xref: /titanic_44/usr/src/uts/common/io/sfe/sfe.c (revision 5087e485d482853e61c9d38d8197dee892c7f43d)
1 /*
2  *  sfe.c : DP83815/DP83816/SiS900 Fast Ethernet MAC driver for Solaris
3  *
4  * Copyright (c) 2002-2008 Masayuki Murayama.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice,
10  *    this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  *    this list of conditions and the following disclaimer in the documentation
14  *    and/or other materials provided with the distribution.
15  *
16  * 3. Neither the name of the author nor the names of its contributors may be
17  *    used to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
31  * DAMAGE.
32  */
33 
34 /*
35  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
36  * Use is subject to license terms.
37  */
38 
39 /*
40  * System Header files.
41  */
42 #include <sys/types.h>
43 #include <sys/conf.h>
44 #include <sys/debug.h>
45 #include <sys/kmem.h>
46 #include <sys/modctl.h>
47 #include <sys/errno.h>
48 #include <sys/ddi.h>
49 #include <sys/sunddi.h>
50 #include <sys/byteorder.h>
51 #include <sys/ethernet.h>
52 #include <sys/pci.h>
53 
54 #include "sfe_mii.h"
55 #include "sfe_util.h"
56 #include "sfereg.h"
57 
58 char	ident[] = "sis900/dp83815 driver v" "2.6.1t29os";
59 
60 /* Debugging support */
61 #ifdef DEBUG_LEVEL
62 static int sfe_debug = DEBUG_LEVEL;
63 #if DEBUG_LEVEL > 4
64 #define	CONS	"^"
65 #else
66 #define	CONS	"!"
67 #endif
68 #define	DPRINTF(n, args)	if (sfe_debug > (n)) cmn_err args
69 #else
70 #define	CONS	"!"
71 #define	DPRINTF(n, args)
72 #endif
73 
74 /*
75  * Useful macros and typedefs
76  */
77 #define	ONESEC		(drv_usectohz(1*1000000))
78 #define	ROUNDUP2(x, a)	(((x) + (a) - 1) & ~((a) - 1))
79 
80 /*
81  * Our configuration
82  */
83 #define	MAXTXFRAGS	1
84 #define	MAXRXFRAGS	1
85 
86 #ifndef	TX_BUF_SIZE
87 #define	TX_BUF_SIZE	64
88 #endif
89 #ifndef	TX_RING_SIZE
90 #if MAXTXFRAGS == 1
91 #define	TX_RING_SIZE	TX_BUF_SIZE
92 #else
93 #define	TX_RING_SIZE	(TX_BUF_SIZE * 4)
94 #endif
95 #endif
96 
97 #ifndef	RX_BUF_SIZE
98 #define	RX_BUF_SIZE	256
99 #endif
100 #ifndef	RX_RING_SIZE
101 #define	RX_RING_SIZE	RX_BUF_SIZE
102 #endif
103 
104 #define	OUR_INTR_BITS	\
105 	(ISR_DPERR | ISR_SSERR | ISR_RMABT | ISR_RTABT | ISR_RXSOVR |	\
106 	ISR_TXURN | ISR_TXDESC | ISR_TXERR |	\
107 	ISR_RXORN | ISR_RXIDLE | ISR_RXOK | ISR_RXERR)
108 
109 #define	USE_MULTICAST_HASHTBL
110 
111 static int	sfe_tx_copy_thresh = 256;
112 static int	sfe_rx_copy_thresh = 256;
113 
114 /* special PHY registers for SIS900 */
115 #define	MII_CONFIG1	0x0010
116 #define	MII_CONFIG2	0x0011
117 #define	MII_MASK	0x0013
118 #define	MII_RESV	0x0014
119 
120 #define	PHY_MASK		0xfffffff0
121 #define	PHY_SIS900_INTERNAL	0x001d8000
122 #define	PHY_ICS1893		0x0015f440
123 
124 
125 #define	SFE_DESC_SIZE	16	/* including pads rounding up to power of 2 */
126 
127 /*
128  * Supported chips
129  */
130 struct chip_info {
131 	uint16_t	venid;
132 	uint16_t	devid;
133 	char		*chip_name;
134 	int		chip_type;
135 #define	CHIPTYPE_DP83815	0
136 #define	CHIPTYPE_SIS900		1
137 };
138 
139 /*
140  * Chip dependent MAC state
141  */
142 struct sfe_dev {
143 	/* misc HW information */
144 	struct chip_info	*chip;
145 	uint32_t		our_intr_bits;
146 	uint32_t		isr_pended;
147 	uint32_t		cr;
148 	uint_t			tx_drain_threshold;
149 	uint_t			tx_fill_threshold;
150 	uint_t			rx_drain_threshold;
151 	uint_t			rx_fill_threshold;
152 	uint8_t			revid;	/* revision from PCI configuration */
153 	boolean_t		(*get_mac_addr)(struct gem_dev *);
154 	uint8_t			mac_addr[ETHERADDRL];
155 	uint8_t			bridge_revid;
156 };
157 
158 /*
159  * Hardware information
160  */
161 struct chip_info sfe_chiptbl[] = {
162 	{ 0x1039, 0x0900, "SiS900", CHIPTYPE_SIS900, },
163 	{ 0x100b, 0x0020, "DP83815/83816", CHIPTYPE_DP83815, },
164 	{ 0x1039, 0x7016, "SiS7016", CHIPTYPE_SIS900, },
165 };
166 #define	CHIPTABLESIZE (sizeof (sfe_chiptbl)/sizeof (struct chip_info))
167 
168 /* ======================================================== */
169 
170 /* mii operations */
171 static void  sfe_mii_sync_dp83815(struct gem_dev *);
172 static void  sfe_mii_sync_sis900(struct gem_dev *);
173 static uint16_t  sfe_mii_read_dp83815(struct gem_dev *, uint_t);
174 static uint16_t  sfe_mii_read_sis900(struct gem_dev *, uint_t);
175 static void sfe_mii_write_dp83815(struct gem_dev *, uint_t, uint16_t);
176 static void sfe_mii_write_sis900(struct gem_dev *, uint_t, uint16_t);
177 static void sfe_set_eq_sis630(struct gem_dev *dp);
178 /* nic operations */
179 static int sfe_reset_chip_sis900(struct gem_dev *);
180 static int sfe_reset_chip_dp83815(struct gem_dev *);
181 static int sfe_init_chip(struct gem_dev *);
182 static int sfe_start_chip(struct gem_dev *);
183 static int sfe_stop_chip(struct gem_dev *);
184 static int sfe_set_media(struct gem_dev *);
185 static int sfe_set_rx_filter_dp83815(struct gem_dev *);
186 static int sfe_set_rx_filter_sis900(struct gem_dev *);
187 static int sfe_get_stats(struct gem_dev *);
188 static int sfe_attach_chip(struct gem_dev *);
189 
190 /* descriptor operations */
191 static int sfe_tx_desc_write(struct gem_dev *dp, int slot,
192 		    ddi_dma_cookie_t *dmacookie, int frags, uint64_t flags);
193 static void sfe_tx_start(struct gem_dev *dp, int startslot, int nslot);
194 static void sfe_rx_desc_write(struct gem_dev *dp, int slot,
195 		    ddi_dma_cookie_t *dmacookie, int frags);
196 static uint_t sfe_tx_desc_stat(struct gem_dev *dp, int slot, int ndesc);
197 static uint64_t sfe_rx_desc_stat(struct gem_dev *dp, int slot, int ndesc);
198 
199 static void sfe_tx_desc_init(struct gem_dev *dp, int slot);
200 static void sfe_rx_desc_init(struct gem_dev *dp, int slot);
201 static void sfe_tx_desc_clean(struct gem_dev *dp, int slot);
202 static void sfe_rx_desc_clean(struct gem_dev *dp, int slot);
203 
204 /* interrupt handler */
205 static uint_t sfe_interrupt(struct gem_dev *dp);
206 
207 /* ======================================================== */
208 
209 /* mapping attributes */
210 /* Data access requirements. */
211 static struct ddi_device_acc_attr sfe_dev_attr = {
212 	DDI_DEVICE_ATTR_V0,
213 	DDI_STRUCTURE_LE_ACC,
214 	DDI_STRICTORDER_ACC
215 };
216 
217 /* On sparc, Buffers should be native endian for speed */
218 static struct ddi_device_acc_attr sfe_buf_attr = {
219 	DDI_DEVICE_ATTR_V0,
220 	DDI_NEVERSWAP_ACC,	/* native endianness */
221 	DDI_STRICTORDER_ACC
222 };
223 
224 static ddi_dma_attr_t sfe_dma_attr_buf = {
225 	DMA_ATTR_V0,		/* dma_attr_version */
226 	0,			/* dma_attr_addr_lo */
227 	0xffffffffull,		/* dma_attr_addr_hi */
228 	0x00000fffull,		/* dma_attr_count_max */
229 	0, /* patched later */	/* dma_attr_align */
230 	0x000003fc,		/* dma_attr_burstsizes */
231 	1,			/* dma_attr_minxfer */
232 	0x00000fffull,		/* dma_attr_maxxfer */
233 	0xffffffffull,		/* dma_attr_seg */
234 	0, /* patched later */	/* dma_attr_sgllen */
235 	1,			/* dma_attr_granular */
236 	0			/* dma_attr_flags */
237 };
238 
239 static ddi_dma_attr_t sfe_dma_attr_desc = {
240 	DMA_ATTR_V0,		/* dma_attr_version */
241 	16,			/* dma_attr_addr_lo */
242 	0xffffffffull,		/* dma_attr_addr_hi */
243 	0xffffffffull,		/* dma_attr_count_max */
244 	16,			/* dma_attr_align */
245 	0x000003fc,		/* dma_attr_burstsizes */
246 	1,			/* dma_attr_minxfer */
247 	0xffffffffull,		/* dma_attr_maxxfer */
248 	0xffffffffull,		/* dma_attr_seg */
249 	1,			/* dma_attr_sgllen */
250 	1,			/* dma_attr_granular */
251 	0			/* dma_attr_flags */
252 };
253 
254 uint32_t sfe_use_pcimemspace = 0;
255 
256 /* ======================================================== */
257 /*
258  * HW manipulation routines
259  */
260 /* ======================================================== */
261 
262 #define	SFE_EEPROM_DELAY(dp)	\
263 	{ (void) INL(dp, EROMAR); (void) INL(dp, EROMAR); }
264 #define	EE_CMD_READ	6
265 #define	EE_CMD_SHIFT	6
266 
267 static uint16_t
268 sfe_read_eeprom(struct gem_dev *dp, uint_t offset)
269 {
270 	int		eedi;
271 	int		i;
272 	uint16_t	ret;
273 
274 	/* ensure de-assert chip select */
275 	OUTL(dp, EROMAR, 0);
276 	SFE_EEPROM_DELAY(dp);
277 	OUTL(dp, EROMAR, EROMAR_EESK);
278 	SFE_EEPROM_DELAY(dp);
279 
280 	/* assert chip select */
281 	offset |= EE_CMD_READ << EE_CMD_SHIFT;
282 
283 	for (i = 8; i >= 0; i--) {
284 		/* make command */
285 		eedi = ((offset >> i) & 1) << EROMAR_EEDI_SHIFT;
286 
287 		/* send 1 bit */
288 		OUTL(dp, EROMAR, EROMAR_EECS | eedi);
289 		SFE_EEPROM_DELAY(dp);
290 		OUTL(dp, EROMAR, EROMAR_EECS | eedi | EROMAR_EESK);
291 		SFE_EEPROM_DELAY(dp);
292 	}
293 
294 	OUTL(dp, EROMAR, EROMAR_EECS);
295 
296 	ret = 0;
297 	for (i = 0; i < 16; i++) {
298 		/* Get 1 bit */
299 		OUTL(dp, EROMAR, EROMAR_EECS);
