xref: /titanic_44/usr/src/uts/common/io/scsi/targets/sd.c (revision 2a9459bdd821c1cf59590a7a9069ac9c591e8a6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0,
516 	1
517 };
518 
519 
520 
521 #if (defined(SD_PROP_TST))
522 
523 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
524 #define	SD_TST_THROTTLE_VAL	16
525 #define	SD_TST_NOTREADY_VAL	12
526 #define	SD_TST_BUSY_VAL		60
527 #define	SD_TST_RST_RETRY_VAL	36
528 #define	SD_TST_RSV_REL_TIME	60
529 
530 static sd_tunables tst_properties = {
531 	SD_TST_THROTTLE_VAL,
532 	SD_TST_CTYPE_VAL,
533 	SD_TST_NOTREADY_VAL,
534 	SD_TST_BUSY_VAL,
535 	SD_TST_RST_RETRY_VAL,
536 	SD_TST_RSV_REL_TIME,
537 	0,
538 	0,
539 	0
540 };
541 #endif
542 
543 /* This is similar to the ANSI toupper implementation */
544 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
545 
546 /*
547  * Static Driver Configuration Table
548  *
549  * This is the table of disks which need throttle adjustment (or, perhaps
550  * something else as defined by the flags at a future time.)  device_id
551  * is a string consisting of concatenated vid (vendor), pid (product/model)
552  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
553  * the parts of the string are as defined by the sizes in the scsi_inquiry
554  * structure.  Device type is searched as far as the device_id string is
555  * defined.  Flags defines which values are to be set in the driver from the
556  * properties list.
557  *
558  * Entries below which begin and end with a "*" are a special case.
559  * These do not have a specific vendor, and the string which follows
560  * can appear anywhere in the 16 byte PID portion of the inquiry data.
561  *
562  * Entries below which begin and end with a " " (blank) are a special
563  * case. The comparison function will treat multiple consecutive blanks
564  * as equivalent to a single blank. For example, this causes a
565  * sd_disk_table entry of " NEC CDROM " to match a device's id string
566  * of  "NEC       CDROM".
567  *
568  * Note: The MD21 controller type has been obsoleted.
569  *	 ST318202F is a Legacy device
570  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
571  *	 made with an FC connection. The entries here are a legacy.
572  */
573 static sd_disk_config_t sd_disk_table[] = {
574 #if defined(__fibre) || defined(__i386) || defined(__amd64)
575 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
622 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
623 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
624 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
625 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
626 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
627 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
628 			SD_CONF_BSET_BSY_RETRY_COUNT|
629 			SD_CONF_BSET_RST_RETRIES|
630 			SD_CONF_BSET_RSV_REL_TIME,
631 		&purple_properties },
632 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
633 		SD_CONF_BSET_BSY_RETRY_COUNT|
634 		SD_CONF_BSET_RST_RETRIES|
635 		SD_CONF_BSET_RSV_REL_TIME|
636 		SD_CONF_BSET_MIN_THROTTLE|
637 		SD_CONF_BSET_DISKSORT_DISABLED,
638 		&sve_properties },
639 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
640 			SD_CONF_BSET_BSY_RETRY_COUNT|
641 			SD_CONF_BSET_RST_RETRIES|
642 			SD_CONF_BSET_RSV_REL_TIME,
643 		&purple_properties },
644 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
645 		SD_CONF_BSET_LUN_RESET_ENABLED,
646 		&maserati_properties },
647 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
648 		SD_CONF_BSET_NRR_COUNT|
649 		SD_CONF_BSET_BSY_RETRY_COUNT|
650 		SD_CONF_BSET_RST_RETRIES|
651 		SD_CONF_BSET_MIN_THROTTLE|
652 		SD_CONF_BSET_DISKSORT_DISABLED|
653 		SD_CONF_BSET_LUN_RESET_ENABLED,
654 		&pirus_properties },
655 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
656 		SD_CONF_BSET_NRR_COUNT|
657 		SD_CONF_BSET_BSY_RETRY_COUNT|
658 		SD_CONF_BSET_RST_RETRIES|
659 		SD_CONF_BSET_MIN_THROTTLE|
660 		SD_CONF_BSET_DISKSORT_DISABLED|
661 		SD_CONF_BSET_LUN_RESET_ENABLED,
662 		&pirus_properties },
663 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
664 		SD_CONF_BSET_NRR_COUNT|
665 		SD_CONF_BSET_BSY_RETRY_COUNT|
666 		SD_CONF_BSET_RST_RETRIES|
667 		SD_CONF_BSET_MIN_THROTTLE|
668 		SD_CONF_BSET_DISKSORT_DISABLED|
669 		SD_CONF_BSET_LUN_RESET_ENABLED,
670 		&pirus_properties },
671 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
672 		SD_CONF_BSET_NRR_COUNT|
673 		SD_CONF_BSET_BSY_RETRY_COUNT|
674 		SD_CONF_BSET_RST_RETRIES|
675 		SD_CONF_BSET_MIN_THROTTLE|
676 		SD_CONF_BSET_DISKSORT_DISABLED|
677 		SD_CONF_BSET_LUN_RESET_ENABLED,
678 		&pirus_properties },
679 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
680 		SD_CONF_BSET_NRR_COUNT|
681 		SD_CONF_BSET_BSY_RETRY_COUNT|
682 		SD_CONF_BSET_RST_RETRIES|
683 		SD_CONF_BSET_MIN_THROTTLE|
684 		SD_CONF_BSET_DISKSORT_DISABLED|
685 		SD_CONF_BSET_LUN_RESET_ENABLED,
686 		&pirus_properties },
687 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
688 		SD_CONF_BSET_NRR_COUNT|
689 		SD_CONF_BSET_BSY_RETRY_COUNT|
690 		SD_CONF_BSET_RST_RETRIES|
691 		SD_CONF_BSET_MIN_THROTTLE|
692 		SD_CONF_BSET_DISKSORT_DISABLED|
693 		SD_CONF_BSET_LUN_RESET_ENABLED,
694 		&pirus_properties },
695 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
696 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
697 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
698 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
700 #endif /* fibre or NON-sparc platforms */
701 #if ((defined(__sparc) && !defined(__fibre)) ||\
702 	(defined(__i386) || defined(__amd64)))
703 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
704 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
705 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
706 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
707 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
711 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
716 	    &symbios_properties },
717 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
718 	    &lsi_properties_scsi },
719 #if defined(__i386) || defined(__amd64)
720 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
721 				    | SD_CONF_BSET_READSUB_BCD
722 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
723 				    | SD_CONF_BSET_NO_READ_HEADER
724 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
725 
726 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
727 				    | SD_CONF_BSET_READSUB_BCD
728 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
729 				    | SD_CONF_BSET_NO_READ_HEADER
730 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
731 #endif /* __i386 || __amd64 */
732 #endif /* sparc NON-fibre or NON-sparc platforms */
733 
734 #if (defined(SD_PROP_TST))
735 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
736 				| SD_CONF_BSET_CTYPE
737 				| SD_CONF_BSET_NRR_COUNT
738 				| SD_CONF_BSET_FAB_DEVID
739 				| SD_CONF_BSET_NOCACHE
740 				| SD_CONF_BSET_BSY_RETRY_COUNT
741 				| SD_CONF_BSET_PLAYMSF_BCD
742 				| SD_CONF_BSET_READSUB_BCD
743 				| SD_CONF_BSET_READ_TOC_TRK_BCD
744 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
745 				| SD_CONF_BSET_NO_READ_HEADER
746 				| SD_CONF_BSET_READ_CD_XD4
747 				| SD_CONF_BSET_RST_RETRIES
748 				| SD_CONF_BSET_RSV_REL_TIME
749 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
750 #endif
751 };
752 
753 static const int sd_disk_table_size =
754 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
755 
756 
757 
758 #define	SD_INTERCONNECT_PARALLEL	0
759 #define	SD_INTERCONNECT_FABRIC		1
760 #define	SD_INTERCONNECT_FIBRE		2
761 #define	SD_INTERCONNECT_SSA		3
762 #define	SD_INTERCONNECT_SATA		4
763 #define	SD_IS_PARALLEL_SCSI(un)		\
764 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
765 #define	SD_IS_SERIAL(un)		\
766 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
767 
768 /*
769  * Definitions used by device id registration routines
770  */
771 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
772 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
773 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
774 
775 static kmutex_t sd_sense_mutex = {0};
776 
777 /*
778  * Macros for updates of the driver state
779  */
780 #define	New_state(un, s)        \
781 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
782 #define	Restore_state(un)	\
783 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
784 
785 static struct sd_cdbinfo sd_cdbtab[] = {
786 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
787 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
788 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
789 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
790 };
791 
792 /*
793  * Specifies the number of seconds that must have elapsed since the last
794  * cmd. has completed for a device to be declared idle to the PM framework.
795  */
796 static int sd_pm_idletime = 1;
797 
798 /*
799  * Internal function prototypes
800  */
801 
802 #if (defined(__fibre))
803 /*
804  * These #defines are to avoid namespace collisions that occur because this
805  * code is currently used to compile two separate driver modules: sd and ssd.
806  * All function names need to be treated this way (even if declared static)
807  * in order to allow the debugger to resolve the names properly.
808  * It is anticipated that in the near future the ssd module will be obsoleted,
809  * at which time this ugliness should go away.
810  */
811 #define	sd_log_trace			ssd_log_trace
812 #define	sd_log_info			ssd_log_info
813 #define	sd_log_err			ssd_log_err
814 #define	sdprobe				ssdprobe
815 #define	sdinfo				ssdinfo
816 #define	sd_prop_op			ssd_prop_op
817 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
818 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
819 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
820 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
821 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
822 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
823 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
824 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
825 #define	sd_spin_up_unit			ssd_spin_up_unit
826 #define	sd_enable_descr_sense		ssd_enable_descr_sense
827 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
828 #define	sd_set_mmc_caps			ssd_set_mmc_caps
829 #define	sd_read_unit_properties		ssd_read_unit_properties
830 #define	sd_process_sdconf_file		ssd_process_sdconf_file
831 #define	sd_process_sdconf_table		ssd_process_sdconf_table
832 #define	sd_sdconf_id_match		ssd_sdconf_id_match
833 #define	sd_blank_cmp			ssd_blank_cmp
834 #define	sd_chk_vers1_data		ssd_chk_vers1_data
835 #define	sd_set_vers1_properties		ssd_set_vers1_properties
836 
837 #define	sd_get_physical_geometry	ssd_get_physical_geometry
838 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
839 #define	sd_update_block_info		ssd_update_block_info
840 #define	sd_register_devid		ssd_register_devid
841 #define	sd_get_devid			ssd_get_devid
842 #define	sd_create_devid			ssd_create_devid
843 #define	sd_write_deviceid		ssd_write_deviceid
844 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
845 #define	sd_setup_pm			ssd_setup_pm
846 #define	sd_create_pm_components		ssd_create_pm_components
847 #define	sd_ddi_suspend			ssd_ddi_suspend
848 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
849 #define	sd_ddi_resume			ssd_ddi_resume
850 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
851 #define	sdpower				ssdpower
852 #define	sdattach			ssdattach
853 #define	sddetach			ssddetach
854 #define	sd_unit_attach			ssd_unit_attach
855 #define	sd_unit_detach			ssd_unit_detach
856 #define	sd_set_unit_attributes		ssd_set_unit_attributes
857 #define	sd_create_errstats		ssd_create_errstats
858 #define	sd_set_errstats			ssd_set_errstats
859 #define	sd_set_pstats			ssd_set_pstats
860 #define	sddump				ssddump
861 #define	sd_scsi_poll			ssd_scsi_poll
862 #define	sd_send_polled_RQS		ssd_send_polled_RQS
863 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
864 #define	sd_init_event_callbacks		ssd_init_event_callbacks
865 #define	sd_event_callback		ssd_event_callback
866 #define	sd_cache_control		ssd_cache_control
867 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
868 #define	sd_get_nv_sup			ssd_get_nv_sup
869 #define	sd_make_device			ssd_make_device
870 #define	sdopen				ssdopen
871 #define	sdclose				ssdclose
872 #define	sd_ready_and_valid		ssd_ready_and_valid
873 #define	sdmin				ssdmin
874 #define	sdread				ssdread
875 #define	sdwrite				ssdwrite
876 #define	sdaread				ssdaread
877 #define	sdawrite			ssdawrite
878 #define	sdstrategy			ssdstrategy
879 #define	sdioctl				ssdioctl
880 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
881 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
882 #define	sd_checksum_iostart		ssd_checksum_iostart
883 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
884 #define	sd_pm_iostart			ssd_pm_iostart
885 #define	sd_core_iostart			ssd_core_iostart
886 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
887 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
888 #define	sd_checksum_iodone		ssd_checksum_iodone
889 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
890 #define	sd_pm_iodone			ssd_pm_iodone
891 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
892 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
893 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
894 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
895 #define	sd_buf_iodone			ssd_buf_iodone
896 #define	sd_uscsi_strategy		ssd_uscsi_strategy
897 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
898 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
899 #define	sd_uscsi_iodone			ssd_uscsi_iodone
900 #define	sd_xbuf_strategy		ssd_xbuf_strategy
901 #define	sd_xbuf_init			ssd_xbuf_init
902 #define	sd_pm_entry			ssd_pm_entry
903 #define	sd_pm_exit			ssd_pm_exit
904 
905 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
906 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
907 
908 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
909 #define	sdintr				ssdintr
910 #define	sd_start_cmds			ssd_start_cmds
911 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
912 #define	sd_bioclone_alloc		ssd_bioclone_alloc
913 #define	sd_bioclone_free		ssd_bioclone_free
914 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
915 #define	sd_shadow_buf_free		ssd_shadow_buf_free
916 #define	sd_print_transport_rejected_message	\
917 					ssd_print_transport_rejected_message
918 #define	sd_retry_command		ssd_retry_command
919 #define	sd_set_retry_bp			ssd_set_retry_bp
920 #define	sd_send_request_sense_command	ssd_send_request_sense_command
921 #define	sd_start_retry_command		ssd_start_retry_command
922 #define	sd_start_direct_priority_command	\
923 					ssd_start_direct_priority_command
924 #define	sd_return_failed_command	ssd_return_failed_command
925 #define	sd_return_failed_command_no_restart	\
926 					ssd_return_failed_command_no_restart
927 #define	sd_return_command		ssd_return_command
928 #define	sd_sync_with_callback		ssd_sync_with_callback
929 #define	sdrunout			ssdrunout
930 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
931 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
932 #define	sd_reduce_throttle		ssd_reduce_throttle
933 #define	sd_restore_throttle		ssd_restore_throttle
934 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
935 #define	sd_init_cdb_limits		ssd_init_cdb_limits
936 #define	sd_pkt_status_good		ssd_pkt_status_good
937 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
938 #define	sd_pkt_status_busy		ssd_pkt_status_busy
939 #define	sd_pkt_status_reservation_conflict	\
940 					ssd_pkt_status_reservation_conflict
941 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
942 #define	sd_handle_request_sense		ssd_handle_request_sense
943 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
944 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
945 #define	sd_validate_sense_data		ssd_validate_sense_data
946 #define	sd_decode_sense			ssd_decode_sense
947 #define	sd_print_sense_msg		ssd_print_sense_msg
948 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
949 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
950 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
951 #define	sd_sense_key_medium_or_hardware_error	\
952 					ssd_sense_key_medium_or_hardware_error
953 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
954 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
955 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
956 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
957 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
958 #define	sd_sense_key_default		ssd_sense_key_default
959 #define	sd_print_retry_msg		ssd_print_retry_msg
960 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
961 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
962 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
963 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
964 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
965 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
966 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
967 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
968 #define	sd_pkt_reason_default		ssd_pkt_reason_default
969 #define	sd_reset_target			ssd_reset_target
970 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
971 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
972 #define	sd_taskq_create			ssd_taskq_create
973 #define	sd_taskq_delete			ssd_taskq_delete
974 #define	sd_media_change_task		ssd_media_change_task
975 #define	sd_handle_mchange		ssd_handle_mchange
976 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
977 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
978 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
979 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
980 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
981 					sd_send_scsi_feature_GET_CONFIGURATION
982 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
983 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
984 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
985 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
986 					ssd_send_scsi_PERSISTENT_RESERVE_IN
987 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
988 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
989 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
990 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
991 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
992 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
993 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
994 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
995 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
996 #define	sd_alloc_rqs			ssd_alloc_rqs
997 #define	sd_free_rqs			ssd_free_rqs
998 #define	sd_dump_memory			ssd_dump_memory
999 #define	sd_get_media_info		ssd_get_media_info
1000 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1001 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1002 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1003 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1004 #define	sd_check_mhd			ssd_check_mhd
1005 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1006 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1007 #define	sd_sname			ssd_sname
1008 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1009 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1010 #define	sd_take_ownership		ssd_take_ownership
1011 #define	sd_reserve_release		ssd_reserve_release
1012 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1013 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1014 #define	sd_persistent_reservation_in_read_keys	\
1015 					ssd_persistent_reservation_in_read_keys
1016 #define	sd_persistent_reservation_in_read_resv	\
1017 					ssd_persistent_reservation_in_read_resv
1018 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1019 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1020 #define	sd_mhdioc_release		ssd_mhdioc_release
1021 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1022 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1023 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1024 #define	sr_change_blkmode		ssr_change_blkmode
1025 #define	sr_change_speed			ssr_change_speed
1026 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1027 #define	sr_pause_resume			ssr_pause_resume
1028 #define	sr_play_msf			ssr_play_msf
1029 #define	sr_play_trkind			ssr_play_trkind
1030 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1031 #define	sr_read_subchannel		ssr_read_subchannel
1032 #define	sr_read_tocentry		ssr_read_tocentry
1033 #define	sr_read_tochdr			ssr_read_tochdr
1034 #define	sr_read_cdda			ssr_read_cdda
1035 #define	sr_read_cdxa			ssr_read_cdxa
1036 #define	sr_read_mode1			ssr_read_mode1
1037 #define	sr_read_mode2			ssr_read_mode2
1038 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1039 #define	sr_sector_mode			ssr_sector_mode
1040 #define	sr_eject			ssr_eject
1041 #define	sr_ejected			ssr_ejected
1042 #define	sr_check_wp			ssr_check_wp
1043 #define	sd_check_media			ssd_check_media
1044 #define	sd_media_watch_cb		ssd_media_watch_cb
1045 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1046 #define	sr_volume_ctrl			ssr_volume_ctrl
1047 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1048 #define	sd_log_page_supported		ssd_log_page_supported
1049 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1050 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1051 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1052 #define	sd_range_lock			ssd_range_lock
1053 #define	sd_get_range			ssd_get_range
1054 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1055 #define	sd_range_unlock			ssd_range_unlock
1056 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1057 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1058 
1059 #define	sd_iostart_chain		ssd_iostart_chain
1060 #define	sd_iodone_chain			ssd_iodone_chain
1061 #define	sd_initpkt_map			ssd_initpkt_map
1062 #define	sd_destroypkt_map		ssd_destroypkt_map
1063 #define	sd_chain_type_map		ssd_chain_type_map
1064 #define	sd_chain_index_map		ssd_chain_index_map
1065 
1066 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1067 #define	sd_failfast_flushq		ssd_failfast_flushq
1068 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1069 
1070 #define	sd_is_lsi			ssd_is_lsi
1071 #define	sd_tg_rdwr			ssd_tg_rdwr
1072 #define	sd_tg_getinfo			ssd_tg_getinfo
1073 
1074 #endif	/* #if (defined(__fibre)) */
1075 
1076 
1077 int _init(void);
1078 int _fini(void);
1079 int _info(struct modinfo *modinfop);
1080 
1081 /*PRINTFLIKE3*/
1082 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083 /*PRINTFLIKE3*/
1084 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1085 /*PRINTFLIKE3*/
1086 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1087 
1088 static int sdprobe(dev_info_t *devi);
1089 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1090     void **result);
1091 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1092     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1093 
1094 /*
1095  * Smart probe for parallel scsi
1096  */
1097 static void sd_scsi_probe_cache_init(void);
1098 static void sd_scsi_probe_cache_fini(void);
1099 static void sd_scsi_clear_probe_cache(void);
1100 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1101 
1102 /*
1103  * Attached luns on target for parallel scsi
1104  */
1105 static void sd_scsi_target_lun_init(void);
1106 static void sd_scsi_target_lun_fini(void);
1107 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1108 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1109 
1110 static int	sd_spin_up_unit(struct sd_lun *un);
1111 #ifdef _LP64
1112 static void	sd_enable_descr_sense(struct sd_lun *un);
1113 static void	sd_reenable_dsense_task(void *arg);
1114 #endif /* _LP64 */
1115 
1116 static void	sd_set_mmc_caps(struct sd_lun *un);
1117 
1118 static void sd_read_unit_properties(struct sd_lun *un);
1119 static int  sd_process_sdconf_file(struct sd_lun *un);
1120 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1121     int *data_list, sd_tunables *values);
1122 static void sd_process_sdconf_table(struct sd_lun *un);
1123 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1124 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1125 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1126 	int list_len, char *dataname_ptr);
1127 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1128     sd_tunables *prop_list);
1129 
1130 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1131     int reservation_flag);
1132 static int  sd_get_devid(struct sd_lun *un);
1133 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1134 static int  sd_write_deviceid(struct sd_lun *un);
1135 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1136 static int  sd_check_vpd_page_support(struct sd_lun *un);
1137 
1138 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1139 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1140 
1141 static int  sd_ddi_suspend(dev_info_t *devi);
1142 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1143 static int  sd_ddi_resume(dev_info_t *devi);
1144 static int  sd_ddi_pm_resume(struct sd_lun *un);
1145 static int  sdpower(dev_info_t *devi, int component, int level);
1146 
1147 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1148 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1149 static int  sd_unit_attach(dev_info_t *devi);
1150 static int  sd_unit_detach(dev_info_t *devi);
1151 
1152 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1153 static void sd_create_errstats(struct sd_lun *un, int instance);
1154 static void sd_set_errstats(struct sd_lun *un);
1155 static void sd_set_pstats(struct sd_lun *un);
1156 
1157 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1158 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1159 static int  sd_send_polled_RQS(struct sd_lun *un);
1160 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1161 
1162 #if (defined(__fibre))
1163 /*
1164  * Event callbacks (photon)
1165  */
1166 static void sd_init_event_callbacks(struct sd_lun *un);
1167 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1168 #endif
1169 
1170 /*
1171  * Defines for sd_cache_control
1172  */
1173 
1174 #define	SD_CACHE_ENABLE		1
1175 #define	SD_CACHE_DISABLE	0
1176 #define	SD_CACHE_NOCHANGE	-1
1177 
1178 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1179 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1180 static void  sd_get_nv_sup(struct sd_lun *un);
1181 static dev_t sd_make_device(dev_info_t *devi);
1182 
1183 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1184 	uint64_t capacity);
1185 
1186 /*
1187  * Driver entry point functions.
1188  */
1189 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1190 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1191 static int  sd_ready_and_valid(struct sd_lun *un);
1192 
1193 static void sdmin(struct buf *bp);
1194 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1195 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1196 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1197 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1198 
1199 static int sdstrategy(struct buf *bp);
1200 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1201 
1202 /*
1203  * Function prototypes for layering functions in the iostart chain.
1204  */
1205 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1206 	struct buf *bp);
1207 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1208 	struct buf *bp);
1209 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1210 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1211 	struct buf *bp);
1212 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1214 
1215 /*
1216  * Function prototypes for layering functions in the iodone chain.
1217  */
1218 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1220 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1221 	struct buf *bp);
1222 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1223 	struct buf *bp);
1224 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1225 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1226 	struct buf *bp);
1227 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 
1229 /*
1230  * Prototypes for functions to support buf(9S) based IO.
1231  */
1232 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1233 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1234 static void sd_destroypkt_for_buf(struct buf *);
1235 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1236 	struct buf *bp, int flags,
1237 	int (*callback)(caddr_t), caddr_t callback_arg,
1238 	diskaddr_t lba, uint32_t blockcount);
1239 #if defined(__i386) || defined(__amd64)
1240 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1241 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1242 #endif /* defined(__i386) || defined(__amd64) */
1243 
1244 /*
1245  * Prototypes for functions to support USCSI IO.
1246  */
1247 static int sd_uscsi_strategy(struct buf *bp);
1248 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1249 static void sd_destroypkt_for_uscsi(struct buf *);
1250 
1251 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1252 	uchar_t chain_type, void *pktinfop);
1253 
1254 static int  sd_pm_entry(struct sd_lun *un);
1255 static void sd_pm_exit(struct sd_lun *un);
1256 
1257 static void sd_pm_idletimeout_handler(void *arg);
1258 
1259 /*
1260  * sd_core internal functions (used at the sd_core_io layer).
1261  */
1262 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1263 static void sdintr(struct scsi_pkt *pktp);
1264 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1265 
1266 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1267 	enum uio_seg dataspace, int path_flag);
1268 
1269 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1270 	daddr_t blkno, int (*func)(struct buf *));
1271 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1272 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1273 static void sd_bioclone_free(struct buf *bp);
1274 static void sd_shadow_buf_free(struct buf *bp);
1275 
1276 static void sd_print_transport_rejected_message(struct sd_lun *un,
1277 	struct sd_xbuf *xp, int code);
1278 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1279     void *arg, int code);
1280 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1281     void *arg, int code);
1282 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1283     void *arg, int code);
1284 
1285 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1286 	int retry_check_flag,
1287 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1288 		int c),
1289 	void *user_arg, int failure_code,  clock_t retry_delay,
1290 	void (*statp)(kstat_io_t *));
1291 
1292 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1293 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1294 
1295 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1296 	struct scsi_pkt *pktp);
1297 static void sd_start_retry_command(void *arg);
1298 static void sd_start_direct_priority_command(void *arg);
1299 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1300 	int errcode);
1301 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1302 	struct buf *bp, int errcode);
1303 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1304 static void sd_sync_with_callback(struct sd_lun *un);
1305 static int sdrunout(caddr_t arg);
1306 
1307 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1308 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1309 
1310 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1311 static void sd_restore_throttle(void *arg);
1312 
1313 static void sd_init_cdb_limits(struct sd_lun *un);
1314 
1315 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1316 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1317 
1318 /*
1319  * Error handling functions
1320  */
1321 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1324 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1326 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 
1330 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp);
1336 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 
1339 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1340 	void *arg, int code);
1341 
1342 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1345 	uint8_t *sense_datap,
1346 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_sense_key_not_ready(struct sd_lun *un,
1348 	uint8_t *sense_datap,
1349 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1351 	uint8_t *sense_datap,
1352 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_unit_attention(struct sd_lun *un,
1356 	uint8_t *sense_datap,
1357 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1359 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1361 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1363 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_default(struct sd_lun *un,
1365 	uint8_t *sense_datap,
1366 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1367 
1368 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1369 	void *arg, int flag);
1370 
1371 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 
1388 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1389 
1390 static void sd_start_stop_unit_callback(void *arg);
1391 static void sd_start_stop_unit_task(void *arg);
1392 
1393 static void sd_taskq_create(void);
1394 static void sd_taskq_delete(void);
1395 static void sd_media_change_task(void *arg);
1396 
1397 static int sd_handle_mchange(struct sd_lun *un);
1398 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1399 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1400 	uint32_t *lbap, int path_flag);
1401 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1402 	uint32_t *lbap, int path_flag);
1403 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1404 	int path_flag);
1405 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1406 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1407 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1408 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1409 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1410 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1411 	uchar_t usr_cmd, uchar_t *usr_bufp);
1412 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1413 	struct dk_callback *dkc);
1414 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1415 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1416 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1417 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1418 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1419 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1420 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1421 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1422 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1423 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1424 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1425 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1426 	size_t buflen, daddr_t start_block, int path_flag);
1427 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1428 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1429 	path_flag)
1430 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1431 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1432 	path_flag)
1433 
1434 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1435 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1436 	uint16_t param_ptr, int path_flag);
1437 
1438 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1439 static void sd_free_rqs(struct sd_lun *un);
1440 
1441 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1442 	uchar_t *data, int len, int fmt);
1443 static void sd_panic_for_res_conflict(struct sd_lun *un);
1444 
1445 /*
1446  * Disk Ioctl Function Prototypes
1447  */
1448 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1449 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1450 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1451 
1452 /*
1453  * Multi-host Ioctl Prototypes
1454  */
1455 static int sd_check_mhd(dev_t dev, int interval);
1456 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1457 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1458 static char *sd_sname(uchar_t status);
1459 static void sd_mhd_resvd_recover(void *arg);
1460 static void sd_resv_reclaim_thread();
1461 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1462 static int sd_reserve_release(dev_t dev, int cmd);
1463 static void sd_rmv_resv_reclaim_req(dev_t dev);
1464 static void sd_mhd_reset_notify_cb(caddr_t arg);
1465 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1466 	mhioc_inkeys_t *usrp, int flag);
1467 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1468 	mhioc_inresvs_t *usrp, int flag);
1469 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1470 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1471 static int sd_mhdioc_release(dev_t dev);
1472 static int sd_mhdioc_register_devid(dev_t dev);
1473 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1474 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1475 
1476 /*
1477  * SCSI removable prototypes
1478  */
1479 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1480 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1481 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1482 static int sr_pause_resume(dev_t dev, int mode);
1483 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1484 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1488 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1489 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1492 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1494 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1495 static int sr_eject(dev_t dev);
1496 static void sr_ejected(register struct sd_lun *un);
1497 static int sr_check_wp(dev_t dev);
1498 static int sd_check_media(dev_t dev, enum dkio_state state);
1499 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1500 static void sd_delayed_cv_broadcast(void *arg);
1501 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1502 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1503 
1504 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1505 
1506 /*
1507  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1508  */
1509 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1510 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1511 static void sd_wm_cache_destructor(void *wm, void *un);
1512 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1513 	daddr_t endb, ushort_t typ);
1514 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1515 	daddr_t endb);
1516 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1517 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1518 static void sd_read_modify_write_task(void * arg);
1519 static int
1520 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1521 	struct buf **bpp);
1522 
1523 
1524 /*
1525  * Function prototypes for failfast support.
1526  */
1527 static void sd_failfast_flushq(struct sd_lun *un);
1528 static int sd_failfast_flushq_callback(struct buf *bp);
1529 
1530 /*
1531  * Function prototypes to check for lsi devices
1532  */
1533 static void sd_is_lsi(struct sd_lun *un);
1534 
1535 /*
1536  * Function prototypes for x86 support
1537  */
1538 #if defined(__i386) || defined(__amd64)
1539 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1540 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1541 #endif
1542 
1543 
1544 /* Function prototypes for cmlb */
1545 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1546     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1547 
1548 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1549 
1550 /*
1551  * Constants for failfast support:
1552  *
1553  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1554  * failfast processing being performed.
1555  *
1556  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1557  * failfast processing on all bufs with B_FAILFAST set.
1558  */
1559 
1560 #define	SD_FAILFAST_INACTIVE		0
1561 #define	SD_FAILFAST_ACTIVE		1
1562 
1563 /*
1564  * Bitmask to control behavior of buf(9S) flushes when a transition to
1565  * the failfast state occurs. Optional bits include:
1566  *
1567  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1568  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1569  * be flushed.
1570  *
1571  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1572  * driver, in addition to the regular wait queue. This includes the xbuf
1573  * queues. When clear, only the driver's wait queue will be flushed.
1574  */
1575 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1576 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1577 
1578 /*
1579  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1580  * to flush all queues within the driver.
1581  */
1582 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1583 
1584 
1585 /*
1586  * SD Testing Fault Injection
1587  */
1588 #ifdef SD_FAULT_INJECTION
1589 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1590 static void sd_faultinjection(struct scsi_pkt *pktp);
1591 static void sd_injection_log(char *buf, struct sd_lun *un);
1592 #endif
1593 
1594 /*
1595  * Device driver ops vector
1596  */
1597 static struct cb_ops sd_cb_ops = {
1598 	sdopen,			/* open */
1599 	sdclose,		/* close */
1600 	sdstrategy,		/* strategy */
1601 	nodev,			/* print */
1602 	sddump,			/* dump */
1603 	sdread,			/* read */
1604 	sdwrite,		/* write */
1605 	sdioctl,		/* ioctl */
1606 	nodev,			/* devmap */
1607 	nodev,			/* mmap */
1608 	nodev,			/* segmap */
1609 	nochpoll,		/* poll */
1610 	sd_prop_op,		/* cb_prop_op */
1611 	0,			/* streamtab  */
1612 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1613 	CB_REV,			/* cb_rev */
1614 	sdaread, 		/* async I/O read entry point */
1615 	sdawrite		/* async I/O write entry point */
1616 };
1617 
1618 static struct dev_ops sd_ops = {
1619 	DEVO_REV,		/* devo_rev, */
1620 	0,			/* refcnt  */
1621 	sdinfo,			/* info */
1622 	nulldev,		/* identify */
1623 	sdprobe,		/* probe */
1624 	sdattach,		/* attach */
1625 	sddetach,		/* detach */
1626 	nodev,			/* reset */
1627 	&sd_cb_ops,		/* driver operations */
1628 	NULL,			/* bus operations */
1629 	sdpower			/* power */
1630 };
1631 
1632 
1633 /*
1634  * This is the loadable module wrapper.
1635  */
1636 #include <sys/modctl.h>
1637 
1638 static struct modldrv modldrv = {
1639 	&mod_driverops,		/* Type of module. This one is a driver */
1640 	SD_MODULE_NAME,		/* Module name. */
1641 	&sd_ops			/* driver ops */
1642 };
1643 
1644 
1645 static struct modlinkage modlinkage = {
1646 	MODREV_1,
1647 	&modldrv,
1648 	NULL
1649 };
1650 
1651 static cmlb_tg_ops_t sd_tgops = {
1652 	TG_DK_OPS_VERSION_1,
1653 	sd_tg_rdwr,
1654 	sd_tg_getinfo
1655 	};
1656 
1657 static struct scsi_asq_key_strings sd_additional_codes[] = {
1658 	0x81, 0, "Logical Unit is Reserved",
1659 	0x85, 0, "Audio Address Not Valid",
1660 	0xb6, 0, "Media Load Mechanism Failed",
1661 	0xB9, 0, "Audio Play Operation Aborted",
1662 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1663 	0x53, 2, "Medium removal prevented",
1664 	0x6f, 0, "Authentication failed during key exchange",
1665 	0x6f, 1, "Key not present",
1666 	0x6f, 2, "Key not established",
1667 	0x6f, 3, "Read without proper authentication",
1668 	0x6f, 4, "Mismatched region to this logical unit",
1669 	0x6f, 5, "Region reset count error",
1670 	0xffff, 0x0, NULL
1671 };
1672 
1673 
1674 /*
1675  * Struct for passing printing information for sense data messages
1676  */
1677 struct sd_sense_info {
1678 	int	ssi_severity;
1679 	int	ssi_pfa_flag;
1680 };
1681 
1682 /*
1683  * Table of function pointers for iostart-side routines. Separate "chains"
1684  * of layered function calls are formed by placing the function pointers
1685  * sequentially in the desired order. Functions are called according to an
1686  * incrementing table index ordering. The last function in each chain must
1687  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1688  * in the sd_iodone_chain[] array.
1689  *
1690  * Note: It may seem more natural to organize both the iostart and iodone
1691  * functions together, into an array of structures (or some similar
1692  * organization) with a common index, rather than two separate arrays which
1693  * must be maintained in synchronization. The purpose of this division is
1694  * to achieve improved performance: individual arrays allows for more
1695  * effective cache line utilization on certain platforms.
1696  */
1697 
1698 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1699 
1700 
1701 static sd_chain_t sd_iostart_chain[] = {
1702 
1703 	/* Chain for buf IO for disk drive targets (PM enabled) */
1704 	sd_mapblockaddr_iostart,	/* Index: 0 */
1705 	sd_pm_iostart,			/* Index: 1 */
1706 	sd_core_iostart,		/* Index: 2 */
1707 
1708 	/* Chain for buf IO for disk drive targets (PM disabled) */
1709 	sd_mapblockaddr_iostart,	/* Index: 3 */
1710 	sd_core_iostart,		/* Index: 4 */
1711 
1712 	/* Chain for buf IO for removable-media targets (PM enabled) */
1713 	sd_mapblockaddr_iostart,	/* Index: 5 */
1714 	sd_mapblocksize_iostart,	/* Index: 6 */
1715 	sd_pm_iostart,			/* Index: 7 */
1716 	sd_core_iostart,		/* Index: 8 */
1717 
1718 	/* Chain for buf IO for removable-media targets (PM disabled) */
1719 	sd_mapblockaddr_iostart,	/* Index: 9 */
1720 	sd_mapblocksize_iostart,	/* Index: 10 */
1721 	sd_core_iostart,		/* Index: 11 */
1722 
1723 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1724 	sd_mapblockaddr_iostart,	/* Index: 12 */
1725 	sd_checksum_iostart,		/* Index: 13 */
1726 	sd_pm_iostart,			/* Index: 14 */
1727 	sd_core_iostart,		/* Index: 15 */
1728 
1729 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1730 	sd_mapblockaddr_iostart,	/* Index: 16 */
1731 	sd_checksum_iostart,		/* Index: 17 */
1732 	sd_core_iostart,		/* Index: 18 */
1733 
1734 	/* Chain for USCSI commands (all targets) */
1735 	sd_pm_iostart,			/* Index: 19 */
1736 	sd_core_iostart,		/* Index: 20 */
1737 
1738 	/* Chain for checksumming USCSI commands (all targets) */
1739 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1740 	sd_pm_iostart,			/* Index: 22 */
1741 	sd_core_iostart,		/* Index: 23 */
1742 
1743 	/* Chain for "direct" USCSI commands (all targets) */
1744 	sd_core_iostart,		/* Index: 24 */
1745 
1746 	/* Chain for "direct priority" USCSI commands (all targets) */
1747 	sd_core_iostart,		/* Index: 25 */
1748 };
1749 
1750 /*
1751  * Macros to locate the first function of each iostart chain in the
1752  * sd_iostart_chain[] array. These are located by the index in the array.
1753  */
1754 #define	SD_CHAIN_DISK_IOSTART			0
1755 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1756 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1757 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1758 #define	SD_CHAIN_CHKSUM_IOSTART			12
1759 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1760 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1761 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1762 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1763 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1764 
1765 
1766 /*
1767  * Table of function pointers for the iodone-side routines for the driver-
1768  * internal layering mechanism.  The calling sequence for iodone routines
1769  * uses a decrementing table index, so the last routine called in a chain
1770  * must be at the lowest array index location for that chain.  The last
1771  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1772  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1773  * of the functions in an iodone side chain must correspond to the ordering
1774  * of the iostart routines for that chain.  Note that there is no iodone
1775  * side routine that corresponds to sd_core_iostart(), so there is no
1776  * entry in the table for this.
1777  */
1778 
1779 static sd_chain_t sd_iodone_chain[] = {
1780 
1781 	/* Chain for buf IO for disk drive targets (PM enabled) */
1782 	sd_buf_iodone,			/* Index: 0 */
1783 	sd_mapblockaddr_iodone,		/* Index: 1 */
1784 	sd_pm_iodone,			/* Index: 2 */
1785 
1786 	/* Chain for buf IO for disk drive targets (PM disabled) */
1787 	sd_buf_iodone,			/* Index: 3 */
1788 	sd_mapblockaddr_iodone,		/* Index: 4 */
1789 
1790 	/* Chain for buf IO for removable-media targets (PM enabled) */
1791 	sd_buf_iodone,			/* Index: 5 */
1792 	sd_mapblockaddr_iodone,		/* Index: 6 */
1793 	sd_mapblocksize_iodone,		/* Index: 7 */
1794 	sd_pm_iodone,			/* Index: 8 */
1795 
1796 	/* Chain for buf IO for removable-media targets (PM disabled) */
1797 	sd_buf_iodone,			/* Index: 9 */
1798 	sd_mapblockaddr_iodone,		/* Index: 10 */
1799 	sd_mapblocksize_iodone,		/* Index: 11 */
1800 
1801 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1802 	sd_buf_iodone,			/* Index: 12 */
1803 	sd_mapblockaddr_iodone,		/* Index: 13 */
1804 	sd_checksum_iodone,		/* Index: 14 */
1805 	sd_pm_iodone,			/* Index: 15 */
1806 
1807 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1808 	sd_buf_iodone,			/* Index: 16 */
1809 	sd_mapblockaddr_iodone,		/* Index: 17 */
1810 	sd_checksum_iodone,		/* Index: 18 */
1811 
1812 	/* Chain for USCSI commands (non-checksum targets) */
1813 	sd_uscsi_iodone,		/* Index: 19 */
1814 	sd_pm_iodone,			/* Index: 20 */
1815 
1816 	/* Chain for USCSI commands (checksum targets) */
1817 	sd_uscsi_iodone,		/* Index: 21 */
1818 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1819 	sd_pm_iodone,			/* Index: 22 */
1820 
1821 	/* Chain for "direct" USCSI commands (all targets) */
1822 	sd_uscsi_iodone,		/* Index: 24 */
1823 
1824 	/* Chain for "direct priority" USCSI commands (all targets) */
1825 	sd_uscsi_iodone,		/* Index: 25 */
1826 };
1827 
1828 
1829 /*
1830  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1831  * each iodone-side chain. These are located by the array index, but as the
1832  * iodone side functions are called in a decrementing-index order, the
1833  * highest index number in each chain must be specified (as these correspond
1834  * to the first function in the iodone chain that will be called by the core
1835  * at IO completion time).
1836  */
1837 
1838 #define	SD_CHAIN_DISK_IODONE			2
1839 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1840 #define	SD_CHAIN_RMMEDIA_IODONE			8
1841 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1842 #define	SD_CHAIN_CHKSUM_IODONE			15
1843 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1844 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1845 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1846 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1847 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1848 
1849 
1850 
1851 
1852 /*
1853  * Array to map a layering chain index to the appropriate initpkt routine.
1854  * The redundant entries are present so that the index used for accessing
1855  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1856  * with this table as well.
1857  */
1858 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1859 
1860 static sd_initpkt_t	sd_initpkt_map[] = {
1861 
1862 	/* Chain for buf IO for disk drive targets (PM enabled) */
1863 	sd_initpkt_for_buf,		/* Index: 0 */
1864 	sd_initpkt_for_buf,		/* Index: 1 */
1865 	sd_initpkt_for_buf,		/* Index: 2 */
1866 
1867 	/* Chain for buf IO for disk drive targets (PM disabled) */
1868 	sd_initpkt_for_buf,		/* Index: 3 */
1869 	sd_initpkt_for_buf,		/* Index: 4 */
1870 
1871 	/* Chain for buf IO for removable-media targets (PM enabled) */
1872 	sd_initpkt_for_buf,		/* Index: 5 */
1873 	sd_initpkt_for_buf,		/* Index: 6 */
1874 	sd_initpkt_for_buf,		/* Index: 7 */
1875 	sd_initpkt_for_buf,		/* Index: 8 */
1876 
1877 	/* Chain for buf IO for removable-media targets (PM disabled) */
1878 	sd_initpkt_for_buf,		/* Index: 9 */
1879 	sd_initpkt_for_buf,		/* Index: 10 */
1880 	sd_initpkt_for_buf,		/* Index: 11 */
1881 
1882 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1883 	sd_initpkt_for_buf,		/* Index: 12 */
1884 	sd_initpkt_for_buf,		/* Index: 13 */
1885 	sd_initpkt_for_buf,		/* Index: 14 */
1886 	sd_initpkt_for_buf,		/* Index: 15 */
1887 
1888 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1889 	sd_initpkt_for_buf,		/* Index: 16 */
1890 	sd_initpkt_for_buf,		/* Index: 17 */
1891 	sd_initpkt_for_buf,		/* Index: 18 */
1892 
1893 	/* Chain for USCSI commands (non-checksum targets) */
1894 	sd_initpkt_for_uscsi,		/* Index: 19 */
1895 	sd_initpkt_for_uscsi,		/* Index: 20 */
1896 
1897 	/* Chain for USCSI commands (checksum targets) */
1898 	sd_initpkt_for_uscsi,		/* Index: 21 */
1899 	sd_initpkt_for_uscsi,		/* Index: 22 */
1900 	sd_initpkt_for_uscsi,		/* Index: 22 */
1901 
1902 	/* Chain for "direct" USCSI commands (all targets) */
1903 	sd_initpkt_for_uscsi,		/* Index: 24 */
1904 
1905 	/* Chain for "direct priority" USCSI commands (all targets) */
1906 	sd_initpkt_for_uscsi,		/* Index: 25 */
1907 
1908 };
1909 
1910 
1911 /*
1912  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1913  * The redundant entries are present so that the index used for accessing
1914  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1915  * with this table as well.
1916  */
1917 typedef void (*sd_destroypkt_t)(struct buf *);
1918 
1919 static sd_destroypkt_t	sd_destroypkt_map[] = {
1920 
1921 	/* Chain for buf IO for disk drive targets (PM enabled) */
1922 	sd_destroypkt_for_buf,		/* Index: 0 */
1923 	sd_destroypkt_for_buf,		/* Index: 1 */
1924 	sd_destroypkt_for_buf,		/* Index: 2 */
1925 
1926 	/* Chain for buf IO for disk drive targets (PM disabled) */
1927 	sd_destroypkt_for_buf,		/* Index: 3 */
1928 	sd_destroypkt_for_buf,		/* Index: 4 */
1929 
1930 	/* Chain for buf IO for removable-media targets (PM enabled) */
1931 	sd_destroypkt_for_buf,		/* Index: 5 */
1932 	sd_destroypkt_for_buf,		/* Index: 6 */
1933 	sd_destroypkt_for_buf,		/* Index: 7 */
1934 	sd_destroypkt_for_buf,		/* Index: 8 */
1935 
1936 	/* Chain for buf IO for removable-media targets (PM disabled) */
1937 	sd_destroypkt_for_buf,		/* Index: 9 */
1938 	sd_destroypkt_for_buf,		/* Index: 10 */
1939 	sd_destroypkt_for_buf,		/* Index: 11 */
1940 
1941 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1942 	sd_destroypkt_for_buf,		/* Index: 12 */
1943 	sd_destroypkt_for_buf,		/* Index: 13 */
1944 	sd_destroypkt_for_buf,		/* Index: 14 */
1945 	sd_destroypkt_for_buf,		/* Index: 15 */
1946 
1947 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1948 	sd_destroypkt_for_buf,		/* Index: 16 */
1949 	sd_destroypkt_for_buf,		/* Index: 17 */
1950 	sd_destroypkt_for_buf,		/* Index: 18 */
1951 
1952 	/* Chain for USCSI commands (non-checksum targets) */
1953 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1954 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1955 
1956 	/* Chain for USCSI commands (checksum targets) */
1957 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1958 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1959 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1960 
1961 	/* Chain for "direct" USCSI commands (all targets) */
1962 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1963 
1964 	/* Chain for "direct priority" USCSI commands (all targets) */
1965 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1966 
1967 };
1968 
1969 
1970 
1971 /*
1972  * Array to map a layering chain index to the appropriate chain "type".
1973  * The chain type indicates a specific property/usage of the chain.
1974  * The redundant entries are present so that the index used for accessing
1975  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1976  * with this table as well.
1977  */
1978 
1979 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1980 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1981 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1982 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1983 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1984 						/* (for error recovery) */
1985 
1986 static int sd_chain_type_map[] = {
1987 
1988 	/* Chain for buf IO for disk drive targets (PM enabled) */
1989 	SD_CHAIN_BUFIO,			/* Index: 0 */
1990 	SD_CHAIN_BUFIO,			/* Index: 1 */
1991 	SD_CHAIN_BUFIO,			/* Index: 2 */
1992 
1993 	/* Chain for buf IO for disk drive targets (PM disabled) */
1994 	SD_CHAIN_BUFIO,			/* Index: 3 */
1995 	SD_CHAIN_BUFIO,			/* Index: 4 */
1996 
1997 	/* Chain for buf IO for removable-media targets (PM enabled) */
1998 	SD_CHAIN_BUFIO,			/* Index: 5 */
1999 	SD_CHAIN_BUFIO,			/* Index: 6 */
2000 	SD_CHAIN_BUFIO,			/* Index: 7 */
2001 	SD_CHAIN_BUFIO,			/* Index: 8 */
2002 
2003 	/* Chain for buf IO for removable-media targets (PM disabled) */
2004 	SD_CHAIN_BUFIO,			/* Index: 9 */
2005 	SD_CHAIN_BUFIO,			/* Index: 10 */
2006 	SD_CHAIN_BUFIO,			/* Index: 11 */
2007 
2008 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2009 	SD_CHAIN_BUFIO,			/* Index: 12 */
2010 	SD_CHAIN_BUFIO,			/* Index: 13 */
2011 	SD_CHAIN_BUFIO,			/* Index: 14 */
2012 	SD_CHAIN_BUFIO,			/* Index: 15 */
2013 
2014 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2015 	SD_CHAIN_BUFIO,			/* Index: 16 */
2016 	SD_CHAIN_BUFIO,			/* Index: 17 */
2017 	SD_CHAIN_BUFIO,			/* Index: 18 */
2018 
2019 	/* Chain for USCSI commands (non-checksum targets) */
2020 	SD_CHAIN_USCSI,			/* Index: 19 */
2021 	SD_CHAIN_USCSI,			/* Index: 20 */
2022 
2023 	/* Chain for USCSI commands (checksum targets) */
2024 	SD_CHAIN_USCSI,			/* Index: 21 */
2025 	SD_CHAIN_USCSI,			/* Index: 22 */
2026 	SD_CHAIN_USCSI,			/* Index: 22 */
2027 
2028 	/* Chain for "direct" USCSI commands (all targets) */
2029 	SD_CHAIN_DIRECT,		/* Index: 24 */
2030 
2031 	/* Chain for "direct priority" USCSI commands (all targets) */
2032 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2033 };
2034 
2035 
2036 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2037 #define	SD_IS_BUFIO(xp)			\
2038 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2039 
2040 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2041 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2042 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2043 
2044 
2045 
2046 /*
2047  * Struct, array, and macros to map a specific chain to the appropriate
2048  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2049  *
2050  * The sd_chain_index_map[] array is used at attach time to set the various
2051  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2052  * chain to be used with the instance. This allows different instances to use
2053  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2054  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2055  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2056  * dynamically & without the use of locking; and (2) a layer may update the
2057  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2058  * to allow for deferred processing of an IO within the same chain from a
2059  * different execution context.
2060  */
2061 
2062 struct sd_chain_index {
2063 	int	sci_iostart_index;
2064 	int	sci_iodone_index;
2065 };
2066 
2067 static struct sd_chain_index	sd_chain_index_map[] = {
2068 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2069 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2070 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2071 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2072 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2073 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2074 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2075 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2076 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2077 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2078 };
2079 
2080 
2081 /*
2082  * The following are indexes into the sd_chain_index_map[] array.
2083  */
2084 
2085 /* un->un_buf_chain_type must be set to one of these */
2086 #define	SD_CHAIN_INFO_DISK		0
2087 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2088 #define	SD_CHAIN_INFO_RMMEDIA		2
2089 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2090 #define	SD_CHAIN_INFO_CHKSUM		4
2091 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2092 
2093 /* un->un_uscsi_chain_type must be set to one of these */
2094 #define	SD_CHAIN_INFO_USCSI_CMD		6
2095 /* USCSI with PM disabled is the same as DIRECT */
2096 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2097 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2098 
2099 /* un->un_direct_chain_type must be set to one of these */
2100 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2101 
2102 /* un->un_priority_chain_type must be set to one of these */
2103 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2104 
2105 /* size for devid inquiries */
2106 #define	MAX_INQUIRY_SIZE		0xF0
2107 
2108 /*
2109  * Macros used by functions to pass a given buf(9S) struct along to the
2110  * next function in the layering chain for further processing.
2111  *
2112  * In the following macros, passing more than three arguments to the called
2113  * routines causes the optimizer for the SPARC compiler to stop doing tail
2114  * call elimination which results in significant performance degradation.
2115  */
2116 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2117 	((*(sd_iostart_chain[index]))(index, un, bp))
2118 
2119 #define	SD_BEGIN_IODONE(index, un, bp)	\
2120 	((*(sd_iodone_chain[index]))(index, un, bp))
2121 
2122 #define	SD_NEXT_IOSTART(index, un, bp)				\
2123 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2124 
2125 #define	SD_NEXT_IODONE(index, un, bp)				\
2126 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2127 
2128 /*
2129  *    Function: _init
2130  *
2131  * Description: This is the driver _init(9E) entry point.
2132  *
2133  * Return Code: Returns the value from mod_install(9F) or
2134  *		ddi_soft_state_init(9F) as appropriate.
2135  *
2136  *     Context: Called when driver module loaded.
2137  */
2138 
2139 int
2140 _init(void)
2141 {
2142 	int	err;
2143 
2144 	/* establish driver name from module name */
2145 	sd_label = mod_modname(&modlinkage);
2146 
2147 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2148 	    SD_MAXUNIT);
2149 
2150 	if (err != 0) {
2151 		return (err);
2152 	}
2153 
2154 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2155 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2156 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2157 
2158 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2159 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2160 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2161 
2162 	/*
2163 	 * it's ok to init here even for fibre device
2164 	 */
2165 	sd_scsi_probe_cache_init();
2166 
2167 	sd_scsi_target_lun_init();
2168 
2169 	/*
2170 	 * Creating taskq before mod_install ensures that all callers (threads)
2171 	 * that enter the module after a successfull mod_install encounter
2172 	 * a valid taskq.
2173 	 */
2174 	sd_taskq_create();
2175 
2176 	err = mod_install(&modlinkage);
2177 	if (err != 0) {
2178 		/* delete taskq if install fails */
2179 		sd_taskq_delete();
2180 
2181 		mutex_destroy(&sd_detach_mutex);
2182 		mutex_destroy(&sd_log_mutex);
2183 		mutex_destroy(&sd_label_mutex);
2184 
2185 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2186 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2187 		cv_destroy(&sd_tr.srq_inprocess_cv);
2188 
2189 		sd_scsi_probe_cache_fini();
2190 
2191 		sd_scsi_target_lun_fini();
2192 
2193 		ddi_soft_state_fini(&sd_state);
2194 		return (err);
2195 	}
2196 
2197 	return (err);
2198 }
2199 
2200 
2201 /*
2202  *    Function: _fini
2203  *
2204  * Description: This is the driver _fini(9E) entry point.
2205  *
2206  * Return Code: Returns the value from mod_remove(9F)
2207  *
2208  *     Context: Called when driver module is unloaded.
2209  */
2210 
2211 int
2212 _fini(void)
2213 {
2214 	int err;
2215 
2216 	if ((err = mod_remove(&modlinkage)) != 0) {
2217 		return (err);
2218 	}
2219 
2220 	sd_taskq_delete();
2221 
2222 	mutex_destroy(&sd_detach_mutex);
2223 	mutex_destroy(&sd_log_mutex);
2224 	mutex_destroy(&sd_label_mutex);
2225 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2226 
2227 	sd_scsi_probe_cache_fini();
2228 
2229 	sd_scsi_target_lun_fini();
2230 
2231 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2232 	cv_destroy(&sd_tr.srq_inprocess_cv);
2233 
2234 	ddi_soft_state_fini(&sd_state);
2235 
2236 	return (err);
2237 }
2238 
2239 
2240 /*
2241  *    Function: _info
2242  *
2243  * Description: This is the driver _info(9E) entry point.
2244  *
2245  *   Arguments: modinfop - pointer to the driver modinfo structure
2246  *
2247  * Return Code: Returns the value from mod_info(9F).
2248  *
2249  *     Context: Kernel thread context
2250  */
2251 
2252 int
2253 _info(struct modinfo *modinfop)
2254 {
2255 	return (mod_info(&modlinkage, modinfop));
2256 }
2257 
2258 
2259 /*
2260  * The following routines implement the driver message logging facility.
2261  * They provide component- and level- based debug output filtering.
2262  * Output may also be restricted to messages for a single instance by
2263  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2264  * to NULL, then messages for all instances are printed.
2265  *
2266  * These routines have been cloned from each other due to the language
2267  * constraints of macros and variable argument list processing.
2268  */
2269 
2270 
2271 /*
2272  *    Function: sd_log_err
2273  *
2274  * Description: This routine is called by the SD_ERROR macro for debug
2275  *		logging of error conditions.
2276  *
2277  *   Arguments: comp - driver component being logged
2278  *		dev  - pointer to driver info structure
2279  *		fmt  - error string and format to be logged
2280  */
2281 
2282 static void
2283 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2284 {
2285 	va_list		ap;
2286 	dev_info_t	*dev;
2287 
2288 	ASSERT(un != NULL);
2289 	dev = SD_DEVINFO(un);
2290 	ASSERT(dev != NULL);
2291 
2292 	/*
2293 	 * Filter messages based on the global component and level masks.
2294 	 * Also print if un matches the value of sd_debug_un, or if
2295 	 * sd_debug_un is set to NULL.
2296 	 */
2297 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2298 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2299 		mutex_enter(&sd_log_mutex);
2300 		va_start(ap, fmt);
2301 		(void) vsprintf(sd_log_buf, fmt, ap);
2302 		va_end(ap);
2303 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2304 		mutex_exit(&sd_log_mutex);
2305 	}
2306 #ifdef SD_FAULT_INJECTION
2307 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2308 	if (un->sd_injection_mask & comp) {
2309 		mutex_enter(&sd_log_mutex);
2310 		va_start(ap, fmt);
2311 		(void) vsprintf(sd_log_buf, fmt, ap);
2312 		va_end(ap);
2313 		sd_injection_log(sd_log_buf, un);
2314 		mutex_exit(&sd_log_mutex);
2315 	}
2316 #endif
2317 }
2318 
2319 
2320 /*
2321  *    Function: sd_log_info
2322  *
2323  * Description: This routine is called by the SD_INFO macro for debug
2324  *		logging of general purpose informational conditions.
2325  *
2326  *   Arguments: comp - driver component being logged
2327  *		dev  - pointer to driver info structure
2328  *		fmt  - info string and format to be logged
2329  */
2330 
2331 static void
2332 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2333 {
2334 	va_list		ap;
2335 	dev_info_t	*dev;
2336 
2337 	ASSERT(un != NULL);
2338 	dev = SD_DEVINFO(un);
2339 	ASSERT(dev != NULL);
2340 
2341 	/*
2342 	 * Filter messages based on the global component and level masks.
2343 	 * Also print if un matches the value of sd_debug_un, or if
2344 	 * sd_debug_un is set to NULL.
2345 	 */
2346 	if ((sd_component_mask & component) &&
2347 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2348 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2349 		mutex_enter(&sd_log_mutex);
2350 		va_start(ap, fmt);
2351 		(void) vsprintf(sd_log_buf, fmt, ap);
2352 		va_end(ap);
2353 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2354 		mutex_exit(&sd_log_mutex);
2355 	}
2356 #ifdef SD_FAULT_INJECTION
2357 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2358 	if (un->sd_injection_mask & component) {
2359 		mutex_enter(&sd_log_mutex);
2360 		va_start(ap, fmt);
2361 		(void) vsprintf(sd_log_buf, fmt, ap);
2362 		va_end(ap);
2363 		sd_injection_log(sd_log_buf, un);
2364 		mutex_exit(&sd_log_mutex);
2365 	}
2366 #endif
2367 }
2368 
2369 
2370 /*
2371  *    Function: sd_log_trace
2372  *
2373  * Description: This routine is called by the SD_TRACE macro for debug
2374  *		logging of trace conditions (i.e. function entry/exit).
2375  *
2376  *   Arguments: comp - driver component being logged
2377  *		dev  - pointer to driver info structure
2378  *		fmt  - trace string and format to be logged
2379  */
2380 
2381 static void
2382 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2383 {
2384 	va_list		ap;
2385 	dev_info_t	*dev;
2386 
2387 	ASSERT(un != NULL);
2388 	dev = SD_DEVINFO(un);
2389 	ASSERT(dev != NULL);
2390 
2391 	/*
2392 	 * Filter messages based on the global component and level masks.
2393 	 * Also print if un matches the value of sd_debug_un, or if
2394 	 * sd_debug_un is set to NULL.
2395 	 */
2396 	if ((sd_component_mask & component) &&
2397 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2398 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2399 		mutex_enter(&sd_log_mutex);
2400 		va_start(ap, fmt);
2401 		(void) vsprintf(sd_log_buf, fmt, ap);
2402 		va_end(ap);
2403 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2404 		mutex_exit(&sd_log_mutex);
2405 	}
2406 #ifdef SD_FAULT_INJECTION
2407 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2408 	if (un->sd_injection_mask & component) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		sd_injection_log(sd_log_buf, un);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #endif
2417 }
2418 
2419 
2420 /*
2421  *    Function: sdprobe
2422  *
2423  * Description: This is the driver probe(9e) entry point function.
2424  *
2425  *   Arguments: devi - opaque device info handle
2426  *
2427  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2428  *              DDI_PROBE_FAILURE: If the probe failed.
2429  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2430  *				   but may be present in the future.
2431  */
2432 
2433 static int
2434 sdprobe(dev_info_t *devi)
2435 {
2436 	struct scsi_device	*devp;
2437 	int			rval;
2438 	int			instance;
2439 
2440 	/*
2441 	 * if it wasn't for pln, sdprobe could actually be nulldev
2442 	 * in the "__fibre" case.
2443 	 */
2444 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2445 		return (DDI_PROBE_DONTCARE);
2446 	}
2447 
2448 	devp = ddi_get_driver_private(devi);
2449 
2450 	if (devp == NULL) {
2451 		/* Ooops... nexus driver is mis-configured... */
2452 		return (DDI_PROBE_FAILURE);
2453 	}
2454 
2455 	instance = ddi_get_instance(devi);
2456 
2457 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2458 		return (DDI_PROBE_PARTIAL);
2459 	}
2460 
2461 	/*
2462 	 * Call the SCSA utility probe routine to see if we actually
2463 	 * have a target at this SCSI nexus.
2464 	 */
2465 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2466 	case SCSIPROBE_EXISTS:
2467 		switch (devp->sd_inq->inq_dtype) {
2468 		case DTYPE_DIRECT:
2469 			rval = DDI_PROBE_SUCCESS;
2470 			break;
2471 		case DTYPE_RODIRECT:
2472 			/* CDs etc. Can be removable media */
2473 			rval = DDI_PROBE_SUCCESS;
2474 			break;
2475 		case DTYPE_OPTICAL:
2476 			/*
2477 			 * Rewritable optical driver HP115AA
2478 			 * Can also be removable media
2479 			 */
2480 
2481 			/*
2482 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2483 			 * pre solaris 9 sparc sd behavior is required
2484 			 *
2485 			 * If first time through and sd_dtype_optical_bind
2486 			 * has not been set in /etc/system check properties
2487 			 */
2488 
2489 			if (sd_dtype_optical_bind  < 0) {
2490 				sd_dtype_optical_bind = ddi_prop_get_int
2491 				    (DDI_DEV_T_ANY, devi, 0,
2492 				    "optical-device-bind", 1);
2493 			}
2494 
2495 			if (sd_dtype_optical_bind == 0) {
2496 				rval = DDI_PROBE_FAILURE;
2497 			} else {
2498 				rval = DDI_PROBE_SUCCESS;
2499 			}
2500 			break;
2501 
2502 		case DTYPE_NOTPRESENT:
2503 		default:
2504 			rval = DDI_PROBE_FAILURE;
2505 			break;
2506 		}
2507 		break;
2508 	default:
2509 		rval = DDI_PROBE_PARTIAL;
2510 		break;
2511 	}
2512 
2513 	/*
2514 	 * This routine checks for resource allocation prior to freeing,
2515 	 * so it will take care of the "smart probing" case where a
2516 	 * scsi_probe() may or may not have been issued and will *not*
2517 	 * free previously-freed resources.
2518 	 */
2519 	scsi_unprobe(devp);
2520 	return (rval);
2521 }
2522 
2523 
2524 /*
2525  *    Function: sdinfo
2526  *
2527  * Description: This is the driver getinfo(9e) entry point function.
2528  * 		Given the device number, return the devinfo pointer from
2529  *		the scsi_device structure or the instance number
2530  *		associated with the dev_t.
2531  *
2532  *   Arguments: dip     - pointer to device info structure
2533  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2534  *			  DDI_INFO_DEVT2INSTANCE)
2535  *		arg     - driver dev_t
2536  *		resultp - user buffer for request response
2537  *
2538  * Return Code: DDI_SUCCESS
2539  *              DDI_FAILURE
2540  */
2541 /* ARGSUSED */
2542 static int
2543 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2544 {
2545 	struct sd_lun	*un;
2546 	dev_t		dev;
2547 	int		instance;
2548 	int		error;
2549 
2550 	switch (infocmd) {
2551 	case DDI_INFO_DEVT2DEVINFO:
2552 		dev = (dev_t)arg;
2553 		instance = SDUNIT(dev);
2554 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2555 			return (DDI_FAILURE);
2556 		}
2557 		*result = (void *) SD_DEVINFO(un);
2558 		error = DDI_SUCCESS;
2559 		break;
2560 	case DDI_INFO_DEVT2INSTANCE:
2561 		dev = (dev_t)arg;
2562 		instance = SDUNIT(dev);
2563 		*result = (void *)(uintptr_t)instance;
2564 		error = DDI_SUCCESS;
2565 		break;
2566 	default:
2567 		error = DDI_FAILURE;
2568 	}
2569 	return (error);
2570 }
2571 
2572 /*
2573  *    Function: sd_prop_op
2574  *
2575  * Description: This is the driver prop_op(9e) entry point function.
2576  *		Return the number of blocks for the partition in question
2577  *		or forward the request to the property facilities.
2578  *
2579  *   Arguments: dev       - device number
2580  *		dip       - pointer to device info structure
2581  *		prop_op   - property operator
2582  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2583  *		name      - pointer to property name
2584  *		valuep    - pointer or address of the user buffer
2585  *		lengthp   - property length
2586  *
2587  * Return Code: DDI_PROP_SUCCESS
2588  *              DDI_PROP_NOT_FOUND
2589  *              DDI_PROP_UNDEFINED
2590  *              DDI_PROP_NO_MEMORY
2591  *              DDI_PROP_BUF_TOO_SMALL
2592  */
2593 
2594 static int
2595 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2596 	char *name, caddr_t valuep, int *lengthp)
2597 {
2598 	int		instance = ddi_get_instance(dip);
2599 	struct sd_lun	*un;
2600 	uint64_t	nblocks64;
2601 	uint_t		dblk;
2602 
2603 	/*
2604 	 * Our dynamic properties are all device specific and size oriented.
2605 	 * Requests issued under conditions where size is valid are passed
2606 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2607 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2608 	 */
2609 	un = ddi_get_soft_state(sd_state, instance);
2610 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2611 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2612 		    name, valuep, lengthp));
2613 	} else if (!SD_IS_VALID_LABEL(un)) {
2614 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2615 		    valuep, lengthp));
2616 	}
2617 
2618 	/* get nblocks value */
2619 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2620 
2621 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2622 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2623 
2624 	/* report size in target size blocks */
2625 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2626 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2627 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2628 }
2629 
2630 /*
2631  * The following functions are for smart probing:
2632  * sd_scsi_probe_cache_init()
2633  * sd_scsi_probe_cache_fini()
2634  * sd_scsi_clear_probe_cache()
2635  * sd_scsi_probe_with_cache()
2636  */
2637 
2638 /*
2639  *    Function: sd_scsi_probe_cache_init
2640  *
2641  * Description: Initializes the probe response cache mutex and head pointer.
2642  *
2643  *     Context: Kernel thread context
2644  */
2645 
2646 static void
2647 sd_scsi_probe_cache_init(void)
2648 {
2649 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2650 	sd_scsi_probe_cache_head = NULL;
2651 }
2652 
2653 
2654 /*
2655  *    Function: sd_scsi_probe_cache_fini
2656  *
2657  * Description: Frees all resources associated with the probe response cache.
2658  *
2659  *     Context: Kernel thread context
2660  */
2661 
2662 static void
2663 sd_scsi_probe_cache_fini(void)
2664 {
2665 	struct sd_scsi_probe_cache *cp;
2666 	struct sd_scsi_probe_cache *ncp;
2667 
2668 	/* Clean up our smart probing linked list */
2669 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2670 		ncp = cp->next;
2671 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2672 	}
2673 	sd_scsi_probe_cache_head = NULL;
2674 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2675 }
2676 
2677 
2678 /*
2679  *    Function: sd_scsi_clear_probe_cache
2680  *
2681  * Description: This routine clears the probe response cache. This is
2682  *		done when open() returns ENXIO so that when deferred
2683  *		attach is attempted (possibly after a device has been
2684  *		turned on) we will retry the probe. Since we don't know
2685  *		which target we failed to open, we just clear the
2686  *		entire cache.
2687  *
2688  *     Context: Kernel thread context
2689  */
2690 
2691 static void
2692 sd_scsi_clear_probe_cache(void)
2693 {
2694 	struct sd_scsi_probe_cache	*cp;
2695 	int				i;
2696 
2697 	mutex_enter(&sd_scsi_probe_cache_mutex);
2698 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2699 		/*
2700 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2701 		 * force probing to be performed the next time
2702 		 * sd_scsi_probe_with_cache is called.
2703 		 */
2704 		for (i = 0; i < NTARGETS_WIDE; i++) {
2705 			cp->cache[i] = SCSIPROBE_EXISTS;
2706 		}
2707 	}
2708 	mutex_exit(&sd_scsi_probe_cache_mutex);
2709 }
2710 
2711 
2712 /*
2713  *    Function: sd_scsi_probe_with_cache
2714  *
2715  * Description: This routine implements support for a scsi device probe
2716  *		with cache. The driver maintains a cache of the target
2717  *		responses to scsi probes. If we get no response from a
2718  *		target during a probe inquiry, we remember that, and we
2719  *		avoid additional calls to scsi_probe on non-zero LUNs
2720  *		on the same target until the cache is cleared. By doing
2721  *		so we avoid the 1/4 sec selection timeout for nonzero
2722  *		LUNs. lun0 of a target is always probed.
2723  *
2724  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2725  *              waitfunc - indicates what the allocator routines should
2726  *			   do when resources are not available. This value
2727  *			   is passed on to scsi_probe() when that routine
2728  *			   is called.
2729  *
2730  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2731  *		otherwise the value returned by scsi_probe(9F).
2732  *
2733  *     Context: Kernel thread context
2734  */
2735 
2736 static int
2737 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2738 {
2739 	struct sd_scsi_probe_cache	*cp;
2740 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2741 	int		lun, tgt;
2742 
2743 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2744 	    SCSI_ADDR_PROP_LUN, 0);
2745 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2746 	    SCSI_ADDR_PROP_TARGET, -1);
2747 
2748 	/* Make sure caching enabled and target in range */
2749 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2750 		/* do it the old way (no cache) */
2751 		return (scsi_probe(devp, waitfn));
2752 	}
2753 
2754 	mutex_enter(&sd_scsi_probe_cache_mutex);
2755 
2756 	/* Find the cache for this scsi bus instance */
2757 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2758 		if (cp->pdip == pdip) {
2759 			break;
2760 		}
2761 	}
2762 
2763 	/* If we can't find a cache for this pdip, create one */
2764 	if (cp == NULL) {
2765 		int i;
2766 
2767 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2768 		    KM_SLEEP);
2769 		cp->pdip = pdip;
2770 		cp->next = sd_scsi_probe_cache_head;
2771 		sd_scsi_probe_cache_head = cp;
2772 		for (i = 0; i < NTARGETS_WIDE; i++) {
2773 			cp->cache[i] = SCSIPROBE_EXISTS;
2774 		}
2775 	}
2776 
2777 	mutex_exit(&sd_scsi_probe_cache_mutex);
2778 
2779 	/* Recompute the cache for this target if LUN zero */
2780 	if (lun == 0) {
2781 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2782 	}
2783 
2784 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2785 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2786 		return (SCSIPROBE_NORESP);
2787 	}
2788 
2789 	/* Do the actual probe; save & return the result */
2790 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2791 }
2792 
2793 
2794 /*
2795  *    Function: sd_scsi_target_lun_init
2796  *
2797  * Description: Initializes the attached lun chain mutex and head pointer.
2798  *
2799  *     Context: Kernel thread context
2800  */
2801 
2802 static void
2803 sd_scsi_target_lun_init(void)
2804 {
2805 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2806 	sd_scsi_target_lun_head = NULL;
2807 }
2808 
2809 
2810 /*
2811  *    Function: sd_scsi_target_lun_fini
2812  *
2813  * Description: Frees all resources associated with the attached lun
2814  *              chain
2815  *
2816  *     Context: Kernel thread context
2817  */
2818 
2819 static void
2820 sd_scsi_target_lun_fini(void)
2821 {
2822 	struct sd_scsi_hba_tgt_lun	*cp;
2823 	struct sd_scsi_hba_tgt_lun	*ncp;
2824 
2825 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2826 		ncp = cp->next;
2827 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2828 	}
2829 	sd_scsi_target_lun_head = NULL;
2830 	mutex_destroy(&sd_scsi_target_lun_mutex);
2831 }
2832 
2833 
2834 /*
2835  *    Function: sd_scsi_get_target_lun_count
2836  *
2837  * Description: This routine will check in the attached lun chain to see
2838  * 		how many luns are attached on the required SCSI controller
2839  * 		and target. Currently, some capabilities like tagged queue
2840  *		are supported per target based by HBA. So all luns in a
2841  *		target have the same capabilities. Based on this assumption,
2842  * 		sd should only set these capabilities once per target. This
2843  *		function is called when sd needs to decide how many luns
2844  *		already attached on a target.
2845  *
2846  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2847  *			  controller device.
2848  *              target	- The target ID on the controller's SCSI bus.
2849  *
2850  * Return Code: The number of luns attached on the required target and
2851  *		controller.
2852  *		-1 if target ID is not in parallel SCSI scope or the given
2853  * 		dip is not in the chain.
2854  *
2855  *     Context: Kernel thread context
2856  */
2857 
2858 static int
2859 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2860 {
2861 	struct sd_scsi_hba_tgt_lun	*cp;
2862 
2863 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2864 		return (-1);
2865 	}
2866 
2867 	mutex_enter(&sd_scsi_target_lun_mutex);
2868 
2869 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2870 		if (cp->pdip == dip) {
2871 			break;
2872 		}
2873 	}
2874 
2875 	mutex_exit(&sd_scsi_target_lun_mutex);
2876 
2877 	if (cp == NULL) {
2878 		return (-1);
2879 	}
2880 
2881 	return (cp->nlun[target]);
2882 }
2883 
2884 
2885 /*
2886  *    Function: sd_scsi_update_lun_on_target
2887  *
2888  * Description: This routine is used to update the attached lun chain when a
2889  *		lun is attached or detached on a target.
2890  *
2891  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2892  *                        controller device.
2893  *              target  - The target ID on the controller's SCSI bus.
2894  *		flag	- Indicate the lun is attached or detached.
2895  *
2896  *     Context: Kernel thread context
2897  */
2898 
2899 static void
2900 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2901 {
2902 	struct sd_scsi_hba_tgt_lun	*cp;
2903 
2904 	mutex_enter(&sd_scsi_target_lun_mutex);
2905 
2906 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2907 		if (cp->pdip == dip) {
2908 			break;
2909 		}
2910 	}
2911 
2912 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2913 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2914 		    KM_SLEEP);
2915 		cp->pdip = dip;
2916 		cp->next = sd_scsi_target_lun_head;
2917 		sd_scsi_target_lun_head = cp;
2918 	}
2919 
2920 	mutex_exit(&sd_scsi_target_lun_mutex);
2921 
2922 	if (cp != NULL) {
2923 		if (flag == SD_SCSI_LUN_ATTACH) {
2924 			cp->nlun[target] ++;
2925 		} else {
2926 			cp->nlun[target] --;
2927 		}
2928 	}
2929 }
2930 
2931 
2932 /*
2933  *    Function: sd_spin_up_unit
2934  *
2935  * Description: Issues the following commands to spin-up the device:
2936  *		START STOP UNIT, and INQUIRY.
2937  *
2938  *   Arguments: un - driver soft state (unit) structure
2939  *
2940  * Return Code: 0 - success
2941  *		EIO - failure
2942  *		EACCES - reservation conflict
2943  *
2944  *     Context: Kernel thread context
2945  */
2946 
2947 static int
2948 sd_spin_up_unit(struct sd_lun *un)
2949 {
2950 	size_t	resid		= 0;
2951 	int	has_conflict	= FALSE;
2952 	uchar_t *bufaddr;
2953 
2954 	ASSERT(un != NULL);
2955 
2956 	/*
2957 	 * Send a throwaway START UNIT command.
2958 	 *
2959 	 * If we fail on this, we don't care presently what precisely
2960 	 * is wrong.  EMC's arrays will also fail this with a check
2961 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2962 	 * we don't want to fail the attach because it may become
2963 	 * "active" later.
2964 	 */
2965 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2966 	    == EACCES)
2967 		has_conflict = TRUE;
2968 
2969 	/*
2970 	 * Send another INQUIRY command to the target. This is necessary for
2971 	 * non-removable media direct access devices because their INQUIRY data
2972 	 * may not be fully qualified until they are spun up (perhaps via the
2973 	 * START command above).  Note: This seems to be needed for some
2974 	 * legacy devices only.) The INQUIRY command should succeed even if a
2975 	 * Reservation Conflict is present.
2976 	 */
2977 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2978 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2979 		kmem_free(bufaddr, SUN_INQSIZE);
2980 		return (EIO);
2981 	}
2982 
2983 	/*
2984 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2985 	 * Note that this routine does not return a failure here even if the
2986 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2987 	 */
2988 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2989 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2990 	}
2991 
2992 	kmem_free(bufaddr, SUN_INQSIZE);
2993 
2994 	/* If we hit a reservation conflict above, tell the caller. */
2995 	if (has_conflict == TRUE) {
2996 		return (EACCES);
2997 	}
2998 
2999 	return (0);
3000 }
3001 
3002 #ifdef _LP64
3003 /*
3004  *    Function: sd_enable_descr_sense
3005  *
3006  * Description: This routine attempts to select descriptor sense format
3007  *		using the Control mode page.  Devices that support 64 bit
3008  *		LBAs (for >2TB luns) should also implement descriptor
3009  *		sense data so we will call this function whenever we see
3010  *		a lun larger than 2TB.  If for some reason the device
3011  *		supports 64 bit LBAs but doesn't support descriptor sense
3012  *		presumably the mode select will fail.  Everything will
3013  *		continue to work normally except that we will not get
3014  *		complete sense data for commands that fail with an LBA
3015  *		larger than 32 bits.
3016  *
3017  *   Arguments: un - driver soft state (unit) structure
3018  *
3019  *     Context: Kernel thread context only
3020  */
3021 
3022 static void
3023 sd_enable_descr_sense(struct sd_lun *un)
3024 {
3025 	uchar_t			*header;
3026 	struct mode_control_scsi3 *ctrl_bufp;
3027 	size_t			buflen;
3028 	size_t			bd_len;
3029 
3030 	/*
3031 	 * Read MODE SENSE page 0xA, Control Mode Page
3032 	 */
3033 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3034 	    sizeof (struct mode_control_scsi3);
3035 	header = kmem_zalloc(buflen, KM_SLEEP);
3036 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3037 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3038 		SD_ERROR(SD_LOG_COMMON, un,
3039 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3040 		goto eds_exit;
3041 	}
3042 
3043 	/*
3044 	 * Determine size of Block Descriptors in order to locate
3045 	 * the mode page data. ATAPI devices return 0, SCSI devices
3046 	 * should return MODE_BLK_DESC_LENGTH.
3047 	 */
3048 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3049 
3050 	/* Clear the mode data length field for MODE SELECT */
3051 	((struct mode_header *)header)->length = 0;
3052 
3053 	ctrl_bufp = (struct mode_control_scsi3 *)
3054 	    (header + MODE_HEADER_LENGTH + bd_len);
3055 
3056 	/*
3057 	 * If the page length is smaller than the expected value,
3058 	 * the target device doesn't support D_SENSE. Bail out here.
3059 	 */
3060 	if (ctrl_bufp->mode_page.length <
3061 	    sizeof (struct mode_control_scsi3) - 2) {
3062 		SD_ERROR(SD_LOG_COMMON, un,
3063 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3064 		goto eds_exit;
3065 	}
3066 
3067 	/*
3068 	 * Clear PS bit for MODE SELECT
3069 	 */
3070 	ctrl_bufp->mode_page.ps = 0;
3071 
3072 	/*
3073 	 * Set D_SENSE to enable descriptor sense format.
3074 	 */
3075 	ctrl_bufp->d_sense = 1;
3076 
3077 	/*
3078 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3079 	 */
3080 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3081 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3082 		SD_INFO(SD_LOG_COMMON, un,
3083 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3084 		goto eds_exit;
3085 	}
3086 
3087 eds_exit:
3088 	kmem_free(header, buflen);
3089 }
3090 
3091 /*
3092  *    Function: sd_reenable_dsense_task
3093  *
3094  * Description: Re-enable descriptor sense after device or bus reset
3095  *
3096  *     Context: Executes in a taskq() thread context
3097  */
3098 static void
3099 sd_reenable_dsense_task(void *arg)
3100 {
3101 	struct	sd_lun	*un = arg;
3102 
3103 	ASSERT(un != NULL);
3104 	sd_enable_descr_sense(un);
3105 }
3106 #endif /* _LP64 */
3107 
3108 /*
3109  *    Function: sd_set_mmc_caps
3110  *
3111  * Description: This routine determines if the device is MMC compliant and if
3112  *		the device supports CDDA via a mode sense of the CDVD
3113  *		capabilities mode page. Also checks if the device is a
3114  *		dvdram writable device.
3115  *
3116  *   Arguments: un - driver soft state (unit) structure
3117  *
3118  *     Context: Kernel thread context only
3119  */
3120 
3121 static void
3122 sd_set_mmc_caps(struct sd_lun *un)
3123 {
3124 	struct mode_header_grp2		*sense_mhp;
3125 	uchar_t				*sense_page;
3126 	caddr_t				buf;
3127 	int				bd_len;
3128 	int				status;
3129 	struct uscsi_cmd		com;
3130 	int				rtn;
3131 	uchar_t				*out_data_rw, *out_data_hd;
3132 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3133 
3134 	ASSERT(un != NULL);
3135 
3136 	/*
3137 	 * The flags which will be set in this function are - mmc compliant,
3138 	 * dvdram writable device, cdda support. Initialize them to FALSE
3139 	 * and if a capability is detected - it will be set to TRUE.
3140 	 */
3141 	un->un_f_mmc_cap = FALSE;
3142 	un->un_f_dvdram_writable_device = FALSE;
3143 	un->un_f_cfg_cdda = FALSE;
3144 
3145 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3146 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3147 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3148 
3149 	if (status != 0) {
3150 		/* command failed; just return */
3151 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3152 		return;
3153 	}
3154 	/*
3155 	 * If the mode sense request for the CDROM CAPABILITIES
3156 	 * page (0x2A) succeeds the device is assumed to be MMC.
