 	mutex_enter(&cpu_lock);
2049 	deadman_cyclic = cyclic_add_omni(&hdlr);
2050 	mutex_exit(&cpu_lock);
2051 }
2052 
2053 /*
2054  * tod_fault() is for updating tod validate mechanism state:
2055  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2056  *     currently used for debugging only
2057  * (2) The following four cases detected by tod validate mechanism:
2058  *       TOD_REVERSED: current tod value is less than previous value.
2059  *       TOD_STALLED: current tod value hasn't advanced.
2060  *       TOD_JUMPED: current tod value advanced too far from previous value.
2061  *       TOD_RATECHANGED: the ratio between average tod delta and
2062  *       average tick delta has changed.
2063  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2064  *     a virtual TOD provided by a hypervisor.
2065  */
2066 enum tod_fault_type
2067 tod_fault(enum tod_fault_type ftype, int off)
2068 {
2069 	ASSERT(MUTEX_HELD(&tod_lock));
2070 
2071 	if (tod_faulted != ftype) {
2072 		switch (ftype) {
2073 		case TOD_NOFAULT:
2074 			plat_tod_fault(TOD_NOFAULT);
2075 			cmn_err(CE_NOTE, "Restarted tracking "
2076 			    "Time of Day clock.");
2077 			tod_faulted = ftype;
2078 			break;
2079 		case TOD_REVERSED:
2080 		case TOD_JUMPED:
2081 			if (tod_faulted == TOD_NOFAULT) {
2082 				plat_tod_fault(ftype);
2083 				cmn_err(CE_WARN, "Time of Day clock error: "
2084 				    "reason [%s by 0x%x]. -- "
2085 				    " Stopped tracking Time Of Day clock.",
2086 				    tod_fault_table[ftype], off);
2087 				tod_faulted = ftype;
2088 			}
2089 			break;
2090 		case TOD_STALLED:
2091 		case TOD_RATECHANGED:
2092 			if (tod_faulted == TOD_NOFAULT) {
2093 				plat_tod_fault(ftype);
2094 				cmn_err(CE_WARN, "Time of Day clock error: "
2095 				    "reason [%s]. -- "
2096 				    " Stopped tracking Time Of Day clock.",
2097 				    tod_fault_table[ftype]);
2098 				tod_faulted = ftype;
2099 			}
2100 			break;
2101 		case TOD_RDONLY:
2102 			if (tod_faulted == TOD_NOFAULT) {
2103 				plat_tod_fault(ftype);
2104 				cmn_err(CE_NOTE, "!Time of Day clock is "
2105 				    "Read-Only; set of Date/Time will not "
2106 				    "persist across reboot.");
2107 				tod_faulted = ftype;
2108 			}
2109 			break;
2110 		default:
2111 			break;
2112 		}
2113 	}
2114 	return (tod_faulted);
2115 }
2116 
2117 /*
2118  * Two functions that allow tod_status_flag to be manipulated by functions
2119  * external to this file.
2120  */
2121 
2122 void
2123 tod_status_set(int tod_flag)
2124 {
2125 	tod_status_flag |= tod_flag;
2126 }
2127 
2128 void
2129 tod_status_clear(int tod_flag)
2130 {
2131 	tod_status_flag &= ~tod_flag;
2132 }
2133 
2134 /*
2135  * Record a timestamp and the value passed to tod_set().  The next call to
2136  * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2137  * when checking the timestruc_t returned by tod_get().  Ordinarily,
2138  * tod_validate() will use prev_tick and prev_tod for this task but these
2139  * become obsolete, and will be re-assigned with the prev_set_* values,
2140  * in the case when the TOD is re-written.
2141  */
2142 void
2143 tod_set_prev(timestruc_t ts)
2144 {
2145 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2146 	    tod_validate_deferred) {
2147 		return;
2148 	}
2149 	prev_set_tick = gethrtime();
2150 	/*
2151 	 * A negative value will be set to zero in utc_to_tod() so we fake
2152 	 * a zero here in such a case.  This would need to change if the
2153 	 * behavior of utc_to_tod() changes.
2154 	 */
2155 	prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2156 }
2157 
2158 /*
2159  * tod_validate() is used for checking values returned by tod_get().