300 		SFE_EEPROM_DELAY(dp);
301 		OUTL(dp, EROMAR, EROMAR_EECS | EROMAR_EESK);
302 		SFE_EEPROM_DELAY(dp);
303 
304 		ret = (ret << 1) | ((INL(dp, EROMAR) >> EROMAR_EEDO_SHIFT) & 1);
305 	}
306 
307 	OUTL(dp, EROMAR, 0);
308 	SFE_EEPROM_DELAY(dp);
309 
310 	return (ret);
311 }
312 #undef SFE_EEPROM_DELAY
313 
314 static boolean_t
315 sfe_get_mac_addr_dp83815(struct gem_dev *dp)
316 {
317 	uint8_t		*mac;
318 	uint_t		val;
319 	int		i;
320 
321 #define	BITSET(p, ix, v)	(p)[(ix)/8] |= ((v) ? 1 : 0) << ((ix) & 0x7)
322 
323 	DPRINTF(4, (CE_CONT, CONS "%s: %s: called", dp->name, __func__));
324 
325 	mac = dp->dev_addr.ether_addr_octet;
326 
327 	/* first of all, clear MAC address buffer */
328 	bzero(mac, ETHERADDRL);
329 
330 	/* get bit 0 */
331 	val = sfe_read_eeprom(dp, 0x6);
332 	BITSET(mac, 0, val & 1);
333 
334 	/* get bit 1 - 16 */
335 	val = sfe_read_eeprom(dp, 0x7);
336 	for (i = 0; i < 16; i++) {
337 		BITSET(mac, 1 + i, val & (1 << (15 - i)));
338 	}
339 
340 	/* get bit 17 -  32 */
341 	val = sfe_read_eeprom(dp, 0x8);
342 	for (i = 0; i < 16; i++) {
343 		BITSET(mac, 17 + i, val & (1 << (15 - i)));
344 	}
345 
346 	/* get bit 33 -  47 */
347 	val = sfe_read_eeprom(dp, 0x9);
348 	for (i = 0; i < 15; i++) {
349 		BITSET(mac, 33 + i, val & (1 << (15 - i)));
350 	}
351 
352 	return (B_TRUE);
353 #undef BITSET
354 }
355 
356 static boolean_t
357 sfe_get_mac_addr_sis900(struct gem_dev *dp)
358 {
359 	uint_t		val;
360 	int		i;
361 	uint8_t		*mac;
362 
363 	mac = dp->dev_addr.ether_addr_octet;
364 
365 	for (i = 0; i < ETHERADDRL/2; i++) {
366 		val = sfe_read_eeprom(dp, 0x8 + i);
367 		*mac++ = (uint8_t)val;
368 		*mac++ = (uint8_t)(val >> 8);
369 	}
370 
371 	return (B_TRUE);
372 }
373 
374 static dev_info_t *
375 sfe_search_pci_dev_subr(dev_info_t *cur_node, int vendor_id, int device_id)
376 {
377 	dev_info_t	*child_id;
378 	dev_info_t	*ret;
379 	int		vid, did;
380 
381 	if (cur_node == NULL) {
382 		return (NULL);
383 	}
384 
385 	/* check brothers */
386 	do {
387 		vid = ddi_prop_get_int(DDI_DEV_T_ANY, cur_node,
388 		    DDI_PROP_DONTPASS, "vendor-id", -1);
389 		did = ddi_prop_get_int(DDI_DEV_T_ANY, cur_node,
390 		    DDI_PROP_DONTPASS, "device-id", -1);
391 
392 		if (vid == vendor_id && did == device_id) {
393 			/* found */
394 			return (cur_node);
395 		}
396 
397 		/* check children */
398 		if ((child_id = ddi_get_child(cur_node)) != NULL) {
399 			if ((ret = sfe_search_pci_dev_subr(child_id,
400 			    vendor_id, device_id)) != NULL) {
401 				return (ret);
402 			}
403 		}
404 
405 	} while ((cur_node = ddi_get_next_sibling(cur_node)) != NULL);
406 
407 	/* not found */
408 	return (NULL);
409 }
410 
411 static dev_info_t *
412 sfe_search_pci_dev(int vendor_id, int device_id)
413 {
414 	return (sfe_search_pci_dev_subr(ddi_root_node(), vendor_id, device_id));
415 }
416 
417 /* Avoid undefined symbol for non IA architectures */
418 #pragma weak	inb
419 #pragma weak	outb
420 
421 static boolean_t
422 sfe_get_mac_addr_sis630e(struct gem_dev *dp)
423 {
424 	int		i;
425 	dev_info_t	*isa_bridge;
426 	ddi_acc_handle_t isa_handle;
427 	int		reg;
428 
429 	if (inb == NULL || outb == NULL) {
430 		/* this is not IA architecture */
431 		return (B_FALSE);
432 	}
433 
434 	if ((isa_bridge = sfe_search_pci_dev(0x1039, 0x8)) == NULL) {
435 		cmn_err(CE_WARN, "%s: failed to find isa-bridge pci1039,8",
436 		    dp->name);
437 		return (B_FALSE);
438 	}
439 
440 	if (pci_config_setup(isa_bridge, &isa_handle) != DDI_SUCCESS) {
441 		cmn_err(CE_WARN, "%s: ddi_regs_map_setup failed",
442 		    dp->name);
443 		return (B_FALSE);
444 	}
445 
446 	/* enable to access CMOS RAM */
447 	reg = pci_config_get8(isa_handle, 0x48);
448 	pci_config_put8(isa_handle, 0x48, reg | 0x40);
449 
450 	for (i = 0; i < ETHERADDRL; i++) {
451 		outb(0x70, 0x09 + i);
452 		dp->dev_addr.ether_addr_octet[i] = inb(0x71);
453 	}
454 
455 	/* disable to access CMOS RAM */
456 	pci_config_put8(isa_handle, 0x48, reg);
457 	pci_config_teardown(&isa_handle);
458 
459 	return (B_TRUE);
460 }
461 
462 static boolean_t
463 sfe_get_mac_addr_sis635(struct gem_dev *dp)
464 {
465 	int		i;
466 	uint32_t	rfcr;
467 	uint16_t	v;
468 	struct sfe_dev	*lp = dp->private;
469 
470 	DPRINTF(2, (CE_CONT, CONS "%s: %s: called", dp->name, __func__));
471 	rfcr = INL(dp, RFCR);
472 
473 	OUTL(dp, CR, lp->cr | CR_RELOAD);
474 	OUTL(dp, CR, lp->cr);
475 
476 	/* disable packet filtering before reading filter */
477 	OUTL(dp, RFCR, rfcr & ~RFCR_RFEN);
478 
479 	/* load MAC addr from filter data register */
480 	for (i = 0; i < ETHERADDRL; i += 2) {
481 		OUTL(dp, RFCR,
482 		    (RFADDR_MAC_SIS900 + (i/2)) << RFCR_RFADDR_SHIFT_SIS900);
483 		v = INL(dp, RFDR);
484 		dp->dev_addr.ether_addr_octet[i] = (uint8_t)v;
485 		dp->dev_addr.ether_addr_octet[i+1] = (uint8_t)(v >> 8);
486 	}
487 
488 	/* re-enable packet filtering */
489 	OUTL(dp, RFCR, rfcr | RFCR_RFEN);
490 
491 	return (B_TRUE);
492 }
493 
494 static boolean_t
495 sfe_get_mac_addr_sis962(struct gem_dev *dp)
496 {
497 	boolean_t	ret;
498 	int		i;
499 
500 	ret = B_FALSE;
501 
502 	/* rise request signal to access EEPROM */
503 	OUTL(dp, MEAR, EROMAR_EEREQ);
504 	for (i = 0; (INL(dp, MEAR) & EROMAR_EEGNT) == 0; i++) {
505 		if (i > 200) {
506 			/* failed to acquire eeprom */
507 			cmn_err(CE_NOTE,
508 			    CONS "%s: failed to access eeprom", dp->name);
509 			goto x;
510 		}
511 		drv_usecwait(10);
512 	}
513 	ret = sfe_get_mac_addr_sis900(dp);
514 x:
515 	/* release EEPROM */
516 	OUTL(dp, MEAR, EROMAR_EEDONE);
517 
518 	return (ret);
519 }
520 
521 static int
522 sfe_reset_chip_sis900(struct gem_dev *dp)
523 {
524 	int		i;
525 	uint32_t	done;
526 	uint32_t	val;
527 	struct sfe_dev	*lp = dp->private;
528 
529 	DPRINTF(4, (CE_CONT, CONS "%s: %s called", dp->name, __func__));
530 
531 	/* invalidate mac addr cache */
532 	bzero(lp->mac_addr, sizeof (lp->mac_addr));
533 
534 	lp->cr = 0;
535 
536 	/* inhibit interrupt */
537 	OUTL(dp, IMR, 0);
538 	lp->isr_pended |= INL(dp, ISR) & lp->our_intr_bits;
539 
540 	OUTLINL(dp, RFCR, 0);
541 
542 	OUTL(dp, CR, CR_RST | CR_TXR | CR_RXR);
543 	drv_usecwait(10);
544 
545 	done = 0;
546 	for (i = 0; done != (ISR_TXRCMP | ISR_RXRCMP); i++) {
547 		if (i > 1000) {
548 			cmn_err(CE_WARN, "%s: chip reset timeout", dp->name);
549 			return (GEM_FAILURE);
550 		}
551 		done |= INL(dp, ISR) & (ISR_TXRCMP | ISR_RXRCMP);
552 		drv_usecwait(10);
553 	}
554 
555 	if (lp->revid == SIS630ET_900_REV) {
556 		lp->cr |= CR_ACCESSMODE;
557 		OUTL(dp, CR, lp->cr | INL(dp, CR));
558 	}
559 
560 	/* Configuration register: enable PCI parity */
561 	DPRINTF(2, (CE_CONT, CONS "%s: cfg:%b",
562 	    dp->name, INL(dp, CFG), CFG_BITS_SIS900));
563 	val = 0;
564 	if (lp->revid >= SIS635A_900_REV ||
565 	    lp->revid == SIS900B_900_REV) {
566 		/* what is this ? */
567 		val |= CFG_RND_CNT;
568 	}
569 	OUTL(dp, CFG, val);
570 	DPRINTF(2, (CE_CONT, CONS "%s: cfg:%b", dp->name,
571 	    INL(dp, CFG), CFG_BITS_SIS900));
572 
573 	return (GEM_SUCCESS);
574 }
575 
576 static int
577 sfe_reset_chip_dp83815(struct gem_dev *dp)
578 {
579 	int		i;
580 	uint32_t	val;
581 	struct sfe_dev	*lp = dp->private;
582 
583 	DPRINTF(4, (CE_CONT, CONS "%s: %s called", dp->name, __func__));
584 
585 	/* invalidate mac addr cache */
586 	bzero(lp->mac_addr, sizeof (lp->mac_addr));
587 
588 	lp->cr = 0;
589 
590 	/* inhibit interrupts */
591 	OUTL(dp, IMR, 0);
592 	lp->isr_pended |= INL(dp, ISR) & lp->our_intr_bits;
593 
594 	OUTL(dp, RFCR, 0);
595 
596 	OUTL(dp, CR, CR_RST);
597 	drv_usecwait(10);
598 
599 	for (i = 0; INL(dp, CR) & CR_RST; i++) {
600 		if (i > 100) {
601 			cmn_err(CE_WARN, "!%s: chip reset timeout", dp->name);
602 			return (GEM_FAILURE);
603 		}
604 		drv_usecwait(10);
605 	}
606 	DPRINTF(0, (CE_CONT, "!%s: chip reset in %duS", dp->name, i*10));
607 
608 	OUTL(dp, CCSR, CCSR_PMESTS);
609 	OUTL(dp, CCSR, 0);
610 
611 	/* Configuration register: enable PCI parity */
612 	DPRINTF(2, (CE_CONT, CONS "%s: cfg:%b",
613 	    dp->name, INL(dp, CFG), CFG_BITS_DP83815));
614 	val = INL(dp, CFG) & (CFG_ANEG_SEL | CFG_PHY_CFG);
615 	OUTL(dp, CFG, val | CFG_PAUSE_ADV);
616 	DPRINTF(2, (CE_CONT, CONS "%s: cfg:%b", dp->name,
617 	    INL(dp, CFG), CFG_BITS_DP83815));
618 
619 	return (GEM_SUCCESS);
620 }
621 
622 static int
623 sfe_init_chip(struct gem_dev *dp)
624 {
625 	/* Configuration register: have been set up in sfe_chip_reset */
626 
627 	/* PCI test control register: do nothing */
628 
629 	/* Interrupt status register : do nothing */
630 
631 	/* Interrupt mask register: clear, but leave lp->our_intr_bits */
632 	OUTL(dp, IMR, 0);
633 
634 	/* Enhanced PHY Access register (sis900): do nothing */
635 