3157 	 */
3158 	un->un_f_mmc_cap = TRUE;
3159 
3160 	/* Get to the page data */
3161 	sense_mhp = (struct mode_header_grp2 *)buf;
3162 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3163 	    sense_mhp->bdesc_length_lo;
3164 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3165 		/*
3166 		 * We did not get back the expected block descriptor
3167 		 * length so we cannot determine if the device supports
3168 		 * CDDA. However, we still indicate the device is MMC
3169 		 * according to the successful response to the page
3170 		 * 0x2A mode sense request.
3171 		 */
3172 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3173 		    "sd_set_mmc_caps: Mode Sense returned "
3174 		    "invalid block descriptor length\n");
3175 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3176 		return;
3177 	}
3178 
3179 	/* See if read CDDA is supported */
3180 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3181 	    bd_len);
3182 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3183 
3184 	/* See if writing DVD RAM is supported. */
3185 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3186 	if (un->un_f_dvdram_writable_device == TRUE) {
3187 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3188 		return;
3189 	}
3190 
3191 	/*
3192 	 * If the device presents DVD or CD capabilities in the mode
3193 	 * page, we can return here since a RRD will not have
3194 	 * these capabilities.
3195 	 */
3196 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3197 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3198 		return;
3199 	}
3200 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3201 
3202 	/*
3203 	 * If un->un_f_dvdram_writable_device is still FALSE,
3204 	 * check for a Removable Rigid Disk (RRD).  A RRD
3205 	 * device is identified by the features RANDOM_WRITABLE and
3206 	 * HARDWARE_DEFECT_MANAGEMENT.
3207 	 */
3208 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3209 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3210 
3211 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3212 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3213 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3214 	if (rtn != 0) {
3215 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3216 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3217 		return;
3218 	}
3219 
3220 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3221 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3222 
3223 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3224 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3225 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3226 	if (rtn == 0) {
3227 		/*
3228 		 * We have good information, check for random writable
3229 		 * and hardware defect features.
3230 		 */
3231 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3232 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3233 			un->un_f_dvdram_writable_device = TRUE;
3234 		}
3235 	}
3236 
3237 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3238 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3239 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3240 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3241 }
3242 
3243 /*
3244  *    Function: sd_check_for_writable_cd
3245  *
3246  * Description: This routine determines if the media in the device is
3247  *		writable or not. It uses the get configuration command (0x46)
3248  *		to determine if the media is writable
3249  *
3250  *   Arguments: un - driver soft state (unit) structure
3251  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3252  *                           chain and the normal command waitq, or
3253  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3254  *                           "direct" chain and bypass the normal command
3255  *                           waitq.
3256  *
3257  *     Context: Never called at interrupt context.
3258  */
3259 
3260 static void
3261 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3262 {
3263 	struct uscsi_cmd		com;
3264 	uchar_t				*out_data;
3265 	uchar_t				*rqbuf;
3266 	int				rtn;
3267 	uchar_t				*out_data_rw, *out_data_hd;
3268 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3269 	struct mode_header_grp2		*sense_mhp;
3270 	uchar_t				*sense_page;
3271 	caddr_t				buf;
3272 	int				bd_len;
3273 	int				status;
3274 
3275 	ASSERT(un != NULL);
3276 	ASSERT(mutex_owned(SD_MUTEX(un)));
3277 
3278 	/*
3279 	 * Initialize the writable media to false, if configuration info.
3280 	 * tells us otherwise then only we will set it.
3281 	 */
3282 	un->un_f_mmc_writable_media = FALSE;
3283 	mutex_exit(SD_MUTEX(un));
3284 
3285 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3286 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3287 
3288 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3289 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3290 
3291 	mutex_enter(SD_MUTEX(un));
3292 	if (rtn == 0) {
3293 		/*
3294 		 * We have good information, check for writable DVD.
3295 		 */
3296 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3297 			un->un_f_mmc_writable_media = TRUE;
3298 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3299 			kmem_free(rqbuf, SENSE_LENGTH);
3300 			return;
3301 		}
3302 	}
3303 
3304 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3305 	kmem_free(rqbuf, SENSE_LENGTH);
3306 
3307 	/*
3308 	 * Determine if this is a RRD type device.
3309 	 */
3310 	mutex_exit(SD_MUTEX(un));
3311 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3312 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3313 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3314 	mutex_enter(SD_MUTEX(un));
3315 	if (status != 0) {
3316 		/* command failed; just return */
3317 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3318 		return;
3319 	}
3320 
3321 	/* Get to the page data */
3322 	sense_mhp = (struct mode_header_grp2 *)buf;
3323 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3324 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3325 		/*
3326 		 * We did not get back the expected block descriptor length so
3327 		 * we cannot check the mode page.
3328 		 */
3329 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3330 		    "sd_check_for_writable_cd: Mode Sense returned "
3331 		    "invalid block descriptor length\n");
3332 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3333 		return;
3334 	}
3335 
3336 	/*
3337 	 * If the device presents DVD or CD capabilities in the mode
3338 	 * page, we can return here since a RRD device will not have
3339 	 * these capabilities.
3340 	 */
3341 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3342 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3343 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3344 		return;
3345 	}
3346 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3347 
3348 	/*
3349 	 * If un->un_f_mmc_writable_media is still FALSE,
3350 	 * check for RRD type media.  A RRD device is identified
3351 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3352 	 */
3353 	mutex_exit(SD_MUTEX(un));
3354 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3355 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3356 
3357 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3358 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3359 	    RANDOM_WRITABLE, path_flag);
3360 	if (rtn != 0) {
3361 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3362 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3363 		mutex_enter(SD_MUTEX(un));
3364 		return;
3365 	}
3366 
3367 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3368 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3369 
3370 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3371 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3372 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3373 	mutex_enter(SD_MUTEX(un));
3374 	if (rtn == 0) {
3375 		/*
3376 		 * We have good information, check for random writable
3377 		 * and hardware defect features as current.
3378 		 */
3379 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3380 		    (out_data_rw[10] & 0x1) &&
3381 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3382 		    (out_data_hd[10] & 0x1)) {
3383 			un->un_f_mmc_writable_media = TRUE;
3384 		}
3385 	}
3386 
3387 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3388 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3389 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3390 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3391 }
3392 
3393 /*
3394  *    Function: sd_read_unit_properties
3395  *
3396  * Description: The following implements a property lookup mechanism.
3397  *		Properties for particular disks (keyed on vendor, model
3398  *		and rev numbers) are sought in the sd.conf file via
3399  *		sd_process_sdconf_file(), and if not found there, are
3400  *		looked for in a list hardcoded in this driver via
3401  *		sd_process_sdconf_table() Once located the properties
3402  *		are used to update the driver unit structure.
3403  *
3404  *   Arguments: un - driver soft state (unit) structure
3405  */
3406 
3407 static void
3408 sd_read_unit_properties(struct sd_lun *un)
3409 {
3410 	/*
3411 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3412 	 * the "sd-config-list" property (from the sd.conf file) or if
3413 	 * there was not a match for the inquiry vid/pid. If this event
3414 	 * occurs the static driver configuration table is searched for
3415 	 * a match.
3416 	 */
3417 	ASSERT(un != NULL);
3418 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3419 		sd_process_sdconf_table(un);
3420 	}
3421 
3422 	/* check for LSI device */
3423 	sd_is_lsi(un);
3424 
3425 
3426 }
3427 
3428 
3429 /*
3430  *    Function: sd_process_sdconf_file
3431  *
3432  * Description: Use ddi_getlongprop to obtain the properties from the
3433  *		driver's config file (ie, sd.conf) and update the driver
3434  *		soft state structure accordingly.
3435  *
3436  *   Arguments: un - driver soft state (unit) structure
3437  *
3438  * Return Code: SD_SUCCESS - The properties were successfully set according
3439  *			     to the driver configuration file.
3440  *		SD_FAILURE - The driver config list was not obtained or
3441  *			     there was no vid/pid match. This indicates that
3442  *			     the static config table should be used.
3443  *
3444  * The config file has a property, "sd-config-list", which consists of
3445  * one or more duplets as follows:
3446  *
3447  *  sd-config-list=
3448  *	<duplet>,
3449  *	[<duplet>,]
3450  *	[<duplet>];
3451  *
3452  * The structure of each duplet is as follows:
3453  *
3454  *  <duplet>:= <vid+pid>,<data-property-name_list>
3455  *
3456  * The first entry of the duplet is the device ID string (the concatenated
3457  * vid & pid; not to be confused with a device_id).  This is defined in
3458  * the same way as in the sd_disk_table.
3459  *
3460  * The second part of the duplet is a string that identifies a
3461  * data-property-name-list. The data-property-name-list is defined as
3462  * follows:
3463  *
3464  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3465  *
3466  * The syntax of <data-property-name> depends on the <version> field.
3467  *
3468  * If version = SD_CONF_VERSION_1 we have the following syntax:
3469  *
3470  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3471  *
3472  * where the prop0 value will be used to set prop0 if bit0 set in the
3473  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3474  *
3475  */
3476 
3477 static int
3478 sd_process_sdconf_file(struct sd_lun *un)
3479 {
3480 	char	*config_list = NULL;
3481 	int	config_list_len;
3482 	int	len;
3483 	int	dupletlen = 0;
3484 	char	*vidptr;
3485 	int	vidlen;
3486 	char	*dnlist_ptr;
3487 	char	*dataname_ptr;
3488 	int	dnlist_len;
3489 	int	dataname_len;
3490 	int	*data_list;
3491 	int	data_list_len;
3492 	int	rval = SD_FAILURE;
3493 	int	i;
3494 
3495 	ASSERT(un != NULL);
3496 
3497 	/* Obtain the configuration list associated with the .conf file */
3498 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3499 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3500 	    != DDI_PROP_SUCCESS) {
3501 		return (SD_FAILURE);
3502 	}
3503 
3504 	/*
3505 	 * Compare vids in each duplet to the inquiry vid - if a match is
3506 	 * made, get the data value and update the soft state structure
3507 	 * accordingly.
3508 	 *
3509 	 * Note: This algorithm is complex and difficult to maintain. It should
3510 	 * be replaced with a more robust implementation.
3511 	 */
3512 	for (len = config_list_len, vidptr = config_list; len > 0;
3513 	    vidptr += dupletlen, len -= dupletlen) {
3514 		/*
3515 		 * Note: The assumption here is that each vid entry is on
3516 		 * a unique line from its associated duplet.
3517 		 */
3518 		vidlen = dupletlen = (int)strlen(vidptr);
3519 		if ((vidlen == 0) ||
3520 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3521 			dupletlen++;
3522 			continue;
3523 		}
3524 
3525 		/*
3526 		 * dnlist contains 1 or more blank separated
3527 		 * data-property-name entries
3528 		 */
3529 		dnlist_ptr = vidptr + vidlen + 1;
3530 		dnlist_len = (int)strlen(dnlist_ptr);
3531 		dupletlen += dnlist_len + 2;
3532 
3533 		/*
3534 		 * Set a pointer for the first data-property-name
3535 		 * entry in the list
3536 		 */
3537 		dataname_ptr = dnlist_ptr;
3538 		dataname_len = 0;
3539 
3540 		/*
3541 		 * Loop through all data-property-name entries in the
3542 		 * data-property-name-list setting the properties for each.
3543 		 */
3544 		while (dataname_len < dnlist_len) {
3545 			int version;
3546 
3547 			/*
3548 			 * Determine the length of the current
3549 			 * data-property-name entry by indexing until a
3550 			 * blank or NULL is encountered. When the space is
3551 			 * encountered reset it to a NULL for compliance
3552 			 * with ddi_getlongprop().
3553 			 */
3554 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3555 			    (dataname_ptr[i] != '\0')); i++) {
3556 				;
3557 			}
3558 
3559 			dataname_len += i;
3560 			/* If not null terminated, Make it so */
3561 			if (dataname_ptr[i] == ' ') {
3562 				dataname_ptr[i] = '\0';
3563 			}
3564 			dataname_len++;
3565 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3566 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3567 			    vidptr, dataname_ptr);
3568 
3569 			/* Get the data list */
3570 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3571 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3572 			    != DDI_PROP_SUCCESS) {
3573 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3574 				    "sd_process_sdconf_file: data property (%s)"
3575 				    " has no value\n", dataname_ptr);
3576 				dataname_ptr = dnlist_ptr + dataname_len;
3577 				continue;
3578 			}
3579 
3580 			version = data_list[0];
3581 
3582 			if (version == SD_CONF_VERSION_1) {
3583 				sd_tunables values;
3584 
3585 				/* Set the properties */
3586 				if (sd_chk_vers1_data(un, data_list[1],
3587 				    &data_list[2], data_list_len, dataname_ptr)
3588 				    == SD_SUCCESS) {
3589 					sd_get_tunables_from_conf(un,
3590 					    data_list[1], &data_list[2],
3591 					    &values);
3592 					sd_set_vers1_properties(un,
3593 					    data_list[1], &values);
3594 					rval = SD_SUCCESS;
3595 				} else {
3596 					rval = SD_FAILURE;
3597 				}
3598 			} else {
3599 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3600 				    "data property %s version 0x%x is invalid.",
3601 				    dataname_ptr, version);
3602 				rval = SD_FAILURE;
3603 			}
3604 			kmem_free(data_list, data_list_len);
3605 			dataname_ptr = dnlist_ptr + dataname_len;
3606 		}
3607 	}
3608 
3609 	/* free up the memory allocated by ddi_getlongprop */
3610 	if (config_list) {
3611 		kmem_free(config_list, config_list_len);
3612 	}
3613 
3614 	return (rval);
3615 }
3616 
3617 /*
3618  *    Function: sd_get_tunables_from_conf()
3619  *
3620  *
3621  *    This function reads the data list from the sd.conf file and pulls
3622  *    the values that can have numeric values as arguments and places
3623  *    the values in the appropriate sd_tunables member.
3624  *    Since the order of the data list members varies across platforms
3625  *    This function reads them from the data list in a platform specific
3626  *    order and places them into the correct sd_tunable member that is
3627  *    consistent across all platforms.
3628  */
3629 static void
3630 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3631     sd_tunables *values)
3632 {
3633 	int i;
3634 	int mask;
3635 
3636 	bzero(values, sizeof (sd_tunables));
3637 
3638 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3639 
3640 		mask = 1 << i;
3641 		if (mask > flags) {
3642 			break;
3643 		}
3644 
3645 		switch (mask & flags) {
3646 		case 0:	/* This mask bit not set in flags */
3647 			continue;
3648 		case SD_CONF_BSET_THROTTLE:
3649 			values->sdt_throttle = data_list[i];
3650 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3651 			    "sd_get_tunables_from_conf: throttle = %d\n",
3652 			    values->sdt_throttle);
3653 			break;
3654 		case SD_CONF_BSET_CTYPE:
3655 			values->sdt_ctype = data_list[i];
3656 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3657 			    "sd_get_tunables_from_conf: ctype = %d\n",
3658 			    values->sdt_ctype);
3659 			break;
3660 		case SD_CONF_BSET_NRR_COUNT:
3661 			values->sdt_not_rdy_retries = data_list[i];
3662 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3663 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3664 			    values->sdt_not_rdy_retries);
3665 			break;
3666 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3667 			values->sdt_busy_retries = data_list[i];
3668 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3669 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3670 			    values->sdt_busy_retries);
3671 			break;
3672 		case SD_CONF_BSET_RST_RETRIES:
3673 			values->sdt_reset_retries = data_list[i];
3674 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3676 			    values->sdt_reset_retries);
3677 			break;
3678 		case SD_CONF_BSET_RSV_REL_TIME:
3679 			values->sdt_reserv_rel_time = data_list[i];
3680 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3681 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3682 			    values->sdt_reserv_rel_time);
3683 			break;
3684 		case SD_CONF_BSET_MIN_THROTTLE:
3685 			values->sdt_min_throttle = data_list[i];
3686 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3687 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3688 			    values->sdt_min_throttle);
3689 			break;
3690 		case SD_CONF_BSET_DISKSORT_DISABLED:
3691 			values->sdt_disk_sort_dis = data_list[i];
3692 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3693 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3694 			    values->sdt_disk_sort_dis);
3695 			break;
3696 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3697 			values->sdt_lun_reset_enable = data_list[i];
3698 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3699 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3700 			    "\n", values->sdt_lun_reset_enable);
3701 			break;
3702 		case SD_CONF_BSET_CACHE_IS_NV:
3703 			values->sdt_suppress_cache_flush = data_list[i];
3704 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3705 			    "sd_get_tunables_from_conf: \
3706 			    suppress_cache_flush = %d"
3707 			    "\n", values->sdt_suppress_cache_flush);
3708 			break;
3709 		}
3710 	}
3711 }
3712 
3713 /*
3714  *    Function: sd_process_sdconf_table
3715  *
3716  * Description: Search the static configuration table for a match on the
3717  *		inquiry vid/pid and update the driver soft state structure
3718  *		according to the table property values for the device.
3719  *
3720  *		The form of a configuration table entry is:
3721  *		  <vid+pid>,<flags>,<property-data>
3722  *		  "SEAGATE ST42400N",1,0x40000,
3723  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3724  *
3725  *   Arguments: un - driver soft state (unit) structure
3726  */
3727 
3728 static void
3729 sd_process_sdconf_table(struct sd_lun *un)
3730 {
3731 	char	*id = NULL;
3732 	int	table_index;
3733 	int	idlen;
3734 
3735 	ASSERT(un != NULL);
3736 	for (table_index = 0; table_index < sd_disk_table_size;
3737 	    table_index++) {
3738 		id = sd_disk_table[table_index].device_id;
3739 		idlen = strlen(id);
3740 		if (idlen == 0) {
3741 			continue;
3742 		}
3743 
3744 		/*
3745 		 * The static configuration table currently does not
3746 		 * implement version 10 properties. Additionally,
3747 		 * multiple data-property-name entries are not
3748 		 * implemented in the static configuration table.
3749 		 */
3750 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3751 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3752 			    "sd_process_sdconf_table: disk %s\n", id);
3753 			sd_set_vers1_properties(un,
3754 			    sd_disk_table[table_index].flags,
3755 			    sd_disk_table[table_index].properties);
3756 			break;
3757 		}
3758 	}
3759 }
3760 
3761 
3762 /*
3763  *    Function: sd_sdconf_id_match
3764  *
3765  * Description: This local function implements a case sensitive vid/pid
3766  *		comparison as well as the boundary cases of wild card and
3767  *		multiple blanks.
3768  *
3769  *		Note: An implicit assumption made here is that the scsi
3770  *		inquiry structure will always keep the vid, pid and
3771  *		revision strings in consecutive sequence, so they can be
3772  *		read as a single string. If this assumption is not the
3773  *		case, a separate string, to be used for the check, needs
3774  *		to be built with these strings concatenated.
3775  *
3776  *   Arguments: un - driver soft state (unit) structure
3777  *		id - table or config file vid/pid
3778  *		idlen  - length of the vid/pid (bytes)
3779  *
3780  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3781  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3782  */
3783 
3784 static int
3785 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3786 {
3787 	struct scsi_inquiry	*sd_inq;
3788 	int 			rval = SD_SUCCESS;
3789 
3790 	ASSERT(un != NULL);
3791 	sd_inq = un->un_sd->sd_inq;
3792 	ASSERT(id != NULL);
3793 
3794 	/*
3795 	 * We use the inq_vid as a pointer to a buffer containing the
3796 	 * vid and pid and use the entire vid/pid length of the table
3797 	 * entry for the comparison. This works because the inq_pid
3798 	 * data member follows inq_vid in the scsi_inquiry structure.
3799 	 */
3800 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3801 		/*
3802 		 * The user id string is compared to the inquiry vid/pid
3803 		 * using a case insensitive comparison and ignoring
3804 		 * multiple spaces.
3805 		 */
3806 		rval = sd_blank_cmp(un, id, idlen);
3807 		if (rval != SD_SUCCESS) {
3808 			/*
3809 			 * User id strings that start and end with a "*"
3810 			 * are a special case. These do not have a
3811 			 * specific vendor, and the product string can
3812 			 * appear anywhere in the 16 byte PID portion of
3813 			 * the inquiry data. This is a simple strstr()
3814 			 * type search for the user id in the inquiry data.
3815 			 */
3816 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3817 				char	*pidptr = &id[1];
3818 				int	i;
3819 				int	j;
3820 				int	pidstrlen = idlen - 2;
3821 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3822 				    pidstrlen;
3823 
3824 				if (j < 0) {
3825 					return (SD_FAILURE);
3826 				}
3827 				for (i = 0; i < j; i++) {
3828 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3829 					    pidptr, pidstrlen) == 0) {
3830 						rval = SD_SUCCESS;
3831 						break;
3832 					}
3833 				}
3834 			}
3835 		}
3836 	}
3837 	return (rval);
3838 }
3839 
3840 
3841 /*
3842  *    Function: sd_blank_cmp
3843  *
3844  * Description: If the id string starts and ends with a space, treat
3845  *		multiple consecutive spaces as equivalent to a single
3846  *		space. For example, this causes a sd_disk_table entry
3847  *		of " NEC CDROM " to match a device's id string of
3848  *		"NEC       CDROM".
3849  *
3850  *		Note: The success exit condition for this routine is if
3851  *		the pointer to the table entry is '\0' and the cnt of
3852  *		the inquiry length is zero. This will happen if the inquiry
3853  *		string returned by the device is padded with spaces to be
3854  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3855  *		SCSI spec states that the inquiry string is to be padded with
3856  *		spaces.
3857  *
3858  *   Arguments: un - driver soft state (unit) structure
3859  *		id - table or config file vid/pid
3860  *		idlen  - length of the vid/pid (bytes)
3861  *
3862  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3863  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3864  */
3865 
3866 static int
3867 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3868 {
3869 	char		*p1;
3870 	char		*p2;
3871 	int		cnt;
3872 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3873 	    sizeof (SD_INQUIRY(un)->inq_pid);
3874 
3875 	ASSERT(un != NULL);
3876 	p2 = un->un_sd->sd_inq->inq_vid;
3877 	ASSERT(id != NULL);
3878 	p1 = id;
3879 
3880 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3881 		/*
3882 		 * Note: string p1 is terminated by a NUL but string p2
3883 		 * isn't.  The end of p2 is determined by cnt.
3884 		 */
3885 		for (;;) {
3886 			/* skip over any extra blanks in both strings */
3887 			while ((*p1 != '\0') && (*p1 == ' ')) {
3888 				p1++;
3889 			}
3890 			while ((cnt != 0) && (*p2 == ' ')) {
3891 				p2++;
3892 				cnt--;
3893 			}
3894 
3895 			/* compare the two strings */
3896 			if ((cnt == 0) ||
3897 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3898 				break;
3899 			}
3900 			while ((cnt > 0) &&
3901 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3902 				p1++;
3903 				p2++;
3904 				cnt--;
3905 			}
3906 		}
3907 	}
3908 
3909 	/* return SD_SUCCESS if both strings match */
3910 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3911 }
3912 
3913 
3914 /*
3915  *    Function: sd_chk_vers1_data
3916  *
3917  * Description: Verify the version 1 device properties provided by the
3918  *		user via the configuration file
3919  *
3920  *   Arguments: un	     - driver soft state (unit) structure
3921  *		flags	     - integer mask indicating properties to be set
3922  *		prop_list    - integer list of property values
3923  *		list_len     - length of user provided data
3924  *
3925  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3926  *		SD_FAILURE - Indicates the user provided data is invalid
3927  */
3928 
3929 static int
3930 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3931     int list_len, char *dataname_ptr)
3932 {
3933 	int i;
3934 	int mask = 1;
3935 	int index = 0;
3936 
3937 	ASSERT(un != NULL);
3938 
3939 	/* Check for a NULL property name and list */
3940 	if (dataname_ptr == NULL) {
3941 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3942 		    "sd_chk_vers1_data: NULL data property name.");
3943 		return (SD_FAILURE);
3944 	}
3945 	if (prop_list == NULL) {
3946 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3947 		    "sd_chk_vers1_data: %s NULL data property list.",
3948 		    dataname_ptr);
3949 		return (SD_FAILURE);
3950 	}
3951 
3952 	/* Display a warning if undefined bits are set in the flags */
3953 	if (flags & ~SD_CONF_BIT_MASK) {
3954 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3955 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3956 		    "Properties not set.",
3957 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3958 		return (SD_FAILURE);
3959 	}
3960 
3961 	/*
3962 	 * Verify the length of the list by identifying the highest bit set
3963 	 * in the flags and validating that the property list has a length
3964 	 * up to the index of this bit.
3965 	 */
3966 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3967 		if (flags & mask) {
3968 			index++;
3969 		}
3970 		mask = 1 << i;
3971 	}
3972 	if ((list_len / sizeof (int)) < (index + 2)) {
3973 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3974 		    "sd_chk_vers1_data: "
3975 		    "Data property list %s size is incorrect. "
3976 		    "Properties not set.", dataname_ptr);
3977 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3978 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3979 		return (SD_FAILURE);
3980 	}
3981 	return (SD_SUCCESS);
3982 }
3983 
3984 
3985 /*
3986  *    Function: sd_set_vers1_properties
3987  *
3988  * Description: Set version 1 device properties based on a property list
3989  *		retrieved from the driver configuration file or static
3990  *		configuration table. Version 1 properties have the format:
3991  *
3992  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3993  *
3994  *		where the prop0 value will be used to set prop0 if bit0
3995  *		is set in the flags
3996  *
3997  *   Arguments: un	     - driver soft state (unit) structure
3998  *		flags	     - integer mask indicating properties to be set
3999  *		prop_list    - integer list of property values
4000  */
4001 
4002 static void
4003 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4004 {
4005 	ASSERT(un != NULL);
4006 
4007 	/*
4008 	 * Set the flag to indicate cache is to be disabled. An attempt
4009 	 * to disable the cache via sd_cache_control() will be made
4010 	 * later during attach once the basic initialization is complete.
4011 	 */
4012 	if (flags & SD_CONF_BSET_NOCACHE) {
4013 		un->un_f_opt_disable_cache = TRUE;
4014 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4015 		    "sd_set_vers1_properties: caching disabled flag set\n");
4016 	}
4017 
4018 	/* CD-specific configuration parameters */
4019 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4020 		un->un_f_cfg_playmsf_bcd = TRUE;
4021 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4022 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4023 	}
4024 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4025 		un->un_f_cfg_readsub_bcd = TRUE;
4026 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4027 		    "sd_set_vers1_properties: readsub_bcd set\n");
4028 	}
4029 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4030 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4031 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4033 	}
4034 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4035 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4036 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4037 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4038 	}
4039 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4040 		un->un_f_cfg_no_read_header = TRUE;
4041 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4042 		    "sd_set_vers1_properties: no_read_header set\n");
4043 	}
4044 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4045 		un->un_f_cfg_read_cd_xd4 = TRUE;
4046 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4047 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4048 	}
4049 
4050 	/* Support for devices which do not have valid/unique serial numbers */
4051 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4052 		un->un_f_opt_fab_devid = TRUE;
4053 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4054 		    "sd_set_vers1_properties: fab_devid bit set\n");
4055 	}
4056 
4057 	/* Support for user throttle configuration */
4058 	if (flags & SD_CONF_BSET_THROTTLE) {
4059 		ASSERT(prop_list != NULL);
4060 		un->un_saved_throttle = un->un_throttle =
4061 		    prop_list->sdt_throttle;
4062 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4063 		    "sd_set_vers1_properties: throttle set to %d\n",
4064 		    prop_list->sdt_throttle);
4065 	}
4066 
4067 	/* Set the per disk retry count according to the conf file or table. */
4068 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4069 		ASSERT(prop_list != NULL);
4070 		if (prop_list->sdt_not_rdy_retries) {
4071 			un->un_notready_retry_count =
4072 			    prop_list->sdt_not_rdy_retries;
4073 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4074 			    "sd_set_vers1_properties: not ready retry count"
4075 			    " set to %d\n", un->un_notready_retry_count);
4076 		}
4077 	}
4078 
4079 	/* The controller type is reported for generic disk driver ioctls */
4080 	if (flags & SD_CONF_BSET_CTYPE) {
4081 		ASSERT(prop_list != NULL);
4082 		switch (prop_list->sdt_ctype) {
4083 		case CTYPE_CDROM:
4084 			un->un_ctype = prop_list->sdt_ctype;
4085 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4086 			    "sd_set_vers1_properties: ctype set to "
4087 			    "CTYPE_CDROM\n");
4088 			break;
4089 		case CTYPE_CCS:
4090 			un->un_ctype = prop_list->sdt_ctype;
4091 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4092 			    "sd_set_vers1_properties: ctype set to "
4093 			    "CTYPE_CCS\n");
4094 			break;
4095 		case CTYPE_ROD:		/* RW optical */
4096 			un->un_ctype = prop_list->sdt_ctype;
4097 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4098 			    "sd_set_vers1_properties: ctype set to "
4099 			    "CTYPE_ROD\n");
4100 			break;
4101 		default:
4102 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4103 			    "sd_set_vers1_properties: Could not set "
4104 			    "invalid ctype value (%d)",
4105 			    prop_list->sdt_ctype);
4106 		}
4107 	}
4108 
4109 	/* Purple failover timeout */
4110 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4111 		ASSERT(prop_list != NULL);
4112 		un->un_busy_retry_count =
4113 		    prop_list->sdt_busy_retries;
4114 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4115 		    "sd_set_vers1_properties: "
4116 		    "busy retry count set to %d\n",
4117 		    un->un_busy_retry_count);
4118 	}
4119 
4120 	/* Purple reset retry count */
4121 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4122 		ASSERT(prop_list != NULL);
4123 		un->un_reset_retry_count =
4124 		    prop_list->sdt_reset_retries;
4125 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4126 		    "sd_set_vers1_properties: "
4127 		    "reset retry count set to %d\n",
4128 		    un->un_reset_retry_count);
4129 	}
4130 
4131 	/* Purple reservation release timeout */
4132 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4133 		ASSERT(prop_list != NULL);
4134 		un->un_reserve_release_time =
4135 		    prop_list->sdt_reserv_rel_time;
4136 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4137 		    "sd_set_vers1_properties: "
4138 		    "reservation release timeout set to %d\n",
4139 		    un->un_reserve_release_time);
4140 	}
4141 
4142 	/*
4143 	 * Driver flag telling the driver to verify that no commands are pending
4144 	 * for a device before issuing a Test Unit Ready. This is a workaround
4145 	 * for a firmware bug in some Seagate eliteI drives.
4146 	 */
4147 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4148 		un->un_f_cfg_tur_check = TRUE;
4149 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4150 		    "sd_set_vers1_properties: tur queue check set\n");
4151 	}
4152 
4153 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4154 		un->un_min_throttle = prop_list->sdt_min_throttle;
4155 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4156 		    "sd_set_vers1_properties: min throttle set to %d\n",
4157 		    un->un_min_throttle);
4158 	}
4159 
4160 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4161 		un->un_f_disksort_disabled =
4162 		    (prop_list->sdt_disk_sort_dis != 0) ?
4163 		    TRUE : FALSE;
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4165 		    "sd_set_vers1_properties: disksort disabled "
4166 		    "flag set to %d\n",
4167 		    prop_list->sdt_disk_sort_dis);
4168 	}
4169 
4170 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4171 		un->un_f_lun_reset_enabled =
4172 		    (prop_list->sdt_lun_reset_enable != 0) ?
4173 		    TRUE : FALSE;
4174 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4175 		    "sd_set_vers1_properties: lun reset enabled "
4176 		    "flag set to %d\n",
4177 		    prop_list->sdt_lun_reset_enable);
4178 	}
4179 
4180 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4181 		un->un_f_suppress_cache_flush =
4182 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4183 		    TRUE : FALSE;
4184 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4185 		    "sd_set_vers1_properties: suppress_cache_flush "
4186 		    "flag set to %d\n",
4187 		    prop_list->sdt_suppress_cache_flush);
4188 	}
4189 
4190 	/*
4191 	 * Validate the throttle values.
4192 	 * If any of the numbers are invalid, set everything to defaults.
4193 	 */
4194 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4195 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4196 	    (un->un_min_throttle > un->un_throttle)) {
4197 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4198 		un->un_min_throttle = sd_min_throttle;
4199 	}
4200 }
4201 
4202 /*
4203  *   Function: sd_is_lsi()
4204  *
4205  *   Description: Check for lsi devices, step through the static device
4206  *	table to match vid/pid.
4207  *
4208  *   Args: un - ptr to sd_lun
4209  *
4210  *   Notes:  When creating new LSI property, need to add the new LSI property
4211  *		to this function.
4212  */
4213 static void
4214 sd_is_lsi(struct sd_lun *un)
4215 {
4216 	char	*id = NULL;
4217 	int	table_index;
4218 	int	idlen;
4219 	void	*prop;
4220 
4221 	ASSERT(un != NULL);
4222 	for (table_index = 0; table_index < sd_disk_table_size;
4223 	    table_index++) {
4224 		id = sd_disk_table[table_index].device_id;
4225 		idlen = strlen(id);
4226 		if (idlen == 0) {
4227 			continue;
4228 		}
4229 
4230 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4231 			prop = sd_disk_table[table_index].properties;
4232 			if (prop == &lsi_properties ||
4233 			    prop == &lsi_oem_properties ||
4234 			    prop == &lsi_properties_scsi ||
4235 			    prop == &symbios_properties) {
4236 				un->un_f_cfg_is_lsi = TRUE;
4237 			}
4238 			break;
4239 		}
4240 	}
4241 }
4242 
4243 /*
4244  *    Function: sd_get_physical_geometry
4245  *
4246  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4247  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4248  *		target, and use this information to initialize the physical
4249  *		geometry cache specified by pgeom_p.
4250  *
4251  *		MODE SENSE is an optional command, so failure in this case
4252  *		does not necessarily denote an error. We want to use the
4253  *		MODE SENSE commands to derive the physical geometry of the
4254  *		device, but if either command fails, the logical geometry is
4255  *		used as the fallback for disk label geometry in cmlb.
4256  *
4257  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4258  *		have already been initialized for the current target and
4259  *		that the current values be passed as args so that we don't
4260  *		end up ever trying to use -1 as a valid value. This could
4261  *		happen if either value is reset while we're not holding
4262  *		the mutex.
4263  *
4264  *   Arguments: un - driver soft state (unit) structure
4265  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4266  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4267  *			to use the USCSI "direct" chain and bypass the normal
4268  *			command waitq.
4269  *
4270  *     Context: Kernel thread only (can sleep).
4271  */
4272 
4273 static int
4274 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4275 	diskaddr_t capacity, int lbasize, int path_flag)
4276 {
4277 	struct	mode_format	*page3p;
4278 	struct	mode_geometry	*page4p;
4279 	struct	mode_header	*headerp;
4280 	int	sector_size;
4281 	int	nsect;
4282 	int	nhead;
4283 	int	ncyl;
4284 	int	intrlv;
4285 	int	spc;
4286 	diskaddr_t	modesense_capacity;
4287 	int	rpm;
4288 	int	bd_len;
4289 	int	mode_header_length;
4290 	uchar_t	*p3bufp;
4291 	uchar_t	*p4bufp;
4292 	int	cdbsize;
4293 	int 	ret = EIO;
4294 
4295 	ASSERT(un != NULL);
4296 
4297 	if (lbasize == 0) {
4298 		if (ISCD(un)) {
4299 			lbasize = 2048;
4300 		} else {
4301 			lbasize = un->un_sys_blocksize;
4302 		}
4303 	}
4304 	pgeom_p->g_secsize = (unsigned short)lbasize;
4305 
4306 	/*
4307 	 * If the unit is a cd/dvd drive MODE SENSE page three
4308 	 * and MODE SENSE page four are reserved (see SBC spec
4309 	 * and MMC spec). To prevent soft errors just return
4310 	 * using the default LBA size.
4311 	 */
4312 	if (ISCD(un))
4313 		return (ret);
4314 
4315 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4316 
4317 	/*
4318 	 * Retrieve MODE SENSE page 3 - Format Device Page
4319 	 */
4320 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4321 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4322 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4323 	    != 0) {
4324 		SD_ERROR(SD_LOG_COMMON, un,
4325 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4326 		goto page3_exit;
4327 	}
4328 
4329 	/*
4330 	 * Determine size of Block Descriptors in order to locate the mode
4331 	 * page data.  ATAPI devices return 0, SCSI devices should return
4332 	 * MODE_BLK_DESC_LENGTH.
4333 	 */
4334 	headerp = (struct mode_header *)p3bufp;
4335 	if (un->un_f_cfg_is_atapi == TRUE) {
4336 		struct mode_header_grp2 *mhp =
4337 		    (struct mode_header_grp2 *)headerp;
4338 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4339 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4340 	} else {
4341 		mode_header_length = MODE_HEADER_LENGTH;
4342 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4343 	}
4344 
4345 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4346 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4347 		    "received unexpected bd_len of %d, page3\n", bd_len);
4348 		goto page3_exit;
4349 	}
4350 
4351 	page3p = (struct mode_format *)
4352 	    ((caddr_t)headerp + mode_header_length + bd_len);
4353 
4354 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4355 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4356 		    "mode sense pg3 code mismatch %d\n",
4357 		    page3p->mode_page.code);
4358 		goto page3_exit;
4359 	}
4360 
4361 	/*
4362 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4363 	 * complete successfully; otherwise, revert to the logical geometry.
4364 	 * So, we need to save everything in temporary variables.
4365 	 */
4366 	sector_size = BE_16(page3p->data_bytes_sect);
4367 
4368 	/*
4369 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4370 	 */
4371 	if (sector_size == 0) {
4372 		sector_size = un->un_sys_blocksize;
4373 	} else {
4374 		sector_size &= ~(un->un_sys_blocksize - 1);
4375 	}
4376 
4377 	nsect  = BE_16(page3p->sect_track);
4378 	intrlv = BE_16(page3p->interleave);
4379 
4380 	SD_INFO(SD_LOG_COMMON, un,
4381 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4382 	SD_INFO(SD_LOG_COMMON, un,
4383 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4384 	    page3p->mode_page.code, nsect, sector_size);
4385 	SD_INFO(SD_LOG_COMMON, un,
4386 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4387 	    BE_16(page3p->track_skew),
4388 	    BE_16(page3p->cylinder_skew));
4389 
4390 
4391 	/*
4392 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4393 	 */
4394 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4395 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4396 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4397 	    != 0) {
4398 		SD_ERROR(SD_LOG_COMMON, un,
4399 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4400 		goto page4_exit;
4401 	}
4402 
4403 	/*
4404 	 * Determine size of Block Descriptors in order to locate the mode
4405 	 * page data.  ATAPI devices return 0, SCSI devices should return
4406 	 * MODE_BLK_DESC_LENGTH.
4407 	 */
4408 	headerp = (struct mode_header *)p4bufp;
4409 	if (un->un_f_cfg_is_atapi == TRUE) {
4410 		struct mode_header_grp2 *mhp =
4411 		    (struct mode_header_grp2 *)headerp;
4412 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4413 	} else {
4414 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4415 	}
4416 
4417 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4418 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4419 		    "received unexpected bd_len of %d, page4\n", bd_len);
4420 		goto page4_exit;
4421 	}
4422 
4423 	page4p = (struct mode_geometry *)
4424 	    ((caddr_t)headerp + mode_header_length + bd_len);
4425 
4426 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4427 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4428 		    "mode sense pg4 code mismatch %d\n",
4429 		    page4p->mode_page.code);
4430 		goto page4_exit;
4431 	}
4432 
4433 	/*
4434 	 * Stash the data now, after we know that both commands completed.
4435 	 */
4436 
4437 
4438 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4439 	spc   = nhead * nsect;
4440 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4441 	rpm   = BE_16(page4p->rpm);
4442 
4443 	modesense_capacity = spc * ncyl;
4444 
4445 	SD_INFO(SD_LOG_COMMON, un,
4446 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4447 	SD_INFO(SD_LOG_COMMON, un,
4448 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4449 	SD_INFO(SD_LOG_COMMON, un,
4450 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4451 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4452 	    (void *)pgeom_p, capacity);
4453 
4454 	/*
4455 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4456 	 * the product of C * H * S returned by MODE SENSE >= that returned
4457 	 * by read capacity. This is an idiosyncrasy of the original x86
4458 	 * disk subsystem.
4459 	 */
4460 	if (modesense_capacity >= capacity) {
4461 		SD_INFO(SD_LOG_COMMON, un,
4462 		    "sd_get_physical_geometry: adjusting acyl; "
4463 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4464 		    (modesense_capacity - capacity + spc - 1) / spc);
4465 		if (sector_size != 0) {
4466 			/* 1243403: NEC D38x7 drives don't support sec size */
4467 			pgeom_p->g_secsize = (unsigned short)sector_size;
4468 		}
4469 		pgeom_p->g_nsect    = (unsigned short)nsect;
4470 		pgeom_p->g_nhead    = (unsigned short)nhead;
4471 		pgeom_p->g_capacity = capacity;
4472 		pgeom_p->g_acyl	    =
4473 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4474 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4475 	}
4476 
4477 	pgeom_p->g_rpm    = (unsigned short)rpm;
4478 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4479 	ret = 0;
4480 
4481 	SD_INFO(SD_LOG_COMMON, un,
4482 	    "sd_get_physical_geometry: mode sense geometry:\n");
4483 	SD_INFO(SD_LOG_COMMON, un,
4484 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4485 	    nsect, sector_size, intrlv);
4486 	SD_INFO(SD_LOG_COMMON, un,
4487 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4488 	    nhead, ncyl, rpm, modesense_capacity);
4489 	SD_INFO(SD_LOG_COMMON, un,
4490 	    "sd_get_physical_geometry: (cached)\n");
4491 	SD_INFO(SD_LOG_COMMON, un,
4492 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4493 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4494 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4495 	SD_INFO(SD_LOG_COMMON, un,
4496 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4497 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4498 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4499 
4500 page4_exit:
4501 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4502 page3_exit:
4503 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4504 
4505 	return (ret);
4506 }
4507 
4508 /*
4509  *    Function: sd_get_virtual_geometry
4510  *
4511  * Description: Ask the controller to tell us about the target device.
4512  *
4513  *   Arguments: un - pointer to softstate
4514  *		capacity - disk capacity in #blocks
4515  *		lbasize - disk block size in bytes
4516  *
4517  *     Context: Kernel thread only
4518  */
4519 
4520 static int
4521 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4522     diskaddr_t capacity, int lbasize)
4523 {
4524 	uint_t	geombuf;
4525 	int	spc;
4526 
4527 	ASSERT(un != NULL);
4528 
4529 	/* Set sector size, and total number of sectors */
4530 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4531 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4532 
4533 	/* Let the HBA tell us its geometry */
4534 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4535 
4536 	/* A value of -1 indicates an undefined "geometry" property */
4537 	if (geombuf == (-1)) {
4538 		return (EINVAL);
4539 	}
4540 
4541 	/* Initialize the logical geometry cache. */
4542 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4543 	lgeom_p->g_nsect   = geombuf & 0xffff;
4544 	lgeom_p->g_secsize = un->un_sys_blocksize;
4545 
4546 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4547 
4548 	/*
4549 	 * Note: The driver originally converted the capacity value from
4550 	 * target blocks to system blocks. However, the capacity value passed
4551 	 * to this routine is already in terms of system blocks (this scaling
4552 	 * is done when the READ CAPACITY command is issued and processed).
4553 	 * This 'error' may have gone undetected because the usage of g_ncyl
4554 	 * (which is based upon g_capacity) is very limited within the driver
4555 	 */
4556 	lgeom_p->g_capacity = capacity;
4557 
4558 	/*
4559 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4560 	 * hba may return zero values if the device has been removed.
4561 	 */
4562 	if (spc == 0) {
4563 		lgeom_p->g_ncyl = 0;
4564 	} else {
4565 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4566 	}
4567 	lgeom_p->g_acyl = 0;
4568 
4569 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4570 	return (0);
4571 
4572 }
4573 /*
4574  *    Function: sd_update_block_info
4575  *
4576  * Description: Calculate a byte count to sector count bitshift value
4577  *		from sector size.
4578  *
4579  *   Arguments: un: unit struct.
4580  *		lbasize: new target sector size
4581  *		capacity: new target capacity, ie. block count
4582  *
4583  *     Context: Kernel thread context
4584  */
4585 
4586 static void
4587 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4588 {
4589 	uint_t		dblk;
4590 
4591 	if (lbasize != 0) {
4592 		un->un_tgt_blocksize = lbasize;
4593 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4594 	}
4595 
4596 	if (capacity != 0) {
4597 		un->un_blockcount		= capacity;
4598 		un->un_f_blockcount_is_valid	= TRUE;
4599 	}
4600 
4601 	/*
4602 	 * Update device capacity properties.
4603 	 *
4604 	 *   'device-nblocks'	number of blocks in target's units
4605 	 *   'device-blksize'	data bearing size of target's block
4606 	 *
4607 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4608 	 * not be a power of two for checksumming disks with 520/528 byte
4609 	 * sectors.
4610 	 */
4611 	if (un->un_f_tgt_blocksize_is_valid &&
4612 	    un->un_f_blockcount_is_valid &&
4613 	    un->un_sys_blocksize) {
4614 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4615 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4616 		    "device-nblocks", un->un_blockcount / dblk);
4617 		/*
4618 		 * To save memory, only define "device-blksize" when its
4619 		 * value is differnet than the default DEV_BSIZE value.
4620 		 */
4621 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4622 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4623 			    SD_DEVINFO(un), "device-blksize",
4624 			    un->un_sys_blocksize * dblk);
4625 	}
4626 }
4627 
4628 
4629 /*
4630  *    Function: sd_register_devid
4631  *
4632  * Description: This routine will obtain the device id information from the
4633  *		target, obtain the serial number, and register the device
4634  *		id with the ddi framework.
4635  *
4636  *   Arguments: devi - the system's dev_info_t for the device.
4637  *		un - driver soft state (unit) structure
4638  *		reservation_flag - indicates if a reservation conflict
4639  *		occurred during attach
4640  *
4641  *     Context: Kernel Thread
4642  */
4643 static void
4644 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4645 {
4646 	int		rval		= 0;
4647 	uchar_t		*inq80		= NULL;
4648 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4649 	size_t		inq80_resid	= 0;
4650 	uchar_t		*inq83		= NULL;
4651 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4652 	size_t		inq83_resid	= 0;
4653 	int		dlen, len;
4654 	char		*sn;
4655 
4656 	ASSERT(un != NULL);
4657 	ASSERT(mutex_owned(SD_MUTEX(un)));
4658 	ASSERT((SD_DEVINFO(un)) == devi);
4659 
4660 	/*
4661 	 * If transport has already registered a devid for this target
4662 	 * then that takes precedence over the driver's determination
4663 	 * of the devid.
4664 	 */
4665 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4666 		ASSERT(un->un_devid);
4667 		return; /* use devid registered by the transport */
4668 	}
4669 
4670 	/*
4671 	 * This is the case of antiquated Sun disk drives that have the
4672 	 * FAB_DEVID property set in the disk_table.  These drives
4673 	 * manage the devid's by storing them in last 2 available sectors
4674 	 * on the drive and have them fabricated by the ddi layer by calling
4675 	 * ddi_devid_init and passing the DEVID_FAB flag.
4676 	 */
4677 	if (un->un_f_opt_fab_devid == TRUE) {
4678 		/*
4679 		 * Depending on EINVAL isn't reliable, since a reserved disk
4680 		 * may result in invalid geometry, so check to make sure a
4681 		 * reservation conflict did not occur during attach.
4682 		 */
4683 		if ((sd_get_devid(un) == EINVAL) &&
4684 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4685 			/*
4686 			 * The devid is invalid AND there is no reservation
4687 			 * conflict.  Fabricate a new devid.
4688 			 */
4689 			(void) sd_create_devid(un);
4690 		}
4691 
4692 		/* Register the devid if it exists */
4693 		if (un->un_devid != NULL) {
4694 			(void) ddi_devid_register(SD_DEVINFO(un),
4695 			    un->un_devid);
4696 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4697 			    "sd_register_devid: Devid Fabricated\n");
4698 		}
4699 		return;
4700 	}
4701 
4702 	/*
4703 	 * We check the availibility of the World Wide Name (0x83) and Unit
4704 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4705 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4706 	 * 0x83 is availible, that is the best choice.  Our next choice is
4707 	 * 0x80.  If neither are availible, we munge the devid from the device
4708 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4709 	 * to fabricate a devid for non-Sun qualified disks.
4710 	 */
4711 	if (sd_check_vpd_page_support(un) == 0) {
4712 		/* collect page 80 data if available */
4713 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4714 
4715 			mutex_exit(SD_MUTEX(un));
4716 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4717 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4718 			    0x01, 0x80, &inq80_resid);
4719 
4720 			if (rval != 0) {
4721 				kmem_free(inq80, inq80_len);
4722 				inq80 = NULL;
4723 				inq80_len = 0;
4724 			} else if (ddi_prop_exists(
4725 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4726 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4727 			    INQUIRY_SERIAL_NO) == 0) {
4728 				/*
4729 				 * If we don't already have a serial number
4730 				 * property, do quick verify of data returned
4731 				 * and define property.
4732 				 */
4733 				dlen = inq80_len - inq80_resid;
4734 				len = (size_t)inq80[3];
4735 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4736 					/*
4737 					 * Ensure sn termination, skip leading
4738 					 * blanks, and create property
4739 					 * 'inquiry-serial-no'.
4740 					 */
4741 					sn = (char *)&inq80[4];
4742 					sn[len] = 0;
4743 					while (*sn && (*sn == ' '))
4744 						sn++;
4745 					if (*sn) {
4746 						(void) ddi_prop_update_string(
4747 						    DDI_DEV_T_NONE,
4748 						    SD_DEVINFO(un),
4749 						    INQUIRY_SERIAL_NO, sn);
4750 					}
4751 				}
4752 			}
4753 			mutex_enter(SD_MUTEX(un));
4754 		}
4755 
4756 		/* collect page 83 data if available */
4757 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4758 			mutex_exit(SD_MUTEX(un));
4759 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4760 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4761 			    0x01, 0x83, &inq83_resid);
4762 
4763 			if (rval != 0) {
4764 				kmem_free(inq83, inq83_len);
4765 				inq83 = NULL;
4766 				inq83_len = 0;
4767 			}
4768 			mutex_enter(SD_MUTEX(un));
4769 		}
4770 	}
4771 
4772 	/* encode best devid possible based on data available */
4773 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4774 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4775 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4776 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4777 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4778 
4779 		/* devid successfully encoded, register devid */
4780 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4781 
4782 	} else {
4783 		/*
4784 		 * Unable to encode a devid based on data available.
4785 		 * This is not a Sun qualified disk.  Older Sun disk
4786 		 * drives that have the SD_FAB_DEVID property
4787 		 * set in the disk_table and non Sun qualified
4788 		 * disks are treated in the same manner.  These
4789 		 * drives manage the devid's by storing them in
4790 		 * last 2 available sectors on the drive and
4791 		 * have them fabricated by the ddi layer by
4792 		 * calling ddi_devid_init and passing the
4793 		 * DEVID_FAB flag.
4794 		 * Create a fabricate devid only if there's no
4795 		 * fabricate devid existed.
4796 		 */
4797 		if (sd_get_devid(un) == EINVAL) {
4798 			(void) sd_create_devid(un);
4799 		}
4800 		un->un_f_opt_fab_devid = TRUE;
4801 
4802 		/* Register the devid if it exists */
4803 		if (un->un_devid != NULL) {
4804 			(void) ddi_devid_register(SD_DEVINFO(un),
4805 			    un->un_devid);
4806 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4807 			    "sd_register_devid: devid fabricated using "
4808 			    "ddi framework\n");
4809 		}
4810 	}
4811 
4812 	/* clean up resources */
4813 	if (inq80 != NULL) {
4814 		kmem_free(inq80, inq80_len);
4815 	}
4816 	if (inq83 != NULL) {
4817 		kmem_free(inq83, inq83_len);
4818 	}
4819 }
4820 
4821 
4822 
4823 /*
4824  *    Function: sd_get_devid
4825  *
4826  * Description: This routine will return 0 if a valid device id has been
4827  *		obtained from the target and stored in the soft state. If a
4828  *		valid device id has not been previously read and stored, a
4829  *		read attempt will be made.
4830  *
4831  *   Arguments: un - driver soft state (unit) structure
4832  *
4833  * Return Code: 0 if we successfully get the device id
4834  *
4835  *     Context: Kernel Thread
4836  */
4837 
4838 static int
4839 sd_get_devid(struct sd_lun *un)
4840 {
4841 	struct dk_devid		*dkdevid;
4842 	ddi_devid_t		tmpid;
4843 	uint_t			*ip;
4844 	size_t			sz;
4845 	diskaddr_t		blk;
4846 	int			status;
4847 	int			chksum;
4848 	int			i;
4849 	size_t			buffer_size;
4850 
4851 	ASSERT(un != NULL);
4852 	ASSERT(mutex_owned(SD_MUTEX(un)));
4853 
4854 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4855 	    un);
4856 
4857 	if (un->un_devid != NULL) {
4858 		return (0);
4859 	}
4860 
4861 	mutex_exit(SD_MUTEX(un));
4862 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4863 	    (void *)SD_PATH_DIRECT) != 0) {
4864 		mutex_enter(SD_MUTEX(un));
4865 		return (EINVAL);
4866 	}
4867 
4868 	/*
4869 	 * Read and verify device id, stored in the reserved cylinders at the
4870 	 * end of the disk. Backup label is on the odd sectors of the last
4871 	 * track of the last cylinder. Device id will be on track of the next
4872 	 * to last cylinder.
4873 	 */
4874 	mutex_enter(SD_MUTEX(un));
4875 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4876 	mutex_exit(SD_MUTEX(un));
4877 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4878 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4879 	    SD_PATH_DIRECT);
4880 	if (status != 0) {
4881 		goto error;
4882 	}
4883 
4884 	/* Validate the revision */
4885 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4886 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4887 		status = EINVAL;
4888 		goto error;
4889 	}
4890 
4891 	/* Calculate the checksum */
4892 	chksum = 0;
4893 	ip = (uint_t *)dkdevid;
4894 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4895 	    i++) {
4896 		chksum ^= ip[i];
4897 	}
4898 
4899 	/* Compare the checksums */
4900 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4901 		status = EINVAL;
4902 		goto error;
4903 	}
4904 
4905 	/* Validate the device id */
4906 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4907 		status = EINVAL;
4908 		goto error;
4909 	}
4910 
4911 	/*
4912 	 * Store the device id in the driver soft state
4913 	 */
4914 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4915 	tmpid = kmem_alloc(sz, KM_SLEEP);
4916 
4917 	mutex_enter(SD_MUTEX(un));
4918 
4919 	un->un_devid = tmpid;
4920 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4921 
4922 	kmem_free(dkdevid, buffer_size);
4923 
4924 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4925 
4926 	return (status);
4927 error:
4928 	mutex_enter(SD_MUTEX(un));
4929 	kmem_free(dkdevid, buffer_size);
4930 	return (status);
4931 }
4932 
4933 
4934 /*
4935  *    Function: sd_create_devid
4936  *
4937  * Description: This routine will fabricate the device id and write it
4938  *		to the disk.
4939  *
4940  *   Arguments: un - driver soft state (unit) structure
4941  *
4942  * Return Code: value of the fabricated device id
4943  *
4944  *     Context: Kernel Thread
4945  */
4946 
4947 static ddi_devid_t
4948 sd_create_devid(struct sd_lun *un)
4949 {
4950 	ASSERT(un != NULL);
4951 
4952 	/* Fabricate the devid */
4953 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4954 	    == DDI_FAILURE) {
4955 		return (NULL);
4956 	}
4957 
4958 	/* Write the devid to disk */
4959 	if (sd_write_deviceid(un) != 0) {
4960 		ddi_devid_free(un->un_devid);
4961 		un->un_devid = NULL;
4962 	}
4963 
4964 	return (un->un_devid);
4965 }
4966 
4967 
4968 /*
4969  *    Function: sd_write_deviceid
4970  *
4971  * Description: This routine will write the device id to the disk
4972  *		reserved sector.
4973  *
4974  *   Arguments: un - driver soft state (unit) structure
4975  *
4976  * Return Code: EINVAL
4977  *		value returned by sd_send_scsi_cmd
4978  *
4979  *     Context: Kernel Thread
4980  */
4981 
4982 static int
4983 sd_write_deviceid(struct sd_lun *un)
4984 {
4985 	struct dk_devid		*dkdevid;
4986 	diskaddr_t		blk;
4987 	uint_t			*ip, chksum;
4988 	int			status;
4989 	int			i;
4990 
4991 	ASSERT(mutex_owned(SD_MUTEX(un)));
4992 
4993 	mutex_exit(SD_MUTEX(un));
4994 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4995 	    (void *)SD_PATH_DIRECT) != 0) {
4996 		mutex_enter(SD_MUTEX(un));
4997 		return (-1);
4998 	}
4999 
5000 
5001 	/* Allocate the buffer */
5002 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5003 
5004 	/* Fill in the revision */
5005 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5006 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5007 
5008 	/* Copy in the device id */
5009 	mutex_enter(SD_MUTEX(un));
5010 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5011 	    ddi_devid_sizeof(un->un_devid));
5012 	mutex_exit(SD_MUTEX(un));
5013 
5014 	/* Calculate the checksum */
5015 	chksum = 0;
5016 	ip = (uint_t *)dkdevid;
5017 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5018 	    i++) {
5019 		chksum ^= ip[i];
5020 	}
5021 
5022 	/* Fill-in checksum */
5023 	DKD_FORMCHKSUM(chksum, dkdevid);
5024 
5025 	/* Write the reserved sector */
5026 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5027 	    SD_PATH_DIRECT);
5028 
5029 	kmem_free(dkdevid, un->un_sys_blocksize);
5030 
5031 	mutex_enter(SD_MUTEX(un));
5032 	return (status);
5033 }
5034 
5035 
5036 /*
5037  *    Function: sd_check_vpd_page_support
5038  *
5039  * Description: This routine sends an inquiry command with the EVPD bit set and
5040  *		a page code of 0x00 to the device. It is used to determine which
5041  *		vital product pages are availible to find the devid. We are
5042  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5043  *		device does not support that command.
5044  *
5045  *   Arguments: un  - driver soft state (unit) structure
5046  *
5047  * Return Code: 0 - success
5048  *		1 - check condition
5049  *
5050  *     Context: This routine can sleep.
5051  */
5052 
5053 static int
5054 sd_check_vpd_page_support(struct sd_lun *un)
5055 {
5056 	uchar_t	*page_list	= NULL;
5057 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5058 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5059 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5060 	int    	rval		= 0;
5061 	int	counter;
5062 
5063 	ASSERT(un != NULL);
5064 	ASSERT(mutex_owned(SD_MUTEX(un)));
5065 
5066 	mutex_exit(SD_MUTEX(un));
5067 
5068 	/*
5069 	 * We'll set the page length to the maximum to save figuring it out
5070 	 * with an additional call.
5071 	 */
5072 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5073 
5074 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5075 	    page_code, NULL);
5076 
5077 	mutex_enter(SD_MUTEX(un));
5078 
5079 	/*
5080 	 * Now we must validate that the device accepted the command, as some
5081 	 * drives do not support it.  If the drive does support it, we will
5082 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5083 	 * not, we return -1.
5084 	 */
5085 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5086 		/* Loop to find one of the 2 pages we need */
5087 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5088 
5089 		/*
5090 		 * Pages are returned in ascending order, and 0x83 is what we
5091 		 * are hoping for.
5092 		 */
5093 		while ((page_list[counter] <= 0x86) &&
5094 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5095 		    VPD_HEAD_OFFSET))) {
5096 			/*
5097 			 * Add 3 because page_list[3] is the number of
5098 			 * pages minus 3
5099 			 */
5100 
5101 			switch (page_list[counter]) {
5102 			case 0x00:
5103 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5104 				break;
5105 			case 0x80:
5106 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5107 				break;
5108 			case 0x81:
5109 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5110 				break;
5111 			case 0x82:
5112 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5113 				break;
5114 			case 0x83:
5115 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5116 				break;
5117 			case 0x86:
5118 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5119 				break;
5120 			}
5121 			counter++;
5122 		}
5123 
5124 	} else {
5125 		rval = -1;
5126 
5127 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5128 		    "sd_check_vpd_page_support: This drive does not implement "
5129 		    "VPD pages.\n");
5130 	}
5131 
5132 	kmem_free(page_list, page_length);
5133 
5134 	return (rval);
5135 }
5136 
5137 
5138 /*
5139  *    Function: sd_setup_pm
5140  *
5141  * Description: Initialize Power Management on the device
5142  *
5143  *     Context: Kernel Thread
5144  */
5145 
5146 static void
5147 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5148 {
5149 	uint_t	log_page_size;
5150 	uchar_t	*log_page_data;
5151 	int	rval;
5152 
5153 	/*
5154 	 * Since we are called from attach, holding a mutex for
5155 	 * un is unnecessary. Because some of the routines called
5156 	 * from here require SD_MUTEX to not be held, assert this
5157 	 * right up front.
5158 	 */
5159 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5160 	/*
5161 	 * Since the sd device does not have the 'reg' property,
5162 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5163 	 * The following code is to tell cpr that this device
5164 	 * DOES need to be suspended and resumed.
5165 	 */
5166 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5167 	    "pm-hardware-state", "needs-suspend-resume");
5168 
5169 	/*
5170 	 * This complies with the new power management framework
5171 	 * for certain desktop machines. Create the pm_components
5172 	 * property as a string array property.
5173 	 */
5174 	if (un->un_f_pm_supported) {
5175 		/*
5176 		 * not all devices have a motor, try it first.
5177 		 * some devices may return ILLEGAL REQUEST, some
5178 		 * will hang
5179 		 * The following START_STOP_UNIT is used to check if target
5180 		 * device has a motor.
5181 		 */
5182 		un->un_f_start_stop_supported = TRUE;
5183 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5184 		    SD_PATH_DIRECT) != 0) {
5185 			un->un_f_start_stop_supported = FALSE;
5186 		}
5187 
5188 		/*
5189 		 * create pm properties anyways otherwise the parent can't
5190 		 * go to sleep
5191 		 */
5192 		(void) sd_create_pm_components(devi, un);
5193 		un->un_f_pm_is_enabled = TRUE;
5194 		return;
5195 	}
5196 
5197 	if (!un->un_f_log_sense_supported) {
5198 		un->un_power_level = SD_SPINDLE_ON;
5199 		un->un_f_pm_is_enabled = FALSE;
5200 		return;
5201 	}
5202 
5203 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5204 
5205 #ifdef	SDDEBUG
5206 	if (sd_force_pm_supported) {
5207 		/* Force a successful result */
5208 		rval = 1;
5209 	}
5210 #endif
5211 
5212 	/*
5213 	 * If the start-stop cycle counter log page is not supported
5214 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5215 	 * then we should not create the pm_components property.
5216 	 */
5217 	if (rval == -1) {
5218 		/*
5219 		 * Error.
5220 		 * Reading log sense failed, most likely this is
5221 		 * an older drive that does not support log sense.
5222 		 * If this fails auto-pm is not supported.
5223 		 */
5224 		un->un_power_level = SD_SPINDLE_ON;
5225 		un->un_f_pm_is_enabled = FALSE;
5226 
5227 	} else if (rval == 0) {
5228 		/*
5229 		 * Page not found.
5230 		 * The start stop cycle counter is implemented as page
5231 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5232 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5233 		 */
5234 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5235 			/*
5236 			 * Page found, use this one.
5237 			 */
5238 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5239 			un->un_f_pm_is_enabled = TRUE;
5240 		} else {
5241 			/*
5242 			 * Error or page not found.
5243 			 * auto-pm is not supported for this device.
5244 			 */
5245 			un->un_power_level = SD_SPINDLE_ON;
5246 			un->un_f_pm_is_enabled = FALSE;
5247 		}
5248 	} else {
5249 		/*
5250 		 * Page found, use it.
5251 		 */
5252 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5253 		un->un_f_pm_is_enabled = TRUE;
5254 	}
5255 
5256 
5257 	if (un->un_f_pm_is_enabled == TRUE) {
5258 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5259 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5260 
5261 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5262 		    log_page_size, un->un_start_stop_cycle_page,
5263 		    0x01, 0, SD_PATH_DIRECT);
5264 #ifdef	SDDEBUG
5265 		if (sd_force_pm_supported) {
5266 			/* Force a successful result */
5267 			rval = 0;
5268 		}
5269 #endif
5270 
5271 		/*
5272 		 * If the Log sense for Page( Start/stop cycle counter page)
5273 		 * succeeds, then power managment is supported and we can
5274 		 * enable auto-pm.
5275 		 */
5276 		if (rval == 0)  {
5277 			(void) sd_create_pm_components(devi, un);
5278 		} else {
5279 			un->un_power_level = SD_SPINDLE_ON;
5280 			un->un_f_pm_is_enabled = FALSE;
5281 		}
5282 
5283 		kmem_free(log_page_data, log_page_size);
5284 	}
5285 }
5286 
5287 
5288 /*
5289  *    Function: sd_create_pm_components
5290  *
5291  * Description: Initialize PM property.
5292  *
5293  *     Context: Kernel thread context
5294  */
5295 
5296 static void
5297 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5298 {
5299 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5300 
5301 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5302 
5303 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5304 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5305 		/*
5306 		 * When components are initially created they are idle,
5307 		 * power up any non-removables.
5308 		 * Note: the return value of pm_raise_power can't be used
5309 		 * for determining if PM should be enabled for this device.
5310 		 * Even if you check the return values and remove this
5311 		 * property created above, the PM framework will not honor the
5312 		 * change after the first call to pm_raise_power. Hence,
5313 		 * removal of that property does not help if pm_raise_power
5314 		 * fails. In the case of removable media, the start/stop
5315 		 * will fail if the media is not present.
5316 		 */
5317 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5318 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5319 			mutex_enter(SD_MUTEX(un));
5320 			un->un_power_level = SD_SPINDLE_ON;
5321 			mutex_enter(&un->un_pm_mutex);
5322 			/* Set to on and not busy. */
5323 			un->un_pm_count = 0;
5324 		} else {
5325 			mutex_enter(SD_MUTEX(un));
5326 			un->un_power_level = SD_SPINDLE_OFF;
5327 			mutex_enter(&un->un_pm_mutex);
5328 			/* Set to off. */
5329 			un->un_pm_count = -1;
5330 		}
5331 		mutex_exit(&un->un_pm_mutex);
5332 		mutex_exit(SD_MUTEX(un));
5333 	} else {
5334 		un->un_power_level = SD_SPINDLE_ON;
5335 		un->un_f_pm_is_enabled = FALSE;
5336 	}
5337 }
5338 
5339 
5340 /*
5341  *    Function: sd_ddi_suspend
5342  *
5343  * Description: Performs system power-down operations. This includes
5344  *		setting the drive state to indicate its suspended so
5345  *		that no new commands will be accepted. Also, wait for
5346  *		all commands that are in transport or queued to a timer
5347  *		for retry to complete. All timeout threads are cancelled.
5348  *
5349  * Return Code: DDI_FAILURE or DDI_SUCCESS
5350  *
5351  *     Context: Kernel thread context
5352  */
5353 
5354 static int
5355 sd_ddi_suspend(dev_info_t *devi)
5356 {
5357 	struct	sd_lun	*un;
5358 	clock_t		wait_cmds_complete;
5359 
5360 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5361 	if (un == NULL) {
5362 		return (DDI_FAILURE);
5363 	}
5364 
5365 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5366 
5367 	mutex_enter(SD_MUTEX(un));
5368 
5369 	/* Return success if the device is already suspended. */
5370 	if (un->un_state == SD_STATE_SUSPENDED) {
5371 		mutex_exit(SD_MUTEX(un));
5372 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5373 		    "device already suspended, exiting\n");
5374 		return (DDI_SUCCESS);
5375 	}
5376 
5377 	/* Return failure if the device is being used by HA */
5378 	if (un->un_resvd_status &
5379 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5380 		mutex_exit(SD_MUTEX(un));
5381 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5382 		    "device in use by HA, exiting\n");
5383 		return (DDI_FAILURE);
5384 	}
5385 
5386 	/*
5387 	 * Return failure if the device is in a resource wait
5388 	 * or power changing state.
5389 	 */
5390 	if ((un->un_state == SD_STATE_RWAIT) ||
5391 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5392 		mutex_exit(SD_MUTEX(un));
5393 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5394 		    "device in resource wait state, exiting\n");
5395 		return (DDI_FAILURE);
5396 	}
5397 
5398 
5399 	un->un_save_state = un->un_last_state;
5400 	New_state(un, SD_STATE_SUSPENDED);
5401 
5402 	/*
5403 	 * Wait for all commands that are in transport or queued to a timer
5404 	 * for retry to complete.
5405 	 *
5406 	 * While waiting, no new commands will be accepted or sent because of
5407 	 * the new state we set above.
5408 	 *
5409 	 * Wait till current operation has completed. If we are in the resource
5410 	 * wait state (with an intr outstanding) then we need to wait till the
5411 	 * intr completes and starts the next cmd. We want to wait for
5412 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5413 	 */
5414 	wait_cmds_complete = ddi_get_lbolt() +
5415 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5416 
5417 	while (un->un_ncmds_in_transport != 0) {
5418 		/*
5419 		 * Fail if commands do not finish in the specified time.
5420 		 */
5421 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5422 		    wait_cmds_complete) == -1) {
5423 			/*
5424 			 * Undo the state changes made above. Everything
5425 			 * must go back to it's original value.
5426 			 */
5427 			Restore_state(un);
5428 			un->un_last_state = un->un_save_state;
5429 			/* Wake up any threads that might be waiting. */
5430 			cv_broadcast(&un->un_suspend_cv);
5431 			mutex_exit(SD_MUTEX(un));
5432 			SD_ERROR(SD_LOG_IO_PM, un,
5433 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5434 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5435 			return (DDI_FAILURE);
5436 		}
5437 	}
5438 
5439 	/*
5440 	 * Cancel SCSI watch thread and timeouts, if any are active
5441 	 */
5442 
5443 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5444 		opaque_t temp_token = un->un_swr_token;
5445 		mutex_exit(SD_MUTEX(un));
5446 		scsi_watch_suspend(temp_token);
5447 		mutex_enter(SD_MUTEX(un));
5448 	}
5449 
5450 	if (un->un_reset_throttle_timeid != NULL) {
5451 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5452 		un->un_reset_throttle_timeid = NULL;
5453 		mutex_exit(SD_MUTEX(un));
5454 		(void) untimeout(temp_id);
5455 		mutex_enter(SD_MUTEX(un));
5456 	}
5457 
5458 	if (un->un_dcvb_timeid != NULL) {
5459 		timeout_id_t temp_id = un->un_dcvb_timeid;
5460 		un->un_dcvb_timeid = NULL;
5461 		mutex_exit(SD_MUTEX(un));
5462 		(void) untimeout(temp_id);
5463 		mutex_enter(SD_MUTEX(un));
5464 	}
5465 
5466 	mutex_enter(&un->un_pm_mutex);
5467 	if (un->un_pm_timeid != NULL) {
5468 		timeout_id_t temp_id = un->un_pm_timeid;
5469 		un->un_pm_timeid = NULL;
5470 		mutex_exit(&un->un_pm_mutex);
5471 		mutex_exit(SD_MUTEX(un));
5472 		(void) untimeout(temp_id);
5473 		mutex_enter(SD_MUTEX(un));
5474 	} else {
5475 		mutex_exit(&un->un_pm_mutex);
5476 	}
5477 
5478 	if (un->un_retry_timeid != NULL) {
5479 		timeout_id_t temp_id = un->un_retry_timeid;
5480 		un->un_retry_timeid = NULL;
5481 		mutex_exit(SD_MUTEX(un));
5482 		(void) untimeout(temp_id);
5483 		mutex_enter(SD_MUTEX(un));
5484 	}
5485 
5486 	if (un->un_direct_priority_timeid != NULL) {
5487 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5488 		un->un_direct_priority_timeid = NULL;
5489 		mutex_exit(SD_MUTEX(un));
5490 		(void) untimeout(temp_id);
5491 		mutex_enter(SD_MUTEX(un));
5492 	}
5493 
5494 	if (un->un_f_is_fibre == TRUE) {
5495 		/*
5496 		 * Remove callbacks for insert and remove events
5497 		 */
5498 		if (un->un_insert_event != NULL) {
5499 			mutex_exit(SD_MUTEX(un));
5500 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5501 			mutex_enter(SD_MUTEX(un));
5502 			un->un_insert_event = NULL;
5503 		}
5504 
5505 		if (un->un_remove_event != NULL) {
5506 			mutex_exit(SD_MUTEX(un));
5507 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5508 			mutex_enter(SD_MUTEX(un));
5509 			un->un_remove_event = NULL;
5510 		}
5511 	}
5512 
5513 	mutex_exit(SD_MUTEX(un));
5514 
5515 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5516 
5517 	return (DDI_SUCCESS);
5518 }
5519 
5520 
5521 /*
5522  *    Function: sd_ddi_pm_suspend
5523  *
5524  * Description: Set the drive state to low power.
5525  *		Someone else is required to actually change the drive
5526  *		power level.
5527  *
5528  *   Arguments: un - driver soft state (unit) structure
5529  *
5530  * Return Code: DDI_FAILURE or DDI_SUCCESS
5531  *
5532  *     Context: Kernel thread context
5533  */
5534 
5535 static int
5536 sd_ddi_pm_suspend(struct sd_lun *un)
5537 {
5538 	ASSERT(un != NULL);
5539 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5540 
5541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5542 	mutex_enter(SD_MUTEX(un));
5543 
5544 	/*
5545 	 * Exit if power management is not enabled for this device, or if
5546 	 * the device is being used by HA.
5547 	 */
5548 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5549 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5550 		mutex_exit(SD_MUTEX(un));
5551 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5552 		return (DDI_SUCCESS);
5553 	}
5554 
5555 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5556 	    un->un_ncmds_in_driver);
5557 
5558 	/*
5559 	 * See if the device is not busy, ie.:
5560 	 *    - we have no commands in the driver for this device
5561 	 *    - not waiting for resources
5562 	 */
5563 	if ((un->un_ncmds_in_driver == 0) &&
5564 	    (un->un_state != SD_STATE_RWAIT)) {
5565 		/*
5566 		 * The device is not busy, so it is OK to go to low power state.
5567 		 * Indicate low power, but rely on someone else to actually
5568 		 * change it.
5569 		 */
5570 		mutex_enter(&un->un_pm_mutex);
5571 		un->un_pm_count = -1;
5572 		mutex_exit(&un->un_pm_mutex);
5573 		un->un_power_level = SD_SPINDLE_OFF;
5574 	}
5575 
5576 	mutex_exit(SD_MUTEX(un));
5577 
5578 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5579 
5580 	return (DDI_SUCCESS);
5581 }
5582 
5583 
5584 /*
5585  *    Function: sd_ddi_resume
5586  *
5587  * Description: Performs system power-up operations..
5588  *
5589  * Return Code: DDI_SUCCESS
5590  *		DDI_FAILURE
5591  *
5592  *     Context: Kernel thread context
5593  */
5594 
5595 static int
5596 sd_ddi_resume(dev_info_t *devi)
5597 {
5598 	struct	sd_lun	*un;
5599 
5600 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5601 	if (un == NULL) {
5602 		return (DDI_FAILURE);
5603 	}
5604 
5605 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5606 
5607 	mutex_enter(SD_MUTEX(un));
5608 	Restore_state(un);
5609 
5610 	/*
5611 	 * Restore the state which was saved to give the
5612 	 * the right state in un_last_state
5613 	 */
5614 	un->un_last_state = un->un_save_state;
5615 	/*
5616 	 * Note: throttle comes back at full.
5617 	 * Also note: this MUST be done before calling pm_raise_power
5618 	 * otherwise the system can get hung in biowait. The scenario where
5619 	 * this'll happen is under cpr suspend. Writing of the system
5620 	 * state goes through sddump, which writes 0 to un_throttle. If
5621 	 * writing the system state then fails, example if the partition is
5622 	 * too small, then cpr attempts a resume. If throttle isn't restored
5623 	 * from the saved value until after calling pm_raise_power then
5624 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5625 	 * in biowait.
5626 	 */
5627 	un->un_throttle = un->un_saved_throttle;
5628 
5629 	/*
5630 	 * The chance of failure is very rare as the only command done in power
5631 	 * entry point is START command when you transition from 0->1 or
5632 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5633 	 * which suspend was done. Ignore the return value as the resume should
5634 	 * not be failed. In the case of removable media the media need not be
5635 	 * inserted and hence there is a chance that raise power will fail with
5636 	 * media not present.
5637 	 */
5638 	if (un->un_f_attach_spinup) {
5639 		mutex_exit(SD_MUTEX(un));
5640 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5641 		mutex_enter(SD_MUTEX(un));
5642 	}
5643 
5644 	/*
5645 	 * Don't broadcast to the suspend cv and therefore possibly
5646 	 * start I/O until after power has been restored.
5647 	 */
5648 	cv_broadcast(&un->un_suspend_cv);
5649 	cv_broadcast(&un->un_state_cv);
5650 
5651 	/* restart thread */
5652 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5653 		scsi_watch_resume(un->un_swr_token);
5654 	}
5655 
5656 #if (defined(__fibre))
5657 	if (un->un_f_is_fibre == TRUE) {
5658 		/*
5659 		 * Add callbacks for insert and remove events
5660 		 */
5661 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5662 			sd_init_event_callbacks(un);
5663 		}
5664 	}
5665 #endif
5666 
5667 	/*
5668 	 * Transport any pending commands to the target.
5669 	 *
5670 	 * If this is a low-activity device commands in queue will have to wait
5671 	 * until new commands come in, which may take awhile. Also, we
5672 	 * specifically don't check un_ncmds_in_transport because we know that
5673 	 * there really are no commands in progress after the unit was
5674 	 * suspended and we could have reached the throttle level, been
5675 	 * suspended, and have no new commands coming in for awhile. Highly
5676 	 * unlikely, but so is the low-activity disk scenario.
5677 	 */
5678 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5679 
5680 	sd_start_cmds(un, NULL);
5681 	mutex_exit(SD_MUTEX(un));
5682 
5683 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5684 
5685 	return (DDI_SUCCESS);
5686 }
5687 
5688 
5689 /*
5690  *    Function: sd_ddi_pm_resume
5691  *
5692  * Description: Set the drive state to powered on.
5693  *		Someone else is required to actually change the drive
5694  *		power level.
5695  *
5696  *   Arguments: un - driver soft state (unit) structure
5697  *
5698  * Return Code: DDI_SUCCESS
5699  *
5700  *     Context: Kernel thread context
5701  */
5702 
5703 static int
5704 sd_ddi_pm_resume(struct sd_lun *un)
5705 {
5706 	ASSERT(un != NULL);
5707 
5708 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5709 	mutex_enter(SD_MUTEX(un));
5710 	un->un_power_level = SD_SPINDLE_ON;
5711 
5712 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5713 	mutex_enter(&un->un_pm_mutex);
5714 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5715 		un->un_pm_count++;
5716 		ASSERT(un->un_pm_count == 0);
5717 		/*
5718 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5719 		 * un_suspend_cv is for a system resume, not a power management
5720 		 * device resume. (4297749)
5721 		 *	 cv_broadcast(&un->un_suspend_cv);
5722 		 */
5723 	}
5724 	mutex_exit(&un->un_pm_mutex);
5725 	mutex_exit(SD_MUTEX(un));
5726 
5727 	return (DDI_SUCCESS);
5728 }
5729 
5730 
5731 /*
5732  *    Function: sd_pm_idletimeout_handler
5733  *
5734  * Description: A timer routine that's active only while a device is busy.
5735  *		The purpose is to extend slightly the pm framework's busy
5736  *		view of the device to prevent busy/idle thrashing for
5737  *		back-to-back commands. Do this by comparing the current time
5738  *		to the time at which the last command completed and when the
5739  *		difference is greater than sd_pm_idletime, call
5740  *		pm_idle_component. In addition to indicating idle to the pm
5741  *		framework, update the chain type to again use the internal pm
5742  *		layers of the driver.
5743  *
5744  *   Arguments: arg - driver soft state (unit) structure
5745  *
5746  *     Context: Executes in a timeout(9F) thread context
5747  */
5748 
5749 static void
5750 sd_pm_idletimeout_handler(void *arg)
5751 {
5752 	struct sd_lun *un = arg;
5753 
5754 	time_t	now;
5755 
5756 	mutex_enter(&sd_detach_mutex);
5757 	if (un->un_detach_count != 0) {
5758 		/* Abort if the instance is detaching */
5759 		mutex_exit(&sd_detach_mutex);
5760 		return;
5761 	}
5762 	mutex_exit(&sd_detach_mutex);
5763 
5764 	now = ddi_get_time();
5765 	/*
5766 	 * Grab both mutexes, in the proper order, since we're accessing
5767 	 * both PM and softstate variables.
5768 	 */
5769 	mutex_enter(SD_MUTEX(un));
5770 	mutex_enter(&un->un_pm_mutex);
5771 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5772 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5773 		/*
5774 		 * Update the chain types.
5775 		 * This takes affect on the next new command received.
5776 		 */
5777 		if (un->un_f_non_devbsize_supported) {
5778 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5779 		} else {
5780 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5781 		}
5782 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5783 
5784 		SD_TRACE(SD_LOG_IO_PM, un,
5785 		    "sd_pm_idletimeout_handler: idling device\n");
5786 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5787 		un->un_pm_idle_timeid = NULL;
5788 	} else {
5789 		un->un_pm_idle_timeid =
5790 		    timeout(sd_pm_idletimeout_handler, un,
5791 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5792 	}
5793 	mutex_exit(&un->un_pm_mutex);
5794 	mutex_exit(SD_MUTEX(un));
5795 }
5796 
5797 
5798 /*
5799  *    Function: sd_pm_timeout_handler
5800  *
5801  * Description: Callback to tell framework we are idle.
5802  *
5803  *     Context: timeout(9f) thread context.
5804  */
5805 
5806 static void
5807 sd_pm_timeout_handler(void *arg)
5808 {
5809 	struct sd_lun *un = arg;
5810 
5811 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5812 	mutex_enter(&un->un_pm_mutex);
5813 	un->un_pm_timeid = NULL;
5814 	mutex_exit(&un->un_pm_mutex);
5815 }
5816 
5817 
5818 /*
5819  *    Function: sdpower
5820  *
5821  * Description: PM entry point.
5822  *
5823  * Return Code: DDI_SUCCESS
5824  *		DDI_FAILURE
5825  *
5826  *     Context: Kernel thread context
5827  */
5828 
5829 static int
5830 sdpower(dev_info_t *devi, int component, int level)
5831 {
5832 	struct sd_lun	*un;
5833 	int		instance;
5834 	int		rval = DDI_SUCCESS;
5835 	uint_t		i, log_page_size, maxcycles, ncycles;
5836 	uchar_t		*log_page_data;
5837 	int		log_sense_page;
5838 	int		medium_present;
5839 	time_t		intvlp;
5840 	dev_t		dev;
5841 	struct pm_trans_data	sd_pm_tran_data;
5842 	uchar_t		save_state;
5843 	int		sval;
5844 	uchar_t		state_before_pm;
5845 	int		got_semaphore_here;
5846 
5847 	instance = ddi_get_instance(devi);
5848 
5849 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5850 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5851 	    component != 0) {
5852 		return (DDI_FAILURE);
5853 	}
5854 
5855 	dev = sd_make_device(SD_DEVINFO(un));
5856 
5857 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5858 
5859 	/*
5860 	 * Must synchronize power down with close.