2160  * Four error cases can be detected by this routine:
2161  *   TOD_REVERSED: current tod value is less than previous.
2162  *   TOD_STALLED: current tod value hasn't advanced.
2163  *   TOD_JUMPED: current tod value advanced too far from previous value.
2164  *   TOD_RATECHANGED: the ratio between average tod delta and
2165  *   average tick delta has changed.
2166  */
2167 time_t
2168 tod_validate(time_t tod)
2169 {
2170 	time_t diff_tod;
2171 	hrtime_t diff_tick;
2172 
2173 	long dtick;
2174 	int dtick_delta;
2175 
2176 	int off = 0;
2177 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2178 
2179 	static int firsttime = 1;
2180 
2181 	static time_t prev_tod = 0;
2182 	static hrtime_t prev_tick = 0;
2183 	static long dtick_avg = TOD_REF_FREQ;
2184 
2185 	int cpr_resume_done = 0;
2186 	int dr_resume_done = 0;
2187 
2188 	hrtime_t tick = gethrtime();
2189 
2190 	ASSERT(MUTEX_HELD(&tod_lock));
2191 
2192 	/*
2193 	 * tod_validate_enable is patchable via /etc/system.
2194 	 * If TOD is already faulted, or if TOD validation is deferred,
2195 	 * there is nothing to do.
2196 	 */
2197 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2198 	    tod_validate_deferred) {
2199 		return (tod);
2200 	}
2201 
2202 	/*
2203 	 * If this is the first time through, we just need to save the tod
2204 	 * we were called with and hrtime so we can use them next time to
2205 	 * validate tod_get().
2206 	 */
2207 	if (firsttime) {
2208 		firsttime = 0;
2209 		prev_tod = tod;
2210 		prev_tick = tick;
2211 		return (tod);
2212 	}
2213 
2214 	/*
2215 	 * Handle any flags that have been turned on by tod_status_set().
2216 	 * In the case where a tod_set() is done and then a subsequent
2217 	 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2218 	 * true), we treat the TOD_GET_FAILED with precedence by switching
2219 	 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2220 	 * until such time as tod_get() completes successfully.
2221 	 */
2222 	if (tod_status_flag & TOD_GET_FAILED) {
2223 		/*
2224 		 * tod_get() has encountered an issue, possibly transitory,
2225 		 * when reading TOD.  We'll just return the incoming tod
2226 		 * value (which is actually hrestime.tv_sec in this case)
2227 		 * and when we get a genuine tod, following a successful
2228 		 * tod_get(), we can validate using prev_tod and prev_tick.
2229 		 */
2230 		tod_status_flag &= ~TOD_GET_FAILED;
2231 		return (tod);
2232 	} else if (tod_status_flag & TOD_SET_DONE) {
2233 		/*
2234 		 * TOD has been modified.  Just before the TOD was written,
2235 		 * tod_set_prev() saved tod and hrtime; we can now use
2236 		 * those values, prev_set_tod and prev_set_tick, to validate
2237 		 * the incoming tod that's just been read.
2238 		 */
2239 		prev_tod = prev_set_tod;
2240 		prev_tick = prev_set_tick;
2241 		dtick_avg = TOD_REF_FREQ;
2242 		tod_status_flag &= ~TOD_SET_DONE;
2243 		/*
2244 		 * If a tod_set() preceded a cpr_suspend() without an
2245 		 * intervening tod_validate(), we need to ensure that a
2246 		 * TOD_JUMPED condition is ignored.
2247 		 * Note this isn't a concern in the case of DR as we've
2248 		 * just reassigned dtick_avg, above.
2249 		 */
2250 		if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2251 			cpr_resume_done = 1;
2252 			tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2253 		}
2254 	} else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2255 		/*
2256 		 * The system's coming back from a checkpoint resume.
2257 		 */
2258 		cpr_resume_done = 1;
2259 		tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2260 		/*
2261 		 * We need to handle the possibility of a CPR suspend
2262 		 * operation having been initiated whilst a DR event was
2263 		 * in-flight.
2264 		 */
2265 		if (tod_status_flag & TOD_DR_RESUME_DONE) {
2266 			dr_resume_done = 1;
2267 			tod_status_flag &= ~TOD_DR_RESUME_DONE;
2268 		}
2269 	} else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2270 		/*
2271 		 * A Dynamic Reconfiguration event has taken place.