636 	/* Transmit Descriptor Pointer register: base addr of TX ring */
637 	OUTL(dp, TXDP, dp->tx_ring_dma);
638 
639 	/* Receive descriptor pointer register: base addr of RX ring */
640 	OUTL(dp, RXDP, dp->rx_ring_dma);
641 
642 	return (GEM_SUCCESS);
643 }
644 
645 static uint_t
646 sfe_mcast_hash(struct gem_dev *dp, uint8_t *addr)
647 {
648 	return (gem_ether_crc_be(addr, ETHERADDRL));
649 }
650 
651 #ifdef DEBUG_LEVEL
652 static void
653 sfe_rxfilter_dump(struct gem_dev *dp, int start, int end)
654 {
655 	int		i;
656 	int		j;
657 	uint16_t	ram[0x10];
658 
659 	cmn_err(CE_CONT, "!%s: rx filter ram dump:", dp->name);
660 #define	WORDS_PER_LINE	4
661 	for (i = start; i < end; i += WORDS_PER_LINE*2) {
662 		for (j = 0; j < WORDS_PER_LINE; j++) {
663 			OUTL(dp, RFCR, RFADDR_MAC_DP83815 + i + j*2);
664 			ram[j] = INL(dp, RFDR);
665 		}
666 
667 		cmn_err(CE_CONT, "!0x%02x: 0x%04x 0x%04x 0x%04x 0x%04x",
668 		    i, ram[0], ram[1], ram[2], ram[3]);
669 		}
670 
671 #undef	WORDS_PER_LINE
672 }
673 #endif
674 
675 static uint_t	sfe_rf_perfect_base_dp83815[] = {
676 	RFADDR_PMATCH0_DP83815,
677 	RFADDR_PMATCH1_DP83815,
678 	RFADDR_PMATCH2_DP83815,
679 	RFADDR_PMATCH3_DP83815,
680 };
681 
682 static int
683 sfe_set_rx_filter_dp83815(struct gem_dev *dp)
684 {
685 	int		i;
686 	int		j;
687 	uint32_t	mode;
688 	uint8_t		*mac = dp->cur_addr.ether_addr_octet;
689 	uint16_t	hash_tbl[32];
690 	struct sfe_dev	*lp = dp->private;
691 
692 	DPRINTF(1, (CE_CONT, CONS "%s: %s: called, mc_count:%d, mode:0x%b",
693 	    dp->name, __func__, dp->mc_count, dp->rxmode, RXMODE_BITS));
694 
695 #if DEBUG_LEVEL > 0
696 	for (i = 0; i < dp->mc_count; i++) {
697 		cmn_err(CE_CONT,
698 		"!%s: adding mcast(%d) %02x:%02x:%02x:%02x:%02x:%02x",
699 		    dp->name, i,
700 		    dp->mc_list[i].addr.ether_addr_octet[0],
701 		    dp->mc_list[i].addr.ether_addr_octet[1],
702 		    dp->mc_list[i].addr.ether_addr_octet[2],
703 		    dp->mc_list[i].addr.ether_addr_octet[3],
704 		    dp->mc_list[i].addr.ether_addr_octet[4],
705 		    dp->mc_list[i].addr.ether_addr_octet[5]);
706 	}
707 #endif
708 	if ((dp->rxmode & RXMODE_ENABLE) == 0) {
709 		/* disable rx filter */
710 		OUTL(dp, RFCR, 0);
711 		return (GEM_SUCCESS);
712 	}
713 
714 	/*
715 	 * Set Receive filter control register
716 	 */
717 	if (dp->rxmode & RXMODE_PROMISC) {
718 		/* all broadcast, all multicast, all physical */
719 		mode = RFCR_AAB | RFCR_AAM | RFCR_AAP;
720 	} else if ((dp->rxmode & RXMODE_ALLMULTI) || dp->mc_count > 16*32/2) {
721 		/* all broadcast, all multicast, physical for the chip */
722 		mode = RFCR_AAB | RFCR_AAM | RFCR_APM_DP83815;
723 	} else if (dp->mc_count > 4) {
724 		/*
725 		 * Use multicast hash table,
726 		 * accept all broadcast and physical for the chip.
727 		 */
728 		mode = RFCR_AAB | RFCR_MHEN_DP83815 | RFCR_APM_DP83815;
729 
730 		bzero(hash_tbl, sizeof (hash_tbl));
731 		for (i = 0; i < dp->mc_count; i++) {
732 			j = dp->mc_list[i].hash >> (32 - 9);
733 			hash_tbl[j / 16] |= 1 << (j % 16);
734 		}
735 	} else {
736 		/*
737 		 * Use pattern mach filter for multicast address,
738 		 * accept all broadcast and physical for the chip
739 		 */
740 		/* need to enable corresponding pattern registers */
741 		mode = RFCR_AAB | RFCR_APM_DP83815 |
742 		    (((1 << dp->mc_count) - 1) << RFCR_APAT_SHIFT);
743 	}
744 
745 #if DEBUG_LEVEL > 1
746 	cmn_err(CE_CONT,
747 	    "!%s: mac %02x:%02x:%02x:%02x:%02x:%02x"
748 	    "  cache %02x:%02x:%02x:%02x:%02x:%02x",
749 	    dp->name, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5],
750 	    lp->mac_addr[0], lp->mac_addr[1],
751 	    lp->mac_addr[2], lp->mac_addr[3],
752 	    lp->mac_addr[4], lp->mac_addr[5]);
753 #endif
754 	if (bcmp(mac, lp->mac_addr, ETHERADDRL) != 0) {
755 		/*
756 		 * XXX - need to *disable* rx filter to load mac address for
757 		 * the chip. otherwise, we cannot setup rxfilter correctly.
758 		 */
759 		/* setup perfect match register for my station address */
760 		for (i = 0; i < ETHERADDRL; i += 2) {
761 			OUTL(dp, RFCR, RFADDR_MAC_DP83815 + i);
762 			OUTL(dp, RFDR, (mac[i+1] << 8) | mac[i]);
763 		}
764 
765 		bcopy(mac, lp->mac_addr, ETHERADDRL);
766 	}
767 
768 #if DEBUG_LEVEL > 3
769 	/* clear pattern ram */
770 	for (j = 0x200; j < 0x380; j += 2) {
771 		OUTL(dp, RFCR, j);
772 		OUTL(dp, RFDR, 0);
773 	}
774 #endif
775 	if (mode & RFCR_APAT_DP83815) {
776 		/* setup multicast address into pattern match registers */
777 		for (j = 0; j < dp->mc_count; j++) {
778 			mac = &dp->mc_list[j].addr.ether_addr_octet[0];
779 			for (i = 0; i < ETHERADDRL; i += 2) {
780 				OUTL(dp, RFCR,
781 				    sfe_rf_perfect_base_dp83815[j] + i*2);
782 				OUTL(dp, RFDR, (mac[i+1] << 8) | mac[i]);
783 			}
784 		}
785 
786 		/* setup pattern count registers */
787 		OUTL(dp, RFCR, RFADDR_PCOUNT01_DP83815);
788 		OUTL(dp, RFDR, (ETHERADDRL << 8) | ETHERADDRL);
789 		OUTL(dp, RFCR, RFADDR_PCOUNT23_DP83815);
790 		OUTL(dp, RFDR, (ETHERADDRL << 8) | ETHERADDRL);
791 	}
792 
793 	if (mode & RFCR_MHEN_DP83815) {
794 		/* Load Multicast hash table */
795 		for (i = 0; i < 32; i++) {
796 			/* for DP83815, index is in byte */
797 			OUTL(dp, RFCR, RFADDR_MULTICAST_DP83815 + i*2);
798 			OUTL(dp, RFDR, hash_tbl[i]);
799 		}
800 	}
801 #if DEBUG_LEVEL > 2
802 	sfe_rxfilter_dump(dp, 0, 0x10);
803 	sfe_rxfilter_dump(dp, 0x200, 0x380);
804 #endif
805 	/* Set rx filter mode and enable rx filter */
806 	OUTL(dp, RFCR, RFCR_RFEN | mode);
807 
808 	return (GEM_SUCCESS);
809 }
810 
811 static int
812 sfe_set_rx_filter_sis900(struct gem_dev *dp)
813 {
814 	int		i;
815 	uint32_t	mode;
816 	uint16_t	hash_tbl[16];
817 	uint8_t		*mac = dp->cur_addr.ether_addr_octet;
818 	int		hash_size;
819 	int		hash_shift;
820 	struct sfe_dev	*lp = dp->private;
821 
822 	DPRINTF(4, (CE_CONT, CONS "%s: %s: called", dp->name, __func__));
823 
824 	if ((dp->rxmode & RXMODE_ENABLE) == 0) {
825 		/* disable rx filter */
826 		OUTLINL(dp, RFCR, 0);
827 		return (GEM_SUCCESS);
828 	}
829 
830 	/*
831 	 * determine hardware hash table size in word.
832 	 */
833 	hash_shift = 25;
834 	if (lp->revid >= SIS635A_900_REV || lp->revid == SIS900B_900_REV) {
835 		hash_shift = 24;
836 	}
837 	hash_size = (1 << (32 - hash_shift)) / 16;
838 	bzero(hash_tbl, sizeof (hash_tbl));
839 
840 	/* Set Receive filter control register */
841 
842 	if (dp->rxmode & RXMODE_PROMISC) {
843 		/* all broadcast, all multicast, all physical */
844 		mode = RFCR_AAB | RFCR_AAM | RFCR_AAP;
845 	} else if ((dp->rxmode & RXMODE_ALLMULTI) ||
846 	    dp->mc_count > hash_size*16/2) {
847 		/* all broadcast, all multicast, physical for the chip */
848 		mode = RFCR_AAB | RFCR_AAM;
849 	} else {
850 		/* all broadcast, physical for the chip */
851 		mode = RFCR_AAB;
852 	}
853 
854 	/* make hash table */
855 	for (i = 0; i < dp->mc_count; i++) {
856 		uint_t	h;
857 		h = dp->mc_list[i].hash >> hash_shift;
858 		hash_tbl[h / 16] |= 1 << (h % 16);
859 	}
860 
861 	if (bcmp(mac, lp->mac_addr, ETHERADDRL) != 0) {
862 		/* Disable Rx filter and load mac address */
863 		for (i = 0; i < ETHERADDRL/2; i++) {
864 			/* For sis900, index is in word */
865 			OUTLINL(dp, RFCR,
866 			    (RFADDR_MAC_SIS900+i) << RFCR_RFADDR_SHIFT_SIS900);
867 			OUTLINL(dp, RFDR, (mac[i*2+1] << 8) | mac[i*2]);
868 		}
869 
870 		bcopy(mac, lp->mac_addr, ETHERADDRL);
871 	}
872 
873 	/* Load Multicast hash table */
874 	for (i = 0; i < hash_size; i++) {
875 		/* For sis900, index is in word */
876 		OUTLINL(dp, RFCR,
877 		    (RFADDR_MULTICAST_SIS900 + i) << RFCR_RFADDR_SHIFT_SIS900);
878 		OUTLINL(dp, RFDR, hash_tbl[i]);
879 	}
880 
881 	/* Load rx filter mode and enable rx filter */
882 	OUTLINL(dp, RFCR, RFCR_RFEN | mode);
883 
884 	return (GEM_SUCCESS);
885 }
886 
887 static int
888 sfe_start_chip(struct gem_dev *dp)
889 {
890 	struct sfe_dev	*lp = dp->private;
891 
892 	DPRINTF(4, (CE_CONT, CONS "%s: %s: called", dp->name, __func__));
893 
894 	/*
895 	 * setup interrupt mask, which shouldn't include ISR_TOK
896 	 * to improve performance.
897 	 */
898 	lp->our_intr_bits = OUR_INTR_BITS;
899 
900 	/* enable interrupt */
901 	if ((dp->misc_flag & GEM_NOINTR) == 0) {
902 		OUTL(dp, IER, 1);
903 		OUTL(dp, IMR, lp->our_intr_bits);
904 	}
905 
906 	/* Kick RX */
907 	OUTL(dp, CR, lp->cr | CR_RXE);
908 
909 	return (GEM_SUCCESS);
910 }
911 
912 /*
913  * Stop nic core gracefully.
914  */
915 static int
916 sfe_stop_chip(struct gem_dev *dp)
917 {
918 	struct sfe_dev	*lp = dp->private;
919 	uint32_t	done;
920 	int		i;
921 	uint32_t	val;
922 
923 	DPRINTF(4, (CE_CONT, CONS "%s: %s: called", dp->name, __func__));
924 
925 	/*
926 	 * Although we inhibit interrupt here, we don't clear soft copy of
927 	 * interrupt mask to avoid bogus interrupts.