5861 	 * Attempt to decrement/acquire the open/close semaphore,
5862 	 * but do NOT wait on it. If it's not greater than zero,
5863 	 * ie. it can't be decremented without waiting, then
5864 	 * someone else, either open or close, already has it
5865 	 * and the try returns 0. Use that knowledge here to determine
5866 	 * if it's OK to change the device power level.
5867 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5868 	 * here.
5869 	 */
5870 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5871 
5872 	mutex_enter(SD_MUTEX(un));
5873 
5874 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5875 	    un->un_ncmds_in_driver);
5876 
5877 	/*
5878 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5879 	 * already being processed in the driver, or if the semaphore was
5880 	 * not gotten here it indicates an open or close is being processed.
5881 	 * At the same time somebody is requesting to go low power which
5882 	 * can't happen, therefore we need to return failure.
5883 	 */
5884 	if ((level == SD_SPINDLE_OFF) &&
5885 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5886 		mutex_exit(SD_MUTEX(un));
5887 
5888 		if (got_semaphore_here != 0) {
5889 			sema_v(&un->un_semoclose);
5890 		}
5891 		SD_TRACE(SD_LOG_IO_PM, un,
5892 		    "sdpower: exit, device has queued cmds.\n");
5893 		return (DDI_FAILURE);
5894 	}
5895 
5896 	/*
5897 	 * if it is OFFLINE that means the disk is completely dead
5898 	 * in our case we have to put the disk in on or off by sending commands
5899 	 * Of course that will fail anyway so return back here.
5900 	 *
5901 	 * Power changes to a device that's OFFLINE or SUSPENDED
5902 	 * are not allowed.
5903 	 */
5904 	if ((un->un_state == SD_STATE_OFFLINE) ||
5905 	    (un->un_state == SD_STATE_SUSPENDED)) {
5906 		mutex_exit(SD_MUTEX(un));
5907 
5908 		if (got_semaphore_here != 0) {
5909 			sema_v(&un->un_semoclose);
5910 		}
5911 		SD_TRACE(SD_LOG_IO_PM, un,
5912 		    "sdpower: exit, device is off-line.\n");
5913 		return (DDI_FAILURE);
5914 	}
5915 
5916 	/*
5917 	 * Change the device's state to indicate it's power level
5918 	 * is being changed. Do this to prevent a power off in the
5919 	 * middle of commands, which is especially bad on devices
5920 	 * that are really powered off instead of just spun down.
5921 	 */
5922 	state_before_pm = un->un_state;
5923 	un->un_state = SD_STATE_PM_CHANGING;
5924 
5925 	mutex_exit(SD_MUTEX(un));
5926 
5927 	/*
5928 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5929 	 * bypass the following checking, otherwise, check the log
5930 	 * sense information for this device
5931 	 */
5932 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5933 		/*
5934 		 * Get the log sense information to understand whether the
5935 		 * the powercycle counts have gone beyond the threshhold.
5936 		 */
5937 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5938 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5939 
5940 		mutex_enter(SD_MUTEX(un));
5941 		log_sense_page = un->un_start_stop_cycle_page;
5942 		mutex_exit(SD_MUTEX(un));
5943 
5944 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5945 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5946 #ifdef	SDDEBUG
5947 		if (sd_force_pm_supported) {
5948 			/* Force a successful result */
5949 			rval = 0;
5950 		}
5951 #endif
5952 		if (rval != 0) {
5953 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5954 			    "Log Sense Failed\n");
5955 			kmem_free(log_page_data, log_page_size);
5956 			/* Cannot support power management on those drives */
5957 
5958 			if (got_semaphore_here != 0) {
5959 				sema_v(&un->un_semoclose);
5960 			}
5961 			/*
5962 			 * On exit put the state back to it's original value
5963 			 * and broadcast to anyone waiting for the power
5964 			 * change completion.
5965 			 */
5966 			mutex_enter(SD_MUTEX(un));
5967 			un->un_state = state_before_pm;
5968 			cv_broadcast(&un->un_suspend_cv);
5969 			mutex_exit(SD_MUTEX(un));
5970 			SD_TRACE(SD_LOG_IO_PM, un,
5971 			    "sdpower: exit, Log Sense Failed.\n");
5972 			return (DDI_FAILURE);
5973 		}
5974 
5975 		/*
5976 		 * From the page data - Convert the essential information to
5977 		 * pm_trans_data
5978 		 */
5979 		maxcycles =
5980 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5981 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5982 
5983 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5984 
5985 		ncycles =
5986 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5987 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5988 
5989 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5990 
5991 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5992 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5993 			    log_page_data[8+i];
5994 		}
5995 
5996 		kmem_free(log_page_data, log_page_size);
5997 
5998 		/*
5999 		 * Call pm_trans_check routine to get the Ok from
6000 		 * the global policy
6001 		 */
6002 
6003 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6004 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6005 
6006 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6007 #ifdef	SDDEBUG
6008 		if (sd_force_pm_supported) {
6009 			/* Force a successful result */
6010 			rval = 1;
6011 		}
6012 #endif
6013 		switch (rval) {
6014 		case 0:
6015 			/*
6016 			 * Not Ok to Power cycle or error in parameters passed
6017 			 * Would have given the advised time to consider power
6018 			 * cycle. Based on the new intvlp parameter we are
6019 			 * supposed to pretend we are busy so that pm framework
6020 			 * will never call our power entry point. Because of
6021 			 * that install a timeout handler and wait for the
6022 			 * recommended time to elapse so that power management
6023 			 * can be effective again.
6024 			 *
6025 			 * To effect this behavior, call pm_busy_component to
6026 			 * indicate to the framework this device is busy.
6027 			 * By not adjusting un_pm_count the rest of PM in
6028 			 * the driver will function normally, and independant
6029 			 * of this but because the framework is told the device
6030 			 * is busy it won't attempt powering down until it gets
6031 			 * a matching idle. The timeout handler sends this.
6032 			 * Note: sd_pm_entry can't be called here to do this
6033 			 * because sdpower may have been called as a result
6034 			 * of a call to pm_raise_power from within sd_pm_entry.
6035 			 *
6036 			 * If a timeout handler is already active then
6037 			 * don't install another.
6038 			 */
6039 			mutex_enter(&un->un_pm_mutex);
6040 			if (un->un_pm_timeid == NULL) {
6041 				un->un_pm_timeid =
6042 				    timeout(sd_pm_timeout_handler,
6043 				    un, intvlp * drv_usectohz(1000000));
6044 				mutex_exit(&un->un_pm_mutex);
6045 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6046 			} else {
6047 				mutex_exit(&un->un_pm_mutex);
6048 			}
6049 			if (got_semaphore_here != 0) {
6050 				sema_v(&un->un_semoclose);
6051 			}
6052 			/*
6053 			 * On exit put the state back to it's original value
6054 			 * and broadcast to anyone waiting for the power
6055 			 * change completion.
6056 			 */
6057 			mutex_enter(SD_MUTEX(un));
6058 			un->un_state = state_before_pm;
6059 			cv_broadcast(&un->un_suspend_cv);
6060 			mutex_exit(SD_MUTEX(un));
6061 
6062 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6063 			    "trans check Failed, not ok to power cycle.\n");
6064 			return (DDI_FAILURE);
6065 
6066 		case -1:
6067 			if (got_semaphore_here != 0) {
6068 				sema_v(&un->un_semoclose);
6069 			}
6070 			/*
6071 			 * On exit put the state back to it's original value
6072 			 * and broadcast to anyone waiting for the power
6073 			 * change completion.
6074 			 */
6075 			mutex_enter(SD_MUTEX(un));
6076 			un->un_state = state_before_pm;
6077 			cv_broadcast(&un->un_suspend_cv);
6078 			mutex_exit(SD_MUTEX(un));
6079 			SD_TRACE(SD_LOG_IO_PM, un,
6080 			    "sdpower: exit, trans check command Failed.\n");
6081 			return (DDI_FAILURE);
6082 		}
6083 	}
6084 
6085 	if (level == SD_SPINDLE_OFF) {
6086 		/*
6087 		 * Save the last state... if the STOP FAILS we need it
6088 		 * for restoring
6089 		 */
6090 		mutex_enter(SD_MUTEX(un));
6091 		save_state = un->un_last_state;
6092 		/*
6093 		 * There must not be any cmds. getting processed
6094 		 * in the driver when we get here. Power to the
6095 		 * device is potentially going off.
6096 		 */
6097 		ASSERT(un->un_ncmds_in_driver == 0);
6098 		mutex_exit(SD_MUTEX(un));
6099 
6100 		/*
6101 		 * For now suspend the device completely before spindle is
6102 		 * turned off
6103 		 */
6104 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6105 			if (got_semaphore_here != 0) {
6106 				sema_v(&un->un_semoclose);
6107 			}
6108 			/*
6109 			 * On exit put the state back to it's original value
6110 			 * and broadcast to anyone waiting for the power
6111 			 * change completion.
6112 			 */
6113 			mutex_enter(SD_MUTEX(un));
6114 			un->un_state = state_before_pm;
6115 			cv_broadcast(&un->un_suspend_cv);
6116 			mutex_exit(SD_MUTEX(un));
6117 			SD_TRACE(SD_LOG_IO_PM, un,
6118 			    "sdpower: exit, PM suspend Failed.\n");
6119 			return (DDI_FAILURE);
6120 		}
6121 	}
6122 
6123 	/*
6124 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6125 	 * close, or strategy. Dump no long uses this routine, it uses it's
6126 	 * own code so it can be done in polled mode.
6127 	 */
6128 
6129 	medium_present = TRUE;
6130 
6131 	/*
6132 	 * When powering up, issue a TUR in case the device is at unit
6133 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6134 	 * a deadlock on un_pm_busy_cv will occur.
6135 	 */
6136 	if (level == SD_SPINDLE_ON) {
6137 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6138 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6139 	}
6140 
6141 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6142 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6143 
6144 	sval = sd_send_scsi_START_STOP_UNIT(un,
6145 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6146 	    SD_PATH_DIRECT);
6147 	/* Command failed, check for media present. */
6148 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6149 		medium_present = FALSE;
6150 	}
6151 
6152 	/*
6153 	 * The conditions of interest here are:
6154 	 *   if a spindle off with media present fails,
6155 	 *	then restore the state and return an error.
6156 	 *   else if a spindle on fails,
6157 	 *	then return an error (there's no state to restore).
6158 	 * In all other cases we setup for the new state
6159 	 * and return success.
6160 	 */
6161 	switch (level) {
6162 	case SD_SPINDLE_OFF:
6163 		if ((medium_present == TRUE) && (sval != 0)) {
6164 			/* The stop command from above failed */
6165 			rval = DDI_FAILURE;
6166 			/*
6167 			 * The stop command failed, and we have media
6168 			 * present. Put the level back by calling the
6169 			 * sd_pm_resume() and set the state back to
6170 			 * it's previous value.
6171 			 */
6172 			(void) sd_ddi_pm_resume(un);
6173 			mutex_enter(SD_MUTEX(un));
6174 			un->un_last_state = save_state;
6175 			mutex_exit(SD_MUTEX(un));
6176 			break;
6177 		}
6178 		/*
6179 		 * The stop command from above succeeded.
6180 		 */
6181 		if (un->un_f_monitor_media_state) {
6182 			/*
6183 			 * Terminate watch thread in case of removable media
6184 			 * devices going into low power state. This is as per
6185 			 * the requirements of pm framework, otherwise commands
6186 			 * will be generated for the device (through watch
6187 			 * thread), even when the device is in low power state.
6188 			 */
6189 			mutex_enter(SD_MUTEX(un));
6190 			un->un_f_watcht_stopped = FALSE;
6191 			if (un->un_swr_token != NULL) {
6192 				opaque_t temp_token = un->un_swr_token;
6193 				un->un_f_watcht_stopped = TRUE;
6194 				un->un_swr_token = NULL;
6195 				mutex_exit(SD_MUTEX(un));
6196 				(void) scsi_watch_request_terminate(temp_token,
6197 				    SCSI_WATCH_TERMINATE_WAIT);
6198 			} else {
6199 				mutex_exit(SD_MUTEX(un));
6200 			}
6201 		}
6202 		break;
6203 
6204 	default:	/* The level requested is spindle on... */
6205 		/*
6206 		 * Legacy behavior: return success on a failed spinup
6207 		 * if there is no media in the drive.
6208 		 * Do this by looking at medium_present here.
6209 		 */
6210 		if ((sval != 0) && medium_present) {
6211 			/* The start command from above failed */
6212 			rval = DDI_FAILURE;
6213 			break;
6214 		}
6215 		/*
6216 		 * The start command from above succeeded
6217 		 * Resume the devices now that we have
6218 		 * started the disks
6219 		 */
6220 		(void) sd_ddi_pm_resume(un);
6221 
6222 		/*
6223 		 * Resume the watch thread since it was suspended
6224 		 * when the device went into low power mode.
6225 		 */
6226 		if (un->un_f_monitor_media_state) {
6227 			mutex_enter(SD_MUTEX(un));
6228 			if (un->un_f_watcht_stopped == TRUE) {
6229 				opaque_t temp_token;
6230 
6231 				un->un_f_watcht_stopped = FALSE;
6232 				mutex_exit(SD_MUTEX(un));
6233 				temp_token = scsi_watch_request_submit(
6234 				    SD_SCSI_DEVP(un),
6235 				    sd_check_media_time,
6236 				    SENSE_LENGTH, sd_media_watch_cb,
6237 				    (caddr_t)dev);
6238 				mutex_enter(SD_MUTEX(un));
6239 				un->un_swr_token = temp_token;
6240 			}
6241 			mutex_exit(SD_MUTEX(un));
6242 		}
6243 	}
6244 	if (got_semaphore_here != 0) {
6245 		sema_v(&un->un_semoclose);
6246 	}
6247 	/*
6248 	 * On exit put the state back to it's original value
6249 	 * and broadcast to anyone waiting for the power
6250 	 * change completion.
6251 	 */
6252 	mutex_enter(SD_MUTEX(un));
6253 	un->un_state = state_before_pm;
6254 	cv_broadcast(&un->un_suspend_cv);
6255 	mutex_exit(SD_MUTEX(un));
6256 
6257 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6258 
6259 	return (rval);
6260 }
6261 
6262 
6263 
6264 /*
6265  *    Function: sdattach
6266  *
6267  * Description: Driver's attach(9e) entry point function.
6268  *
6269  *   Arguments: devi - opaque device info handle
6270  *		cmd  - attach  type
6271  *
6272  * Return Code: DDI_SUCCESS
6273  *		DDI_FAILURE
6274  *
6275  *     Context: Kernel thread context
6276  */
6277 
6278 static int
6279 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6280 {
6281 	switch (cmd) {
6282 	case DDI_ATTACH:
6283 		return (sd_unit_attach(devi));
6284 	case DDI_RESUME:
6285 		return (sd_ddi_resume(devi));
6286 	default:
6287 		break;
6288 	}
6289 	return (DDI_FAILURE);
6290 }
6291 
6292 
6293 /*
6294  *    Function: sddetach
6295  *
6296  * Description: Driver's detach(9E) entry point function.
6297  *
6298  *   Arguments: devi - opaque device info handle
6299  *		cmd  - detach  type
6300  *
6301  * Return Code: DDI_SUCCESS
6302  *		DDI_FAILURE
6303  *
6304  *     Context: Kernel thread context
6305  */
6306 
6307 static int
6308 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6309 {
6310 	switch (cmd) {
6311 	case DDI_DETACH:
6312 		return (sd_unit_detach(devi));
6313 	case DDI_SUSPEND:
6314 		return (sd_ddi_suspend(devi));
6315 	default:
6316 		break;
6317 	}
6318 	return (DDI_FAILURE);
6319 }
6320 
6321 
6322 /*
6323  *     Function: sd_sync_with_callback
6324  *
6325  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6326  *		 state while the callback routine is active.
6327  *
6328  *    Arguments: un: softstate structure for the instance
6329  *
6330  *	Context: Kernel thread context
6331  */
6332 
6333 static void
6334 sd_sync_with_callback(struct sd_lun *un)
6335 {
6336 	ASSERT(un != NULL);
6337 
6338 	mutex_enter(SD_MUTEX(un));
6339 
6340 	ASSERT(un->un_in_callback >= 0);
6341 
6342 	while (un->un_in_callback > 0) {
6343 		mutex_exit(SD_MUTEX(un));
6344 		delay(2);
6345 		mutex_enter(SD_MUTEX(un));
6346 	}
6347 
6348 	mutex_exit(SD_MUTEX(un));
6349 }
6350 
6351 /*
6352  *    Function: sd_unit_attach
6353  *
6354  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6355  *		the soft state structure for the device and performs
6356  *		all necessary structure and device initializations.
6357  *
6358  *   Arguments: devi: the system's dev_info_t for the device.
6359  *
6360  * Return Code: DDI_SUCCESS if attach is successful.
6361  *		DDI_FAILURE if any part of the attach fails.
6362  *
6363  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6364  *		Kernel thread context only.  Can sleep.
6365  */
6366 
6367 static int
6368 sd_unit_attach(dev_info_t *devi)
6369 {
6370 	struct	scsi_device	*devp;
6371 	struct	sd_lun		*un;
6372 	char			*variantp;
6373 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6374 	int	instance;
6375 	int	rval;
6376 	int	wc_enabled;
6377 	int	tgt;
6378 	uint64_t	capacity;
6379 	uint_t		lbasize = 0;
6380 	dev_info_t	*pdip = ddi_get_parent(devi);
6381 	int		offbyone = 0;
6382 	int		geom_label_valid = 0;
6383 
6384 	/*
6385 	 * Retrieve the target driver's private data area. This was set
6386 	 * up by the HBA.
6387 	 */
6388 	devp = ddi_get_driver_private(devi);
6389 
6390 	/*
6391 	 * Retrieve the target ID of the device.
6392 	 */
6393 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6394 	    SCSI_ADDR_PROP_TARGET, -1);
6395 
6396 	/*
6397 	 * Since we have no idea what state things were left in by the last
6398 	 * user of the device, set up some 'default' settings, ie. turn 'em
6399 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6400 	 * Do this before the scsi_probe, which sends an inquiry.
6401 	 * This is a fix for bug (4430280).
6402 	 * Of special importance is wide-xfer. The drive could have been left
6403 	 * in wide transfer mode by the last driver to communicate with it,
6404 	 * this includes us. If that's the case, and if the following is not
6405 	 * setup properly or we don't re-negotiate with the drive prior to
6406 	 * transferring data to/from the drive, it causes bus parity errors,
6407 	 * data overruns, and unexpected interrupts. This first occurred when
6408 	 * the fix for bug (4378686) was made.
6409 	 */
6410 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6411 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6412 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6413 
6414 	/*
6415 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6416 	 * on a target. Setting it per lun instance actually sets the
6417 	 * capability of this target, which affects those luns already
6418 	 * attached on the same target. So during attach, we can only disable
6419 	 * this capability only when no other lun has been attached on this
6420 	 * target. By doing this, we assume a target has the same tagged-qing
6421 	 * capability for every lun. The condition can be removed when HBA
6422 	 * is changed to support per lun based tagged-qing capability.
6423 	 */
6424 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6425 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6426 	}
6427 
6428 	/*
6429 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6430 	 * This call will allocate and fill in the scsi_inquiry structure
6431 	 * and point the sd_inq member of the scsi_device structure to it.
6432 	 * If the attach succeeds, then this memory will not be de-allocated
6433 	 * (via scsi_unprobe()) until the instance is detached.
6434 	 */
6435 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6436 		goto probe_failed;
6437 	}
6438 
6439 	/*
6440 	 * Check the device type as specified in the inquiry data and
6441 	 * claim it if it is of a type that we support.
6442 	 */
6443 	switch (devp->sd_inq->inq_dtype) {
6444 	case DTYPE_DIRECT:
6445 		break;
6446 	case DTYPE_RODIRECT:
6447 		break;
6448 	case DTYPE_OPTICAL:
6449 		break;
6450 	case DTYPE_NOTPRESENT:
6451 	default:
6452 		/* Unsupported device type; fail the attach. */
6453 		goto probe_failed;
6454 	}
6455 
6456 	/*
6457 	 * Allocate the soft state structure for this unit.
6458 	 *
6459 	 * We rely upon this memory being set to all zeroes by
6460 	 * ddi_soft_state_zalloc().  We assume that any member of the
6461 	 * soft state structure that is not explicitly initialized by
6462 	 * this routine will have a value of zero.
6463 	 */
6464 	instance = ddi_get_instance(devp->sd_dev);
6465 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6466 		goto probe_failed;
6467 	}
6468 
6469 	/*
6470 	 * Retrieve a pointer to the newly-allocated soft state.
6471 	 *
6472 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6473 	 * was successful, unless something has gone horribly wrong and the
6474 	 * ddi's soft state internals are corrupt (in which case it is
6475 	 * probably better to halt here than just fail the attach....)
6476 	 */
6477 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6478 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6479 		    instance);
6480 		/*NOTREACHED*/
6481 	}
6482 
6483 	/*
6484 	 * Link the back ptr of the driver soft state to the scsi_device
6485 	 * struct for this lun.
6486 	 * Save a pointer to the softstate in the driver-private area of
6487 	 * the scsi_device struct.
6488 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6489 	 * we first set un->un_sd below.
6490 	 */
6491 	un->un_sd = devp;
6492 	devp->sd_private = (opaque_t)un;
6493 
6494 	/*
6495 	 * The following must be after devp is stored in the soft state struct.
6496 	 */
6497 #ifdef SDDEBUG
6498 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6499 	    "%s_unit_attach: un:0x%p instance:%d\n",
6500 	    ddi_driver_name(devi), un, instance);
6501 #endif
6502 
6503 	/*
6504 	 * Set up the device type and node type (for the minor nodes).
6505 	 * By default we assume that the device can at least support the
6506 	 * Common Command Set. Call it a CD-ROM if it reports itself
6507 	 * as a RODIRECT device.
6508 	 */
6509 	switch (devp->sd_inq->inq_dtype) {
6510 	case DTYPE_RODIRECT:
6511 		un->un_node_type = DDI_NT_CD_CHAN;
6512 		un->un_ctype	 = CTYPE_CDROM;
6513 		break;
6514 	case DTYPE_OPTICAL:
6515 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6516 		un->un_ctype	 = CTYPE_ROD;
6517 		break;
6518 	default:
6519 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6520 		un->un_ctype	 = CTYPE_CCS;
6521 		break;
6522 	}
6523 
6524 	/*
6525 	 * Try to read the interconnect type from the HBA.
6526 	 *
6527 	 * Note: This driver is currently compiled as two binaries, a parallel
6528 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6529 	 * differences are determined at compile time. In the future a single
6530 	 * binary will be provided and the inteconnect type will be used to
6531 	 * differentiate between fibre and parallel scsi behaviors. At that time
6532 	 * it will be necessary for all fibre channel HBAs to support this
6533 	 * property.
6534 	 *
6535 	 * set un_f_is_fiber to TRUE ( default fiber )
6536 	 */
6537 	un->un_f_is_fibre = TRUE;
6538 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6539 	case INTERCONNECT_SSA:
6540 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6541 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6542 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6543 		break;
6544 	case INTERCONNECT_PARALLEL:
6545 		un->un_f_is_fibre = FALSE;
6546 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6547 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6548 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6549 		break;
6550 	case INTERCONNECT_SATA:
6551 		un->un_f_is_fibre = FALSE;
6552 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6553 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6554 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6555 		break;
6556 	case INTERCONNECT_FIBRE:
6557 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6558 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6559 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6560 		break;
6561 	case INTERCONNECT_FABRIC:
6562 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6563 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6564 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6565 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6566 		break;
6567 	default:
6568 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6569 		/*
6570 		 * The HBA does not support the "interconnect-type" property
6571 		 * (or did not provide a recognized type).
6572 		 *
6573 		 * Note: This will be obsoleted when a single fibre channel
6574 		 * and parallel scsi driver is delivered. In the meantime the
6575 		 * interconnect type will be set to the platform default.If that
6576 		 * type is not parallel SCSI, it means that we should be
6577 		 * assuming "ssd" semantics. However, here this also means that
6578 		 * the FC HBA is not supporting the "interconnect-type" property
6579 		 * like we expect it to, so log this occurrence.
6580 		 */
6581 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6582 		if (!SD_IS_PARALLEL_SCSI(un)) {
6583 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6584 			    "sd_unit_attach: un:0x%p Assuming "
6585 			    "INTERCONNECT_FIBRE\n", un);
6586 		} else {
6587 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6588 			    "sd_unit_attach: un:0x%p Assuming "
6589 			    "INTERCONNECT_PARALLEL\n", un);
6590 			un->un_f_is_fibre = FALSE;
6591 		}
6592 #else
6593 		/*
6594 		 * Note: This source will be implemented when a single fibre
6595 		 * channel and parallel scsi driver is delivered. The default
6596 		 * will be to assume that if a device does not support the
6597 		 * "interconnect-type" property it is a parallel SCSI HBA and
6598 		 * we will set the interconnect type for parallel scsi.
6599 		 */
6600 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6601 		un->un_f_is_fibre = FALSE;
6602 #endif
6603 		break;
6604 	}
6605 
6606 	if (un->un_f_is_fibre == TRUE) {
6607 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6608 		    SCSI_VERSION_3) {
6609 			switch (un->un_interconnect_type) {
6610 			case SD_INTERCONNECT_FIBRE:
6611 			case SD_INTERCONNECT_SSA:
6612 				un->un_node_type = DDI_NT_BLOCK_WWN;
6613 				break;
6614 			default:
6615 				break;
6616 			}
6617 		}
6618 	}
6619 
6620 	/*
6621 	 * Initialize the Request Sense command for the target
6622 	 */
6623 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6624 		goto alloc_rqs_failed;
6625 	}
6626 
6627 	/*
6628 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6629 	 * with separate binary for sd and ssd.
6630 	 *
6631 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6632 	 * The hardcoded values will go away when Sparc uses 1 binary
6633 	 * for sd and ssd.  This hardcoded values need to match
6634 	 * SD_RETRY_COUNT in sddef.h
6635 	 * The value used is base on interconnect type.
6636 	 * fibre = 3, parallel = 5
6637 	 */
6638 #if defined(__i386) || defined(__amd64)
6639 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6640 #else
6641 	un->un_retry_count = SD_RETRY_COUNT;
6642 #endif
6643 
6644 	/*
6645 	 * Set the per disk retry count to the default number of retries
6646 	 * for disks and CDROMs. This value can be overridden by the
6647 	 * disk property list or an entry in sd.conf.
6648 	 */
6649 	un->un_notready_retry_count =
6650 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6651 	    : DISK_NOT_READY_RETRY_COUNT(un);
6652 
6653 	/*
6654 	 * Set the busy retry count to the default value of un_retry_count.
6655 	 * This can be overridden by entries in sd.conf or the device
6656 	 * config table.
6657 	 */
6658 	un->un_busy_retry_count = un->un_retry_count;
6659 
6660 	/*
6661 	 * Init the reset threshold for retries.  This number determines
6662 	 * how many retries must be performed before a reset can be issued
6663 	 * (for certain error conditions). This can be overridden by entries
6664 	 * in sd.conf or the device config table.
6665 	 */
6666 	un->un_reset_retry_count = (un->un_retry_count / 2);
6667 
6668 	/*
6669 	 * Set the victim_retry_count to the default un_retry_count
6670 	 */
6671 	un->un_victim_retry_count = (2 * un->un_retry_count);
6672 
6673 	/*
6674 	 * Set the reservation release timeout to the default value of
6675 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6676 	 * device config table.
6677 	 */
6678 	un->un_reserve_release_time = 5;
6679 
6680 	/*
6681 	 * Set up the default maximum transfer size. Note that this may
6682 	 * get updated later in the attach, when setting up default wide
6683 	 * operations for disks.
6684 	 */
6685 #if defined(__i386) || defined(__amd64)
6686 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6687 #else
6688 	un->un_max_xfer_size = (uint_t)maxphys;
6689 #endif
6690 
6691 	/*
6692 	 * Get "allow bus device reset" property (defaults to "enabled" if
6693 	 * the property was not defined). This is to disable bus resets for
6694 	 * certain kinds of error recovery. Note: In the future when a run-time
6695 	 * fibre check is available the soft state flag should default to
6696 	 * enabled.
6697 	 */
6698 	if (un->un_f_is_fibre == TRUE) {
6699 		un->un_f_allow_bus_device_reset = TRUE;
6700 	} else {
6701 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6702 		    "allow-bus-device-reset", 1) != 0) {
6703 			un->un_f_allow_bus_device_reset = TRUE;
6704 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6705 			    "sd_unit_attach: un:0x%p Bus device reset "
6706 			    "enabled\n", un);
6707 		} else {
6708 			un->un_f_allow_bus_device_reset = FALSE;
6709 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6710 			    "sd_unit_attach: un:0x%p Bus device reset "
6711 			    "disabled\n", un);
6712 		}
6713 	}
6714 
6715 	/*
6716 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6717 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6718 	 *
6719 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6720 	 * property. The new "variant" property with a value of "atapi" has been
6721 	 * introduced so that future 'variants' of standard SCSI behavior (like
6722 	 * atapi) could be specified by the underlying HBA drivers by supplying
6723 	 * a new value for the "variant" property, instead of having to define a
6724 	 * new property.
6725 	 */
6726 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6727 		un->un_f_cfg_is_atapi = TRUE;
6728 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6729 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6730 	}
6731 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6732 	    &variantp) == DDI_PROP_SUCCESS) {
6733 		if (strcmp(variantp, "atapi") == 0) {
6734 			un->un_f_cfg_is_atapi = TRUE;
6735 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6736 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6737 		}
6738 		ddi_prop_free(variantp);
6739 	}
6740 
6741 	un->un_cmd_timeout	= SD_IO_TIME;
6742 
6743 	/* Info on current states, statuses, etc. (Updated frequently) */
6744 	un->un_state		= SD_STATE_NORMAL;
6745 	un->un_last_state	= SD_STATE_NORMAL;
6746 
6747 	/* Control & status info for command throttling */
6748 	un->un_throttle		= sd_max_throttle;
6749 	un->un_saved_throttle	= sd_max_throttle;
6750 	un->un_min_throttle	= sd_min_throttle;
6751 
6752 	if (un->un_f_is_fibre == TRUE) {
6753 		un->un_f_use_adaptive_throttle = TRUE;
6754 	} else {
6755 		un->un_f_use_adaptive_throttle = FALSE;
6756 	}
6757 
6758 	/* Removable media support. */
6759 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6760 	un->un_mediastate		= DKIO_NONE;
6761 	un->un_specified_mediastate	= DKIO_NONE;
6762 
6763 	/* CVs for suspend/resume (PM or DR) */
6764 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6765 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6766 
6767 	/* Power management support. */
6768 	un->un_power_level = SD_SPINDLE_UNINIT;
6769 
6770 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6771 	un->un_f_wcc_inprog = 0;
6772 
6773 	/*
6774 	 * The open/close semaphore is used to serialize threads executing
6775 	 * in the driver's open & close entry point routines for a given
6776 	 * instance.
6777 	 */
6778 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6779 
6780 	/*
6781 	 * The conf file entry and softstate variable is a forceful override,
6782 	 * meaning a non-zero value must be entered to change the default.
6783 	 */
6784 	un->un_f_disksort_disabled = FALSE;
6785 
6786 	/*
6787 	 * Retrieve the properties from the static driver table or the driver
6788 	 * configuration file (.conf) for this unit and update the soft state
6789 	 * for the device as needed for the indicated properties.
6790 	 * Note: the property configuration needs to occur here as some of the
6791 	 * following routines may have dependancies on soft state flags set
6792 	 * as part of the driver property configuration.
6793 	 */
6794 	sd_read_unit_properties(un);
6795 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6796 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6797 
6798 	/*
6799 	 * Only if a device has "hotpluggable" property, it is
6800 	 * treated as hotpluggable device. Otherwise, it is
6801 	 * regarded as non-hotpluggable one.
6802 	 */
6803 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6804 	    -1) != -1) {
6805 		un->un_f_is_hotpluggable = TRUE;
6806 	}
6807 
6808 	/*
6809 	 * set unit's attributes(flags) according to "hotpluggable" and
6810 	 * RMB bit in INQUIRY data.
6811 	 */
6812 	sd_set_unit_attributes(un, devi);
6813 
6814 	/*
6815 	 * By default, we mark the capacity, lbasize, and geometry
6816 	 * as invalid. Only if we successfully read a valid capacity
6817 	 * will we update the un_blockcount and un_tgt_blocksize with the
6818 	 * valid values (the geometry will be validated later).
6819 	 */
6820 	un->un_f_blockcount_is_valid	= FALSE;
6821 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6822 
6823 	/*
6824 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6825 	 * otherwise.
6826 	 */
6827 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6828 	un->un_blockcount = 0;
6829 
6830 	/*
6831 	 * Set up the per-instance info needed to determine the correct
6832 	 * CDBs and other info for issuing commands to the target.
6833 	 */
6834 	sd_init_cdb_limits(un);
6835 
6836 	/*
6837 	 * Set up the IO chains to use, based upon the target type.
6838 	 */
6839 	if (un->un_f_non_devbsize_supported) {
6840 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6841 	} else {
6842 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6843 	}
6844 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6845 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6846 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6847 
6848 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6849 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6850 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6851 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6852 
6853 
6854 	if (ISCD(un)) {
6855 		un->un_additional_codes = sd_additional_codes;
6856 	} else {
6857 		un->un_additional_codes = NULL;
6858 	}
6859 
6860 	/*
6861 	 * Create the kstats here so they can be available for attach-time
6862 	 * routines that send commands to the unit (either polled or via
6863 	 * sd_send_scsi_cmd).
6864 	 *
6865 	 * Note: This is a critical sequence that needs to be maintained:
6866 	 *	1) Instantiate the kstats here, before any routines using the
6867 	 *	   iopath (i.e. sd_send_scsi_cmd).
6868 	 *	2) Instantiate and initialize the partition stats
6869 	 *	   (sd_set_pstats).
6870 	 *	3) Initialize the error stats (sd_set_errstats), following
6871 	 *	   sd_validate_geometry(),sd_register_devid(),
6872 	 *	   and sd_cache_control().
6873 	 */
6874 
6875 	un->un_stats = kstat_create(sd_label, instance,
6876 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6877 	if (un->un_stats != NULL) {
6878 		un->un_stats->ks_lock = SD_MUTEX(un);
6879 		kstat_install(un->un_stats);
6880 	}
6881 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6882 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6883 
6884 	sd_create_errstats(un, instance);
6885 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6886 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6887 
6888 	/*
6889 	 * The following if/else code was relocated here from below as part
6890 	 * of the fix for bug (4430280). However with the default setup added
6891 	 * on entry to this routine, it's no longer absolutely necessary for
6892 	 * this to be before the call to sd_spin_up_unit.
6893 	 */
6894 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6895 		/*
6896 		 * If SCSI-2 tagged queueing is supported by the target
6897 		 * and by the host adapter then we will enable it.
6898 		 */
6899 		un->un_tagflags = 0;
6900 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6901 		    (devp->sd_inq->inq_cmdque) &&
6902 		    (un->un_f_arq_enabled == TRUE)) {
6903 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6904 			    1, 1) == 1) {
6905 				un->un_tagflags = FLAG_STAG;
6906 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6907 				    "sd_unit_attach: un:0x%p tag queueing "
6908 				    "enabled\n", un);
6909 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6910 			    "untagged-qing", 0) == 1) {
6911 				un->un_f_opt_queueing = TRUE;
6912 				un->un_saved_throttle = un->un_throttle =
6913 				    min(un->un_throttle, 3);
6914 			} else {
6915 				un->un_f_opt_queueing = FALSE;
6916 				un->un_saved_throttle = un->un_throttle = 1;
6917 			}
6918 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6919 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6920 			/* The Host Adapter supports internal queueing. */
6921 			un->un_f_opt_queueing = TRUE;
6922 			un->un_saved_throttle = un->un_throttle =
6923 			    min(un->un_throttle, 3);
6924 		} else {
6925 			un->un_f_opt_queueing = FALSE;
6926 			un->un_saved_throttle = un->un_throttle = 1;
6927 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6928 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6929 		}
6930 
6931 		/*
6932 		 * Enable large transfers for SATA/SAS drives
6933 		 */
6934 		if (SD_IS_SERIAL(un)) {
6935 			un->un_max_xfer_size =
6936 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6937 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6938 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6939 			    "sd_unit_attach: un:0x%p max transfer "
6940 			    "size=0x%x\n", un, un->un_max_xfer_size);
6941 
6942 		}
6943 
6944 		/* Setup or tear down default wide operations for disks */
6945 
6946 		/*
6947 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6948 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6949 		 * system and be set to different values. In the future this
6950 		 * code may need to be updated when the ssd module is
6951 		 * obsoleted and removed from the system. (4299588)
6952 		 */
6953 		if (SD_IS_PARALLEL_SCSI(un) &&
6954 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6955 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6956 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6957 			    1, 1) == 1) {
6958 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6959 				    "sd_unit_attach: un:0x%p Wide Transfer "
6960 				    "enabled\n", un);
6961 			}
6962 
6963 			/*
6964 			 * If tagged queuing has also been enabled, then
6965 			 * enable large xfers
6966 			 */
6967 			if (un->un_saved_throttle == sd_max_throttle) {
6968 				un->un_max_xfer_size =
6969 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6970 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6971 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6972 				    "sd_unit_attach: un:0x%p max transfer "
6973 				    "size=0x%x\n", un, un->un_max_xfer_size);
6974 			}
6975 		} else {
6976 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6977 			    0, 1) == 1) {
6978 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6979 				    "sd_unit_attach: un:0x%p "
6980 				    "Wide Transfer disabled\n", un);
6981 			}
6982 		}
6983 	} else {
6984 		un->un_tagflags = FLAG_STAG;
6985 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6986 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6987 	}
6988 
6989 	/*
6990 	 * If this target supports LUN reset, try to enable it.
6991 	 */
6992 	if (un->un_f_lun_reset_enabled) {
6993 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6994 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6995 			    "un:0x%p lun_reset capability set\n", un);
6996 		} else {
6997 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6998 			    "un:0x%p lun-reset capability not set\n", un);
6999 		}
7000 	}
7001 
7002 	/*
7003 	 * At this point in the attach, we have enough info in the
7004 	 * soft state to be able to issue commands to the target.
7005 	 *
7006 	 * All command paths used below MUST issue their commands as
7007 	 * SD_PATH_DIRECT. This is important as intermediate layers
7008 	 * are not all initialized yet (such as PM).
7009 	 */
7010 
7011 	/*
7012 	 * Send a TEST UNIT READY command to the device. This should clear
7013 	 * any outstanding UNIT ATTENTION that may be present.
7014 	 *
7015 	 * Note: Don't check for success, just track if there is a reservation,
7016 	 * this is a throw away command to clear any unit attentions.
7017 	 *
7018 	 * Note: This MUST be the first command issued to the target during
7019 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7020 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7021 	 * with attempts at spinning up a device with no media.
7022 	 */
7023 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7024 		reservation_flag = SD_TARGET_IS_RESERVED;
7025 	}
7026 
7027 	/*
7028 	 * If the device is NOT a removable media device, attempt to spin
7029 	 * it up (using the START_STOP_UNIT command) and read its capacity
7030 	 * (using the READ CAPACITY command).  Note, however, that either
7031 	 * of these could fail and in some cases we would continue with
7032 	 * the attach despite the failure (see below).
7033 	 */
7034 	if (un->un_f_descr_format_supported) {
7035 		switch (sd_spin_up_unit(un)) {
7036 		case 0:
7037 			/*
7038 			 * Spin-up was successful; now try to read the
7039 			 * capacity.  If successful then save the results
7040 			 * and mark the capacity & lbasize as valid.
7041 			 */
7042 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7043 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7044 
7045 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7046 			    &lbasize, SD_PATH_DIRECT)) {
7047 			case 0: {
7048 				if (capacity > DK_MAX_BLOCKS) {
7049 #ifdef _LP64
7050 					if (capacity + 1 >
7051 					    SD_GROUP1_MAX_ADDRESS) {
7052 						/*
7053 						 * Enable descriptor format
7054 						 * sense data so that we can
7055 						 * get 64 bit sense data
7056 						 * fields.
7057 						 */
7058 						sd_enable_descr_sense(un);
7059 					}
7060 #else
7061 					/* 32-bit kernels can't handle this */
7062 					scsi_log(SD_DEVINFO(un),
7063 					    sd_label, CE_WARN,
7064 					    "disk has %llu blocks, which "
7065 					    "is too large for a 32-bit "
7066 					    "kernel", capacity);
7067 
7068 #if defined(__i386) || defined(__amd64)
7069 					/*
7070 					 * 1TB disk was treated as (1T - 512)B
7071 					 * in the past, so that it might have
7072 					 * valid VTOC and solaris partitions,
7073 					 * we have to allow it to continue to
7074 					 * work.
7075 					 */
7076 					if (capacity -1 > DK_MAX_BLOCKS)
7077 #endif
7078 					goto spinup_failed;
7079 #endif
7080 				}
7081 
7082 				/*
7083 				 * Here it's not necessary to check the case:
7084 				 * the capacity of the device is bigger than
7085 				 * what the max hba cdb can support. Because
7086 				 * sd_send_scsi_READ_CAPACITY will retrieve
7087 				 * the capacity by sending USCSI command, which
7088 				 * is constrained by the max hba cdb. Actually,
7089 				 * sd_send_scsi_READ_CAPACITY will return
7090 				 * EINVAL when using bigger cdb than required
7091 				 * cdb length. Will handle this case in
7092 				 * "case EINVAL".
7093 				 */
7094 
7095 				/*
7096 				 * The following relies on
7097 				 * sd_send_scsi_READ_CAPACITY never
7098 				 * returning 0 for capacity and/or lbasize.
7099 				 */
7100 				sd_update_block_info(un, lbasize, capacity);
7101 
7102 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7103 				    "sd_unit_attach: un:0x%p capacity = %ld "
7104 				    "blocks; lbasize= %ld.\n", un,
7105 				    un->un_blockcount, un->un_tgt_blocksize);
7106 
7107 				break;
7108 			}
7109 			case EINVAL:
7110 				/*
7111 				 * In the case where the max-cdb-length property
7112 				 * is smaller than the required CDB length for
7113 				 * a SCSI device, a target driver can fail to
7114 				 * attach to that device.
7115 				 */
7116 				scsi_log(SD_DEVINFO(un),
7117 				    sd_label, CE_WARN,
7118 				    "disk capacity is too large "
7119 				    "for current cdb length");
7120 				goto spinup_failed;
7121 			case EACCES:
7122 				/*
7123 				 * Should never get here if the spin-up
7124 				 * succeeded, but code it in anyway.
7125 				 * From here, just continue with the attach...
7126 				 */
7127 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7128 				    "sd_unit_attach: un:0x%p "
7129 				    "sd_send_scsi_READ_CAPACITY "
7130 				    "returned reservation conflict\n", un);
7131 				reservation_flag = SD_TARGET_IS_RESERVED;
7132 				break;
7133 			default:
7134 				/*
7135 				 * Likewise, should never get here if the
7136 				 * spin-up succeeded. Just continue with
7137 				 * the attach...
7138 				 */
7139 				break;
7140 			}
7141 			break;
7142 		case EACCES:
7143 			/*
7144 			 * Device is reserved by another host.  In this case
7145 			 * we could not spin it up or read the capacity, but
7146 			 * we continue with the attach anyway.
7147 			 */
7148 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7149 			    "sd_unit_attach: un:0x%p spin-up reservation "
7150 			    "conflict.\n", un);
7151 			reservation_flag = SD_TARGET_IS_RESERVED;
7152 			break;
7153 		default:
7154 			/* Fail the attach if the spin-up failed. */
7155 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7156 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7157 			goto spinup_failed;
7158 		}
7159 	}
7160 
7161 	/*
7162 	 * Check to see if this is a MMC drive
7163 	 */
7164 	if (ISCD(un)) {
7165 		sd_set_mmc_caps(un);
7166 	}
7167 
7168 
7169 	/*
7170 	 * Add a zero-length attribute to tell the world we support
7171 	 * kernel ioctls (for layered drivers)
7172 	 */
7173 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7174 	    DDI_KERNEL_IOCTL, NULL, 0);
7175 
7176 	/*
7177 	 * Add a boolean property to tell the world we support
7178 	 * the B_FAILFAST flag (for layered drivers)
7179 	 */
7180 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7181 	    "ddi-failfast-supported", NULL, 0);
7182 
7183 	/*
7184 	 * Initialize power management
7185 	 */
7186 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7187 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7188 	sd_setup_pm(un, devi);
7189 	if (un->un_f_pm_is_enabled == FALSE) {
7190 		/*
7191 		 * For performance, point to a jump table that does
7192 		 * not include pm.
7193 		 * The direct and priority chains don't change with PM.
7194 		 *
7195 		 * Note: this is currently done based on individual device
7196 		 * capabilities. When an interface for determining system
7197 		 * power enabled state becomes available, or when additional
7198 		 * layers are added to the command chain, these values will
7199 		 * have to be re-evaluated for correctness.
7200 		 */
7201 		if (un->un_f_non_devbsize_supported) {
7202 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7203 		} else {
7204 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7205 		}
7206 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7207 	}
7208 
7209 	/*
7210 	 * This property is set to 0 by HA software to avoid retries
7211 	 * on a reserved disk. (The preferred property name is
7212 	 * "retry-on-reservation-conflict") (1189689)
7213 	 *
7214 	 * Note: The use of a global here can have unintended consequences. A
7215 	 * per instance variable is preferrable to match the capabilities of
7216 	 * different underlying hba's (4402600)
7217 	 */
7218 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7219 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7220 	    sd_retry_on_reservation_conflict);
7221 	if (sd_retry_on_reservation_conflict != 0) {
7222 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7223 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7224 		    sd_retry_on_reservation_conflict);
7225 	}
7226 
7227 	/* Set up options for QFULL handling. */
7228 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7229 	    "qfull-retries", -1)) != -1) {
7230 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7231 		    rval, 1);
7232 	}
7233 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7234 	    "qfull-retry-interval", -1)) != -1) {
7235 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7236 		    rval, 1);
7237 	}
7238 
7239 	/*
7240 	 * This just prints a message that announces the existence of the
7241 	 * device. The message is always printed in the system logfile, but
7242 	 * only appears on the console if the system is booted with the
7243 	 * -v (verbose) argument.
7244 	 */
7245 	ddi_report_dev(devi);
7246 
7247 	un->un_mediastate = DKIO_NONE;
7248 
7249 	cmlb_alloc_handle(&un->un_cmlbhandle);
7250 
7251 #if defined(__i386) || defined(__amd64)
7252 	/*
7253 	 * On x86, compensate for off-by-1 legacy error
7254 	 */
7255 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7256 	    (lbasize == un->un_sys_blocksize))
7257 		offbyone = CMLB_OFF_BY_ONE;
7258 #endif
7259 
7260 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7261 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7262 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7263 	    (void *)SD_PATH_DIRECT) != 0) {
7264 		goto cmlb_attach_failed;
7265 	}
7266 
7267 
7268 	/*
7269 	 * Read and validate the device's geometry (ie, disk label)
7270 	 * A new unformatted drive will not have a valid geometry, but
7271 	 * the driver needs to successfully attach to this device so
7272 	 * the drive can be formatted via ioctls.
7273 	 */
7274 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7275 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7276 
7277 	mutex_enter(SD_MUTEX(un));
7278 
7279 	/*
7280 	 * Read and initialize the devid for the unit.
7281 	 */
7282 	ASSERT(un->un_errstats != NULL);
7283 	if (un->un_f_devid_supported) {
7284 		sd_register_devid(un, devi, reservation_flag);
7285 	}
7286 	mutex_exit(SD_MUTEX(un));
7287 
7288 #if (defined(__fibre))
7289 	/*
7290 	 * Register callbacks for fibre only.  You can't do this soley
7291 	 * on the basis of the devid_type because this is hba specific.
7292 	 * We need to query our hba capabilities to find out whether to
7293 	 * register or not.
7294 	 */
7295 	if (un->un_f_is_fibre) {
7296 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7297 			sd_init_event_callbacks(un);
7298 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7299 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7300 			    un);
7301 		}
7302 	}
7303 #endif
7304 
7305 	if (un->un_f_opt_disable_cache == TRUE) {
7306 		/*
7307 		 * Disable both read cache and write cache.  This is
7308 		 * the historic behavior of the keywords in the config file.
7309 		 */
7310 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7311 		    0) {
7312 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7313 			    "sd_unit_attach: un:0x%p Could not disable "
7314 			    "caching", un);
7315 			goto devid_failed;
7316 		}
7317 	}
7318 
7319 	/*
7320 	 * Check the value of the WCE bit now and
7321 	 * set un_f_write_cache_enabled accordingly.
7322 	 */
7323 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7324 	mutex_enter(SD_MUTEX(un));
7325 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7326 	mutex_exit(SD_MUTEX(un));
7327 
7328 	/*
7329 	 * Check the value of the NV_SUP bit and set
7330 	 * un_f_suppress_cache_flush accordingly.
7331 	 */
7332 	sd_get_nv_sup(un);
7333 
7334 	/*
7335 	 * Find out what type of reservation this disk supports.
7336 	 */
7337 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7338 	case 0:
7339 		/*
7340 		 * SCSI-3 reservations are supported.
7341 		 */
7342 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7343 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7344 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7345 		break;
7346 	case ENOTSUP:
7347 		/*
7348 		 * The PERSISTENT RESERVE IN command would not be recognized by
7349 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7350 		 */
7351 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7352 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7353 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7354 		break;
7355 	default:
7356 		/*
7357 		 * default to SCSI-3 reservations
7358 		 */
7359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7360 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7361 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7362 		break;
7363 	}
7364 
7365 	/*
7366 	 * Set the pstat and error stat values here, so data obtained during the
7367 	 * previous attach-time routines is available.
7368 	 *
7369 	 * Note: This is a critical sequence that needs to be maintained:
7370 	 *	1) Instantiate the kstats before any routines using the iopath
7371 	 *	   (i.e. sd_send_scsi_cmd).
7372 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7373 	 *	   stats (sd_set_pstats)here, following
7374 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7375 	 *	   sd_cache_control().
7376 	 */
7377 
7378 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7379 		sd_set_pstats(un);
7380 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7381 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7382 	}
7383 
7384 	sd_set_errstats(un);
7385 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7386 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7387 
7388 
7389 	/*
7390 	 * After successfully attaching an instance, we record the information
7391 	 * of how many luns have been attached on the relative target and
7392 	 * controller for parallel SCSI. This information is used when sd tries
7393 	 * to set the tagged queuing capability in HBA.
7394 	 */
7395 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7396 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7397 	}
7398 
7399 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7400 	    "sd_unit_attach: un:0x%p exit success\n", un);
7401 
7402 	return (DDI_SUCCESS);
7403 
7404 	/*
7405 	 * An error occurred during the attach; clean up & return failure.
7406 	 */
7407 
7408 devid_failed:
7409 
7410 setup_pm_failed:
7411 	ddi_remove_minor_node(devi, NULL);
7412 
7413 cmlb_attach_failed:
7414 	/*
7415 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7416 	 */
7417 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7418 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7419 
7420 	/*
7421 	 * Refer to the comments of setting tagged-qing in the beginning of
7422 	 * sd_unit_attach. We can only disable tagged queuing when there is
7423 	 * no lun attached on the target.
7424 	 */
7425 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7426 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7427 	}
7428 
7429 	if (un->un_f_is_fibre == FALSE) {
7430 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7431 	}
7432 
7433 spinup_failed:
7434 
7435 	mutex_enter(SD_MUTEX(un));
7436 
7437 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7438 	if (un->un_direct_priority_timeid != NULL) {
7439 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7440 		un->un_direct_priority_timeid = NULL;
7441 		mutex_exit(SD_MUTEX(un));
7442 		(void) untimeout(temp_id);
7443 		mutex_enter(SD_MUTEX(un));
7444 	}
7445 
7446 	/* Cancel any pending start/stop timeouts */
7447 	if (un->un_startstop_timeid != NULL) {
7448 		timeout_id_t temp_id = un->un_startstop_timeid;
7449 		un->un_startstop_timeid = NULL;
7450 		mutex_exit(SD_MUTEX(un));
7451 		(void) untimeout(temp_id);
7452 		mutex_enter(SD_MUTEX(un));
7453 	}
7454 
7455 	/* Cancel any pending reset-throttle timeouts */
7456 	if (un->un_reset_throttle_timeid != NULL) {
7457 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7458 		un->un_reset_throttle_timeid = NULL;
7459 		mutex_exit(SD_MUTEX(un));
7460 		(void) untimeout(temp_id);
7461 		mutex_enter(SD_MUTEX(un));
7462 	}
7463 
7464 	/* Cancel any pending retry timeouts */
7465 	if (un->un_retry_timeid != NULL) {
7466 		timeout_id_t temp_id = un->un_retry_timeid;
7467 		un->un_retry_timeid = NULL;
7468 		mutex_exit(SD_MUTEX(un));
7469 		(void) untimeout(temp_id);
7470 		mutex_enter(SD_MUTEX(un));
7471 	}
7472 
7473 	/* Cancel any pending delayed cv broadcast timeouts */
7474 	if (un->un_dcvb_timeid != NULL) {
7475 		timeout_id_t temp_id = un->un_dcvb_timeid;
7476 		un->un_dcvb_timeid = NULL;
7477 		mutex_exit(SD_MUTEX(un));
7478 		(void) untimeout(temp_id);
7479 		mutex_enter(SD_MUTEX(un));
7480 	}
7481 
7482 	mutex_exit(SD_MUTEX(un));
7483 
7484 	/* There should not be any in-progress I/O so ASSERT this check */
7485 	ASSERT(un->un_ncmds_in_transport == 0);
7486 	ASSERT(un->un_ncmds_in_driver == 0);
7487 
7488 	/* Do not free the softstate if the callback routine is active */
7489 	sd_sync_with_callback(un);
7490 
7491 	/*
7492 	 * Partition stats apparently are not used with removables. These would
7493 	 * not have been created during attach, so no need to clean them up...
7494 	 */
7495 	if (un->un_stats != NULL) {
7496 		kstat_delete(un->un_stats);
7497 		un->un_stats = NULL;
7498 	}
7499 	if (un->un_errstats != NULL) {
7500 		kstat_delete(un->un_errstats);
7501 		un->un_errstats = NULL;
7502 	}
7503 
7504 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7505 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7506 
7507 	ddi_prop_remove_all(devi);
7508 	sema_destroy(&un->un_semoclose);
7509 	cv_destroy(&un->un_state_cv);
7510 
7511 getrbuf_failed:
7512 
7513 	sd_free_rqs(un);
7514 
7515 alloc_rqs_failed:
7516 
7517 	devp->sd_private = NULL;
7518 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7519 
7520 get_softstate_failed:
7521 	/*
7522 	 * Note: the man pages are unclear as to whether or not doing a
7523 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7524 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7525 	 * ddi_get_soft_state() fails.  The implication seems to be
7526 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7527 	 */
7528 	ddi_soft_state_free(sd_state, instance);
7529 
7530 probe_failed:
7531 	scsi_unprobe(devp);
7532 
7533 	return (DDI_FAILURE);
7534 }
7535 
7536 
7537 /*
7538  *    Function: sd_unit_detach
7539  *
7540  * Description: Performs DDI_DETACH processing for sddetach().
7541  *
7542  * Return Code: DDI_SUCCESS
7543  *		DDI_FAILURE
7544  *
7545  *     Context: Kernel thread context
7546  */
7547 
7548 static int
7549 sd_unit_detach(dev_info_t *devi)
7550 {
7551 	struct scsi_device	*devp;
7552 	struct sd_lun		*un;
7553 	int			i;
7554 	int			tgt;
7555 	dev_t			dev;
7556 	dev_info_t		*pdip = ddi_get_parent(devi);
7557 	int			instance = ddi_get_instance(devi);
7558 
7559 	mutex_enter(&sd_detach_mutex);
7560 
7561 	/*
7562 	 * Fail the detach for any of the following:
7563 	 *  - Unable to get the sd_lun struct for the instance
7564 	 *  - A layered driver has an outstanding open on the instance
7565 	 *  - Another thread is already detaching this instance
7566 	 *  - Another thread is currently performing an open
7567 	 */
7568 	devp = ddi_get_driver_private(devi);
7569 	if ((devp == NULL) ||
7570 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7571 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7572 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7573 		mutex_exit(&sd_detach_mutex);
7574 		return (DDI_FAILURE);
7575 	}
7576 
7577 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7578 
7579 	/*
7580 	 * Mark this instance as currently in a detach, to inhibit any
7581 	 * opens from a layered driver.
7582 	 */
7583 	un->un_detach_count++;
7584 	mutex_exit(&sd_detach_mutex);
7585 
7586 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7587 	    SCSI_ADDR_PROP_TARGET, -1);
7588 
7589 	dev = sd_make_device(SD_DEVINFO(un));
7590 
7591 #ifndef lint
7592 	_NOTE(COMPETING_THREADS_NOW);
7593 #endif
7594 
7595 	mutex_enter(SD_MUTEX(un));
7596 
7597 	/*
7598 	 * Fail the detach if there are any outstanding layered
7599 	 * opens on this device.
7600 	 */
7601 	for (i = 0; i < NDKMAP; i++) {
7602 		if (un->un_ocmap.lyropen[i] != 0) {
7603 			goto err_notclosed;
7604 		}
7605 	}
7606 
7607 	/*
7608 	 * Verify there are NO outstanding commands issued to this device.
7609 	 * ie, un_ncmds_in_transport == 0.
7610 	 * It's possible to have outstanding commands through the physio
7611 	 * code path, even though everything's closed.
7612 	 */
7613 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7614 	    (un->un_direct_priority_timeid != NULL) ||
7615 	    (un->un_state == SD_STATE_RWAIT)) {
7616 		mutex_exit(SD_MUTEX(un));
7617 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7618 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7619 		goto err_stillbusy;
7620 	}
7621 
7622 	/*
7623 	 * If we have the device reserved, release the reservation.
7624 	 */
7625 	if ((un->un_resvd_status & SD_RESERVE) &&
7626 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7627 		mutex_exit(SD_MUTEX(un));
7628 		/*
7629 		 * Note: sd_reserve_release sends a command to the device
7630 		 * via the sd_ioctlcmd() path, and can sleep.
7631 		 */
7632 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7633 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7634 			    "sd_dr_detach: Cannot release reservation \n");
7635 		}
7636 	} else {
7637 		mutex_exit(SD_MUTEX(un));
7638 	}
7639 
7640 	/*
7641 	 * Untimeout any reserve recover, throttle reset, restart unit
7642 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7643 	 * from getting nulled by their callback functions.
7644 	 */
7645 	mutex_enter(SD_MUTEX(un));
7646 	if (un->un_resvd_timeid != NULL) {
7647 		timeout_id_t temp_id = un->un_resvd_timeid;
7648 		un->un_resvd_timeid = NULL;
7649 		mutex_exit(SD_MUTEX(un));
7650 		(void) untimeout(temp_id);
7651 		mutex_enter(SD_MUTEX(un));
7652 	}
7653 
7654 	if (un->un_reset_throttle_timeid != NULL) {
7655 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7656 		un->un_reset_throttle_timeid = NULL;
7657 		mutex_exit(SD_MUTEX(un));
7658 		(void) untimeout(temp_id);
7659 		mutex_enter(SD_MUTEX(un));
7660 	}
7661 
7662 	if (un->un_startstop_timeid != NULL) {
7663 		timeout_id_t temp_id = un->un_startstop_timeid;
7664 		un->un_startstop_timeid = NULL;
7665 		mutex_exit(SD_MUTEX(un));
7666 		(void) untimeout(temp_id);
7667 		mutex_enter(SD_MUTEX(un));
7668 	}
7669 
7670 	if (un->un_dcvb_timeid != NULL) {
7671 		timeout_id_t temp_id = un->un_dcvb_timeid;
7672 		un->un_dcvb_timeid = NULL;
7673 		mutex_exit(SD_MUTEX(un));
7674 		(void) untimeout(temp_id);
7675 	} else {
7676 		mutex_exit(SD_MUTEX(un));
7677 	}
7678 
7679 	/* Remove any pending reservation reclaim requests for this device */
7680 	sd_rmv_resv_reclaim_req(dev);
7681 
7682 	mutex_enter(SD_MUTEX(un));
7683 
7684 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7685 	if (un->un_direct_priority_timeid != NULL) {
7686 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7687 		un->un_direct_priority_timeid = NULL;
7688 		mutex_exit(SD_MUTEX(un));
7689 		(void) untimeout(temp_id);
7690 		mutex_enter(SD_MUTEX(un));
7691 	}
7692 
7693 	/* Cancel any active multi-host disk watch thread requests */
7694 	if (un->un_mhd_token != NULL) {
7695 		mutex_exit(SD_MUTEX(un));
7696 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7697 		if (scsi_watch_request_terminate(un->un_mhd_token,
7698 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7699 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7700 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7701 			/*
7702 			 * Note: We are returning here after having removed
7703 			 * some driver timeouts above. This is consistent with
7704 			 * the legacy implementation but perhaps the watch
7705 			 * terminate call should be made with the wait flag set.
7706 			 */
7707 			goto err_stillbusy;
7708 		}
7709 		mutex_enter(SD_MUTEX(un));
7710 		un->un_mhd_token = NULL;
7711 	}
7712 
7713 	if (un->un_swr_token != NULL) {
7714 		mutex_exit(SD_MUTEX(un));
7715 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7716 		if (scsi_watch_request_terminate(un->un_swr_token,
7717 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7718 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7719 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7720 			/*
7721 			 * Note: We are returning here after having removed
7722 			 * some driver timeouts above. This is consistent with
7723 			 * the legacy implementation but perhaps the watch
7724 			 * terminate call should be made with the wait flag set.
7725 			 */
7726 			goto err_stillbusy;
7727 		}
7728 		mutex_enter(SD_MUTEX(un));
7729 		un->un_swr_token = NULL;
7730 	}
7731 
7732 	mutex_exit(SD_MUTEX(un));
7733 
7734 	/*
7735 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7736 	 * if we have not registered one.
7737 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7738 	 */
7739 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7740 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7741 
7742 	/*
7743 	 * protect the timeout pointers from getting nulled by
7744 	 * their callback functions during the cancellation process.
7745 	 * In such a scenario untimeout can be invoked with a null value.
7746 	 */
7747 	_NOTE(NO_COMPETING_THREADS_NOW);
7748 
7749 	mutex_enter(&un->un_pm_mutex);
7750 	if (un->un_pm_idle_timeid != NULL) {
7751 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7752 		un->un_pm_idle_timeid = NULL;
7753 		mutex_exit(&un->un_pm_mutex);
7754 
7755 		/*
7756 		 * Timeout is active; cancel it.
7757 		 * Note that it'll never be active on a device
7758 		 * that does not support PM therefore we don't
7759 		 * have to check before calling pm_idle_component.
7760 		 */
7761 		(void) untimeout(temp_id);
7762 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7763 		mutex_enter(&un->un_pm_mutex);
7764 	}
7765 
7766 	/*
7767 	 * Check whether there is already a timeout scheduled for power
7768 	 * management. If yes then don't lower the power here, that's.
7769 	 * the timeout handler's job.
7770 	 */
7771 	if (un->un_pm_timeid != NULL) {
7772 		timeout_id_t temp_id = un->un_pm_timeid;
7773 		un->un_pm_timeid = NULL;
7774 		mutex_exit(&un->un_pm_mutex);
7775 		/*
7776 		 * Timeout is active; cancel it.
7777 		 * Note that it'll never be active on a device
7778 		 * that does not support PM therefore we don't
7779 		 * have to check before calling pm_idle_component.
7780 		 */
7781 		(void) untimeout(temp_id);
7782 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7783 
7784 	} else {
7785 		mutex_exit(&un->un_pm_mutex);
7786 		if ((un->un_f_pm_is_enabled == TRUE) &&
7787 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7788 		    DDI_SUCCESS)) {
7789 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7790 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7791 			/*
7792 			 * Fix for bug: 4297749, item # 13
7793 			 * The above test now includes a check to see if PM is
7794 			 * supported by this device before call
7795 			 * pm_lower_power().
7796 			 * Note, the following is not dead code. The call to
7797 			 * pm_lower_power above will generate a call back into
7798 			 * our sdpower routine which might result in a timeout
7799 			 * handler getting activated. Therefore the following
7800 			 * code is valid and necessary.
7801 			 */
7802 			mutex_enter(&un->un_pm_mutex);
7803 			if (un->un_pm_timeid != NULL) {
7804 				timeout_id_t temp_id = un->un_pm_timeid;
7805 				un->un_pm_timeid = NULL;
7806 				mutex_exit(&un->un_pm_mutex);
7807 				(void) untimeout(temp_id);
7808 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7809 			} else {
7810 				mutex_exit(&un->un_pm_mutex);
7811 			}
7812 		}
7813 	}
7814 
7815 	/*
7816 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7817 	 * Relocated here from above to be after the call to
7818 	 * pm_lower_power, which was getting errors.
7819 	 */
7820 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7821 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7822 
7823 	/*
7824 	 * Currently, tagged queuing is supported per target based by HBA.
7825 	 * Setting this per lun instance actually sets the capability of this
7826 	 * target in HBA, which affects those luns already attached on the
7827 	 * same target. So during detach, we can only disable this capability
7828 	 * only when this is the only lun left on this target. By doing
7829 	 * this, we assume a target has the same tagged queuing capability
7830 	 * for every lun. The condition can be removed when HBA is changed to
7831 	 * support per lun based tagged queuing capability.
7832 	 */
7833 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7834 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7835 	}
7836 
7837 	if (un->un_f_is_fibre == FALSE) {
7838 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7839 	}
7840 
7841 	/*
7842 	 * Remove any event callbacks, fibre only
7843 	 */
7844 	if (un->un_f_is_fibre == TRUE) {
7845 		if ((un->un_insert_event != NULL) &&
7846 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7847 		    DDI_SUCCESS)) {
7848 			/*
7849 			 * Note: We are returning here after having done
7850 			 * substantial cleanup above. This is consistent
7851 			 * with the legacy implementation but this may not
7852 			 * be the right thing to do.
7853 			 */
7854 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7855 			    "sd_dr_detach: Cannot cancel insert event\n");
7856 			goto err_remove_event;
7857 		}
7858 		un->un_insert_event = NULL;
7859 
7860 		if ((un->un_remove_event != NULL) &&
7861 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7862 		    DDI_SUCCESS)) {
7863 			/*
7864 			 * Note: We are returning here after having done
7865 			 * substantial cleanup above. This is consistent
7866 			 * with the legacy implementation but this may not
7867 			 * be the right thing to do.
7868 			 */
7869 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7870 			    "sd_dr_detach: Cannot cancel remove event\n");
7871 			goto err_remove_event;
7872 		}
7873 		un->un_remove_event = NULL;
7874 	}
7875 
7876 	/* Do not free the softstate if the callback routine is active */
7877 	sd_sync_with_callback(un);
7878 
7879 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7880 	cmlb_free_handle(&un->un_cmlbhandle);
7881 
7882 	/*
7883 	 * Hold the detach mutex here, to make sure that no other threads ever
7884 	 * can access a (partially) freed soft state structure.
7885 	 */
7886 	mutex_enter(&sd_detach_mutex);
7887 
7888 	/*
7889 	 * Clean up the soft state struct.
7890 	 * Cleanup is done in reverse order of allocs/inits.
7891 	 * At this point there should be no competing threads anymore.
7892 	 */
7893 
7894 	/* Unregister and free device id. */
7895 	ddi_devid_unregister(devi);
7896 	if (un->un_devid) {
7897 		ddi_devid_free(un->un_devid);
7898 		un->un_devid = NULL;
7899 	}
7900 
7901 	/*
7902 	 * Destroy wmap cache if it exists.
7903 	 */
7904 	if (un->un_wm_cache != NULL) {
7905 		kmem_cache_destroy(un->un_wm_cache);
7906 		un->un_wm_cache = NULL;
7907 	}
7908 
7909 	/*
7910 	 * kstat cleanup is done in detach for all device types (4363169).
7911 	 * We do not want to fail detach if the device kstats are not deleted
7912 	 * since there is a confusion about the devo_refcnt for the device.
7913 	 * We just delete the kstats and let detach complete successfully.
7914 	 */
7915 	if (un->un_stats != NULL) {
7916 		kstat_delete(un->un_stats);
7917 		un->un_stats = NULL;
7918 	}
7919 	if (un->un_errstats != NULL) {
7920 		kstat_delete(un->un_errstats);
7921 		un->un_errstats = NULL;
7922 	}
7923 
7924 	/* Remove partition stats */
7925 	if (un->un_f_pkstats_enabled) {
7926 		for (i = 0; i < NSDMAP; i++) {
7927 			if (un->un_pstats[i] != NULL) {
7928 				kstat_delete(un->un_pstats[i]);
7929 				un->un_pstats[i] = NULL;
7930 			}
7931 		}
7932 	}
7933 
7934 	/* Remove xbuf registration */
7935 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7936 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7937 
7938 	/* Remove driver properties */
7939 	ddi_prop_remove_all(devi);
7940 
7941 	mutex_destroy(&un->un_pm_mutex);
7942 	cv_destroy(&un->un_pm_busy_cv);
7943 
7944 	cv_destroy(&un->un_wcc_cv);
7945 
7946 	/* Open/close semaphore */
7947 	sema_destroy(&un->un_semoclose);
7948 
7949 	/* Removable media condvar. */
7950 	cv_destroy(&un->un_state_cv);
7951 
7952 	/* Suspend/resume condvar. */
7953 	cv_destroy(&un->un_suspend_cv);
7954 	cv_destroy(&un->un_disk_busy_cv);
7955 
7956 	sd_free_rqs(un);
7957 
7958 	/* Free up soft state */
7959 	devp->sd_private = NULL;
7960 
7961 	bzero(un, sizeof (struct sd_lun));
7962 	ddi_soft_state_free(sd_state, instance);
7963 
7964 	mutex_exit(&sd_detach_mutex);
7965 
7966 	/* This frees up the INQUIRY data associated with the device. */
7967 	scsi_unprobe(devp);
7968 
7969 	/*
7970 	 * After successfully detaching an instance, we update the information
7971 	 * of how many luns have been attached in the relative target and
7972 	 * controller for parallel SCSI. This information is used when sd tries
7973 	 * to set the tagged queuing capability in HBA.
7974 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7975 	 * check if the device is parallel SCSI. However, we don't need to
7976 	 * check here because we've already checked during attach. No device
7977 	 * that is not parallel SCSI is in the chain.
7978 	 */
7979 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7980 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7981 	}
7982 
7983 	return (DDI_SUCCESS);
7984 
7985 err_notclosed:
7986 	mutex_exit(SD_MUTEX(un));
7987 
7988 err_stillbusy:
7989 	_NOTE(NO_COMPETING_THREADS_NOW);
7990 
7991 err_remove_event:
7992 	mutex_enter(&sd_detach_mutex);
7993 	un->un_detach_count--;
7994 	mutex_exit(&sd_detach_mutex);
7995 
7996 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7997 	return (DDI_FAILURE);
7998 }
7999 
8000 
8001 /*
8002  *    Function: sd_create_errstats
8003  *
8004  * Description: This routine instantiates the device error stats.
8005  *
8006  *		Note: During attach the stats are instantiated first so they are
8007  *		available for attach-time routines that utilize the driver
8008  *		iopath to send commands to the device. The stats are initialized
8009  *		separately so data obtained during some attach-time routines is
8010  *		available. (4362483)
8011  *
8012  *   Arguments: un - driver soft state (unit) structure
8013  *		instance - driver instance
8014  *
8015  *     Context: Kernel thread context
8016  */
8017 
8018 static void
8019 sd_create_errstats(struct sd_lun *un, int instance)
8020 {
8021 	struct	sd_errstats	*stp;
8022 	char	kstatmodule_err[KSTAT_STRLEN];
8023 	char	kstatname[KSTAT_STRLEN];
8024 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8025 
8026 	ASSERT(un != NULL);
8027 
8028 	if (un->un_errstats != NULL) {
8029 		return;
8030 	}
8031 
8032 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8033 	    "%serr", sd_label);
8034 	(void) snprintf(kstatname, sizeof (kstatname),
8035 	    "%s%d,err", sd_label, instance);
8036 
8037 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8038 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8039 
8040 	if (un->un_errstats == NULL) {
8041 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8042 		    "sd_create_errstats: Failed kstat_create\n");
8043 		return;
8044 	}
8045 
8046 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8047 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8048 	    KSTAT_DATA_UINT32);
8049 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8050 	    KSTAT_DATA_UINT32);
8051 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8052 	    KSTAT_DATA_UINT32);
8053 	kstat_named_init(&stp->sd_vid,		"Vendor",
8054 	    KSTAT_DATA_CHAR);
8055 	kstat_named_init(&stp->sd_pid,		"Product",
8056 	    KSTAT_DATA_CHAR);
8057 	kstat_named_init(&stp->sd_revision,	"Revision",
8058 	    KSTAT_DATA_CHAR);
8059 	kstat_named_init(&stp->sd_serial,	"Serial No",
8060 	    KSTAT_DATA_CHAR);
8061 	kstat_named_init(&stp->sd_capacity,	"Size",
8062 	    KSTAT_DATA_ULONGLONG);
8063 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8064 	    KSTAT_DATA_UINT32);
8065 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8066 	    KSTAT_DATA_UINT32);
8067 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8068 	    KSTAT_DATA_UINT32);
8069 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8070 	    KSTAT_DATA_UINT32);
8071 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8072 	    KSTAT_DATA_UINT32);
8073 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8074 	    KSTAT_DATA_UINT32);
8075 
8076 	un->un_errstats->ks_private = un;
8077 	un->un_errstats->ks_update  = nulldev;
8078 
8079 	kstat_install(un->un_errstats);
8080 }
8081 
8082 
8083 /*
8084  *    Function: sd_set_errstats
8085  *
8086  * Description: This routine sets the value of the vendor id, product id,
8087  *		revision, serial number, and capacity device error stats.
8088  *
8089  *		Note: During attach the stats are instantiated first so they are
8090  *		available for attach-time routines that utilize the driver
8091  *		iopath to send commands to the device. The stats are initialized
8092  *		separately so data obtained during some attach-time routines is
8093  *		available. (4362483)
8094  *
8095  *   Arguments: un - driver soft state (unit) structure
8096  *
8097  *     Context: Kernel thread context
8098  */
8099 
8100 static void
8101 sd_set_errstats(struct sd_lun *un)
8102 {
8103 	struct	sd_errstats	*stp;
8104 
8105 	ASSERT(un != NULL);
8106 	ASSERT(un->un_errstats != NULL);
8107 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8108 	ASSERT(stp != NULL);
8109 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8110 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8111 	(void) strncpy(stp->sd_revision.value.c,
8112 	    un->un_sd->sd_inq->inq_revision, 4);
8113 
8114 	/*
8115 	 * All the errstats are persistent across detach/attach,
8116 	 * so reset all the errstats here in case of the hot
8117 	 * replacement of disk drives, except for not changed
8118 	 * Sun qualified drives.
8119 	 */
8120 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8121 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8122 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8123 		stp->sd_softerrs.value.ui32 = 0;
8124 		stp->sd_harderrs.value.ui32 = 0;
8125 		stp->sd_transerrs.value.ui32 = 0;
8126 		stp->sd_rq_media_err.value.ui32 = 0;
8127 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8128 		stp->sd_rq_nodev_err.value.ui32 = 0;
8129 		stp->sd_rq_recov_err.value.ui32 = 0;
8130 		stp->sd_rq_illrq_err.value.ui32 = 0;
8131 		stp->sd_rq_pfa_err.value.ui32 = 0;
8132 	}
8133 
8134 	/*
8135 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8136 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8137 	 * (4376302))
8138 	 */
8139 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8140 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8141 		    sizeof (SD_INQUIRY(un)->inq_serial));
8142 	}
8143 
8144 	if (un->un_f_blockcount_is_valid != TRUE) {
8145 		/*
8146 		 * Set capacity error stat to 0 for no media. This ensures
8147 		 * a valid capacity is displayed in response to 'iostat -E'
8148 		 * when no media is present in the device.
8149 		 */
8150 		stp->sd_capacity.value.ui64 = 0;
8151 	} else {
8152 		/*
8153 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8154 		 * capacity.
8155 		 *
8156 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8157 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8158 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8159 		 */
8160 		stp->sd_capacity.value.ui64 = (uint64_t)
8161 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8162 	}
8163 }
8164 
8165 
8166 /*
8167  *    Function: sd_set_pstats
8168  *
8169  * Description: This routine instantiates and initializes the partition
8170  *              stats for each partition with more than zero blocks.
8171  *		(4363169)
8172  *
8173  *   Arguments: un - driver soft state (unit) structure
8174  *
8175  *     Context: Kernel thread context
8176  */
8177 
8178 static void
8179 sd_set_pstats(struct sd_lun *un)
8180 {
8181 	char	kstatname[KSTAT_STRLEN];
8182 	int	instance;
8183 	int	i;
8184 	diskaddr_t	nblks = 0;
8185 	char	*partname = NULL;
8186 
8187 	ASSERT(un != NULL);
8188 
8189 	instance = ddi_get_instance(SD_DEVINFO(un));
8190 
8191 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8192 	for (i = 0; i < NSDMAP; i++) {
8193 
8194 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8195 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8196 			continue;
8197 		mutex_enter(SD_MUTEX(un));
8198 
8199 		if ((un->un_pstats[i] == NULL) &&
8200 		    (nblks != 0)) {
8201 
8202 			(void) snprintf(kstatname, sizeof (kstatname),
8203 			    "%s%d,%s", sd_label, instance,
8204 			    partname);
8205 
8206 			un->un_pstats[i] = kstat_create(sd_label,
8207 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8208 			    1, KSTAT_FLAG_PERSISTENT);
8209 			if (un->un_pstats[i] != NULL) {
8210 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8211 				kstat_install(un->un_pstats[i]);
8212 			}
8213 		}
8214 		mutex_exit(SD_MUTEX(un));
8215 	}
8216 }
8217 
8218 
8219 #if (defined(__fibre))
8220 /*
8221  *    Function: sd_init_event_callbacks
8222  *
8223  * Description: This routine initializes the insertion and removal event
8224  *		callbacks. (fibre only)
8225  *
8226  *   Arguments: un - driver soft state (unit) structure
8227  *
8228  *     Context: Kernel thread context
8229  */
8230 
8231 static void
8232 sd_init_event_callbacks(struct sd_lun *un)
8233 {
8234 	ASSERT(un != NULL);
8235 
8236 	if ((un->un_insert_event == NULL) &&
8237 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8238 	    &un->un_insert_event) == DDI_SUCCESS)) {
8239 		/*
8240 		 * Add the callback for an insertion event
8241 		 */
8242 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8243 		    un->un_insert_event, sd_event_callback, (void *)un,
8244 		    &(un->un_insert_cb_id));
8245 	}
8246 
8247 	if ((un->un_remove_event == NULL) &&
8248 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8249 	    &un->un_remove_event) == DDI_SUCCESS)) {
8250 		/*
8251 		 * Add the callback for a removal event
8252 		 */
8253 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8254 		    un->un_remove_event, sd_event_callback, (void *)un,
8255 		    &(un->un_remove_cb_id));
8256 	}
8257 }
8258 
8259 
8260 /*
8261  *    Function: sd_event_callback
8262  *
8263  * Description: This routine handles insert/remove events (photon). The
8264  *		state is changed to OFFLINE which can be used to supress
8265  *		error msgs. (fibre only)
8266  *
8267  *   Arguments: un - driver soft state (unit) structure
8268  *
8269  *     Context: Callout thread context
8270  */
8271 /* ARGSUSED */
8272 static void
8273 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8274     void *bus_impldata)
8275 {
8276 	struct sd_lun *un = (struct sd_lun *)arg;
8277 
8278 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8279 	if (event == un->un_insert_event) {
8280 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8281 		mutex_enter(SD_MUTEX(un));
8282 		if (un->un_state == SD_STATE_OFFLINE) {
8283 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8284 				un->un_state = un->un_last_state;
8285 			} else {
8286 				/*
8287 				 * We have gone through SUSPEND/RESUME while
8288 				 * we were offline. Restore the last state
8289 				 */
8290 				un->un_state = un->un_save_state;
8291 			}
8292 		}
8293 		mutex_exit(SD_MUTEX(un));
8294 
8295 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8296 	} else if (event == un->un_remove_event) {
8297 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8298 		mutex_enter(SD_MUTEX(un));
8299 		/*
8300 		 * We need to handle an event callback that occurs during
8301 		 * the suspend operation, since we don't prevent it.
8302 		 */
8303 		if (un->un_state != SD_STATE_OFFLINE) {
8304 			if (un->un_state != SD_STATE_SUSPENDED) {
8305 				New_state(un, SD_STATE_OFFLINE);
8306 			} else {
8307 				un->un_last_state = SD_STATE_OFFLINE;
8308 			}
8309 		}
8310 		mutex_exit(SD_MUTEX(un));
8311 	} else {
8312 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8313 		    "!Unknown event\n");
8314 	}
8315 
8316 }
8317 #endif
8318 
8319 /*
8320  *    Function: sd_cache_control()
8321  *
8322  * Description: This routine is the driver entry point for setting
8323  *		read and write caching by modifying the WCE (write cache
8324  *		enable) and RCD (read cache disable) bits of mode
8325  *		page 8 (MODEPAGE_CACHING).
8326  *
8327  *   Arguments: un - driver soft state (unit) structure
8328  *		rcd_flag - flag for controlling the read cache
8329  *		wce_flag - flag for controlling the write cache
8330  *
8331  * Return Code: EIO
8332  *		code returned by sd_send_scsi_MODE_SENSE and
8333  *		sd_send_scsi_MODE_SELECT
8334  *
8335  *     Context: Kernel Thread
8336  */
8337 
8338 static int
8339 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8340 {
8341 	struct mode_caching	*mode_caching_page;
8342 	uchar_t			*header;
8343 	size_t			buflen;
8344 	int			hdrlen;
8345 	int			bd_len;
8346 	int			rval = 0;
8347 	struct mode_header_grp2	*mhp;
8348 
8349 	ASSERT(un != NULL);
8350 
8351 	/*
8352 	 * Do a test unit ready, otherwise a mode sense may not work if this
8353 	 * is the first command sent to the device after boot.