2272 		 */
2273 		dr_resume_done = 1;
2274 		tod_status_flag &= ~TOD_DR_RESUME_DONE;
2275 	}
2276 
2277 	/* test hook */
2278 	switch (tod_unit_test) {
2279 	case 1: /* for testing jumping tod */
2280 		tod += tod_test_injector;
2281 		tod_unit_test = 0;
2282 		break;
2283 	case 2:	/* for testing stuck tod bit */
2284 		tod |= 1 << tod_test_injector;
2285 		tod_unit_test = 0;
2286 		break;
2287 	case 3:	/* for testing stalled tod */
2288 		tod = prev_tod;
2289 		tod_unit_test = 0;
2290 		break;
2291 	case 4:	/* reset tod fault status */
2292 		(void) tod_fault(TOD_NOFAULT, 0);
2293 		tod_unit_test = 0;
2294 		break;
2295 	default:
2296 		break;
2297 	}
2298 
2299 	diff_tod = tod - prev_tod;
2300 	diff_tick = tick - prev_tick;
2301 
2302 	ASSERT(diff_tick >= 0);
2303 
2304 	if (diff_tod < 0) {
2305 		/* ERROR - tod reversed */
2306 		tod_bad = TOD_REVERSED;
2307 		off = (int)(prev_tod - tod);
2308 	} else if (diff_tod == 0) {
2309 		/* tod did not advance */
2310 		if (diff_tick > TOD_STALL_THRESHOLD) {
2311 			/* ERROR - tod stalled */
2312 			tod_bad = TOD_STALLED;
2313 		} else {
2314 			/*
2315 			 * Make sure we don't update prev_tick
2316 			 * so that diff_tick is calculated since
2317 			 * the first diff_tod == 0
2318 			 */
2319 			return (tod);
2320 		}
2321 	} else {
2322 		/* calculate dtick */
2323 		dtick = diff_tick / diff_tod;
2324 
2325 		/* update dtick averages */
2326 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2327 
2328 		/*
2329 		 * Calculate dtick_delta as
2330 		 * variation from reference freq in quartiles
2331 		 */
2332 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2333 		    (TOD_REF_FREQ >> 2);
2334 
2335 		/*
2336 		 * Even with a perfectly functioning TOD device,
2337 		 * when the number of elapsed seconds is low the
2338 		 * algorithm can calculate a rate that is beyond
2339 		 * tolerance, causing an error.  The algorithm is
2340 		 * inaccurate when elapsed time is low (less than
2341 		 * 5 seconds).
2342 		 */
2343 		if (diff_tod > 4) {
2344 			if (dtick < TOD_JUMP_THRESHOLD) {
2345 				/*
2346 				 * If we've just done a CPR resume, we detect
2347 				 * a jump in the TOD but, actually, what's
2348 				 * happened is that the TOD has been increasing
2349 				 * whilst the system was suspended and the tick
2350 				 * count hasn't kept up.  We consider the first
2351 				 * occurrence of this after a resume as normal
2352 				 * and ignore it; otherwise, in a non-resume
2353 				 * case, we regard it as a TOD problem.
2354 				 */
2355 				if (!cpr_resume_done) {
2356 					/* ERROR - tod jumped */
2357 					tod_bad = TOD_JUMPED;
2358 					off = (int)diff_tod;
2359 				}
2360 			}
2361 			if (dtick_delta) {
2362 				/*
2363 				 * If we've just done a DR resume, dtick_avg
2364 				 * can go a bit askew so we reset it and carry
2365 				 * on; otherwise, the TOD is in error.