928 	 */
929 	OUTL(dp, IMR, 0);
930 
931 	/* stop TX and RX immediately */
932 	OUTL(dp, CR, lp->cr | CR_TXR | CR_RXR);
933 
934 	done = 0;
935 	for (i = 0; done != (ISR_RXRCMP | ISR_TXRCMP); i++) {
936 		if (i > 1000) {
937 			/*
938 			 * As gem layer will call sfe_reset_chip(),
939 			 * we don't neet to reset futher
940 			 */
941 			cmn_err(CE_NOTE, "!%s: %s: Tx/Rx reset timeout",
942 			    dp->name, __func__);
943 
944 			return (GEM_FAILURE);
945 		}
946 		val = INL(dp, ISR);
947 		done |= val & (ISR_RXRCMP | ISR_TXRCMP);
948 		lp->isr_pended |= val & lp->our_intr_bits;
949 		drv_usecwait(10);
950 	}
951 
952 	return (GEM_SUCCESS);
953 }
954 
955 /*
956  * Setup media mode
957  */
958 static uint_t
959 sfe_mxdma_value[] = { 512, 4, 8, 16, 32, 64, 128, 256, };
960 
961 static uint_t
962 sfe_encode_mxdma(uint_t burstsize)
963 {
964 	int	i;
965 
966 	if (burstsize > 256) {
967 		/* choose 512 */
968 		return (0);
969 	}
970 
971 	for (i = 1; i < 8; i++) {
972 		if (burstsize <= sfe_mxdma_value[i]) {
973 			break;
974 		}
975 	}
976 	return (i);
977 }
978 
979 static int
980 sfe_set_media(struct gem_dev *dp)
981 {
982 	uint32_t	txcfg;
983 	uint32_t	rxcfg;
984 	uint32_t	pcr;
985 	uint32_t	val;
986 	uint32_t	txmxdma;
987 	uint32_t	rxmxdma;
988 	struct sfe_dev	*lp = dp->private;
989 #ifdef DEBUG_LEVEL
990 	extern int	gem_speed_value[];
991 #endif
992 	DPRINTF(2, (CE_CONT, CONS "%s: %s: %s duplex, %d Mbps",
993 	    dp->name, __func__,
994 	    dp->full_duplex ? "full" : "half", gem_speed_value[dp->speed]));
995 
996 	/* initialize txcfg and rxcfg */
997 	txcfg = TXCFG_ATP;
998 	if (dp->full_duplex) {
999 		txcfg |= (TXCFG_CSI | TXCFG_HBI);
1000 	}
1001 	rxcfg = RXCFG_AEP | RXCFG_ARP;
1002 	if (dp->full_duplex) {
1003 		rxcfg |= RXCFG_ATX;
1004 	}
1005 
1006 	/* select txmxdma and rxmxdma, maxmum burst length */
1007 	if (lp->chip->chip_type == CHIPTYPE_SIS900) {
1008 #ifdef DEBUG_SIS900_EDB
1009 		val = CFG_EDB_MASTER;
1010 #else
1011 		val = INL(dp, CFG) & CFG_EDB_MASTER;
1012 #endif
1013 		if (val) {
1014 			/*
1015 			 * sis900 built-in cores:
1016 			 * max burst length must be fixed to 64
1017 			 */
1018 			txmxdma = 64;
1019 			rxmxdma = 64;
1020 		} else {
1021 			/*
1022 			 * sis900 pci chipset:
1023 			 * the vendor recommended to fix max burst length
1024 			 * to 512
1025 			 */
1026 			txmxdma = 512;
1027 			rxmxdma = 512;
1028 		}
1029 	} else {
1030 		/*
1031 		 * NS dp83815/816:
1032 		 * use user defined or default for tx/rx max burst length
1033 		 */
1034 		txmxdma = max(dp->txmaxdma, 256);
1035 		rxmxdma = max(dp->rxmaxdma, 256);
1036 	}
1037 
1038 
1039 	/* tx high water mark */
1040 	lp->tx_drain_threshold = ROUNDUP2(dp->txthr, TXCFG_FIFO_UNIT);
1041 
1042 	/* determine tx_fill_threshold accroding drain threshold */
1043 	lp->tx_fill_threshold =
1044 	    TXFIFOSIZE - lp->tx_drain_threshold - TXCFG_FIFO_UNIT;
1045 
1046 	/* tune txmxdma not to exceed tx_fill_threshold */
1047 	for (; ; ) {
1048 		/* normalize txmxdma requested */
1049 		val = sfe_encode_mxdma(txmxdma);
1050 		txmxdma = sfe_mxdma_value[val];
1051 
1052 		if (txmxdma <= lp->tx_fill_threshold) {
1053 			break;
1054 		}
1055 		/* select new txmxdma */
1056 		txmxdma = txmxdma / 2;
1057 	}
1058 	txcfg |= val << TXCFG_MXDMA_SHIFT;
1059 
1060 	/* encode rxmxdma, maxmum burst length for rx */
1061 	val = sfe_encode_mxdma(rxmxdma);
1062 	rxcfg |= val << RXCFG_MXDMA_SHIFT;
1063 	rxmxdma = sfe_mxdma_value[val];
1064 
1065 	/* receive starting threshold - it have only 5bit-wide field */
1066 	val = ROUNDUP2(max(dp->rxthr, ETHERMIN), RXCFG_FIFO_UNIT);
1067 	lp->rx_drain_threshold =
1068 	    min(val, (RXCFG_DRTH >> RXCFG_DRTH_SHIFT) * RXCFG_FIFO_UNIT);
1069 
1070 	DPRINTF(0, (CE_CONT,
1071 	    "%s: %s: tx: drain:%d(rest %d) fill:%d mxdma:%d,"
1072 	    " rx: drain:%d mxdma:%d",
1073 	    dp->name, __func__,
1074 	    lp->tx_drain_threshold, TXFIFOSIZE - lp->tx_drain_threshold,
1075 	    lp->tx_fill_threshold, txmxdma,
1076 	    lp->rx_drain_threshold, rxmxdma));
1077 
1078 	ASSERT(lp->tx_drain_threshold < 64*TXCFG_FIFO_UNIT);
1079 	ASSERT(lp->tx_fill_threshold < 64*TXCFG_FIFO_UNIT);
1080 	ASSERT(lp->rx_drain_threshold < 32*RXCFG_FIFO_UNIT);
1081 
1082 	txcfg |= ((lp->tx_fill_threshold/TXCFG_FIFO_UNIT) << TXCFG_FLTH_SHIFT)
1083 	    | (lp->tx_drain_threshold/TXCFG_FIFO_UNIT);
1084 	OUTL(dp, TXCFG, txcfg);
1085 
1086 	rxcfg |= ((lp->rx_drain_threshold/RXCFG_FIFO_UNIT) << RXCFG_DRTH_SHIFT);
1087 	if (lp->chip->chip_type == CHIPTYPE_DP83815) {
1088 		rxcfg |= RXCFG_ALP_DP83815;
1089 	}
1090 	OUTL(dp, RXCFG, rxcfg);
1091 
1092 	DPRINTF(0, (CE_CONT, CONS "%s: %s: txcfg:%b rxcfg:%b",
1093 	    dp->name, __func__,
1094 	    txcfg, TXCFG_BITS, rxcfg, RXCFG_BITS));
1095 
1096 	/* Flow control */
1097 	if (lp->chip->chip_type == CHIPTYPE_DP83815) {
1098 		pcr = INL(dp, PCR);
1099 		switch (dp->flow_control) {
1100 		case FLOW_CONTROL_SYMMETRIC:
1101 		case FLOW_CONTROL_RX_PAUSE:
1102 			OUTL(dp, PCR, pcr | PCR_PSEN | PCR_PS_MCAST);
1103 			break;
1104 
1105 		default:
1106 			OUTL(dp, PCR,
1107 			    pcr & ~(PCR_PSEN | PCR_PS_MCAST | PCR_PS_DA));
1108 			break;
1109 		}
1110 		DPRINTF(2, (CE_CONT, CONS "%s: PCR: %b", dp->name,
1111 		    INL(dp, PCR), PCR_BITS));
1112 
1113 	} else if (lp->chip->chip_type == CHIPTYPE_SIS900) {
1114 		switch (dp->flow_control) {
1115 		case FLOW_CONTROL_SYMMETRIC:
1116 		case FLOW_CONTROL_RX_PAUSE:
1117 			OUTL(dp, FLOWCTL, FLOWCTL_FLOWEN);
1118 			break;
1119 		default:
1120 			OUTL(dp, FLOWCTL, 0);
1121 			break;
1122 		}
1123 		DPRINTF(2, (CE_CONT, CONS "%s: FLOWCTL: %b",
1124 		    dp->name, INL(dp, FLOWCTL), FLOWCTL_BITS));
1125 	}
1126 	return (GEM_SUCCESS);
1127 }
1128 
1129 static int
1130 sfe_get_stats(struct gem_dev *dp)
1131 {
1132 	/* do nothing */
1133 	return (GEM_SUCCESS);
1134 }
1135 
1136 /*
1137  * descriptor manipulations
1138  */
1139 static int
1140 sfe_tx_desc_write(struct gem_dev *dp, int slot,
1141 		ddi_dma_cookie_t *dmacookie, int frags, uint64_t flags)
1142 {
1143 	uint32_t		mark;
1144 	struct sfe_desc		*tdp;
1145 	ddi_dma_cookie_t	*dcp;
1146 	uint32_t		tmp0;
1147 #if DEBUG_LEVEL > 2
1148 	int			i;
1149 
1150 	cmn_err(CE_CONT,
1151 	    CONS "%s: time:%d %s seqnum: %d, slot %d, frags: %d flags: %llx",
1152 	    dp->name, ddi_get_lbolt(), __func__,
1153 	    dp->tx_desc_tail, slot, frags, flags);
1154 
1155 	for (i = 0; i < frags; i++) {
1156 		cmn_err(CE_CONT, CONS "%d: addr: 0x%x, len: 0x%x",
1157 		    i, dmacookie[i].dmac_address, dmacookie[i].dmac_size);
1158 	}
1159 #endif
1160 	/*
1161 	 * write tx descriptor in reversed order.
1162 	 */
1163 #if DEBUG_LEVEL > 3
1164 	flags |= GEM_TXFLAG_INTR;
1165 #endif
1166 	mark = (flags & GEM_TXFLAG_INTR)
1167 	    ? (CMDSTS_OWN | CMDSTS_INTR) : CMDSTS_OWN;
1168 
1169 	ASSERT(frags == 1);
1170 	dcp = &dmacookie[0];
1171 	if (flags & GEM_TXFLAG_HEAD) {
1172 		mark &= ~CMDSTS_OWN;
1173 	}
1174 
1175 	tdp = (void *)&dp->tx_ring[SFE_DESC_SIZE * slot];
1176 	tmp0 = (uint32_t)dcp->dmac_address;
1177 	mark |= (uint32_t)dcp->dmac_size;
1178 	tdp->d_bufptr = LE_32(tmp0);
1179 	tdp->d_cmdsts = LE_32(mark);
1180 
1181 	return (frags);
1182 }
1183 
1184 static void
1185 sfe_tx_start(struct gem_dev *dp, int start_slot, int nslot)
1186 {
1187 	uint_t			tx_ring_size = dp->gc.gc_tx_ring_size;
1188 	struct sfe_desc		*tdp;
1189 	struct sfe_dev		*lp = dp->private;
1190 
1191 	if (nslot > 1) {
1192 		gem_tx_desc_dma_sync(dp,
1193 		    SLOT(start_slot + 1, tx_ring_size),
1194 		    nslot - 1, DDI_DMA_SYNC_FORDEV);
1195 	}
1196 
1197 	tdp = (void *)&dp->tx_ring[SFE_DESC_SIZE * start_slot];
1198 	tdp->d_cmdsts |= LE_32(CMDSTS_OWN);
1199 
1200 	gem_tx_desc_dma_sync(dp, start_slot, 1, DDI_DMA_SYNC_FORDEV);
1201 
1202 	/*
1203 	 * Let the Transmit Buffer Manager Fill state machine active.