8354 	 */
8355 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8356 
8357 	if (un->un_f_cfg_is_atapi == TRUE) {
8358 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8359 	} else {
8360 		hdrlen = MODE_HEADER_LENGTH;
8361 	}
8362 
8363 	/*
8364 	 * Allocate memory for the retrieved mode page and its headers.  Set
8365 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8366 	 * we get all of the mode sense data otherwise, the mode select
8367 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8368 	 */
8369 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8370 	    sizeof (struct mode_cache_scsi3);
8371 
8372 	header = kmem_zalloc(buflen, KM_SLEEP);
8373 
8374 	/* Get the information from the device. */
8375 	if (un->un_f_cfg_is_atapi == TRUE) {
8376 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8377 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8378 	} else {
8379 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8380 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8381 	}
8382 	if (rval != 0) {
8383 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8384 		    "sd_cache_control: Mode Sense Failed\n");
8385 		kmem_free(header, buflen);
8386 		return (rval);
8387 	}
8388 
8389 	/*
8390 	 * Determine size of Block Descriptors in order to locate
8391 	 * the mode page data. ATAPI devices return 0, SCSI devices
8392 	 * should return MODE_BLK_DESC_LENGTH.
8393 	 */
8394 	if (un->un_f_cfg_is_atapi == TRUE) {
8395 		mhp	= (struct mode_header_grp2 *)header;
8396 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8397 	} else {
8398 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8399 	}
8400 
8401 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8402 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8403 		    "sd_cache_control: Mode Sense returned invalid "
8404 		    "block descriptor length\n");
8405 		kmem_free(header, buflen);
8406 		return (EIO);
8407 	}
8408 
8409 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8410 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8411 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8412 		    " caching page code mismatch %d\n",
8413 		    mode_caching_page->mode_page.code);
8414 		kmem_free(header, buflen);
8415 		return (EIO);
8416 	}
8417 
8418 	/* Check the relevant bits on successful mode sense. */
8419 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8420 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8421 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8422 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8423 
8424 		size_t sbuflen;
8425 		uchar_t save_pg;
8426 
8427 		/*
8428 		 * Construct select buffer length based on the
8429 		 * length of the sense data returned.
8430 		 */
8431 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8432 		    sizeof (struct mode_page) +
8433 		    (int)mode_caching_page->mode_page.length;
8434 
8435 		/*
8436 		 * Set the caching bits as requested.
8437 		 */
8438 		if (rcd_flag == SD_CACHE_ENABLE)
8439 			mode_caching_page->rcd = 0;
8440 		else if (rcd_flag == SD_CACHE_DISABLE)
8441 			mode_caching_page->rcd = 1;
8442 
8443 		if (wce_flag == SD_CACHE_ENABLE)
8444 			mode_caching_page->wce = 1;
8445 		else if (wce_flag == SD_CACHE_DISABLE)
8446 			mode_caching_page->wce = 0;
8447 
8448 		/*
8449 		 * Save the page if the mode sense says the
8450 		 * drive supports it.
8451 		 */
8452 		save_pg = mode_caching_page->mode_page.ps ?
8453 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8454 
8455 		/* Clear reserved bits before mode select. */
8456 		mode_caching_page->mode_page.ps = 0;
8457 
8458 		/*
8459 		 * Clear out mode header for mode select.
8460 		 * The rest of the retrieved page will be reused.
8461 		 */
8462 		bzero(header, hdrlen);
8463 
8464 		if (un->un_f_cfg_is_atapi == TRUE) {
8465 			mhp = (struct mode_header_grp2 *)header;
8466 			mhp->bdesc_length_hi = bd_len >> 8;
8467 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8468 		} else {
8469 			((struct mode_header *)header)->bdesc_length = bd_len;
8470 		}
8471 
8472 		/* Issue mode select to change the cache settings */
8473 		if (un->un_f_cfg_is_atapi == TRUE) {
8474 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8475 			    sbuflen, save_pg, SD_PATH_DIRECT);
8476 		} else {
8477 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8478 			    sbuflen, save_pg, SD_PATH_DIRECT);
8479 		}
8480 	}
8481 
8482 	kmem_free(header, buflen);
8483 	return (rval);
8484 }
8485 
8486 
8487 /*
8488  *    Function: sd_get_write_cache_enabled()
8489  *
8490  * Description: This routine is the driver entry point for determining if
8491  *		write caching is enabled.  It examines the WCE (write cache
8492  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8493  *
8494  *   Arguments: un - driver soft state (unit) structure
8495  *		is_enabled - pointer to int where write cache enabled state
8496  *		is returned (non-zero -> write cache enabled)
8497  *
8498  *
8499  * Return Code: EIO
8500  *		code returned by sd_send_scsi_MODE_SENSE
8501  *
8502  *     Context: Kernel Thread
8503  *
8504  * NOTE: If ioctl is added to disable write cache, this sequence should
8505  * be followed so that no locking is required for accesses to
8506  * un->un_f_write_cache_enabled:
8507  * 	do mode select to clear wce
8508  * 	do synchronize cache to flush cache
8509  * 	set un->un_f_write_cache_enabled = FALSE
8510  *
8511  * Conversely, an ioctl to enable the write cache should be done
8512  * in this order:
8513  * 	set un->un_f_write_cache_enabled = TRUE
8514  * 	do mode select to set wce
8515  */
8516 
8517 static int
8518 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8519 {
8520 	struct mode_caching	*mode_caching_page;
8521 	uchar_t			*header;
8522 	size_t			buflen;
8523 	int			hdrlen;
8524 	int			bd_len;
8525 	int			rval = 0;
8526 
8527 	ASSERT(un != NULL);
8528 	ASSERT(is_enabled != NULL);
8529 
8530 	/* in case of error, flag as enabled */
8531 	*is_enabled = TRUE;
8532 
8533 	/*
8534 	 * Do a test unit ready, otherwise a mode sense may not work if this
8535 	 * is the first command sent to the device after boot.
8536 	 */
8537 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8538 
8539 	if (un->un_f_cfg_is_atapi == TRUE) {
8540 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8541 	} else {
8542 		hdrlen = MODE_HEADER_LENGTH;
8543 	}
8544 
8545 	/*
8546 	 * Allocate memory for the retrieved mode page and its headers.  Set
8547 	 * a pointer to the page itself.
8548 	 */
8549 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8550 	header = kmem_zalloc(buflen, KM_SLEEP);
8551 
8552 	/* Get the information from the device. */
8553 	if (un->un_f_cfg_is_atapi == TRUE) {
8554 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8555 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8556 	} else {
8557 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8558 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8559 	}
8560 	if (rval != 0) {
8561 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8562 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8563 		kmem_free(header, buflen);
8564 		return (rval);
8565 	}
8566 
8567 	/*
8568 	 * Determine size of Block Descriptors in order to locate
8569 	 * the mode page data. ATAPI devices return 0, SCSI devices
8570 	 * should return MODE_BLK_DESC_LENGTH.
8571 	 */
8572 	if (un->un_f_cfg_is_atapi == TRUE) {
8573 		struct mode_header_grp2	*mhp;
8574 		mhp	= (struct mode_header_grp2 *)header;
8575 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8576 	} else {
8577 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8578 	}
8579 
8580 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8581 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8582 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8583 		    "block descriptor length\n");
8584 		kmem_free(header, buflen);
8585 		return (EIO);
8586 	}
8587 
8588 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8589 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8590 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8591 		    " caching page code mismatch %d\n",
8592 		    mode_caching_page->mode_page.code);
8593 		kmem_free(header, buflen);
8594 		return (EIO);
8595 	}
8596 	*is_enabled = mode_caching_page->wce;
8597 
8598 	kmem_free(header, buflen);
8599 	return (0);
8600 }
8601 
8602 /*
8603  *    Function: sd_get_nv_sup()
8604  *
8605  * Description: This routine is the driver entry point for
8606  * determining whether non-volatile cache is supported. This
8607  * determination process works as follows:
8608  *
8609  * 1. sd first queries sd.conf on whether
8610  * suppress_cache_flush bit is set for this device.
8611  *
8612  * 2. if not there, then queries the internal disk table.
8613  *
8614  * 3. if either sd.conf or internal disk table specifies
8615  * cache flush be suppressed, we don't bother checking
8616  * NV_SUP bit.
8617  *
8618  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8619  * the optional INQUIRY VPD page 0x86. If the device
8620  * supports VPD page 0x86, sd examines the NV_SUP
8621  * (non-volatile cache support) bit in the INQUIRY VPD page
8622  * 0x86:
8623  *   o If NV_SUP bit is set, sd assumes the device has a
8624  *   non-volatile cache and set the
8625  *   un_f_sync_nv_supported to TRUE.
8626  *   o Otherwise cache is not non-volatile,
8627  *   un_f_sync_nv_supported is set to FALSE.
8628  *
8629  * Arguments: un - driver soft state (unit) structure
8630  *
8631  * Return Code:
8632  *
8633  *     Context: Kernel Thread
8634  */
8635 
8636 static void
8637 sd_get_nv_sup(struct sd_lun *un)
8638 {
8639 	int		rval		= 0;
8640 	uchar_t		*inq86		= NULL;
8641 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8642 	size_t		inq86_resid	= 0;
8643 	struct		dk_callback *dkc;
8644 
8645 	ASSERT(un != NULL);
8646 
8647 	mutex_enter(SD_MUTEX(un));
8648 
8649 	/*
8650 	 * Be conservative on the device's support of
8651 	 * SYNC_NV bit: un_f_sync_nv_supported is
8652 	 * initialized to be false.
8653 	 */
8654 	un->un_f_sync_nv_supported = FALSE;
8655 
8656 	/*
8657 	 * If either sd.conf or internal disk table
8658 	 * specifies cache flush be suppressed, then
8659 	 * we don't bother checking NV_SUP bit.
8660 	 */
8661 	if (un->un_f_suppress_cache_flush == TRUE) {
8662 		mutex_exit(SD_MUTEX(un));
8663 		return;
8664 	}
8665 
8666 	if (sd_check_vpd_page_support(un) == 0 &&
8667 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8668 		mutex_exit(SD_MUTEX(un));
8669 		/* collect page 86 data if available */
8670 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8671 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8672 		    0x01, 0x86, &inq86_resid);
8673 
8674 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8675 			SD_TRACE(SD_LOG_COMMON, un,
8676 			    "sd_get_nv_sup: \
8677 			    successfully get VPD page: %x \
8678 			    PAGE LENGTH: %x BYTE 6: %x\n",
8679 			    inq86[1], inq86[3], inq86[6]);
8680 
8681 			mutex_enter(SD_MUTEX(un));
8682 			/*
8683 			 * check the value of NV_SUP bit: only if the device
8684 			 * reports NV_SUP bit to be 1, the
8685 			 * un_f_sync_nv_supported bit will be set to true.
8686 			 */
8687 			if (inq86[6] & SD_VPD_NV_SUP) {
8688 				un->un_f_sync_nv_supported = TRUE;
8689 			}
8690 			mutex_exit(SD_MUTEX(un));
8691 		}
8692 		kmem_free(inq86, inq86_len);
8693 	} else {
8694 		mutex_exit(SD_MUTEX(un));
8695 	}
8696 
8697 	/*
8698 	 * Send a SYNC CACHE command to check whether
8699 	 * SYNC_NV bit is supported. This command should have
8700 	 * un_f_sync_nv_supported set to correct value.
8701 	 */
8702 	mutex_enter(SD_MUTEX(un));
8703 	if (un->un_f_sync_nv_supported) {
8704 		mutex_exit(SD_MUTEX(un));
8705 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8706 		dkc->dkc_flag = FLUSH_VOLATILE;
8707 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8708 
8709 		/*
8710 		 * Send a TEST UNIT READY command to the device. This should
8711 		 * clear any outstanding UNIT ATTENTION that may be present.
8712 		 */
8713 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8714 
8715 		kmem_free(dkc, sizeof (struct dk_callback));
8716 	} else {
8717 		mutex_exit(SD_MUTEX(un));
8718 	}
8719 
8720 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8721 	    un_f_suppress_cache_flush is set to %d\n",
8722 	    un->un_f_suppress_cache_flush);
8723 }
8724 
8725 /*
8726  *    Function: sd_make_device
8727  *
8728  * Description: Utility routine to return the Solaris device number from
8729  *		the data in the device's dev_info structure.
8730  *
8731  * Return Code: The Solaris device number
8732  *
8733  *     Context: Any
8734  */
8735 
8736 static dev_t
8737 sd_make_device(dev_info_t *devi)
8738 {
8739 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8740 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8741 }
8742 
8743 
8744 /*
8745  *    Function: sd_pm_entry
8746  *
8747  * Description: Called at the start of a new command to manage power
8748  *		and busy status of a device. This includes determining whether
8749  *		the current power state of the device is sufficient for
8750  *		performing the command or whether it must be changed.
8751  *		The PM framework is notified appropriately.
8752  *		Only with a return status of DDI_SUCCESS will the
8753  *		component be busy to the framework.
8754  *
8755  *		All callers of sd_pm_entry must check the return status
8756  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8757  *		of DDI_FAILURE indicates the device failed to power up.
8758  *		In this case un_pm_count has been adjusted so the result
8759  *		on exit is still powered down, ie. count is less than 0.
8760  *		Calling sd_pm_exit with this count value hits an ASSERT.
8761  *
8762  * Return Code: DDI_SUCCESS or DDI_FAILURE
8763  *
8764  *     Context: Kernel thread context.
8765  */
8766 
8767 static int
8768 sd_pm_entry(struct sd_lun *un)
8769 {
8770 	int return_status = DDI_SUCCESS;
8771 
8772 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8773 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8774 
8775 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8776 
8777 	if (un->un_f_pm_is_enabled == FALSE) {
8778 		SD_TRACE(SD_LOG_IO_PM, un,
8779 		    "sd_pm_entry: exiting, PM not enabled\n");
8780 		return (return_status);
8781 	}
8782 
8783 	/*
8784 	 * Just increment a counter if PM is enabled. On the transition from
8785 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8786 	 * the count with each IO and mark the device as idle when the count
8787 	 * hits 0.
8788 	 *
8789 	 * If the count is less than 0 the device is powered down. If a powered
8790 	 * down device is successfully powered up then the count must be
8791 	 * incremented to reflect the power up. Note that it'll get incremented
8792 	 * a second time to become busy.
8793 	 *
8794 	 * Because the following has the potential to change the device state
8795 	 * and must release the un_pm_mutex to do so, only one thread can be
8796 	 * allowed through at a time.
8797 	 */
8798 
8799 	mutex_enter(&un->un_pm_mutex);
8800 	while (un->un_pm_busy == TRUE) {
8801 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8802 	}
8803 	un->un_pm_busy = TRUE;
8804 
8805 	if (un->un_pm_count < 1) {
8806 
8807 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8808 
8809 		/*
8810 		 * Indicate we are now busy so the framework won't attempt to
8811 		 * power down the device. This call will only fail if either
8812 		 * we passed a bad component number or the device has no
8813 		 * components. Neither of these should ever happen.
8814 		 */
8815 		mutex_exit(&un->un_pm_mutex);
8816 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8817 		ASSERT(return_status == DDI_SUCCESS);
8818 
8819 		mutex_enter(&un->un_pm_mutex);
8820 
8821 		if (un->un_pm_count < 0) {
8822 			mutex_exit(&un->un_pm_mutex);
8823 
8824 			SD_TRACE(SD_LOG_IO_PM, un,
8825 			    "sd_pm_entry: power up component\n");
8826 
8827 			/*
8828 			 * pm_raise_power will cause sdpower to be called
8829 			 * which brings the device power level to the
8830 			 * desired state, ON in this case. If successful,
8831 			 * un_pm_count and un_power_level will be updated
8832 			 * appropriately.
8833 			 */
8834 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8835 			    SD_SPINDLE_ON);
8836 
8837 			mutex_enter(&un->un_pm_mutex);
8838 
8839 			if (return_status != DDI_SUCCESS) {
8840 				/*
8841 				 * Power up failed.
8842 				 * Idle the device and adjust the count
8843 				 * so the result on exit is that we're
8844 				 * still powered down, ie. count is less than 0.
8845 				 */
8846 				SD_TRACE(SD_LOG_IO_PM, un,
8847 				    "sd_pm_entry: power up failed,"
8848 				    " idle the component\n");
8849 
8850 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8851 				un->un_pm_count--;
8852 			} else {
8853 				/*
8854 				 * Device is powered up, verify the
8855 				 * count is non-negative.
8856 				 * This is debug only.
8857 				 */
8858 				ASSERT(un->un_pm_count == 0);
8859 			}
8860 		}
8861 
8862 		if (return_status == DDI_SUCCESS) {
8863 			/*
8864 			 * For performance, now that the device has been tagged
8865 			 * as busy, and it's known to be powered up, update the
8866 			 * chain types to use jump tables that do not include
8867 			 * pm. This significantly lowers the overhead and
8868 			 * therefore improves performance.
8869 			 */
8870 
8871 			mutex_exit(&un->un_pm_mutex);
8872 			mutex_enter(SD_MUTEX(un));
8873 			SD_TRACE(SD_LOG_IO_PM, un,
8874 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8875 			    un->un_uscsi_chain_type);
8876 
8877 			if (un->un_f_non_devbsize_supported) {
8878 				un->un_buf_chain_type =
8879 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8880 			} else {
8881 				un->un_buf_chain_type =
8882 				    SD_CHAIN_INFO_DISK_NO_PM;
8883 			}
8884 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8885 
8886 			SD_TRACE(SD_LOG_IO_PM, un,
8887 			    "             changed  uscsi_chain_type to   %d\n",
8888 			    un->un_uscsi_chain_type);
8889 			mutex_exit(SD_MUTEX(un));
8890 			mutex_enter(&un->un_pm_mutex);
8891 
8892 			if (un->un_pm_idle_timeid == NULL) {
8893 				/* 300 ms. */
8894 				un->un_pm_idle_timeid =
8895 				    timeout(sd_pm_idletimeout_handler, un,
8896 				    (drv_usectohz((clock_t)300000)));
8897 				/*
8898 				 * Include an extra call to busy which keeps the
8899 				 * device busy with-respect-to the PM layer
8900 				 * until the timer fires, at which time it'll
8901 				 * get the extra idle call.
8902 				 */
8903 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8904 			}
8905 		}
8906 	}
8907 	un->un_pm_busy = FALSE;
8908 	/* Next... */
8909 	cv_signal(&un->un_pm_busy_cv);
8910 
8911 	un->un_pm_count++;
8912 
8913 	SD_TRACE(SD_LOG_IO_PM, un,
8914 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8915 
8916 	mutex_exit(&un->un_pm_mutex);
8917 
8918 	return (return_status);
8919 }
8920 
8921 
8922 /*
8923  *    Function: sd_pm_exit
8924  *
8925  * Description: Called at the completion of a command to manage busy
8926  *		status for the device. If the device becomes idle the
8927  *		PM framework is notified.
8928  *
8929  *     Context: Kernel thread context
8930  */
8931 
8932 static void
8933 sd_pm_exit(struct sd_lun *un)
8934 {
8935 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8936 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8937 
8938 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8939 
8940 	/*
8941 	 * After attach the following flag is only read, so don't
8942 	 * take the penalty of acquiring a mutex for it.
8943 	 */
8944 	if (un->un_f_pm_is_enabled == TRUE) {
8945 
8946 		mutex_enter(&un->un_pm_mutex);
8947 		un->un_pm_count--;
8948 
8949 		SD_TRACE(SD_LOG_IO_PM, un,
8950 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8951 
8952 		ASSERT(un->un_pm_count >= 0);
8953 		if (un->un_pm_count == 0) {
8954 			mutex_exit(&un->un_pm_mutex);
8955 
8956 			SD_TRACE(SD_LOG_IO_PM, un,
8957 			    "sd_pm_exit: idle component\n");
8958 
8959 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8960 
8961 		} else {
8962 			mutex_exit(&un->un_pm_mutex);
8963 		}
8964 	}
8965 
8966 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8967 }
8968 
8969 
8970 /*
8971  *    Function: sdopen
8972  *
8973  * Description: Driver's open(9e) entry point function.
8974  *
8975  *   Arguments: dev_i   - pointer to device number
8976  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8977  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8978  *		cred_p  - user credential pointer
8979  *
8980  * Return Code: EINVAL
8981  *		ENXIO
8982  *		EIO
8983  *		EROFS
8984  *		EBUSY
8985  *
8986  *     Context: Kernel thread context
8987  */
8988 /* ARGSUSED */
8989 static int
8990 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8991 {
8992 	struct sd_lun	*un;
8993 	int		nodelay;
8994 	int		part;
8995 	uint64_t	partmask;
8996 	int		instance;
8997 	dev_t		dev;
8998 	int		rval = EIO;
8999 	diskaddr_t	nblks = 0;
9000 
9001 	/* Validate the open type */
9002 	if (otyp >= OTYPCNT) {
9003 		return (EINVAL);
9004 	}
9005 
9006 	dev = *dev_p;
9007 	instance = SDUNIT(dev);
9008 	mutex_enter(&sd_detach_mutex);
9009 
9010 	/*
9011 	 * Fail the open if there is no softstate for the instance, or
9012 	 * if another thread somewhere is trying to detach the instance.
9013 	 */
9014 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9015 	    (un->un_detach_count != 0)) {
9016 		mutex_exit(&sd_detach_mutex);
9017 		/*
9018 		 * The probe cache only needs to be cleared when open (9e) fails
9019 		 * with ENXIO (4238046).
9020 		 */
9021 		/*
9022 		 * un-conditionally clearing probe cache is ok with
9023 		 * separate sd/ssd binaries
9024 		 * x86 platform can be an issue with both parallel
9025 		 * and fibre in 1 binary
9026 		 */
9027 		sd_scsi_clear_probe_cache();
9028 		return (ENXIO);
9029 	}
9030 
9031 	/*
9032 	 * The un_layer_count is to prevent another thread in specfs from
9033 	 * trying to detach the instance, which can happen when we are
9034 	 * called from a higher-layer driver instead of thru specfs.
9035 	 * This will not be needed when DDI provides a layered driver
9036 	 * interface that allows specfs to know that an instance is in
9037 	 * use by a layered driver & should not be detached.
9038 	 *
9039 	 * Note: the semantics for layered driver opens are exactly one
9040 	 * close for every open.
9041 	 */
9042 	if (otyp == OTYP_LYR) {
9043 		un->un_layer_count++;
9044 	}
9045 
9046 	/*
9047 	 * Keep a count of the current # of opens in progress. This is because
9048 	 * some layered drivers try to call us as a regular open. This can
9049 	 * cause problems that we cannot prevent, however by keeping this count
9050 	 * we can at least keep our open and detach routines from racing against
9051 	 * each other under such conditions.
9052 	 */
9053 	un->un_opens_in_progress++;
9054 	mutex_exit(&sd_detach_mutex);
9055 
9056 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9057 	part	 = SDPART(dev);
9058 	partmask = 1 << part;
9059 
9060 	/*
9061 	 * We use a semaphore here in order to serialize
9062 	 * open and close requests on the device.
9063 	 */
9064 	sema_p(&un->un_semoclose);
9065 
9066 	mutex_enter(SD_MUTEX(un));
9067 
9068 	/*
9069 	 * All device accesses go thru sdstrategy() where we check
9070 	 * on suspend status but there could be a scsi_poll command,
9071 	 * which bypasses sdstrategy(), so we need to check pm
9072 	 * status.
9073 	 */
9074 
9075 	if (!nodelay) {
9076 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9077 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9078 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9079 		}
9080 
9081 		mutex_exit(SD_MUTEX(un));
9082 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9083 			rval = EIO;
9084 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9085 			    "sdopen: sd_pm_entry failed\n");
9086 			goto open_failed_with_pm;
9087 		}
9088 		mutex_enter(SD_MUTEX(un));
9089 	}
9090 
9091 	/* check for previous exclusive open */
9092 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9093 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9094 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9095 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9096 
9097 	if (un->un_exclopen & (partmask)) {
9098 		goto excl_open_fail;
9099 	}
9100 
9101 	if (flag & FEXCL) {
9102 		int i;
9103 		if (un->un_ocmap.lyropen[part]) {
9104 			goto excl_open_fail;
9105 		}
9106 		for (i = 0; i < (OTYPCNT - 1); i++) {
9107 			if (un->un_ocmap.regopen[i] & (partmask)) {
9108 				goto excl_open_fail;
9109 			}
9110 		}
9111 	}
9112 
9113 	/*
9114 	 * Check the write permission if this is a removable media device,
9115 	 * NDELAY has not been set, and writable permission is requested.
9116 	 *
9117 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9118 	 * attempt will fail with EIO as part of the I/O processing. This is a
9119 	 * more permissive implementation that allows the open to succeed and
9120 	 * WRITE attempts to fail when appropriate.
9121 	 */
9122 	if (un->un_f_chk_wp_open) {
9123 		if ((flag & FWRITE) && (!nodelay)) {
9124 			mutex_exit(SD_MUTEX(un));
9125 			/*
9126 			 * Defer the check for write permission on writable
9127 			 * DVD drive till sdstrategy and will not fail open even
9128 			 * if FWRITE is set as the device can be writable
9129 			 * depending upon the media and the media can change
9130 			 * after the call to open().
9131 			 */
9132 			if (un->un_f_dvdram_writable_device == FALSE) {
9133 				if (ISCD(un) || sr_check_wp(dev)) {
9134 				rval = EROFS;
9135 				mutex_enter(SD_MUTEX(un));
9136 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9137 				    "write to cd or write protected media\n");
9138 				goto open_fail;
9139 				}
9140 			}
9141 			mutex_enter(SD_MUTEX(un));
9142 		}
9143 	}
9144 
9145 	/*
9146 	 * If opening in NDELAY/NONBLOCK mode, just return.
9147 	 * Check if disk is ready and has a valid geometry later.
9148 	 */
9149 	if (!nodelay) {
9150 		mutex_exit(SD_MUTEX(un));
9151 		rval = sd_ready_and_valid(un);
9152 		mutex_enter(SD_MUTEX(un));
9153 		/*
9154 		 * Fail if device is not ready or if the number of disk
9155 		 * blocks is zero or negative for non CD devices.
9156 		 */
9157 
9158 		nblks = 0;
9159 
9160 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9161 			/* if cmlb_partinfo fails, nblks remains 0 */
9162 			mutex_exit(SD_MUTEX(un));
9163 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9164 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9165 			mutex_enter(SD_MUTEX(un));
9166 		}
9167 
9168 		if ((rval != SD_READY_VALID) ||
9169 		    (!ISCD(un) && nblks <= 0)) {
9170 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9171 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9172 			    "device not ready or invalid disk block value\n");
9173 			goto open_fail;
9174 		}
9175 #if defined(__i386) || defined(__amd64)
9176 	} else {
9177 		uchar_t *cp;
9178 		/*
9179 		 * x86 requires special nodelay handling, so that p0 is
9180 		 * always defined and accessible.
9181 		 * Invalidate geometry only if device is not already open.
9182 		 */
9183 		cp = &un->un_ocmap.chkd[0];
9184 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9185 			if (*cp != (uchar_t)0) {
9186 				break;
9187 			}
9188 			cp++;
9189 		}
9190 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9191 			mutex_exit(SD_MUTEX(un));
9192 			cmlb_invalidate(un->un_cmlbhandle,
9193 			    (void *)SD_PATH_DIRECT);
9194 			mutex_enter(SD_MUTEX(un));
9195 		}
9196 
9197 #endif
9198 	}
9199 
9200 	if (otyp == OTYP_LYR) {
9201 		un->un_ocmap.lyropen[part]++;
9202 	} else {
9203 		un->un_ocmap.regopen[otyp] |= partmask;
9204 	}
9205 
9206 	/* Set up open and exclusive open flags */
9207 	if (flag & FEXCL) {
9208 		un->un_exclopen |= (partmask);
9209 	}
9210 
9211 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9212 	    "open of part %d type %d\n", part, otyp);
9213 
9214 	mutex_exit(SD_MUTEX(un));
9215 	if (!nodelay) {
9216 		sd_pm_exit(un);
9217 	}
9218 
9219 	sema_v(&un->un_semoclose);
9220 
9221 	mutex_enter(&sd_detach_mutex);
9222 	un->un_opens_in_progress--;
9223 	mutex_exit(&sd_detach_mutex);
9224 
9225 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9226 	return (DDI_SUCCESS);
9227 
9228 excl_open_fail:
9229 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9230 	rval = EBUSY;
9231 
9232 open_fail:
9233 	mutex_exit(SD_MUTEX(un));
9234 
9235 	/*
9236 	 * On a failed open we must exit the pm management.
9237 	 */
9238 	if (!nodelay) {
9239 		sd_pm_exit(un);
9240 	}
9241 open_failed_with_pm:
9242 	sema_v(&un->un_semoclose);
9243 
9244 	mutex_enter(&sd_detach_mutex);
9245 	un->un_opens_in_progress--;
9246 	if (otyp == OTYP_LYR) {
9247 		un->un_layer_count--;
9248 	}
9249 	mutex_exit(&sd_detach_mutex);
9250 
9251 	return (rval);
9252 }
9253 
9254 
9255 /*
9256  *    Function: sdclose
9257  *
9258  * Description: Driver's close(9e) entry point function.
9259  *
9260  *   Arguments: dev    - device number
9261  *		flag   - file status flag, informational only
9262  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9263  *		cred_p - user credential pointer
9264  *
9265  * Return Code: ENXIO
9266  *
9267  *     Context: Kernel thread context
9268  */
9269 /* ARGSUSED */
9270 static int
9271 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9272 {
9273 	struct sd_lun	*un;
9274 	uchar_t		*cp;
9275 	int		part;
9276 	int		nodelay;
9277 	int		rval = 0;
9278 
9279 	/* Validate the open type */
9280 	if (otyp >= OTYPCNT) {
9281 		return (ENXIO);
9282 	}
9283 
9284 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9285 		return (ENXIO);
9286 	}
9287 
9288 	part = SDPART(dev);
9289 	nodelay = flag & (FNDELAY | FNONBLOCK);
9290 
9291 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9292 	    "sdclose: close of part %d type %d\n", part, otyp);
9293 
9294 	/*
9295 	 * We use a semaphore here in order to serialize
9296 	 * open and close requests on the device.
9297 	 */
9298 	sema_p(&un->un_semoclose);
9299 
9300 	mutex_enter(SD_MUTEX(un));
9301 
9302 	/* Don't proceed if power is being changed. */
9303 	while (un->un_state == SD_STATE_PM_CHANGING) {
9304 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9305 	}
9306 
9307 	if (un->un_exclopen & (1 << part)) {
9308 		un->un_exclopen &= ~(1 << part);
9309 	}
9310 
9311 	/* Update the open partition map */
9312 	if (otyp == OTYP_LYR) {
9313 		un->un_ocmap.lyropen[part] -= 1;
9314 	} else {
9315 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9316 	}
9317 
9318 	cp = &un->un_ocmap.chkd[0];
9319 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9320 		if (*cp != NULL) {
9321 			break;
9322 		}
9323 		cp++;
9324 	}
9325 
9326 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9327 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9328 
9329 		/*
9330 		 * We avoid persistance upon the last close, and set
9331 		 * the throttle back to the maximum.
9332 		 */
9333 		un->un_throttle = un->un_saved_throttle;
9334 
9335 		if (un->un_state == SD_STATE_OFFLINE) {
9336 			if (un->un_f_is_fibre == FALSE) {
9337 				scsi_log(SD_DEVINFO(un), sd_label,
9338 				    CE_WARN, "offline\n");
9339 			}
9340 			mutex_exit(SD_MUTEX(un));
9341 			cmlb_invalidate(un->un_cmlbhandle,
9342 			    (void *)SD_PATH_DIRECT);
9343 			mutex_enter(SD_MUTEX(un));
9344 
9345 		} else {
9346 			/*
9347 			 * Flush any outstanding writes in NVRAM cache.
9348 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9349 			 * cmd, it may not work for non-Pluto devices.
9350 			 * SYNCHRONIZE CACHE is not required for removables,
9351 			 * except DVD-RAM drives.
9352 			 *
9353 			 * Also note: because SYNCHRONIZE CACHE is currently
9354 			 * the only command issued here that requires the
9355 			 * drive be powered up, only do the power up before
9356 			 * sending the Sync Cache command. If additional
9357 			 * commands are added which require a powered up
9358 			 * drive, the following sequence may have to change.
9359 			 *
9360 			 * And finally, note that parallel SCSI on SPARC
9361 			 * only issues a Sync Cache to DVD-RAM, a newly
9362 			 * supported device.
9363 			 */
9364 #if defined(__i386) || defined(__amd64)
9365 			if (un->un_f_sync_cache_supported ||
9366 			    un->un_f_dvdram_writable_device == TRUE) {
9367 #else
9368 			if (un->un_f_dvdram_writable_device == TRUE) {
9369 #endif
9370 				mutex_exit(SD_MUTEX(un));
9371 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9372 					rval =
9373 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9374 					    NULL);
9375 					/* ignore error if not supported */
9376 					if (rval == ENOTSUP) {
9377 						rval = 0;
9378 					} else if (rval != 0) {
9379 						rval = EIO;
9380 					}
9381 					sd_pm_exit(un);
9382 				} else {
9383 					rval = EIO;
9384 				}
9385 				mutex_enter(SD_MUTEX(un));
9386 			}
9387 
9388 			/*
9389 			 * For devices which supports DOOR_LOCK, send an ALLOW
9390 			 * MEDIA REMOVAL command, but don't get upset if it
9391 			 * fails. We need to raise the power of the drive before
9392 			 * we can call sd_send_scsi_DOORLOCK()
9393 			 */
9394 			if (un->un_f_doorlock_supported) {
9395 				mutex_exit(SD_MUTEX(un));
9396 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9397 					rval = sd_send_scsi_DOORLOCK(un,
9398 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9399 
9400 					sd_pm_exit(un);
9401 					if (ISCD(un) && (rval != 0) &&
9402 					    (nodelay != 0)) {
9403 						rval = ENXIO;
9404 					}
9405 				} else {
9406 					rval = EIO;
9407 				}
9408 				mutex_enter(SD_MUTEX(un));
9409 			}
9410 
9411 			/*
9412 			 * If a device has removable media, invalidate all
9413 			 * parameters related to media, such as geometry,
9414 			 * blocksize, and blockcount.
9415 			 */
9416 			if (un->un_f_has_removable_media) {
9417 				sr_ejected(un);
9418 			}
9419 
9420 			/*
9421 			 * Destroy the cache (if it exists) which was
9422 			 * allocated for the write maps since this is
9423 			 * the last close for this media.
9424 			 */
9425 			if (un->un_wm_cache) {
9426 				/*
9427 				 * Check if there are pending commands.
9428 				 * and if there are give a warning and
9429 				 * do not destroy the cache.
9430 				 */
9431 				if (un->un_ncmds_in_driver > 0) {
9432 					scsi_log(SD_DEVINFO(un),
9433 					    sd_label, CE_WARN,
9434 					    "Unable to clean up memory "
9435 					    "because of pending I/O\n");
9436 				} else {
9437 					kmem_cache_destroy(
9438 					    un->un_wm_cache);
9439 					un->un_wm_cache = NULL;
9440 				}
9441 			}
9442 		}
9443 	}
9444 
9445 	mutex_exit(SD_MUTEX(un));
9446 	sema_v(&un->un_semoclose);
9447 
9448 	if (otyp == OTYP_LYR) {
9449 		mutex_enter(&sd_detach_mutex);
9450 		/*
9451 		 * The detach routine may run when the layer count
9452 		 * drops to zero.
9453 		 */
9454 		un->un_layer_count--;
9455 		mutex_exit(&sd_detach_mutex);
9456 	}
9457 
9458 	return (rval);
9459 }
9460 
9461 
9462 /*
9463  *    Function: sd_ready_and_valid
9464  *
9465  * Description: Test if device is ready and has a valid geometry.
9466  *
9467  *   Arguments: dev - device number
9468  *		un  - driver soft state (unit) structure
9469  *
9470  * Return Code: SD_READY_VALID		ready and valid label
9471  *		SD_NOT_READY_VALID	not ready, no label
9472  *		SD_RESERVED_BY_OTHERS	reservation conflict
9473  *
9474  *     Context: Never called at interrupt context.
9475  */
9476 
9477 static int
9478 sd_ready_and_valid(struct sd_lun *un)
9479 {
9480 	struct sd_errstats	*stp;
9481 	uint64_t		capacity;
9482 	uint_t			lbasize;
9483 	int			rval = SD_READY_VALID;
9484 	char			name_str[48];
9485 	int			is_valid;
9486 
9487 	ASSERT(un != NULL);
9488 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9489 
9490 	mutex_enter(SD_MUTEX(un));
9491 	/*
9492 	 * If a device has removable media, we must check if media is
9493 	 * ready when checking if this device is ready and valid.
9494 	 */
9495 	if (un->un_f_has_removable_media) {
9496 		mutex_exit(SD_MUTEX(un));
9497 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9498 			rval = SD_NOT_READY_VALID;
9499 			mutex_enter(SD_MUTEX(un));
9500 			goto done;
9501 		}
9502 
9503 		is_valid = SD_IS_VALID_LABEL(un);
9504 		mutex_enter(SD_MUTEX(un));
9505 		if (!is_valid ||
9506 		    (un->un_f_blockcount_is_valid == FALSE) ||
9507 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9508 
9509 			/* capacity has to be read every open. */
9510 			mutex_exit(SD_MUTEX(un));
9511 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9512 			    &lbasize, SD_PATH_DIRECT) != 0) {
9513 				cmlb_invalidate(un->un_cmlbhandle,
9514 				    (void *)SD_PATH_DIRECT);
9515 				mutex_enter(SD_MUTEX(un));
9516 				rval = SD_NOT_READY_VALID;
9517 				goto done;
9518 			} else {
9519 				mutex_enter(SD_MUTEX(un));
9520 				sd_update_block_info(un, lbasize, capacity);
9521 			}
9522 		}
9523 
9524 		/*
9525 		 * Check if the media in the device is writable or not.
9526 		 */
9527 		if (!is_valid && ISCD(un)) {
9528 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9529 		}
9530 
9531 	} else {
9532 		/*
9533 		 * Do a test unit ready to clear any unit attention from non-cd
9534 		 * devices.
9535 		 */
9536 		mutex_exit(SD_MUTEX(un));
9537 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9538 		mutex_enter(SD_MUTEX(un));
9539 	}
9540 
9541 
9542 	/*
9543 	 * If this is a non 512 block device, allocate space for
9544 	 * the wmap cache. This is being done here since every time
9545 	 * a media is changed this routine will be called and the
9546 	 * block size is a function of media rather than device.
9547 	 */
9548 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9549 		if (!(un->un_wm_cache)) {
9550 			(void) snprintf(name_str, sizeof (name_str),
9551 			    "%s%d_cache",
9552 			    ddi_driver_name(SD_DEVINFO(un)),
9553 			    ddi_get_instance(SD_DEVINFO(un)));
9554 			un->un_wm_cache = kmem_cache_create(
9555 			    name_str, sizeof (struct sd_w_map),
9556 			    8, sd_wm_cache_constructor,
9557 			    sd_wm_cache_destructor, NULL,
9558 			    (void *)un, NULL, 0);
9559 			if (!(un->un_wm_cache)) {
9560 					rval = ENOMEM;
9561 					goto done;
9562 			}
9563 		}
9564 	}
9565 
9566 	if (un->un_state == SD_STATE_NORMAL) {
9567 		/*
9568 		 * If the target is not yet ready here (defined by a TUR
9569 		 * failure), invalidate the geometry and print an 'offline'
9570 		 * message. This is a legacy message, as the state of the
9571 		 * target is not actually changed to SD_STATE_OFFLINE.
9572 		 *
9573 		 * If the TUR fails for EACCES (Reservation Conflict),
9574 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9575 		 * reservation conflict. If the TUR fails for other
9576 		 * reasons, SD_NOT_READY_VALID will be returned.
9577 		 */
9578 		int err;
9579 
9580 		mutex_exit(SD_MUTEX(un));
9581 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9582 		mutex_enter(SD_MUTEX(un));
9583 
9584 		if (err != 0) {
9585 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9586 			    "offline or reservation conflict\n");
9587 			mutex_exit(SD_MUTEX(un));
9588 			cmlb_invalidate(un->un_cmlbhandle,
9589 			    (void *)SD_PATH_DIRECT);
9590 			mutex_enter(SD_MUTEX(un));
9591 			if (err == EACCES) {
9592 				rval = SD_RESERVED_BY_OTHERS;
9593 			} else {
9594 				rval = SD_NOT_READY_VALID;
9595 			}
9596 			goto done;
9597 		}
9598 	}
9599 
9600 	if (un->un_f_format_in_progress == FALSE) {
9601 		mutex_exit(SD_MUTEX(un));
9602 		if (cmlb_validate(un->un_cmlbhandle, 0,
9603 		    (void *)SD_PATH_DIRECT) != 0) {
9604 			rval = SD_NOT_READY_VALID;
9605 			mutex_enter(SD_MUTEX(un));
9606 			goto done;
9607 		}
9608 		if (un->un_f_pkstats_enabled) {
9609 			sd_set_pstats(un);
9610 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9611 			    "sd_ready_and_valid: un:0x%p pstats created and "
9612 			    "set\n", un);
9613 		}
9614 		mutex_enter(SD_MUTEX(un));
9615 	}
9616 
9617 	/*
9618 	 * If this device supports DOOR_LOCK command, try and send
9619 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9620 	 * if it fails. For a CD, however, it is an error
9621 	 */
9622 	if (un->un_f_doorlock_supported) {
9623 		mutex_exit(SD_MUTEX(un));
9624 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9625 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9626 			rval = SD_NOT_READY_VALID;
9627 			mutex_enter(SD_MUTEX(un));
9628 			goto done;
9629 		}
9630 		mutex_enter(SD_MUTEX(un));
9631 	}
9632 
9633 	/* The state has changed, inform the media watch routines */
9634 	un->un_mediastate = DKIO_INSERTED;
9635 	cv_broadcast(&un->un_state_cv);
9636 	rval = SD_READY_VALID;
9637 
9638 done:
9639 
9640 	/*
9641 	 * Initialize the capacity kstat value, if no media previously
9642 	 * (capacity kstat is 0) and a media has been inserted
9643 	 * (un_blockcount > 0).
9644 	 */
9645 	if (un->un_errstats != NULL) {
9646 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9647 		if ((stp->sd_capacity.value.ui64 == 0) &&
9648 		    (un->un_f_blockcount_is_valid == TRUE)) {
9649 			stp->sd_capacity.value.ui64 =
9650 			    (uint64_t)((uint64_t)un->un_blockcount *
9651 			    un->un_sys_blocksize);
9652 		}
9653 	}
9654 
9655 	mutex_exit(SD_MUTEX(un));
9656 	return (rval);
9657 }
9658 
9659 
9660 /*
9661  *    Function: sdmin
9662  *
9663  * Description: Routine to limit the size of a data transfer. Used in
9664  *		conjunction with physio(9F).
9665  *
9666  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9667  *
9668  *     Context: Kernel thread context.
9669  */
9670 
9671 static void
9672 sdmin(struct buf *bp)
9673 {
9674 	struct sd_lun	*un;
9675 	int		instance;
9676 
9677 	instance = SDUNIT(bp->b_edev);
9678 
9679 	un = ddi_get_soft_state(sd_state, instance);
9680 	ASSERT(un != NULL);
9681 
9682 	if (bp->b_bcount > un->un_max_xfer_size) {
9683 		bp->b_bcount = un->un_max_xfer_size;
9684 	}
9685 }
9686 
9687 
9688 /*
9689  *    Function: sdread
9690  *
9691  * Description: Driver's read(9e) entry point function.
9692  *
9693  *   Arguments: dev   - device number
9694  *		uio   - structure pointer describing where data is to be stored
9695  *			in user's space
9696  *		cred_p  - user credential pointer
9697  *
9698  * Return Code: ENXIO
9699  *		EIO
9700  *		EINVAL
9701  *		value returned by physio
9702  *
9703  *     Context: Kernel thread context.
9704  */
9705 /* ARGSUSED */
9706 static int
9707 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9708 {
9709 	struct sd_lun	*un = NULL;
9710 	int		secmask;
9711 	int		err;
9712 
9713 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9714 		return (ENXIO);
9715 	}
9716 
9717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9718 
9719 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9720 		mutex_enter(SD_MUTEX(un));
9721 		/*
9722 		 * Because the call to sd_ready_and_valid will issue I/O we
9723 		 * must wait here if either the device is suspended or
9724 		 * if it's power level is changing.
9725 		 */
9726 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9727 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9728 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9729 		}
9730 		un->un_ncmds_in_driver++;
9731 		mutex_exit(SD_MUTEX(un));
9732 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9733 			mutex_enter(SD_MUTEX(un));
9734 			un->un_ncmds_in_driver--;
9735 			ASSERT(un->un_ncmds_in_driver >= 0);
9736 			mutex_exit(SD_MUTEX(un));
9737 			return (EIO);
9738 		}
9739 		mutex_enter(SD_MUTEX(un));
9740 		un->un_ncmds_in_driver--;
9741 		ASSERT(un->un_ncmds_in_driver >= 0);
9742 		mutex_exit(SD_MUTEX(un));
9743 	}
9744 
9745 	/*
9746 	 * Read requests are restricted to multiples of the system block size.
9747 	 */
9748 	secmask = un->un_sys_blocksize - 1;
9749 
9750 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9751 		SD_ERROR(SD_LOG_READ_WRITE, un,
9752 		    "sdread: file offset not modulo %d\n",
9753 		    un->un_sys_blocksize);
9754 		err = EINVAL;
9755 	} else if (uio->uio_iov->iov_len & (secmask)) {
9756 		SD_ERROR(SD_LOG_READ_WRITE, un,
9757 		    "sdread: transfer length not modulo %d\n",
9758 		    un->un_sys_blocksize);
9759 		err = EINVAL;
9760 	} else {
9761 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9762 	}
9763 	return (err);
9764 }
9765 
9766 
9767 /*
9768  *    Function: sdwrite
9769  *
9770  * Description: Driver's write(9e) entry point function.
9771  *
9772  *   Arguments: dev   - device number
9773  *		uio   - structure pointer describing where data is stored in
9774  *			user's space
9775  *		cred_p  - user credential pointer
9776  *
9777  * Return Code: ENXIO
9778  *		EIO
9779  *		EINVAL
9780  *		value returned by physio
9781  *
9782  *     Context: Kernel thread context.
9783  */
9784 /* ARGSUSED */
9785 static int
9786 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9787 {
9788 	struct sd_lun	*un = NULL;
9789 	int		secmask;
9790 	int		err;
9791 
9792 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9793 		return (ENXIO);
9794 	}
9795 
9796 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9797 
9798 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9799 		mutex_enter(SD_MUTEX(un));
9800 		/*
9801 		 * Because the call to sd_ready_and_valid will issue I/O we
9802 		 * must wait here if either the device is suspended or
9803 		 * if it's power level is changing.
9804 		 */
9805 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9806 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9807 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9808 		}
9809 		un->un_ncmds_in_driver++;
9810 		mutex_exit(SD_MUTEX(un));
9811 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9812 			mutex_enter(SD_MUTEX(un));
9813 			un->un_ncmds_in_driver--;
9814 			ASSERT(un->un_ncmds_in_driver >= 0);
9815 			mutex_exit(SD_MUTEX(un));
9816 			return (EIO);
9817 		}
9818 		mutex_enter(SD_MUTEX(un));
9819 		un->un_ncmds_in_driver--;
9820 		ASSERT(un->un_ncmds_in_driver >= 0);
9821 		mutex_exit(SD_MUTEX(un));
9822 	}
9823 
9824 	/*
9825 	 * Write requests are restricted to multiples of the system block size.
9826 	 */
9827 	secmask = un->un_sys_blocksize - 1;
9828 
9829 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9830 		SD_ERROR(SD_LOG_READ_WRITE, un,
9831 		    "sdwrite: file offset not modulo %d\n",
9832 		    un->un_sys_blocksize);
9833 		err = EINVAL;
9834 	} else if (uio->uio_iov->iov_len & (secmask)) {
9835 		SD_ERROR(SD_LOG_READ_WRITE, un,
9836 		    "sdwrite: transfer length not modulo %d\n",
9837 		    un->un_sys_blocksize);
9838 		err = EINVAL;
9839 	} else {
9840 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9841 	}
9842 	return (err);
9843 }
9844 
9845 
9846 /*
9847  *    Function: sdaread
9848  *
9849  * Description: Driver's aread(9e) entry point function.
9850  *
9851  *   Arguments: dev   - device number
9852  *		aio   - structure pointer describing where data is to be stored
9853  *		cred_p  - user credential pointer
9854  *
9855  * Return Code: ENXIO
9856  *		EIO
9857  *		EINVAL
9858  *		value returned by aphysio
9859  *
9860  *     Context: Kernel thread context.
9861  */
9862 /* ARGSUSED */
9863 static int
9864 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9865 {
9866 	struct sd_lun	*un = NULL;
9867 	struct uio	*uio = aio->aio_uio;
9868 	int		secmask;
9869 	int		err;
9870 
9871 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9872 		return (ENXIO);
9873 	}
9874 
9875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9876 
9877 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9878 		mutex_enter(SD_MUTEX(un));
9879 		/*
9880 		 * Because the call to sd_ready_and_valid will issue I/O we
9881 		 * must wait here if either the device is suspended or
9882 		 * if it's power level is changing.
9883 		 */
9884 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9885 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9886 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9887 		}
9888 		un->un_ncmds_in_driver++;
9889 		mutex_exit(SD_MUTEX(un));
9890 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9891 			mutex_enter(SD_MUTEX(un));
9892 			un->un_ncmds_in_driver--;
9893 			ASSERT(un->un_ncmds_in_driver >= 0);
9894 			mutex_exit(SD_MUTEX(un));
9895 			return (EIO);
9896 		}
9897 		mutex_enter(SD_MUTEX(un));
9898 		un->un_ncmds_in_driver--;
9899 		ASSERT(un->un_ncmds_in_driver >= 0);
9900 		mutex_exit(SD_MUTEX(un));
9901 	}
9902 
9903 	/*
9904 	 * Read requests are restricted to multiples of the system block size.
9905 	 */
9906 	secmask = un->un_sys_blocksize - 1;
9907 
9908 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9909 		SD_ERROR(SD_LOG_READ_WRITE, un,
9910 		    "sdaread: file offset not modulo %d\n",
9911 		    un->un_sys_blocksize);
9912 		err = EINVAL;
9913 	} else if (uio->uio_iov->iov_len & (secmask)) {
9914 		SD_ERROR(SD_LOG_READ_WRITE, un,
9915 		    "sdaread: transfer length not modulo %d\n",
9916 		    un->un_sys_blocksize);
9917 		err = EINVAL;
9918 	} else {
9919 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9920 	}
9921 	return (err);
9922 }
9923 
9924 
9925 /*
9926  *    Function: sdawrite
9927  *
9928  * Description: Driver's awrite(9e) entry point function.
9929  *
9930  *   Arguments: dev   - device number
9931  *		aio   - structure pointer describing where data is stored
9932  *		cred_p  - user credential pointer
9933  *
9934  * Return Code: ENXIO
9935  *		EIO
9936  *		EINVAL
9937  *		value returned by aphysio
9938  *
9939  *     Context: Kernel thread context.
9940  */
9941 /* ARGSUSED */
9942 static int
9943 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9944 {
9945 	struct sd_lun	*un = NULL;
9946 	struct uio	*uio = aio->aio_uio;
9947 	int		secmask;
9948 	int		err;
9949 
9950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9951 		return (ENXIO);
9952 	}
9953 
9954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9955 
9956 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9957 		mutex_enter(SD_MUTEX(un));
9958 		/*
9959 		 * Because the call to sd_ready_and_valid will issue I/O we
9960 		 * must wait here if either the device is suspended or
9961 		 * if it's power level is changing.
9962 		 */
9963 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9964 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9965 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9966 		}
9967 		un->un_ncmds_in_driver++;
9968 		mutex_exit(SD_MUTEX(un));
9969 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9970 			mutex_enter(SD_MUTEX(un));
9971 			un->un_ncmds_in_driver--;
9972 			ASSERT(un->un_ncmds_in_driver >= 0);
9973 			mutex_exit(SD_MUTEX(un));
9974 			return (EIO);
9975 		}
9976 		mutex_enter(SD_MUTEX(un));
9977 		un->un_ncmds_in_driver--;
9978 		ASSERT(un->un_ncmds_in_driver >= 0);
9979 		mutex_exit(SD_MUTEX(un));
9980 	}
9981 
9982 	/*
9983 	 * Write requests are restricted to multiples of the system block size.
9984 	 */
9985 	secmask = un->un_sys_blocksize - 1;
9986 
9987 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9988 		SD_ERROR(SD_LOG_READ_WRITE, un,
9989 		    "sdawrite: file offset not modulo %d\n",
9990 		    un->un_sys_blocksize);
9991 		err = EINVAL;
9992 	} else if (uio->uio_iov->iov_len & (secmask)) {
9993 		SD_ERROR(SD_LOG_READ_WRITE, un,
9994 		    "sdawrite: transfer length not modulo %d\n",
9995 		    un->un_sys_blocksize);
9996 		err = EINVAL;
9997 	} else {
9998 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9999 	}
10000 	return (err);
10001 }
10002 
10003 
10004 
10005 
10006 
10007 /*
10008  * Driver IO processing follows the following sequence:
10009  *
10010  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10011  *         |                |                     ^
10012  *         v                v                     |
10013  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10014  *         |                |                     |                   |
10015  *         v                |                     |                   |
10016  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10017  *         |                |                     ^                   ^
10018  *         v                v                     |                   |
10019  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10020  *         |                |                     |                   |
10021  *     +---+                |                     +------------+      +-------+
10022  *     |                    |                                  |              |
10023  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10024  *     |                    v                                  |              |
10025  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10026  *     |                    |                                  ^              |
10027  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10028  *     |                    v                                  |              |
10029  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10030  *     |                    |                                  ^              |
10031  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10032  *     |                    v                                  |              |
10033  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10034  *     |                    |                                  ^              |
10035  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10036  *     |                    v                                  |              |
10037  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10038  *     |                    |                                  ^              |
10039  *     |                    |                                  |              |
10040  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10041  *                          |                           ^
10042  *                          v                           |
10043  *                   sd_core_iostart()                  |
10044  *                          |                           |
10045  *                          |                           +------>(*destroypkt)()
10046  *                          +-> sd_start_cmds() <-+     |           |
10047  *                          |                     |     |           v
10048  *                          |                     |     |  scsi_destroy_pkt(9F)
10049  *                          |                     |     |
10050  *                          +->(*initpkt)()       +- sdintr()
10051  *                          |  |                        |  |
10052  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10053  *                          |  +-> scsi_setup_cdb(9F)   |
10054  *                          |                           |
10055  *                          +--> scsi_transport(9F)     |
10056  *                                     |                |
10057  *                                     +----> SCSA ---->+
10058  *
10059  *
10060  * This code is based upon the following presumptions:
10061  *
10062  *   - iostart and iodone functions operate on buf(9S) structures. These
10063  *     functions perform the necessary operations on the buf(9S) and pass
10064  *     them along to the next function in the chain by using the macros
10065  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10066  *     (for iodone side functions).
10067  *
10068  *   - The iostart side functions may sleep. The iodone side functions
10069  *     are called under interrupt context and may NOT sleep. Therefore
10070  *     iodone side functions also may not call iostart side functions.
10071  *     (NOTE: iostart side functions should NOT sleep for memory, as
10072  *     this could result in deadlock.)
10073  *
10074  *   - An iostart side function may call its corresponding iodone side
10075  *     function directly (if necessary).
10076  *
10077  *   - In the event of an error, an iostart side function can return a buf(9S)
10078  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10079  *     b_error in the usual way of course).
10080  *
10081  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10082  *     requests to the iostart side functions.  The iostart side functions in
10083  *     this case would be called under the context of a taskq thread, so it's
10084  *     OK for them to block/sleep/spin in this case.
10085  *
10086  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10087  *     pass them along to the next function in the chain.  The corresponding
10088  *     iodone side functions must coalesce the "shadow" bufs and return
10089  *     the "original" buf to the next higher layer.
10090  *
10091  *   - The b_private field of the buf(9S) struct holds a pointer to
10092  *     an sd_xbuf struct, which contains information needed to
10093  *     construct the scsi_pkt for the command.
10094  *
10095  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10096  *     layer must acquire & release the SD_MUTEX(un) as needed.
10097  */
10098 
10099 
10100 /*
10101  * Create taskq for all targets in the system. This is created at
10102  * _init(9E) and destroyed at _fini(9E).
10103  *
10104  * Note: here we set the minalloc to a reasonably high number to ensure that
10105  * we will have an adequate supply of task entries available at interrupt time.
10106  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10107  * sd_create_taskq().  Since we do not want to sleep for allocations at
10108  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10109  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10110  * requests any one instant in time.
10111  */
10112 #define	SD_TASKQ_NUMTHREADS	8
10113 #define	SD_TASKQ_MINALLOC	256
10114 #define	SD_TASKQ_MAXALLOC	256
10115 
10116 static taskq_t	*sd_tq = NULL;
10117 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10118 
10119 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10120 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10121 
10122 /*
10123  * The following task queue is being created for the write part of
10124  * read-modify-write of non-512 block size devices.
10125  * Limit the number of threads to 1 for now. This number has been chosen
10126  * considering the fact that it applies only to dvd ram drives/MO drives
10127  * currently. Performance for which is not main criteria at this stage.
10128  * Note: It needs to be explored if we can use a single taskq in future
10129  */
10130 #define	SD_WMR_TASKQ_NUMTHREADS	1
10131 static taskq_t	*sd_wmr_tq = NULL;
10132 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10133 
10134 /*
10135  *    Function: sd_taskq_create
10136  *
10137  * Description: Create taskq thread(s) and preallocate task entries
10138  *
10139  * Return Code: Returns a pointer to the allocated taskq_t.
10140  *
10141  *     Context: Can sleep. Requires blockable context.
10142  *
10143  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10144  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10145  *		- taskq_create() will block for memory, also it will panic
10146  *		  if it cannot create the requested number of threads.
10147  *		- Currently taskq_create() creates threads that cannot be
10148  *		  swapped.
10149  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10150  *		  supply of taskq entries at interrupt time (ie, so that we
10151  *		  do not have to sleep for memory)
10152  */
10153 
10154 static void
10155 sd_taskq_create(void)
10156 {
10157 	char	taskq_name[TASKQ_NAMELEN];
10158 
10159 	ASSERT(sd_tq == NULL);
10160 	ASSERT(sd_wmr_tq == NULL);
10161 
10162 	(void) snprintf(taskq_name, sizeof (taskq_name),
10163 	    "%s_drv_taskq", sd_label);
10164 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10165 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10166 	    TASKQ_PREPOPULATE));
10167 
10168 	(void) snprintf(taskq_name, sizeof (taskq_name),
10169 	    "%s_rmw_taskq", sd_label);
10170 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10171 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10172 	    TASKQ_PREPOPULATE));
10173 }
10174 
10175 
10176 /*
10177  *    Function: sd_taskq_delete
10178  *
10179  * Description: Complementary cleanup routine for sd_taskq_create().
10180  *
10181  *     Context: Kernel thread context.
10182  */
10183 
10184 static void
10185 sd_taskq_delete(void)
10186 {
10187 	ASSERT(sd_tq != NULL);
10188 	ASSERT(sd_wmr_tq != NULL);
10189 	taskq_destroy(sd_tq);
10190 	taskq_destroy(sd_wmr_tq);
10191 	sd_tq = NULL;
10192 	sd_wmr_tq = NULL;
10193 }
10194 
10195 
10196 /*
10197  *    Function: sdstrategy
10198  *
10199  * Description: Driver's strategy (9E) entry point function.
10200  *
10201  *   Arguments: bp - pointer to buf(9S)
10202  *
10203  * Return Code: Always returns zero
10204  *
10205  *     Context: Kernel thread context.
10206  */
10207 
10208 static int
10209 sdstrategy(struct buf *bp)
10210 {
10211 	struct sd_lun *un;
10212 
10213 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10214 	if (un == NULL) {
10215 		bioerror(bp, EIO);
10216 		bp->b_resid = bp->b_bcount;
10217 		biodone(bp);
10218 		return (0);
10219 	}
10220 	/* As was done in the past, fail new cmds. if state is dumping. */
10221 	if (un->un_state == SD_STATE_DUMPING) {
10222 		bioerror(bp, ENXIO);
10223 		bp->b_resid = bp->b_bcount;
10224 		biodone(bp);
10225 		return (0);
10226 	}
10227 
10228 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10229 
10230 	/*
10231 	 * Commands may sneak in while we released the mutex in
10232 	 * DDI_SUSPEND, we should block new commands. However, old
10233 	 * commands that are still in the driver at this point should
10234 	 * still be allowed to drain.
10235 	 */
10236 	mutex_enter(SD_MUTEX(un));
10237 	/*
10238 	 * Must wait here if either the device is suspended or
10239 	 * if it's power level is changing.
10240 	 */
10241 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10242 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10243 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10244 	}
10245 
10246 	un->un_ncmds_in_driver++;
10247 
10248 	/*
10249 	 * atapi: Since we are running the CD for now in PIO mode we need to
10250 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10251 	 * the HBA's init_pkt routine.
10252 	 */
10253 	if (un->un_f_cfg_is_atapi == TRUE) {
10254 		mutex_exit(SD_MUTEX(un));
10255 		bp_mapin(bp);
10256 		mutex_enter(SD_MUTEX(un));
10257 	}
10258 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10259 	    un->un_ncmds_in_driver);
10260 
10261 	mutex_exit(SD_MUTEX(un));
10262 
10263 	/*
10264 	 * This will (eventually) allocate the sd_xbuf area and
10265 	 * call sd_xbuf_strategy().  We just want to return the
10266 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10267 	 * imized tail call which saves us a stack frame.
10268 	 */
10269 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10270 }
10271 
10272 
10273 /*
10274  *    Function: sd_xbuf_strategy
10275  *
10276  * Description: Function for initiating IO operations via the
10277  *		ddi_xbuf_qstrategy() mechanism.
10278  *
10279  *     Context: Kernel thread context.
10280  */
10281 
10282 static void
10283 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10284 {
10285 	struct sd_lun *un = arg;
10286 
10287 	ASSERT(bp != NULL);
10288 	ASSERT(xp != NULL);
10289 	ASSERT(un != NULL);
10290 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10291 
10292 	/*
10293 	 * Initialize the fields in the xbuf and save a pointer to the
10294 	 * xbuf in bp->b_private.
10295 	 */
10296 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10297 
10298 	/* Send the buf down the iostart chain */
10299 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10300 }
10301 
10302 
10303 /*
10304  *    Function: sd_xbuf_init
10305  *
10306  * Description: Prepare the given sd_xbuf struct for use.
10307  *
10308  *   Arguments: un - ptr to softstate
10309  *		bp - ptr to associated buf(9S)
10310  *		xp - ptr to associated sd_xbuf
10311  *		chain_type - IO chain type to use:
10312  *			SD_CHAIN_NULL
10313  *			SD_CHAIN_BUFIO
10314  *			SD_CHAIN_USCSI
10315  *			SD_CHAIN_DIRECT
10316  *			SD_CHAIN_DIRECT_PRIORITY
10317  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10318  *			initialization; may be NULL if none.
10319  *
10320  *     Context: Kernel thread context
10321  */
10322 
10323 static void
10324 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10325 	uchar_t chain_type, void *pktinfop)
10326 {
10327 	int index;
10328 
10329 	ASSERT(un != NULL);
10330 	ASSERT(bp != NULL);
10331 	ASSERT(xp != NULL);
10332 
10333 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10334 	    bp, chain_type);
10335 
10336 	xp->xb_un	= un;
10337 	xp->xb_pktp	= NULL;
10338 	xp->xb_pktinfo	= pktinfop;
10339 	xp->xb_private	= bp->b_private;
10340 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10341 
10342 	/*
10343 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10344 	 * upon the specified chain type to use.
10345 	 */
10346 	switch (chain_type) {
10347 	case SD_CHAIN_NULL:
10348 		/*
10349 		 * Fall thru to just use the values for the buf type, even
10350 		 * tho for the NULL chain these values will never be used.
10351 		 */
10352 		/* FALLTHRU */
10353 	case SD_CHAIN_BUFIO:
10354 		index = un->un_buf_chain_type;
10355 		break;
10356 	case SD_CHAIN_USCSI:
10357 		index = un->un_uscsi_chain_type;
10358 		break;
10359 	case SD_CHAIN_DIRECT:
10360 		index = un->un_direct_chain_type;
10361 		break;
10362 	case SD_CHAIN_DIRECT_PRIORITY:
10363 		index = un->un_priority_chain_type;
10364 		break;
10365 	default:
10366 		/* We're really broken if we ever get here... */
10367 		panic("sd_xbuf_init: illegal chain type!");
10368 		/*NOTREACHED*/
10369 	}
10370 
10371 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10372 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10373 
10374 	/*
10375 	 * It might be a bit easier to simply bzero the entire xbuf above,
10376 	 * but it turns out that since we init a fair number of members anyway,
10377 	 * we save a fair number cycles by doing explicit assignment of zero.
10378 	 */
10379 	xp->xb_pkt_flags	= 0;
10380 	xp->xb_dma_resid	= 0;
10381 	xp->xb_retry_count	= 0;
10382 	xp->xb_victim_retry_count = 0;
10383 	xp->xb_ua_retry_count	= 0;
10384 	xp->xb_nr_retry_count	= 0;
10385 	xp->xb_sense_bp		= NULL;
10386 	xp->xb_sense_status	= 0;
10387 	xp->xb_sense_state	= 0;
10388 	xp->xb_sense_resid	= 0;
10389 
10390 	bp->b_private	= xp;
10391 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10392 	bp->b_resid	= 0;
10393 	bp->av_forw	= NULL;
10394 	bp->av_back	= NULL;
10395 	bioerror(bp, 0);
10396 
10397 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10398 }
10399 
10400 
10401 /*
10402  *    Function: sd_uscsi_strategy
10403  *
10404  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10405  *
10406  *   Arguments: bp - buf struct ptr
10407  *
10408  * Return Code: Always returns 0
10409  *
10410  *     Context: Kernel thread context
10411  */
10412 
10413 static int
10414 sd_uscsi_strategy(struct buf *bp)
10415 {
10416 	struct sd_lun		*un;
10417 	struct sd_uscsi_info	*uip;
10418 	struct sd_xbuf		*xp;
10419 	uchar_t			chain_type;
10420 
10421 	ASSERT(bp != NULL);
10422 
10423 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10424 	if (un == NULL) {
10425 		bioerror(bp, EIO);
10426 		bp->b_resid = bp->b_bcount;
10427 		biodone(bp);
10428 		return (0);
10429 	}
10430 
10431 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10432 
10433 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10434 
10435 	mutex_enter(SD_MUTEX(un));
10436 	/*
10437 	 * atapi: Since we are running the CD for now in PIO mode we need to
10438 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10439 	 * the HBA's init_pkt routine.
10440 	 */
10441 	if (un->un_f_cfg_is_atapi == TRUE) {
10442 		mutex_exit(SD_MUTEX(un));
10443 		bp_mapin(bp);
10444 		mutex_enter(SD_MUTEX(un));
10445 	}
10446 	un->un_ncmds_in_driver++;
10447 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10448 	    un->un_ncmds_in_driver);
10449 	mutex_exit(SD_MUTEX(un));
10450 
10451 	/*
10452 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10453 	 */
10454 	ASSERT(bp->b_private != NULL);
10455 	uip = (struct sd_uscsi_info *)bp->b_private;
10456 
10457 	switch (uip->ui_flags) {
10458 	case SD_PATH_DIRECT:
10459 		chain_type = SD_CHAIN_DIRECT;
10460 		break;
10461 	case SD_PATH_DIRECT_PRIORITY:
10462 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10463 		break;
10464 	default:
10465 		chain_type = SD_CHAIN_USCSI;
10466 		break;
10467 	}
10468 
10469 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10470 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10471 
10472 	/* Use the index obtained within xbuf_init */
10473 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10474 
10475 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10476 
10477 	return (0);
10478 }
10479 
10480 /*
10481  *    Function: sd_send_scsi_cmd
10482  *
10483  * Description: Runs a USCSI command for user (when called thru sdioctl),
10484  *		or for the driver
10485  *
10486  *   Arguments: dev - the dev_t for the device
10487  *		incmd - ptr to a valid uscsi_cmd struct
10488  *		flag - bit flag, indicating open settings, 32/64 bit type
10489  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10490  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10491  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10492  *			to use the USCSI "direct" chain and bypass the normal
10493  *			command waitq.
10494  *
10495  * Return Code: 0 -  successful completion of the given command
10496  *		EIO - scsi_uscsi_handle_command() failed
10497  *		ENXIO  - soft state not found for specified dev
10498  *		EINVAL
10499  *		EFAULT - copyin/copyout error
10500  *		return code of scsi_uscsi_handle_command():
10501  *			EIO
10502  *			ENXIO
10503  *			EACCES
10504  *
10505  *     Context: Waits for command to complete. Can sleep.
10506  */
10507 
10508 static int
10509 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10510 	enum uio_seg dataspace, int path_flag)
10511 {
10512 	struct sd_uscsi_info	*uip;
10513 	struct uscsi_cmd	*uscmd;
10514 	struct sd_lun	*un;
10515 	int	format = 0;
10516 	int	rval;
10517 
10518 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10519 	if (un == NULL) {
10520 		return (ENXIO);
10521 	}
10522 
10523 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10524 
10525 #ifdef SDDEBUG
10526 	switch (dataspace) {
10527 	case UIO_USERSPACE:
10528 		SD_TRACE(SD_LOG_IO, un,
10529 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10530 		break;
10531 	case UIO_SYSSPACE:
10532 		SD_TRACE(SD_LOG_IO, un,
10533 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10534 		break;
10535 	default:
10536 		SD_TRACE(SD_LOG_IO, un,
10537 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10538 		break;
10539 	}
10540 #endif
10541 
10542 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10543 	    SD_ADDRESS(un), &uscmd);
10544 	if (rval != 0) {
10545 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10546 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10547 		return (rval);
10548 	}
10549 
10550 	if ((uscmd->uscsi_cdb != NULL) &&
10551 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10552 		mutex_enter(SD_MUTEX(un));
10553 		un->un_f_format_in_progress = TRUE;
10554 		mutex_exit(SD_MUTEX(un));
10555 		format = 1;
10556 	}
10557 
10558 	/*
10559 	 * Allocate an sd_uscsi_info struct and fill it with the info
10560 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10561 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10562 	 * since we allocate the buf here in this function, we do not
10563 	 * need to preserve the prior contents of b_private.
10564 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10565 	 */
10566 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10567 	uip->ui_flags = path_flag;
10568 	uip->ui_cmdp = uscmd;
10569 
10570 	/*
10571 	 * Commands sent with priority are intended for error recovery
10572 	 * situations, and do not have retries performed.
10573 	 */
10574 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10575 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10576 	}
10577 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10578 
10579 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10580 	    sd_uscsi_strategy, NULL, uip);
10581 
10582 #ifdef SDDEBUG
10583 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10584 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10585 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10586 	if (uscmd->uscsi_bufaddr != NULL) {
10587 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10588 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10589 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10590 		if (dataspace == UIO_SYSSPACE) {
10591 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10592 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10593 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10594 		}
10595 	}
10596 #endif
10597 
10598 	if (format == 1) {
10599 		mutex_enter(SD_MUTEX(un));
10600 		un->un_f_format_in_progress = FALSE;
10601 		mutex_exit(SD_MUTEX(un));
10602 	}
10603 
10604 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10605 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10606 
10607 	return (rval);
10608 }
10609 
10610 
10611 /*
10612  *    Function: sd_buf_iodone
10613  *
10614  * Description: Frees the sd_xbuf & returns the buf to its originator.
10615  *
10616  *     Context: May be called from interrupt context.
10617  */
10618 /* ARGSUSED */
10619 static void
10620 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10621 {
10622 	struct sd_xbuf *xp;
10623 
10624 	ASSERT(un != NULL);
10625 	ASSERT(bp != NULL);
10626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10627 
10628 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10629 
10630 	xp = SD_GET_XBUF(bp);
10631 	ASSERT(xp != NULL);
10632 
10633 	mutex_enter(SD_MUTEX(un));
10634 
10635 	/*
10636 	 * Grab time when the cmd completed.
10637 	 * This is used for determining if the system has been
10638 	 * idle long enough to make it idle to the PM framework.
10639 	 * This is for lowering the overhead, and therefore improving
10640 	 * performance per I/O operation.
10641 	 */
10642 	un->un_pm_idle_time = ddi_get_time();
10643 
10644 	un->un_ncmds_in_driver--;
10645 	ASSERT(un->un_ncmds_in_driver >= 0);
10646 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10647 	    un->un_ncmds_in_driver);
10648 
10649 	mutex_exit(SD_MUTEX(un));
10650 
10651 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10652 	biodone(bp);				/* bp is gone after this */
10653 
10654 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10655 }
10656 
10657 
10658 /*
10659  *    Function: sd_uscsi_iodone
10660  *
10661  * Description: Frees the sd_xbuf & returns the buf to its originator.
10662  *
10663  *     Context: May be called from interrupt context.
10664  */
10665 /* ARGSUSED */
10666 static void
10667 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10668 {
10669 	struct sd_xbuf *xp;
10670 
10671 	ASSERT(un != NULL);
10672 	ASSERT(bp != NULL);
10673 
10674 	xp = SD_GET_XBUF(bp);
10675 	ASSERT(xp != NULL);
10676 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10677 
10678 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10679 
10680 	bp->b_private = xp->xb_private;
10681 
10682 	mutex_enter(SD_MUTEX(un));
10683 
10684 	/*
10685 	 * Grab time when the cmd completed.
10686 	 * This is used for determining if the system has been
10687 	 * idle long enough to make it idle to the PM framework.
10688 	 * This is for lowering the overhead, and therefore improving
10689 	 * performance per I/O operation.
10690 	 */
10691 	un->un_pm_idle_time = ddi_get_time();
10692 
10693 	un->un_ncmds_in_driver--;
10694 	ASSERT(un->un_ncmds_in_driver >= 0);
10695 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10696 	    un->un_ncmds_in_driver);
10697 
10698 	mutex_exit(SD_MUTEX(un));
10699 
10700 	kmem_free(xp, sizeof (struct sd_xbuf));
10701 	biodone(bp);
10702 
10703 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10704 }
10705 
10706 
10707 /*
10708  *    Function: sd_mapblockaddr_iostart
10709  *
10710  * Description: Verify request lies within the partition limits for
10711  *		the indicated minor device.  Issue "overrun" buf if
10712  *		request would exceed partition range.  Converts
10713  *		partition-relative block address to absolute.
10714  *
10715  *     Context: Can sleep
10716  *
10717  *      Issues: This follows what the old code did, in terms of accessing
10718  *		some of the partition info in the unit struct without holding
10719  *		the mutext.  This is a general issue, if the partition info
10720  *		can be altered while IO is in progress... as soon as we send
10721  *		a buf, its partitioning can be invalid before it gets to the
10722  *		device.  Probably the right fix is to move partitioning out
10723  *		of the driver entirely.
10724  */
10725 
10726 static void
10727 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10728 {
10729 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10730 	daddr_t	blocknum;	/* Block number specified by the buf */
10731 	size_t	requested_nblocks;
10732 	size_t	available_nblocks;
10733 	int	partition;
10734 	diskaddr_t	partition_offset;
10735 	struct sd_xbuf *xp;
10736 
10737 
10738 	ASSERT(un != NULL);
10739 	ASSERT(bp != NULL);
10740 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10741 
10742 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10743 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10744 
10745 	xp = SD_GET_XBUF(bp);
10746 	ASSERT(xp != NULL);
10747 
10748 	/*
10749 	 * If the geometry is not indicated as valid, attempt to access
10750 	 * the unit & verify the geometry/label. This can be the case for
10751 	 * removable-media devices, of if the device was opened in
10752 	 * NDELAY/NONBLOCK mode.
10753 	 */
10754 	if (!SD_IS_VALID_LABEL(un) &&
10755 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10756 		/*
10757 		 * For removable devices it is possible to start an I/O
10758 		 * without a media by opening the device in nodelay mode.
10759 		 * Also for writable CDs there can be many scenarios where
10760 		 * there is no geometry yet but volume manager is trying to
10761 		 * issue a read() just because it can see TOC on the CD. So
10762 		 * do not print a message for removables.
10763 		 */
10764 		if (!un->un_f_has_removable_media) {
10765 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10766 			    "i/o to invalid geometry\n");
10767 		}
10768 		bioerror(bp, EIO);
10769 		bp->b_resid = bp->b_bcount;
10770 		SD_BEGIN_IODONE(index, un, bp);
10771 		return;
10772 	}
10773 
10774 	partition = SDPART(bp->b_edev);
10775 
10776 	nblocks = 0;
10777 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10778 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10779 
10780 	/*
10781 	 * blocknum is the starting block number of the request. At this
10782 	 * point it is still relative to the start of the minor device.
10783 	 */
10784 	blocknum = xp->xb_blkno;
10785 
10786 	/*
10787 	 * Legacy: If the starting block number is one past the last block
10788 	 * in the partition, do not set B_ERROR in the buf.
10789 	 */
10790 	if (blocknum == nblocks)  {
10791 		goto error_exit;
10792 	}
10793 
10794 	/*
10795 	 * Confirm that the first block of the request lies within the
10796 	 * partition limits. Also the requested number of bytes must be
10797 	 * a multiple of the system block size.
10798 	 */
10799 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10800 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10801 		bp->b_flags |= B_ERROR;
10802 		goto error_exit;
10803 	}
10804 
10805 	/*
10806 	 * If the requsted # blocks exceeds the available # blocks, that
10807 	 * is an overrun of the partition.
10808 	 */
10809 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10810 	available_nblocks = (size_t)(nblocks - blocknum);
10811 	ASSERT(nblocks >= blocknum);
10812 
10813 	if (requested_nblocks > available_nblocks) {
10814 		/*
10815 		 * Allocate an "overrun" buf to allow the request to proceed
10816 		 * for the amount of space available in the partition. The
10817 		 * amount not transferred will be added into the b_resid
10818 		 * when the operation is complete. The overrun buf
10819 		 * replaces the original buf here, and the original buf
10820 		 * is saved inside the overrun buf, for later use.
10821 		 */
10822 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10823 		    (offset_t)(requested_nblocks - available_nblocks));
10824 		size_t count = bp->b_bcount - resid;
10825 		/*
10826 		 * Note: count is an unsigned entity thus it'll NEVER
10827 		 * be less than 0 so ASSERT the original values are
10828 		 * correct.
10829 		 */
10830 		ASSERT(bp->b_bcount >= resid);
10831 
10832 		bp = sd_bioclone_alloc(bp, count, blocknum,
10833 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10834 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10835 		ASSERT(xp != NULL);
10836 	}
10837 
10838 	/* At this point there should be no residual for this buf. */
10839 	ASSERT(bp->b_resid == 0);
10840 
10841 	/* Convert the block number to an absolute address. */
10842 	xp->xb_blkno += partition_offset;
10843 
10844 	SD_NEXT_IOSTART(index, un, bp);
10845 
10846 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10847 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10848 
10849 	return;
10850 
10851 error_exit:
10852 	bp->b_resid = bp->b_bcount;
10853 	SD_BEGIN_IODONE(index, un, bp);
10854 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10855 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10856 }
10857 
10858 
10859 /*
10860  *    Function: sd_mapblockaddr_iodone
10861  *
10862  * Description: Completion-side processing for partition management.
10863  *
10864  *     Context: May be called under interrupt context
10865  */
10866 
10867 static void
10868 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10869 {
10870 	/* int	partition; */	/* Not used, see below. */
10871 	ASSERT(un != NULL);
10872 	ASSERT(bp != NULL);
10873 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10874 
10875 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10876 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10877 
10878 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10879 		/*
10880 		 * We have an "overrun" buf to deal with...
10881 		 */
10882 		struct sd_xbuf	*xp;
10883 		struct buf	*obp;	/* ptr to the original buf */
10884 
10885 		xp = SD_GET_XBUF(bp);
10886 		ASSERT(xp != NULL);
10887 
10888 		/* Retrieve the pointer to the original buf */
10889 		obp = (struct buf *)xp->xb_private;
10890 		ASSERT(obp != NULL);
10891 
10892 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10893 		bioerror(obp, bp->b_error);
10894 
10895 		sd_bioclone_free(bp);
10896 
10897 		/*
10898 		 * Get back the original buf.
10899 		 * Note that since the restoration of xb_blkno below
10900 		 * was removed, the sd_xbuf is not needed.
10901 		 */
10902 		bp = obp;
10903 		/*
10904 		 * xp = SD_GET_XBUF(bp);
10905 		 * ASSERT(xp != NULL);
10906 		 */
10907 	}
10908 
10909 	/*
10910 	 * Convert sd->xb_blkno back to a minor-device relative value.
10911 	 * Note: this has been commented out, as it is not needed in the
10912 	 * current implementation of the driver (ie, since this function
10913 	 * is at the top of the layering chains, so the info will be
10914 	 * discarded) and it is in the "hot" IO path.
10915 	 *
10916 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10917 	 * xp->xb_blkno -= un->un_offset[partition];
10918 	 */
10919 
10920 	SD_NEXT_IODONE(index, un, bp);
10921 
10922 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10923 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10924 }
10925 
10926 
10927 /*
10928  *    Function: sd_mapblocksize_iostart
10929  *
10930  * Description: Convert between system block size (un->un_sys_blocksize)
10931  *		and target block size (un->un_tgt_blocksize).
10932  *
10933  *     Context: Can sleep to allocate resources.
10934  *
10935  * Assumptions: A higher layer has already performed any partition validation,
10936  *		and converted the xp->xb_blkno to an absolute value relative
10937  *		to the start of the device.
10938  *
10939  *		It is also assumed that the higher layer has implemented
10940  *		an "overrun" mechanism for the case where the request would
10941  *		read/write beyond the end of a partition.  In this case we
10942  *		assume (and ASSERT) that bp->b_resid == 0.
10943  *
10944  *		Note: The implementation for this routine assumes the target
10945  *		block size remains constant between allocation and transport.
10946  */
10947 
10948 static void
10949 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10950 {
10951 	struct sd_mapblocksize_info	*bsp;
10952 	struct sd_xbuf			*xp;
10953 	offset_t first_byte;
10954 	daddr_t	start_block, end_block;
10955 	daddr_t	request_bytes;
10956 	ushort_t is_aligned = FALSE;
10957 
10958 	ASSERT(un != NULL);
10959 	ASSERT(bp != NULL);
10960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10961 	ASSERT(bp->b_resid == 0);
10962 
10963 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10964 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10965 
10966 	/*
10967 	 * For a non-writable CD, a write request is an error
10968 	 */
10969 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10970 	    (un->un_f_mmc_writable_media == FALSE)) {
10971 		bioerror(bp, EIO);
10972 		bp->b_resid = bp->b_bcount;
10973 		SD_BEGIN_IODONE(index, un, bp);
10974 		return;
10975 	}
10976 
10977 	/*
10978 	 * We do not need a shadow buf if the device is using
10979 	 * un->un_sys_blocksize as its block size or if bcount == 0.
10980 	 * In this case there is no layer-private data block allocated.