2366 				 */
2367 				if (dr_resume_done) {
2368 					dtick_avg = TOD_REF_FREQ;
2369 				} else {
2370 					/* ERROR - change in clock rate */
2371 					tod_bad = TOD_RATECHANGED;
2372 				}
2373 			}
2374 		}
2375 	}
2376 
2377 	if (tod_bad != TOD_NOFAULT) {
2378 		(void) tod_fault(tod_bad, off);
2379 
2380 		/*
2381 		 * Disable dosynctodr since we are going to fault
2382 		 * the TOD chip anyway here
2383 		 */
2384 		dosynctodr = 0;
2385 
2386 		/*
2387 		 * Set tod to the correct value from hrestime
2388 		 */
2389 		tod = hrestime.tv_sec;
2390 	}
2391 
2392 	prev_tod = tod;
2393 	prev_tick = tick;
2394 	return (tod);
2395 }
2396 
2397 static void
2398 calcloadavg(int nrun, uint64_t *hp_ave)
2399 {
2400 	static int64_t f[3] = { 135, 27, 9 };
2401 	uint_t i;
2402 	int64_t q, r;
2403 
2404 	/*
2405 	 * Compute load average over the last 1, 5, and 15 minutes
2406 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2407 	 * exponential decay:
2408 	 * (1 - exp(-1/60)) << 13 = 135,
2409 	 * (1 - exp(-1/300)) << 13 = 27,
2410 	 * (1 - exp(-1/900)) << 13 = 9.
2411 	 */
2412 
2413 	/*
2414 	 * a little hoop-jumping to avoid integer overflow
2415 	 */
2416 	for (i = 0; i < 3; i++) {
2417 		q = (hp_ave[i]  >> 16) << 7;
2418 		r = (hp_ave[i]  & 0xffff) << 7;
2419 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2420 	}
2421 }
2422 
2423 /*
2424  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2425  * calculate the value of lbolt according to the current mode. In the event
2426  * driven mode (the default), lbolt is calculated by dividing the current hires
2427  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2428  * an internal variable is incremented at each firing of the lbolt cyclic
2429  * and returned by lbolt_cyclic_driven().
2430  *
2431  * The system will transition from event to cyclic driven mode when the number
2432  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2433  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2434  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2435  * causing enough activity to cross the thresholds.
2436  */
2437 int64_t
2438 lbolt_bootstrap(void)
2439 {
2440 	return (0);
2441 }
2442 
2443 /* ARGSUSED */
2444 uint_t
2445 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2446 {
2447 	hrtime_t ts, exp;
2448 	int ret;
2449 
2450 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2451 
2452 	kpreempt_disable();
2453 
2454 	ts = gethrtime();
2455 	lb_info->lbi_internal = (ts/nsec_per_tick);
2456 
2457 	/*
2458 	 * Align the next expiration to a clock tick boundary.
2459 	 */
2460 	exp = ts + nsec_per_tick - 1;
2461 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2462 
2463 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2464 	ASSERT(ret);
2465 
2466 	lbolt_hybrid = lbolt_cyclic_driven;
2467 	lb_info->lbi_cyc_deactivate = B_FALSE;
2468 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2469 
2470 	kpreempt_enable();
2471 
2472 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2473 	ASSERT(ret == 0);
2474 
2475 	return (1);
2476 }
2477 
2478 int64_t
2479 lbolt_event_driven(void)
2480 {
2481 	hrtime_t ts;
2482 	int64_t lb;
2483 	int ret, cpu = CPU->cpu_seqid;
2484 
2485 	ts = gethrtime();
2486 	ASSERT(ts > 0);
2487 
2488 	ASSERT(nsec_per_tick > 0);
2489 	lb = (ts/nsec_per_tick);
2490 
2491 	/*
2492 	 * Switch to cyclic mode if the number of calls to this routine
2493 	 * has reached the threshold within the interval.
2494 	 */
2495 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2496 
2497 		if (--lb_cpu[cpu].lbc_counter == 0) {
2498 			/*
2499 			 * Reached the threshold within the interval, reset
2500 			 * the usage statistics.
2501 			 */
2502 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2503 			lb_cpu[cpu].lbc_cnt_start = lb;
2504 
2505 			/*
2506 			 * Make sure only one thread reprograms the
2507 			 * lbolt cyclic and changes the mode.
2508 			 */
2509 			if (panicstr == NULL &&
2510 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2511 
2512 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2513 					ret = atomic_dec_32_nv(
2514 					    &lb_info->lbi_token);
2515 					ASSERT(ret == 0);
2516 				} else {
2517 					lbolt_softint_post();
2518 				}
2519 			}
2520 		}
2521 	} else {
2522 		/*
2523 		 * Exceeded the interval, reset the usage statistics.