1204 	 */
1205 	if (dp->mac_active) {
1206 		OUTL(dp, CR, lp->cr | CR_TXE);
1207 	}
1208 }
1209 
1210 static void
1211 sfe_rx_desc_write(struct gem_dev *dp, int slot,
1212 	    ddi_dma_cookie_t *dmacookie, int frags)
1213 {
1214 	struct sfe_desc		*rdp;
1215 	uint32_t		tmp0;
1216 	uint32_t		tmp1;
1217 #if DEBUG_LEVEL > 2
1218 	int			i;
1219 
1220 	ASSERT(frags == 1);
1221 
1222 	cmn_err(CE_CONT, CONS
1223 	    "%s: %s seqnum: %d, slot %d, frags: %d",
1224 	    dp->name, __func__, dp->rx_active_tail, slot, frags);
1225 	for (i = 0; i < frags; i++) {
1226 		cmn_err(CE_CONT, CONS "  frag: %d addr: 0x%llx, len: 0x%lx",
1227 		    i, dmacookie[i].dmac_address, dmacookie[i].dmac_size);
1228 	}
1229 #endif
1230 	/* for the last slot of the packet */
1231 	rdp = (void *)&dp->rx_ring[SFE_DESC_SIZE * slot];
1232 
1233 	tmp0 = (uint32_t)dmacookie->dmac_address;
1234 	tmp1 = CMDSTS_INTR | (uint32_t)dmacookie->dmac_size;
1235 	rdp->d_bufptr = LE_32(tmp0);
1236 	rdp->d_cmdsts = LE_32(tmp1);
1237 }
1238 
1239 static uint_t
1240 sfe_tx_desc_stat(struct gem_dev *dp, int slot, int ndesc)
1241 {
1242 	uint_t			tx_ring_size = dp->gc.gc_tx_ring_size;
1243 	struct sfe_desc		*tdp;
1244 	uint32_t		status;
1245 	int			cols;
1246 	struct sfe_dev		*lp = dp->private;
1247 #ifdef DEBUG_LEVEL
1248 	int			i;
1249 	clock_t			delay;
1250 #endif
1251 	/* check status of the last descriptor */
1252 	tdp = (void *)
1253 	    &dp->tx_ring[SFE_DESC_SIZE * SLOT(slot + ndesc - 1, tx_ring_size)];
1254 
1255 	/*
1256 	 * Don't use LE_32() directly to refer tdp->d_cmdsts.
1257 	 * It is not atomic for big endian cpus.
1258 	 */
1259 	status = tdp->d_cmdsts;
1260 	status = LE_32(status);
1261 
1262 	DPRINTF(2, (CE_CONT, CONS "%s: time:%ld %s: slot:%d, status:0x%b",
1263 	    dp->name, ddi_get_lbolt(), __func__,
1264 	    slot, status, TXSTAT_BITS));
1265 
1266 	if (status & CMDSTS_OWN) {
1267 		/*
1268 		 * not yet transmitted
1269 		 */
1270 		/* workaround for tx hang */
1271 		if (lp->chip->chip_type == CHIPTYPE_DP83815 &&
1272 		    dp->mac_active) {
1273 			OUTL(dp, CR, lp->cr | CR_TXE);
1274 		}
1275 		return (0);
1276 	}
1277 
1278 	if (status & CMDSTS_MORE) {
1279 		/* XXX - the hardware problem but don't panic the system */
1280 		/* avoid lint bug for %b format string including 32nd bit */
1281 		cmn_err(CE_NOTE, CONS
1282 		    "%s: tx status bits incorrect:  slot:%d, status:0x%x",
1283 		    dp->name, slot, status);
1284 	}
1285 
1286 #if DEBUG_LEVEL > 3
1287 	delay = (ddi_get_lbolt() - dp->tx_buf_head->txb_stime) * 10;
1288 	if (delay >= 50) {
1289 		DPRINTF(0, (CE_NOTE, "%s: tx deferred %d mS: slot %d",
1290 		    dp->name, delay, slot));
1291 	}
1292 #endif
1293 
1294 #if DEBUG_LEVEL > 3
1295 	for (i = 0; i < nfrag-1; i++) {
1296 		uint32_t	s;
1297 		int		n;
1298 
1299 		n = SLOT(slot + i, tx_ring_size);
1300 		s = LE_32(
1301 		    ((struct sfe_desc *)((void *)
1302 		    &dp->tx_ring[SFE_DESC_SIZE * n]))->d_cmdsts);
1303 
1304 		ASSERT(s & CMDSTS_MORE);
1305 		ASSERT((s & CMDSTS_OWN) == 0);
1306 	}
1307 #endif
1308 
1309 	/*
1310 	 *  collect statistics
1311 	 */
1312 	if ((status & CMDSTS_OK) == 0) {
1313 
1314 		/* failed to transmit the packet */
1315 
1316 		DPRINTF(0, (CE_CONT, CONS "%s: Transmit error, Tx status %b",
1317 		    dp->name, status, TXSTAT_BITS));
1318 
1319 		dp->stats.errxmt++;
1320 
1321 		if (status & CMDSTS_TFU) {
1322 			dp->stats.underflow++;
1323 		} else if (status & CMDSTS_CRS) {
1324 			dp->stats.nocarrier++;
1325 		} else if (status & CMDSTS_OWC) {
1326 			dp->stats.xmtlatecoll++;
1327 		} else if ((!dp->full_duplex) && (status & CMDSTS_EC)) {
1328 			dp->stats.excoll++;
1329 			dp->stats.collisions += 16;
1330 		} else {
1331 			dp->stats.xmit_internal_err++;
1332 		}
1333 	} else if (!dp->full_duplex) {
1334 		cols = (status >> CMDSTS_CCNT_SHIFT) & CCNT_MASK;
1335 
1336 		if (cols > 0) {
1337 			if (cols == 1) {
1338 				dp->stats.first_coll++;
1339 			} else /* (cols > 1) */ {
1340 				dp->stats.multi_coll++;
1341 			}
1342 			dp->stats.collisions += cols;
1343 		} else if (status & CMDSTS_TD) {
1344 			dp->stats.defer++;
1345 		}
1346 	}
1347 	return (GEM_TX_DONE);
1348 }
1349 
1350 static uint64_t
1351 sfe_rx_desc_stat(struct gem_dev *dp, int slot, int ndesc)
1352 {
1353 	struct sfe_desc		*rdp;
1354 	uint_t			len;
1355 	uint_t			flag;
1356 	uint32_t		status;
1357 
1358 	flag = GEM_RX_DONE;
1359 
1360 	/* Dont read ISR because we cannot ack only to rx interrupt. */
1361 
1362 	rdp = (void *)&dp->rx_ring[SFE_DESC_SIZE * slot];
1363 
1364 	/*
1365 	 * Don't use LE_32() directly to refer rdp->d_cmdsts.
1366 	 * It is not atomic for big endian cpus.
1367 	 */
1368 	status = rdp->d_cmdsts;
1369 	status = LE_32(status);
1370 
1371 	DPRINTF(2, (CE_CONT, CONS "%s: time:%ld %s: slot:%d, status:0x%b",
1372 	    dp->name, ddi_get_lbolt(), __func__,
1373 	    slot, status, RXSTAT_BITS));
1374 
1375 	if ((status & CMDSTS_OWN) == 0) {
1376 		/*
1377 		 * No more received packets because
1378 		 * this buffer is owned by NIC.
1379 		 */
1380 		return (0);
1381 	}
1382 
1383 #define	RX_ERR_BITS \
1384 	(CMDSTS_RXA | CMDSTS_RXO | CMDSTS_LONG | CMDSTS_RUNT | \
1385 		CMDSTS_ISE | CMDSTS_CRCE | CMDSTS_FAE | CMDSTS_MORE)
1386 
1387 	if (status & RX_ERR_BITS) {
1388 		/*
1389 		 * Packet with error received
1390 		 */
1391 		DPRINTF(0, (CE_CONT, CONS "%s: Corrupted packet "
1392 		    "received, buffer status: %b",
1393 		    dp->name, status, RXSTAT_BITS));
1394 
1395 		/* collect statistics information */
1396 		dp->stats.errrcv++;
1397 
1398 		if (status & CMDSTS_RXO) {
1399 			dp->stats.overflow++;
1400 		} else if (status & (CMDSTS_LONG | CMDSTS_MORE)) {
1401 			dp->stats.frame_too_long++;
1402 		} else if (status & CMDSTS_RUNT) {
1403 			dp->stats.runt++;
1404 		} else if (status & (CMDSTS_ISE | CMDSTS_FAE)) {
1405 			dp->stats.frame++;
1406 		} else if (status & CMDSTS_CRCE) {
1407 			dp->stats.crc++;
1408 		} else {
1409 			dp->stats.rcv_internal_err++;
1410 		}
1411 
1412 		return (flag | GEM_RX_ERR);
1413 	}
1414 
1415 	/*
1416 	 * this packet was received without errors
1417 	 */
1418 	if ((len = (status & CMDSTS_SIZE)) >= ETHERFCSL) {
1419 		len -= ETHERFCSL;
1420 	}
1421 
1422 #if DEBUG_LEVEL > 10
1423 {
1424 	int	i;
1425 	uint8_t	*bp = dp->rx_buf_head->rxb_buf;
1426 
1427 	cmn_err(CE_CONT, CONS "%s: len:%d", dp->name, len);
1428 
1429 	for (i = 0; i < 60; i += 10) {
1430 		cmn_err(CE_CONT, CONS
1431 		    "%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1432 		    bp[0], bp[1], bp[2], bp[3], bp[4],
1433 		    bp[5], bp[6], bp[7], bp[8], bp[9]);
1434 	}
1435 	bp += 10;
1436 }
1437 #endif
1438 	return (flag | (len & GEM_RX_LEN));
1439 }
1440 
1441 static void
1442 sfe_tx_desc_init(struct gem_dev *dp, int slot)
1443 {
1444 	uint_t			tx_ring_size = dp->gc.gc_tx_ring_size;
1445 	struct sfe_desc		*tdp;
1446 	uint32_t		here;
1447 
1448 	tdp = (void *)&dp->tx_ring[SFE_DESC_SIZE * slot];
1449 
1450 	/* don't clear d_link field, which have a valid pointer */
1451 	tdp->d_cmdsts = 0;
1452 
1453 	/* make a link to this from the previous descriptor */
1454 	here = ((uint32_t)dp->tx_ring_dma) + SFE_DESC_SIZE*slot;
1455 
1456 	tdp = (void *)
1457 	    &dp->tx_ring[SFE_DESC_SIZE * SLOT(slot - 1, tx_ring_size)];
1458 	tdp->d_link = LE_32(here);
1459 }
1460 
1461 static void
1462 sfe_rx_desc_init(struct gem_dev *dp, int slot)
1463 {
1464 	uint_t			rx_ring_size = dp->gc.gc_rx_ring_size;
1465 	struct sfe_desc		*rdp;
1466 	uint32_t		here;
1467 
1468 	rdp = (void *)&dp->rx_ring[SFE_DESC_SIZE * slot];
1469 
1470 	/* don't clear d_link field, which have a valid pointer */
1471 	rdp->d_cmdsts = LE_32(CMDSTS_OWN);
1472 
1473 	/* make a link to this from the previous descriptor */
1474 	here = ((uint32_t)dp->rx_ring_dma) + SFE_DESC_SIZE*slot;
1475 
1476 	rdp = (void *)
1477 	    &dp->rx_ring[SFE_DESC_SIZE * SLOT(slot - 1, rx_ring_size)];
1478 	rdp->d_link = LE_32(here);
1479 }
1480 
1481 static void
1482 sfe_tx_desc_clean(struct gem_dev *dp, int slot)
1483 {
1484 	struct sfe_desc		*tdp;
1485 
1486 	tdp = (void *)&dp->tx_ring[SFE_DESC_SIZE * slot];
1487 	tdp->d_cmdsts = 0;
1488 }
1489 
1490 static void
1491 sfe_rx_desc_clean(struct gem_dev *dp, int slot)
1492 {
1493 	struct sfe_desc		*rdp;
1494 
1495 	rdp = (void *)&dp->rx_ring[SFE_DESC_SIZE * slot];
1496 	rdp->d_cmdsts = LE_32(CMDSTS_OWN);
1497 }
1498 
1499 /*
1500  * Device depend interrupt handler
1501  */
1502 static uint_t
1503 sfe_interrupt(struct gem_dev *dp)
1504 {
1505 	uint_t		rx_ring_size = dp->gc.gc_rx_ring_size;
1506 	uint32_t	isr;
1507 	uint32_t	isr_bogus;
1508 	uint_t		flags = 0;
1509 	boolean_t	need_to_reset = B_FALSE;
1510 	struct sfe_dev	*lp = dp->private;
1511 
1512 	/* read reason and clear interrupt */
1513 	isr = INL(dp, ISR);
1514 
1515 	isr_bogus = lp->isr_pended;
1516 	lp->isr_pended = 0;
1517 
1518 	if (((isr | isr_bogus) & lp->our_intr_bits) == 0) {
1519 		/* we are not the interrupt source */
1520 		return (DDI_INTR_UNCLAIMED);
1521 	}
1522 
1523 	DPRINTF(3, (CE_CONT,
1524 	    CONS "%s: time:%ld %s:called: isr:0x%b rx_active_head: %d",
1525 	    dp->name, ddi_get_lbolt(), __func__,
1526 	    isr, INTR_BITS, dp->rx_active_head));
1527 
1528 	if (!dp->mac_active) {
1529 		/* the device is going to stop */
1530 		lp->our_intr_bits = 0;
1531 		return (DDI_INTR_CLAIMED);
1532 	}
1533 
1534 	isr &= lp->our_intr_bits;
1535 
1536 	if (isr & (ISR_RXSOVR | ISR_RXORN | ISR_RXIDLE | ISR_RXERR |
1537 	    ISR_RXDESC | ISR_RXOK)) {
1538 		(void) gem_receive(dp);
1539 
1540 		if (isr & (ISR_RXSOVR | ISR_RXORN)) {
1541 			DPRINTF(0, (CE_CONT,
1542 			    CONS "%s: rx fifo overrun: isr %b",
1543 			    dp->name, isr, INTR_BITS));
1544 			/* no need restart rx */
1545 			dp->stats.overflow++;
1546 		}
1547 
1548 		if (isr & ISR_RXIDLE) {
1549 			DPRINTF(0, (CE_CONT,
1550 			    CONS "%s: rx buffer ran out: isr %b",
1551 			    dp->name, isr, INTR_BITS));
1552 
1553 			dp->stats.norcvbuf++;
1554 
1555 			/*
1556 			 * Make RXDP points the head of receive
1557 			 * buffer list.