10981 	 */
10982 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10983 	    (bp->b_bcount == 0)) {
10984 		goto done;
10985 	}
10986 
10987 #if defined(__i386) || defined(__amd64)
10988 	/* We do not support non-block-aligned transfers for ROD devices */
10989 	ASSERT(!ISROD(un));
10990 #endif
10991 
10992 	xp = SD_GET_XBUF(bp);
10993 	ASSERT(xp != NULL);
10994 
10995 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10996 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10997 	    un->un_tgt_blocksize, un->un_sys_blocksize);
10998 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10999 	    "request start block:0x%x\n", xp->xb_blkno);
11000 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11001 	    "request len:0x%x\n", bp->b_bcount);
11002 
11003 	/*
11004 	 * Allocate the layer-private data area for the mapblocksize layer.
11005 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11006 	 * struct to store the pointer to their layer-private data block, but
11007 	 * each layer also has the responsibility of restoring the prior
11008 	 * contents of xb_private before returning the buf/xbuf to the
11009 	 * higher layer that sent it.
11010 	 *
11011 	 * Here we save the prior contents of xp->xb_private into the
11012 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11013 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11014 	 * the layer-private area and returning the buf/xbuf to the layer
11015 	 * that sent it.
11016 	 *
11017 	 * Note that here we use kmem_zalloc for the allocation as there are
11018 	 * parts of the mapblocksize code that expect certain fields to be
11019 	 * zero unless explicitly set to a required value.
11020 	 */
11021 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11022 	bsp->mbs_oprivate = xp->xb_private;
11023 	xp->xb_private = bsp;
11024 
11025 	/*
11026 	 * This treats the data on the disk (target) as an array of bytes.
11027 	 * first_byte is the byte offset, from the beginning of the device,
11028 	 * to the location of the request. This is converted from a
11029 	 * un->un_sys_blocksize block address to a byte offset, and then back
11030 	 * to a block address based upon a un->un_tgt_blocksize block size.
11031 	 *
11032 	 * xp->xb_blkno should be absolute upon entry into this function,
11033 	 * but, but it is based upon partitions that use the "system"
11034 	 * block size. It must be adjusted to reflect the block size of
11035 	 * the target.
11036 	 *
11037 	 * Note that end_block is actually the block that follows the last
11038 	 * block of the request, but that's what is needed for the computation.
11039 	 */
11040 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11041 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11042 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11043 	    un->un_tgt_blocksize;
11044 
11045 	/* request_bytes is rounded up to a multiple of the target block size */
11046 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11047 
11048 	/*
11049 	 * See if the starting address of the request and the request
11050 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11051 	 * then we do not need to allocate a shadow buf to handle the request.
11052 	 */
11053 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11054 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11055 		is_aligned = TRUE;
11056 	}
11057 
11058 	if ((bp->b_flags & B_READ) == 0) {
11059 		/*
11060 		 * Lock the range for a write operation. An aligned request is
11061 		 * considered a simple write; otherwise the request must be a
11062 		 * read-modify-write.
11063 		 */
11064 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11065 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11066 	}
11067 
11068 	/*
11069 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11070 	 * where the READ command is generated for a read-modify-write. (The
11071 	 * write phase is deferred until after the read completes.)
11072 	 */
11073 	if (is_aligned == FALSE) {
11074 
11075 		struct sd_mapblocksize_info	*shadow_bsp;
11076 		struct sd_xbuf	*shadow_xp;
11077 		struct buf	*shadow_bp;
11078 
11079 		/*
11080 		 * Allocate the shadow buf and it associated xbuf. Note that
11081 		 * after this call the xb_blkno value in both the original
11082 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11083 		 * same: absolute relative to the start of the device, and
11084 		 * adjusted for the target block size. The b_blkno in the
11085 		 * shadow buf will also be set to this value. We should never
11086 		 * change b_blkno in the original bp however.
11087 		 *
11088 		 * Note also that the shadow buf will always need to be a
11089 		 * READ command, regardless of whether the incoming command
11090 		 * is a READ or a WRITE.
11091 		 */
11092 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11093 		    xp->xb_blkno,
11094 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11095 
11096 		shadow_xp = SD_GET_XBUF(shadow_bp);
11097 
11098 		/*
11099 		 * Allocate the layer-private data for the shadow buf.
11100 		 * (No need to preserve xb_private in the shadow xbuf.)
11101 		 */
11102 		shadow_xp->xb_private = shadow_bsp =
11103 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11104 
11105 		/*
11106 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11107 		 * to figure out where the start of the user data is (based upon
11108 		 * the system block size) in the data returned by the READ
11109 		 * command (which will be based upon the target blocksize). Note
11110 		 * that this is only really used if the request is unaligned.
11111 		 */
11112 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11113 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11114 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11115 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11116 
11117 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11118 
11119 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11120 
11121 		/* Transfer the wmap (if any) to the shadow buf */
11122 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11123 		bsp->mbs_wmp = NULL;
11124 
11125 		/*
11126 		 * The shadow buf goes on from here in place of the
11127 		 * original buf.
11128 		 */
11129 		shadow_bsp->mbs_orig_bp = bp;
11130 		bp = shadow_bp;
11131 	}
11132 
11133 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11134 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11135 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11136 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11137 	    request_bytes);
11138 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11139 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11140 
11141 done:
11142 	SD_NEXT_IOSTART(index, un, bp);
11143 
11144 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11145 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11146 }
11147 
11148 
11149 /*
11150  *    Function: sd_mapblocksize_iodone
11151  *
11152  * Description: Completion side processing for block-size mapping.
11153  *
11154  *     Context: May be called under interrupt context
11155  */
11156 
11157 static void
11158 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11159 {
11160 	struct sd_mapblocksize_info	*bsp;
11161 	struct sd_xbuf	*xp;
11162 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11163 	struct buf	*orig_bp;	/* ptr to the original buf */
11164 	offset_t	shadow_end;
11165 	offset_t	request_end;
11166 	offset_t	shadow_start;
11167 	ssize_t		copy_offset;
11168 	size_t		copy_length;
11169 	size_t		shortfall;
11170 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11171 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11172 
11173 	ASSERT(un != NULL);
11174 	ASSERT(bp != NULL);
11175 
11176 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11177 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11178 
11179 	/*
11180 	 * There is no shadow buf or layer-private data if the target is
11181 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11182 	 */
11183 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11184 	    (bp->b_bcount == 0)) {
11185 		goto exit;
11186 	}
11187 
11188 	xp = SD_GET_XBUF(bp);
11189 	ASSERT(xp != NULL);
11190 
11191 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11192 	bsp = xp->xb_private;
11193 
11194 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11195 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11196 
11197 	if (is_write) {
11198 		/*
11199 		 * For a WRITE request we must free up the block range that
11200 		 * we have locked up.  This holds regardless of whether this is
11201 		 * an aligned write request or a read-modify-write request.
11202 		 */
11203 		sd_range_unlock(un, bsp->mbs_wmp);
11204 		bsp->mbs_wmp = NULL;
11205 	}
11206 
11207 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11208 		/*
11209 		 * An aligned read or write command will have no shadow buf;
11210 		 * there is not much else to do with it.
11211 		 */
11212 		goto done;
11213 	}
11214 
11215 	orig_bp = bsp->mbs_orig_bp;
11216 	ASSERT(orig_bp != NULL);
11217 	orig_xp = SD_GET_XBUF(orig_bp);
11218 	ASSERT(orig_xp != NULL);
11219 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11220 
11221 	if (!is_write && has_wmap) {
11222 		/*
11223 		 * A READ with a wmap means this is the READ phase of a
11224 		 * read-modify-write. If an error occurred on the READ then
11225 		 * we do not proceed with the WRITE phase or copy any data.
11226 		 * Just release the write maps and return with an error.
11227 		 */
11228 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11229 			orig_bp->b_resid = orig_bp->b_bcount;
11230 			bioerror(orig_bp, bp->b_error);
11231 			sd_range_unlock(un, bsp->mbs_wmp);
11232 			goto freebuf_done;
11233 		}
11234 	}
11235 
11236 	/*
11237 	 * Here is where we set up to copy the data from the shadow buf
11238 	 * into the space associated with the original buf.
11239 	 *
11240 	 * To deal with the conversion between block sizes, these
11241 	 * computations treat the data as an array of bytes, with the
11242 	 * first byte (byte 0) corresponding to the first byte in the
11243 	 * first block on the disk.
11244 	 */
11245 
11246 	/*
11247 	 * shadow_start and shadow_len indicate the location and size of
11248 	 * the data returned with the shadow IO request.
11249 	 */
11250 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11251 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11252 
11253 	/*
11254 	 * copy_offset gives the offset (in bytes) from the start of the first
11255 	 * block of the READ request to the beginning of the data.  We retrieve
11256 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11257 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11258 	 * data to be copied (in bytes).
11259 	 */
11260 	copy_offset  = bsp->mbs_copy_offset;
11261 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11262 	copy_length  = orig_bp->b_bcount;
11263 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11264 
11265 	/*
11266 	 * Set up the resid and error fields of orig_bp as appropriate.
11267 	 */
11268 	if (shadow_end >= request_end) {
11269 		/* We got all the requested data; set resid to zero */
11270 		orig_bp->b_resid = 0;
11271 	} else {
11272 		/*
11273 		 * We failed to get enough data to fully satisfy the original
11274 		 * request. Just copy back whatever data we got and set
11275 		 * up the residual and error code as required.
11276 		 *
11277 		 * 'shortfall' is the amount by which the data received with the
11278 		 * shadow buf has "fallen short" of the requested amount.
11279 		 */
11280 		shortfall = (size_t)(request_end - shadow_end);
11281 
11282 		if (shortfall > orig_bp->b_bcount) {
11283 			/*
11284 			 * We did not get enough data to even partially
11285 			 * fulfill the original request.  The residual is
11286 			 * equal to the amount requested.
11287 			 */
11288 			orig_bp->b_resid = orig_bp->b_bcount;
11289 		} else {
11290 			/*
11291 			 * We did not get all the data that we requested
11292 			 * from the device, but we will try to return what
11293 			 * portion we did get.
11294 			 */
11295 			orig_bp->b_resid = shortfall;
11296 		}
11297 		ASSERT(copy_length >= orig_bp->b_resid);
11298 		copy_length  -= orig_bp->b_resid;
11299 	}
11300 
11301 	/* Propagate the error code from the shadow buf to the original buf */
11302 	bioerror(orig_bp, bp->b_error);
11303 
11304 	if (is_write) {
11305 		goto freebuf_done;	/* No data copying for a WRITE */
11306 	}
11307 
11308 	if (has_wmap) {
11309 		/*
11310 		 * This is a READ command from the READ phase of a
11311 		 * read-modify-write request. We have to copy the data given
11312 		 * by the user OVER the data returned by the READ command,
11313 		 * then convert the command from a READ to a WRITE and send
11314 		 * it back to the target.
11315 		 */
11316 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11317 		    copy_length);
11318 
11319 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11320 
11321 		/*
11322 		 * Dispatch the WRITE command to the taskq thread, which
11323 		 * will in turn send the command to the target. When the
11324 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11325 		 * will get called again as part of the iodone chain
11326 		 * processing for it. Note that we will still be dealing
11327 		 * with the shadow buf at that point.
11328 		 */
11329 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11330 		    KM_NOSLEEP) != 0) {
11331 			/*
11332 			 * Dispatch was successful so we are done. Return
11333 			 * without going any higher up the iodone chain. Do
11334 			 * not free up any layer-private data until after the
11335 			 * WRITE completes.
11336 			 */
11337 			return;
11338 		}
11339 
11340 		/*
11341 		 * Dispatch of the WRITE command failed; set up the error
11342 		 * condition and send this IO back up the iodone chain.
11343 		 */
11344 		bioerror(orig_bp, EIO);
11345 		orig_bp->b_resid = orig_bp->b_bcount;
11346 
11347 	} else {
11348 		/*
11349 		 * This is a regular READ request (ie, not a RMW). Copy the
11350 		 * data from the shadow buf into the original buf. The
11351 		 * copy_offset compensates for any "misalignment" between the
11352 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11353 		 * original buf (with its un->un_sys_blocksize blocks).
11354 		 */
11355 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11356 		    copy_length);
11357 	}
11358 
11359 freebuf_done:
11360 
11361 	/*
11362 	 * At this point we still have both the shadow buf AND the original
11363 	 * buf to deal with, as well as the layer-private data area in each.
11364 	 * Local variables are as follows:
11365 	 *
11366 	 * bp -- points to shadow buf
11367 	 * xp -- points to xbuf of shadow buf
11368 	 * bsp -- points to layer-private data area of shadow buf
11369 	 * orig_bp -- points to original buf
11370 	 *
11371 	 * First free the shadow buf and its associated xbuf, then free the
11372 	 * layer-private data area from the shadow buf. There is no need to
11373 	 * restore xb_private in the shadow xbuf.
11374 	 */
11375 	sd_shadow_buf_free(bp);
11376 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11377 
11378 	/*
11379 	 * Now update the local variables to point to the original buf, xbuf,
11380 	 * and layer-private area.
11381 	 */
11382 	bp = orig_bp;
11383 	xp = SD_GET_XBUF(bp);
11384 	ASSERT(xp != NULL);
11385 	ASSERT(xp == orig_xp);
11386 	bsp = xp->xb_private;
11387 	ASSERT(bsp != NULL);
11388 
11389 done:
11390 	/*
11391 	 * Restore xb_private to whatever it was set to by the next higher
11392 	 * layer in the chain, then free the layer-private data area.
11393 	 */
11394 	xp->xb_private = bsp->mbs_oprivate;
11395 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11396 
11397 exit:
11398 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11399 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11400 
11401 	SD_NEXT_IODONE(index, un, bp);
11402 }
11403 
11404 
11405 /*
11406  *    Function: sd_checksum_iostart
11407  *
11408  * Description: A stub function for a layer that's currently not used.
11409  *		For now just a placeholder.
11410  *
11411  *     Context: Kernel thread context
11412  */
11413 
11414 static void
11415 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11416 {
11417 	ASSERT(un != NULL);
11418 	ASSERT(bp != NULL);
11419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11420 	SD_NEXT_IOSTART(index, un, bp);
11421 }
11422 
11423 
11424 /*
11425  *    Function: sd_checksum_iodone
11426  *
11427  * Description: A stub function for a layer that's currently not used.
11428  *		For now just a placeholder.
11429  *
11430  *     Context: May be called under interrupt context
11431  */
11432 
11433 static void
11434 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11435 {
11436 	ASSERT(un != NULL);
11437 	ASSERT(bp != NULL);
11438 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11439 	SD_NEXT_IODONE(index, un, bp);
11440 }
11441 
11442 
11443 /*
11444  *    Function: sd_checksum_uscsi_iostart
11445  *
11446  * Description: A stub function for a layer that's currently not used.
11447  *		For now just a placeholder.
11448  *
11449  *     Context: Kernel thread context
11450  */
11451 
11452 static void
11453 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11454 {
11455 	ASSERT(un != NULL);
11456 	ASSERT(bp != NULL);
11457 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11458 	SD_NEXT_IOSTART(index, un, bp);
11459 }
11460 
11461 
11462 /*
11463  *    Function: sd_checksum_uscsi_iodone
11464  *
11465  * Description: A stub function for a layer that's currently not used.
11466  *		For now just a placeholder.
11467  *
11468  *     Context: May be called under interrupt context
11469  */
11470 
11471 static void
11472 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11473 {
11474 	ASSERT(un != NULL);
11475 	ASSERT(bp != NULL);
11476 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11477 	SD_NEXT_IODONE(index, un, bp);
11478 }
11479 
11480 
11481 /*
11482  *    Function: sd_pm_iostart
11483  *
11484  * Description: iostart-side routine for Power mangement.
11485  *
11486  *     Context: Kernel thread context
11487  */
11488 
11489 static void
11490 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11491 {
11492 	ASSERT(un != NULL);
11493 	ASSERT(bp != NULL);
11494 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11495 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11496 
11497 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11498 
11499 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11500 		/*
11501 		 * Set up to return the failed buf back up the 'iodone'
11502 		 * side of the calling chain.
11503 		 */
11504 		bioerror(bp, EIO);
11505 		bp->b_resid = bp->b_bcount;
11506 
11507 		SD_BEGIN_IODONE(index, un, bp);
11508 
11509 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11510 		return;
11511 	}
11512 
11513 	SD_NEXT_IOSTART(index, un, bp);
11514 
11515 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11516 }
11517 
11518 
11519 /*
11520  *    Function: sd_pm_iodone
11521  *
11522  * Description: iodone-side routine for power mangement.
11523  *
11524  *     Context: may be called from interrupt context
11525  */
11526 
11527 static void
11528 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11529 {
11530 	ASSERT(un != NULL);
11531 	ASSERT(bp != NULL);
11532 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11533 
11534 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11535 
11536 	/*
11537 	 * After attach the following flag is only read, so don't
11538 	 * take the penalty of acquiring a mutex for it.
11539 	 */
11540 	if (un->un_f_pm_is_enabled == TRUE) {
11541 		sd_pm_exit(un);
11542 	}
11543 
11544 	SD_NEXT_IODONE(index, un, bp);
11545 
11546 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11547 }
11548 
11549 
11550 /*
11551  *    Function: sd_core_iostart
11552  *
11553  * Description: Primary driver function for enqueuing buf(9S) structs from
11554  *		the system and initiating IO to the target device
11555  *
11556  *     Context: Kernel thread context. Can sleep.
11557  *
11558  * Assumptions:  - The given xp->xb_blkno is absolute
11559  *		   (ie, relative to the start of the device).
11560  *		 - The IO is to be done using the native blocksize of
11561  *		   the device, as specified in un->un_tgt_blocksize.
11562  */
11563 /* ARGSUSED */
11564 static void
11565 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11566 {
11567 	struct sd_xbuf *xp;
11568 
11569 	ASSERT(un != NULL);
11570 	ASSERT(bp != NULL);
11571 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11572 	ASSERT(bp->b_resid == 0);
11573 
11574 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11575 
11576 	xp = SD_GET_XBUF(bp);
11577 	ASSERT(xp != NULL);
11578 
11579 	mutex_enter(SD_MUTEX(un));
11580 
11581 	/*
11582 	 * If we are currently in the failfast state, fail any new IO
11583 	 * that has B_FAILFAST set, then return.
11584 	 */
11585 	if ((bp->b_flags & B_FAILFAST) &&
11586 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11587 		mutex_exit(SD_MUTEX(un));
11588 		bioerror(bp, EIO);
11589 		bp->b_resid = bp->b_bcount;
11590 		SD_BEGIN_IODONE(index, un, bp);
11591 		return;
11592 	}
11593 
11594 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11595 		/*
11596 		 * Priority command -- transport it immediately.
11597 		 *
11598 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11599 		 * because all direct priority commands should be associated
11600 		 * with error recovery actions which we don't want to retry.
11601 		 */
11602 		sd_start_cmds(un, bp);
11603 	} else {
11604 		/*
11605 		 * Normal command -- add it to the wait queue, then start
11606 		 * transporting commands from the wait queue.
11607 		 */
11608 		sd_add_buf_to_waitq(un, bp);
11609 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11610 		sd_start_cmds(un, NULL);
11611 	}
11612 
11613 	mutex_exit(SD_MUTEX(un));
11614 
11615 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11616 }
11617 
11618 
11619 /*
11620  *    Function: sd_init_cdb_limits
11621  *
11622  * Description: This is to handle scsi_pkt initialization differences
11623  *		between the driver platforms.
11624  *
11625  *		Legacy behaviors:
11626  *
11627  *		If the block number or the sector count exceeds the
11628  *		capabilities of a Group 0 command, shift over to a
11629  *		Group 1 command. We don't blindly use Group 1
11630  *		commands because a) some drives (CDC Wren IVs) get a
11631  *		bit confused, and b) there is probably a fair amount
11632  *		of speed difference for a target to receive and decode
11633  *		a 10 byte command instead of a 6 byte command.
11634  *
11635  *		The xfer time difference of 6 vs 10 byte CDBs is
11636  *		still significant so this code is still worthwhile.
11637  *		10 byte CDBs are very inefficient with the fas HBA driver
11638  *		and older disks. Each CDB byte took 1 usec with some
11639  *		popular disks.
11640  *
11641  *     Context: Must be called at attach time
11642  */
11643 
11644 static void
11645 sd_init_cdb_limits(struct sd_lun *un)
11646 {
11647 	int hba_cdb_limit;
11648 
11649 	/*
11650 	 * Use CDB_GROUP1 commands for most devices except for
11651 	 * parallel SCSI fixed drives in which case we get better
11652 	 * performance using CDB_GROUP0 commands (where applicable).
11653 	 */
11654 	un->un_mincdb = SD_CDB_GROUP1;
11655 #if !defined(__fibre)
11656 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11657 	    !un->un_f_has_removable_media) {
11658 		un->un_mincdb = SD_CDB_GROUP0;
11659 	}
11660 #endif
11661 
11662 	/*
11663 	 * Try to read the max-cdb-length supported by HBA.
11664 	 */
11665 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11666 	if (0 >= un->un_max_hba_cdb) {
11667 		un->un_max_hba_cdb = CDB_GROUP4;
11668 		hba_cdb_limit = SD_CDB_GROUP4;
11669 	} else if (0 < un->un_max_hba_cdb &&
11670 	    un->un_max_hba_cdb < CDB_GROUP1) {
11671 		hba_cdb_limit = SD_CDB_GROUP0;
11672 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11673 	    un->un_max_hba_cdb < CDB_GROUP5) {
11674 		hba_cdb_limit = SD_CDB_GROUP1;
11675 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11676 	    un->un_max_hba_cdb < CDB_GROUP4) {
11677 		hba_cdb_limit = SD_CDB_GROUP5;
11678 	} else {
11679 		hba_cdb_limit = SD_CDB_GROUP4;
11680 	}
11681 
11682 	/*
11683 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11684 	 * commands for fixed disks unless we are building for a 32 bit
11685 	 * kernel.
11686 	 */
11687 #ifdef _LP64
11688 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11689 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11690 #else
11691 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11692 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11693 #endif
11694 
11695 	/*
11696 	 * x86 systems require the PKT_DMA_PARTIAL flag
11697 	 */
11698 #if defined(__x86)
11699 	un->un_pkt_flags = PKT_DMA_PARTIAL;
11700 #else
11701 	un->un_pkt_flags = 0;
11702 #endif
11703 
11704 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11705 	    ? sizeof (struct scsi_arq_status) : 1);
11706 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11707 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11708 }
11709 
11710 
11711 /*
11712  *    Function: sd_initpkt_for_buf
11713  *
11714  * Description: Allocate and initialize for transport a scsi_pkt struct,
11715  *		based upon the info specified in the given buf struct.
11716  *
11717  *		Assumes the xb_blkno in the request is absolute (ie,
11718  *		relative to the start of the device (NOT partition!).
11719  *		Also assumes that the request is using the native block
11720  *		size of the device (as returned by the READ CAPACITY
11721  *		command).
11722  *
11723  * Return Code: SD_PKT_ALLOC_SUCCESS
11724  *		SD_PKT_ALLOC_FAILURE
11725  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11726  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11727  *
11728  *     Context: Kernel thread and may be called from software interrupt context
11729  *		as part of a sdrunout callback. This function may not block or
11730  *		call routines that block
11731  */
11732 
11733 static int
11734 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11735 {
11736 	struct sd_xbuf	*xp;
11737 	struct scsi_pkt *pktp = NULL;
11738 	struct sd_lun	*un;
11739 	size_t		blockcount;
11740 	daddr_t		startblock;
11741 	int		rval;
11742 	int		cmd_flags;
11743 
11744 	ASSERT(bp != NULL);
11745 	ASSERT(pktpp != NULL);
11746 	xp = SD_GET_XBUF(bp);
11747 	ASSERT(xp != NULL);
11748 	un = SD_GET_UN(bp);
11749 	ASSERT(un != NULL);
11750 	ASSERT(mutex_owned(SD_MUTEX(un)));
11751 	ASSERT(bp->b_resid == 0);
11752 
11753 	SD_TRACE(SD_LOG_IO_CORE, un,
11754 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11755 
11756 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11757 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11758 		/*
11759 		 * Already have a scsi_pkt -- just need DMA resources.
11760 		 * We must recompute the CDB in case the mapping returns
11761 		 * a nonzero pkt_resid.
11762 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11763 		 * that is being retried, the unmap/remap of the DMA resouces
11764 		 * will result in the entire transfer starting over again
11765 		 * from the very first block.
11766 		 */
11767 		ASSERT(xp->xb_pktp != NULL);
11768 		pktp = xp->xb_pktp;
11769 	} else {
11770 		pktp = NULL;
11771 	}
11772 #endif /* __i386 || __amd64 */
11773 
11774 	startblock = xp->xb_blkno;	/* Absolute block num. */
11775 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11776 
11777 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11778 
11779 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11780 
11781 #else
11782 
11783 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11784 
11785 #endif
11786 
11787 	/*
11788 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11789 	 * call scsi_init_pkt, and build the CDB.
11790 	 */
11791 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11792 	    cmd_flags, sdrunout, (caddr_t)un,
11793 	    startblock, blockcount);
11794 
11795 	if (rval == 0) {
11796 		/*
11797 		 * Success.
11798 		 *
11799 		 * If partial DMA is being used and required for this transfer.
11800 		 * set it up here.
11801 		 */
11802 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11803 		    (pktp->pkt_resid != 0)) {
11804 
11805 			/*
11806 			 * Save the CDB length and pkt_resid for the
11807 			 * next xfer
11808 			 */
11809 			xp->xb_dma_resid = pktp->pkt_resid;
11810 
11811 			/* rezero resid */
11812 			pktp->pkt_resid = 0;
11813 
11814 		} else {
11815 			xp->xb_dma_resid = 0;
11816 		}
11817 
11818 		pktp->pkt_flags = un->un_tagflags;
11819 		pktp->pkt_time  = un->un_cmd_timeout;
11820 		pktp->pkt_comp  = sdintr;
11821 
11822 		pktp->pkt_private = bp;
11823 		*pktpp = pktp;
11824 
11825 		SD_TRACE(SD_LOG_IO_CORE, un,
11826 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11827 
11828 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11829 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11830 #endif
11831 
11832 		return (SD_PKT_ALLOC_SUCCESS);
11833 
11834 	}
11835 
11836 	/*
11837 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11838 	 * from sd_setup_rw_pkt.
11839 	 */
11840 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11841 
11842 	if (rval == SD_PKT_ALLOC_FAILURE) {
11843 		*pktpp = NULL;
11844 		/*
11845 		 * Set the driver state to RWAIT to indicate the driver
11846 		 * is waiting on resource allocations. The driver will not
11847 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11848 		 */
11849 		New_state(un, SD_STATE_RWAIT);
11850 
11851 		SD_ERROR(SD_LOG_IO_CORE, un,
11852 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11853 
11854 		if ((bp->b_flags & B_ERROR) != 0) {
11855 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11856 		}
11857 		return (SD_PKT_ALLOC_FAILURE);
11858 	} else {
11859 		/*
11860 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11861 		 *
11862 		 * This should never happen.  Maybe someone messed with the
11863 		 * kernel's minphys?
11864 		 */
11865 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11866 		    "Request rejected: too large for CDB: "
11867 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11868 		SD_ERROR(SD_LOG_IO_CORE, un,
11869 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11870 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11871 
11872 	}
11873 }
11874 
11875 
11876 /*
11877  *    Function: sd_destroypkt_for_buf
11878  *
11879  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11880  *
11881  *     Context: Kernel thread or interrupt context
11882  */
11883 
11884 static void
11885 sd_destroypkt_for_buf(struct buf *bp)
11886 {
11887 	ASSERT(bp != NULL);
11888 	ASSERT(SD_GET_UN(bp) != NULL);
11889 
11890 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11891 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11892 
11893 	ASSERT(SD_GET_PKTP(bp) != NULL);
11894 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11895 
11896 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11897 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11898 }
11899 
11900 /*
11901  *    Function: sd_setup_rw_pkt
11902  *
11903  * Description: Determines appropriate CDB group for the requested LBA
11904  *		and transfer length, calls scsi_init_pkt, and builds
11905  *		the CDB.  Do not use for partial DMA transfers except
11906  *		for the initial transfer since the CDB size must
11907  *		remain constant.
11908  *
11909  *     Context: Kernel thread and may be called from software interrupt
11910  *		context as part of a sdrunout callback. This function may not
11911  *		block or call routines that block
11912  */
11913 
11914 
11915 int
11916 sd_setup_rw_pkt(struct sd_lun *un,
11917     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11918     int (*callback)(caddr_t), caddr_t callback_arg,
11919     diskaddr_t lba, uint32_t blockcount)
11920 {
11921 	struct scsi_pkt *return_pktp;
11922 	union scsi_cdb *cdbp;
11923 	struct sd_cdbinfo *cp = NULL;
11924 	int i;
11925 
11926 	/*
11927 	 * See which size CDB to use, based upon the request.
11928 	 */
11929 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11930 
11931 		/*
11932 		 * Check lba and block count against sd_cdbtab limits.
11933 		 * In the partial DMA case, we have to use the same size
11934 		 * CDB for all the transfers.  Check lba + blockcount
11935 		 * against the max LBA so we know that segment of the
11936 		 * transfer can use the CDB we select.
11937 		 */
11938 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11939 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11940 
11941 			/*
11942 			 * The command will fit into the CDB type
11943 			 * specified by sd_cdbtab[i].
11944 			 */
11945 			cp = sd_cdbtab + i;
11946 
11947 			/*
11948 			 * Call scsi_init_pkt so we can fill in the
11949 			 * CDB.
11950 			 */
11951 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11952 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11953 			    flags, callback, callback_arg);
11954 
11955 			if (return_pktp != NULL) {
11956 
11957 				/*
11958 				 * Return new value of pkt
11959 				 */
11960 				*pktpp = return_pktp;
11961 
11962 				/*
11963 				 * To be safe, zero the CDB insuring there is
11964 				 * no leftover data from a previous command.
11965 				 */
11966 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11967 
11968 				/*
11969 				 * Handle partial DMA mapping
11970 				 */
11971 				if (return_pktp->pkt_resid != 0) {
11972 
11973 					/*
11974 					 * Not going to xfer as many blocks as
11975 					 * originally expected
11976 					 */
11977 					blockcount -=
11978 					    SD_BYTES2TGTBLOCKS(un,
11979 					    return_pktp->pkt_resid);
11980 				}
11981 
11982 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11983 
11984 				/*
11985 				 * Set command byte based on the CDB
11986 				 * type we matched.
11987 				 */
11988 				cdbp->scc_cmd = cp->sc_grpmask |
11989 				    ((bp->b_flags & B_READ) ?
11990 				    SCMD_READ : SCMD_WRITE);
11991 
11992 				SD_FILL_SCSI1_LUN(un, return_pktp);
11993 
11994 				/*
11995 				 * Fill in LBA and length
11996 				 */
11997 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11998 				    (cp->sc_grpcode == CDB_GROUP4) ||
11999 				    (cp->sc_grpcode == CDB_GROUP0) ||
12000 				    (cp->sc_grpcode == CDB_GROUP5));
12001 
12002 				if (cp->sc_grpcode == CDB_GROUP1) {
12003 					FORMG1ADDR(cdbp, lba);
12004 					FORMG1COUNT(cdbp, blockcount);
12005 					return (0);
12006 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12007 					FORMG4LONGADDR(cdbp, lba);
12008 					FORMG4COUNT(cdbp, blockcount);
12009 					return (0);
12010 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12011 					FORMG0ADDR(cdbp, lba);
12012 					FORMG0COUNT(cdbp, blockcount);
12013 					return (0);
12014 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12015 					FORMG5ADDR(cdbp, lba);
12016 					FORMG5COUNT(cdbp, blockcount);
12017 					return (0);
12018 				}
12019 
12020 				/*
12021 				 * It should be impossible to not match one
12022 				 * of the CDB types above, so we should never
12023 				 * reach this point.  Set the CDB command byte
12024 				 * to test-unit-ready to avoid writing
12025 				 * to somewhere we don't intend.
12026 				 */
12027 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12028 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12029 			} else {
12030 				/*
12031 				 * Couldn't get scsi_pkt
12032 				 */
12033 				return (SD_PKT_ALLOC_FAILURE);
12034 			}
12035 		}
12036 	}
12037 
12038 	/*
12039 	 * None of the available CDB types were suitable.  This really
12040 	 * should never happen:  on a 64 bit system we support
12041 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12042 	 * and on a 32 bit system we will refuse to bind to a device
12043 	 * larger than 2TB so addresses will never be larger than 32 bits.
12044 	 */
12045 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12046 }
12047 
12048 #if defined(__i386) || defined(__amd64)
12049 /*
12050  *    Function: sd_setup_next_rw_pkt
12051  *
12052  * Description: Setup packet for partial DMA transfers, except for the
12053  * 		initial transfer.  sd_setup_rw_pkt should be used for
12054  *		the initial transfer.
12055  *
12056  *     Context: Kernel thread and may be called from interrupt context.
12057  */
12058 
12059 int
12060 sd_setup_next_rw_pkt(struct sd_lun *un,
12061     struct scsi_pkt *pktp, struct buf *bp,
12062     diskaddr_t lba, uint32_t blockcount)
12063 {
12064 	uchar_t com;
12065 	union scsi_cdb *cdbp;
12066 	uchar_t cdb_group_id;
12067 
12068 	ASSERT(pktp != NULL);
12069 	ASSERT(pktp->pkt_cdbp != NULL);
12070 
12071 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12072 	com = cdbp->scc_cmd;
12073 	cdb_group_id = CDB_GROUPID(com);
12074 
12075 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12076 	    (cdb_group_id == CDB_GROUPID_1) ||
12077 	    (cdb_group_id == CDB_GROUPID_4) ||
12078 	    (cdb_group_id == CDB_GROUPID_5));
12079 
12080 	/*
12081 	 * Move pkt to the next portion of the xfer.
12082 	 * func is NULL_FUNC so we do not have to release
12083 	 * the disk mutex here.
12084 	 */
12085 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12086 	    NULL_FUNC, NULL) == pktp) {
12087 		/* Success.  Handle partial DMA */
12088 		if (pktp->pkt_resid != 0) {
12089 			blockcount -=
12090 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12091 		}
12092 
12093 		cdbp->scc_cmd = com;
12094 		SD_FILL_SCSI1_LUN(un, pktp);
12095 		if (cdb_group_id == CDB_GROUPID_1) {
12096 			FORMG1ADDR(cdbp, lba);
12097 			FORMG1COUNT(cdbp, blockcount);
12098 			return (0);
12099 		} else if (cdb_group_id == CDB_GROUPID_4) {
12100 			FORMG4LONGADDR(cdbp, lba);
12101 			FORMG4COUNT(cdbp, blockcount);
12102 			return (0);
12103 		} else if (cdb_group_id == CDB_GROUPID_0) {
12104 			FORMG0ADDR(cdbp, lba);
12105 			FORMG0COUNT(cdbp, blockcount);
12106 			return (0);
12107 		} else if (cdb_group_id == CDB_GROUPID_5) {
12108 			FORMG5ADDR(cdbp, lba);
12109 			FORMG5COUNT(cdbp, blockcount);
12110 			return (0);
12111 		}
12112 
12113 		/* Unreachable */
12114 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12115 	}
12116 
12117 	/*
12118 	 * Error setting up next portion of cmd transfer.
12119 	 * Something is definitely very wrong and this
12120 	 * should not happen.
12121 	 */
12122 	return (SD_PKT_ALLOC_FAILURE);
12123 }
12124 #endif /* defined(__i386) || defined(__amd64) */
12125 
12126 /*
12127  *    Function: sd_initpkt_for_uscsi
12128  *
12129  * Description: Allocate and initialize for transport a scsi_pkt struct,
12130  *		based upon the info specified in the given uscsi_cmd struct.
12131  *
12132  * Return Code: SD_PKT_ALLOC_SUCCESS
12133  *		SD_PKT_ALLOC_FAILURE
12134  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12135  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12136  *
12137  *     Context: Kernel thread and may be called from software interrupt context
12138  *		as part of a sdrunout callback. This function may not block or
12139  *		call routines that block
12140  */
12141 
12142 static int
12143 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12144 {
12145 	struct uscsi_cmd *uscmd;
12146 	struct sd_xbuf	*xp;
12147 	struct scsi_pkt	*pktp;
12148 	struct sd_lun	*un;
12149 	uint32_t	flags = 0;
12150 
12151 	ASSERT(bp != NULL);
12152 	ASSERT(pktpp != NULL);
12153 	xp = SD_GET_XBUF(bp);
12154 	ASSERT(xp != NULL);
12155 	un = SD_GET_UN(bp);
12156 	ASSERT(un != NULL);
12157 	ASSERT(mutex_owned(SD_MUTEX(un)));
12158 
12159 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12160 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12161 	ASSERT(uscmd != NULL);
12162 
12163 	SD_TRACE(SD_LOG_IO_CORE, un,
12164 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12165 
12166 	/*
12167 	 * Allocate the scsi_pkt for the command.
12168 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12169 	 *	 during scsi_init_pkt time and will continue to use the
12170 	 *	 same path as long as the same scsi_pkt is used without
12171 	 *	 intervening scsi_dma_free(). Since uscsi command does
12172 	 *	 not call scsi_dmafree() before retry failed command, it
12173 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12174 	 *	 set such that scsi_vhci can use other available path for
12175 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12176 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12177 	 */
12178 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12179 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12180 	    sizeof (struct scsi_arq_status), 0,
12181 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12182 	    sdrunout, (caddr_t)un);
12183 
12184 	if (pktp == NULL) {
12185 		*pktpp = NULL;
12186 		/*
12187 		 * Set the driver state to RWAIT to indicate the driver
12188 		 * is waiting on resource allocations. The driver will not
12189 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12190 		 */
12191 		New_state(un, SD_STATE_RWAIT);
12192 
12193 		SD_ERROR(SD_LOG_IO_CORE, un,
12194 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12195 
12196 		if ((bp->b_flags & B_ERROR) != 0) {
12197 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12198 		}
12199 		return (SD_PKT_ALLOC_FAILURE);
12200 	}
12201 
12202 	/*
12203 	 * We do not do DMA breakup for USCSI commands, so return failure
12204 	 * here if all the needed DMA resources were not allocated.
12205 	 */
12206 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12207 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12208 		scsi_destroy_pkt(pktp);
12209 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12210 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12211 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12212 	}
12213 
12214 	/* Init the cdb from the given uscsi struct */
12215 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12216 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12217 
12218 	SD_FILL_SCSI1_LUN(un, pktp);
12219 
12220 	/*
12221 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12222 	 * for listing of the supported flags.
12223 	 */
12224 
12225 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12226 		flags |= FLAG_SILENT;
12227 	}
12228 
12229 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12230 		flags |= FLAG_DIAGNOSE;
12231 	}
12232 
12233 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12234 		flags |= FLAG_ISOLATE;
12235 	}
12236 
12237 	if (un->un_f_is_fibre == FALSE) {
12238 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12239 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12240 		}
12241 	}
12242 
12243 	/*
12244 	 * Set the pkt flags here so we save time later.
12245 	 * Note: These flags are NOT in the uscsi man page!!!
12246 	 */
12247 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12248 		flags |= FLAG_HEAD;
12249 	}
12250 
12251 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12252 		flags |= FLAG_NOINTR;
12253 	}
12254 
12255 	/*
12256 	 * For tagged queueing, things get a bit complicated.
12257 	 * Check first for head of queue and last for ordered queue.
12258 	 * If neither head nor order, use the default driver tag flags.
12259 	 */
12260 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12261 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12262 			flags |= FLAG_HTAG;
12263 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12264 			flags |= FLAG_OTAG;
12265 		} else {
12266 			flags |= un->un_tagflags & FLAG_TAGMASK;
12267 		}
12268 	}
12269 
12270 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12271 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12272 	}
12273 
12274 	pktp->pkt_flags = flags;
12275 
12276 	/* Copy the caller's CDB into the pkt... */
12277 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12278 
12279 	if (uscmd->uscsi_timeout == 0) {
12280 		pktp->pkt_time = un->un_uscsi_timeout;
12281 	} else {
12282 		pktp->pkt_time = uscmd->uscsi_timeout;
12283 	}
12284 
12285 	/* need it later to identify USCSI request in sdintr */
12286 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12287 
12288 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12289 
12290 	pktp->pkt_private = bp;
12291 	pktp->pkt_comp = sdintr;
12292 	*pktpp = pktp;
12293 
12294 	SD_TRACE(SD_LOG_IO_CORE, un,
12295 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12296 
12297 	return (SD_PKT_ALLOC_SUCCESS);
12298 }
12299 
12300 
12301 /*
12302  *    Function: sd_destroypkt_for_uscsi
12303  *
12304  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12305  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12306  *		struct.
12307  *
12308  *     Context: May be called under interrupt context
12309  */
12310 
12311 static void
12312 sd_destroypkt_for_uscsi(struct buf *bp)
12313 {
12314 	struct uscsi_cmd *uscmd;
12315 	struct sd_xbuf	*xp;
12316 	struct scsi_pkt	*pktp;
12317 	struct sd_lun	*un;
12318 
12319 	ASSERT(bp != NULL);
12320 	xp = SD_GET_XBUF(bp);
12321 	ASSERT(xp != NULL);
12322 	un = SD_GET_UN(bp);
12323 	ASSERT(un != NULL);
12324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12325 	pktp = SD_GET_PKTP(bp);
12326 	ASSERT(pktp != NULL);
12327 
12328 	SD_TRACE(SD_LOG_IO_CORE, un,
12329 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12330 
12331 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12332 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12333 	ASSERT(uscmd != NULL);
12334 
12335 	/* Save the status and the residual into the uscsi_cmd struct */
12336 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12337 	uscmd->uscsi_resid  = bp->b_resid;
12338 
12339 	/*
12340 	 * If enabled, copy any saved sense data into the area specified
12341 	 * by the uscsi command.
12342 	 */
12343 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12344 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12345 		/*
12346 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12347 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12348 		 */
12349 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12350 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12351 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12352 	}
12353 
12354 	/* We are done with the scsi_pkt; free it now */
12355 	ASSERT(SD_GET_PKTP(bp) != NULL);
12356 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12357 
12358 	SD_TRACE(SD_LOG_IO_CORE, un,
12359 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12360 }
12361 
12362 
12363 /*
12364  *    Function: sd_bioclone_alloc
12365  *
12366  * Description: Allocate a buf(9S) and init it as per the given buf
12367  *		and the various arguments.  The associated sd_xbuf
12368  *		struct is (nearly) duplicated.  The struct buf *bp
12369  *		argument is saved in new_xp->xb_private.
12370  *
12371  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12372  *		datalen - size of data area for the shadow bp
12373  *		blkno - starting LBA
12374  *		func - function pointer for b_iodone in the shadow buf. (May
12375  *			be NULL if none.)
12376  *
12377  * Return Code: Pointer to allocates buf(9S) struct
12378  *
12379  *     Context: Can sleep.
12380  */
12381 
12382 static struct buf *
12383 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12384 	daddr_t blkno, int (*func)(struct buf *))
12385 {
12386 	struct	sd_lun	*un;
12387 	struct	sd_xbuf	*xp;
12388 	struct	sd_xbuf	*new_xp;
12389 	struct	buf	*new_bp;
12390 
12391 	ASSERT(bp != NULL);
12392 	xp = SD_GET_XBUF(bp);
12393 	ASSERT(xp != NULL);
12394 	un = SD_GET_UN(bp);
12395 	ASSERT(un != NULL);
12396 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12397 
12398 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12399 	    NULL, KM_SLEEP);
12400 
12401 	new_bp->b_lblkno	= blkno;
12402 
12403 	/*
12404 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12405 	 * original xbuf into it.
12406 	 */
12407 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12408 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12409 
12410 	/*
12411 	 * The given bp is automatically saved in the xb_private member
12412 	 * of the new xbuf.  Callers are allowed to depend on this.
12413 	 */
12414 	new_xp->xb_private = bp;
12415 
12416 	new_bp->b_private  = new_xp;
12417 
12418 	return (new_bp);
12419 }
12420 
12421 /*
12422  *    Function: sd_shadow_buf_alloc
12423  *
12424  * Description: Allocate a buf(9S) and init it as per the given buf
12425  *		and the various arguments.  The associated sd_xbuf
12426  *		struct is (nearly) duplicated.  The struct buf *bp
12427  *		argument is saved in new_xp->xb_private.
12428  *
12429  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12430  *		datalen - size of data area for the shadow bp
12431  *		bflags - B_READ or B_WRITE (pseudo flag)
12432  *		blkno - starting LBA
12433  *		func - function pointer for b_iodone in the shadow buf. (May
12434  *			be NULL if none.)
12435  *
12436  * Return Code: Pointer to allocates buf(9S) struct
12437  *
12438  *     Context: Can sleep.
12439  */
12440 
12441 static struct buf *
12442 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12443 	daddr_t blkno, int (*func)(struct buf *))
12444 {
12445 	struct	sd_lun	*un;
12446 	struct	sd_xbuf	*xp;
12447 	struct	sd_xbuf	*new_xp;
12448 	struct	buf	*new_bp;
12449 
12450 	ASSERT(bp != NULL);
12451 	xp = SD_GET_XBUF(bp);
12452 	ASSERT(xp != NULL);
12453 	un = SD_GET_UN(bp);
12454 	ASSERT(un != NULL);
12455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12456 
12457 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12458 		bp_mapin(bp);
12459 	}
12460 
12461 	bflags &= (B_READ | B_WRITE);
12462 #if defined(__i386) || defined(__amd64)
12463 	new_bp = getrbuf(KM_SLEEP);
12464 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12465 	new_bp->b_bcount = datalen;
12466 	new_bp->b_flags = bflags |
12467 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12468 #else
12469 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12470 	    datalen, bflags, SLEEP_FUNC, NULL);
12471 #endif
12472 	new_bp->av_forw	= NULL;
12473 	new_bp->av_back	= NULL;
12474 	new_bp->b_dev	= bp->b_dev;
12475 	new_bp->b_blkno	= blkno;
12476 	new_bp->b_iodone = func;
12477 	new_bp->b_edev	= bp->b_edev;
12478 	new_bp->b_resid	= 0;
12479 
12480 	/* We need to preserve the B_FAILFAST flag */
12481 	if (bp->b_flags & B_FAILFAST) {
12482 		new_bp->b_flags |= B_FAILFAST;
12483 	}
12484 
12485 	/*
12486 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12487 	 * original xbuf into it.
12488 	 */
12489 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12490 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12491 
12492 	/* Need later to copy data between the shadow buf & original buf! */
12493 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12494 
12495 	/*
12496 	 * The given bp is automatically saved in the xb_private member
12497 	 * of the new xbuf.  Callers are allowed to depend on this.
12498 	 */
12499 	new_xp->xb_private = bp;
12500 
12501 	new_bp->b_private  = new_xp;
12502 
12503 	return (new_bp);
12504 }
12505 
12506 /*
12507  *    Function: sd_bioclone_free
12508  *
12509  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12510  *		in the larger than partition operation.
12511  *
12512  *     Context: May be called under interrupt context
12513  */
12514 
12515 static void
12516 sd_bioclone_free(struct buf *bp)
12517 {
12518 	struct sd_xbuf	*xp;
12519 
12520 	ASSERT(bp != NULL);
12521 	xp = SD_GET_XBUF(bp);
12522 	ASSERT(xp != NULL);
12523 
12524 	/*
12525 	 * Call bp_mapout() before freeing the buf,  in case a lower
12526 	 * layer or HBA  had done a bp_mapin().  we must do this here
12527 	 * as we are the "originator" of the shadow buf.
12528 	 */
12529 	bp_mapout(bp);
12530 
12531 	/*
12532 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12533 	 * never gets confused by a stale value in this field. (Just a little
12534 	 * extra defensiveness here.)
12535 	 */
12536 	bp->b_iodone = NULL;
12537 
12538 	freerbuf(bp);
12539 
12540 	kmem_free(xp, sizeof (struct sd_xbuf));
12541 }
12542 
12543 /*
12544  *    Function: sd_shadow_buf_free
12545  *
12546  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12547  *
12548  *     Context: May be called under interrupt context
12549  */
12550 
12551 static void
12552 sd_shadow_buf_free(struct buf *bp)
12553 {
12554 	struct sd_xbuf	*xp;
12555 
12556 	ASSERT(bp != NULL);
12557 	xp = SD_GET_XBUF(bp);
12558 	ASSERT(xp != NULL);
12559 
12560 #if defined(__sparc)
12561 	/*
12562 	 * Call bp_mapout() before freeing the buf,  in case a lower
12563 	 * layer or HBA  had done a bp_mapin().  we must do this here
12564 	 * as we are the "originator" of the shadow buf.
12565 	 */
12566 	bp_mapout(bp);
12567 #endif
12568 
12569 	/*
12570 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12571 	 * never gets confused by a stale value in this field. (Just a little
12572 	 * extra defensiveness here.)
12573 	 */
12574 	bp->b_iodone = NULL;
12575 
12576 #if defined(__i386) || defined(__amd64)
12577 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12578 	freerbuf(bp);
12579 #else
12580 	scsi_free_consistent_buf(bp);
12581 #endif
12582 
12583 	kmem_free(xp, sizeof (struct sd_xbuf));
12584 }
12585 
12586 
12587 /*
12588  *    Function: sd_print_transport_rejected_message
12589  *
12590  * Description: This implements the ludicrously complex rules for printing
12591  *		a "transport rejected" message.  This is to address the
12592  *		specific problem of having a flood of this error message
12593  *		produced when a failover occurs.
12594  *
12595  *     Context: Any.
12596  */
12597 
12598 static void
12599 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12600 	int code)
12601 {
12602 	ASSERT(un != NULL);
12603 	ASSERT(mutex_owned(SD_MUTEX(un)));
12604 	ASSERT(xp != NULL);
12605 
12606 	/*
12607 	 * Print the "transport rejected" message under the following
12608 	 * conditions:
12609 	 *
12610 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12611 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12612 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12613 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12614 	 *   scsi_transport(9F) (which indicates that the target might have
12615 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12616 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12617 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12618 	 *   from scsi_transport().
12619 	 *
12620 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12621 	 * the preceeding cases in order for the message to be printed.
12622 	 */
12623 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12624 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12625 		    (code != TRAN_FATAL_ERROR) ||
12626 		    (un->un_tran_fatal_count == 1)) {
12627 			switch (code) {
12628 			case TRAN_BADPKT:
12629 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12630 				    "transport rejected bad packet\n");
12631 				break;
12632 			case TRAN_FATAL_ERROR:
12633 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12634 				    "transport rejected fatal error\n");
12635 				break;
12636 			default:
12637 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12638 				    "transport rejected (%d)\n", code);
12639 				break;
12640 			}
12641 		}
12642 	}
12643 }
12644 
12645 
12646 /*
12647  *    Function: sd_add_buf_to_waitq
12648  *
12649  * Description: Add the given buf(9S) struct to the wait queue for the
12650  *		instance.  If sorting is enabled, then the buf is added
12651  *		to the queue via an elevator sort algorithm (a la
12652  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12653  *		If sorting is not enabled, then the buf is just added
12654  *		to the end of the wait queue.
12655  *
12656  * Return Code: void
12657  *
12658  *     Context: Does not sleep/block, therefore technically can be called
12659  *		from any context.  However if sorting is enabled then the
12660  *		execution time is indeterminate, and may take long if
12661  *		the wait queue grows large.
12662  */
12663 
12664 static void
12665 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12666 {
12667 	struct buf *ap;
12668 
12669 	ASSERT(bp != NULL);
12670 	ASSERT(un != NULL);
12671 	ASSERT(mutex_owned(SD_MUTEX(un)));
12672 
12673 	/* If the queue is empty, add the buf as the only entry & return. */
12674 	if (un->un_waitq_headp == NULL) {
12675 		ASSERT(un->un_waitq_tailp == NULL);
12676 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12677 		bp->av_forw = NULL;
12678 		return;
12679 	}
12680 
12681 	ASSERT(un->un_waitq_tailp != NULL);
12682 
12683 	/*
12684 	 * If sorting is disabled, just add the buf to the tail end of
12685 	 * the wait queue and return.
12686 	 */
12687 	if (un->un_f_disksort_disabled) {
12688 		un->un_waitq_tailp->av_forw = bp;
12689 		un->un_waitq_tailp = bp;
12690 		bp->av_forw = NULL;
12691 		return;
12692 	}
12693 
12694 	/*
12695 	 * Sort thru the list of requests currently on the wait queue
12696 	 * and add the new buf request at the appropriate position.
12697 	 *
12698 	 * The un->un_waitq_headp is an activity chain pointer on which
12699 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12700 	 * first queue holds those requests which are positioned after
12701 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12702 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12703 	 * Thus we implement a one way scan, retracting after reaching
12704 	 * the end of the drive to the first request on the second
12705 	 * queue, at which time it becomes the first queue.
12706 	 * A one-way scan is natural because of the way UNIX read-ahead
12707 	 * blocks are allocated.
12708 	 *
12709 	 * If we lie after the first request, then we must locate the
12710 	 * second request list and add ourselves to it.
12711 	 */
12712 	ap = un->un_waitq_headp;
12713 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12714 		while (ap->av_forw != NULL) {
12715 			/*
12716 			 * Look for an "inversion" in the (normally
12717 			 * ascending) block numbers. This indicates
12718 			 * the start of the second request list.
12719 			 */
12720 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12721 				/*
12722 				 * Search the second request list for the
12723 				 * first request at a larger block number.
12724 				 * We go before that; however if there is
12725 				 * no such request, we go at the end.
12726 				 */
12727 				do {
12728 					if (SD_GET_BLKNO(bp) <
12729 					    SD_GET_BLKNO(ap->av_forw)) {
12730 						goto insert;
12731 					}
12732 					ap = ap->av_forw;
12733 				} while (ap->av_forw != NULL);
12734 				goto insert;		/* after last */
12735 			}
12736 			ap = ap->av_forw;
12737 		}
12738 
12739 		/*
12740 		 * No inversions... we will go after the last, and
12741 		 * be the first request in the second request list.
12742 		 */
12743 		goto insert;
12744 	}
12745 
12746 	/*
12747 	 * Request is at/after the current request...
12748 	 * sort in the first request list.
12749 	 */
12750 	while (ap->av_forw != NULL) {
12751 		/*
12752 		 * We want to go after the current request (1) if
12753 		 * there is an inversion after it (i.e. it is the end
12754 		 * of the first request list), or (2) if the next
12755 		 * request is a larger block no. than our request.
12756 		 */
12757 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12758 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12759 			goto insert;
12760 		}
12761 		ap = ap->av_forw;
12762 	}
12763 
12764 	/*
12765 	 * Neither a second list nor a larger request, therefore
12766 	 * we go at the end of the first list (which is the same
12767 	 * as the end of the whole schebang).
12768 	 */
12769 insert:
12770 	bp->av_forw = ap->av_forw;
12771 	ap->av_forw = bp;
12772 
12773 	/*
12774 	 * If we inserted onto the tail end of the waitq, make sure the
12775 	 * tail pointer is updated.
12776 	 */
12777 	if (ap == un->un_waitq_tailp) {
12778 		un->un_waitq_tailp = bp;
12779 	}
12780 }
12781 
12782 
12783 /*
12784  *    Function: sd_start_cmds
12785  *
12786  * Description: Remove and transport cmds from the driver queues.
12787  *
12788  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12789  *
12790  *		immed_bp - ptr to a buf to be transported immediately. Only
12791  *		the immed_bp is transported; bufs on the waitq are not
12792  *		processed and the un_retry_bp is not checked.  If immed_bp is
12793  *		NULL, then normal queue processing is performed.
12794  *
12795  *     Context: May be called from kernel thread context, interrupt context,
12796  *		or runout callback context. This function may not block or
12797  *		call routines that block.
12798  */
12799 
12800 static void
12801 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12802 {
12803 	struct	sd_xbuf	*xp;
12804 	struct	buf	*bp;
12805 	void	(*statp)(kstat_io_t *);
12806 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12807 	void	(*saved_statp)(kstat_io_t *);
12808 #endif
12809 	int	rval;
12810 
12811 	ASSERT(un != NULL);
12812 	ASSERT(mutex_owned(SD_MUTEX(un)));
12813 	ASSERT(un->un_ncmds_in_transport >= 0);
12814 	ASSERT(un->un_throttle >= 0);
12815 
12816 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12817 
12818 	do {
12819 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12820 		saved_statp = NULL;
12821 #endif
12822 
12823 		/*
12824 		 * If we are syncing or dumping, fail the command to
12825 		 * avoid recursively calling back into scsi_transport().
12826 		 * The dump I/O itself uses a separate code path so this
12827 		 * only prevents non-dump I/O from being sent while dumping.
12828 		 * File system sync takes place before dumping begins.
12829 		 * During panic, filesystem I/O is allowed provided
12830 		 * un_in_callback is <= 1.  This is to prevent recursion
12831 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12832 		 * sd_start_cmds and so on.  See panic.c for more information
12833 		 * about the states the system can be in during panic.
12834 		 */
12835 		if ((un->un_state == SD_STATE_DUMPING) ||
12836 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12837 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12838 			    "sd_start_cmds: panicking\n");
12839 			goto exit;
12840 		}
12841 
12842 		if ((bp = immed_bp) != NULL) {
12843 			/*
12844 			 * We have a bp that must be transported immediately.
12845 			 * It's OK to transport the immed_bp here without doing
12846 			 * the throttle limit check because the immed_bp is
12847 			 * always used in a retry/recovery case. This means
12848 			 * that we know we are not at the throttle limit by
12849 			 * virtue of the fact that to get here we must have
12850 			 * already gotten a command back via sdintr(). This also
12851 			 * relies on (1) the command on un_retry_bp preventing
12852 			 * further commands from the waitq from being issued;
12853 			 * and (2) the code in sd_retry_command checking the
12854 			 * throttle limit before issuing a delayed or immediate
12855 			 * retry. This holds even if the throttle limit is
12856 			 * currently ratcheted down from its maximum value.
12857 			 */
12858 			statp = kstat_runq_enter;
12859 			if (bp == un->un_retry_bp) {
12860 				ASSERT((un->un_retry_statp == NULL) ||
12861 				    (un->un_retry_statp == kstat_waitq_enter) ||
12862 				    (un->un_retry_statp ==
12863 				    kstat_runq_back_to_waitq));
12864 				/*
12865 				 * If the waitq kstat was incremented when
12866 				 * sd_set_retry_bp() queued this bp for a retry,
12867 				 * then we must set up statp so that the waitq
12868 				 * count will get decremented correctly below.
12869 				 * Also we must clear un->un_retry_statp to
12870 				 * ensure that we do not act on a stale value
12871 				 * in this field.
12872 				 */
12873 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12874 				    (un->un_retry_statp ==
12875 				    kstat_runq_back_to_waitq)) {
12876 					statp = kstat_waitq_to_runq;
12877 				}
12878 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12879 				saved_statp = un->un_retry_statp;
12880 #endif
12881 				un->un_retry_statp = NULL;
12882 
12883 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12884 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12885 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12886 				    un, un->un_retry_bp, un->un_throttle,
12887 				    un->un_ncmds_in_transport);
12888 			} else {
12889 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12890 				    "processing priority bp:0x%p\n", bp);
12891 			}
12892 
12893 		} else if ((bp = un->un_waitq_headp) != NULL) {
12894 			/*
12895 			 * A command on the waitq is ready to go, but do not
12896 			 * send it if:
12897 			 *
12898 			 * (1) the throttle limit has been reached, or
12899 			 * (2) a retry is pending, or
12900 			 * (3) a START_STOP_UNIT callback pending, or
12901 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12902 			 *	command is pending.
12903 			 *
12904 			 * For all of these conditions, IO processing will
12905 			 * restart after the condition is cleared.
12906 			 */
12907 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12908 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12909 				    "sd_start_cmds: exiting, "
12910 				    "throttle limit reached!\n");
12911 				goto exit;
12912 			}
12913 			if (un->un_retry_bp != NULL) {
12914 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12915 				    "sd_start_cmds: exiting, retry pending!\n");
12916 				goto exit;
12917 			}
12918 			if (un->un_startstop_timeid != NULL) {
12919 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12920 				    "sd_start_cmds: exiting, "
12921 				    "START_STOP pending!\n");
12922 				goto exit;
12923 			}
12924 			if (un->un_direct_priority_timeid != NULL) {
12925 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12926 				    "sd_start_cmds: exiting, "
12927 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12928 				goto exit;
12929 			}
12930 
12931 			/* Dequeue the command */
12932 			un->un_waitq_headp = bp->av_forw;
12933 			if (un->un_waitq_headp == NULL) {
12934 				un->un_waitq_tailp = NULL;
12935 			}
12936 			bp->av_forw = NULL;
12937 			statp = kstat_waitq_to_runq;
12938 			SD_TRACE(SD_LOG_IO_CORE, un,
12939 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12940 
12941 		} else {
12942 			/* No work to do so bail out now */
12943 			SD_TRACE(SD_LOG_IO_CORE, un,
12944 			    "sd_start_cmds: no more work, exiting!\n");
12945 			goto exit;
12946 		}
12947 
12948 		/*
12949 		 * Reset the state to normal. This is the mechanism by which
12950 		 * the state transitions from either SD_STATE_RWAIT or
12951 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12952 		 * If state is SD_STATE_PM_CHANGING then this command is
12953 		 * part of the device power control and the state must
12954 		 * not be put back to normal. Doing so would would
12955 		 * allow new commands to proceed when they shouldn't,
12956 		 * the device may be going off.
12957 		 */
12958 		if ((un->un_state != SD_STATE_SUSPENDED) &&
12959 		    (un->un_state != SD_STATE_PM_CHANGING)) {
12960 			New_state(un, SD_STATE_NORMAL);
12961 		}
12962 
12963 		xp = SD_GET_XBUF(bp);
12964 		ASSERT(xp != NULL);
12965 
12966 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12967 		/*
12968 		 * Allocate the scsi_pkt if we need one, or attach DMA
12969 		 * resources if we have a scsi_pkt that needs them. The
12970 		 * latter should only occur for commands that are being
12971 		 * retried.
12972 		 */
12973 		if ((xp->xb_pktp == NULL) ||
12974 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12975 #else
12976 		if (xp->xb_pktp == NULL) {
12977 #endif
12978 			/*
12979 			 * There is no scsi_pkt allocated for this buf. Call
12980 			 * the initpkt function to allocate & init one.
12981 			 *
12982 			 * The scsi_init_pkt runout callback functionality is
12983 			 * implemented as follows:
12984 			 *
12985 			 * 1) The initpkt function always calls
12986 			 *    scsi_init_pkt(9F) with sdrunout specified as the
12987 			 *    callback routine.
12988 			 * 2) A successful packet allocation is initialized and
12989 			 *    the I/O is transported.
12990 			 * 3) The I/O associated with an allocation resource
12991 			 *    failure is left on its queue to be retried via
12992 			 *    runout or the next I/O.
12993 			 * 4) The I/O associated with a DMA error is removed
12994 			 *    from the queue and failed with EIO. Processing of
12995 			 *    the transport queues is also halted to be
12996 			 *    restarted via runout or the next I/O.
12997 			 * 5) The I/O associated with a CDB size or packet
12998 			 *    size error is removed from the queue and failed
12999 			 *    with EIO. Processing of the transport queues is
13000 			 *    continued.
13001 			 *
13002 			 * Note: there is no interface for canceling a runout
13003 			 * callback. To prevent the driver from detaching or
13004 			 * suspending while a runout is pending the driver
13005 			 * state is set to SD_STATE_RWAIT
13006 			 *
13007 			 * Note: using the scsi_init_pkt callback facility can
13008 			 * result in an I/O request persisting at the head of
13009 			 * the list which cannot be satisfied even after
13010 			 * multiple retries. In the future the driver may
13011 			 * implement some kind of maximum runout count before
13012 			 * failing an I/O.
13013 			 *
13014 			 * Note: the use of funcp below may seem superfluous,
13015 			 * but it helps warlock figure out the correct
13016 			 * initpkt function calls (see [s]sd.wlcmd).
13017 			 */
13018 			struct scsi_pkt	*pktp;
13019 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13020 
13021 			ASSERT(bp != un->un_rqs_bp);
13022 
13023 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13024 			switch ((*funcp)(bp, &pktp)) {
13025 			case  SD_PKT_ALLOC_SUCCESS:
13026 				xp->xb_pktp = pktp;
13027 				SD_TRACE(SD_LOG_IO_CORE, un,
13028 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13029 				    pktp);
13030 				goto got_pkt;
13031 
13032 			case SD_PKT_ALLOC_FAILURE:
13033 				/*
13034 				 * Temporary (hopefully) resource depletion.
13035 				 * Since retries and RQS commands always have a
13036 				 * scsi_pkt allocated, these cases should never
13037 				 * get here. So the only cases this needs to
13038 				 * handle is a bp from the waitq (which we put
13039 				 * back onto the waitq for sdrunout), or a bp
13040 				 * sent as an immed_bp (which we just fail).
13041 				 */
13042 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13043 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13044 
13045 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13046 
13047 				if (bp == immed_bp) {
13048 					/*
13049 					 * If SD_XB_DMA_FREED is clear, then
13050 					 * this is a failure to allocate a
13051 					 * scsi_pkt, and we must fail the
13052 					 * command.
13053 					 */
13054 					if ((xp->xb_pkt_flags &
13055 					    SD_XB_DMA_FREED) == 0) {
13056 						break;
13057 					}
13058 
13059 					/*
13060 					 * If this immediate command is NOT our
13061 					 * un_retry_bp, then we must fail it.
13062 					 */
13063 					if (bp != un->un_retry_bp) {
13064 						break;
13065 					}
13066 
13067 					/*
13068 					 * We get here if this cmd is our
13069 					 * un_retry_bp that was DMAFREED, but
13070 					 * scsi_init_pkt() failed to reallocate
13071 					 * DMA resources when we attempted to
13072 					 * retry it. This can happen when an
13073 					 * mpxio failover is in progress, but
13074 					 * we don't want to just fail the
13075 					 * command in this case.
13076 					 *
13077 					 * Use timeout(9F) to restart it after
13078 					 * a 100ms delay.  We don't want to
13079 					 * let sdrunout() restart it, because
13080 					 * sdrunout() is just supposed to start
13081 					 * commands that are sitting on the
13082 					 * wait queue.  The un_retry_bp stays
13083 					 * set until the command completes, but
13084 					 * sdrunout can be called many times
13085 					 * before that happens.  Since sdrunout
13086 					 * cannot tell if the un_retry_bp is
13087 					 * already in the transport, it could
13088 					 * end up calling scsi_transport() for
13089 					 * the un_retry_bp multiple times.
13090 					 *
13091 					 * Also: don't schedule the callback
13092 					 * if some other callback is already
13093 					 * pending.
13094 					 */
13095 					if (un->un_retry_statp == NULL) {
13096 						/*
13097 						 * restore the kstat pointer to
13098 						 * keep kstat counts coherent
13099 						 * when we do retry the command.
13100 						 */
13101 						un->un_retry_statp =
13102 						    saved_statp;
13103 					}
13104 
13105 					if ((un->un_startstop_timeid == NULL) &&
13106 					    (un->un_retry_timeid == NULL) &&
13107 					    (un->un_direct_priority_timeid ==
13108 					    NULL)) {
13109 
13110 						un->un_retry_timeid =
13111 						    timeout(
13112 						    sd_start_retry_command,
13113 						    un, SD_RESTART_TIMEOUT);
13114 					}
13115 					goto exit;
13116 				}
13117 
13118 #else
13119 				if (bp == immed_bp) {
13120 					break;	/* Just fail the command */
13121 				}
13122 #endif
13123 
13124 				/* Add the buf back to the head of the waitq */
13125 				bp->av_forw = un->un_waitq_headp;
13126 				un->un_waitq_headp = bp;
13127 				if (un->un_waitq_tailp == NULL) {
13128 					un->un_waitq_tailp = bp;
13129 				}
13130 				goto exit;
13131 
13132 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13133 				/*
13134 				 * HBA DMA resource failure. Fail the command
13135 				 * and continue processing of the queues.
13136 				 */
13137 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13138 				    "sd_start_cmds: "
13139 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13140 				break;
13141 
13142 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13143 				/*
13144 				 * Note:x86: Partial DMA mapping not supported
13145 				 * for USCSI commands, and all the needed DMA
13146 				 * resources were not allocated.
13147 				 */
13148 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13149 				    "sd_start_cmds: "
13150 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13151 				break;
13152 
13153 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13154 				/*
13155 				 * Note:x86: Request cannot fit into CDB based
13156 				 * on lba and len.
13157 				 */
13158 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13159 				    "sd_start_cmds: "
13160 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13161 				break;
13162 
13163 			default:
13164 				/* Should NEVER get here! */
13165 				panic("scsi_initpkt error");
13166 				/*NOTREACHED*/
13167 			}
13168 
13169 			/*
13170 			 * Fatal error in allocating a scsi_pkt for this buf.
13171 			 * Update kstats & return the buf with an error code.
13172 			 * We must use sd_return_failed_command_no_restart() to
13173 			 * avoid a recursive call back into sd_start_cmds().
13174 			 * However this also means that we must keep processing
13175 			 * the waitq here in order to avoid stalling.
13176 			 */
13177 			if (statp == kstat_waitq_to_runq) {
13178 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13179 			}
13180 			sd_return_failed_command_no_restart(un, bp, EIO);
13181 			if (bp == immed_bp) {
13182 				/* immed_bp is gone by now, so clear this */
13183 				immed_bp = NULL;
13184 			}
13185 			continue;
13186 		}
13187 got_pkt:
13188 		if (bp == immed_bp) {
13189 			/* goto the head of the class.... */
13190 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13191 		}
13192 
13193 		un->un_ncmds_in_transport++;
13194 		SD_UPDATE_KSTATS(un, statp, bp);
13195 
13196 		/*
13197 		 * Call scsi_transport() to send the command to the target.
13198 		 * According to SCSA architecture, we must drop the mutex here
13199 		 * before calling scsi_transport() in order to avoid deadlock.
13200 		 * Note that the scsi_pkt's completion routine can be executed
13201 		 * (from interrupt context) even before the call to
13202 		 * scsi_transport() returns.
13203 		 */
13204 		SD_TRACE(SD_LOG_IO_CORE, un,
13205 		    "sd_start_cmds: calling scsi_transport()\n");
13206 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13207 
13208 		mutex_exit(SD_MUTEX(un));
13209 		rval = scsi_transport(xp->xb_pktp);
13210 		mutex_enter(SD_MUTEX(un));
13211 
13212 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13213 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13214 
13215 		switch (rval) {
13216 		case TRAN_ACCEPT:
13217 			/* Clear this with every pkt accepted by the HBA */
13218 			un->un_tran_fatal_count = 0;
13219 			break;	/* Success; try the next cmd (if any) */
13220 
13221 		case TRAN_BUSY:
13222 			un->un_ncmds_in_transport--;
13223 			ASSERT(un->un_ncmds_in_transport >= 0);
13224 
13225 			/*
13226 			 * Don't retry request sense, the sense data
13227 			 * is lost when another request is sent.
13228 			 * Free up the rqs buf and retry
13229 			 * the original failed cmd.  Update kstat.
13230 			 */
13231 			if (bp == un->un_rqs_bp) {
13232 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13233 				bp = sd_mark_rqs_idle(un, xp);
13234 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13235 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13236 				    kstat_waitq_enter);
13237 				goto exit;
13238 			}
13239 
13240 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13241 			/*
13242 			 * Free the DMA resources for the  scsi_pkt. This will
13243 			 * allow mpxio to select another path the next time
13244 			 * we call scsi_transport() with this scsi_pkt.
13245 			 * See sdintr() for the rationalization behind this.
13246 			 */
13247 			if ((un->un_f_is_fibre == TRUE) &&
13248 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13249 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13250 				scsi_dmafree(xp->xb_pktp);
13251 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13252 			}
13253 #endif
13254 
13255 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13256 				/*
13257 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13258 				 * are for error recovery situations. These do
13259 				 * not use the normal command waitq, so if they
13260 				 * get a TRAN_BUSY we cannot put them back onto
13261 				 * the waitq for later retry. One possible
13262 				 * problem is that there could already be some
13263 				 * other command on un_retry_bp that is waiting
13264 				 * for this one to complete, so we would be
13265 				 * deadlocked if we put this command back onto
13266 				 * the waitq for later retry (since un_retry_bp
13267 				 * must complete before the driver gets back to
13268 				 * commands on the waitq).
13269 				 *
13270 				 * To avoid deadlock we must schedule a callback
13271 				 * that will restart this command after a set
13272 				 * interval.  This should keep retrying for as
13273 				 * long as the underlying transport keeps
13274 				 * returning TRAN_BUSY (just like for other
13275 				 * commands).  Use the same timeout interval as
13276 				 * for the ordinary TRAN_BUSY retry.
13277 				 */
13278 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13279 				    "sd_start_cmds: scsi_transport() returned "
13280 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13281 
13282 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13283 				un->un_direct_priority_timeid =
13284 				    timeout(sd_start_direct_priority_command,
13285 				    bp, SD_BSY_TIMEOUT / 500);
13286 
13287 				goto exit;
13288 			}
13289 
13290 			/*
13291 			 * For TRAN_BUSY, we want to reduce the throttle value,
13292 			 * unless we are retrying a command.
13293 			 */
13294 			if (bp != un->un_retry_bp) {
13295 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13296 			}
13297 
13298 			/*
13299 			 * Set up the bp to be tried again 10 ms later.
13300 			 * Note:x86: Is there a timeout value in the sd_lun
13301 			 * for this condition?
13302 			 */
13303 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13304 			    kstat_runq_back_to_waitq);
13305 			goto exit;
13306 
13307 		case TRAN_FATAL_ERROR:
13308 			un->un_tran_fatal_count++;
13309 			/* FALLTHRU */
13310 
13311 		case TRAN_BADPKT:
13312 		default:
13313 			un->un_ncmds_in_transport--;
13314 			ASSERT(un->un_ncmds_in_transport >= 0);
13315 
13316 			/*
13317 			 * If this is our REQUEST SENSE command with a
13318 			 * transport error, we must get back the pointers
13319 			 * to the original buf, and mark the REQUEST
13320 			 * SENSE command as "available".
13321 			 */
13322 			if (bp == un->un_rqs_bp) {
13323 				bp = sd_mark_rqs_idle(un, xp);
13324 				xp = SD_GET_XBUF(bp);
13325 			} else {
13326 				/*
13327 				 * Legacy behavior: do not update transport
13328 				 * error count for request sense commands.
13329 				 */
13330 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13331 			}
13332 
13333 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13334 			sd_print_transport_rejected_message(un, xp, rval);
13335 
13336 			/*
13337 			 * We must use sd_return_failed_command_no_restart() to
13338 			 * avoid a recursive call back into sd_start_cmds().
13339 			 * However this also means that we must keep processing
13340 			 * the waitq here in order to avoid stalling.
13341 			 */
13342 			sd_return_failed_command_no_restart(un, bp, EIO);
13343 
13344 			/*
13345 			 * Notify any threads waiting in sd_ddi_suspend() that
13346 			 * a command completion has occurred.
13347 			 */
13348 			if (un->un_state == SD_STATE_SUSPENDED) {
13349 				cv_broadcast(&un->un_disk_busy_cv);
13350 			}
13351 
13352 			if (bp == immed_bp) {
13353 				/* immed_bp is gone by now, so clear this */
13354 				immed_bp = NULL;
13355 			}
13356 			break;
13357 		}
13358 
13359 	} while (immed_bp == NULL);
13360 
13361 exit:
13362 	ASSERT(mutex_owned(SD_MUTEX(un)));
13363 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13364 }
13365 
13366 
13367 /*
13368  *    Function: sd_return_command
13369  *
13370  * Description: Returns a command to its originator (with or without an
13371  *		error).  Also starts commands waiting to be transported
13372  *		to the target.
13373  *
13374  *     Context: May be called from interrupt, kernel, or timeout context
13375  */
13376 
13377 static void
13378 sd_return_command(struct sd_lun *un, struct buf *bp)
13379 {
13380 	struct sd_xbuf *xp;
13381 #if defined(__i386) || defined(__amd64)
13382 	struct scsi_pkt *pktp;
13383 #endif
13384 
13385 	ASSERT(bp != NULL);
13386 	ASSERT(un != NULL);
13387 	ASSERT(mutex_owned(SD_MUTEX(un)));
13388 	ASSERT(bp != un->un_rqs_bp);
13389 	xp = SD_GET_XBUF(bp);
13390 	ASSERT(xp != NULL);
13391 
13392 #if defined(__i386) || defined(__amd64)
13393 	pktp = SD_GET_PKTP(bp);
13394 #endif
13395 
13396 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13397 
13398 #if defined(__i386) || defined(__amd64)
13399 	/*
13400 	 * Note:x86: check for the "sdrestart failed" case.
13401 	 */
13402 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13403 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13404 	    (xp->xb_pktp->pkt_resid == 0)) {
13405 
13406 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13407 			/*
13408 			 * Successfully set up next portion of cmd
13409 			 * transfer, try sending it
13410 			 */
13411 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13412 			    NULL, NULL, 0, (clock_t)0, NULL);
13413 			sd_start_cmds(un, NULL);
13414 			return;	/* Note:x86: need a return here? */
13415 		}
13416 	}
13417 #endif
13418 
13419 	/*
13420 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13421 	 * can happen if upon being re-tried the failfast bp either
13422 	 * succeeded or encountered another error (possibly even a different
13423 	 * error than the one that precipitated the failfast state, but in
13424 	 * that case it would have had to exhaust retries as well). Regardless,
13425 	 * this should not occur whenever the instance is in the active
13426 	 * failfast state.
13427 	 */
13428 	if (bp == un->un_failfast_bp) {
13429 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13430 		un->un_failfast_bp = NULL;
13431 	}
13432 
13433 	/*
13434 	 * Clear the failfast state upon successful completion of ANY cmd.
13435 	 */
13436 	if (bp->b_error == 0) {
13437 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13438 	}
13439 
13440 	/*
13441 	 * This is used if the command was retried one or more times. Show that
13442 	 * we are done with it, and allow processing of the waitq to resume.
13443 	 */
13444 	if (bp == un->un_retry_bp) {
13445 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13446 		    "sd_return_command: un:0x%p: "
13447 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13448 		un->un_retry_bp = NULL;
13449 		un->un_retry_statp = NULL;
13450 	}
13451 
13452 	SD_UPDATE_RDWR_STATS(un, bp);
13453 	SD_UPDATE_PARTITION_STATS(un, bp);
13454 
13455 	switch (un->un_state) {
13456 	case SD_STATE_SUSPENDED:
13457 		/*
13458 		 * Notify any threads waiting in sd_ddi_suspend() that
13459 		 * a command completion has occurred.
13460 		 */
13461 		cv_broadcast(&un->un_disk_busy_cv);
13462 		break;
13463 	default:
13464 		sd_start_cmds(un, NULL);
13465 		break;
13466 	}
13467 
13468 	/* Return this command up the iodone chain to its originator. */
13469 	mutex_exit(SD_MUTEX(un));
13470 
13471 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13472 	xp->xb_pktp = NULL;
13473 
13474 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13475 
13476 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13477 	mutex_enter(SD_MUTEX(un));
13478 
13479 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13480 }
13481 
13482 
13483 /*
13484  *    Function: sd_return_failed_command
13485  *
13486  * Description: Command completion when an error occurred.
13487  *
13488  *     Context: May be called from interrupt context
13489  */
13490 
13491 static void
13492 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13493 {
13494 	ASSERT(bp != NULL);
13495 	ASSERT(un != NULL);
13496 	ASSERT(mutex_owned(SD_MUTEX(un)));
13497 
13498 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13499 	    "sd_return_failed_command: entry\n");
13500 
13501 	/*
13502 	 * b_resid could already be nonzero due to a partial data
13503 	 * transfer, so do not change it here.
13504 	 */
13505 	SD_BIOERROR(bp, errcode);
13506 
13507 	sd_return_command(un, bp);
13508 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13509 	    "sd_return_failed_command: exit\n");
13510 }
13511 
13512 
13513 /*
13514  *    Function: sd_return_failed_command_no_restart
13515  *
13516  * Description: Same as sd_return_failed_command, but ensures that no
13517  *		call back into sd_start_cmds will be issued.
13518  *
13519  *     Context: May be called from interrupt context
13520  */
13521 
13522 static void
13523 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13524 	int errcode)
13525 {
13526 	struct sd_xbuf *xp;
13527 
13528 	ASSERT(bp != NULL);
13529 	ASSERT(un != NULL);
13530 	ASSERT(mutex_owned(SD_MUTEX(un)));
13531 	xp = SD_GET_XBUF(bp);
13532 	ASSERT(xp != NULL);
13533 	ASSERT(errcode != 0);
13534 
13535 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13536 	    "sd_return_failed_command_no_restart: entry\n");
13537 
13538 	/*
13539 	 * b_resid could already be nonzero due to a partial data
13540 	 * transfer, so do not change it here.
13541 	 */
13542 	SD_BIOERROR(bp, errcode);
13543 
13544 	/*
13545 	 * If this is the failfast bp, clear it. This can happen if the
13546 	 * failfast bp encounterd a fatal error when we attempted to
13547 	 * re-try it (such as a scsi_transport(9F) failure).  However
13548 	 * we should NOT be in an active failfast state if the failfast
13549 	 * bp is not NULL.
13550 	 */
13551 	if (bp == un->un_failfast_bp) {
13552 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13553 		un->un_failfast_bp = NULL;
13554 	}
13555 
13556 	if (bp == un->un_retry_bp) {
13557 		/*
13558 		 * This command was retried one or more times. Show that we are
13559 		 * done with it, and allow processing of the waitq to resume.
13560 		 */
13561 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13562 		    "sd_return_failed_command_no_restart: "
13563 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13564 		un->un_retry_bp = NULL;
13565 		un->un_retry_statp = NULL;
13566 	}
13567 
13568 	SD_UPDATE_RDWR_STATS(un, bp);
13569 	SD_UPDATE_PARTITION_STATS(un, bp);
13570 
13571 	mutex_exit(SD_MUTEX(un));
13572 
13573 	if (xp->xb_pktp != NULL) {
13574 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13575 		xp->xb_pktp = NULL;
13576 	}
13577 
13578 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13579 
13580 	mutex_enter(SD_MUTEX(un));
13581 
13582 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13583 	    "sd_return_failed_command_no_restart: exit\n");
13584 }
13585 
13586 
13587 /*
13588  *    Function: sd_retry_command
13589  *
13590  * Description: queue up a command for retry, or (optionally) fail it
13591  *		if retry counts are exhausted.
13592  *
13593  *   Arguments: un - Pointer to the sd_lun struct for the target.
13594  *
13595  *		bp - Pointer to the buf for the command to be retried.
13596  *
13597  *		retry_check_flag - Flag to see which (if any) of the retry
13598  *		   counts should be decremented/checked. If the indicated
13599  *		   retry count is exhausted, then the command will not be
13600  *		   retried; it will be failed instead. This should use a
13601  *		   value equal to one of the following:
13602  *
13603  *			SD_RETRIES_NOCHECK
13604  *			SD_RESD_RETRIES_STANDARD
13605  *			SD_RETRIES_VICTIM
13606  *
13607  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13608  *		   if the check should be made to see of FLAG_ISOLATE is set
13609  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13610  *		   not retried, it is simply failed.