2524 		 */
2525 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2526 		lb_cpu[cpu].lbc_cnt_start = lb;
2527 	}
2528 
2529 	ASSERT(lb >= lb_info->lbi_debug_time);
2530 
2531 	return (lb - lb_info->lbi_debug_time);
2532 }
2533 
2534 int64_t
2535 lbolt_cyclic_driven(void)
2536 {
2537 	int64_t lb = lb_info->lbi_internal;
2538 	int cpu = CPU->cpu_seqid;
2539 
2540 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2541 
2542 		if (lb_cpu[cpu].lbc_counter == 0)
2543 			/*
2544 			 * Reached the threshold within the interval,
2545 			 * prevent the lbolt cyclic from turning itself
2546 			 * off.
2547 			 */
2548 			lb_info->lbi_cyc_deactivate = B_FALSE;
2549 		else
2550 			lb_cpu[cpu].lbc_counter--;
2551 	} else {
2552 		/*
2553 		 * Only reset the usage statistics when the interval has
2554 		 * exceeded.
2555 		 */
2556 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2557 		lb_cpu[cpu].lbc_cnt_start = lb;
2558 	}
2559 
2560 	ASSERT(lb >= lb_info->lbi_debug_time);
2561 
2562 	return (lb - lb_info->lbi_debug_time);
2563 }
2564 
2565 /*
2566  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2567  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2568  * It is inactive by default, and will be activated when switching from event
2569  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2570  * by lbolt_cyclic_driven().
2571  */
2572 static void
2573 lbolt_cyclic(void)
2574 {
2575 	int ret;
2576 
2577 	lb_info->lbi_internal++;
2578 
2579 	if (!lbolt_cyc_only) {
2580 
2581 		if (lb_info->lbi_cyc_deactivate) {
2582 			/*
2583 			 * Switching from cyclic to event driven mode.
2584 			 */
2585 			if (atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2586 
2587 				if (lbolt_hybrid == lbolt_event_driven) {
2588 					ret = atomic_dec_32_nv(
2589 					    &lb_info->lbi_token);
2590 					ASSERT(ret == 0);
2591 					return;
2592 				}
2593 
2594 				kpreempt_disable();
2595 
2596 				lbolt_hybrid = lbolt_event_driven;
2597 				ret = cyclic_reprogram(
2598 				    lb_info->id.lbi_cyclic_id,
2599 				    CY_INFINITY);
2600 				ASSERT(ret);
2601 
2602 				kpreempt_enable();
2603 
2604 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2605 				ASSERT(ret == 0);
2606 			}
2607 		}
2608 
2609 		/*
2610 		 * The lbolt cyclic should not try to deactivate itself before
2611 		 * the sampling period has elapsed.
2612 		 */
2613 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2614 		    lb_info->lbi_thresh_interval) {
2615 			lb_info->lbi_cyc_deactivate = B_TRUE;
2616 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2617 		}
2618 	}
2619 }
2620 
2621 /*
2622  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2623  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2624  * called by the KDI system claim callbacks to record a hires timestamp at
2625  * debug enter time. lbolt_debug_return() is called by the sistem release
2626  * callbacks to account for the time spent in the debugger. The value is then
2627  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2628  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2629  */
2630 void
2631 lbolt_debug_entry(void)
2632 {
2633 	if (lbolt_hybrid != lbolt_bootstrap) {
2634 		ASSERT(lb_info != NULL);
2635 		lb_info->lbi_debug_ts = gethrtime();
2636 	}
2637 }
2638 
2639 /*
2640  * Calculate the time spent in the debugger and add it to the lbolt info
2641  * structure. We also update the internal lbolt value in case we were in
2642  * cyclic driven mode going in.
2643  */
2644 void
2645 lbolt_debug_return(void)
2646 {
2647 	hrtime_t ts;
2648 
2649 	if (lbolt_hybrid != lbolt_bootstrap) {
2650 		ASSERT(lb_info != NULL);
2651 		ASSERT(nsec_per_tick > 0);
2652 
2653 		ts = gethrtime();
2654 		lb_info->lbi_internal = (ts/nsec_per_tick);
2655 		lb_info->lbi_debug_time +=
2656 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2657 
2658 		lb_info->lbi_debug_ts = 0;
2659 	}
2660 }
2661