1558 			 */
1559 			OUTL(dp, RXDP, dp->rx_ring_dma +
1560 			    SFE_DESC_SIZE *
1561 			    SLOT(dp->rx_active_head, rx_ring_size));
1562 
1563 			/* Restart the receive engine */
1564 			OUTL(dp, CR, lp->cr | CR_RXE);
1565 		}
1566 	}
1567 
1568 	if (isr & (ISR_TXURN | ISR_TXERR | ISR_TXDESC |
1569 	    ISR_TXIDLE | ISR_TXOK)) {
1570 		/* need to reclaim tx buffers */
1571 		if (gem_tx_done(dp)) {
1572 			flags |= INTR_RESTART_TX;
1573 		}
1574 		/*
1575 		 * XXX - tx error statistics will be counted in
1576 		 * sfe_tx_desc_stat() and no need to restart tx on errors.
1577 		 */
1578 	}
1579 
1580 	if (isr & (ISR_DPERR | ISR_SSERR | ISR_RMABT | ISR_RTABT)) {
1581 		cmn_err(CE_WARN, "%s: ERROR interrupt: isr %b.",
1582 		    dp->name, isr, INTR_BITS);
1583 		need_to_reset = B_TRUE;
1584 	}
1585 reset:
1586 	if (need_to_reset) {
1587 		(void) gem_restart_nic(dp, GEM_RESTART_KEEP_BUF);
1588 		flags |= INTR_RESTART_TX;
1589 	}
1590 
1591 	DPRINTF(5, (CE_CONT, CONS "%s: %s: return: isr: %b",
1592 	    dp->name, __func__, isr, INTR_BITS));
1593 
1594 	return (DDI_INTR_CLAIMED | flags);
1595 }
1596 
1597 /* ======================================================== */
1598 /*
1599  * HW depend MII routine
1600  */
1601 /* ======================================================== */
1602 
1603 /*
1604  * MII routines for NS DP83815
1605  */
1606 static void
1607 sfe_mii_sync_dp83815(struct gem_dev *dp)
1608 {
1609 	/* do nothing */
1610 }
1611 
1612 static uint16_t
1613 sfe_mii_read_dp83815(struct gem_dev *dp, uint_t offset)
1614 {
1615 	DPRINTF(4, (CE_CONT, CONS"%s: %s: offset 0x%x",
1616 	    dp->name, __func__, offset));
1617 	return ((uint16_t)INL(dp, MII_REGS_BASE + offset*4));
1618 }
1619 
1620 static void
1621 sfe_mii_write_dp83815(struct gem_dev *dp, uint_t offset, uint16_t val)
1622 {
1623 	DPRINTF(4, (CE_CONT, CONS"%s: %s: offset 0x%x 0x%x",
1624 	    dp->name, __func__, offset, val));
1625 	OUTL(dp, MII_REGS_BASE + offset*4, val);
1626 }
1627 
1628 static int
1629 sfe_mii_config_dp83815(struct gem_dev *dp)
1630 {
1631 	uint32_t	srr;
1632 
1633 	srr = INL(dp, SRR) & SRR_REV;
1634 
1635 	DPRINTF(0, (CE_CONT, CONS "%s: srr:0x%04x %04x %04x %04x %04x %04x",
1636 	    dp->name, srr,
1637 	    INW(dp, 0x00cc),	/* PGSEL */
1638 	    INW(dp, 0x00e4),	/* PMDCSR */
1639 	    INW(dp, 0x00fc),	/* TSTDAT */
1640 	    INW(dp, 0x00f4),	/* DSPCFG */
1641 	    INW(dp, 0x00f8)));	/* SDCFG */
1642 
1643 	if (srr == SRR_REV_DP83815CVNG) {
1644 		/*
1645 		 * NS datasheet says that DP83815CVNG needs following
1646 		 * registers to be patched for optimizing its performance.
1647 		 * A report said that CRC errors on RX disappeared
1648 		 * with the patch.
1649 		 */
1650 		OUTW(dp, 0x00cc, 0x0001);	/* PGSEL */
1651 		OUTW(dp, 0x00e4, 0x189c);	/* PMDCSR */
1652 		OUTW(dp, 0x00fc, 0x0000);	/* TSTDAT */
1653 		OUTW(dp, 0x00f4, 0x5040);	/* DSPCFG */
1654 		OUTW(dp, 0x00f8, 0x008c);	/* SDCFG */
1655 		OUTW(dp, 0x00cc, 0x0000);	/* PGSEL */
1656 
1657 		DPRINTF(0, (CE_CONT,
1658 		    CONS "%s: PHY patched %04x %04x %04x %04x %04x",
1659 		    dp->name,
1660 		    INW(dp, 0x00cc),	/* PGSEL */
1661 		    INW(dp, 0x00e4),	/* PMDCSR */
1662 		    INW(dp, 0x00fc),	/* TSTDAT */
1663 		    INW(dp, 0x00f4),	/* DSPCFG */
1664 		    INW(dp, 0x00f8)));	/* SDCFG */
1665 	} else if (((srr ^ SRR_REV_DP83815DVNG) & 0xff00) == 0 ||
1666 	    ((srr ^ SRR_REV_DP83816AVNG) & 0xff00) == 0) {
1667 		/*
1668 		 * Additional packets for later chipset
1669 		 */
1670 		OUTW(dp, 0x00cc, 0x0001);	/* PGSEL */
1671 		OUTW(dp, 0x00e4, 0x189c);	/* PMDCSR */
1672 		OUTW(dp, 0x00cc, 0x0000);	/* PGSEL */
1673 
1674 		DPRINTF(0, (CE_CONT,
1675 		    CONS "%s: PHY patched %04x %04x",
1676 		    dp->name,
1677 		    INW(dp, 0x00cc),	/* PGSEL */
1678 		    INW(dp, 0x00e4)));	/* PMDCSR */
1679 	}
1680 
1681 	return (gem_mii_config_default(dp));
1682 }
1683 
1684 static int
1685 sfe_mii_probe_dp83815(struct gem_dev *dp)
1686 {
1687 	uint32_t	val;
1688 
1689 	/* try external phy first */
1690 	DPRINTF(0, (CE_CONT, CONS "%s: %s: trying external phy",
1691 	    dp->name, __func__));
1692 	dp->mii_phy_addr = 0;
1693 	dp->gc.gc_mii_sync = &sfe_mii_sync_sis900;
1694 	dp->gc.gc_mii_read = &sfe_mii_read_sis900;
1695 	dp->gc.gc_mii_write = &sfe_mii_write_sis900;
1696 
1697 	val = INL(dp, CFG) & (CFG_ANEG_SEL | CFG_PHY_CFG);
1698 	OUTL(dp, CFG, val | CFG_EXT_PHY | CFG_PHY_DIS);
1699 
1700 	if (gem_mii_probe_default(dp) == GEM_SUCCESS) {
1701 		return (GEM_SUCCESS);
1702 	}
1703 
1704 	/* switch to internal phy */
1705 	DPRINTF(0, (CE_CONT, CONS "%s: %s: switching to internal phy",
1706 	    dp->name, __func__));
1707 	dp->mii_phy_addr = -1;
1708 	dp->gc.gc_mii_sync = &sfe_mii_sync_dp83815;
1709 	dp->gc.gc_mii_read = &sfe_mii_read_dp83815;
1710 	dp->gc.gc_mii_write = &sfe_mii_write_dp83815;
1711 
1712 	val = INL(dp, CFG) & (CFG_ANEG_SEL | CFG_PHY_CFG);
1713 	OUTL(dp, CFG, val | CFG_PAUSE_ADV | CFG_PHY_RST);
1714 	drv_usecwait(100);	/* keep to assert RST bit for a while */
1715 	OUTL(dp, CFG, val | CFG_PAUSE_ADV);
1716 
1717 	/* wait for PHY reset */
1718 	delay(drv_usectohz(10000));
1719 
1720 	return (gem_mii_probe_default(dp));
1721 }
1722 
1723 static int
1724 sfe_mii_init_dp83815(struct gem_dev *dp)
1725 {
1726 	uint32_t	val;
1727 
1728 	val = INL(dp, CFG) & (CFG_ANEG_SEL | CFG_PHY_CFG);
1729 
1730 	if (dp->mii_phy_addr == -1) {
1731 		/* select internal phy */
1732 		OUTL(dp, CFG, val | CFG_PAUSE_ADV);
1733 	} else {
1734 		/* select external phy */
1735 		OUTL(dp, CFG, val | CFG_EXT_PHY | CFG_PHY_DIS);
1736 	}
1737 
1738 	return (GEM_SUCCESS);
1739 }
1740 
1741 /*
1742  * MII routines for SiS900
1743  */
1744 #define	MDIO_DELAY(dp)	{(void) INL(dp, MEAR); (void) INL(dp, MEAR); }
1745 static void
1746 sfe_mii_sync_sis900(struct gem_dev *dp)
1747 {
1748 	int	i;
1749 
1750 	/* send 32 ONE's to make MII line idle */
1751 	for (i = 0; i < 32; i++) {
1752 		OUTL(dp, MEAR, MEAR_MDDIR | MEAR_MDIO);
1753 		MDIO_DELAY(dp);
1754 		OUTL(dp, MEAR, MEAR_MDDIR | MEAR_MDIO | MEAR_MDC);
1755 		MDIO_DELAY(dp);
1756 	}
1757 }
1758 
1759 static int
1760 sfe_mii_config_sis900(struct gem_dev *dp)
1761 {
1762 	struct sfe_dev	*lp = dp->private;
1763 
1764 	/* Do chip depend setup */
1765 	if ((dp->mii_phy_id & PHY_MASK) == PHY_ICS1893) {
1766 		/* workaround for ICS1893 PHY */
1767 		gem_mii_write(dp, 0x0018, 0xD200);
1768 	}
1769 
1770 	if (lp->revid == SIS630E_900_REV) {
1771 		/*
1772 		 * SiS 630E has bugs on default values
1773 		 * of PHY registers
1774 		 */
1775 		gem_mii_write(dp, MII_AN_ADVERT, 0x05e1);
1776 		gem_mii_write(dp, MII_CONFIG1, 0x0022);
1777 		gem_mii_write(dp, MII_CONFIG2, 0xff00);
1778 		gem_mii_write(dp, MII_MASK,    0xffc0);
1779 	}
1780 	sfe_set_eq_sis630(dp);
1781 
1782 	return (gem_mii_config_default(dp));
1783 }
1784 
1785 static uint16_t
1786 sfe_mii_read_sis900(struct gem_dev *dp, uint_t reg)
1787 {
1788 	uint32_t	cmd;
1789 	uint16_t	ret;
1790 	int		i;
1791 	uint32_t	data;
1792 
1793 	cmd = MII_READ_CMD(dp->mii_phy_addr, reg);
1794 
1795 	for (i = 31; i >= 18; i--) {
1796 		data = ((cmd >> i) & 1) <<  MEAR_MDIO_SHIFT;
1797 		OUTL(dp, MEAR, data | MEAR_MDDIR);
1798 		MDIO_DELAY(dp);
1799 		OUTL(dp, MEAR, data | MEAR_MDDIR | MEAR_MDC);
1800 		MDIO_DELAY(dp);
1801 	}
1802 
1803 	/* turn around cycle */
1804 	OUTL(dp, MEAR, 0);
1805 	MDIO_DELAY(dp);
1806 
1807 	/* get response from PHY */
1808 	OUTL(dp, MEAR, MEAR_MDC);
1809 	MDIO_DELAY(dp);
1810 
1811 	OUTL(dp, MEAR, 0);
1812 #if DEBUG_LEBEL > 0
1813 	(void) INL(dp, MEAR);	/* delay */
1814 	if (INL(dp, MEAR) & MEAR_MDIO) {
1815 		cmn_err(CE_WARN, "%s: PHY@%d not responded",
1816 		    dp->name, dp->mii_phy_addr);
1817 	}
1818 #else
1819 	MDIO_DELAY(dp);
1820 #endif
1821 	/* terminate response cycle */
1822 	OUTL(dp, MEAR, MEAR_MDC);
1823 	MDIO_DELAY(dp);
1824 
1825 	ret = 0;	/* to avoid lint errors */
1826 	for (i = 16; i > 0; i--) {
1827 		OUTL(dp, MEAR, 0);
1828 		(void) INL(dp, MEAR);	/* delay */
1829 		ret = (ret << 1) | ((INL(dp, MEAR) >> MEAR_MDIO_SHIFT) & 1);
1830 		OUTL(dp, MEAR, MEAR_MDC);
1831 		MDIO_DELAY(dp);
1832 	}
1833 
1834 	/* send two idle(Z) bits to terminate the read cycle */
1835 	for (i = 0; i < 2; i++) {
1836 		OUTL(dp, MEAR, 0);