13611  *
13612  *		user_funcp - Ptr to function to call before dispatching the
13613  *		   command. May be NULL if no action needs to be performed.
13614  *		   (Primarily intended for printing messages.)
13615  *
13616  *		user_arg - Optional argument to be passed along to
13617  *		   the user_funcp call.
13618  *
13619  *		failure_code - errno return code to set in the bp if the
13620  *		   command is going to be failed.
13621  *
13622  *		retry_delay - Retry delay interval in (clock_t) units. May
13623  *		   be zero which indicates that the retry should be retried
13624  *		   immediately (ie, without an intervening delay).
13625  *
13626  *		statp - Ptr to kstat function to be updated if the command
13627  *		   is queued for a delayed retry. May be NULL if no kstat
13628  *		   update is desired.
13629  *
13630  *     Context: May be called from interrupt context.
13631  */
13632 
13633 static void
13634 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13635 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13636 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13637 	void (*statp)(kstat_io_t *))
13638 {
13639 	struct sd_xbuf	*xp;
13640 	struct scsi_pkt	*pktp;
13641 
13642 	ASSERT(un != NULL);
13643 	ASSERT(mutex_owned(SD_MUTEX(un)));
13644 	ASSERT(bp != NULL);
13645 	xp = SD_GET_XBUF(bp);
13646 	ASSERT(xp != NULL);
13647 	pktp = SD_GET_PKTP(bp);
13648 	ASSERT(pktp != NULL);
13649 
13650 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13651 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13652 
13653 	/*
13654 	 * If we are syncing or dumping, fail the command to avoid
13655 	 * recursively calling back into scsi_transport().
13656 	 */
13657 	if (ddi_in_panic()) {
13658 		goto fail_command_no_log;
13659 	}
13660 
13661 	/*
13662 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13663 	 * log an error and fail the command.
13664 	 */
13665 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13666 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13667 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13668 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13669 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13670 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13671 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13672 		goto fail_command;
13673 	}
13674 
13675 	/*
13676 	 * If we are suspended, then put the command onto head of the
13677 	 * wait queue since we don't want to start more commands, and
13678 	 * clear the un_retry_bp. Next time when we are resumed, will
13679 	 * handle the command in the wait queue.
13680 	 */
13681 	switch (un->un_state) {
13682 	case SD_STATE_SUSPENDED:
13683 	case SD_STATE_DUMPING:
13684 		bp->av_forw = un->un_waitq_headp;
13685 		un->un_waitq_headp = bp;
13686 		if (un->un_waitq_tailp == NULL) {
13687 			un->un_waitq_tailp = bp;
13688 		}
13689 		if (bp == un->un_retry_bp) {
13690 			un->un_retry_bp = NULL;
13691 			un->un_retry_statp = NULL;
13692 		}
13693 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13694 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13695 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13696 		return;
13697 	default:
13698 		break;
13699 	}
13700 
13701 	/*
13702 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13703 	 * is set; if it is then we do not want to retry the command.
13704 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13705 	 */
13706 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13707 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13708 			goto fail_command;
13709 		}
13710 	}
13711 
13712 
13713 	/*
13714 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13715 	 * command timeout or a selection timeout has occurred. This means
13716 	 * that we were unable to establish an kind of communication with
13717 	 * the target, and subsequent retries and/or commands are likely
13718 	 * to encounter similar results and take a long time to complete.
13719 	 *
13720 	 * If this is a failfast error condition, we need to update the
13721 	 * failfast state, even if this bp does not have B_FAILFAST set.
13722 	 */
13723 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13724 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13725 			ASSERT(un->un_failfast_bp == NULL);
13726 			/*
13727 			 * If we are already in the active failfast state, and
13728 			 * another failfast error condition has been detected,
13729 			 * then fail this command if it has B_FAILFAST set.
13730 			 * If B_FAILFAST is clear, then maintain the legacy
13731 			 * behavior of retrying heroically, even tho this will
13732 			 * take a lot more time to fail the command.
13733 			 */
13734 			if (bp->b_flags & B_FAILFAST) {
13735 				goto fail_command;
13736 			}
13737 		} else {
13738 			/*
13739 			 * We're not in the active failfast state, but we
13740 			 * have a failfast error condition, so we must begin
13741 			 * transition to the next state. We do this regardless
13742 			 * of whether or not this bp has B_FAILFAST set.
13743 			 */
13744 			if (un->un_failfast_bp == NULL) {
13745 				/*
13746 				 * This is the first bp to meet a failfast
13747 				 * condition so save it on un_failfast_bp &
13748 				 * do normal retry processing. Do not enter
13749 				 * active failfast state yet. This marks
13750 				 * entry into the "failfast pending" state.
13751 				 */
13752 				un->un_failfast_bp = bp;
13753 
13754 			} else if (un->un_failfast_bp == bp) {
13755 				/*
13756 				 * This is the second time *this* bp has
13757 				 * encountered a failfast error condition,
13758 				 * so enter active failfast state & flush
13759 				 * queues as appropriate.
13760 				 */
13761 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13762 				un->un_failfast_bp = NULL;
13763 				sd_failfast_flushq(un);
13764 
13765 				/*
13766 				 * Fail this bp now if B_FAILFAST set;
13767 				 * otherwise continue with retries. (It would
13768 				 * be pretty ironic if this bp succeeded on a
13769 				 * subsequent retry after we just flushed all
13770 				 * the queues).
13771 				 */
13772 				if (bp->b_flags & B_FAILFAST) {
13773 					goto fail_command;
13774 				}
13775 
13776 #if !defined(lint) && !defined(__lint)
13777 			} else {
13778 				/*
13779 				 * If neither of the preceeding conditionals
13780 				 * was true, it means that there is some
13781 				 * *other* bp that has met an inital failfast
13782 				 * condition and is currently either being
13783 				 * retried or is waiting to be retried. In
13784 				 * that case we should perform normal retry
13785 				 * processing on *this* bp, since there is a
13786 				 * chance that the current failfast condition
13787 				 * is transient and recoverable. If that does
13788 				 * not turn out to be the case, then retries
13789 				 * will be cleared when the wait queue is
13790 				 * flushed anyway.
13791 				 */
13792 #endif
13793 			}
13794 		}
13795 	} else {
13796 		/*
13797 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13798 		 * likely were able to at least establish some level of
13799 		 * communication with the target and subsequent commands
13800 		 * and/or retries are likely to get through to the target,
13801 		 * In this case we want to be aggressive about clearing
13802 		 * the failfast state. Note that this does not affect
13803 		 * the "failfast pending" condition.
13804 		 */
13805 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13806 	}
13807 
13808 
13809 	/*
13810 	 * Check the specified retry count to see if we can still do
13811 	 * any retries with this pkt before we should fail it.
13812 	 */
13813 	switch (retry_check_flag & SD_RETRIES_MASK) {
13814 	case SD_RETRIES_VICTIM:
13815 		/*
13816 		 * Check the victim retry count. If exhausted, then fall
13817 		 * thru & check against the standard retry count.
13818 		 */
13819 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13820 			/* Increment count & proceed with the retry */
13821 			xp->xb_victim_retry_count++;
13822 			break;
13823 		}
13824 		/* Victim retries exhausted, fall back to std. retries... */
13825 		/* FALLTHRU */
13826 
13827 	case SD_RETRIES_STANDARD:
13828 		if (xp->xb_retry_count >= un->un_retry_count) {
13829 			/* Retries exhausted, fail the command */
13830 			SD_TRACE(SD_LOG_IO_CORE, un,
13831 			    "sd_retry_command: retries exhausted!\n");
13832 			/*
13833 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13834 			 * commands with nonzero pkt_resid.
13835 			 */
13836 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13837 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13838 			    (pktp->pkt_resid != 0)) {
13839 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13840 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13841 					SD_UPDATE_B_RESID(bp, pktp);
13842 				}
13843 			}
13844 			goto fail_command;
13845 		}
13846 		xp->xb_retry_count++;
13847 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13848 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13849 		break;
13850 
13851 	case SD_RETRIES_UA:
13852 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13853 			/* Retries exhausted, fail the command */
13854 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13855 			    "Unit Attention retries exhausted. "
13856 			    "Check the target.\n");
13857 			goto fail_command;
13858 		}
13859 		xp->xb_ua_retry_count++;
13860 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13861 		    "sd_retry_command: retry count:%d\n",
13862 		    xp->xb_ua_retry_count);
13863 		break;
13864 
13865 	case SD_RETRIES_BUSY:
13866 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13867 			/* Retries exhausted, fail the command */
13868 			SD_TRACE(SD_LOG_IO_CORE, un,
13869 			    "sd_retry_command: retries exhausted!\n");
13870 			goto fail_command;
13871 		}
13872 		xp->xb_retry_count++;
13873 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13874 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13875 		break;
13876 
13877 	case SD_RETRIES_NOCHECK:
13878 	default:
13879 		/* No retry count to check. Just proceed with the retry */
13880 		break;
13881 	}
13882 
13883 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13884 
13885 	/*
13886 	 * If we were given a zero timeout, we must attempt to retry the
13887 	 * command immediately (ie, without a delay).
13888 	 */
13889 	if (retry_delay == 0) {
13890 		/*
13891 		 * Check some limiting conditions to see if we can actually
13892 		 * do the immediate retry.  If we cannot, then we must
13893 		 * fall back to queueing up a delayed retry.
13894 		 */
13895 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13896 			/*
13897 			 * We are at the throttle limit for the target,
13898 			 * fall back to delayed retry.
13899 			 */
13900 			retry_delay = SD_BSY_TIMEOUT;
13901 			statp = kstat_waitq_enter;
13902 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13903 			    "sd_retry_command: immed. retry hit "
13904 			    "throttle!\n");
13905 		} else {
13906 			/*
13907 			 * We're clear to proceed with the immediate retry.
13908 			 * First call the user-provided function (if any)
13909 			 */
13910 			if (user_funcp != NULL) {
13911 				(*user_funcp)(un, bp, user_arg,
13912 				    SD_IMMEDIATE_RETRY_ISSUED);
13913 #ifdef __lock_lint
13914 				sd_print_incomplete_msg(un, bp, user_arg,
13915 				    SD_IMMEDIATE_RETRY_ISSUED);
13916 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13917 				    SD_IMMEDIATE_RETRY_ISSUED);
13918 				sd_print_sense_failed_msg(un, bp, user_arg,
13919 				    SD_IMMEDIATE_RETRY_ISSUED);
13920 #endif
13921 			}
13922 
13923 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13924 			    "sd_retry_command: issuing immediate retry\n");
13925 
13926 			/*
13927 			 * Call sd_start_cmds() to transport the command to
13928 			 * the target.
13929 			 */
13930 			sd_start_cmds(un, bp);
13931 
13932 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13933 			    "sd_retry_command exit\n");
13934 			return;
13935 		}
13936 	}
13937 
13938 	/*
13939 	 * Set up to retry the command after a delay.
13940 	 * First call the user-provided function (if any)
13941 	 */
13942 	if (user_funcp != NULL) {
13943 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13944 	}
13945 
13946 	sd_set_retry_bp(un, bp, retry_delay, statp);
13947 
13948 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13949 	return;
13950 
13951 fail_command:
13952 
13953 	if (user_funcp != NULL) {
13954 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13955 	}
13956 
13957 fail_command_no_log:
13958 
13959 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13960 	    "sd_retry_command: returning failed command\n");
13961 
13962 	sd_return_failed_command(un, bp, failure_code);
13963 
13964 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13965 }
13966 
13967 
13968 /*
13969  *    Function: sd_set_retry_bp
13970  *
13971  * Description: Set up the given bp for retry.
13972  *
13973  *   Arguments: un - ptr to associated softstate
13974  *		bp - ptr to buf(9S) for the command
13975  *		retry_delay - time interval before issuing retry (may be 0)
13976  *		statp - optional pointer to kstat function
13977  *
13978  *     Context: May be called under interrupt context
13979  */
13980 
13981 static void
13982 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13983 	void (*statp)(kstat_io_t *))
13984 {
13985 	ASSERT(un != NULL);
13986 	ASSERT(mutex_owned(SD_MUTEX(un)));
13987 	ASSERT(bp != NULL);
13988 
13989 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13990 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13991 
13992 	/*
13993 	 * Indicate that the command is being retried. This will not allow any
13994 	 * other commands on the wait queue to be transported to the target
13995 	 * until this command has been completed (success or failure). The
13996 	 * "retry command" is not transported to the target until the given
13997 	 * time delay expires, unless the user specified a 0 retry_delay.
13998 	 *
13999 	 * Note: the timeout(9F) callback routine is what actually calls
14000 	 * sd_start_cmds() to transport the command, with the exception of a
14001 	 * zero retry_delay. The only current implementor of a zero retry delay
14002 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14003 	 */
14004 	if (un->un_retry_bp == NULL) {
14005 		ASSERT(un->un_retry_statp == NULL);
14006 		un->un_retry_bp = bp;
14007 
14008 		/*
14009 		 * If the user has not specified a delay the command should
14010 		 * be queued and no timeout should be scheduled.
14011 		 */
14012 		if (retry_delay == 0) {
14013 			/*
14014 			 * Save the kstat pointer that will be used in the
14015 			 * call to SD_UPDATE_KSTATS() below, so that
14016 			 * sd_start_cmds() can correctly decrement the waitq
14017 			 * count when it is time to transport this command.
14018 			 */
14019 			un->un_retry_statp = statp;
14020 			goto done;
14021 		}
14022 	}
14023 
14024 	if (un->un_retry_bp == bp) {
14025 		/*
14026 		 * Save the kstat pointer that will be used in the call to
14027 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14028 		 * correctly decrement the waitq count when it is time to
14029 		 * transport this command.
14030 		 */
14031 		un->un_retry_statp = statp;
14032 
14033 		/*
14034 		 * Schedule a timeout if:
14035 		 *   1) The user has specified a delay.
14036 		 *   2) There is not a START_STOP_UNIT callback pending.
14037 		 *
14038 		 * If no delay has been specified, then it is up to the caller
14039 		 * to ensure that IO processing continues without stalling.
14040 		 * Effectively, this means that the caller will issue the
14041 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14042 		 * callback does this after the START STOP UNIT command has
14043 		 * completed. In either of these cases we should not schedule
14044 		 * a timeout callback here.  Also don't schedule the timeout if
14045 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14046 		 */
14047 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14048 		    (un->un_direct_priority_timeid == NULL)) {
14049 			un->un_retry_timeid =
14050 			    timeout(sd_start_retry_command, un, retry_delay);
14051 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14052 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14053 			    " bp:0x%p un_retry_timeid:0x%p\n",
14054 			    un, bp, un->un_retry_timeid);
14055 		}
14056 	} else {
14057 		/*
14058 		 * We only get in here if there is already another command
14059 		 * waiting to be retried.  In this case, we just put the
14060 		 * given command onto the wait queue, so it can be transported
14061 		 * after the current retry command has completed.
14062 		 *
14063 		 * Also we have to make sure that if the command at the head
14064 		 * of the wait queue is the un_failfast_bp, that we do not
14065 		 * put ahead of it any other commands that are to be retried.
14066 		 */
14067 		if ((un->un_failfast_bp != NULL) &&
14068 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14069 			/*
14070 			 * Enqueue this command AFTER the first command on
14071 			 * the wait queue (which is also un_failfast_bp).
14072 			 */
14073 			bp->av_forw = un->un_waitq_headp->av_forw;
14074 			un->un_waitq_headp->av_forw = bp;
14075 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14076 				un->un_waitq_tailp = bp;
14077 			}
14078 		} else {
14079 			/* Enqueue this command at the head of the waitq. */
14080 			bp->av_forw = un->un_waitq_headp;
14081 			un->un_waitq_headp = bp;
14082 			if (un->un_waitq_tailp == NULL) {
14083 				un->un_waitq_tailp = bp;
14084 			}
14085 		}
14086 
14087 		if (statp == NULL) {
14088 			statp = kstat_waitq_enter;
14089 		}
14090 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14091 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14092 	}
14093 
14094 done:
14095 	if (statp != NULL) {
14096 		SD_UPDATE_KSTATS(un, statp, bp);
14097 	}
14098 
14099 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14100 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14101 }
14102 
14103 
14104 /*
14105  *    Function: sd_start_retry_command
14106  *
14107  * Description: Start the command that has been waiting on the target's
14108  *		retry queue.  Called from timeout(9F) context after the
14109  *		retry delay interval has expired.
14110  *
14111  *   Arguments: arg - pointer to associated softstate for the device.
14112  *
14113  *     Context: timeout(9F) thread context.  May not sleep.
14114  */
14115 
14116 static void
14117 sd_start_retry_command(void *arg)
14118 {
14119 	struct sd_lun *un = arg;
14120 
14121 	ASSERT(un != NULL);
14122 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14123 
14124 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14125 	    "sd_start_retry_command: entry\n");
14126 
14127 	mutex_enter(SD_MUTEX(un));
14128 
14129 	un->un_retry_timeid = NULL;
14130 
14131 	if (un->un_retry_bp != NULL) {
14132 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14133 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14134 		    un, un->un_retry_bp);
14135 		sd_start_cmds(un, un->un_retry_bp);
14136 	}
14137 
14138 	mutex_exit(SD_MUTEX(un));
14139 
14140 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14141 	    "sd_start_retry_command: exit\n");
14142 }
14143 
14144 
14145 /*
14146  *    Function: sd_start_direct_priority_command
14147  *
14148  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14149  *		received TRAN_BUSY when we called scsi_transport() to send it
14150  *		to the underlying HBA. This function is called from timeout(9F)
14151  *		context after the delay interval has expired.
14152  *
14153  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14154  *
14155  *     Context: timeout(9F) thread context.  May not sleep.
14156  */
14157 
14158 static void
14159 sd_start_direct_priority_command(void *arg)
14160 {
14161 	struct buf	*priority_bp = arg;
14162 	struct sd_lun	*un;
14163 
14164 	ASSERT(priority_bp != NULL);
14165 	un = SD_GET_UN(priority_bp);
14166 	ASSERT(un != NULL);
14167 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14168 
14169 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14170 	    "sd_start_direct_priority_command: entry\n");
14171 
14172 	mutex_enter(SD_MUTEX(un));
14173 	un->un_direct_priority_timeid = NULL;
14174 	sd_start_cmds(un, priority_bp);
14175 	mutex_exit(SD_MUTEX(un));
14176 
14177 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14178 	    "sd_start_direct_priority_command: exit\n");
14179 }
14180 
14181 
14182 /*
14183  *    Function: sd_send_request_sense_command
14184  *
14185  * Description: Sends a REQUEST SENSE command to the target
14186  *
14187  *     Context: May be called from interrupt context.
14188  */
14189 
14190 static void
14191 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14192 	struct scsi_pkt *pktp)
14193 {
14194 	ASSERT(bp != NULL);
14195 	ASSERT(un != NULL);
14196 	ASSERT(mutex_owned(SD_MUTEX(un)));
14197 
14198 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14199 	    "entry: buf:0x%p\n", bp);
14200 
14201 	/*
14202 	 * If we are syncing or dumping, then fail the command to avoid a
14203 	 * recursive callback into scsi_transport(). Also fail the command
14204 	 * if we are suspended (legacy behavior).
14205 	 */
14206 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14207 	    (un->un_state == SD_STATE_DUMPING)) {
14208 		sd_return_failed_command(un, bp, EIO);
14209 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14210 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14211 		return;
14212 	}
14213 
14214 	/*
14215 	 * Retry the failed command and don't issue the request sense if:
14216 	 *    1) the sense buf is busy
14217 	 *    2) we have 1 or more outstanding commands on the target
14218 	 *    (the sense data will be cleared or invalidated any way)
14219 	 *
14220 	 * Note: There could be an issue with not checking a retry limit here,
14221 	 * the problem is determining which retry limit to check.
14222 	 */
14223 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14224 		/* Don't retry if the command is flagged as non-retryable */
14225 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14226 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14227 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14228 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14229 			    "sd_send_request_sense_command: "
14230 			    "at full throttle, retrying exit\n");
14231 		} else {
14232 			sd_return_failed_command(un, bp, EIO);
14233 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14234 			    "sd_send_request_sense_command: "
14235 			    "at full throttle, non-retryable exit\n");
14236 		}
14237 		return;
14238 	}
14239 
14240 	sd_mark_rqs_busy(un, bp);
14241 	sd_start_cmds(un, un->un_rqs_bp);
14242 
14243 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14244 	    "sd_send_request_sense_command: exit\n");
14245 }
14246 
14247 
14248 /*
14249  *    Function: sd_mark_rqs_busy
14250  *
14251  * Description: Indicate that the request sense bp for this instance is
14252  *		in use.
14253  *
14254  *     Context: May be called under interrupt context
14255  */
14256 
14257 static void
14258 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14259 {
14260 	struct sd_xbuf	*sense_xp;
14261 
14262 	ASSERT(un != NULL);
14263 	ASSERT(bp != NULL);
14264 	ASSERT(mutex_owned(SD_MUTEX(un)));
14265 	ASSERT(un->un_sense_isbusy == 0);
14266 
14267 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14268 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14269 
14270 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14271 	ASSERT(sense_xp != NULL);
14272 
14273 	SD_INFO(SD_LOG_IO, un,
14274 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14275 
14276 	ASSERT(sense_xp->xb_pktp != NULL);
14277 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14278 	    == (FLAG_SENSING | FLAG_HEAD));
14279 
14280 	un->un_sense_isbusy = 1;
14281 	un->un_rqs_bp->b_resid = 0;
14282 	sense_xp->xb_pktp->pkt_resid  = 0;
14283 	sense_xp->xb_pktp->pkt_reason = 0;
14284 
14285 	/* So we can get back the bp at interrupt time! */
14286 	sense_xp->xb_sense_bp = bp;
14287 
14288 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14289 
14290 	/*
14291 	 * Mark this buf as awaiting sense data. (This is already set in
14292 	 * the pkt_flags for the RQS packet.)
14293 	 */
14294 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14295 
14296 	sense_xp->xb_retry_count	= 0;
14297 	sense_xp->xb_victim_retry_count = 0;
14298 	sense_xp->xb_ua_retry_count	= 0;
14299 	sense_xp->xb_nr_retry_count 	= 0;
14300 	sense_xp->xb_dma_resid  = 0;
14301 
14302 	/* Clean up the fields for auto-request sense */
14303 	sense_xp->xb_sense_status = 0;
14304 	sense_xp->xb_sense_state  = 0;
14305 	sense_xp->xb_sense_resid  = 0;
14306 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14307 
14308 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14309 }
14310 
14311 
14312 /*
14313  *    Function: sd_mark_rqs_idle
14314  *
14315  * Description: SD_MUTEX must be held continuously through this routine
14316  *		to prevent reuse of the rqs struct before the caller can
14317  *		complete it's processing.
14318  *
14319  * Return Code: Pointer to the RQS buf
14320  *
14321  *     Context: May be called under interrupt context
14322  */
14323 
14324 static struct buf *
14325 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14326 {
14327 	struct buf *bp;
14328 	ASSERT(un != NULL);
14329 	ASSERT(sense_xp != NULL);
14330 	ASSERT(mutex_owned(SD_MUTEX(un)));
14331 	ASSERT(un->un_sense_isbusy != 0);
14332 
14333 	un->un_sense_isbusy = 0;
14334 	bp = sense_xp->xb_sense_bp;
14335 	sense_xp->xb_sense_bp = NULL;
14336 
14337 	/* This pkt is no longer interested in getting sense data */
14338 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14339 
14340 	return (bp);
14341 }
14342 
14343 
14344 
14345 /*
14346  *    Function: sd_alloc_rqs
14347  *
14348  * Description: Set up the unit to receive auto request sense data
14349  *
14350  * Return Code: DDI_SUCCESS or DDI_FAILURE
14351  *
14352  *     Context: Called under attach(9E) context
14353  */
14354 
14355 static int
14356 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14357 {
14358 	struct sd_xbuf *xp;
14359 
14360 	ASSERT(un != NULL);
14361 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14362 	ASSERT(un->un_rqs_bp == NULL);
14363 	ASSERT(un->un_rqs_pktp == NULL);
14364 
14365 	/*
14366 	 * First allocate the required buf and scsi_pkt structs, then set up
14367 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14368 	 */
14369 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14370 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14371 	if (un->un_rqs_bp == NULL) {
14372 		return (DDI_FAILURE);
14373 	}
14374 
14375 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14376 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14377 
14378 	if (un->un_rqs_pktp == NULL) {
14379 		sd_free_rqs(un);
14380 		return (DDI_FAILURE);
14381 	}
14382 
14383 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14384 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14385 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14386 
14387 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14388 
14389 	/* Set up the other needed members in the ARQ scsi_pkt. */
14390 	un->un_rqs_pktp->pkt_comp   = sdintr;
14391 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14392 	un->un_rqs_pktp->pkt_flags |=
14393 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14394 
14395 	/*
14396 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14397 	 * provide any intpkt, destroypkt routines as we take care of
14398 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14399 	 */
14400 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14401 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14402 	xp->xb_pktp = un->un_rqs_pktp;
14403 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14404 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14405 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14406 
14407 	/*
14408 	 * Save the pointer to the request sense private bp so it can
14409 	 * be retrieved in sdintr.
14410 	 */
14411 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14412 	ASSERT(un->un_rqs_bp->b_private == xp);
14413 
14414 	/*
14415 	 * See if the HBA supports auto-request sense for the specified
14416 	 * target/lun. If it does, then try to enable it (if not already
14417 	 * enabled).
14418 	 *
14419 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14420 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14421 	 * return success.  However, in both of these cases ARQ is always
14422 	 * enabled and scsi_ifgetcap will always return true. The best approach
14423 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14424 	 *
14425 	 * The 3rd case is the HBA (adp) always return enabled on
14426 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14427 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14428 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14429 	 */
14430 
14431 	if (un->un_f_is_fibre == TRUE) {
14432 		un->un_f_arq_enabled = TRUE;
14433 	} else {
14434 #if defined(__i386) || defined(__amd64)
14435 		/*
14436 		 * Circumvent the Adaptec bug, remove this code when
14437 		 * the bug is fixed
14438 		 */
14439 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14440 #endif
14441 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14442 		case 0:
14443 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14444 			    "sd_alloc_rqs: HBA supports ARQ\n");
14445 			/*
14446 			 * ARQ is supported by this HBA but currently is not
14447 			 * enabled. Attempt to enable it and if successful then
14448 			 * mark this instance as ARQ enabled.
14449 			 */
14450 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14451 			    == 1) {
14452 				/* Successfully enabled ARQ in the HBA */
14453 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14454 				    "sd_alloc_rqs: ARQ enabled\n");
14455 				un->un_f_arq_enabled = TRUE;
14456 			} else {
14457 				/* Could not enable ARQ in the HBA */
14458 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14459 				    "sd_alloc_rqs: failed ARQ enable\n");
14460 				un->un_f_arq_enabled = FALSE;
14461 			}
14462 			break;
14463 		case 1:
14464 			/*
14465 			 * ARQ is supported by this HBA and is already enabled.
14466 			 * Just mark ARQ as enabled for this instance.
14467 			 */
14468 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14469 			    "sd_alloc_rqs: ARQ already enabled\n");
14470 			un->un_f_arq_enabled = TRUE;
14471 			break;
14472 		default:
14473 			/*
14474 			 * ARQ is not supported by this HBA; disable it for this
14475 			 * instance.
14476 			 */
14477 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14478 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14479 			un->un_f_arq_enabled = FALSE;
14480 			break;
14481 		}
14482 	}
14483 
14484 	return (DDI_SUCCESS);
14485 }
14486 
14487 
14488 /*
14489  *    Function: sd_free_rqs
14490  *
14491  * Description: Cleanup for the pre-instance RQS command.
14492  *
14493  *     Context: Kernel thread context
14494  */
14495 
14496 static void
14497 sd_free_rqs(struct sd_lun *un)
14498 {
14499 	ASSERT(un != NULL);
14500 
14501 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14502 
14503 	/*
14504 	 * If consistent memory is bound to a scsi_pkt, the pkt
14505 	 * has to be destroyed *before* freeing the consistent memory.
14506 	 * Don't change the sequence of this operations.
14507 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14508 	 * after it was freed in scsi_free_consistent_buf().
14509 	 */
14510 	if (un->un_rqs_pktp != NULL) {
14511 		scsi_destroy_pkt(un->un_rqs_pktp);
14512 		un->un_rqs_pktp = NULL;
14513 	}
14514 
14515 	if (un->un_rqs_bp != NULL) {
14516 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14517 		scsi_free_consistent_buf(un->un_rqs_bp);
14518 		un->un_rqs_bp = NULL;
14519 	}
14520 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14521 }
14522 
14523 
14524 
14525 /*
14526  *    Function: sd_reduce_throttle
14527  *
14528  * Description: Reduces the maximum # of outstanding commands on a
14529  *		target to the current number of outstanding commands.
14530  *		Queues a tiemout(9F) callback to restore the limit
14531  *		after a specified interval has elapsed.
14532  *		Typically used when we get a TRAN_BUSY return code
14533  *		back from scsi_transport().
14534  *
14535  *   Arguments: un - ptr to the sd_lun softstate struct
14536  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14537  *
14538  *     Context: May be called from interrupt context
14539  */
14540 
14541 static void
14542 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14543 {
14544 	ASSERT(un != NULL);
14545 	ASSERT(mutex_owned(SD_MUTEX(un)));
14546 	ASSERT(un->un_ncmds_in_transport >= 0);
14547 
14548 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14549 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14550 	    un, un->un_throttle, un->un_ncmds_in_transport);
14551 
14552 	if (un->un_throttle > 1) {
14553 		if (un->un_f_use_adaptive_throttle == TRUE) {
14554 			switch (throttle_type) {
14555 			case SD_THROTTLE_TRAN_BUSY:
14556 				if (un->un_busy_throttle == 0) {
14557 					un->un_busy_throttle = un->un_throttle;
14558 				}
14559 				break;
14560 			case SD_THROTTLE_QFULL:
14561 				un->un_busy_throttle = 0;
14562 				break;
14563 			default:
14564 				ASSERT(FALSE);
14565 			}
14566 
14567 			if (un->un_ncmds_in_transport > 0) {
14568 				un->un_throttle = un->un_ncmds_in_transport;
14569 			}
14570 
14571 		} else {
14572 			if (un->un_ncmds_in_transport == 0) {
14573 				un->un_throttle = 1;
14574 			} else {
14575 				un->un_throttle = un->un_ncmds_in_transport;
14576 			}
14577 		}
14578 	}
14579 
14580 	/* Reschedule the timeout if none is currently active */
14581 	if (un->un_reset_throttle_timeid == NULL) {
14582 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14583 		    un, SD_THROTTLE_RESET_INTERVAL);
14584 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14585 		    "sd_reduce_throttle: timeout scheduled!\n");
14586 	}
14587 
14588 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14589 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14590 }
14591 
14592 
14593 
14594 /*
14595  *    Function: sd_restore_throttle
14596  *
14597  * Description: Callback function for timeout(9F).  Resets the current
14598  *		value of un->un_throttle to its default.
14599  *
14600  *   Arguments: arg - pointer to associated softstate for the device.
14601  *
14602  *     Context: May be called from interrupt context
14603  */
14604 
14605 static void
14606 sd_restore_throttle(void *arg)
14607 {
14608 	struct sd_lun	*un = arg;
14609 
14610 	ASSERT(un != NULL);
14611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14612 
14613 	mutex_enter(SD_MUTEX(un));
14614 
14615 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14616 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14617 
14618 	un->un_reset_throttle_timeid = NULL;
14619 
14620 	if (un->un_f_use_adaptive_throttle == TRUE) {
14621 		/*
14622 		 * If un_busy_throttle is nonzero, then it contains the
14623 		 * value that un_throttle was when we got a TRAN_BUSY back
14624 		 * from scsi_transport(). We want to revert back to this
14625 		 * value.
14626 		 *
14627 		 * In the QFULL case, the throttle limit will incrementally
14628 		 * increase until it reaches max throttle.
14629 		 */
14630 		if (un->un_busy_throttle > 0) {
14631 			un->un_throttle = un->un_busy_throttle;
14632 			un->un_busy_throttle = 0;
14633 		} else {
14634 			/*
14635 			 * increase throttle by 10% open gate slowly, schedule
14636 			 * another restore if saved throttle has not been
14637 			 * reached
14638 			 */
14639 			short throttle;
14640 			if (sd_qfull_throttle_enable) {
14641 				throttle = un->un_throttle +
14642 				    max((un->un_throttle / 10), 1);
14643 				un->un_throttle =
14644 				    (throttle < un->un_saved_throttle) ?
14645 				    throttle : un->un_saved_throttle;
14646 				if (un->un_throttle < un->un_saved_throttle) {
14647 					un->un_reset_throttle_timeid =
14648 					    timeout(sd_restore_throttle,
14649 					    un,
14650 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14651 				}
14652 			}
14653 		}
14654 
14655 		/*
14656 		 * If un_throttle has fallen below the low-water mark, we
14657 		 * restore the maximum value here (and allow it to ratchet
14658 		 * down again if necessary).
14659 		 */
14660 		if (un->un_throttle < un->un_min_throttle) {
14661 			un->un_throttle = un->un_saved_throttle;
14662 		}
14663 	} else {
14664 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14665 		    "restoring limit from 0x%x to 0x%x\n",
14666 		    un->un_throttle, un->un_saved_throttle);
14667 		un->un_throttle = un->un_saved_throttle;
14668 	}
14669 
14670 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14671 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14672 
14673 	sd_start_cmds(un, NULL);
14674 
14675 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14676 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14677 	    un, un->un_throttle);
14678 
14679 	mutex_exit(SD_MUTEX(un));
14680 
14681 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14682 }
14683 
14684 /*
14685  *    Function: sdrunout
14686  *
14687  * Description: Callback routine for scsi_init_pkt when a resource allocation
14688  *		fails.
14689  *
14690  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14691  *		soft state instance.
14692  *
14693  * Return Code: The scsi_init_pkt routine allows for the callback function to
14694  *		return a 0 indicating the callback should be rescheduled or a 1
14695  *		indicating not to reschedule. This routine always returns 1
14696  *		because the driver always provides a callback function to
14697  *		scsi_init_pkt. This results in a callback always being scheduled
14698  *		(via the scsi_init_pkt callback implementation) if a resource
14699  *		failure occurs.
14700  *
14701  *     Context: This callback function may not block or call routines that block
14702  *
14703  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14704  *		request persisting at the head of the list which cannot be
14705  *		satisfied even after multiple retries. In the future the driver
14706  *		may implement some time of maximum runout count before failing
14707  *		an I/O.
14708  */
14709 
14710 static int
14711 sdrunout(caddr_t arg)
14712 {
14713 	struct sd_lun	*un = (struct sd_lun *)arg;
14714 
14715 	ASSERT(un != NULL);
14716 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14717 
14718 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14719 
14720 	mutex_enter(SD_MUTEX(un));
14721 	sd_start_cmds(un, NULL);
14722 	mutex_exit(SD_MUTEX(un));
14723 	/*
14724 	 * This callback routine always returns 1 (i.e. do not reschedule)
14725 	 * because we always specify sdrunout as the callback handler for
14726 	 * scsi_init_pkt inside the call to sd_start_cmds.
14727 	 */
14728 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14729 	return (1);
14730 }
14731 
14732 
14733 /*
14734  *    Function: sdintr
14735  *
14736  * Description: Completion callback routine for scsi_pkt(9S) structs
14737  *		sent to the HBA driver via scsi_transport(9F).
14738  *
14739  *     Context: Interrupt context
14740  */
14741 
14742 static void
14743 sdintr(struct scsi_pkt *pktp)
14744 {
14745 	struct buf	*bp;
14746 	struct sd_xbuf	*xp;
14747 	struct sd_lun	*un;
14748 
14749 	ASSERT(pktp != NULL);
14750 	bp = (struct buf *)pktp->pkt_private;
14751 	ASSERT(bp != NULL);
14752 	xp = SD_GET_XBUF(bp);
14753 	ASSERT(xp != NULL);
14754 	ASSERT(xp->xb_pktp != NULL);
14755 	un = SD_GET_UN(bp);
14756 	ASSERT(un != NULL);
14757 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14758 
14759 #ifdef SD_FAULT_INJECTION
14760 
14761 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14762 	/* SD FaultInjection */
14763 	sd_faultinjection(pktp);
14764 
14765 #endif /* SD_FAULT_INJECTION */
14766 
14767 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14768 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14769 
14770 	mutex_enter(SD_MUTEX(un));
14771 
14772 	/* Reduce the count of the #commands currently in transport */
14773 	un->un_ncmds_in_transport--;
14774 	ASSERT(un->un_ncmds_in_transport >= 0);
14775 
14776 	/* Increment counter to indicate that the callback routine is active */
14777 	un->un_in_callback++;
14778 
14779 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14780 
14781 #ifdef	SDDEBUG
14782 	if (bp == un->un_retry_bp) {
14783 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14784 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14785 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14786 	}
14787 #endif
14788 
14789 	/*
14790 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14791 	 * state if needed.
14792 	 */
14793 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14794 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14795 		    "Device is gone\n");
14796 		if (un->un_mediastate != DKIO_DEV_GONE) {
14797 			un->un_mediastate = DKIO_DEV_GONE;
14798 			cv_broadcast(&un->un_state_cv);
14799 		}
14800 		sd_return_failed_command(un, bp, EIO);
14801 		goto exit;
14802 	}
14803 
14804 	/*
14805 	 * First see if the pkt has auto-request sense data with it....
14806 	 * Look at the packet state first so we don't take a performance
14807 	 * hit looking at the arq enabled flag unless absolutely necessary.
14808 	 */
14809 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14810 	    (un->un_f_arq_enabled == TRUE)) {
14811 		/*
14812 		 * The HBA did an auto request sense for this command so check
14813 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14814 		 * driver command that should not be retried.
14815 		 */
14816 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14817 			/*
14818 			 * Save the relevant sense info into the xp for the
14819 			 * original cmd.
14820 			 */
14821 			struct scsi_arq_status *asp;
14822 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14823 			xp->xb_sense_status =
14824 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14825 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14826 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14827 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14828 			    min(sizeof (struct scsi_extended_sense),
14829 			    SENSE_LENGTH));
14830 
14831 			/* fail the command */
14832 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14833 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14834 			sd_return_failed_command(un, bp, EIO);
14835 			goto exit;
14836 		}
14837 
14838 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14839 		/*
14840 		 * We want to either retry or fail this command, so free
14841 		 * the DMA resources here.  If we retry the command then
14842 		 * the DMA resources will be reallocated in sd_start_cmds().
14843 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14844 		 * causes the *entire* transfer to start over again from the
14845 		 * beginning of the request, even for PARTIAL chunks that
14846 		 * have already transferred successfully.
14847 		 */
14848 		if ((un->un_f_is_fibre == TRUE) &&
14849 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14850 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14851 			scsi_dmafree(pktp);
14852 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14853 		}
14854 #endif
14855 
14856 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14857 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14858 
14859 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14860 		goto exit;
14861 	}
14862 
14863 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14864 	if (pktp->pkt_flags & FLAG_SENSING)  {
14865 		/* This pktp is from the unit's REQUEST_SENSE command */
14866 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14867 		    "sdintr: sd_handle_request_sense\n");
14868 		sd_handle_request_sense(un, bp, xp, pktp);
14869 		goto exit;
14870 	}
14871 
14872 	/*
14873 	 * Check to see if the command successfully completed as requested;
14874 	 * this is the most common case (and also the hot performance path).
14875 	 *
14876 	 * Requirements for successful completion are:
14877 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14878 	 * In addition:
14879 	 * - A residual of zero indicates successful completion no matter what
14880 	 *   the command is.
14881 	 * - If the residual is not zero and the command is not a read or
14882 	 *   write, then it's still defined as successful completion. In other
14883 	 *   words, if the command is a read or write the residual must be
14884 	 *   zero for successful completion.
14885 	 * - If the residual is not zero and the command is a read or
14886 	 *   write, and it's a USCSICMD, then it's still defined as
14887 	 *   successful completion.
14888 	 */
14889 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14890 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14891 
14892 		/*
14893 		 * Since this command is returned with a good status, we
14894 		 * can reset the count for Sonoma failover.
14895 		 */
14896 		un->un_sonoma_failure_count = 0;
14897 
14898 		/*
14899 		 * Return all USCSI commands on good status
14900 		 */
14901 		if (pktp->pkt_resid == 0) {
14902 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14903 			    "sdintr: returning command for resid == 0\n");
14904 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14905 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14906 			SD_UPDATE_B_RESID(bp, pktp);
14907 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14908 			    "sdintr: returning command for resid != 0\n");
14909 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14910 			SD_UPDATE_B_RESID(bp, pktp);
14911 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14912 			    "sdintr: returning uscsi command\n");
14913 		} else {
14914 			goto not_successful;
14915 		}
14916 		sd_return_command(un, bp);
14917 
14918 		/*
14919 		 * Decrement counter to indicate that the callback routine
14920 		 * is done.
14921 		 */
14922 		un->un_in_callback--;
14923 		ASSERT(un->un_in_callback >= 0);
14924 		mutex_exit(SD_MUTEX(un));
14925 
14926 		return;
14927 	}
14928 
14929 not_successful:
14930 
14931 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14932 	/*
14933 	 * The following is based upon knowledge of the underlying transport
14934 	 * and its use of DMA resources.  This code should be removed when
14935 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14936 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14937 	 * and sd_start_cmds().
14938 	 *
14939 	 * Free any DMA resources associated with this command if there
14940 	 * is a chance it could be retried or enqueued for later retry.
14941 	 * If we keep the DMA binding then mpxio cannot reissue the
14942 	 * command on another path whenever a path failure occurs.
14943 	 *
14944 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14945 	 * causes the *entire* transfer to start over again from the
14946 	 * beginning of the request, even for PARTIAL chunks that
14947 	 * have already transferred successfully.
14948 	 *
14949 	 * This is only done for non-uscsi commands (and also skipped for the
14950 	 * driver's internal RQS command). Also just do this for Fibre Channel
14951 	 * devices as these are the only ones that support mpxio.
14952 	 */
14953 	if ((un->un_f_is_fibre == TRUE) &&
14954 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14955 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14956 		scsi_dmafree(pktp);
14957 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14958 	}
14959 #endif
14960 
14961 	/*
14962 	 * The command did not successfully complete as requested so check
14963 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14964 	 * driver command that should not be retried so just return. If
14965 	 * FLAG_DIAGNOSE is not set the error will be processed below.
14966 	 */
14967 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14968 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14969 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14970 		/*
14971 		 * Issue a request sense if a check condition caused the error
14972 		 * (we handle the auto request sense case above), otherwise
14973 		 * just fail the command.
14974 		 */
14975 		if ((pktp->pkt_reason == CMD_CMPLT) &&
14976 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14977 			sd_send_request_sense_command(un, bp, pktp);
14978 		} else {
14979 			sd_return_failed_command(un, bp, EIO);
14980 		}
14981 		goto exit;
14982 	}
14983 
14984 	/*
14985 	 * The command did not successfully complete as requested so process
14986 	 * the error, retry, and/or attempt recovery.
14987 	 */
14988 	switch (pktp->pkt_reason) {
14989 	case CMD_CMPLT:
14990 		switch (SD_GET_PKT_STATUS(pktp)) {
14991 		case STATUS_GOOD:
14992 			/*
14993 			 * The command completed successfully with a non-zero
14994 			 * residual
14995 			 */
14996 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14997 			    "sdintr: STATUS_GOOD \n");
14998 			sd_pkt_status_good(un, bp, xp, pktp);
14999 			break;
15000 
15001 		case STATUS_CHECK:
15002 		case STATUS_TERMINATED:
15003 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15004 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15005 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15006 			break;
15007 
15008 		case STATUS_BUSY:
15009 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15010 			    "sdintr: STATUS_BUSY\n");
15011 			sd_pkt_status_busy(un, bp, xp, pktp);
15012 			break;
15013 
15014 		case STATUS_RESERVATION_CONFLICT:
15015 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15016 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15017 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15018 			break;
15019 
15020 		case STATUS_QFULL:
15021 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15022 			    "sdintr: STATUS_QFULL\n");
15023 			sd_pkt_status_qfull(un, bp, xp, pktp);
15024 			break;
15025 
15026 		case STATUS_MET:
15027 		case STATUS_INTERMEDIATE:
15028 		case STATUS_SCSI2:
15029 		case STATUS_INTERMEDIATE_MET:
15030 		case STATUS_ACA_ACTIVE:
15031 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15032 			    "Unexpected SCSI status received: 0x%x\n",
15033 			    SD_GET_PKT_STATUS(pktp));
15034 			sd_return_failed_command(un, bp, EIO);
15035 			break;
15036 
15037 		default:
15038 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15039 			    "Invalid SCSI status received: 0x%x\n",
15040 			    SD_GET_PKT_STATUS(pktp));
15041 			sd_return_failed_command(un, bp, EIO);
15042 			break;
15043 
15044 		}
15045 		break;
15046 
15047 	case CMD_INCOMPLETE:
15048 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15049 		    "sdintr:  CMD_INCOMPLETE\n");
15050 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15051 		break;
15052 	case CMD_TRAN_ERR:
15053 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15054 		    "sdintr: CMD_TRAN_ERR\n");
15055 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15056 		break;
15057 	case CMD_RESET:
15058 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15059 		    "sdintr: CMD_RESET \n");
15060 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15061 		break;
15062 	case CMD_ABORTED:
15063 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15064 		    "sdintr: CMD_ABORTED \n");
15065 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15066 		break;
15067 	case CMD_TIMEOUT:
15068 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15069 		    "sdintr: CMD_TIMEOUT\n");
15070 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15071 		break;
15072 	case CMD_UNX_BUS_FREE:
15073 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15074 		    "sdintr: CMD_UNX_BUS_FREE \n");
15075 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15076 		break;
15077 	case CMD_TAG_REJECT:
15078 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15079 		    "sdintr: CMD_TAG_REJECT\n");
15080 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15081 		break;
15082 	default:
15083 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15084 		    "sdintr: default\n");
15085 		sd_pkt_reason_default(un, bp, xp, pktp);
15086 		break;
15087 	}
15088 
15089 exit:
15090 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15091 
15092 	/* Decrement counter to indicate that the callback routine is done. */
15093 	un->un_in_callback--;
15094 	ASSERT(un->un_in_callback >= 0);
15095 
15096 	/*
15097 	 * At this point, the pkt has been dispatched, ie, it is either
15098 	 * being re-tried or has been returned to its caller and should
15099 	 * not be referenced.
15100 	 */
15101 
15102 	mutex_exit(SD_MUTEX(un));
15103 }
15104 
15105 
15106 /*
15107  *    Function: sd_print_incomplete_msg
15108  *
15109  * Description: Prints the error message for a CMD_INCOMPLETE error.
15110  *
15111  *   Arguments: un - ptr to associated softstate for the device.
15112  *		bp - ptr to the buf(9S) for the command.
15113  *		arg - message string ptr
15114  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15115  *			or SD_NO_RETRY_ISSUED.
15116  *
15117  *     Context: May be called under interrupt context
15118  */
15119 
15120 static void
15121 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15122 {
15123 	struct scsi_pkt	*pktp;
15124 	char	*msgp;
15125 	char	*cmdp = arg;
15126 
15127 	ASSERT(un != NULL);
15128 	ASSERT(mutex_owned(SD_MUTEX(un)));
15129 	ASSERT(bp != NULL);
15130 	ASSERT(arg != NULL);
15131 	pktp = SD_GET_PKTP(bp);
15132 	ASSERT(pktp != NULL);
15133 
15134 	switch (code) {
15135 	case SD_DELAYED_RETRY_ISSUED:
15136 	case SD_IMMEDIATE_RETRY_ISSUED:
15137 		msgp = "retrying";
15138 		break;
15139 	case SD_NO_RETRY_ISSUED:
15140 	default:
15141 		msgp = "giving up";
15142 		break;
15143 	}
15144 
15145 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15146 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15147 		    "incomplete %s- %s\n", cmdp, msgp);
15148 	}
15149 }
15150 
15151 
15152 
15153 /*
15154  *    Function: sd_pkt_status_good
15155  *
15156  * Description: Processing for a STATUS_GOOD code in pkt_status.
15157  *
15158  *     Context: May be called under interrupt context
15159  */
15160 
15161 static void
15162 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15163 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15164 {
15165 	char	*cmdp;
15166 
15167 	ASSERT(un != NULL);
15168 	ASSERT(mutex_owned(SD_MUTEX(un)));
15169 	ASSERT(bp != NULL);
15170 	ASSERT(xp != NULL);
15171 	ASSERT(pktp != NULL);
15172 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15173 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15174 	ASSERT(pktp->pkt_resid != 0);
15175 
15176 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15177 
15178 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15179 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15180 	case SCMD_READ:
15181 		cmdp = "read";
15182 		break;
15183 	case SCMD_WRITE:
15184 		cmdp = "write";
15185 		break;
15186 	default:
15187 		SD_UPDATE_B_RESID(bp, pktp);
15188 		sd_return_command(un, bp);
15189 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15190 		return;
15191 	}
15192 
15193 	/*
15194 	 * See if we can retry the read/write, preferrably immediately.
15195 	 * If retries are exhaused, then sd_retry_command() will update
15196 	 * the b_resid count.
15197 	 */
15198 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15199 	    cmdp, EIO, (clock_t)0, NULL);
15200 
15201 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15202 }
15203 
15204 
15205 
15206 
15207 
15208 /*
15209  *    Function: sd_handle_request_sense
15210  *
15211  * Description: Processing for non-auto Request Sense command.
15212  *
15213  *   Arguments: un - ptr to associated softstate
15214  *		sense_bp - ptr to buf(9S) for the RQS command
15215  *		sense_xp - ptr to the sd_xbuf for the RQS command
15216  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15217  *
15218  *     Context: May be called under interrupt context
15219  */
15220 
15221 static void
15222 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15223 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15224 {
15225 	struct buf	*cmd_bp;	/* buf for the original command */
15226 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15227 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15228 
15229 	ASSERT(un != NULL);
15230 	ASSERT(mutex_owned(SD_MUTEX(un)));
15231 	ASSERT(sense_bp != NULL);
15232 	ASSERT(sense_xp != NULL);
15233 	ASSERT(sense_pktp != NULL);
15234 
15235 	/*
15236 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15237 	 * RQS command and not the original command.
15238 	 */
15239 	ASSERT(sense_pktp == un->un_rqs_pktp);
15240 	ASSERT(sense_bp   == un->un_rqs_bp);
15241 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15242 	    (FLAG_SENSING | FLAG_HEAD));
15243 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15244 	    FLAG_SENSING) == FLAG_SENSING);
15245 
15246 	/* These are the bp, xp, and pktp for the original command */
15247 	cmd_bp = sense_xp->xb_sense_bp;
15248 	cmd_xp = SD_GET_XBUF(cmd_bp);
15249 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15250 
15251 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15252 		/*
15253 		 * The REQUEST SENSE command failed.  Release the REQUEST
15254 		 * SENSE command for re-use, get back the bp for the original
15255 		 * command, and attempt to re-try the original command if
15256 		 * FLAG_DIAGNOSE is not set in the original packet.
15257 		 */
15258 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15259 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15260 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15261 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15262 			    NULL, NULL, EIO, (clock_t)0, NULL);
15263 			return;
15264 		}
15265 	}
15266 
15267 	/*
15268 	 * Save the relevant sense info into the xp for the original cmd.
15269 	 *
15270 	 * Note: if the request sense failed the state info will be zero
15271 	 * as set in sd_mark_rqs_busy()
15272 	 */
15273 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15274 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15275 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15276 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15277 
15278 	/*
15279 	 *  Free up the RQS command....
15280 	 *  NOTE:
15281 	 *	Must do this BEFORE calling sd_validate_sense_data!
15282 	 *	sd_validate_sense_data may return the original command in
15283 	 *	which case the pkt will be freed and the flags can no
15284 	 *	longer be touched.
15285 	 *	SD_MUTEX is held through this process until the command
15286 	 *	is dispatched based upon the sense data, so there are
15287 	 *	no race conditions.
15288 	 */
15289 	(void) sd_mark_rqs_idle(un, sense_xp);
15290 
15291 	/*
15292 	 * For a retryable command see if we have valid sense data, if so then
15293 	 * turn it over to sd_decode_sense() to figure out the right course of
15294 	 * action. Just fail a non-retryable command.
15295 	 */
15296 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15297 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15298 		    SD_SENSE_DATA_IS_VALID) {
15299 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15300 		}
15301 	} else {
15302 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15303 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15304 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15305 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15306 		sd_return_failed_command(un, cmd_bp, EIO);
15307 	}
15308 }
15309 
15310 
15311 
15312 
15313 /*
15314  *    Function: sd_handle_auto_request_sense
15315  *
15316  * Description: Processing for auto-request sense information.
15317  *
15318  *   Arguments: un - ptr to associated softstate
15319  *		bp - ptr to buf(9S) for the command
15320  *		xp - ptr to the sd_xbuf for the command
15321  *		pktp - ptr to the scsi_pkt(9S) for the command
15322  *
15323  *     Context: May be called under interrupt context
15324  */
15325 
15326 static void
15327 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15328 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15329 {
15330 	struct scsi_arq_status *asp;
15331 
15332 	ASSERT(un != NULL);
15333 	ASSERT(mutex_owned(SD_MUTEX(un)));
15334 	ASSERT(bp != NULL);
15335 	ASSERT(xp != NULL);
15336 	ASSERT(pktp != NULL);
15337 	ASSERT(pktp != un->un_rqs_pktp);
15338 	ASSERT(bp   != un->un_rqs_bp);
15339 
15340 	/*
15341 	 * For auto-request sense, we get a scsi_arq_status back from
15342 	 * the HBA, with the sense data in the sts_sensedata member.
15343 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15344 	 */
15345 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15346 
15347 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15348 		/*
15349 		 * The auto REQUEST SENSE failed; see if we can re-try
15350 		 * the original command.
15351 		 */
15352 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15353 		    "auto request sense failed (reason=%s)\n",
15354 		    scsi_rname(asp->sts_rqpkt_reason));
15355 
15356 		sd_reset_target(un, pktp);
15357 
15358 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15359 		    NULL, NULL, EIO, (clock_t)0, NULL);
15360 		return;
15361 	}
15362 
15363 	/* Save the relevant sense info into the xp for the original cmd. */
15364 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15365 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15366 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15367 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15368 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15369 
15370 	/*
15371 	 * See if we have valid sense data, if so then turn it over to
15372 	 * sd_decode_sense() to figure out the right course of action.
15373 	 */
15374 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15375 		sd_decode_sense(un, bp, xp, pktp);
15376 	}
15377 }
15378 
15379 
15380 /*
15381  *    Function: sd_print_sense_failed_msg
15382  *
15383  * Description: Print log message when RQS has failed.
15384  *
15385  *   Arguments: un - ptr to associated softstate
15386  *		bp - ptr to buf(9S) for the command
15387  *		arg - generic message string ptr
15388  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15389  *			or SD_NO_RETRY_ISSUED
15390  *
15391  *     Context: May be called from interrupt context
15392  */
15393 
15394 static void
15395 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15396 	int code)
15397 {
15398 	char	*msgp = arg;
15399 
15400 	ASSERT(un != NULL);
15401 	ASSERT(mutex_owned(SD_MUTEX(un)));
15402 	ASSERT(bp != NULL);
15403 
15404 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15405 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15406 	}
15407 }
15408 
15409 
15410 /*
15411  *    Function: sd_validate_sense_data
15412  *
15413  * Description: Check the given sense data for validity.
15414  *		If the sense data is not valid, the command will
15415  *		be either failed or retried!
15416  *
15417  * Return Code: SD_SENSE_DATA_IS_INVALID
15418  *		SD_SENSE_DATA_IS_VALID
15419  *
15420  *     Context: May be called from interrupt context
15421  */
15422 
15423 static int
15424 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15425 {
15426 	struct scsi_extended_sense *esp;
15427 	struct	scsi_pkt *pktp;
15428 	size_t	actual_len;
15429 	char	*msgp = NULL;
15430 
15431 	ASSERT(un != NULL);
15432 	ASSERT(mutex_owned(SD_MUTEX(un)));
15433 	ASSERT(bp != NULL);
15434 	ASSERT(bp != un->un_rqs_bp);
15435 	ASSERT(xp != NULL);
15436 
15437 	pktp = SD_GET_PKTP(bp);
15438 	ASSERT(pktp != NULL);
15439 
15440 	/*
15441 	 * Check the status of the RQS command (auto or manual).
15442 	 */
15443 	switch (xp->xb_sense_status & STATUS_MASK) {
15444 	case STATUS_GOOD:
15445 		break;
15446 
15447 	case STATUS_RESERVATION_CONFLICT:
15448 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15449 		return (SD_SENSE_DATA_IS_INVALID);
15450 
15451 	case STATUS_BUSY:
15452 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15453 		    "Busy Status on REQUEST SENSE\n");
15454 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15455 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15456 		return (SD_SENSE_DATA_IS_INVALID);
15457 
15458 	case STATUS_QFULL:
15459 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15460 		    "QFULL Status on REQUEST SENSE\n");
15461 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15462 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15463 		return (SD_SENSE_DATA_IS_INVALID);
15464 
15465 	case STATUS_CHECK:
15466 	case STATUS_TERMINATED:
15467 		msgp = "Check Condition on REQUEST SENSE\n";
15468 		goto sense_failed;
15469 
15470 	default:
15471 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15472 		goto sense_failed;
15473 	}
15474 
15475 	/*
15476 	 * See if we got the minimum required amount of sense data.
15477 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15478 	 * or less.
15479 	 */
15480 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15481 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15482 	    (actual_len == 0)) {
15483 		msgp = "Request Sense couldn't get sense data\n";
15484 		goto sense_failed;
15485 	}
15486 
15487 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15488 		msgp = "Not enough sense information\n";
15489 		goto sense_failed;
15490 	}
15491 
15492 	/*
15493 	 * We require the extended sense data
15494 	 */
15495 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15496 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15497 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15498 			static char tmp[8];
15499 			static char buf[148];
15500 			char *p = (char *)(xp->xb_sense_data);
15501 			int i;
15502 
15503 			mutex_enter(&sd_sense_mutex);
15504 			(void) strcpy(buf, "undecodable sense information:");
15505 			for (i = 0; i < actual_len; i++) {
15506 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15507 				(void) strcpy(&buf[strlen(buf)], tmp);
15508 			}
15509 			i = strlen(buf);
15510 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15511 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15512 			mutex_exit(&sd_sense_mutex);
15513 		}
15514 		/* Note: Legacy behavior, fail the command with no retry */
15515 		sd_return_failed_command(un, bp, EIO);
15516 		return (SD_SENSE_DATA_IS_INVALID);
15517 	}
15518 
15519 	/*
15520 	 * Check that es_code is valid (es_class concatenated with es_code
15521 	 * make up the "response code" field.  es_class will always be 7, so
15522 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15523 	 * format.
15524 	 */
15525 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15526 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15527 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15528 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15529 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15530 		goto sense_failed;
15531 	}
15532 
15533 	return (SD_SENSE_DATA_IS_VALID);
15534 
15535 sense_failed:
15536 	/*
15537 	 * If the request sense failed (for whatever reason), attempt
15538 	 * to retry the original command.
15539 	 */
15540 #if defined(__i386) || defined(__amd64)
15541 	/*
15542 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15543 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15544 	 * for both SCSI/FC.
15545 	 * The SD_RETRY_DELAY value need to be adjusted here
15546 	 * when SD_RETRY_DELAY change in sddef.h
15547 	 */
15548 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15549 	    sd_print_sense_failed_msg, msgp, EIO,
15550 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15551 #else
15552 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15553 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15554 #endif
15555 
15556 	return (SD_SENSE_DATA_IS_INVALID);
15557 }
15558 
15559 
15560 
15561 /*
15562  *    Function: sd_decode_sense
15563  *
15564  * Description: Take recovery action(s) when SCSI Sense Data is received.
15565  *
15566  *     Context: Interrupt context.
15567  */
15568 
15569 static void
15570 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15571 	struct scsi_pkt *pktp)
15572 {
15573 	uint8_t sense_key;
15574 
15575 	ASSERT(un != NULL);
15576 	ASSERT(mutex_owned(SD_MUTEX(un)));
15577 	ASSERT(bp != NULL);
15578 	ASSERT(bp != un->un_rqs_bp);
15579 	ASSERT(xp != NULL);
15580 	ASSERT(pktp != NULL);
15581 
15582 	sense_key = scsi_sense_key(xp->xb_sense_data);
15583 
15584 	switch (sense_key) {
15585 	case KEY_NO_SENSE:
15586 		sd_sense_key_no_sense(un, bp, xp, pktp);
15587 		break;
15588 	case KEY_RECOVERABLE_ERROR:
15589 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15590 		    bp, xp, pktp);
15591 		break;
15592 	case KEY_NOT_READY:
15593 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15594 		    bp, xp, pktp);
15595 		break;
15596 	case KEY_MEDIUM_ERROR:
15597 	case KEY_HARDWARE_ERROR:
15598 		sd_sense_key_medium_or_hardware_error(un,
15599 		    xp->xb_sense_data, bp, xp, pktp);
15600 		break;
15601 	case KEY_ILLEGAL_REQUEST:
15602 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15603 		break;
15604 	case KEY_UNIT_ATTENTION:
15605 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15606 		    bp, xp, pktp);
15607 		break;
15608 	case KEY_WRITE_PROTECT:
15609 	case KEY_VOLUME_OVERFLOW:
15610 	case KEY_MISCOMPARE:
15611 		sd_sense_key_fail_command(un, bp, xp, pktp);
15612 		break;
15613 	case KEY_BLANK_CHECK:
15614 		sd_sense_key_blank_check(un, bp, xp, pktp);
15615 		break;
15616 	case KEY_ABORTED_COMMAND:
15617 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15618 		break;
15619 	case KEY_VENDOR_UNIQUE:
15620 	case KEY_COPY_ABORTED:
15621 	case KEY_EQUAL:
15622 	case KEY_RESERVED:
15623 	default:
15624 		sd_sense_key_default(un, xp->xb_sense_data,
15625 		    bp, xp, pktp);
15626 		break;
15627 	}
15628 }
15629 
15630 
15631 /*
15632  *    Function: sd_dump_memory
15633  *
15634  * Description: Debug logging routine to print the contents of a user provided
15635  *		buffer. The output of the buffer is broken up into 256 byte
15636  *		segments due to a size constraint of the scsi_log.
15637  *		implementation.
15638  *
15639  *   Arguments: un - ptr to softstate
15640  *		comp - component mask
15641  *		title - "title" string to preceed data when printed
15642  *		data - ptr to data block to be printed
15643  *		len - size of data block to be printed
15644  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15645  *
15646  *     Context: May be called from interrupt context
15647  */
15648 
15649 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15650 
15651 static char *sd_dump_format_string[] = {
15652 		" 0x%02x",
15653 		" %c"
15654 };
15655 
15656 static void
15657 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15658     int len, int fmt)
15659 {
15660 	int	i, j;
15661 	int	avail_count;
15662 	int	start_offset;
15663 	int	end_offset;
15664 	size_t	entry_len;
15665 	char	*bufp;
15666 	char	*local_buf;
15667 	char	*format_string;
15668 
15669 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15670 
15671 	/*
15672 	 * In the debug version of the driver, this function is called from a
15673 	 * number of places which are NOPs in the release driver.
15674 	 * The debug driver therefore has additional methods of filtering
15675 	 * debug output.
15676 	 */
15677 #ifdef SDDEBUG
15678 	/*
15679 	 * In the debug version of the driver we can reduce the amount of debug
15680 	 * messages by setting sd_error_level to something other than
15681 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15682 	 * sd_component_mask.
15683 	 */
15684 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15685 	    (sd_error_level != SCSI_ERR_ALL)) {
15686 		return;
15687 	}
15688 	if (((sd_component_mask & comp) == 0) ||
15689 	    (sd_error_level != SCSI_ERR_ALL)) {
15690 		return;
15691 	}
15692 #else
15693 	if (sd_error_level != SCSI_ERR_ALL) {
15694 		return;
15695 	}
15696 #endif
15697 
15698 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15699 	bufp = local_buf;
15700 	/*
15701 	 * Available length is the length of local_buf[], minus the
15702 	 * length of the title string, minus one for the ":", minus
15703 	 * one for the newline, minus one for the NULL terminator.
15704 	 * This gives the #bytes available for holding the printed
15705 	 * values from the given data buffer.
15706 	 */
15707 	if (fmt == SD_LOG_HEX) {
15708 		format_string = sd_dump_format_string[0];
15709 	} else /* SD_LOG_CHAR */ {
15710 		format_string = sd_dump_format_string[1];
15711 	}
15712 	/*
15713 	 * Available count is the number of elements from the given
15714 	 * data buffer that we can fit into the available length.
15715 	 * This is based upon the size of the format string used.
15716 	 * Make one entry and find it's size.
15717 	 */
15718 	(void) sprintf(bufp, format_string, data[0]);
15719 	entry_len = strlen(bufp);
15720 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15721 
15722 	j = 0;
15723 	while (j < len) {
15724 		bufp = local_buf;
15725 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15726 		start_offset = j;
15727 
15728 		end_offset = start_offset + avail_count;
15729 
15730 		(void) sprintf(bufp, "%s:", title);
15731 		bufp += strlen(bufp);
15732 		for (i = start_offset; ((i < end_offset) && (j < len));
15733 		    i++, j++) {
15734 			(void) sprintf(bufp, format_string, data[i]);
15735 			bufp += entry_len;
15736 		}
15737 		(void) sprintf(bufp, "\n");
15738 
15739 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15740 	}
15741 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15742 }
15743 
15744 /*
15745  *    Function: sd_print_sense_msg
15746  *
15747  * Description: Log a message based upon the given sense data.
15748  *
15749  *   Arguments: un - ptr to associated softstate
15750  *		bp - ptr to buf(9S) for the command
15751  *		arg - ptr to associate sd_sense_info struct
15752  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15753  *			or SD_NO_RETRY_ISSUED
15754  *
15755  *     Context: May be called from interrupt context
15756  */
15757 
15758 static void
15759 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15760 {
15761 	struct sd_xbuf	*xp;
15762 	struct scsi_pkt	*pktp;
15763 	uint8_t *sensep;
15764 	daddr_t request_blkno;
15765 	diskaddr_t err_blkno;
15766 	int severity;
15767 	int pfa_flag;
15768 	extern struct scsi_key_strings scsi_cmds[];
15769 
15770 	ASSERT(un != NULL);
15771 	ASSERT(mutex_owned(SD_MUTEX(un)));
15772 	ASSERT(bp != NULL);
15773 	xp = SD_GET_XBUF(bp);
15774 	ASSERT(xp != NULL);
15775 	pktp = SD_GET_PKTP(bp);
15776 	ASSERT(pktp != NULL);
15777 	ASSERT(arg != NULL);
15778 
15779 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15780 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15781 
15782 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15783 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15784 		severity = SCSI_ERR_RETRYABLE;
15785 	}
15786 
15787 	/* Use absolute block number for the request block number */
15788 	request_blkno = xp->xb_blkno;
15789 
15790 	/*
15791 	 * Now try to get the error block number from the sense data
15792 	 */
15793 	sensep = xp->xb_sense_data;
15794 
15795 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15796 	    (uint64_t *)&err_blkno)) {
15797 		/*
15798 		 * We retrieved the error block number from the information
15799 		 * portion of the sense data.
15800 		 *
15801 		 * For USCSI commands we are better off using the error
15802 		 * block no. as the requested block no. (This is the best
15803 		 * we can estimate.)
15804 		 */
15805 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15806 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15807 			request_blkno = err_blkno;
15808 		}
15809 	} else {
15810 		/*
15811 		 * Without the es_valid bit set (for fixed format) or an
15812 		 * information descriptor (for descriptor format) we cannot
15813 		 * be certain of the error blkno, so just use the
15814 		 * request_blkno.
15815 		 */
15816 		err_blkno = (diskaddr_t)request_blkno;
15817 	}
15818 
15819 	/*
15820 	 * The following will log the buffer contents for the release driver
15821 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15822 	 * level is set to verbose.
15823 	 */
15824 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15825 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15826 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15827 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15828 
15829 	if (pfa_flag == FALSE) {
15830 		/* This is normally only set for USCSI */
15831 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15832 			return;
15833 		}
15834 
15835 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15836 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15837 		    (severity < sd_error_level))) {
15838 			return;
15839 		}
15840 	}
15841 
15842 	/*
15843 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15844 	 */
15845 	if ((SD_IS_LSI(un)) &&
15846 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15847 	    (scsi_sense_asc(sensep) == 0x94) &&
15848 	    (scsi_sense_ascq(sensep) == 0x01)) {
15849 		un->un_sonoma_failure_count++;
15850 		if (un->un_sonoma_failure_count > 1) {
15851 			return;
15852 		}
15853 	}
15854 
15855 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15856 	    request_blkno, err_blkno, scsi_cmds,
15857 	    (struct scsi_extended_sense *)sensep,
15858 	    un->un_additional_codes, NULL);
15859 }
15860 
15861 /*
15862  *    Function: sd_sense_key_no_sense
15863  *
15864  * Description: Recovery action when sense data was not received.
15865  *
15866  *     Context: May be called from interrupt context
15867  */
15868 
15869 static void
15870 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15871 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15872 {
15873 	struct sd_sense_info	si;
15874 
15875 	ASSERT(un != NULL);
15876 	ASSERT(mutex_owned(SD_MUTEX(un)));
15877 	ASSERT(bp != NULL);
15878 	ASSERT(xp != NULL);
15879 	ASSERT(pktp != NULL);
15880 
15881 	si.ssi_severity = SCSI_ERR_FATAL;
15882 	si.ssi_pfa_flag = FALSE;
15883 
15884 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15885 
15886 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15887 	    &si, EIO, (clock_t)0, NULL);
15888 }
15889 
15890 
15891 /*
15892  *    Function: sd_sense_key_recoverable_error
15893  *
15894  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15895  *
15896  *     Context: May be called from interrupt context
15897  */
15898 
15899 static void
15900 sd_sense_key_recoverable_error(struct sd_lun *un,
15901 	uint8_t *sense_datap,
15902 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15903 {
15904 	struct sd_sense_info	si;
15905 	uint8_t asc = scsi_sense_asc(sense_datap);
15906 
15907 	ASSERT(un != NULL);
15908 	ASSERT(mutex_owned(SD_MUTEX(un)));
15909 	ASSERT(bp != NULL);
15910 	ASSERT(xp != NULL);
15911 	ASSERT(pktp != NULL);
15912 
15913 	/*
15914 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15915 	 */
15916 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15917 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15918 		si.ssi_severity = SCSI_ERR_INFO;
15919 		si.ssi_pfa_flag = TRUE;
15920 	} else {
15921 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15922 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15923 		si.ssi_severity = SCSI_ERR_RECOVERED;
15924 		si.ssi_pfa_flag = FALSE;
15925 	}
15926 
15927 	if (pktp->pkt_resid == 0) {
15928 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15929 		sd_return_command(un, bp);
15930 		return;
15931 	}
15932 
15933 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15934 	    &si, EIO, (clock_t)0, NULL);
15935 }
15936 
15937 
15938 
15939 
15940 /*
15941  *    Function: sd_sense_key_not_ready
15942  *
15943  * Description: Recovery actions for a SCSI "Not Ready" sense key.
15944  *
15945  *     Context: May be called from interrupt context
15946  */
15947 
15948 static void
15949 sd_sense_key_not_ready(struct sd_lun *un,
15950 	uint8_t *sense_datap,
15951 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15952 {
15953 	struct sd_sense_info	si;
15954 	uint8_t asc = scsi_sense_asc(sense_datap);
15955 	uint8_t ascq = scsi_sense_ascq(sense_datap);
15956 
15957 	ASSERT(un != NULL);
15958 	ASSERT(mutex_owned(SD_MUTEX(un)));
15959 	ASSERT(bp != NULL);
15960 	ASSERT(xp != NULL);
15961 	ASSERT(pktp != NULL);
15962 
15963 	si.ssi_severity = SCSI_ERR_FATAL;
15964 	si.ssi_pfa_flag = FALSE;
15965 
15966 	/*
15967 	 * Update error stats after first NOT READY error. Disks may have
15968 	 * been powered down and may need to be restarted.  For CDROMs,
15969 	 * report NOT READY errors only if media is present.
15970 	 */
15971 	if ((ISCD(un) && (asc == 0x3A)) ||
15972 	    (xp->xb_nr_retry_count > 0)) {
15973 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15974 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15975 	}
15976 
15977 	/*
15978 	 * Just fail if the "not ready" retry limit has been reached.
15979 	 */
15980 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
15981 		/* Special check for error message printing for removables. */
15982 		if (un->un_f_has_removable_media && (asc == 0x04) &&
15983 		    (ascq >= 0x04)) {
15984 			si.ssi_severity = SCSI_ERR_ALL;
15985 		}
15986 		goto fail_command;
15987 	}
15988 
15989 	/*
15990 	 * Check the ASC and ASCQ in the sense data as needed, to determine
15991 	 * what to do.
15992 	 */
15993 	switch (asc) {
15994 	case 0x04:	/* LOGICAL UNIT NOT READY */
15995 		/*
15996 		 * disk drives that don't spin up result in a very long delay
15997 		 * in format without warning messages. We will log a message
15998 		 * if the error level is set to verbose.
15999 		 */
16000 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16001 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16002 			    "logical unit not ready, resetting disk\n");
16003 		}
16004 
16005 		/*
16006 		 * There are different requirements for CDROMs and disks for
16007 		 * the number of retries.  If a CD-ROM is giving this, it is
16008 		 * probably reading TOC and is in the process of getting
16009 		 * ready, so we should keep on trying for a long time to make
16010 		 * sure that all types of media are taken in account (for
16011 		 * some media the drive takes a long time to read TOC).  For
16012 		 * disks we do not want to retry this too many times as this
16013 		 * can cause a long hang in format when the drive refuses to
16014 		 * spin up (a very common failure).
16015 		 */
16016 		switch (ascq) {
16017 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16018 			/*
16019 			 * Disk drives frequently refuse to spin up which
16020 			 * results in a very long hang in format without
16021 			 * warning messages.
16022 			 *
16023 			 * Note: This code preserves the legacy behavior of
16024 			 * comparing xb_nr_retry_count against zero for fibre
16025 			 * channel targets instead of comparing against the
16026 			 * un_reset_retry_count value.  The reason for this
16027 			 * discrepancy has been so utterly lost beneath the
16028 			 * Sands of Time that even Indiana Jones could not
16029 			 * find it.
16030 			 */
16031 			if (un->un_f_is_fibre == TRUE) {
16032 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16033 				    (xp->xb_nr_retry_count > 0)) &&
16034 				    (un->un_startstop_timeid == NULL)) {
16035 					scsi_log(SD_DEVINFO(un), sd_label,
16036 					    CE_WARN, "logical unit not ready, "
16037 					    "resetting disk\n");
16038 					sd_reset_target(un, pktp);
16039 				}
16040 			} else {
16041 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16042 				    (xp->xb_nr_retry_count >
16043 				    un->un_reset_retry_count)) &&
16044 				    (un->un_startstop_timeid == NULL)) {
16045 					scsi_log(SD_DEVINFO(un), sd_label,
16046 					    CE_WARN, "logical unit not ready, "
16047 					    "resetting disk\n");
16048 					sd_reset_target(un, pktp);
16049 				}
16050 			}
16051 			break;
16052 
16053 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16054 			/*
16055 			 * If the target is in the process of becoming
16056 			 * ready, just proceed with the retry. This can
16057 			 * happen with CD-ROMs that take a long time to
16058 			 * read TOC after a power cycle or reset.
16059 			 */
16060 			goto do_retry;
16061 
16062 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16063 			break;
16064 
16065 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16066 			/*
16067 			 * Retries cannot help here so just fail right away.
16068 			 */
16069 			goto fail_command;
16070 
16071 		case 0x88:
16072 			/*
16073 			 * Vendor-unique code for T3/T4: it indicates a
16074 			 * path problem in a mutipathed config, but as far as
16075 			 * the target driver is concerned it equates to a fatal
16076 			 * error, so we should just fail the command right away
16077 			 * (without printing anything to the console). If this
16078 			 * is not a T3/T4, fall thru to the default recovery
16079 			 * action.
16080 			 * T3/T4 is FC only, don't need to check is_fibre
16081 			 */
16082 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16083 				sd_return_failed_command(un, bp, EIO);
16084 				return;
16085 			}
16086 			/* FALLTHRU */
16087 
16088 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16089 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16090 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16091 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16092 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16093 		default:    /* Possible future codes in SCSI spec? */
16094 			/*
16095 			 * For removable-media devices, do not retry if
16096 			 * ASCQ > 2 as these result mostly from USCSI commands
16097 			 * on MMC devices issued to check status of an
16098 			 * operation initiated in immediate mode.  Also for
16099 			 * ASCQ >= 4 do not print console messages as these
16100 			 * mainly represent a user-initiated operation
16101 			 * instead of a system failure.
16102 			 */
16103 			if (un->un_f_has_removable_media) {
16104 				si.ssi_severity = SCSI_ERR_ALL;
16105 				goto fail_command;
16106 			}
16107 			break;
16108 		}
16109 
16110 		/*
16111 		 * As part of our recovery attempt for the NOT READY
16112 		 * condition, we issue a START STOP UNIT command. However
16113 		 * we want to wait for a short delay before attempting this
16114 		 * as there may still be more commands coming back from the
16115 		 * target with the check condition. To do this we use
16116 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16117 		 * the delay interval expires. (sd_start_stop_unit_callback()
16118 		 * dispatches sd_start_stop_unit_task(), which will issue
16119 		 * the actual START STOP UNIT command. The delay interval
16120 		 * is one-half of the delay that we will use to retry the
16121 		 * command that generated the NOT READY condition.
16122 		 *
16123 		 * Note that we could just dispatch sd_start_stop_unit_task()
16124 		 * from here and allow it to sleep for the delay interval,
16125 		 * but then we would be tying up the taskq thread
16126 		 * uncesessarily for the duration of the delay.
16127 		 *
16128 		 * Do not issue the START STOP UNIT if the current command
16129 		 * is already a START STOP UNIT.
16130 		 */
16131 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16132 			break;
16133 		}
16134 
16135 		/*
16136 		 * Do not schedule the timeout if one is already pending.
16137 		 */
16138 		if (un->un_startstop_timeid != NULL) {
16139 			SD_INFO(SD_LOG_ERROR, un,
16140 			    "sd_sense_key_not_ready: restart already issued to"
16141 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16142 			    ddi_get_instance(SD_DEVINFO(un)));
16143 			break;
16144 		}
16145 
16146 		/*
16147 		 * Schedule the START STOP UNIT command, then queue the command
16148 		 * for a retry.
16149 		 *
16150 		 * Note: A timeout is not scheduled for this retry because we
16151 		 * want the retry to be serial with the START_STOP_UNIT. The
16152 		 * retry will be started when the START_STOP_UNIT is completed
16153 		 * in sd_start_stop_unit_task.
16154 		 */
16155 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16156 		    un, SD_BSY_TIMEOUT / 2);
16157 		xp->xb_nr_retry_count++;
16158 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16159 		return;
16160 
16161 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16162 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16163 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16164 			    "unit does not respond to selection\n");
16165 		}
16166 		break;
16167 
16168 	case 0x3A:	/* MEDIUM NOT PRESENT */
16169 		if (sd_error_level >= SCSI_ERR_FATAL) {
16170 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16171 			    "Caddy not inserted in drive\n");
16172 		}
16173 
16174 		sr_ejected(un);
16175 		un->un_mediastate = DKIO_EJECTED;
16176 		/* The state has changed, inform the media watch routines */
16177 		cv_broadcast(&un->un_state_cv);
16178 		/* Just fail if no media is present in the drive. */
16179 		goto fail_command;
16180 
16181 	default:
16182 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16183 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16184 			    "Unit not Ready. Additional sense code 0x%x\n",
16185 			    asc);
16186 		}
16187 		break;
16188 	}
16189 
16190 do_retry:
16191 
16192 	/*
16193 	 * Retry the command, as some targets may report NOT READY for
16194 	 * several seconds after being reset.
16195 	 */
16196 	xp->xb_nr_retry_count++;
16197 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16198 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16199 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16200 
16201 	return;
16202 
16203 fail_command:
16204 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16205 	sd_return_failed_command(un, bp, EIO);
16206 }
16207 
16208 
16209 
16210 /*
16211  *    Function: sd_sense_key_medium_or_hardware_error
16212  *
16213  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16214  *		sense key.
16215  *
16216  *     Context: May be called from interrupt context
16217  */
16218 
16219 static void
16220 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16221 	uint8_t *sense_datap,
16222 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16223 {
16224 	struct sd_sense_info	si;
16225 	uint8_t sense_key = scsi_sense_key(sense_datap);
16226 	uint8_t asc = scsi_sense_asc(sense_datap);
16227 
16228 	ASSERT(un != NULL);
16229 	ASSERT(mutex_owned(SD_MUTEX(un)));
16230 	ASSERT(bp != NULL);
16231 	ASSERT(xp != NULL);
16232 	ASSERT(pktp != NULL);
16233 
16234 	si.ssi_severity = SCSI_ERR_FATAL;
16235 	si.ssi_pfa_flag = FALSE;
16236 
16237 	if (sense_key == KEY_MEDIUM_ERROR) {
16238 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16239 	}
16240 
16241 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16242 
16243 	if ((un->un_reset_retry_count != 0) &&
16244 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16245 		mutex_exit(SD_MUTEX(un));
16246 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16247 		if (un->un_f_allow_bus_device_reset == TRUE) {
16248 
16249 			boolean_t try_resetting_target = B_TRUE;
16250 
16251 			/*
16252 			 * We need to be able to handle specific ASC when we are
16253 			 * handling a KEY_HARDWARE_ERROR. In particular
16254 			 * taking the default action of resetting the target may
16255 			 * not be the appropriate way to attempt recovery.
16256 			 * Resetting a target because of a single LUN failure
16257 			 * victimizes all LUNs on that target.
16258 			 *
16259 			 * This is true for the LSI arrays, if an LSI
16260 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16261 			 * should trust it.
16262 			 */
16263 
16264 			if (sense_key == KEY_HARDWARE_ERROR) {
16265 				switch (asc) {
16266 				case 0x84:
16267 					if (SD_IS_LSI(un)) {
16268 						try_resetting_target = B_FALSE;
16269 					}
16270 					break;
16271 				default:
16272 					break;
16273 				}
16274 			}
16275 
16276 			if (try_resetting_target == B_TRUE) {
16277 				int reset_retval = 0;
16278 				if (un->un_f_lun_reset_enabled == TRUE) {
16279 					SD_TRACE(SD_LOG_IO_CORE, un,
16280 					    "sd_sense_key_medium_or_hardware_"
16281 					    "error: issuing RESET_LUN\n");
16282 					reset_retval =
16283 					    scsi_reset(SD_ADDRESS(un),
16284 					    RESET_LUN);
16285 				}
16286 				if (reset_retval == 0) {
16287 					SD_TRACE(SD_LOG_IO_CORE, un,
16288 					    "sd_sense_key_medium_or_hardware_"
16289 					    "error: issuing RESET_TARGET\n");
16290 					(void) scsi_reset(SD_ADDRESS(un),
16291 					    RESET_TARGET);
16292 				}
16293 			}
16294 		}
16295 		mutex_enter(SD_MUTEX(un));
16296 	}
16297 
16298 	/*
16299 	 * This really ought to be a fatal error, but we will retry anyway
16300 	 * as some drives report this as a spurious error.