1837 		MDIO_DELAY(dp);
1838 		OUTL(dp, MEAR, MEAR_MDC);
1839 		MDIO_DELAY(dp);
1840 	}
1841 
1842 	return (ret);
1843 }
1844 
1845 static void
1846 sfe_mii_write_sis900(struct gem_dev *dp, uint_t reg, uint16_t val)
1847 {
1848 	uint32_t	cmd;
1849 	int		i;
1850 	uint32_t	data;
1851 
1852 	cmd = MII_WRITE_CMD(dp->mii_phy_addr, reg, val);
1853 
1854 	for (i = 31; i >= 0; i--) {
1855 		data = ((cmd >> i) & 1) << MEAR_MDIO_SHIFT;
1856 		OUTL(dp, MEAR, data | MEAR_MDDIR);
1857 		MDIO_DELAY(dp);
1858 		OUTL(dp, MEAR, data | MEAR_MDDIR | MEAR_MDC);
1859 		MDIO_DELAY(dp);
1860 	}
1861 
1862 	/* send two idle(Z) bits to terminate the write cycle. */
1863 	for (i = 0; i < 2; i++) {
1864 		OUTL(dp, MEAR, 0);
1865 		MDIO_DELAY(dp);
1866 		OUTL(dp, MEAR, MEAR_MDC);
1867 		MDIO_DELAY(dp);
1868 	}
1869 }
1870 #undef MDIO_DELAY
1871 
1872 static void
1873 sfe_set_eq_sis630(struct gem_dev *dp)
1874 {
1875 	uint16_t	reg14h;
1876 	uint16_t	eq_value;
1877 	uint16_t	max_value;
1878 	uint16_t	min_value;
1879 	int		i;
1880 	uint8_t		rev;
1881 	struct sfe_dev	*lp = dp->private;
1882 
1883 	rev = lp->revid;
1884 
1885 	if (!(rev == SIS630E_900_REV || rev == SIS630EA1_900_REV ||
1886 	    rev == SIS630A_900_REV || rev == SIS630ET_900_REV)) {
1887 		/* it doesn't have a internal PHY */
1888 		return;
1889 	}
1890 
1891 	if (dp->mii_state == MII_STATE_LINKUP) {
1892 		reg14h = gem_mii_read(dp, MII_RESV);
1893 		gem_mii_write(dp, MII_RESV, (0x2200 | reg14h) & 0xBFFF);
1894 
1895 		eq_value = (0x00f8 & gem_mii_read(dp, MII_RESV)) >> 3;
1896 		max_value = min_value = eq_value;
1897 		for (i = 1; i < 10; i++) {
1898 			eq_value = (0x00f8 & gem_mii_read(dp, MII_RESV)) >> 3;
1899 			max_value = max(eq_value, max_value);
1900 			min_value = min(eq_value, min_value);
1901 		}
1902 
1903 		/* for 630E, rule to determine the equalizer value */
1904 		if (rev == SIS630E_900_REV || rev == SIS630EA1_900_REV ||
1905 		    rev == SIS630ET_900_REV) {
1906 			if (max_value < 5) {
1907 				eq_value = max_value;
1908 			} else if (5 <= max_value && max_value < 15) {
1909 				eq_value =
1910 				    max(max_value + 1,
1911 				    min_value + 2);
1912 			} else if (15 <= max_value) {
1913 				eq_value =
1914 				    max(max_value + 5,
1915 				    min_value + 6);
1916 			}
1917 		}
1918 		/* for 630B0&B1, rule to determine the equalizer value */
1919 		else
1920 		if (rev == SIS630A_900_REV &&
1921 		    (lp->bridge_revid == SIS630B0 ||
1922 		    lp->bridge_revid == SIS630B1)) {
1923 
1924 			if (max_value == 0) {
1925 				eq_value = 3;
1926 			} else {
1927 				eq_value = (max_value + min_value + 1)/2;
1928 			}
1929 		}
1930 		/* write equalizer value and setting */
1931 		reg14h = gem_mii_read(dp, MII_RESV) & ~0x02f8;
1932 		reg14h |= 0x6000 | (eq_value << 3);
1933 		gem_mii_write(dp, MII_RESV, reg14h);
1934 	} else {
1935 		reg14h = (gem_mii_read(dp, MII_RESV) & ~0x4000) | 0x2000;
1936 		if (rev == SIS630A_900_REV &&
1937 		    (lp->bridge_revid == SIS630B0 ||
1938 		    lp->bridge_revid == SIS630B1)) {
1939 
1940 			reg14h |= 0x0200;
1941 		}
1942 		gem_mii_write(dp, MII_RESV, reg14h);
1943 	}
1944 }
1945 
1946 /* ======================================================== */
1947 /*
1948  * OS depend (device driver) routine
1949  */
1950 /* ======================================================== */
1951 static void
1952 sfe_chipinfo_init_sis900(struct gem_dev *dp)
1953 {
1954 	int		rev;
1955 	struct sfe_dev	*lp = (struct sfe_dev *)dp->private;
1956 
1957 	rev = lp->revid;
1958 
1959 	if (rev == SIS630E_900_REV /* 0x81 */) {
1960 		/* sis630E */
1961 		lp->get_mac_addr = &sfe_get_mac_addr_sis630e;
1962 	} else if (rev > 0x81 && rev <= 0x90) {
1963 		/* 630S, 630EA1, 630ET, 635A */
1964 		lp->get_mac_addr = &sfe_get_mac_addr_sis635;
1965 	} else if (rev == SIS962_900_REV /* 0x91 */) {
1966 		/* sis962 or later */
1967 		lp->get_mac_addr = &sfe_get_mac_addr_sis962;
1968 	} else {
1969 		/* sis900 */
1970 		lp->get_mac_addr = &sfe_get_mac_addr_sis900;
1971 	}
1972 
1973 	lp->bridge_revid = 0;
1974 
1975 	if (rev == SIS630E_900_REV || rev == SIS630EA1_900_REV ||
1976 	    rev == SIS630A_900_REV || rev ==  SIS630ET_900_REV) {
1977 		/*
1978 		 * read host bridge revision
1979 		 */
1980 		dev_info_t	*bridge;
1981 		ddi_acc_handle_t bridge_handle;
1982 
1983 		if ((bridge = sfe_search_pci_dev(0x1039, 0x630)) == NULL) {
1984 			cmn_err(CE_WARN,
1985 			    "%s: cannot find host bridge (pci1039,630)",
1986 			    dp->name);
1987 			return;
1988 		}
1989 
1990 		if (pci_config_setup(bridge, &bridge_handle) != DDI_SUCCESS) {
1991 			cmn_err(CE_WARN, "%s: pci_config_setup failed",
1992 			    dp->name);
1993 			return;
1994 		}
1995 
1996 		lp->bridge_revid =
1997 		    pci_config_get8(bridge_handle, PCI_CONF_REVID);
1998 		pci_config_teardown(&bridge_handle);
1999 	}
2000 }
2001 
2002 static int
2003 sfe_attach_chip(struct gem_dev *dp)
2004 {
2005 	struct sfe_dev		*lp = (struct sfe_dev *)dp->private;
2006 
2007 	DPRINTF(4, (CE_CONT, CONS "!%s: %s called", dp->name, __func__));
2008 
2009 	/* setup chip-depend get_mac_address function */
2010 	if (lp->chip->chip_type == CHIPTYPE_SIS900) {
2011 		sfe_chipinfo_init_sis900(dp);
2012 	} else {
2013 		lp->get_mac_addr = &sfe_get_mac_addr_dp83815;
2014 	}
2015 
2016 	/* read MAC address */
2017 	if (!(lp->get_mac_addr)(dp)) {
2018 		cmn_err(CE_WARN,
2019 		    "!%s: %s: failed to get factory mac address"
2020 		    " please specify a mac address in sfe.conf",
2021 		    dp->name, __func__);
2022 		return (GEM_FAILURE);
2023 	}
2024 
2025 	if (lp->chip->chip_type == CHIPTYPE_DP83815) {
2026 		dp->mii_phy_addr = -1;	/* no need to scan PHY */
2027 		dp->misc_flag |= GEM_VLAN_SOFT;
2028 		dp->txthr += 4; /* VTAG_SIZE */
2029 	}
2030 	dp->txthr = min(dp->txthr, TXFIFOSIZE - 2);
2031 
2032 	return (GEM_SUCCESS);
2033 }
2034 
2035 static int
2036 sfeattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2037 {
2038 	int			unit;
2039 	const char		*drv_name;
2040 	int			i;
2041 	ddi_acc_handle_t	conf_handle;
2042 	uint16_t		vid;
2043 	uint16_t		did;
2044 	uint8_t			rev;
2045 #ifdef DEBUG_LEVEL
2046 	uint32_t		iline;
2047 	uint8_t			latim;
2048 #endif
2049 	struct chip_info	*p;
2050 	struct gem_dev		*dp;
2051 	struct sfe_dev		*lp;
2052 	caddr_t			base;
2053 	ddi_acc_handle_t	regs_ha;
2054 	struct gem_conf		*gcp;
2055 
2056 	unit = ddi_get_instance(dip);
2057 	drv_name = ddi_driver_name(dip);
2058 
2059 	DPRINTF(3, (CE_CONT, CONS "%s%d: sfeattach: called", drv_name, unit));
2060 
2061 	/*
2062 	 * Common codes after power-up
2063 	 */
2064 	if (pci_config_setup(dip, &conf_handle) != DDI_SUCCESS) {
2065 		cmn_err(CE_WARN, "%s%d: ddi_regs_map_setup failed",
2066 		    drv_name, unit);
2067 		goto err;
2068 	}
2069 
2070 	vid  = pci_config_get16(conf_handle, PCI_CONF_VENID);
2071 	did  = pci_config_get16(conf_handle, PCI_CONF_DEVID);
2072 	rev  = pci_config_get16(conf_handle, PCI_CONF_REVID);
2073 #ifdef DEBUG_LEVEL
2074 	iline = pci_config_get32(conf_handle, PCI_CONF_ILINE);
2075 	latim = pci_config_get8(conf_handle, PCI_CONF_LATENCY_TIMER);
2076 #endif
2077 #ifdef DEBUG_BUILT_IN_SIS900
2078 	rev  = SIS630E_900_REV;
2079 #endif
2080 	for (i = 0, p = sfe_chiptbl; i < CHIPTABLESIZE; i++, p++) {
2081 		if (p->venid == vid && p->devid == did) {
2082 			/* found */
2083 			goto chip_found;
2084 		}
2085 	}
2086 
2087 	/* Not found */
2088 	cmn_err(CE_WARN,
2089 	    "%s%d: sfe_attach: wrong PCI venid/devid (0x%x, 0x%x)",
2090 	    drv_name, unit, vid, did);
2091 	pci_config_teardown(&conf_handle);
2092 	goto err;
2093 
2094 chip_found:
2095 	pci_config_put16(conf_handle, PCI_CONF_COMM,
2096 	    PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME |
2097 	    pci_config_get16(conf_handle, PCI_CONF_COMM));
2098 
2099 	/* ensure D0 mode */
2100 	(void) gem_pci_set_power_state(dip, conf_handle, PCI_PMCSR_D0);
2101 
2102 	pci_config_teardown(&conf_handle);
2103 
2104 	switch (cmd) {
2105 	case DDI_RESUME:
2106 		return (gem_resume(dip));
2107 
2108 	case DDI_ATTACH:
2109 
2110 		DPRINTF(0, (CE_CONT,
2111 		    CONS "%s%d: ilr 0x%08x, latency_timer:0x%02x",
2112 		    drv_name, unit, iline, latim));
2113 
2114 		/*
2115 		 * Map in the device registers.