16301 	 */
16302 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16303 	    &si, EIO, (clock_t)0, NULL);
16304 }
16305 
16306 
16307 
16308 /*
16309  *    Function: sd_sense_key_illegal_request
16310  *
16311  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16312  *
16313  *     Context: May be called from interrupt context
16314  */
16315 
16316 static void
16317 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16318 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16319 {
16320 	struct sd_sense_info	si;
16321 
16322 	ASSERT(un != NULL);
16323 	ASSERT(mutex_owned(SD_MUTEX(un)));
16324 	ASSERT(bp != NULL);
16325 	ASSERT(xp != NULL);
16326 	ASSERT(pktp != NULL);
16327 
16328 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16329 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16330 
16331 	si.ssi_severity = SCSI_ERR_INFO;
16332 	si.ssi_pfa_flag = FALSE;
16333 
16334 	/* Pointless to retry if the target thinks it's an illegal request */
16335 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16336 	sd_return_failed_command(un, bp, EIO);
16337 }
16338 
16339 
16340 
16341 
16342 /*
16343  *    Function: sd_sense_key_unit_attention
16344  *
16345  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16346  *
16347  *     Context: May be called from interrupt context
16348  */
16349 
16350 static void
16351 sd_sense_key_unit_attention(struct sd_lun *un,
16352 	uint8_t *sense_datap,
16353 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16354 {
16355 	/*
16356 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16357 	 * like Sonoma can return UNIT ATTENTION close to a minute
16358 	 * under certain conditions.
16359 	 */
16360 	int	retry_check_flag = SD_RETRIES_UA;
16361 	boolean_t	kstat_updated = B_FALSE;
16362 	struct	sd_sense_info		si;
16363 	uint8_t asc = scsi_sense_asc(sense_datap);
16364 
16365 	ASSERT(un != NULL);
16366 	ASSERT(mutex_owned(SD_MUTEX(un)));
16367 	ASSERT(bp != NULL);
16368 	ASSERT(xp != NULL);
16369 	ASSERT(pktp != NULL);
16370 
16371 	si.ssi_severity = SCSI_ERR_INFO;
16372 	si.ssi_pfa_flag = FALSE;
16373 
16374 
16375 	switch (asc) {
16376 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16377 		if (sd_report_pfa != 0) {
16378 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16379 			si.ssi_pfa_flag = TRUE;
16380 			retry_check_flag = SD_RETRIES_STANDARD;
16381 			goto do_retry;
16382 		}
16383 
16384 		break;
16385 
16386 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16387 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16388 			un->un_resvd_status |=
16389 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16390 		}
16391 #ifdef _LP64
16392 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16393 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16394 			    un, KM_NOSLEEP) == 0) {
16395 				/*
16396 				 * If we can't dispatch the task we'll just
16397 				 * live without descriptor sense.  We can
16398 				 * try again on the next "unit attention"
16399 				 */
16400 				SD_ERROR(SD_LOG_ERROR, un,
16401 				    "sd_sense_key_unit_attention: "
16402 				    "Could not dispatch "
16403 				    "sd_reenable_dsense_task\n");
16404 			}
16405 		}
16406 #endif /* _LP64 */
16407 		/* FALLTHRU */
16408 
16409 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16410 		if (!un->un_f_has_removable_media) {
16411 			break;
16412 		}
16413 
16414 		/*
16415 		 * When we get a unit attention from a removable-media device,
16416 		 * it may be in a state that will take a long time to recover
16417 		 * (e.g., from a reset).  Since we are executing in interrupt
16418 		 * context here, we cannot wait around for the device to come
16419 		 * back. So hand this command off to sd_media_change_task()
16420 		 * for deferred processing under taskq thread context. (Note
16421 		 * that the command still may be failed if a problem is
16422 		 * encountered at a later time.)
16423 		 */
16424 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16425 		    KM_NOSLEEP) == 0) {
16426 			/*
16427 			 * Cannot dispatch the request so fail the command.
16428 			 */
16429 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16430 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16431 			si.ssi_severity = SCSI_ERR_FATAL;
16432 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16433 			sd_return_failed_command(un, bp, EIO);
16434 		}
16435 
16436 		/*
16437 		 * If failed to dispatch sd_media_change_task(), we already
16438 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16439 		 * we should update kstat later if it encounters an error. So,
16440 		 * we update kstat_updated flag here.
16441 		 */
16442 		kstat_updated = B_TRUE;
16443 
16444 		/*
16445 		 * Either the command has been successfully dispatched to a
16446 		 * task Q for retrying, or the dispatch failed. In either case
16447 		 * do NOT retry again by calling sd_retry_command. This sets up
16448 		 * two retries of the same command and when one completes and
16449 		 * frees the resources the other will access freed memory,
16450 		 * a bad thing.
16451 		 */
16452 		return;
16453 
16454 	default:
16455 		break;
16456 	}
16457 
16458 	/*
16459 	 * Update kstat if we haven't done that.
16460 	 */
16461 	if (!kstat_updated) {
16462 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16463 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16464 	}
16465 
16466 do_retry:
16467 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16468 	    EIO, SD_UA_RETRY_DELAY, NULL);
16469 }
16470 
16471 
16472 
16473 /*
16474  *    Function: sd_sense_key_fail_command
16475  *
16476  * Description: Use to fail a command when we don't like the sense key that
16477  *		was returned.
16478  *
16479  *     Context: May be called from interrupt context
16480  */
16481 
16482 static void
16483 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16484 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16485 {
16486 	struct sd_sense_info	si;
16487 
16488 	ASSERT(un != NULL);
16489 	ASSERT(mutex_owned(SD_MUTEX(un)));
16490 	ASSERT(bp != NULL);
16491 	ASSERT(xp != NULL);
16492 	ASSERT(pktp != NULL);
16493 
16494 	si.ssi_severity = SCSI_ERR_FATAL;
16495 	si.ssi_pfa_flag = FALSE;
16496 
16497 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16498 	sd_return_failed_command(un, bp, EIO);
16499 }
16500 
16501 
16502 
16503 /*
16504  *    Function: sd_sense_key_blank_check
16505  *
16506  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16507  *		Has no monetary connotation.
16508  *
16509  *     Context: May be called from interrupt context
16510  */
16511 
16512 static void
16513 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16514 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16515 {
16516 	struct sd_sense_info	si;
16517 
16518 	ASSERT(un != NULL);
16519 	ASSERT(mutex_owned(SD_MUTEX(un)));
16520 	ASSERT(bp != NULL);
16521 	ASSERT(xp != NULL);
16522 	ASSERT(pktp != NULL);
16523 
16524 	/*
16525 	 * Blank check is not fatal for removable devices, therefore
16526 	 * it does not require a console message.
16527 	 */
16528 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16529 	    SCSI_ERR_FATAL;
16530 	si.ssi_pfa_flag = FALSE;
16531 
16532 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16533 	sd_return_failed_command(un, bp, EIO);
16534 }
16535 
16536 
16537 
16538 
16539 /*
16540  *    Function: sd_sense_key_aborted_command
16541  *
16542  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16543  *
16544  *     Context: May be called from interrupt context
16545  */
16546 
16547 static void
16548 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16549 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16550 {
16551 	struct sd_sense_info	si;
16552 
16553 	ASSERT(un != NULL);
16554 	ASSERT(mutex_owned(SD_MUTEX(un)));
16555 	ASSERT(bp != NULL);
16556 	ASSERT(xp != NULL);
16557 	ASSERT(pktp != NULL);
16558 
16559 	si.ssi_severity = SCSI_ERR_FATAL;
16560 	si.ssi_pfa_flag = FALSE;
16561 
16562 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16563 
16564 	/*
16565 	 * This really ought to be a fatal error, but we will retry anyway
16566 	 * as some drives report this as a spurious error.
16567 	 */
16568 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16569 	    &si, EIO, drv_usectohz(100000), NULL);
16570 }
16571 
16572 
16573 
16574 /*
16575  *    Function: sd_sense_key_default
16576  *
16577  * Description: Default recovery action for several SCSI sense keys (basically
16578  *		attempts a retry).
16579  *
16580  *     Context: May be called from interrupt context
16581  */
16582 
16583 static void
16584 sd_sense_key_default(struct sd_lun *un,
16585 	uint8_t *sense_datap,
16586 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16587 {
16588 	struct sd_sense_info	si;
16589 	uint8_t sense_key = scsi_sense_key(sense_datap);
16590 
16591 	ASSERT(un != NULL);
16592 	ASSERT(mutex_owned(SD_MUTEX(un)));
16593 	ASSERT(bp != NULL);
16594 	ASSERT(xp != NULL);
16595 	ASSERT(pktp != NULL);
16596 
16597 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16598 
16599 	/*
16600 	 * Undecoded sense key.	Attempt retries and hope that will fix
16601 	 * the problem.  Otherwise, we're dead.
16602 	 */
16603 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16604 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16605 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16606 	}
16607 
16608 	si.ssi_severity = SCSI_ERR_FATAL;
16609 	si.ssi_pfa_flag = FALSE;
16610 
16611 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16612 	    &si, EIO, (clock_t)0, NULL);
16613 }
16614 
16615 
16616 
16617 /*
16618  *    Function: sd_print_retry_msg
16619  *
16620  * Description: Print a message indicating the retry action being taken.
16621  *
16622  *   Arguments: un - ptr to associated softstate
16623  *		bp - ptr to buf(9S) for the command
16624  *		arg - not used.
16625  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16626  *			or SD_NO_RETRY_ISSUED
16627  *
16628  *     Context: May be called from interrupt context
16629  */
16630 /* ARGSUSED */
16631 static void
16632 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16633 {
16634 	struct sd_xbuf	*xp;
16635 	struct scsi_pkt *pktp;
16636 	char *reasonp;
16637 	char *msgp;
16638 
16639 	ASSERT(un != NULL);
16640 	ASSERT(mutex_owned(SD_MUTEX(un)));
16641 	ASSERT(bp != NULL);
16642 	pktp = SD_GET_PKTP(bp);
16643 	ASSERT(pktp != NULL);
16644 	xp = SD_GET_XBUF(bp);
16645 	ASSERT(xp != NULL);
16646 
16647 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16648 	mutex_enter(&un->un_pm_mutex);
16649 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16650 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16651 	    (pktp->pkt_flags & FLAG_SILENT)) {
16652 		mutex_exit(&un->un_pm_mutex);
16653 		goto update_pkt_reason;
16654 	}
16655 	mutex_exit(&un->un_pm_mutex);
16656 
16657 	/*
16658 	 * Suppress messages if they are all the same pkt_reason; with
16659 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16660 	 * If we are in panic, then suppress the retry messages.
16661 	 */
16662 	switch (flag) {
16663 	case SD_NO_RETRY_ISSUED:
16664 		msgp = "giving up";
16665 		break;
16666 	case SD_IMMEDIATE_RETRY_ISSUED:
16667 	case SD_DELAYED_RETRY_ISSUED:
16668 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16669 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16670 		    (sd_error_level != SCSI_ERR_ALL))) {
16671 			return;
16672 		}
16673 		msgp = "retrying command";
16674 		break;
16675 	default:
16676 		goto update_pkt_reason;
16677 	}
16678 
16679 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16680 	    scsi_rname(pktp->pkt_reason));
16681 
16682 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16683 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16684 
16685 update_pkt_reason:
16686 	/*
16687 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16688 	 * This is to prevent multiple console messages for the same failure
16689 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16690 	 * when the command is retried successfully because there still may be
16691 	 * more commands coming back with the same value of pktp->pkt_reason.
16692 	 */
16693 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16694 		un->un_last_pkt_reason = pktp->pkt_reason;
16695 	}
16696 }
16697 
16698 
16699 /*
16700  *    Function: sd_print_cmd_incomplete_msg
16701  *
16702  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16703  *
16704  *   Arguments: un - ptr to associated softstate
16705  *		bp - ptr to buf(9S) for the command
16706  *		arg - passed to sd_print_retry_msg()
16707  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16708  *			or SD_NO_RETRY_ISSUED
16709  *
16710  *     Context: May be called from interrupt context
16711  */
16712 
16713 static void
16714 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16715 	int code)
16716 {
16717 	dev_info_t	*dip;
16718 
16719 	ASSERT(un != NULL);
16720 	ASSERT(mutex_owned(SD_MUTEX(un)));
16721 	ASSERT(bp != NULL);
16722 
16723 	switch (code) {
16724 	case SD_NO_RETRY_ISSUED:
16725 		/* Command was failed. Someone turned off this target? */
16726 		if (un->un_state != SD_STATE_OFFLINE) {
16727 			/*
16728 			 * Suppress message if we are detaching and
16729 			 * device has been disconnected
16730 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16731 			 * private interface and not part of the DDI
16732 			 */
16733 			dip = un->un_sd->sd_dev;
16734 			if (!(DEVI_IS_DETACHING(dip) &&
16735 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16736 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16737 				"disk not responding to selection\n");
16738 			}
16739 			New_state(un, SD_STATE_OFFLINE);
16740 		}
16741 		break;
16742 
16743 	case SD_DELAYED_RETRY_ISSUED:
16744 	case SD_IMMEDIATE_RETRY_ISSUED:
16745 	default:
16746 		/* Command was successfully queued for retry */
16747 		sd_print_retry_msg(un, bp, arg, code);
16748 		break;
16749 	}
16750 }
16751 
16752 
16753 /*
16754  *    Function: sd_pkt_reason_cmd_incomplete
16755  *
16756  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16757  *
16758  *     Context: May be called from interrupt context
16759  */
16760 
16761 static void
16762 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16763 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16764 {
16765 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16766 
16767 	ASSERT(un != NULL);
16768 	ASSERT(mutex_owned(SD_MUTEX(un)));
16769 	ASSERT(bp != NULL);
16770 	ASSERT(xp != NULL);
16771 	ASSERT(pktp != NULL);
16772 
16773 	/* Do not do a reset if selection did not complete */
16774 	/* Note: Should this not just check the bit? */
16775 	if (pktp->pkt_state != STATE_GOT_BUS) {
16776 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16777 		sd_reset_target(un, pktp);
16778 	}
16779 
16780 	/*
16781 	 * If the target was not successfully selected, then set
16782 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16783 	 * with the target, and further retries and/or commands are
16784 	 * likely to take a long time.
16785 	 */
16786 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16787 		flag |= SD_RETRIES_FAILFAST;
16788 	}
16789 
16790 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16791 
16792 	sd_retry_command(un, bp, flag,
16793 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16794 }
16795 
16796 
16797 
16798 /*
16799  *    Function: sd_pkt_reason_cmd_tran_err
16800  *
16801  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16802  *
16803  *     Context: May be called from interrupt context
16804  */
16805 
16806 static void
16807 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16808 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16809 {
16810 	ASSERT(un != NULL);
16811 	ASSERT(mutex_owned(SD_MUTEX(un)));
16812 	ASSERT(bp != NULL);
16813 	ASSERT(xp != NULL);
16814 	ASSERT(pktp != NULL);
16815 
16816 	/*
16817 	 * Do not reset if we got a parity error, or if
16818 	 * selection did not complete.
16819 	 */
16820 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16821 	/* Note: Should this not just check the bit for pkt_state? */
16822 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16823 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16824 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16825 		sd_reset_target(un, pktp);
16826 	}
16827 
16828 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16829 
16830 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16831 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16832 }
16833 
16834 
16835 
16836 /*
16837  *    Function: sd_pkt_reason_cmd_reset
16838  *
16839  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16840  *
16841  *     Context: May be called from interrupt context
16842  */
16843 
16844 static void
16845 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16846 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16847 {
16848 	ASSERT(un != NULL);
16849 	ASSERT(mutex_owned(SD_MUTEX(un)));
16850 	ASSERT(bp != NULL);
16851 	ASSERT(xp != NULL);
16852 	ASSERT(pktp != NULL);
16853 
16854 	/* The target may still be running the command, so try to reset. */
16855 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16856 	sd_reset_target(un, pktp);
16857 
16858 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16859 
16860 	/*
16861 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16862 	 * reset because another target on this bus caused it. The target
16863 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16864 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16865 	 */
16866 
16867 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16868 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16869 }
16870 
16871 
16872 
16873 
16874 /*
16875  *    Function: sd_pkt_reason_cmd_aborted
16876  *
16877  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16878  *
16879  *     Context: May be called from interrupt context
16880  */
16881 
16882 static void
16883 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16884 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16885 {
16886 	ASSERT(un != NULL);
16887 	ASSERT(mutex_owned(SD_MUTEX(un)));
16888 	ASSERT(bp != NULL);
16889 	ASSERT(xp != NULL);
16890 	ASSERT(pktp != NULL);
16891 
16892 	/* The target may still be running the command, so try to reset. */
16893 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16894 	sd_reset_target(un, pktp);
16895 
16896 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16897 
16898 	/*
16899 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16900 	 * aborted because another target on this bus caused it. The target
16901 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16902 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16903 	 */
16904 
16905 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16906 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16907 }
16908 
16909 
16910 
16911 /*
16912  *    Function: sd_pkt_reason_cmd_timeout
16913  *
16914  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16915  *
16916  *     Context: May be called from interrupt context
16917  */
16918 
16919 static void
16920 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16921 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16922 {
16923 	ASSERT(un != NULL);
16924 	ASSERT(mutex_owned(SD_MUTEX(un)));
16925 	ASSERT(bp != NULL);
16926 	ASSERT(xp != NULL);
16927 	ASSERT(pktp != NULL);
16928 
16929 
16930 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16931 	sd_reset_target(un, pktp);
16932 
16933 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16934 
16935 	/*
16936 	 * A command timeout indicates that we could not establish
16937 	 * communication with the target, so set SD_RETRIES_FAILFAST
16938 	 * as further retries/commands are likely to take a long time.
16939 	 */
16940 	sd_retry_command(un, bp,
16941 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16942 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16943 }
16944 
16945 
16946 
16947 /*
16948  *    Function: sd_pkt_reason_cmd_unx_bus_free
16949  *
16950  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16951  *
16952  *     Context: May be called from interrupt context
16953  */
16954 
16955 static void
16956 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16957 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16958 {
16959 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16960 
16961 	ASSERT(un != NULL);
16962 	ASSERT(mutex_owned(SD_MUTEX(un)));
16963 	ASSERT(bp != NULL);
16964 	ASSERT(xp != NULL);
16965 	ASSERT(pktp != NULL);
16966 
16967 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16968 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16969 
16970 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16971 	    sd_print_retry_msg : NULL;
16972 
16973 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16974 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16975 }
16976 
16977 
16978 /*
16979  *    Function: sd_pkt_reason_cmd_tag_reject
16980  *
16981  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16982  *
16983  *     Context: May be called from interrupt context
16984  */
16985 
16986 static void
16987 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16988 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16989 {
16990 	ASSERT(un != NULL);
16991 	ASSERT(mutex_owned(SD_MUTEX(un)));
16992 	ASSERT(bp != NULL);
16993 	ASSERT(xp != NULL);
16994 	ASSERT(pktp != NULL);
16995 
16996 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16997 	pktp->pkt_flags = 0;
16998 	un->un_tagflags = 0;
16999 	if (un->un_f_opt_queueing == TRUE) {
17000 		un->un_throttle = min(un->un_throttle, 3);
17001 	} else {
17002 		un->un_throttle = 1;
17003 	}
17004 	mutex_exit(SD_MUTEX(un));
17005 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17006 	mutex_enter(SD_MUTEX(un));
17007 
17008 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17009 
17010 	/* Legacy behavior not to check retry counts here. */
17011 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17012 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17013 }
17014 
17015 
17016 /*
17017  *    Function: sd_pkt_reason_default
17018  *
17019  * Description: Default recovery actions for SCSA pkt_reason values that
17020  *		do not have more explicit recovery actions.
17021  *
17022  *     Context: May be called from interrupt context
17023  */
17024 
17025 static void
17026 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17027 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17028 {
17029 	ASSERT(un != NULL);
17030 	ASSERT(mutex_owned(SD_MUTEX(un)));
17031 	ASSERT(bp != NULL);
17032 	ASSERT(xp != NULL);
17033 	ASSERT(pktp != NULL);
17034 
17035 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17036 	sd_reset_target(un, pktp);
17037 
17038 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17039 
17040 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17041 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17042 }
17043 
17044 
17045 
17046 /*
17047  *    Function: sd_pkt_status_check_condition
17048  *
17049  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17050  *
17051  *     Context: May be called from interrupt context
17052  */
17053 
17054 static void
17055 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17056 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17057 {
17058 	ASSERT(un != NULL);
17059 	ASSERT(mutex_owned(SD_MUTEX(un)));
17060 	ASSERT(bp != NULL);
17061 	ASSERT(xp != NULL);
17062 	ASSERT(pktp != NULL);
17063 
17064 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17065 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17066 
17067 	/*
17068 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17069 	 * command will be retried after the request sense). Otherwise, retry
17070 	 * the command. Note: we are issuing the request sense even though the
17071 	 * retry limit may have been reached for the failed command.
17072 	 */
17073 	if (un->un_f_arq_enabled == FALSE) {
17074 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17075 		    "no ARQ, sending request sense command\n");
17076 		sd_send_request_sense_command(un, bp, pktp);
17077 	} else {
17078 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17079 		    "ARQ,retrying request sense command\n");
17080 #if defined(__i386) || defined(__amd64)
17081 		/*
17082 		 * The SD_RETRY_DELAY value need to be adjusted here
17083 		 * when SD_RETRY_DELAY change in sddef.h
17084 		 */
17085 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17086 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17087 		    NULL);
17088 #else
17089 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17090 		    EIO, SD_RETRY_DELAY, NULL);
17091 #endif
17092 	}
17093 
17094 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17095 }
17096 
17097 
17098 /*
17099  *    Function: sd_pkt_status_busy
17100  *
17101  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17102  *
17103  *     Context: May be called from interrupt context
17104  */
17105 
17106 static void
17107 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17108 	struct scsi_pkt *pktp)
17109 {
17110 	ASSERT(un != NULL);
17111 	ASSERT(mutex_owned(SD_MUTEX(un)));
17112 	ASSERT(bp != NULL);
17113 	ASSERT(xp != NULL);
17114 	ASSERT(pktp != NULL);
17115 
17116 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17117 	    "sd_pkt_status_busy: entry\n");
17118 
17119 	/* If retries are exhausted, just fail the command. */
17120 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17121 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17122 		    "device busy too long\n");
17123 		sd_return_failed_command(un, bp, EIO);
17124 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17125 		    "sd_pkt_status_busy: exit\n");
17126 		return;
17127 	}
17128 	xp->xb_retry_count++;
17129 
17130 	/*
17131 	 * Try to reset the target. However, we do not want to perform
17132 	 * more than one reset if the device continues to fail. The reset
17133 	 * will be performed when the retry count reaches the reset
17134 	 * threshold.  This threshold should be set such that at least
17135 	 * one retry is issued before the reset is performed.
17136 	 */
17137 	if (xp->xb_retry_count ==
17138 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17139 		int rval = 0;
17140 		mutex_exit(SD_MUTEX(un));
17141 		if (un->un_f_allow_bus_device_reset == TRUE) {
17142 			/*
17143 			 * First try to reset the LUN; if we cannot then
17144 			 * try to reset the target.
17145 			 */
17146 			if (un->un_f_lun_reset_enabled == TRUE) {
17147 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17148 				    "sd_pkt_status_busy: RESET_LUN\n");
17149 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17150 			}
17151 			if (rval == 0) {
17152 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17153 				    "sd_pkt_status_busy: RESET_TARGET\n");
17154 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17155 			}
17156 		}
17157 		if (rval == 0) {
17158 			/*
17159 			 * If the RESET_LUN and/or RESET_TARGET failed,
17160 			 * try RESET_ALL
17161 			 */
17162 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17163 			    "sd_pkt_status_busy: RESET_ALL\n");
17164 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17165 		}
17166 		mutex_enter(SD_MUTEX(un));
17167 		if (rval == 0) {
17168 			/*
17169 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17170 			 * At this point we give up & fail the command.
17171 			 */
17172 			sd_return_failed_command(un, bp, EIO);
17173 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17174 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17175 			return;
17176 		}
17177 	}
17178 
17179 	/*
17180 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17181 	 * we have already checked the retry counts above.
17182 	 */
17183 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17184 	    EIO, SD_BSY_TIMEOUT, NULL);
17185 
17186 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17187 	    "sd_pkt_status_busy: exit\n");
17188 }
17189 
17190 
17191 /*
17192  *    Function: sd_pkt_status_reservation_conflict
17193  *
17194  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17195  *		command status.
17196  *
17197  *     Context: May be called from interrupt context
17198  */
17199 
17200 static void
17201 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17202 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17203 {
17204 	ASSERT(un != NULL);
17205 	ASSERT(mutex_owned(SD_MUTEX(un)));
17206 	ASSERT(bp != NULL);
17207 	ASSERT(xp != NULL);
17208 	ASSERT(pktp != NULL);
17209 
17210 	/*
17211 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17212 	 * conflict could be due to various reasons like incorrect keys, not
17213 	 * registered or not reserved etc. So, we return EACCES to the caller.
17214 	 */
17215 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17216 		int cmd = SD_GET_PKT_OPCODE(pktp);
17217 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17218 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17219 			sd_return_failed_command(un, bp, EACCES);
17220 			return;
17221 		}
17222 	}
17223 
17224 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17225 
17226 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17227 		if (sd_failfast_enable != 0) {
17228 			/* By definition, we must panic here.... */
17229 			sd_panic_for_res_conflict(un);
17230 			/*NOTREACHED*/
17231 		}
17232 		SD_ERROR(SD_LOG_IO, un,
17233 		    "sd_handle_resv_conflict: Disk Reserved\n");
17234 		sd_return_failed_command(un, bp, EACCES);
17235 		return;
17236 	}
17237 
17238 	/*
17239 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17240 	 * property is set (default is 1). Retries will not succeed
17241 	 * on a disk reserved by another initiator. HA systems
17242 	 * may reset this via sd.conf to avoid these retries.
17243 	 *
17244 	 * Note: The legacy return code for this failure is EIO, however EACCES
17245 	 * seems more appropriate for a reservation conflict.
17246 	 */
17247 	if (sd_retry_on_reservation_conflict == 0) {
17248 		SD_ERROR(SD_LOG_IO, un,
17249 		    "sd_handle_resv_conflict: Device Reserved\n");
17250 		sd_return_failed_command(un, bp, EIO);
17251 		return;
17252 	}
17253 
17254 	/*
17255 	 * Retry the command if we can.
17256 	 *
17257 	 * Note: The legacy return code for this failure is EIO, however EACCES
17258 	 * seems more appropriate for a reservation conflict.
17259 	 */
17260 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17261 	    (clock_t)2, NULL);
17262 }
17263 
17264 
17265 
17266 /*
17267  *    Function: sd_pkt_status_qfull
17268  *
17269  * Description: Handle a QUEUE FULL condition from the target.  This can
17270  *		occur if the HBA does not handle the queue full condition.
17271  *		(Basically this means third-party HBAs as Sun HBAs will
17272  *		handle the queue full condition.)  Note that if there are
17273  *		some commands already in the transport, then the queue full
17274  *		has occurred because the queue for this nexus is actually
17275  *		full. If there are no commands in the transport, then the
17276  *		queue full is resulting from some other initiator or lun
17277  *		consuming all the resources at the target.
17278  *
17279  *     Context: May be called from interrupt context
17280  */
17281 
17282 static void
17283 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17284 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17285 {
17286 	ASSERT(un != NULL);
17287 	ASSERT(mutex_owned(SD_MUTEX(un)));
17288 	ASSERT(bp != NULL);
17289 	ASSERT(xp != NULL);
17290 	ASSERT(pktp != NULL);
17291 
17292 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17293 	    "sd_pkt_status_qfull: entry\n");
17294 
17295 	/*
17296 	 * Just lower the QFULL throttle and retry the command.  Note that
17297 	 * we do not limit the number of retries here.
17298 	 */
17299 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17300 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17301 	    SD_RESTART_TIMEOUT, NULL);
17302 
17303 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17304 	    "sd_pkt_status_qfull: exit\n");
17305 }
17306 
17307 
17308 /*
17309  *    Function: sd_reset_target
17310  *
17311  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17312  *		RESET_TARGET, or RESET_ALL.
17313  *
17314  *     Context: May be called under interrupt context.
17315  */
17316 
17317 static void
17318 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17319 {
17320 	int rval = 0;
17321 
17322 	ASSERT(un != NULL);
17323 	ASSERT(mutex_owned(SD_MUTEX(un)));
17324 	ASSERT(pktp != NULL);
17325 
17326 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17327 
17328 	/*
17329 	 * No need to reset if the transport layer has already done so.
17330 	 */
17331 	if ((pktp->pkt_statistics &
17332 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17333 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17334 		    "sd_reset_target: no reset\n");
17335 		return;
17336 	}
17337 
17338 	mutex_exit(SD_MUTEX(un));
17339 
17340 	if (un->un_f_allow_bus_device_reset == TRUE) {
17341 		if (un->un_f_lun_reset_enabled == TRUE) {
17342 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17343 			    "sd_reset_target: RESET_LUN\n");
17344 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17345 		}
17346 		if (rval == 0) {
17347 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17348 			    "sd_reset_target: RESET_TARGET\n");
17349 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17350 		}
17351 	}
17352 
17353 	if (rval == 0) {
17354 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17355 		    "sd_reset_target: RESET_ALL\n");
17356 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17357 	}
17358 
17359 	mutex_enter(SD_MUTEX(un));
17360 
17361 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17362 }
17363 
17364 
17365 /*
17366  *    Function: sd_media_change_task
17367  *
17368  * Description: Recovery action for CDROM to become available.
17369  *
17370  *     Context: Executes in a taskq() thread context
17371  */
17372 
17373 static void
17374 sd_media_change_task(void *arg)
17375 {
17376 	struct	scsi_pkt	*pktp = arg;
17377 	struct	sd_lun		*un;
17378 	struct	buf		*bp;
17379 	struct	sd_xbuf		*xp;
17380 	int	err		= 0;
17381 	int	retry_count	= 0;
17382 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17383 	struct	sd_sense_info	si;
17384 
17385 	ASSERT(pktp != NULL);
17386 	bp = (struct buf *)pktp->pkt_private;
17387 	ASSERT(bp != NULL);
17388 	xp = SD_GET_XBUF(bp);
17389 	ASSERT(xp != NULL);
17390 	un = SD_GET_UN(bp);
17391 	ASSERT(un != NULL);
17392 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17393 	ASSERT(un->un_f_monitor_media_state);
17394 
17395 	si.ssi_severity = SCSI_ERR_INFO;
17396 	si.ssi_pfa_flag = FALSE;
17397 
17398 	/*
17399 	 * When a reset is issued on a CDROM, it takes a long time to
17400 	 * recover. First few attempts to read capacity and other things
17401 	 * related to handling unit attention fail (with a ASC 0x4 and
17402 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17403 	 * to limit the retries in other cases of genuine failures like
17404 	 * no media in drive.
17405 	 */
17406 	while (retry_count++ < retry_limit) {
17407 		if ((err = sd_handle_mchange(un)) == 0) {
17408 			break;
17409 		}
17410 		if (err == EAGAIN) {
17411 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17412 		}
17413 		/* Sleep for 0.5 sec. & try again */
17414 		delay(drv_usectohz(500000));
17415 	}
17416 
17417 	/*
17418 	 * Dispatch (retry or fail) the original command here,
17419 	 * along with appropriate console messages....
17420 	 *
17421 	 * Must grab the mutex before calling sd_retry_command,
17422 	 * sd_print_sense_msg and sd_return_failed_command.
17423 	 */
17424 	mutex_enter(SD_MUTEX(un));
17425 	if (err != SD_CMD_SUCCESS) {
17426 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17427 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17428 		si.ssi_severity = SCSI_ERR_FATAL;
17429 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17430 		sd_return_failed_command(un, bp, EIO);
17431 	} else {
17432 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17433 		    &si, EIO, (clock_t)0, NULL);
17434 	}
17435 	mutex_exit(SD_MUTEX(un));
17436 }
17437 
17438 
17439 
17440 /*
17441  *    Function: sd_handle_mchange
17442  *
17443  * Description: Perform geometry validation & other recovery when CDROM
17444  *		has been removed from drive.
17445  *
17446  * Return Code: 0 for success
17447  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17448  *		sd_send_scsi_READ_CAPACITY()
17449  *
17450  *     Context: Executes in a taskq() thread context
17451  */
17452 
17453 static int
17454 sd_handle_mchange(struct sd_lun *un)
17455 {
17456 	uint64_t	capacity;
17457 	uint32_t	lbasize;
17458 	int		rval;
17459 
17460 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17461 	ASSERT(un->un_f_monitor_media_state);
17462 
17463 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17464 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17465 		return (rval);
17466 	}
17467 
17468 	mutex_enter(SD_MUTEX(un));
17469 	sd_update_block_info(un, lbasize, capacity);
17470 
17471 	if (un->un_errstats != NULL) {
17472 		struct	sd_errstats *stp =
17473 		    (struct sd_errstats *)un->un_errstats->ks_data;
17474 		stp->sd_capacity.value.ui64 = (uint64_t)
17475 		    ((uint64_t)un->un_blockcount *
17476 		    (uint64_t)un->un_tgt_blocksize);
17477 	}
17478 
17479 
17480 	/*
17481 	 * Check if the media in the device is writable or not
17482 	 */
17483 	if (ISCD(un))
17484 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17485 
17486 	/*
17487 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17488 	 * valid geometry.
17489 	 */
17490 	mutex_exit(SD_MUTEX(un));
17491 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17492 
17493 
17494 	if (cmlb_validate(un->un_cmlbhandle, 0,
17495 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17496 		return (EIO);
17497 	} else {
17498 		if (un->un_f_pkstats_enabled) {
17499 			sd_set_pstats(un);
17500 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17501 			    "sd_handle_mchange: un:0x%p pstats created and "
17502 			    "set\n", un);
17503 		}
17504 	}
17505 
17506 
17507 	/*
17508 	 * Try to lock the door
17509 	 */
17510 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17511 	    SD_PATH_DIRECT_PRIORITY));
17512 }
17513 
17514 
17515 /*
17516  *    Function: sd_send_scsi_DOORLOCK
17517  *
17518  * Description: Issue the scsi DOOR LOCK command
17519  *
17520  *   Arguments: un    - pointer to driver soft state (unit) structure for
17521  *			this target.
17522  *		flag  - SD_REMOVAL_ALLOW
17523  *			SD_REMOVAL_PREVENT
17524  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17525  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17526  *			to use the USCSI "direct" chain and bypass the normal
17527  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17528  *			command is issued as part of an error recovery action.
17529  *
17530  * Return Code: 0   - Success
17531  *		errno return code from sd_send_scsi_cmd()
17532  *
17533  *     Context: Can sleep.
17534  */
17535 
17536 static int
17537 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17538 {
17539 	union scsi_cdb		cdb;
17540 	struct uscsi_cmd	ucmd_buf;
17541 	struct scsi_extended_sense	sense_buf;
17542 	int			status;
17543 
17544 	ASSERT(un != NULL);
17545 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17546 
17547 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17548 
17549 	/* already determined doorlock is not supported, fake success */
17550 	if (un->un_f_doorlock_supported == FALSE) {
17551 		return (0);
17552 	}
17553 
17554 	/*
17555 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17556 	 * ignore the command so we can complete the eject
17557 	 * operation.
17558 	 */
17559 	if (flag == SD_REMOVAL_PREVENT) {
17560 		mutex_enter(SD_MUTEX(un));
17561 		if (un->un_f_ejecting == TRUE) {
17562 			mutex_exit(SD_MUTEX(un));
17563 			return (EAGAIN);
17564 		}
17565 		mutex_exit(SD_MUTEX(un));
17566 	}
17567 
17568 	bzero(&cdb, sizeof (cdb));
17569 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17570 
17571 	cdb.scc_cmd = SCMD_DOORLOCK;
17572 	cdb.cdb_opaque[4] = (uchar_t)flag;
17573 
17574 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17575 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17576 	ucmd_buf.uscsi_bufaddr	= NULL;
17577 	ucmd_buf.uscsi_buflen	= 0;
17578 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17579 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17580 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17581 	ucmd_buf.uscsi_timeout	= 15;
17582 
17583 	SD_TRACE(SD_LOG_IO, un,
17584 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17585 
17586 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17587 	    UIO_SYSSPACE, path_flag);
17588 
17589 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17590 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17591 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17592 		/* fake success and skip subsequent doorlock commands */
17593 		un->un_f_doorlock_supported = FALSE;
17594 		return (0);
17595 	}
17596 
17597 	return (status);
17598 }
17599 
17600 /*
17601  *    Function: sd_send_scsi_READ_CAPACITY
17602  *
17603  * Description: This routine uses the scsi READ CAPACITY command to determine
17604  *		the device capacity in number of blocks and the device native
17605  *		block size. If this function returns a failure, then the
17606  *		values in *capp and *lbap are undefined.  If the capacity
17607  *		returned is 0xffffffff then the lun is too large for a
17608  *		normal READ CAPACITY command and the results of a
17609  *		READ CAPACITY 16 will be used instead.
17610  *
17611  *   Arguments: un   - ptr to soft state struct for the target
17612  *		capp - ptr to unsigned 64-bit variable to receive the
17613  *			capacity value from the command.
17614  *		lbap - ptr to unsigned 32-bit varaible to receive the
17615  *			block size value from the command
17616  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17617  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17618  *			to use the USCSI "direct" chain and bypass the normal
17619  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17620  *			command is issued as part of an error recovery action.
17621  *
17622  * Return Code: 0   - Success
17623  *		EIO - IO error
17624  *		EACCES - Reservation conflict detected
17625  *		EAGAIN - Device is becoming ready
17626  *		errno return code from sd_send_scsi_cmd()
17627  *
17628  *     Context: Can sleep.  Blocks until command completes.
17629  */
17630 
17631 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17632 
17633 static int
17634 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17635 	int path_flag)
17636 {
17637 	struct	scsi_extended_sense	sense_buf;
17638 	struct	uscsi_cmd	ucmd_buf;
17639 	union	scsi_cdb	cdb;
17640 	uint32_t		*capacity_buf;
17641 	uint64_t		capacity;
17642 	uint32_t		lbasize;
17643 	int			status;
17644 
17645 	ASSERT(un != NULL);
17646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17647 	ASSERT(capp != NULL);
17648 	ASSERT(lbap != NULL);
17649 
17650 	SD_TRACE(SD_LOG_IO, un,
17651 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17652 
17653 	/*
17654 	 * First send a READ_CAPACITY command to the target.
17655 	 * (This command is mandatory under SCSI-2.)
17656 	 *
17657 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17658 	 * Medium Indicator bit is cleared.  The address field must be
17659 	 * zero if the PMI bit is zero.
17660 	 */
17661 	bzero(&cdb, sizeof (cdb));
17662 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17663 
17664 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17665 
17666 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17667 
17668 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17669 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17670 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17671 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17672 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17673 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17674 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17675 	ucmd_buf.uscsi_timeout	= 60;
17676 
17677 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17678 	    UIO_SYSSPACE, path_flag);
17679 
17680 	switch (status) {
17681 	case 0:
17682 		/* Return failure if we did not get valid capacity data. */
17683 		if (ucmd_buf.uscsi_resid != 0) {
17684 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17685 			return (EIO);
17686 		}
17687 
17688 		/*
17689 		 * Read capacity and block size from the READ CAPACITY 10 data.
17690 		 * This data may be adjusted later due to device specific
17691 		 * issues.
17692 		 *
17693 		 * According to the SCSI spec, the READ CAPACITY 10
17694 		 * command returns the following:
17695 		 *
17696 		 *  bytes 0-3: Maximum logical block address available.
17697 		 *		(MSB in byte:0 & LSB in byte:3)
17698 		 *
17699 		 *  bytes 4-7: Block length in bytes
17700 		 *		(MSB in byte:4 & LSB in byte:7)
17701 		 *
17702 		 */
17703 		capacity = BE_32(capacity_buf[0]);
17704 		lbasize = BE_32(capacity_buf[1]);
17705 
17706 		/*
17707 		 * Done with capacity_buf
17708 		 */
17709 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17710 
17711 		/*
17712 		 * if the reported capacity is set to all 0xf's, then
17713 		 * this disk is too large and requires SBC-2 commands.
17714 		 * Reissue the request using READ CAPACITY 16.
17715 		 */
17716 		if (capacity == 0xffffffff) {
17717 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17718 			    &lbasize, path_flag);
17719 			if (status != 0) {
17720 				return (status);
17721 			}
17722 		}
17723 		break;	/* Success! */
17724 	case EIO:
17725 		switch (ucmd_buf.uscsi_status) {
17726 		case STATUS_RESERVATION_CONFLICT:
17727 			status = EACCES;
17728 			break;
17729 		case STATUS_CHECK:
17730 			/*
17731 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17732 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17733 			 */
17734 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17735 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17736 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17737 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17738 				return (EAGAIN);
17739 			}
17740 			break;
17741 		default:
17742 			break;
17743 		}
17744 		/* FALLTHRU */
17745 	default:
17746 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17747 		return (status);
17748 	}
17749 
17750 	/*
17751 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17752 	 * (2352 and 0 are common) so for these devices always force the value
17753 	 * to 2048 as required by the ATAPI specs.
17754 	 */
17755 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17756 		lbasize = 2048;
17757 	}
17758 
17759 	/*
17760 	 * Get the maximum LBA value from the READ CAPACITY data.
17761 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17762 	 * was cleared when issuing the command. This means that the LBA
17763 	 * returned from the device is the LBA of the last logical block
17764 	 * on the logical unit.  The actual logical block count will be
17765 	 * this value plus one.
17766 	 *
17767 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17768 	 * so scale the capacity value to reflect this.
17769 	 */
17770 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17771 
17772 	/*
17773 	 * Copy the values from the READ CAPACITY command into the space
17774 	 * provided by the caller.
17775 	 */
17776 	*capp = capacity;
17777 	*lbap = lbasize;
17778 
17779 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17780 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17781 
17782 	/*
17783 	 * Both the lbasize and capacity from the device must be nonzero,
17784 	 * otherwise we assume that the values are not valid and return
17785 	 * failure to the caller. (4203735)
17786 	 */
17787 	if ((capacity == 0) || (lbasize == 0)) {
17788 		return (EIO);
17789 	}
17790 
17791 	return (0);
17792 }
17793 
17794 /*
17795  *    Function: sd_send_scsi_READ_CAPACITY_16
17796  *
17797  * Description: This routine uses the scsi READ CAPACITY 16 command to
17798  *		determine the device capacity in number of blocks and the
17799  *		device native block size.  If this function returns a failure,
17800  *		then the values in *capp and *lbap are undefined.
17801  *		This routine should always be called by
17802  *		sd_send_scsi_READ_CAPACITY which will appy any device
17803  *		specific adjustments to capacity and lbasize.
17804  *
17805  *   Arguments: un   - ptr to soft state struct for the target
17806  *		capp - ptr to unsigned 64-bit variable to receive the
17807  *			capacity value from the command.
17808  *		lbap - ptr to unsigned 32-bit varaible to receive the
17809  *			block size value from the command
17810  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17811  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17812  *			to use the USCSI "direct" chain and bypass the normal
17813  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17814  *			this command is issued as part of an error recovery
17815  *			action.
17816  *
17817  * Return Code: 0   - Success
17818  *		EIO - IO error
17819  *		EACCES - Reservation conflict detected
17820  *		EAGAIN - Device is becoming ready
17821  *		errno return code from sd_send_scsi_cmd()
17822  *
17823  *     Context: Can sleep.  Blocks until command completes.
17824  */
17825 
17826 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17827 
17828 static int
17829 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17830 	uint32_t *lbap, int path_flag)
17831 {
17832 	struct	scsi_extended_sense	sense_buf;
17833 	struct	uscsi_cmd	ucmd_buf;
17834 	union	scsi_cdb	cdb;
17835 	uint64_t		*capacity16_buf;
17836 	uint64_t		capacity;
17837 	uint32_t		lbasize;
17838 	int			status;
17839 
17840 	ASSERT(un != NULL);
17841 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17842 	ASSERT(capp != NULL);
17843 	ASSERT(lbap != NULL);
17844 
17845 	SD_TRACE(SD_LOG_IO, un,
17846 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17847 
17848 	/*
17849 	 * First send a READ_CAPACITY_16 command to the target.
17850 	 *
17851 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17852 	 * Medium Indicator bit is cleared.  The address field must be
17853 	 * zero if the PMI bit is zero.
17854 	 */
17855 	bzero(&cdb, sizeof (cdb));
17856 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17857 
17858 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17859 
17860 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17861 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17862 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17863 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17864 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17865 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17866 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17867 	ucmd_buf.uscsi_timeout	= 60;
17868 
17869 	/*
17870 	 * Read Capacity (16) is a Service Action In command.  One
17871 	 * command byte (0x9E) is overloaded for multiple operations,
17872 	 * with the second CDB byte specifying the desired operation
17873 	 */
17874 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17875 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17876 
17877 	/*
17878 	 * Fill in allocation length field
17879 	 */
17880 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17881 
17882 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17883 	    UIO_SYSSPACE, path_flag);
17884 
17885 	switch (status) {
17886 	case 0:
17887 		/* Return failure if we did not get valid capacity data. */
17888 		if (ucmd_buf.uscsi_resid > 20) {
17889 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17890 			return (EIO);
17891 		}
17892 
17893 		/*
17894 		 * Read capacity and block size from the READ CAPACITY 10 data.
17895 		 * This data may be adjusted later due to device specific
17896 		 * issues.
17897 		 *
17898 		 * According to the SCSI spec, the READ CAPACITY 10
17899 		 * command returns the following:
17900 		 *
17901 		 *  bytes 0-7: Maximum logical block address available.
17902 		 *		(MSB in byte:0 & LSB in byte:7)
17903 		 *
17904 		 *  bytes 8-11: Block length in bytes
17905 		 *		(MSB in byte:8 & LSB in byte:11)
17906 		 *
17907 		 */
17908 		capacity = BE_64(capacity16_buf[0]);
17909 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17910 
17911 		/*
17912 		 * Done with capacity16_buf
17913 		 */
17914 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17915 
17916 		/*
17917 		 * if the reported capacity is set to all 0xf's, then
17918 		 * this disk is too large.  This could only happen with
17919 		 * a device that supports LBAs larger than 64 bits which
17920 		 * are not defined by any current T10 standards.
17921 		 */
17922 		if (capacity == 0xffffffffffffffff) {
17923 			return (EIO);
17924 		}
17925 		break;	/* Success! */
17926 	case EIO:
17927 		switch (ucmd_buf.uscsi_status) {
17928 		case STATUS_RESERVATION_CONFLICT:
17929 			status = EACCES;
17930 			break;
17931 		case STATUS_CHECK:
17932 			/*
17933 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17934 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17935 			 */
17936 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17937 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17938 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17939 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17940 				return (EAGAIN);
17941 			}
17942 			break;
17943 		default:
17944 			break;
17945 		}
17946 		/* FALLTHRU */
17947 	default:
17948 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17949 		return (status);
17950 	}
17951 
17952 	*capp = capacity;
17953 	*lbap = lbasize;
17954 
17955 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17956 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17957 
17958 	return (0);
17959 }
17960 
17961 
17962 /*
17963  *    Function: sd_send_scsi_START_STOP_UNIT
17964  *
17965  * Description: Issue a scsi START STOP UNIT command to the target.
17966  *
17967  *   Arguments: un    - pointer to driver soft state (unit) structure for
17968  *			this target.
17969  *		flag  - SD_TARGET_START
17970  *			SD_TARGET_STOP
17971  *			SD_TARGET_EJECT
17972  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17973  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17974  *			to use the USCSI "direct" chain and bypass the normal
17975  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17976  *			command is issued as part of an error recovery action.
17977  *
17978  * Return Code: 0   - Success
17979  *		EIO - IO error
17980  *		EACCES - Reservation conflict detected
17981  *		ENXIO  - Not Ready, medium not present
17982  *		errno return code from sd_send_scsi_cmd()
17983  *
17984  *     Context: Can sleep.
17985  */
17986 
17987 static int
17988 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17989 {
17990 	struct	scsi_extended_sense	sense_buf;
17991 	union scsi_cdb		cdb;
17992 	struct uscsi_cmd	ucmd_buf;
17993 	int			status;
17994 
17995 	ASSERT(un != NULL);
17996 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17997 
17998 	SD_TRACE(SD_LOG_IO, un,
17999 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18000 
18001 	if (un->un_f_check_start_stop &&
18002 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18003 	    (un->un_f_start_stop_supported != TRUE)) {
18004 		return (0);
18005 	}
18006 
18007 	/*
18008 	 * If we are performing an eject operation and
18009 	 * we receive any command other than SD_TARGET_EJECT
18010 	 * we should immediately return.
18011 	 */
18012 	if (flag != SD_TARGET_EJECT) {
18013 		mutex_enter(SD_MUTEX(un));
18014 		if (un->un_f_ejecting == TRUE) {
18015 			mutex_exit(SD_MUTEX(un));
18016 			return (EAGAIN);
18017 		}
18018 		mutex_exit(SD_MUTEX(un));
18019 	}
18020 
18021 	bzero(&cdb, sizeof (cdb));
18022 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18023 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18024 
18025 	cdb.scc_cmd = SCMD_START_STOP;
18026 	cdb.cdb_opaque[4] = (uchar_t)flag;
18027 
18028 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18029 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18030 	ucmd_buf.uscsi_bufaddr	= NULL;
18031 	ucmd_buf.uscsi_buflen	= 0;
18032 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18033 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18034 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18035 	ucmd_buf.uscsi_timeout	= 200;
18036 
18037 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18038 	    UIO_SYSSPACE, path_flag);
18039 
18040 	switch (status) {
18041 	case 0:
18042 		break;	/* Success! */
18043 	case EIO:
18044 		switch (ucmd_buf.uscsi_status) {
18045 		case STATUS_RESERVATION_CONFLICT:
18046 			status = EACCES;
18047 			break;
18048 		case STATUS_CHECK:
18049 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18050 				switch (scsi_sense_key(
18051 				    (uint8_t *)&sense_buf)) {
18052 				case KEY_ILLEGAL_REQUEST:
18053 					status = ENOTSUP;
18054 					break;
18055 				case KEY_NOT_READY:
18056 					if (scsi_sense_asc(
18057 					    (uint8_t *)&sense_buf)
18058 					    == 0x3A) {
18059 						status = ENXIO;
18060 					}
18061 					break;
18062 				default:
18063 					break;
18064 				}
18065 			}
18066 			break;
18067 		default:
18068 			break;
18069 		}
18070 		break;
18071 	default:
18072 		break;
18073 	}
18074 
18075 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18076 
18077 	return (status);
18078 }
18079 
18080 
18081 /*
18082  *    Function: sd_start_stop_unit_callback
18083  *
18084  * Description: timeout(9F) callback to begin recovery process for a
18085  *		device that has spun down.
18086  *
18087  *   Arguments: arg - pointer to associated softstate struct.
18088  *
18089  *     Context: Executes in a timeout(9F) thread context
18090  */
18091 
18092 static void
18093 sd_start_stop_unit_callback(void *arg)
18094 {
18095 	struct sd_lun	*un = arg;
18096 	ASSERT(un != NULL);
18097 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18098 
18099 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18100 
18101 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18102 }
18103 
18104 
18105 /*
18106  *    Function: sd_start_stop_unit_task
18107  *
18108  * Description: Recovery procedure when a drive is spun down.
18109  *
18110  *   Arguments: arg - pointer to associated softstate struct.
18111  *
18112  *     Context: Executes in a taskq() thread context
18113  */
18114 
18115 static void
18116 sd_start_stop_unit_task(void *arg)
18117 {
18118 	struct sd_lun	*un = arg;
18119 
18120 	ASSERT(un != NULL);
18121 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18122 
18123 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18124 
18125 	/*
18126 	 * Some unformatted drives report not ready error, no need to
18127 	 * restart if format has been initiated.
18128 	 */
18129 	mutex_enter(SD_MUTEX(un));
18130 	if (un->un_f_format_in_progress == TRUE) {
18131 		mutex_exit(SD_MUTEX(un));
18132 		return;
18133 	}
18134 	mutex_exit(SD_MUTEX(un));
18135 
18136 	/*
18137 	 * When a START STOP command is issued from here, it is part of a
18138 	 * failure recovery operation and must be issued before any other
18139 	 * commands, including any pending retries. Thus it must be sent
18140 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18141 	 * succeeds or not, we will start I/O after the attempt.
18142 	 */
18143 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18144 	    SD_PATH_DIRECT_PRIORITY);
18145 
18146 	/*
18147 	 * The above call blocks until the START_STOP_UNIT command completes.
18148 	 * Now that it has completed, we must re-try the original IO that
18149 	 * received the NOT READY condition in the first place. There are
18150 	 * three possible conditions here:
18151 	 *
18152 	 *  (1) The original IO is on un_retry_bp.
18153 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18154 	 *	is NULL.
18155 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18156 	 *	points to some other, unrelated bp.
18157 	 *
18158 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18159 	 * as the argument. If un_retry_bp is NULL, this will initiate
18160 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18161 	 * then this will process the bp on un_retry_bp. That may or may not
18162 	 * be the original IO, but that does not matter: the important thing
18163 	 * is to keep the IO processing going at this point.
18164 	 *
18165 	 * Note: This is a very specific error recovery sequence associated
18166 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18167 	 * serialize the I/O with completion of the spin-up.
18168 	 */
18169 	mutex_enter(SD_MUTEX(un));
18170 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18171 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18172 	    un, un->un_retry_bp);
18173 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18174 	sd_start_cmds(un, un->un_retry_bp);
18175 	mutex_exit(SD_MUTEX(un));
18176 
18177 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18178 }
18179 
18180 
18181 /*
18182  *    Function: sd_send_scsi_INQUIRY
18183  *
18184  * Description: Issue the scsi INQUIRY command.
18185  *
18186  *   Arguments: un
18187  *		bufaddr
18188  *		buflen
18189  *		evpd
18190  *		page_code
18191  *		page_length
18192  *
18193  * Return Code: 0   - Success
18194  *		errno return code from sd_send_scsi_cmd()
18195  *
18196  *     Context: Can sleep. Does not return until command is completed.
18197  */
18198 
18199 static int
18200 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18201 	uchar_t evpd, uchar_t page_code, size_t *residp)
18202 {
18203 	union scsi_cdb		cdb;
18204 	struct uscsi_cmd	ucmd_buf;
18205 	int			status;
18206 
18207 	ASSERT(un != NULL);
18208 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18209 	ASSERT(bufaddr != NULL);
18210 
18211 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18212 
18213 	bzero(&cdb, sizeof (cdb));
18214 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18215 	bzero(bufaddr, buflen);
18216 
18217 	cdb.scc_cmd = SCMD_INQUIRY;
18218 	cdb.cdb_opaque[1] = evpd;
18219 	cdb.cdb_opaque[2] = page_code;
18220 	FORMG0COUNT(&cdb, buflen);
18221 
18222 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18223 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18224 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18225 	ucmd_buf.uscsi_buflen	= buflen;
18226 	ucmd_buf.uscsi_rqbuf	= NULL;
18227 	ucmd_buf.uscsi_rqlen	= 0;
18228 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18229 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18230 
18231 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18232 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18233 
18234 	if ((status == 0) && (residp != NULL)) {
18235 		*residp = ucmd_buf.uscsi_resid;
18236 	}
18237 
18238 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18239 
18240 	return (status);
18241 }
18242 
18243 
18244 /*
18245  *    Function: sd_send_scsi_TEST_UNIT_READY
18246  *
18247  * Description: Issue the scsi TEST UNIT READY command.
18248  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18249  *		prevent retrying failed commands. Use this when the intent
18250  *		is either to check for device readiness, to clear a Unit
18251  *		Attention, or to clear any outstanding sense data.
18252  *		However under specific conditions the expected behavior
18253  *		is for retries to bring a device ready, so use the flag
18254  *		with caution.
18255  *
18256  *   Arguments: un
18257  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18258  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18259  *			0: dont check for media present, do retries on cmd.
18260  *
18261  * Return Code: 0   - Success
18262  *		EIO - IO error
18263  *		EACCES - Reservation conflict detected
18264  *		ENXIO  - Not Ready, medium not present
18265  *		errno return code from sd_send_scsi_cmd()
18266  *
18267  *     Context: Can sleep. Does not return until command is completed.
18268  */
18269 
18270 static int
18271 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18272 {
18273 	struct	scsi_extended_sense	sense_buf;
18274 	union scsi_cdb		cdb;
18275 	struct uscsi_cmd	ucmd_buf;
18276 	int			status;
18277 
18278 	ASSERT(un != NULL);
18279 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18280 
18281 	SD_TRACE(SD_LOG_IO, un,
18282 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18283 
18284 	/*
18285 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18286 	 * timeouts when they receive a TUR and the queue is not empty. Check
18287 	 * the configuration flag set during attach (indicating the drive has
18288 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18289 	 * TUR. If there are
18290 	 * pending commands return success, this is a bit arbitrary but is ok
18291 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18292 	 * configurations.
18293 	 */
18294 	if (un->un_f_cfg_tur_check == TRUE) {
18295 		mutex_enter(SD_MUTEX(un));
18296 		if (un->un_ncmds_in_transport != 0) {
18297 			mutex_exit(SD_MUTEX(un));
18298 			return (0);
18299 		}
18300 		mutex_exit(SD_MUTEX(un));
18301 	}
18302 
18303 	bzero(&cdb, sizeof (cdb));
18304 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18305 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18306 
18307 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18308 
18309 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18310 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18311 	ucmd_buf.uscsi_bufaddr	= NULL;
18312 	ucmd_buf.uscsi_buflen	= 0;
18313 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18314 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18315 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18316 
18317 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18318 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18319 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18320 	}
18321 	ucmd_buf.uscsi_timeout	= 60;
18322 
18323 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18324 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18325 	    SD_PATH_STANDARD));
18326 
18327 	switch (status) {
18328 	case 0:
18329 		break;	/* Success! */
18330 	case EIO:
18331 		switch (ucmd_buf.uscsi_status) {
18332 		case STATUS_RESERVATION_CONFLICT:
18333 			status = EACCES;
18334 			break;
18335 		case STATUS_CHECK:
18336 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18337 				break;
18338 			}
18339 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18340 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18341 			    KEY_NOT_READY) &&
18342 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18343 				status = ENXIO;
18344 			}
18345 			break;
18346 		default:
18347 			break;
18348 		}
18349 		break;
18350 	default:
18351 		break;
18352 	}
18353 
18354 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18355 
18356 	return (status);
18357 }
18358 
18359 
18360 /*
18361  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18362  *
18363  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18364  *
18365  *   Arguments: un
18366  *
18367  * Return Code: 0   - Success
18368  *		EACCES
18369  *		ENOTSUP
18370  *		errno return code from sd_send_scsi_cmd()
18371  *
18372  *     Context: Can sleep. Does not return until command is completed.
18373  */
18374 
18375 static int
18376 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18377 	uint16_t data_len, uchar_t *data_bufp)
18378 {
18379 	struct scsi_extended_sense	sense_buf;
18380 	union scsi_cdb		cdb;
18381 	struct uscsi_cmd	ucmd_buf;
18382 	int			status;
18383 	int			no_caller_buf = FALSE;
18384 
18385 	ASSERT(un != NULL);
18386 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18387 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18388 
18389 	SD_TRACE(SD_LOG_IO, un,
18390 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18391 
18392 	bzero(&cdb, sizeof (cdb));
18393 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18394 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18395 	if (data_bufp == NULL) {
18396 		/* Allocate a default buf if the caller did not give one */
18397 		ASSERT(data_len == 0);
18398 		data_len  = MHIOC_RESV_KEY_SIZE;
18399 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18400 		no_caller_buf = TRUE;
18401 	}
18402 
18403 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18404 	cdb.cdb_opaque[1] = usr_cmd;
18405 	FORMG1COUNT(&cdb, data_len);
18406 
18407 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18408 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18409 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18410 	ucmd_buf.uscsi_buflen	= data_len;
18411 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18412 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18413 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18414 	ucmd_buf.uscsi_timeout	= 60;
18415 
18416 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18417 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18418 
18419 	switch (status) {
18420 	case 0:
18421 		break;	/* Success! */
18422 	case EIO:
18423 		switch (ucmd_buf.uscsi_status) {
18424 		case STATUS_RESERVATION_CONFLICT:
18425 			status = EACCES;
18426 			break;
18427 		case STATUS_CHECK:
18428 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18429 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18430 			    KEY_ILLEGAL_REQUEST)) {
18431 				status = ENOTSUP;
18432 			}
18433 			break;
18434 		default:
18435 			break;
18436 		}
18437 		break;
18438 	default:
18439 		break;
18440 	}
18441 
18442 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18443 
18444 	if (no_caller_buf == TRUE) {
18445 		kmem_free(data_bufp, data_len);
18446 	}
18447 
18448 	return (status);
18449 }
18450 
18451 
18452 /*
18453  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18454  *
18455  * Description: This routine is the driver entry point for handling CD-ROM
18456  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18457  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18458  *		device.
18459  *
18460  *   Arguments: un  -   Pointer to soft state struct for the target.
18461  *		usr_cmd SCSI-3 reservation facility command (one of
18462  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18463  *			SD_SCSI3_PREEMPTANDABORT)
18464  *		usr_bufp - user provided pointer register, reserve descriptor or
18465  *			preempt and abort structure (mhioc_register_t,
18466  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18467  *
18468  * Return Code: 0   - Success
18469  *		EACCES
18470  *		ENOTSUP
18471  *		errno return code from sd_send_scsi_cmd()
18472  *
18473  *     Context: Can sleep. Does not return until command is completed.
18474  */
18475 
18476 static int
18477 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18478 	uchar_t	*usr_bufp)
18479 {
18480 	struct scsi_extended_sense	sense_buf;
18481 	union scsi_cdb		cdb;
18482 	struct uscsi_cmd	ucmd_buf;
18483 	int			status;
18484 	uchar_t			data_len = sizeof (sd_prout_t);
18485 	sd_prout_t		*prp;
18486 
18487 	ASSERT(un != NULL);
18488 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18489 	ASSERT(data_len == 24);	/* required by scsi spec */
18490 
18491 	SD_TRACE(SD_LOG_IO, un,
18492 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18493 
18494 	if (usr_bufp == NULL) {
18495 		return (EINVAL);
18496 	}
18497 
18498 	bzero(&cdb, sizeof (cdb));
18499 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18500 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18501 	prp = kmem_zalloc(data_len, KM_SLEEP);
18502 
18503 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18504 	cdb.cdb_opaque[1] = usr_cmd;
18505 	FORMG1COUNT(&cdb, data_len);
18506 
18507 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18508 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18509 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18510 	ucmd_buf.uscsi_buflen	= data_len;
18511 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18512 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18513 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18514 	ucmd_buf.uscsi_timeout	= 60;
18515 
18516 	switch (usr_cmd) {
18517 	case SD_SCSI3_REGISTER: {
18518 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18519 
18520 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18521 		bcopy(ptr->newkey.key, prp->service_key,
18522 		    MHIOC_RESV_KEY_SIZE);
18523 		prp->aptpl = ptr->aptpl;
18524 		break;
18525 	}
18526 	case SD_SCSI3_RESERVE:
18527 	case SD_SCSI3_RELEASE: {
18528 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18529 
18530 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18531 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18532 		cdb.cdb_opaque[2] = ptr->type;
18533 		break;
18534 	}
18535 	case SD_SCSI3_PREEMPTANDABORT: {
18536 		mhioc_preemptandabort_t *ptr =
18537 		    (mhioc_preemptandabort_t *)usr_bufp;
18538 
18539 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18540 		bcopy(ptr->victim_key.key, prp->service_key,
18541 		    MHIOC_RESV_KEY_SIZE);
18542 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18543 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18544 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18545 		break;
18546 	}
18547 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18548 	{
18549 		mhioc_registerandignorekey_t *ptr;
18550 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18551 		bcopy(ptr->newkey.key,
18552 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18553 		prp->aptpl = ptr->aptpl;
18554 		break;
18555 	}
18556 	default:
18557 		ASSERT(FALSE);
18558 		break;
18559 	}
18560 
18561 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18562 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18563 
18564 	switch (status) {
18565 	case 0:
18566 		break;	/* Success! */
18567 	case EIO:
18568 		switch (ucmd_buf.uscsi_status) {
18569 		case STATUS_RESERVATION_CONFLICT:
18570 			status = EACCES;
18571 			break;
18572 		case STATUS_CHECK:
18573 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18574 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18575 			    KEY_ILLEGAL_REQUEST)) {
18576 				status = ENOTSUP;
18577 			}
18578 			break;
18579 		default:
18580 			break;
18581 		}
18582 		break;
18583 	default:
18584 		break;
18585 	}
18586 
18587 	kmem_free(prp, data_len);
18588 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18589 	return (status);
18590 }
18591 
18592 
18593 /*
18594  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18595  *
18596  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18597  *
18598  *   Arguments: un - pointer to the target's soft state struct
18599  *              dkc - pointer to the callback structure
18600  *
18601  * Return Code: 0 - success
18602  *		errno-type error code
18603  *
18604  *     Context: kernel thread context only.
18605  *
18606  *  _______________________________________________________________
18607  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18608  * |FLUSH_VOLATILE|              | operation                       |
18609  * |______________|______________|_________________________________|
18610  * | 0            | NULL         | Synchronous flush on both       |
18611  * |              |              | volatile and non-volatile cache |
18612  * |______________|______________|_________________________________|
18613  * | 1            | NULL         | Synchronous flush on volatile   |
18614  * |              |              | cache; disk drivers may suppress|
18615  * |              |              | flush if disk table indicates   |
18616  * |              |              | non-volatile cache              |
18617  * |______________|______________|_________________________________|
18618  * | 0            | !NULL        | Asynchronous flush on both      |
18619  * |              |              | volatile and non-volatile cache;|
18620  * |______________|______________|_________________________________|
18621  * | 1            | !NULL        | Asynchronous flush on volatile  |
18622  * |              |              | cache; disk drivers may suppress|
18623  * |              |              | flush if disk table indicates   |
18624  * |              |              | non-volatile cache              |
18625  * |______________|______________|_________________________________|
18626  *
18627  */
18628 
18629 static int
18630 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18631 {
18632 	struct sd_uscsi_info	*uip;
18633 	struct uscsi_cmd	*uscmd;
18634 	union scsi_cdb		*cdb;
18635 	struct buf		*bp;
18636 	int			rval = 0;
18637 	int			is_async;
18638 
18639 	SD_TRACE(SD_LOG_IO, un,
18640 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18641 
18642 	ASSERT(un != NULL);
18643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18644 
18645 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18646 		is_async = FALSE;
18647 	} else {
18648 		is_async = TRUE;
18649 	}
18650 
18651 	mutex_enter(SD_MUTEX(un));
18652 	/* check whether cache flush should be suppressed */
18653 	if (un->un_f_suppress_cache_flush == TRUE) {
18654 		mutex_exit(SD_MUTEX(un));
18655 		/*
18656 		 * suppress the cache flush if the device is told to do
18657 		 * so by sd.conf or disk table
18658 		 */
18659 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18660 		    skip the cache flush since suppress_cache_flush is %d!\n",
18661 		    un->un_f_suppress_cache_flush);
18662 
18663 		if (is_async == TRUE) {
18664 			/* invoke callback for asynchronous flush */
18665 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18666 		}
18667 		return (rval);
18668 	}
18669 	mutex_exit(SD_MUTEX(un));
18670 
18671 	/*
18672 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18673 	 * set properly
18674 	 */
18675 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18676 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18677 
18678 	mutex_enter(SD_MUTEX(un));
18679 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18680 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18681 		/*
18682 		 * if the device supports SYNC_NV bit, turn on
18683 		 * the SYNC_NV bit to only flush volatile cache
18684 		 */
18685 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18686 	}
18687 	mutex_exit(SD_MUTEX(un));
18688 
18689 	/*
18690 	 * First get some memory for the uscsi_cmd struct and cdb
18691 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18692 	 */
18693 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18694 	uscmd->uscsi_cdblen = CDB_GROUP1;
18695 	uscmd->uscsi_cdb = (caddr_t)cdb;
18696 	uscmd->uscsi_bufaddr = NULL;
18697 	uscmd->uscsi_buflen = 0;
18698 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18699 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18700 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18701 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18702 	uscmd->uscsi_timeout = sd_io_time;
18703 
18704 	/*
18705 	 * Allocate an sd_uscsi_info struct and fill it with the info
18706 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18707 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18708 	 * since we allocate the buf here in this function, we do not
18709 	 * need to preserve the prior contents of b_private.
18710 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18711 	 */
18712 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18713 	uip->ui_flags = SD_PATH_DIRECT;
18714 	uip->ui_cmdp  = uscmd;
18715 
18716 	bp = getrbuf(KM_SLEEP);
18717 	bp->b_private = uip;
18718 
18719 	/*
18720 	 * Setup buffer to carry uscsi request.
18721 	 */
18722 	bp->b_flags  = B_BUSY;
18723 	bp->b_bcount = 0;
18724 	bp->b_blkno  = 0;
18725 
18726 	if (is_async == TRUE) {
18727 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18728 		uip->ui_dkc = *dkc;
18729 	}
18730 
18731 	bp->b_edev = SD_GET_DEV(un);
18732 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18733 
18734 	(void) sd_uscsi_strategy(bp);
18735 
18736 	/*
18737 	 * If synchronous request, wait for completion
18738 	 * If async just return and let b_iodone callback
18739 	 * cleanup.
18740 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18741 	 * but it was also incremented in sd_uscsi_strategy(), so
18742 	 * we should be ok.
18743 	 */
18744 	if (is_async == FALSE) {
18745 		(void) biowait(bp);
18746 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18747 	}
18748 
18749 	return (rval);
18750 }
18751 
18752 
18753 static int
18754 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18755 {
18756 	struct sd_uscsi_info *uip;
18757 	struct uscsi_cmd *uscmd;
18758 	uint8_t *sense_buf;
18759 	struct sd_lun *un;
18760 	int status;
18761 	union scsi_cdb *cdb;
18762 
18763 	uip = (struct sd_uscsi_info *)(bp->b_private);
18764 	ASSERT(uip != NULL);
18765 
18766 	uscmd = uip->ui_cmdp;
18767 	ASSERT(uscmd != NULL);
18768 
18769 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18770 	ASSERT(sense_buf != NULL);
18771 
18772 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18773 	ASSERT(un != NULL);
18774 
18775 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
18776 
18777 	status = geterror(bp);
18778 	switch (status) {
18779 	case 0:
18780 		break;	/* Success! */
18781 	case EIO:
18782 		switch (uscmd->uscsi_status) {
18783 		case STATUS_RESERVATION_CONFLICT:
18784 			/* Ignore reservation conflict */
18785 			status = 0;
18786 			goto done;
18787 
18788 		case STATUS_CHECK:
18789 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18790 			    (scsi_sense_key(sense_buf) ==
18791 			    KEY_ILLEGAL_REQUEST)) {
18792 				/* Ignore Illegal Request error */
18793 				if (cdb->cdb_un.tag|SD_SYNC_NV_BIT) {
18794 					mutex_enter(SD_MUTEX(un));
18795 					un->un_f_sync_nv_supported = FALSE;
18796 					mutex_exit(SD_MUTEX(un));
18797 					status = 0;
18798 					SD_TRACE(SD_LOG_IO, un,
18799 					    "un_f_sync_nv_supported \
18800 					    is set to false.\n");
18801 					goto done;
18802 				}
18803 
18804 				mutex_enter(SD_MUTEX(un));
18805 				un->un_f_sync_cache_supported = FALSE;
18806 				mutex_exit(SD_MUTEX(un));
18807 				SD_TRACE(SD_LOG_IO, un,
18808 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
18809 				    un_f_sync_cache_supported set to false \
18810 				    with asc = %x, ascq = %x\n",
18811 				    scsi_sense_asc(sense_buf),
18812 				    scsi_sense_ascq(sense_buf));
18813 				status = ENOTSUP;
18814 				goto done;
18815 			}
18816 			break;
18817 		default:
18818 			break;
18819 		}
18820 		/* FALLTHRU */
18821 	default:
18822 		/*
18823 		 * Don't log an error message if this device
18824 		 * has removable media.
18825 		 */
18826 		if (!un->un_f_has_removable_media) {
18827 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18828 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18829 		}
18830 		break;
18831 	}
18832 
18833 done:
18834 	if (uip->ui_dkc.dkc_callback != NULL) {
18835 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18836 	}
18837 
18838 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18839 	freerbuf(bp);
18840 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18841 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18842 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18843 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18844 
18845 	return (status);
18846 }
18847 
18848 
18849 /*
18850  *    Function: sd_send_scsi_GET_CONFIGURATION
18851  *
18852  * Description: Issues the get configuration command to the device.
18853  *		Called from sd_check_for_writable_cd & sd_get_media_info
18854  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18855  *   Arguments: un
18856  *		ucmdbuf
18857  *		rqbuf
18858  *		rqbuflen
18859  *		bufaddr
18860  *		buflen
18861  *		path_flag
18862  *
18863  * Return Code: 0   - Success
18864  *		errno return code from sd_send_scsi_cmd()
18865  *
18866  *     Context: Can sleep. Does not return until command is completed.
18867  *
18868  */
18869 
18870 static int
18871 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18872 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18873 	int path_flag)
18874 {
18875 	char	cdb[CDB_GROUP1];
18876 	int	status;
18877 
18878 	ASSERT(un != NULL);
18879 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18880 	ASSERT(bufaddr != NULL);
18881 	ASSERT(ucmdbuf != NULL);
18882 	ASSERT(rqbuf != NULL);
18883 
18884 	SD_TRACE(SD_LOG_IO, un,
18885 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18886 
18887 	bzero(cdb, sizeof (cdb));
18888 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18889 	bzero(rqbuf, rqbuflen);
18890 	bzero(bufaddr, buflen);
18891 
18892 	/*
18893 	 * Set up cdb field for the get configuration command.
18894 	 */
18895 	cdb[0] = SCMD_GET_CONFIGURATION;
18896 	cdb[1] = 0x02;  /* Requested Type */
18897 	cdb[8] = SD_PROFILE_HEADER_LEN;
18898 	ucmdbuf->uscsi_cdb = cdb;
18899 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18900 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18901 	ucmdbuf->uscsi_buflen = buflen;
18902 	ucmdbuf->uscsi_timeout = sd_io_time;
18903 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18904 	ucmdbuf->uscsi_rqlen = rqbuflen;
18905 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18906 
18907 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18908 	    UIO_SYSSPACE, path_flag);
18909 
18910 	switch (status) {
18911 	case 0:
18912 		break;  /* Success! */
18913 	case EIO:
18914 		switch (ucmdbuf->uscsi_status) {
18915 		case STATUS_RESERVATION_CONFLICT:
18916 			status = EACCES;
18917 			break;
18918 		default:
18919 			break;
18920 		}
18921 		break;
18922 	default:
18923 		break;
18924 	}
18925 
18926 	if (status == 0) {
18927 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18928 		    "sd_send_scsi_GET_CONFIGURATION: data",
18929 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18930 	}
18931 
18932 	SD_TRACE(SD_LOG_IO, un,
18933 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18934 
18935 	return (status);
18936 }
18937 
18938 /*
18939  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18940  *
18941  * Description: Issues the get configuration command to the device to
18942  *              retrieve a specific feature. Called from
18943  *		sd_check_for_writable_cd & sd_set_mmc_caps.
18944  *   Arguments: un
18945  *              ucmdbuf
18946  *              rqbuf
18947  *              rqbuflen
18948  *              bufaddr
18949  *              buflen
18950  *		feature
18951  *
18952  * Return Code: 0   - Success
18953  *              errno return code from sd_send_scsi_cmd()
18954  *
18955  *     Context: Can sleep. Does not return until command is completed.
18956  *
18957  */
18958 static int
18959 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18960 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18961 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18962 {
18963 	char    cdb[CDB_GROUP1];
18964 	int	status;
18965 
18966 	ASSERT(un != NULL);
18967 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18968 	ASSERT(bufaddr != NULL);
18969 	ASSERT(ucmdbuf != NULL);
18970 	ASSERT(rqbuf != NULL);
18971 
18972 	SD_TRACE(SD_LOG_IO, un,
18973 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18974 
18975 	bzero(cdb, sizeof (cdb));
18976 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18977 	bzero(rqbuf, rqbuflen);
18978 	bzero(bufaddr, buflen);
18979 
18980 	/*
18981 	 * Set up cdb field for the get configuration command.
18982 	 */
18983 	cdb[0] = SCMD_GET_CONFIGURATION;
18984 	cdb[1] = 0x02;  /* Requested Type */
18985 	cdb[3] = feature;
18986 	cdb[8] = buflen;
18987 	ucmdbuf->uscsi_cdb = cdb;
18988 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18989 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18990 	ucmdbuf->uscsi_buflen = buflen;
18991 	ucmdbuf->uscsi_timeout = sd_io_time;
18992 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18993 	ucmdbuf->uscsi_rqlen = rqbuflen;
18994 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18995 
18996 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18997 	    UIO_SYSSPACE, path_flag);
18998 
18999 	switch (status) {
19000 	case 0:
19001 		break;  /* Success! */
19002 	case EIO:
19003 		switch (ucmdbuf->uscsi_status) {
19004 		case STATUS_RESERVATION_CONFLICT:
19005 			status = EACCES;
19006 			break;
19007 		default:
19008 			break;
19009 		}
19010 		break;
19011 	default:
19012 		break;
19013 	}
19014 
19015 	if (status == 0) {
19016 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19017 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19018 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19019 	}
19020 
19021 	SD_TRACE(SD_LOG_IO, un,
19022 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19023 
19024 	return (status);
19025 }
19026 
19027 
19028 /*
19029  *    Function: sd_send_scsi_MODE_SENSE
19030  *
19031  * Description: Utility function for issuing a scsi MODE SENSE command.
19032  *		Note: This routine uses a consistent implementation for Group0,
19033  *		Group1, and Group2 commands across all platforms. ATAPI devices
19034  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19035  *
19036  *   Arguments: un - pointer to the softstate struct for the target.
19037  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19038  *			  CDB_GROUP[1|2] (10 byte).
19039  *		bufaddr - buffer for page data retrieved from the target.
19040  *		buflen - size of page to be retrieved.
19041  *		page_code - page code of data to be retrieved from the target.
19042  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19043  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19044  *			to use the USCSI "direct" chain and bypass the normal
19045  *			command waitq.
19046  *
19047  * Return Code: 0   - Success
19048  *		errno return code from sd_send_scsi_cmd()
19049  *
19050  *     Context: Can sleep. Does not return until command is completed.
19051  */
19052 
19053 static int
19054 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19055 	size_t buflen,  uchar_t page_code, int path_flag)
19056 {
19057 	struct	scsi_extended_sense	sense_buf;
19058 	union scsi_cdb		cdb;
19059 	struct uscsi_cmd	ucmd_buf;
19060 	int			status;
19061 	int			headlen;
19062 
19063 	ASSERT(un != NULL);
19064 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19065 	ASSERT(bufaddr != NULL);
19066 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19067 	    (cdbsize == CDB_GROUP2));
19068 
19069 	SD_TRACE(SD_LOG_IO, un,
19070 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19071 
19072 	bzero(&cdb, sizeof (cdb));
19073 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19074 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19075 	bzero(bufaddr, buflen);
19076 
19077 	if (cdbsize == CDB_GROUP0) {
19078 		cdb.scc_cmd = SCMD_MODE_SENSE;
19079 		cdb.cdb_opaque[2] = page_code;
19080 		FORMG0COUNT(&cdb, buflen);
19081 		headlen = MODE_HEADER_LENGTH;
19082 	} else {
19083 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19084 		cdb.cdb_opaque[2] = page_code;
19085 		FORMG1COUNT(&cdb, buflen);
19086 		headlen = MODE_HEADER_LENGTH_GRP2;
19087 	}
19088 
19089 	ASSERT(headlen <= buflen);
19090 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19091 
19092 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19093 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19094 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19095 	ucmd_buf.uscsi_buflen	= buflen;
19096 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19097 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19098 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19099 	ucmd_buf.uscsi_timeout	= 60;
19100 
19101 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19102 	    UIO_SYSSPACE, path_flag);
19103 
19104 	switch (status) {
19105 	case 0:
19106 		/*
19107 		 * sr_check_wp() uses 0x3f page code and check the header of
19108 		 * mode page to determine if target device is write-protected.
19109 		 * But some USB devices return 0 bytes for 0x3f page code. For
19110 		 * this case, make sure that mode page header is returned at
19111 		 * least.
19112 		 */
19113 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19114 			status = EIO;
19115 		break;	/* Success! */
19116 	case EIO:
19117 		switch (ucmd_buf.uscsi_status) {
19118 		case STATUS_RESERVATION_CONFLICT:
19119 			status = EACCES;
19120 			break;
19121 		default:
19122 			break;
19123 		}
19124 		break;
19125 	default:
19126 		break;
19127 	}
19128 
19129 	if (status == 0) {
19130 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19131 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19132 	}
19133 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19134 
19135 	return (status);
19136 }
19137 
19138 
19139 /*
19140  *    Function: sd_send_scsi_MODE_SELECT
19141  *
19142  * Description: Utility function for issuing a scsi MODE SELECT command.
19143  *		Note: This routine uses a consistent implementation for Group0,
19144  *		Group1, and Group2 commands across all platforms. ATAPI devices
19145  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19146  *
19147  *   Arguments: un - pointer to the softstate struct for the target.
19148  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19149  *			  CDB_GROUP[1|2] (10 byte).
19150  *		bufaddr - buffer for page data retrieved from the target.
19151  *		buflen - size of page to be retrieved.
19152  *		save_page - boolean to determin if SP bit should be set.
19153  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19154  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19155  *			to use the USCSI "direct" chain and bypass the normal
19156  *			command waitq.
19157  *
19158  * Return Code: 0   - Success
19159  *		errno return code from sd_send_scsi_cmd()
19160  *
19161  *     Context: Can sleep. Does not return until command is completed.