2116 		 */
2117 		if (gem_pci_regs_map_setup(dip,
2118 		    (sfe_use_pcimemspace && p->chip_type == CHIPTYPE_DP83815)
2119 		    ? PCI_ADDR_MEM32 : PCI_ADDR_IO, PCI_ADDR_MASK,
2120 		    &sfe_dev_attr, &base, &regs_ha) != DDI_SUCCESS) {
2121 			cmn_err(CE_WARN,
2122 			    "%s%d: ddi_regs_map_setup failed",
2123 			    drv_name, unit);
2124 			goto err;
2125 		}
2126 
2127 		/*
2128 		 * construct gem configuration
2129 		 */
2130 		gcp = kmem_zalloc(sizeof (*gcp), KM_SLEEP);
2131 
2132 		/* name */
2133 		(void) sprintf(gcp->gc_name, "%s%d", drv_name, unit);
2134 
2135 		/* consistency on tx and rx */
2136 		gcp->gc_tx_buf_align = sizeof (uint8_t) - 1;
2137 		gcp->gc_tx_max_frags = MAXTXFRAGS;
2138 		gcp->gc_tx_max_descs_per_pkt = gcp->gc_tx_max_frags;
2139 		gcp->gc_tx_desc_unit_shift = 4;	/* 16 byte */
2140 		gcp->gc_tx_buf_size  = TX_BUF_SIZE;
2141 		gcp->gc_tx_buf_limit = gcp->gc_tx_buf_size;
2142 		gcp->gc_tx_ring_size = TX_RING_SIZE;
2143 		gcp->gc_tx_ring_limit = gcp->gc_tx_ring_size;
2144 		gcp->gc_tx_auto_pad  = B_TRUE;
2145 		gcp->gc_tx_copy_thresh = sfe_tx_copy_thresh;
2146 		gcp->gc_tx_desc_write_oo = B_TRUE;
2147 
2148 		gcp->gc_rx_buf_align = sizeof (uint8_t) - 1;
2149 		gcp->gc_rx_max_frags = MAXRXFRAGS;
2150 		gcp->gc_rx_desc_unit_shift = 4;
2151 		gcp->gc_rx_ring_size = RX_RING_SIZE;
2152 		gcp->gc_rx_buf_max   = RX_BUF_SIZE;
2153 		gcp->gc_rx_copy_thresh = sfe_rx_copy_thresh;
2154 
2155 		/* map attributes */
2156 		gcp->gc_dev_attr = sfe_dev_attr;
2157 		gcp->gc_buf_attr = sfe_buf_attr;
2158 		gcp->gc_desc_attr = sfe_buf_attr;
2159 
2160 		/* dma attributes */
2161 		gcp->gc_dma_attr_desc = sfe_dma_attr_desc;
2162 
2163 		gcp->gc_dma_attr_txbuf = sfe_dma_attr_buf;
2164 		gcp->gc_dma_attr_txbuf.dma_attr_align = gcp->gc_tx_buf_align+1;
2165 		gcp->gc_dma_attr_txbuf.dma_attr_sgllen = gcp->gc_tx_max_frags;
2166 
2167 		gcp->gc_dma_attr_rxbuf = sfe_dma_attr_buf;
2168 		gcp->gc_dma_attr_rxbuf.dma_attr_align = gcp->gc_rx_buf_align+1;
2169 		gcp->gc_dma_attr_rxbuf.dma_attr_sgllen = gcp->gc_rx_max_frags;
2170 
2171 		/* time out parameters */
2172 		gcp->gc_tx_timeout = 3*ONESEC;
2173 		gcp->gc_tx_timeout_interval = ONESEC;
2174 		if (p->chip_type == CHIPTYPE_DP83815) {
2175 			/* workaround for tx hang */
2176 			gcp->gc_tx_timeout_interval = ONESEC/20; /* 50mS */
2177 		}
2178 
2179 		/* MII timeout parameters */
2180 		gcp->gc_mii_link_watch_interval = ONESEC;
2181 		gcp->gc_mii_an_watch_interval   = ONESEC/5;
2182 		gcp->gc_mii_reset_timeout = MII_RESET_TIMEOUT;	/* 1 sec */
2183 		gcp->gc_mii_an_timeout = MII_AN_TIMEOUT;	/* 5 sec */
2184 		gcp->gc_mii_an_wait = 0;
2185 		gcp->gc_mii_linkdown_timeout = MII_LINKDOWN_TIMEOUT;
2186 
2187 		/* setting for general PHY */
2188 		gcp->gc_mii_an_delay = 0;
2189 		gcp->gc_mii_linkdown_action = MII_ACTION_RSA;
2190 		gcp->gc_mii_linkdown_timeout_action = MII_ACTION_RESET;
2191 		gcp->gc_mii_dont_reset = B_FALSE;
2192 
2193 
2194 		/* I/O methods */
2195 
2196 		/* mac operation */
2197 		gcp->gc_attach_chip = &sfe_attach_chip;
2198 		if (p->chip_type == CHIPTYPE_DP83815) {
2199 			gcp->gc_reset_chip = &sfe_reset_chip_dp83815;
2200 		} else {
2201 			gcp->gc_reset_chip = &sfe_reset_chip_sis900;
2202 		}
2203 		gcp->gc_init_chip  = &sfe_init_chip;
2204 		gcp->gc_start_chip = &sfe_start_chip;
2205 		gcp->gc_stop_chip  = &sfe_stop_chip;
2206 #ifdef USE_MULTICAST_HASHTBL
2207 		gcp->gc_multicast_hash = &sfe_mcast_hash;
2208 #endif
2209 		if (p->chip_type == CHIPTYPE_DP83815) {
2210 			gcp->gc_set_rx_filter = &sfe_set_rx_filter_dp83815;
2211 		} else {
2212 			gcp->gc_set_rx_filter = &sfe_set_rx_filter_sis900;
2213 		}
2214 		gcp->gc_set_media = &sfe_set_media;
2215 		gcp->gc_get_stats = &sfe_get_stats;
2216 		gcp->gc_interrupt = &sfe_interrupt;
2217 
2218 		/* descriptor operation */
2219 		gcp->gc_tx_desc_write = &sfe_tx_desc_write;
2220 		gcp->gc_tx_start = &sfe_tx_start;
2221 		gcp->gc_rx_desc_write = &sfe_rx_desc_write;
2222 		gcp->gc_rx_start = NULL;
2223 
2224 		gcp->gc_tx_desc_stat = &sfe_tx_desc_stat;
2225 		gcp->gc_rx_desc_stat = &sfe_rx_desc_stat;
2226 		gcp->gc_tx_desc_init = &sfe_tx_desc_init;
2227 		gcp->gc_rx_desc_init = &sfe_rx_desc_init;
2228 		gcp->gc_tx_desc_clean = &sfe_tx_desc_clean;
2229 		gcp->gc_rx_desc_clean = &sfe_rx_desc_clean;
2230 
2231 		/* mii operations */
2232 		if (p->chip_type == CHIPTYPE_DP83815) {
2233 			gcp->gc_mii_probe = &sfe_mii_probe_dp83815;
2234 			gcp->gc_mii_init = &sfe_mii_init_dp83815;
2235 			gcp->gc_mii_config = &sfe_mii_config_dp83815;
2236 			gcp->gc_mii_sync = &sfe_mii_sync_dp83815;
2237 			gcp->gc_mii_read = &sfe_mii_read_dp83815;
2238 			gcp->gc_mii_write = &sfe_mii_write_dp83815;
2239 			gcp->gc_mii_tune_phy = NULL;
2240 			gcp->gc_flow_control = FLOW_CONTROL_NONE;
2241 		} else {
2242 			gcp->gc_mii_probe = &gem_mii_probe_default;
2243 			gcp->gc_mii_init = NULL;
2244 			gcp->gc_mii_config = &sfe_mii_config_sis900;
2245 			gcp->gc_mii_sync = &sfe_mii_sync_sis900;
2246 			gcp->gc_mii_read = &sfe_mii_read_sis900;
2247 			gcp->gc_mii_write = &sfe_mii_write_sis900;
2248 			gcp->gc_mii_tune_phy = &sfe_set_eq_sis630;
2249 			gcp->gc_flow_control = FLOW_CONTROL_RX_PAUSE;
2250 		}
2251 
2252 		lp = kmem_zalloc(sizeof (*lp), KM_SLEEP);
2253 		lp->chip = p;
2254 		lp->revid = rev;
2255 		lp->our_intr_bits = 0;
2256 		lp->isr_pended = 0;
2257 
2258 		cmn_err(CE_CONT, CONS "%s%d: chip:%s rev:0x%02x",
2259 		    drv_name, unit, p->chip_name, rev);
2260 
2261 		dp = gem_do_attach(dip, 0, gcp, base, &regs_ha,
2262 		    lp, sizeof (*lp));
2263 		kmem_free(gcp, sizeof (*gcp));
2264 
2265 		if (dp == NULL) {
2266 			goto err_freelp;
2267 		}
2268 
2269 		return (DDI_SUCCESS);
2270 
2271 err_freelp:
2272 		kmem_free(lp, sizeof (struct sfe_dev));
2273 err:
2274 		return (DDI_FAILURE);
2275 	}
2276 	return (DDI_FAILURE);
2277 }
2278 
2279 static int
2280 sfedetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2281 {
2282 	switch (cmd) {
2283 	case DDI_SUSPEND:
2284 		return (gem_suspend(dip));
2285 
2286 	case DDI_DETACH:
2287 		return (gem_do_detach(dip));
2288 	}
2289 	return (DDI_FAILURE);
2290 }
2291 
2292 /* ======================================================== */
2293 /*
2294  * OS depend (loadable streams driver) routine
2295  */
2296 /* ======================================================== */
2297 DDI_DEFINE_STREAM_OPS(sfe_ops, nulldev, nulldev, sfeattach, sfedetach,
2298 	nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
2299 
2300 static struct modldrv modldrv = {
2301 	&mod_driverops,	/* Type of module.  This one is a driver */
2302 	ident,
2303 	&sfe_ops,	/* driver ops */
2304 };
2305 
2306 static struct modlinkage modlinkage = {
2307 	MODREV_1, &modldrv, NULL
2308 };
2309 
2310 /* ======================================================== */
2311 /*
2312  * Loadable module support
2313  */
2314 /* ======================================================== */
2315 int
2316 _init(void)
2317 {
2318 	int 	status;
2319 
2320 	DPRINTF(2, (CE_CONT, CONS "sfe: _init: called"));
2321 	gem_mod_init(&sfe_ops, "sfe");
2322 	status = mod_install(&modlinkage);
2323 	if (status != DDI_SUCCESS) {
2324 		gem_mod_fini(&sfe_ops);
2325 	}
2326 	return (status);
2327 }
2328 
2329 /*
2330  * _fini : done
2331  */
2332 int
2333 _fini(void)
2334 {
2335 	int	status;
2336 
2337 	DPRINTF(2, (CE_CONT, CONS "sfe: _fini: called"));
2338 	status = mod_remove(&modlinkage);
2339 	if (status == DDI_SUCCESS) {
2340 		gem_mod_fini(&sfe_ops);
2341 	}
2342 	return (status);
2343 }
2344 
2345 int
2346 _info(struct modinfo *modinfop)
2347 {
2348 	return (mod_info(&modlinkage, modinfop));
2349 }
2350