19162  */
19163 
19164 static int
19165 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19166 	size_t buflen,  uchar_t save_page, int path_flag)
19167 {
19168 	struct	scsi_extended_sense	sense_buf;
19169 	union scsi_cdb		cdb;
19170 	struct uscsi_cmd	ucmd_buf;
19171 	int			status;
19172 
19173 	ASSERT(un != NULL);
19174 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19175 	ASSERT(bufaddr != NULL);
19176 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19177 	    (cdbsize == CDB_GROUP2));
19178 
19179 	SD_TRACE(SD_LOG_IO, un,
19180 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19181 
19182 	bzero(&cdb, sizeof (cdb));
19183 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19184 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19185 
19186 	/* Set the PF bit for many third party drives */
19187 	cdb.cdb_opaque[1] = 0x10;
19188 
19189 	/* Set the savepage(SP) bit if given */
19190 	if (save_page == SD_SAVE_PAGE) {
19191 		cdb.cdb_opaque[1] |= 0x01;
19192 	}
19193 
19194 	if (cdbsize == CDB_GROUP0) {
19195 		cdb.scc_cmd = SCMD_MODE_SELECT;
19196 		FORMG0COUNT(&cdb, buflen);
19197 	} else {
19198 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19199 		FORMG1COUNT(&cdb, buflen);
19200 	}
19201 
19202 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19203 
19204 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19205 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19206 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19207 	ucmd_buf.uscsi_buflen	= buflen;
19208 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19209 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19210 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19211 	ucmd_buf.uscsi_timeout	= 60;
19212 
19213 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19214 	    UIO_SYSSPACE, path_flag);
19215 
19216 	switch (status) {
19217 	case 0:
19218 		break;	/* Success! */
19219 	case EIO:
19220 		switch (ucmd_buf.uscsi_status) {
19221 		case STATUS_RESERVATION_CONFLICT:
19222 			status = EACCES;
19223 			break;
19224 		default:
19225 			break;
19226 		}
19227 		break;
19228 	default:
19229 		break;
19230 	}
19231 
19232 	if (status == 0) {
19233 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19234 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19235 	}
19236 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19237 
19238 	return (status);
19239 }
19240 
19241 
19242 /*
19243  *    Function: sd_send_scsi_RDWR
19244  *
19245  * Description: Issue a scsi READ or WRITE command with the given parameters.
19246  *
19247  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19248  *		cmd:	 SCMD_READ or SCMD_WRITE
19249  *		bufaddr: Address of caller's buffer to receive the RDWR data
19250  *		buflen:  Length of caller's buffer receive the RDWR data.
19251  *		start_block: Block number for the start of the RDWR operation.
19252  *			 (Assumes target-native block size.)
19253  *		residp:  Pointer to variable to receive the redisual of the
19254  *			 RDWR operation (may be NULL of no residual requested).
19255  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19256  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19257  *			to use the USCSI "direct" chain and bypass the normal
19258  *			command waitq.
19259  *
19260  * Return Code: 0   - Success
19261  *		errno return code from sd_send_scsi_cmd()
19262  *
19263  *     Context: Can sleep. Does not return until command is completed.
19264  */
19265 
19266 static int
19267 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19268 	size_t buflen, daddr_t start_block, int path_flag)
19269 {
19270 	struct	scsi_extended_sense	sense_buf;
19271 	union scsi_cdb		cdb;
19272 	struct uscsi_cmd	ucmd_buf;
19273 	uint32_t		block_count;
19274 	int			status;
19275 	int			cdbsize;
19276 	uchar_t			flag;
19277 
19278 	ASSERT(un != NULL);
19279 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19280 	ASSERT(bufaddr != NULL);
19281 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19282 
19283 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19284 
19285 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19286 		return (EINVAL);
19287 	}
19288 
19289 	mutex_enter(SD_MUTEX(un));
19290 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19291 	mutex_exit(SD_MUTEX(un));
19292 
19293 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19294 
19295 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19296 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19297 	    bufaddr, buflen, start_block, block_count);
19298 
19299 	bzero(&cdb, sizeof (cdb));
19300 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19301 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19302 
19303 	/* Compute CDB size to use */
19304 	if (start_block > 0xffffffff)
19305 		cdbsize = CDB_GROUP4;
19306 	else if ((start_block & 0xFFE00000) ||
19307 	    (un->un_f_cfg_is_atapi == TRUE))
19308 		cdbsize = CDB_GROUP1;
19309 	else
19310 		cdbsize = CDB_GROUP0;
19311 
19312 	switch (cdbsize) {
19313 	case CDB_GROUP0:	/* 6-byte CDBs */
19314 		cdb.scc_cmd = cmd;
19315 		FORMG0ADDR(&cdb, start_block);
19316 		FORMG0COUNT(&cdb, block_count);
19317 		break;
19318 	case CDB_GROUP1:	/* 10-byte CDBs */
19319 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19320 		FORMG1ADDR(&cdb, start_block);
19321 		FORMG1COUNT(&cdb, block_count);
19322 		break;
19323 	case CDB_GROUP4:	/* 16-byte CDBs */
19324 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19325 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19326 		FORMG4COUNT(&cdb, block_count);
19327 		break;
19328 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19329 	default:
19330 		/* All others reserved */
19331 		return (EINVAL);
19332 	}
19333 
19334 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19335 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19336 
19337 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19338 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19339 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19340 	ucmd_buf.uscsi_buflen	= buflen;
19341 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19342 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19343 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19344 	ucmd_buf.uscsi_timeout	= 60;
19345 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19346 	    UIO_SYSSPACE, path_flag);
19347 	switch (status) {
19348 	case 0:
19349 		break;	/* Success! */
19350 	case EIO:
19351 		switch (ucmd_buf.uscsi_status) {
19352 		case STATUS_RESERVATION_CONFLICT:
19353 			status = EACCES;
19354 			break;
19355 		default:
19356 			break;
19357 		}
19358 		break;
19359 	default:
19360 		break;
19361 	}
19362 
19363 	if (status == 0) {
19364 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19365 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19366 	}
19367 
19368 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19369 
19370 	return (status);
19371 }
19372 
19373 
19374 /*
19375  *    Function: sd_send_scsi_LOG_SENSE
19376  *
19377  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19378  *
19379  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19380  *
19381  * Return Code: 0   - Success
19382  *		errno return code from sd_send_scsi_cmd()
19383  *
19384  *     Context: Can sleep. Does not return until command is completed.
19385  */
19386 
19387 static int
19388 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19389 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19390 	int path_flag)
19391 
19392 {
19393 	struct	scsi_extended_sense	sense_buf;
19394 	union scsi_cdb		cdb;
19395 	struct uscsi_cmd	ucmd_buf;
19396 	int			status;
19397 
19398 	ASSERT(un != NULL);
19399 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19400 
19401 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19402 
19403 	bzero(&cdb, sizeof (cdb));
19404 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19405 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19406 
19407 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19408 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19409 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19410 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19411 	FORMG1COUNT(&cdb, buflen);
19412 
19413 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19414 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19415 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19416 	ucmd_buf.uscsi_buflen	= buflen;
19417 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19418 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19419 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19420 	ucmd_buf.uscsi_timeout	= 60;
19421 
19422 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19423 	    UIO_SYSSPACE, path_flag);
19424 
19425 	switch (status) {
19426 	case 0:
19427 		break;
19428 	case EIO:
19429 		switch (ucmd_buf.uscsi_status) {
19430 		case STATUS_RESERVATION_CONFLICT:
19431 			status = EACCES;
19432 			break;
19433 		case STATUS_CHECK:
19434 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19435 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19436 				KEY_ILLEGAL_REQUEST) &&
19437 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19438 				/*
19439 				 * ASC 0x24: INVALID FIELD IN CDB
19440 				 */
19441 				switch (page_code) {
19442 				case START_STOP_CYCLE_PAGE:
19443 					/*
19444 					 * The start stop cycle counter is
19445 					 * implemented as page 0x31 in earlier
19446 					 * generation disks. In new generation
19447 					 * disks the start stop cycle counter is
19448 					 * implemented as page 0xE. To properly
19449 					 * handle this case if an attempt for
19450 					 * log page 0xE is made and fails we
19451 					 * will try again using page 0x31.
19452 					 *
19453 					 * Network storage BU committed to
19454 					 * maintain the page 0x31 for this
19455 					 * purpose and will not have any other
19456 					 * page implemented with page code 0x31
19457 					 * until all disks transition to the
19458 					 * standard page.
19459 					 */
19460 					mutex_enter(SD_MUTEX(un));
19461 					un->un_start_stop_cycle_page =
19462 					    START_STOP_CYCLE_VU_PAGE;
19463 					cdb.cdb_opaque[2] =
19464 					    (char)(page_control << 6) |
19465 					    un->un_start_stop_cycle_page;
19466 					mutex_exit(SD_MUTEX(un));
19467 					status = sd_send_scsi_cmd(
19468 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19469 					    UIO_SYSSPACE, path_flag);
19470 
19471 					break;
19472 				case TEMPERATURE_PAGE:
19473 					status = ENOTTY;
19474 					break;
19475 				default:
19476 					break;
19477 				}
19478 			}
19479 			break;
19480 		default:
19481 			break;
19482 		}
19483 		break;
19484 	default:
19485 		break;
19486 	}
19487 
19488 	if (status == 0) {
19489 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19490 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19491 	}
19492 
19493 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19494 
19495 	return (status);
19496 }
19497 
19498 
19499 /*
19500  *    Function: sdioctl
19501  *
19502  * Description: Driver's ioctl(9e) entry point function.
19503  *
19504  *   Arguments: dev     - device number
19505  *		cmd     - ioctl operation to be performed
19506  *		arg     - user argument, contains data to be set or reference
19507  *			  parameter for get
19508  *		flag    - bit flag, indicating open settings, 32/64 bit type
19509  *		cred_p  - user credential pointer
19510  *		rval_p  - calling process return value (OPT)
19511  *
19512  * Return Code: EINVAL
19513  *		ENOTTY
19514  *		ENXIO
19515  *		EIO
19516  *		EFAULT
19517  *		ENOTSUP
19518  *		EPERM
19519  *
19520  *     Context: Called from the device switch at normal priority.
19521  */
19522 
19523 static int
19524 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19525 {
19526 	struct sd_lun	*un = NULL;
19527 	int		err = 0;
19528 	int		i = 0;
19529 	cred_t		*cr;
19530 	int		tmprval = EINVAL;
19531 	int 		is_valid;
19532 
19533 	/*
19534 	 * All device accesses go thru sdstrategy where we check on suspend
19535 	 * status
19536 	 */
19537 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19538 		return (ENXIO);
19539 	}
19540 
19541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19542 
19543 
19544 	is_valid = SD_IS_VALID_LABEL(un);
19545 
19546 	/*
19547 	 * Moved this wait from sd_uscsi_strategy to here for
19548 	 * reasons of deadlock prevention. Internal driver commands,
19549 	 * specifically those to change a devices power level, result
19550 	 * in a call to sd_uscsi_strategy.
19551 	 */
19552 	mutex_enter(SD_MUTEX(un));
19553 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19554 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19555 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19556 	}
19557 	/*
19558 	 * Twiddling the counter here protects commands from now
19559 	 * through to the top of sd_uscsi_strategy. Without the
19560 	 * counter inc. a power down, for example, could get in
19561 	 * after the above check for state is made and before
19562 	 * execution gets to the top of sd_uscsi_strategy.
19563 	 * That would cause problems.
19564 	 */
19565 	un->un_ncmds_in_driver++;
19566 
19567 	if (!is_valid &&
19568 	    (flag & (FNDELAY | FNONBLOCK))) {
19569 		switch (cmd) {
19570 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19571 		case DKIOCGVTOC:
19572 		case DKIOCGAPART:
19573 		case DKIOCPARTINFO:
19574 		case DKIOCSGEOM:
19575 		case DKIOCSAPART:
19576 		case DKIOCGETEFI:
19577 		case DKIOCPARTITION:
19578 		case DKIOCSVTOC:
19579 		case DKIOCSETEFI:
19580 		case DKIOCGMBOOT:
19581 		case DKIOCSMBOOT:
19582 		case DKIOCG_PHYGEOM:
19583 		case DKIOCG_VIRTGEOM:
19584 			/* let cmlb handle it */
19585 			goto skip_ready_valid;
19586 
19587 		case CDROMPAUSE:
19588 		case CDROMRESUME:
19589 		case CDROMPLAYMSF:
19590 		case CDROMPLAYTRKIND:
19591 		case CDROMREADTOCHDR:
19592 		case CDROMREADTOCENTRY:
19593 		case CDROMSTOP:
19594 		case CDROMSTART:
19595 		case CDROMVOLCTRL:
19596 		case CDROMSUBCHNL:
19597 		case CDROMREADMODE2:
19598 		case CDROMREADMODE1:
19599 		case CDROMREADOFFSET:
19600 		case CDROMSBLKMODE:
19601 		case CDROMGBLKMODE:
19602 		case CDROMGDRVSPEED:
19603 		case CDROMSDRVSPEED:
19604 		case CDROMCDDA:
19605 		case CDROMCDXA:
19606 		case CDROMSUBCODE:
19607 			if (!ISCD(un)) {
19608 				un->un_ncmds_in_driver--;
19609 				ASSERT(un->un_ncmds_in_driver >= 0);
19610 				mutex_exit(SD_MUTEX(un));
19611 				return (ENOTTY);
19612 			}
19613 			break;
19614 		case FDEJECT:
19615 		case DKIOCEJECT:
19616 		case CDROMEJECT:
19617 			if (!un->un_f_eject_media_supported) {
19618 				un->un_ncmds_in_driver--;
19619 				ASSERT(un->un_ncmds_in_driver >= 0);
19620 				mutex_exit(SD_MUTEX(un));
19621 				return (ENOTTY);
19622 			}
19623 			break;
19624 		case DKIOCFLUSHWRITECACHE:
19625 			mutex_exit(SD_MUTEX(un));
19626 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19627 			if (err != 0) {
19628 				mutex_enter(SD_MUTEX(un));
19629 				un->un_ncmds_in_driver--;
19630 				ASSERT(un->un_ncmds_in_driver >= 0);
19631 				mutex_exit(SD_MUTEX(un));
19632 				return (EIO);
19633 			}
19634 			mutex_enter(SD_MUTEX(un));
19635 			/* FALLTHROUGH */
19636 		case DKIOCREMOVABLE:
19637 		case DKIOCHOTPLUGGABLE:
19638 		case DKIOCINFO:
19639 		case DKIOCGMEDIAINFO:
19640 		case MHIOCENFAILFAST:
19641 		case MHIOCSTATUS:
19642 		case MHIOCTKOWN:
19643 		case MHIOCRELEASE:
19644 		case MHIOCGRP_INKEYS:
19645 		case MHIOCGRP_INRESV:
19646 		case MHIOCGRP_REGISTER:
19647 		case MHIOCGRP_RESERVE:
19648 		case MHIOCGRP_PREEMPTANDABORT:
19649 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19650 		case CDROMCLOSETRAY:
19651 		case USCSICMD:
19652 			goto skip_ready_valid;
19653 		default:
19654 			break;
19655 		}
19656 
19657 		mutex_exit(SD_MUTEX(un));
19658 		err = sd_ready_and_valid(un);
19659 		mutex_enter(SD_MUTEX(un));
19660 
19661 		if (err != SD_READY_VALID) {
19662 			switch (cmd) {
19663 			case DKIOCSTATE:
19664 			case CDROMGDRVSPEED:
19665 			case CDROMSDRVSPEED:
19666 			case FDEJECT:	/* for eject command */
19667 			case DKIOCEJECT:
19668 			case CDROMEJECT:
19669 			case DKIOCREMOVABLE:
19670 			case DKIOCHOTPLUGGABLE:
19671 				break;
19672 			default:
19673 				if (un->un_f_has_removable_media) {
19674 					err = ENXIO;
19675 				} else {
19676 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19677 					if (err == SD_RESERVED_BY_OTHERS) {
19678 						err = EACCES;
19679 					} else {
19680 						err = EIO;
19681 					}
19682 				}
19683 				un->un_ncmds_in_driver--;
19684 				ASSERT(un->un_ncmds_in_driver >= 0);
19685 				mutex_exit(SD_MUTEX(un));
19686 				return (err);
19687 			}
19688 		}
19689 	}
19690 
19691 skip_ready_valid:
19692 	mutex_exit(SD_MUTEX(un));
19693 
19694 	switch (cmd) {
19695 	case DKIOCINFO:
19696 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19697 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19698 		break;
19699 
19700 	case DKIOCGMEDIAINFO:
19701 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19702 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19703 		break;
19704 
19705 	case DKIOCGGEOM:
19706 	case DKIOCGVTOC:
19707 	case DKIOCGAPART:
19708 	case DKIOCPARTINFO:
19709 	case DKIOCSGEOM:
19710 	case DKIOCSAPART:
19711 	case DKIOCGETEFI:
19712 	case DKIOCPARTITION:
19713 	case DKIOCSVTOC:
19714 	case DKIOCSETEFI:
19715 	case DKIOCGMBOOT:
19716 	case DKIOCSMBOOT:
19717 	case DKIOCG_PHYGEOM:
19718 	case DKIOCG_VIRTGEOM:
19719 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19720 
19721 		/* TUR should spin up */
19722 
19723 		if (un->un_f_has_removable_media)
19724 			err = sd_send_scsi_TEST_UNIT_READY(un,
19725 			    SD_CHECK_FOR_MEDIA);
19726 		else
19727 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19728 
19729 		if (err != 0)
19730 			break;
19731 
19732 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19733 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19734 
19735 		if ((err == 0) &&
19736 		    ((cmd == DKIOCSETEFI) ||
19737 		    (un->un_f_pkstats_enabled) &&
19738 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19739 
19740 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19741 			    (void *)SD_PATH_DIRECT);
19742 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19743 				sd_set_pstats(un);
19744 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19745 				    "sd_ioctl: un:0x%p pstats created and "
19746 				    "set\n", un);
19747 			}
19748 		}
19749 
19750 		if ((cmd == DKIOCSVTOC) ||
19751 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19752 
19753 			mutex_enter(SD_MUTEX(un));
19754 			if (un->un_f_devid_supported &&
19755 			    (un->un_f_opt_fab_devid == TRUE)) {
19756 				if (un->un_devid == NULL) {
19757 					sd_register_devid(un, SD_DEVINFO(un),
19758 					    SD_TARGET_IS_UNRESERVED);
19759 				} else {
19760 					/*
19761 					 * The device id for this disk
19762 					 * has been fabricated. The
19763 					 * device id must be preserved
19764 					 * by writing it back out to
19765 					 * disk.
19766 					 */
19767 					if (sd_write_deviceid(un) != 0) {
19768 						ddi_devid_free(un->un_devid);
19769 						un->un_devid = NULL;
19770 					}
19771 				}
19772 			}
19773 			mutex_exit(SD_MUTEX(un));
19774 		}
19775 
19776 		break;
19777 
19778 	case DKIOCLOCK:
19779 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19780 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19781 		    SD_PATH_STANDARD);
19782 		break;
19783 
19784 	case DKIOCUNLOCK:
19785 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19786 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19787 		    SD_PATH_STANDARD);
19788 		break;
19789 
19790 	case DKIOCSTATE: {
19791 		enum dkio_state		state;
19792 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19793 
19794 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19795 			err = EFAULT;
19796 		} else {
19797 			err = sd_check_media(dev, state);
19798 			if (err == 0) {
19799 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19800 				    sizeof (int), flag) != 0)
19801 					err = EFAULT;
19802 			}
19803 		}
19804 		break;
19805 	}
19806 
19807 	case DKIOCREMOVABLE:
19808 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19809 		i = un->un_f_has_removable_media ? 1 : 0;
19810 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19811 			err = EFAULT;
19812 		} else {
19813 			err = 0;
19814 		}
19815 		break;
19816 
19817 	case DKIOCHOTPLUGGABLE:
19818 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19819 		i = un->un_f_is_hotpluggable ? 1 : 0;
19820 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19821 			err = EFAULT;
19822 		} else {
19823 			err = 0;
19824 		}
19825 		break;
19826 
19827 	case DKIOCGTEMPERATURE:
19828 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19829 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19830 		break;
19831 
19832 	case MHIOCENFAILFAST:
19833 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19834 		if ((err = drv_priv(cred_p)) == 0) {
19835 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19836 		}
19837 		break;
19838 
19839 	case MHIOCTKOWN:
19840 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19841 		if ((err = drv_priv(cred_p)) == 0) {
19842 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19843 		}
19844 		break;
19845 
19846 	case MHIOCRELEASE:
19847 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19848 		if ((err = drv_priv(cred_p)) == 0) {
19849 			err = sd_mhdioc_release(dev);
19850 		}
19851 		break;
19852 
19853 	case MHIOCSTATUS:
19854 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19855 		if ((err = drv_priv(cred_p)) == 0) {
19856 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19857 			case 0:
19858 				err = 0;
19859 				break;
19860 			case EACCES:
19861 				*rval_p = 1;
19862 				err = 0;
19863 				break;
19864 			default:
19865 				err = EIO;
19866 				break;
19867 			}
19868 		}
19869 		break;
19870 
19871 	case MHIOCQRESERVE:
19872 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19873 		if ((err = drv_priv(cred_p)) == 0) {
19874 			err = sd_reserve_release(dev, SD_RESERVE);
19875 		}
19876 		break;
19877 
19878 	case MHIOCREREGISTERDEVID:
19879 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19880 		if (drv_priv(cred_p) == EPERM) {
19881 			err = EPERM;
19882 		} else if (!un->un_f_devid_supported) {
19883 			err = ENOTTY;
19884 		} else {
19885 			err = sd_mhdioc_register_devid(dev);
19886 		}
19887 		break;
19888 
19889 	case MHIOCGRP_INKEYS:
19890 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19891 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19892 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19893 				err = ENOTSUP;
19894 			} else {
19895 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19896 				    flag);
19897 			}
19898 		}
19899 		break;
19900 
19901 	case MHIOCGRP_INRESV:
19902 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19903 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19904 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19905 				err = ENOTSUP;
19906 			} else {
19907 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19908 			}
19909 		}
19910 		break;
19911 
19912 	case MHIOCGRP_REGISTER:
19913 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19914 		if ((err = drv_priv(cred_p)) != EPERM) {
19915 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19916 				err = ENOTSUP;
19917 			} else if (arg != NULL) {
19918 				mhioc_register_t reg;
19919 				if (ddi_copyin((void *)arg, &reg,
19920 				    sizeof (mhioc_register_t), flag) != 0) {
19921 					err = EFAULT;
19922 				} else {
19923 					err =
19924 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19925 					    un, SD_SCSI3_REGISTER,
19926 					    (uchar_t *)&reg);
19927 				}
19928 			}
19929 		}
19930 		break;
19931 
19932 	case MHIOCGRP_RESERVE:
19933 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19934 		if ((err = drv_priv(cred_p)) != EPERM) {
19935 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19936 				err = ENOTSUP;
19937 			} else if (arg != NULL) {
19938 				mhioc_resv_desc_t resv_desc;
19939 				if (ddi_copyin((void *)arg, &resv_desc,
19940 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19941 					err = EFAULT;
19942 				} else {
19943 					err =
19944 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19945 					    un, SD_SCSI3_RESERVE,
19946 					    (uchar_t *)&resv_desc);
19947 				}
19948 			}
19949 		}
19950 		break;
19951 
19952 	case MHIOCGRP_PREEMPTANDABORT:
19953 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19954 		if ((err = drv_priv(cred_p)) != EPERM) {
19955 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19956 				err = ENOTSUP;
19957 			} else if (arg != NULL) {
19958 				mhioc_preemptandabort_t preempt_abort;
19959 				if (ddi_copyin((void *)arg, &preempt_abort,
19960 				    sizeof (mhioc_preemptandabort_t),
19961 				    flag) != 0) {
19962 					err = EFAULT;
19963 				} else {
19964 					err =
19965 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19966 					    un, SD_SCSI3_PREEMPTANDABORT,
19967 					    (uchar_t *)&preempt_abort);
19968 				}
19969 			}
19970 		}
19971 		break;
19972 
19973 	case MHIOCGRP_REGISTERANDIGNOREKEY:
19974 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
19975 		if ((err = drv_priv(cred_p)) != EPERM) {
19976 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19977 				err = ENOTSUP;
19978 			} else if (arg != NULL) {
19979 				mhioc_registerandignorekey_t r_and_i;
19980 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19981 				    sizeof (mhioc_registerandignorekey_t),
19982 				    flag) != 0) {
19983 					err = EFAULT;
19984 				} else {
19985 					err =
19986 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19987 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19988 					    (uchar_t *)&r_and_i);
19989 				}
19990 			}
19991 		}
19992 		break;
19993 
19994 	case USCSICMD:
19995 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19996 		cr = ddi_get_cred();
19997 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19998 			err = EPERM;
19999 		} else {
20000 			enum uio_seg	uioseg;
20001 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20002 			    UIO_USERSPACE;
20003 			if (un->un_f_format_in_progress == TRUE) {
20004 				err = EAGAIN;
20005 				break;
20006 			}
20007 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20008 			    flag, uioseg, SD_PATH_STANDARD);
20009 		}
20010 		break;
20011 
20012 	case CDROMPAUSE:
20013 	case CDROMRESUME:
20014 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20015 		if (!ISCD(un)) {
20016 			err = ENOTTY;
20017 		} else {
20018 			err = sr_pause_resume(dev, cmd);
20019 		}
20020 		break;
20021 
20022 	case CDROMPLAYMSF:
20023 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20024 		if (!ISCD(un)) {
20025 			err = ENOTTY;
20026 		} else {
20027 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20028 		}
20029 		break;
20030 
20031 	case CDROMPLAYTRKIND:
20032 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20033 #if defined(__i386) || defined(__amd64)
20034 		/*
20035 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20036 		 */
20037 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20038 #else
20039 		if (!ISCD(un)) {
20040 #endif
20041 			err = ENOTTY;
20042 		} else {
20043 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20044 		}
20045 		break;
20046 
20047 	case CDROMREADTOCHDR:
20048 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20049 		if (!ISCD(un)) {
20050 			err = ENOTTY;
20051 		} else {
20052 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20053 		}
20054 		break;
20055 
20056 	case CDROMREADTOCENTRY:
20057 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20058 		if (!ISCD(un)) {
20059 			err = ENOTTY;
20060 		} else {
20061 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20062 		}
20063 		break;
20064 
20065 	case CDROMSTOP:
20066 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20067 		if (!ISCD(un)) {
20068 			err = ENOTTY;
20069 		} else {
20070 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20071 			    SD_PATH_STANDARD);
20072 		}
20073 		break;
20074 
20075 	case CDROMSTART:
20076 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20077 		if (!ISCD(un)) {
20078 			err = ENOTTY;
20079 		} else {
20080 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20081 			    SD_PATH_STANDARD);
20082 		}
20083 		break;
20084 
20085 	case CDROMCLOSETRAY:
20086 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20087 		if (!ISCD(un)) {
20088 			err = ENOTTY;
20089 		} else {
20090 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20091 			    SD_PATH_STANDARD);
20092 		}
20093 		break;
20094 
20095 	case FDEJECT:	/* for eject command */
20096 	case DKIOCEJECT:
20097 	case CDROMEJECT:
20098 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20099 		if (!un->un_f_eject_media_supported) {
20100 			err = ENOTTY;
20101 		} else {
20102 			err = sr_eject(dev);
20103 		}
20104 		break;
20105 
20106 	case CDROMVOLCTRL:
20107 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20108 		if (!ISCD(un)) {
20109 			err = ENOTTY;
20110 		} else {
20111 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20112 		}
20113 		break;
20114 
20115 	case CDROMSUBCHNL:
20116 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20117 		if (!ISCD(un)) {
20118 			err = ENOTTY;
20119 		} else {
20120 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20121 		}
20122 		break;
20123 
20124 	case CDROMREADMODE2:
20125 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20126 		if (!ISCD(un)) {
20127 			err = ENOTTY;
20128 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20129 			/*
20130 			 * If the drive supports READ CD, use that instead of
20131 			 * switching the LBA size via a MODE SELECT
20132 			 * Block Descriptor
20133 			 */
20134 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20135 		} else {
20136 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20137 		}
20138 		break;
20139 
20140 	case CDROMREADMODE1:
20141 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20142 		if (!ISCD(un)) {
20143 			err = ENOTTY;
20144 		} else {
20145 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20146 		}
20147 		break;
20148 
20149 	case CDROMREADOFFSET:
20150 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20151 		if (!ISCD(un)) {
20152 			err = ENOTTY;
20153 		} else {
20154 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20155 			    flag);
20156 		}
20157 		break;
20158 
20159 	case CDROMSBLKMODE:
20160 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20161 		/*
20162 		 * There is no means of changing block size in case of atapi
20163 		 * drives, thus return ENOTTY if drive type is atapi
20164 		 */
20165 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20166 			err = ENOTTY;
20167 		} else if (un->un_f_mmc_cap == TRUE) {
20168 
20169 			/*
20170 			 * MMC Devices do not support changing the
20171 			 * logical block size
20172 			 *
20173 			 * Note: EINVAL is being returned instead of ENOTTY to
20174 			 * maintain consistancy with the original mmc
20175 			 * driver update.
20176 			 */
20177 			err = EINVAL;
20178 		} else {
20179 			mutex_enter(SD_MUTEX(un));
20180 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20181 			    (un->un_ncmds_in_transport > 0)) {
20182 				mutex_exit(SD_MUTEX(un));
20183 				err = EINVAL;
20184 			} else {
20185 				mutex_exit(SD_MUTEX(un));
20186 				err = sr_change_blkmode(dev, cmd, arg, flag);
20187 			}
20188 		}
20189 		break;
20190 
20191 	case CDROMGBLKMODE:
20192 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20193 		if (!ISCD(un)) {
20194 			err = ENOTTY;
20195 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20196 		    (un->un_f_blockcount_is_valid != FALSE)) {
20197 			/*
20198 			 * Drive is an ATAPI drive so return target block
20199 			 * size for ATAPI drives since we cannot change the
20200 			 * blocksize on ATAPI drives. Used primarily to detect
20201 			 * if an ATAPI cdrom is present.
20202 			 */
20203 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20204 			    sizeof (int), flag) != 0) {
20205 				err = EFAULT;
20206 			} else {
20207 				err = 0;
20208 			}
20209 
20210 		} else {
20211 			/*
20212 			 * Drive supports changing block sizes via a Mode
20213 			 * Select.
20214 			 */
20215 			err = sr_change_blkmode(dev, cmd, arg, flag);
20216 		}
20217 		break;
20218 
20219 	case CDROMGDRVSPEED:
20220 	case CDROMSDRVSPEED:
20221 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20222 		if (!ISCD(un)) {
20223 			err = ENOTTY;
20224 		} else if (un->un_f_mmc_cap == TRUE) {
20225 			/*
20226 			 * Note: In the future the driver implementation
20227 			 * for getting and
20228 			 * setting cd speed should entail:
20229 			 * 1) If non-mmc try the Toshiba mode page
20230 			 *    (sr_change_speed)
20231 			 * 2) If mmc but no support for Real Time Streaming try
20232 			 *    the SET CD SPEED (0xBB) command
20233 			 *   (sr_atapi_change_speed)
20234 			 * 3) If mmc and support for Real Time Streaming
20235 			 *    try the GET PERFORMANCE and SET STREAMING
20236 			 *    commands (not yet implemented, 4380808)
20237 			 */
20238 			/*
20239 			 * As per recent MMC spec, CD-ROM speed is variable
20240 			 * and changes with LBA. Since there is no such
20241 			 * things as drive speed now, fail this ioctl.
20242 			 *
20243 			 * Note: EINVAL is returned for consistancy of original
20244 			 * implementation which included support for getting
20245 			 * the drive speed of mmc devices but not setting
20246 			 * the drive speed. Thus EINVAL would be returned
20247 			 * if a set request was made for an mmc device.
20248 			 * We no longer support get or set speed for
20249 			 * mmc but need to remain consistent with regard
20250 			 * to the error code returned.
20251 			 */
20252 			err = EINVAL;
20253 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20254 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20255 		} else {
20256 			err = sr_change_speed(dev, cmd, arg, flag);
20257 		}
20258 		break;
20259 
20260 	case CDROMCDDA:
20261 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20262 		if (!ISCD(un)) {
20263 			err = ENOTTY;
20264 		} else {
20265 			err = sr_read_cdda(dev, (void *)arg, flag);
20266 		}
20267 		break;
20268 
20269 	case CDROMCDXA:
20270 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20271 		if (!ISCD(un)) {
20272 			err = ENOTTY;
20273 		} else {
20274 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20275 		}
20276 		break;
20277 
20278 	case CDROMSUBCODE:
20279 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20280 		if (!ISCD(un)) {
20281 			err = ENOTTY;
20282 		} else {
20283 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20284 		}
20285 		break;
20286 
20287 
20288 #ifdef SDDEBUG
20289 /* RESET/ABORTS testing ioctls */
20290 	case DKIOCRESET: {
20291 		int	reset_level;
20292 
20293 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20294 			err = EFAULT;
20295 		} else {
20296 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20297 			    "reset_level = 0x%lx\n", reset_level);
20298 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20299 				err = 0;
20300 			} else {
20301 				err = EIO;
20302 			}
20303 		}
20304 		break;
20305 	}
20306 
20307 	case DKIOCABORT:
20308 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20309 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20310 			err = 0;
20311 		} else {
20312 			err = EIO;
20313 		}
20314 		break;
20315 #endif
20316 
20317 #ifdef SD_FAULT_INJECTION
20318 /* SDIOC FaultInjection testing ioctls */
20319 	case SDIOCSTART:
20320 	case SDIOCSTOP:
20321 	case SDIOCINSERTPKT:
20322 	case SDIOCINSERTXB:
20323 	case SDIOCINSERTUN:
20324 	case SDIOCINSERTARQ:
20325 	case SDIOCPUSH:
20326 	case SDIOCRETRIEVE:
20327 	case SDIOCRUN:
20328 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20329 		    "SDIOC detected cmd:0x%X:\n", cmd);
20330 		/* call error generator */
20331 		sd_faultinjection_ioctl(cmd, arg, un);
20332 		err = 0;
20333 		break;
20334 
20335 #endif /* SD_FAULT_INJECTION */
20336 
20337 	case DKIOCFLUSHWRITECACHE:
20338 		{
20339 			struct dk_callback *dkc = (struct dk_callback *)arg;
20340 
20341 			mutex_enter(SD_MUTEX(un));
20342 			if (!un->un_f_sync_cache_supported ||
20343 			    !un->un_f_write_cache_enabled) {
20344 				err = un->un_f_sync_cache_supported ?
20345 				    0 : ENOTSUP;
20346 				mutex_exit(SD_MUTEX(un));
20347 				if ((flag & FKIOCTL) && dkc != NULL &&
20348 				    dkc->dkc_callback != NULL) {
20349 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20350 					    err);
20351 					/*
20352 					 * Did callback and reported error.
20353 					 * Since we did a callback, ioctl
20354 					 * should return 0.
20355 					 */
20356 					err = 0;
20357 				}
20358 				break;
20359 			}
20360 			mutex_exit(SD_MUTEX(un));
20361 
20362 			if ((flag & FKIOCTL) && dkc != NULL &&
20363 			    dkc->dkc_callback != NULL) {
20364 				/* async SYNC CACHE request */
20365 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20366 			} else {
20367 				/* synchronous SYNC CACHE request */
20368 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20369 			}
20370 		}
20371 		break;
20372 
20373 	case DKIOCGETWCE: {
20374 
20375 		int wce;
20376 
20377 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20378 			break;
20379 		}
20380 
20381 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20382 			err = EFAULT;
20383 		}
20384 		break;
20385 	}
20386 
20387 	case DKIOCSETWCE: {
20388 
20389 		int wce, sync_supported;
20390 
20391 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20392 			err = EFAULT;
20393 			break;
20394 		}
20395 
20396 		/*
20397 		 * Synchronize multiple threads trying to enable
20398 		 * or disable the cache via the un_f_wcc_cv
20399 		 * condition variable.
20400 		 */
20401 		mutex_enter(SD_MUTEX(un));
20402 
20403 		/*
20404 		 * Don't allow the cache to be enabled if the
20405 		 * config file has it disabled.
20406 		 */
20407 		if (un->un_f_opt_disable_cache && wce) {
20408 			mutex_exit(SD_MUTEX(un));
20409 			err = EINVAL;
20410 			break;
20411 		}
20412 
20413 		/*
20414 		 * Wait for write cache change in progress
20415 		 * bit to be clear before proceeding.
20416 		 */
20417 		while (un->un_f_wcc_inprog)
20418 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20419 
20420 		un->un_f_wcc_inprog = 1;
20421 
20422 		if (un->un_f_write_cache_enabled && wce == 0) {
20423 			/*
20424 			 * Disable the write cache.  Don't clear
20425 			 * un_f_write_cache_enabled until after
20426 			 * the mode select and flush are complete.
20427 			 */
20428 			sync_supported = un->un_f_sync_cache_supported;
20429 
20430 			/*
20431 			 * If cache flush is suppressed, we assume that the
20432 			 * controller firmware will take care of managing the
20433 			 * write cache for us: no need to explicitly
20434 			 * disable it.
20435 			 */
20436 			if (!un->un_f_suppress_cache_flush) {
20437 				mutex_exit(SD_MUTEX(un));
20438 				if ((err = sd_cache_control(un,
20439 				    SD_CACHE_NOCHANGE,
20440 				    SD_CACHE_DISABLE)) == 0 &&
20441 				    sync_supported) {
20442 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20443 					    NULL);
20444 				}
20445 			} else {
20446 				mutex_exit(SD_MUTEX(un));
20447 			}
20448 
20449 			mutex_enter(SD_MUTEX(un));
20450 			if (err == 0) {
20451 				un->un_f_write_cache_enabled = 0;
20452 			}
20453 
20454 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20455 			/*
20456 			 * Set un_f_write_cache_enabled first, so there is
20457 			 * no window where the cache is enabled, but the
20458 			 * bit says it isn't.
20459 			 */
20460 			un->un_f_write_cache_enabled = 1;
20461 
20462 			/*
20463 			 * If cache flush is suppressed, we assume that the
20464 			 * controller firmware will take care of managing the
20465 			 * write cache for us: no need to explicitly
20466 			 * enable it.
20467 			 */
20468 			if (!un->un_f_suppress_cache_flush) {
20469 				mutex_exit(SD_MUTEX(un));
20470 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20471 				    SD_CACHE_ENABLE);
20472 			} else {
20473 				mutex_exit(SD_MUTEX(un));
20474 			}
20475 
20476 			mutex_enter(SD_MUTEX(un));
20477 
20478 			if (err) {
20479 				un->un_f_write_cache_enabled = 0;
20480 			}
20481 		}
20482 
20483 		un->un_f_wcc_inprog = 0;
20484 		cv_broadcast(&un->un_wcc_cv);
20485 		mutex_exit(SD_MUTEX(un));
20486 		break;
20487 	}
20488 
20489 	default:
20490 		err = ENOTTY;
20491 		break;
20492 	}
20493 	mutex_enter(SD_MUTEX(un));
20494 	un->un_ncmds_in_driver--;
20495 	ASSERT(un->un_ncmds_in_driver >= 0);
20496 	mutex_exit(SD_MUTEX(un));
20497 
20498 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20499 	return (err);
20500 }
20501 
20502 
20503 /*
20504  *    Function: sd_dkio_ctrl_info
20505  *
20506  * Description: This routine is the driver entry point for handling controller
20507  *		information ioctl requests (DKIOCINFO).
20508  *
20509  *   Arguments: dev  - the device number
20510  *		arg  - pointer to user provided dk_cinfo structure
20511  *		       specifying the controller type and attributes.
20512  *		flag - this argument is a pass through to ddi_copyxxx()
20513  *		       directly from the mode argument of ioctl().
20514  *
20515  * Return Code: 0
20516  *		EFAULT
20517  *		ENXIO
20518  */
20519 
20520 static int
20521 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20522 {
20523 	struct sd_lun	*un = NULL;
20524 	struct dk_cinfo	*info;
20525 	dev_info_t	*pdip;
20526 	int		lun, tgt;
20527 
20528 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20529 		return (ENXIO);
20530 	}
20531 
20532 	info = (struct dk_cinfo *)
20533 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20534 
20535 	switch (un->un_ctype) {
20536 	case CTYPE_CDROM:
20537 		info->dki_ctype = DKC_CDROM;
20538 		break;
20539 	default:
20540 		info->dki_ctype = DKC_SCSI_CCS;
20541 		break;
20542 	}
20543 	pdip = ddi_get_parent(SD_DEVINFO(un));
20544 	info->dki_cnum = ddi_get_instance(pdip);
20545 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20546 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20547 	} else {
20548 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20549 		    DK_DEVLEN - 1);
20550 	}
20551 
20552 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20553 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20554 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20555 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20556 
20557 	/* Unit Information */
20558 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20559 	info->dki_slave = ((tgt << 3) | lun);
20560 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20561 	    DK_DEVLEN - 1);
20562 	info->dki_flags = DKI_FMTVOL;
20563 	info->dki_partition = SDPART(dev);
20564 
20565 	/* Max Transfer size of this device in blocks */
20566 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20567 	info->dki_addr = 0;
20568 	info->dki_space = 0;
20569 	info->dki_prio = 0;
20570 	info->dki_vec = 0;
20571 
20572 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20573 		kmem_free(info, sizeof (struct dk_cinfo));
20574 		return (EFAULT);
20575 	} else {
20576 		kmem_free(info, sizeof (struct dk_cinfo));
20577 		return (0);
20578 	}
20579 }
20580 
20581 
20582 /*
20583  *    Function: sd_get_media_info
20584  *
20585  * Description: This routine is the driver entry point for handling ioctl
20586  *		requests for the media type or command set profile used by the
20587  *		drive to operate on the media (DKIOCGMEDIAINFO).
20588  *
20589  *   Arguments: dev	- the device number
20590  *		arg	- pointer to user provided dk_minfo structure
20591  *			  specifying the media type, logical block size and
20592  *			  drive capacity.
20593  *		flag	- this argument is a pass through to ddi_copyxxx()
20594  *			  directly from the mode argument of ioctl().
20595  *
20596  * Return Code: 0
20597  *		EACCESS
20598  *		EFAULT
20599  *		ENXIO
20600  *		EIO
20601  */
20602 
20603 static int
20604 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20605 {
20606 	struct sd_lun		*un = NULL;
20607 	struct uscsi_cmd	com;
20608 	struct scsi_inquiry	*sinq;
20609 	struct dk_minfo		media_info;
20610 	u_longlong_t		media_capacity;
20611 	uint64_t		capacity;
20612 	uint_t			lbasize;
20613 	uchar_t			*out_data;
20614 	uchar_t			*rqbuf;
20615 	int			rval = 0;
20616 	int			rtn;
20617 
20618 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20619 	    (un->un_state == SD_STATE_OFFLINE)) {
20620 		return (ENXIO);
20621 	}
20622 
20623 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20624 
20625 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20626 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20627 
20628 	/* Issue a TUR to determine if the drive is ready with media present */
20629 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20630 	if (rval == ENXIO) {
20631 		goto done;
20632 	}
20633 
20634 	/* Now get configuration data */
20635 	if (ISCD(un)) {
20636 		media_info.dki_media_type = DK_CDROM;
20637 
20638 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20639 		if (un->un_f_mmc_cap == TRUE) {
20640 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20641 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20642 			    SD_PATH_STANDARD);
20643 
20644 			if (rtn) {
20645 				/*
20646 				 * Failed for other than an illegal request
20647 				 * or command not supported
20648 				 */
20649 				if ((com.uscsi_status == STATUS_CHECK) &&
20650 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20651 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20652 					    (rqbuf[12] != 0x20)) {
20653 						rval = EIO;
20654 						goto done;
20655 					}
20656 				}
20657 			} else {
20658 				/*
20659 				 * The GET CONFIGURATION command succeeded
20660 				 * so set the media type according to the
20661 				 * returned data
20662 				 */
20663 				media_info.dki_media_type = out_data[6];
20664 				media_info.dki_media_type <<= 8;
20665 				media_info.dki_media_type |= out_data[7];
20666 			}
20667 		}
20668 	} else {
20669 		/*
20670 		 * The profile list is not available, so we attempt to identify
20671 		 * the media type based on the inquiry data
20672 		 */
20673 		sinq = un->un_sd->sd_inq;
20674 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20675 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20676 			/* This is a direct access device  or optical disk */
20677 			media_info.dki_media_type = DK_FIXED_DISK;
20678 
20679 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20680 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20681 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20682 					media_info.dki_media_type = DK_ZIP;
20683 				} else if (
20684 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20685 					media_info.dki_media_type = DK_JAZ;
20686 				}
20687 			}
20688 		} else {
20689 			/*
20690 			 * Not a CD, direct access or optical disk so return
20691 			 * unknown media
20692 			 */
20693 			media_info.dki_media_type = DK_UNKNOWN;
20694 		}
20695 	}
20696 
20697 	/* Now read the capacity so we can provide the lbasize and capacity */
20698 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20699 	    SD_PATH_DIRECT)) {
20700 	case 0:
20701 		break;
20702 	case EACCES:
20703 		rval = EACCES;
20704 		goto done;
20705 	default:
20706 		rval = EIO;
20707 		goto done;
20708 	}
20709 
20710 	media_info.dki_lbsize = lbasize;
20711 	media_capacity = capacity;
20712 
20713 	/*
20714 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20715 	 * un->un_sys_blocksize chunks. So we need to convert it into
20716 	 * cap.lbasize chunks.
20717 	 */
20718 	media_capacity *= un->un_sys_blocksize;
20719 	media_capacity /= lbasize;
20720 	media_info.dki_capacity = media_capacity;
20721 
20722 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20723 		rval = EFAULT;
20724 		/* Put goto. Anybody might add some code below in future */
20725 		goto done;
20726 	}
20727 done:
20728 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20729 	kmem_free(rqbuf, SENSE_LENGTH);
20730 	return (rval);
20731 }
20732 
20733 
20734 /*
20735  *    Function: sd_check_media
20736  *
20737  * Description: This utility routine implements the functionality for the
20738  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20739  *		driver state changes from that specified by the user
20740  *		(inserted or ejected). For example, if the user specifies
20741  *		DKIO_EJECTED and the current media state is inserted this
20742  *		routine will immediately return DKIO_INSERTED. However, if the
20743  *		current media state is not inserted the user thread will be
20744  *		blocked until the drive state changes. If DKIO_NONE is specified
20745  *		the user thread will block until a drive state change occurs.
20746  *
20747  *   Arguments: dev  - the device number
20748  *		state  - user pointer to a dkio_state, updated with the current
20749  *			drive state at return.
20750  *
20751  * Return Code: ENXIO
20752  *		EIO
20753  *		EAGAIN
20754  *		EINTR
20755  */
20756 
20757 static int
20758 sd_check_media(dev_t dev, enum dkio_state state)
20759 {
20760 	struct sd_lun		*un = NULL;
20761 	enum dkio_state		prev_state;
20762 	opaque_t		token = NULL;
20763 	int			rval = 0;
20764 
20765 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20766 		return (ENXIO);
20767 	}
20768 
20769 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20770 
20771 	mutex_enter(SD_MUTEX(un));
20772 
20773 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20774 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20775 
20776 	prev_state = un->un_mediastate;
20777 
20778 	/* is there anything to do? */
20779 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20780 		/*
20781 		 * submit the request to the scsi_watch service;
20782 		 * scsi_media_watch_cb() does the real work
20783 		 */
20784 		mutex_exit(SD_MUTEX(un));
20785 
20786 		/*
20787 		 * This change handles the case where a scsi watch request is
20788 		 * added to a device that is powered down. To accomplish this
20789 		 * we power up the device before adding the scsi watch request,
20790 		 * since the scsi watch sends a TUR directly to the device
20791 		 * which the device cannot handle if it is powered down.
20792 		 */
20793 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20794 			mutex_enter(SD_MUTEX(un));
20795 			goto done;
20796 		}
20797 
20798 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20799 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20800 		    (caddr_t)dev);
20801 
20802 		sd_pm_exit(un);
20803 
20804 		mutex_enter(SD_MUTEX(un));
20805 		if (token == NULL) {
20806 			rval = EAGAIN;
20807 			goto done;
20808 		}
20809 
20810 		/*
20811 		 * This is a special case IOCTL that doesn't return
20812 		 * until the media state changes. Routine sdpower
20813 		 * knows about and handles this so don't count it
20814 		 * as an active cmd in the driver, which would
20815 		 * keep the device busy to the pm framework.
20816 		 * If the count isn't decremented the device can't
20817 		 * be powered down.
20818 		 */
20819 		un->un_ncmds_in_driver--;
20820 		ASSERT(un->un_ncmds_in_driver >= 0);
20821 
20822 		/*
20823 		 * if a prior request had been made, this will be the same
20824 		 * token, as scsi_watch was designed that way.
20825 		 */
20826 		un->un_swr_token = token;
20827 		un->un_specified_mediastate = state;
20828 
20829 		/*
20830 		 * now wait for media change
20831 		 * we will not be signalled unless mediastate == state but it is
20832 		 * still better to test for this condition, since there is a
20833 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20834 		 */
20835 		SD_TRACE(SD_LOG_COMMON, un,
20836 		    "sd_check_media: waiting for media state change\n");
20837 		while (un->un_mediastate == state) {
20838 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20839 				SD_TRACE(SD_LOG_COMMON, un,
20840 				    "sd_check_media: waiting for media state "
20841 				    "was interrupted\n");
20842 				un->un_ncmds_in_driver++;
20843 				rval = EINTR;
20844 				goto done;
20845 			}
20846 			SD_TRACE(SD_LOG_COMMON, un,
20847 			    "sd_check_media: received signal, state=%x\n",
20848 			    un->un_mediastate);
20849 		}
20850 		/*
20851 		 * Inc the counter to indicate the device once again
20852 		 * has an active outstanding cmd.
20853 		 */
20854 		un->un_ncmds_in_driver++;
20855 	}
20856 
20857 	/* invalidate geometry */
20858 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20859 		sr_ejected(un);
20860 	}
20861 
20862 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20863 		uint64_t	capacity;
20864 		uint_t		lbasize;
20865 
20866 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20867 		mutex_exit(SD_MUTEX(un));
20868 		/*
20869 		 * Since the following routines use SD_PATH_DIRECT, we must
20870 		 * call PM directly before the upcoming disk accesses. This
20871 		 * may cause the disk to be power/spin up.
20872 		 */
20873 
20874 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20875 			rval = sd_send_scsi_READ_CAPACITY(un,
20876 			    &capacity,
20877 			    &lbasize, SD_PATH_DIRECT);
20878 			if (rval != 0) {
20879 				sd_pm_exit(un);
20880 				mutex_enter(SD_MUTEX(un));
20881 				goto done;
20882 			}
20883 		} else {
20884 			rval = EIO;
20885 			mutex_enter(SD_MUTEX(un));
20886 			goto done;
20887 		}
20888 		mutex_enter(SD_MUTEX(un));
20889 
20890 		sd_update_block_info(un, lbasize, capacity);
20891 
20892 		/*
20893 		 *  Check if the media in the device is writable or not
20894 		 */
20895 		if (ISCD(un))
20896 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20897 
20898 		mutex_exit(SD_MUTEX(un));
20899 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20900 		if ((cmlb_validate(un->un_cmlbhandle, 0,
20901 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20902 			sd_set_pstats(un);
20903 			SD_TRACE(SD_LOG_IO_PARTITION, un,
20904 			    "sd_check_media: un:0x%p pstats created and "
20905 			    "set\n", un);
20906 		}
20907 
20908 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20909 		    SD_PATH_DIRECT);
20910 		sd_pm_exit(un);
20911 
20912 		mutex_enter(SD_MUTEX(un));
20913 	}
20914 done:
20915 	un->un_f_watcht_stopped = FALSE;
20916 	if (un->un_swr_token) {
20917 		/*
20918 		 * Use of this local token and the mutex ensures that we avoid
20919 		 * some race conditions associated with terminating the
20920 		 * scsi watch.
20921 		 */
20922 		token = un->un_swr_token;
20923 		un->un_swr_token = (opaque_t)NULL;
20924 		mutex_exit(SD_MUTEX(un));
20925 		(void) scsi_watch_request_terminate(token,
20926 		    SCSI_WATCH_TERMINATE_WAIT);
20927 		mutex_enter(SD_MUTEX(un));
20928 	}
20929 
20930 	/*
20931 	 * Update the capacity kstat value, if no media previously
20932 	 * (capacity kstat is 0) and a media has been inserted
20933 	 * (un_f_blockcount_is_valid == TRUE)
20934 	 */
20935 	if (un->un_errstats) {
20936 		struct sd_errstats	*stp = NULL;
20937 
20938 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20939 		if ((stp->sd_capacity.value.ui64 == 0) &&
20940 		    (un->un_f_blockcount_is_valid == TRUE)) {
20941 			stp->sd_capacity.value.ui64 =
20942 			    (uint64_t)((uint64_t)un->un_blockcount *
20943 			    un->un_sys_blocksize);
20944 		}
20945 	}
20946 	mutex_exit(SD_MUTEX(un));
20947 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20948 	return (rval);
20949 }
20950 
20951 
20952 /*
20953  *    Function: sd_delayed_cv_broadcast
20954  *
20955  * Description: Delayed cv_broadcast to allow for target to recover from media
20956  *		insertion.
20957  *
20958  *   Arguments: arg - driver soft state (unit) structure
20959  */
20960 
20961 static void
20962 sd_delayed_cv_broadcast(void *arg)
20963 {
20964 	struct sd_lun *un = arg;
20965 
20966 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20967 
20968 	mutex_enter(SD_MUTEX(un));
20969 	un->un_dcvb_timeid = NULL;
20970 	cv_broadcast(&un->un_state_cv);
20971 	mutex_exit(SD_MUTEX(un));
20972 }
20973 
20974 
20975 /*
20976  *    Function: sd_media_watch_cb
20977  *
20978  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20979  *		routine processes the TUR sense data and updates the driver
20980  *		state if a transition has occurred. The user thread
20981  *		(sd_check_media) is then signalled.
20982  *
20983  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20984  *			among multiple watches that share this callback function
20985  *		resultp - scsi watch facility result packet containing scsi
20986  *			  packet, status byte and sense data
20987  *
20988  * Return Code: 0 for success, -1 for failure
20989  */
20990 
20991 static int
20992 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20993 {
20994 	struct sd_lun			*un;
20995 	struct scsi_status		*statusp = resultp->statusp;
20996 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20997 	enum dkio_state			state = DKIO_NONE;
20998 	dev_t				dev = (dev_t)arg;
20999 	uchar_t				actual_sense_length;
21000 	uint8_t				skey, asc, ascq;
21001 
21002 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21003 		return (-1);
21004 	}
21005 	actual_sense_length = resultp->actual_sense_length;
21006 
21007 	mutex_enter(SD_MUTEX(un));
21008 	SD_TRACE(SD_LOG_COMMON, un,
21009 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21010 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21011 
21012 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21013 		un->un_mediastate = DKIO_DEV_GONE;
21014 		cv_broadcast(&un->un_state_cv);
21015 		mutex_exit(SD_MUTEX(un));
21016 
21017 		return (0);
21018 	}
21019 
21020 	/*
21021 	 * If there was a check condition then sensep points to valid sense data
21022 	 * If status was not a check condition but a reservation or busy status
21023 	 * then the new state is DKIO_NONE
21024 	 */
21025 	if (sensep != NULL) {
21026 		skey = scsi_sense_key(sensep);
21027 		asc = scsi_sense_asc(sensep);
21028 		ascq = scsi_sense_ascq(sensep);
21029 
21030 		SD_INFO(SD_LOG_COMMON, un,
21031 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21032 		    skey, asc, ascq);
21033 		/* This routine only uses up to 13 bytes of sense data. */
21034 		if (actual_sense_length >= 13) {
21035 			if (skey == KEY_UNIT_ATTENTION) {
21036 				if (asc == 0x28) {
21037 					state = DKIO_INSERTED;
21038 				}
21039 			} else if (skey == KEY_NOT_READY) {
21040 				/*
21041 				 * if 02/04/02  means that the host
21042 				 * should send start command. Explicitly
21043 				 * leave the media state as is
21044 				 * (inserted) as the media is inserted
21045 				 * and host has stopped device for PM
21046 				 * reasons. Upon next true read/write
21047 				 * to this media will bring the
21048 				 * device to the right state good for
21049 				 * media access.
21050 				 */
21051 				if (asc == 0x3a) {
21052 					state = DKIO_EJECTED;
21053 				} else {
21054 					/*
21055 					 * If the drive is busy with an
21056 					 * operation or long write, keep the
21057 					 * media in an inserted state.
21058 					 */
21059 
21060 					if ((asc == 0x04) &&
21061 					    ((ascq == 0x02) ||
21062 					    (ascq == 0x07) ||
21063 					    (ascq == 0x08))) {
21064 						state = DKIO_INSERTED;
21065 					}
21066 				}
21067 			} else if (skey == KEY_NO_SENSE) {
21068 				if ((asc == 0x00) && (ascq == 0x00)) {
21069 					/*
21070 					 * Sense Data 00/00/00 does not provide
21071 					 * any information about the state of
21072 					 * the media. Ignore it.
21073 					 */
21074 					mutex_exit(SD_MUTEX(un));
21075 					return (0);
21076 				}
21077 			}
21078 		}
21079 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21080 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21081 		state = DKIO_INSERTED;
21082 	}
21083 
21084 	SD_TRACE(SD_LOG_COMMON, un,
21085 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21086 	    state, un->un_specified_mediastate);
21087 
21088 	/*
21089 	 * now signal the waiting thread if this is *not* the specified state;
21090 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21091 	 * to recover
21092 	 */
21093 	if (state != un->un_specified_mediastate) {
21094 		un->un_mediastate = state;
21095 		if (state == DKIO_INSERTED) {
21096 			/*
21097 			 * delay the signal to give the drive a chance
21098 			 * to do what it apparently needs to do
21099 			 */
21100 			SD_TRACE(SD_LOG_COMMON, un,
21101 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21102 			if (un->un_dcvb_timeid == NULL) {
21103 				un->un_dcvb_timeid =
21104 				    timeout(sd_delayed_cv_broadcast, un,
21105 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21106 			}
21107 		} else {
21108 			SD_TRACE(SD_LOG_COMMON, un,
21109 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21110 			cv_broadcast(&un->un_state_cv);
21111 		}
21112 	}
21113 	mutex_exit(SD_MUTEX(un));
21114 	return (0);
21115 }
21116 
21117 
21118 /*
21119  *    Function: sd_dkio_get_temp
21120  *
21121  * Description: This routine is the driver entry point for handling ioctl
21122  *		requests to get the disk temperature.
21123  *
21124  *   Arguments: dev  - the device number
21125  *		arg  - pointer to user provided dk_temperature structure.
21126  *		flag - this argument is a pass through to ddi_copyxxx()
21127  *		       directly from the mode argument of ioctl().
21128  *
21129  * Return Code: 0
21130  *		EFAULT
21131  *		ENXIO
21132  *		EAGAIN
21133  */
21134 
21135 static int
21136 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21137 {
21138 	struct sd_lun		*un = NULL;
21139 	struct dk_temperature	*dktemp = NULL;
21140 	uchar_t			*temperature_page;
21141 	int			rval = 0;
21142 	int			path_flag = SD_PATH_STANDARD;
21143 
21144 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21145 		return (ENXIO);
21146 	}
21147 
21148 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21149 
21150 	/* copyin the disk temp argument to get the user flags */
21151 	if (ddi_copyin((void *)arg, dktemp,
21152 	    sizeof (struct dk_temperature), flag) != 0) {
21153 		rval = EFAULT;
21154 		goto done;
21155 	}
21156 
21157 	/* Initialize the temperature to invalid. */
21158 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21159 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21160 
21161 	/*
21162 	 * Note: Investigate removing the "bypass pm" semantic.
21163 	 * Can we just bypass PM always?
21164 	 */
21165 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21166 		path_flag = SD_PATH_DIRECT;
21167 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21168 		mutex_enter(&un->un_pm_mutex);
21169 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21170 			/*
21171 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21172 			 * in low power mode, we can not wake it up, Need to
21173 			 * return EAGAIN.
21174 			 */
21175 			mutex_exit(&un->un_pm_mutex);
21176 			rval = EAGAIN;
21177 			goto done;
21178 		} else {
21179 			/*
21180 			 * Indicate to PM the device is busy. This is required
21181 			 * to avoid a race - i.e. the ioctl is issuing a
21182 			 * command and the pm framework brings down the device
21183 			 * to low power mode (possible power cut-off on some
21184 			 * platforms).
21185 			 */
21186 			mutex_exit(&un->un_pm_mutex);
21187 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21188 				rval = EAGAIN;
21189 				goto done;
21190 			}
21191 		}
21192 	}
21193 
21194 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21195 
21196 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21197 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21198 		goto done2;
21199 	}
21200 
21201 	/*
21202 	 * For the current temperature verify that the parameter length is 0x02
21203 	 * and the parameter code is 0x00
21204 	 */
21205 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21206 	    (temperature_page[5] == 0x00)) {
21207 		if (temperature_page[9] == 0xFF) {
21208 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21209 		} else {
21210 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21211 		}
21212 	}
21213 
21214 	/*
21215 	 * For the reference temperature verify that the parameter
21216 	 * length is 0x02 and the parameter code is 0x01
21217 	 */
21218 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21219 	    (temperature_page[11] == 0x01)) {
21220 		if (temperature_page[15] == 0xFF) {
21221 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21222 		} else {
21223 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21224 		}
21225 	}
21226 
21227 	/* Do the copyout regardless of the temperature commands status. */
21228 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21229 	    flag) != 0) {
21230 		rval = EFAULT;
21231 	}
21232 
21233 done2:
21234 	if (path_flag == SD_PATH_DIRECT) {
21235 		sd_pm_exit(un);
21236 	}
21237 
21238 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21239 done:
21240 	if (dktemp != NULL) {
21241 		kmem_free(dktemp, sizeof (struct dk_temperature));
21242 	}
21243 
21244 	return (rval);
21245 }
21246 
21247 
21248 /*
21249  *    Function: sd_log_page_supported
21250  *
21251  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21252  *		supported log pages.
21253  *
21254  *   Arguments: un -
21255  *		log_page -
21256  *
21257  * Return Code: -1 - on error (log sense is optional and may not be supported).
21258  *		0  - log page not found.
21259  *  		1  - log page found.
21260  */
21261 
21262 static int
21263 sd_log_page_supported(struct sd_lun *un, int log_page)
21264 {
21265 	uchar_t *log_page_data;
21266 	int	i;
21267 	int	match = 0;
21268 	int	log_size;
21269 
21270 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21271 
21272 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21273 	    SD_PATH_DIRECT) != 0) {
21274 		SD_ERROR(SD_LOG_COMMON, un,
21275 		    "sd_log_page_supported: failed log page retrieval\n");
21276 		kmem_free(log_page_data, 0xFF);
21277 		return (-1);
21278 	}
21279 	log_size = log_page_data[3];
21280 
21281 	/*
21282 	 * The list of supported log pages start from the fourth byte. Check
21283 	 * until we run out of log pages or a match is found.
21284 	 */
21285 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21286 		if (log_page_data[i] == log_page) {
21287 			match++;
21288 		}
21289 	}
21290 	kmem_free(log_page_data, 0xFF);
21291 	return (match);
21292 }
21293 
21294 
21295 /*
21296  *    Function: sd_mhdioc_failfast
21297  *
21298  * Description: This routine is the driver entry point for handling ioctl
21299  *		requests to enable/disable the multihost failfast option.
21300  *		(MHIOCENFAILFAST)
21301  *
21302  *   Arguments: dev	- the device number
21303  *		arg	- user specified probing interval.
21304  *		flag	- this argument is a pass through to ddi_copyxxx()
21305  *			  directly from the mode argument of ioctl().
21306  *
21307  * Return Code: 0
21308  *		EFAULT
21309  *		ENXIO
21310  */
21311 
21312 static int
21313 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21314 {
21315 	struct sd_lun	*un = NULL;
21316 	int		mh_time;
21317 	int		rval = 0;
21318 
21319 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21320 		return (ENXIO);
21321 	}
21322 
21323 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21324 		return (EFAULT);
21325 
21326 	if (mh_time) {
21327 		mutex_enter(SD_MUTEX(un));
21328 		un->un_resvd_status |= SD_FAILFAST;
21329 		mutex_exit(SD_MUTEX(un));
21330 		/*
21331 		 * If mh_time is INT_MAX, then this ioctl is being used for
21332 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21333 		 */
21334 		if (mh_time != INT_MAX) {
21335 			rval = sd_check_mhd(dev, mh_time);
21336 		}
21337 	} else {
21338 		(void) sd_check_mhd(dev, 0);
21339 		mutex_enter(SD_MUTEX(un));
21340 		un->un_resvd_status &= ~SD_FAILFAST;
21341 		mutex_exit(SD_MUTEX(un));
21342 	}
21343 	return (rval);
21344 }
21345 
21346 
21347 /*
21348  *    Function: sd_mhdioc_takeown
21349  *
21350  * Description: This routine is the driver entry point for handling ioctl
21351  *		requests to forcefully acquire exclusive access rights to the
21352  *		multihost disk (MHIOCTKOWN).
21353  *
21354  *   Arguments: dev	- the device number
21355  *		arg	- user provided structure specifying the delay
21356  *			  parameters in milliseconds
21357  *		flag	- this argument is a pass through to ddi_copyxxx()
21358  *			  directly from the mode argument of ioctl().
21359  *
21360  * Return Code: 0
21361  *		EFAULT
21362  *		ENXIO
21363  */
21364 
21365 static int
21366 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21367 {
21368 	struct sd_lun		*un = NULL;
21369 	struct mhioctkown	*tkown = NULL;
21370 	int			rval = 0;
21371 
21372 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21373 		return (ENXIO);
21374 	}
21375 
21376 	if (arg != NULL) {
21377 		tkown = (struct mhioctkown *)
21378 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21379 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21380 		if (rval != 0) {
21381 			rval = EFAULT;
21382 			goto error;
21383 		}
21384 	}
21385 
21386 	rval = sd_take_ownership(dev, tkown);
21387 	mutex_enter(SD_MUTEX(un));
21388 	if (rval == 0) {
21389 		un->un_resvd_status |= SD_RESERVE;
21390 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21391 			sd_reinstate_resv_delay =
21392 			    tkown->reinstate_resv_delay * 1000;
21393 		} else {
21394 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21395 		}
21396 		/*
21397 		 * Give the scsi_watch routine interval set by
21398 		 * the MHIOCENFAILFAST ioctl precedence here.
21399 		 */
21400 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21401 			mutex_exit(SD_MUTEX(un));
21402 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21403 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21404 			    "sd_mhdioc_takeown : %d\n",
21405 			    sd_reinstate_resv_delay);
21406 		} else {
21407 			mutex_exit(SD_MUTEX(un));
21408 		}
21409 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21410 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21411 	} else {
21412 		un->un_resvd_status &= ~SD_RESERVE;
21413 		mutex_exit(SD_MUTEX(un));
21414 	}
21415 
21416 error:
21417 	if (tkown != NULL) {
21418 		kmem_free(tkown, sizeof (struct mhioctkown));
21419 	}
21420 	return (rval);
21421 }
21422 
21423 
21424 /*
21425  *    Function: sd_mhdioc_release
21426  *
21427  * Description: This routine is the driver entry point for handling ioctl
21428  *		requests to release exclusive access rights to the multihost
21429  *		disk (MHIOCRELEASE).
21430  *
21431  *   Arguments: dev	- the device number
21432  *
21433  * Return Code: 0
21434  *		ENXIO
21435  */
21436 
21437 static int
21438 sd_mhdioc_release(dev_t dev)
21439 {
21440 	struct sd_lun		*un = NULL;
21441 	timeout_id_t		resvd_timeid_save;
21442 	int			resvd_status_save;
21443 	int			rval = 0;
21444 
21445 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21446 		return (ENXIO);
21447 	}
21448 
21449 	mutex_enter(SD_MUTEX(un));
21450 	resvd_status_save = un->un_resvd_status;
21451 	un->un_resvd_status &=
21452 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21453 	if (un->un_resvd_timeid) {
21454 		resvd_timeid_save = un->un_resvd_timeid;
21455 		un->un_resvd_timeid = NULL;
21456 		mutex_exit(SD_MUTEX(un));
21457 		(void) untimeout(resvd_timeid_save);
21458 	} else {
21459 		mutex_exit(SD_MUTEX(un));
21460 	}
21461 
21462 	/*
21463 	 * destroy any pending timeout thread that may be attempting to
21464 	 * reinstate reservation on this device.
21465 	 */
21466 	sd_rmv_resv_reclaim_req(dev);
21467 
21468 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21469 		mutex_enter(SD_MUTEX(un));
21470 		if ((un->un_mhd_token) &&
21471 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21472 			mutex_exit(SD_MUTEX(un));
21473 			(void) sd_check_mhd(dev, 0);
21474 		} else {
21475 			mutex_exit(SD_MUTEX(un));
21476 		}
21477 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21478 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21479 	} else {
21480 		/*
21481 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21482 		 */
21483 		mutex_enter(SD_MUTEX(un));
21484 		un->un_resvd_status = resvd_status_save;
21485 		mutex_exit(SD_MUTEX(un));
21486 	}
21487 	return (rval);
21488 }
21489 
21490 
21491 /*
21492  *    Function: sd_mhdioc_register_devid
21493  *
21494  * Description: This routine is the driver entry point for handling ioctl
21495  *		requests to register the device id (MHIOCREREGISTERDEVID).
21496  *
21497  *		Note: The implementation for this ioctl has been updated to
21498  *		be consistent with the original PSARC case (1999/357)
21499  *		(4375899, 4241671, 4220005)
21500  *
21501  *   Arguments: dev	- the device number
21502  *
21503  * Return Code: 0
21504  *		ENXIO
21505  */
21506 
21507 static int
21508 sd_mhdioc_register_devid(dev_t dev)
21509 {
21510 	struct sd_lun	*un = NULL;
21511 	int		rval = 0;
21512 
21513 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21514 		return (ENXIO);
21515 	}
21516 
21517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21518 
21519 	mutex_enter(SD_MUTEX(un));
21520 
21521 	/* If a devid already exists, de-register it */
21522 	if (un->un_devid != NULL) {
21523 		ddi_devid_unregister(SD_DEVINFO(un));
21524 		/*
21525 		 * After unregister devid, needs to free devid memory
21526 		 */
21527 		ddi_devid_free(un->un_devid);
21528 		un->un_devid = NULL;
21529 	}
21530 
21531 	/* Check for reservation conflict */
21532 	mutex_exit(SD_MUTEX(un));
21533 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21534 	mutex_enter(SD_MUTEX(un));
21535 
21536 	switch (rval) {
21537 	case 0:
21538 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21539 		break;
21540 	case EACCES:
21541 		break;
21542 	default:
21543 		rval = EIO;
21544 	}
21545 
21546 	mutex_exit(SD_MUTEX(un));
21547 	return (rval);
21548 }
21549 
21550 
21551 /*
21552  *    Function: sd_mhdioc_inkeys
21553  *
21554  * Description: This routine is the driver entry point for handling ioctl
21555  *		requests to issue the SCSI-3 Persistent In Read Keys command
21556  *		to the device (MHIOCGRP_INKEYS).
21557  *
21558  *   Arguments: dev	- the device number
21559  *		arg	- user provided in_keys structure
21560  *		flag	- this argument is a pass through to ddi_copyxxx()
21561  *			  directly from the mode argument of ioctl().
21562  *
21563  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21564  *		ENXIO
21565  *		EFAULT
21566  */
21567 
21568 static int
21569 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21570 {
21571 	struct sd_lun		*un;
21572 	mhioc_inkeys_t		inkeys;
21573 	int			rval = 0;
21574 
21575 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21576 		return (ENXIO);
21577 	}
21578 
21579 #ifdef _MULTI_DATAMODEL
21580 	switch (ddi_model_convert_from(flag & FMODELS)) {
21581 	case DDI_MODEL_ILP32: {
21582 		struct mhioc_inkeys32	inkeys32;
21583 
21584 		if (ddi_copyin(arg, &inkeys32,
21585 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21586 			return (EFAULT);
21587 		}
21588 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21589 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21590 		    &inkeys, flag)) != 0) {
21591 			return (rval);
21592 		}
21593 		inkeys32.generation = inkeys.generation;
21594 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21595 		    flag) != 0) {
21596 			return (EFAULT);
21597 		}
21598 		break;
21599 	}
21600 	case DDI_MODEL_NONE:
21601 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21602 		    flag) != 0) {
21603 			return (EFAULT);
21604 		}
21605 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21606 		    &inkeys, flag)) != 0) {
21607 			return (rval);
21608 		}
21609 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21610 		    flag) != 0) {
21611 			return (EFAULT);
21612 		}
21613 		break;
21614 	}
21615 
21616 #else /* ! _MULTI_DATAMODEL */
21617 
21618 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21619 		return (EFAULT);
21620 	}
21621 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21622 	if (rval != 0) {
21623 		return (rval);
21624 	}
21625 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21626 		return (EFAULT);
21627 	}
21628 
21629 #endif /* _MULTI_DATAMODEL */
21630 
21631 	return (rval);
21632 }
21633 
21634 
21635 /*
21636  *    Function: sd_mhdioc_inresv
21637  *
21638  * Description: This routine is the driver entry point for handling ioctl
21639  *		requests to issue the SCSI-3 Persistent In Read Reservations
21640  *		command to the device (MHIOCGRP_INKEYS).
21641  *
21642  *   Arguments: dev	- the device number
21643  *		arg	- user provided in_resv structure
21644  *		flag	- this argument is a pass through to ddi_copyxxx()
21645  *			  directly from the mode argument of ioctl().
21646  *
21647  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21648  *		ENXIO
21649  *		EFAULT
21650  */
21651 
21652 static int
21653 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21654 {
21655 	struct sd_lun		*un;
21656 	mhioc_inresvs_t		inresvs;
21657 	int			rval = 0;
21658 
21659 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21660 		return (ENXIO);
21661 	}
21662 
21663 #ifdef _MULTI_DATAMODEL
21664 
21665 	switch (ddi_model_convert_from(flag & FMODELS)) {
21666 	case DDI_MODEL_ILP32: {
21667 		struct mhioc_inresvs32	inresvs32;
21668 
21669 		if (ddi_copyin(arg, &inresvs32,
21670 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21671 			return (EFAULT);
21672 		}
21673 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21674 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21675 		    &inresvs, flag)) != 0) {
21676 			return (rval);
21677 		}
21678 		inresvs32.generation = inresvs.generation;
21679 		if (ddi_copyout(&inresvs32, arg,
21680 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21681 			return (EFAULT);
21682 		}
21683 		break;
21684 	}
21685 	case DDI_MODEL_NONE:
21686 		if (ddi_copyin(arg, &inresvs,
21687 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21688 			return (EFAULT);
21689 		}
21690 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21691 		    &inresvs, flag)) != 0) {
21692 			return (rval);
21693 		}
21694 		if (ddi_copyout(&inresvs, arg,
21695 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21696 			return (EFAULT);
21697 		}
21698 		break;
21699 	}
21700 
21701 #else /* ! _MULTI_DATAMODEL */
21702 
21703 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21704 		return (EFAULT);
21705 	}
21706 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21707 	if (rval != 0) {
21708 		return (rval);
21709 	}
21710 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21711 		return (EFAULT);
21712 	}
21713 
21714 #endif /* ! _MULTI_DATAMODEL */
21715 
21716 	return (rval);
21717 }
21718 
21719 
21720 /*
21721  * The following routines support the clustering functionality described below
21722  * and implement lost reservation reclaim functionality.
21723  *
21724  * Clustering
21725  * ----------
21726  * The clustering code uses two different, independent forms of SCSI
21727  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21728  * Persistent Group Reservations. For any particular disk, it will use either
21729  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21730  *
21731  * SCSI-2
21732  * The cluster software takes ownership of a multi-hosted disk by issuing the
21733  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21734  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21735  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21736  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21737  * driver. The meaning of failfast is that if the driver (on this host) ever
21738  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21739  * it should immediately panic the host. The motivation for this ioctl is that
21740  * if this host does encounter reservation conflict, the underlying cause is
21741  * that some other host of the cluster has decided that this host is no longer
21742  * in the cluster and has seized control of the disks for itself. Since this
21743  * host is no longer in the cluster, it ought to panic itself. The
21744  * MHIOCENFAILFAST ioctl does two things:
21745  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21746  *      error to panic the host
21747  *      (b) it sets up a periodic timer to test whether this host still has
21748  *      "access" (in that no other host has reserved the device):  if the
21749  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21750  *      purpose of that periodic timer is to handle scenarios where the host is
21751  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21752  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21753  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21754  * the device itself.
21755  *
21756  * SCSI-3 PGR
21757  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21758  * facility is supported through the shared multihost disk ioctls
21759  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21760  * MHIOCGRP_PREEMPTANDABORT)
21761  *
21762  * Reservation Reclaim:
21763  * --------------------
21764  * To support the lost reservation reclaim operations this driver creates a
21765  * single thread to handle reinstating reservations on all devices that have
21766  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21767  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21768  * and the reservation reclaim thread loops through the requests to regain the
21769  * lost reservations.
21770  */
21771 
21772 /*
21773  *    Function: sd_check_mhd()
21774  *
21775  * Description: This function sets up and submits a scsi watch request or
21776  *		terminates an existing watch request. This routine is used in
21777  *		support of reservation reclaim.
21778  *
21779  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21780  *			 among multiple watches that share the callback function
21781  *		interval - the number of microseconds specifying the watch
21782  *			   interval for issuing TEST UNIT READY commands. If
21783  *			   set to 0 the watch should be terminated. If the
21784  *			   interval is set to 0 and if the device is required
21785  *			   to hold reservation while disabling failfast, the
21786  *			   watch is restarted with an interval of
21787  *			   reinstate_resv_delay.
21788  *
21789  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21790  *		ENXIO      - Indicates an invalid device was specified
21791  *		EAGAIN     - Unable to submit the scsi watch request
21792  */
21793 
21794 static int
21795 sd_check_mhd(dev_t dev, int interval)
21796 {
21797 	struct sd_lun	*un;
21798 	opaque_t	token;
21799 
21800 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21801 		return (ENXIO);
21802 	}
21803 
21804 	/* is this a watch termination request? */
21805 	if (interval == 0) {
21806 		mutex_enter(SD_MUTEX(un));
21807 		/* if there is an existing watch task then terminate it */
21808 		if (un->un_mhd_token) {
21809 			token = un->un_mhd_token;
21810 			un->un_mhd_token = NULL;
21811 			mutex_exit(SD_MUTEX(un));
21812 			(void) scsi_watch_request_terminate(token,
21813 			    SCSI_WATCH_TERMINATE_WAIT);
21814 			mutex_enter(SD_MUTEX(un));
21815 		} else {
21816 			mutex_exit(SD_MUTEX(un));
21817 			/*
21818 			 * Note: If we return here we don't check for the
21819 			 * failfast case. This is the original legacy
21820 			 * implementation but perhaps we should be checking
21821 			 * the failfast case.
21822 			 */
21823 			return (0);
21824 		}
21825 		/*
21826 		 * If the device is required to hold reservation while
21827 		 * disabling failfast, we need to restart the scsi_watch
21828 		 * routine with an interval of reinstate_resv_delay.
21829 		 */
21830 		if (un->un_resvd_status & SD_RESERVE) {
21831 			interval = sd_reinstate_resv_delay/1000;
21832 		} else {
21833 			/* no failfast so bail */
21834 			mutex_exit(SD_MUTEX(un));
21835 			return (0);
21836 		}
21837 		mutex_exit(SD_MUTEX(un));
21838 	}
21839 
21840 	/*
21841 	 * adjust minimum time interval to 1 second,
21842 	 * and convert from msecs to usecs
21843 	 */
21844 	if (interval > 0 && interval < 1000) {
21845 		interval = 1000;
21846 	}
21847 	interval *= 1000;
21848 
21849 	/*
21850 	 * submit the request to the scsi_watch service
21851 	 */
21852 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21853 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21854 	if (token == NULL) {
21855 		return (EAGAIN);
21856 	}
21857 
21858 	/*
21859 	 * save token for termination later on
21860 	 */
21861 	mutex_enter(SD_MUTEX(un));
21862 	un->un_mhd_token = token;
21863 	mutex_exit(SD_MUTEX(un));
21864 	return (0);
21865 }
21866 
21867 
21868 /*
21869  *    Function: sd_mhd_watch_cb()
21870  *
21871  * Description: This function is the call back function used by the scsi watch
21872  *		facility. The scsi watch facility sends the "Test Unit Ready"
21873  *		and processes the status. If applicable (i.e. a "Unit Attention"
21874  *		status and automatic "Request Sense" not used) the scsi watch
21875  *		facility will send a "Request Sense" and retrieve the sense data
21876  *		to be passed to this callback function. In either case the
21877  *		automatic "Request Sense" or the facility submitting one, this
21878  *		callback is passed the status and sense data.
21879  *
21880  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21881  *			among multiple watches that share this callback function
21882  *		resultp - scsi watch facility result packet containing scsi
21883  *			  packet, status byte and sense data
21884  *
21885  * Return Code: 0 - continue the watch task
21886  *		non-zero - terminate the watch task
21887  */
21888 
21889 static int
21890 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21891 {
21892 	struct sd_lun			*un;
21893 	struct scsi_status		*statusp;
21894 	uint8_t				*sensep;
21895 	struct scsi_pkt			*pkt;
21896 	uchar_t				actual_sense_length;
21897 	dev_t  				dev = (dev_t)arg;
21898 
21899 	ASSERT(resultp != NULL);
21900 	statusp			= resultp->statusp;
21901 	sensep			= (uint8_t *)resultp->sensep;
21902 	pkt			= resultp->pkt;
21903 	actual_sense_length	= resultp->actual_sense_length;
21904 
21905 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21906 		return (ENXIO);
21907 	}
21908 
21909 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21910 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21911 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21912 
21913 	/* Begin processing of the status and/or sense data */
21914 	if (pkt->pkt_reason != CMD_CMPLT) {
21915 		/* Handle the incomplete packet */
21916 		sd_mhd_watch_incomplete(un, pkt);
21917 		return (0);
21918 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21919 		if (*((unsigned char *)statusp)
21920 		    == STATUS_RESERVATION_CONFLICT) {
21921 			/*
21922 			 * Handle a reservation conflict by panicking if
21923 			 * configured for failfast or by logging the conflict
21924 			 * and updating the reservation status
21925 			 */
21926 			mutex_enter(SD_MUTEX(un));
21927 			if ((un->un_resvd_status & SD_FAILFAST) &&
21928 			    (sd_failfast_enable)) {
21929 				sd_panic_for_res_conflict(un);
21930 				/*NOTREACHED*/
21931 			}
21932 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21933 			    "sd_mhd_watch_cb: Reservation Conflict\n");
21934 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21935 			mutex_exit(SD_MUTEX(un));
21936 		}
21937 	}
21938 
21939 	if (sensep != NULL) {
21940 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21941 			mutex_enter(SD_MUTEX(un));
21942 			if ((scsi_sense_asc(sensep) ==
21943 			    SD_SCSI_RESET_SENSE_CODE) &&
21944 			    (un->un_resvd_status & SD_RESERVE)) {
21945 				/*
21946 				 * The additional sense code indicates a power
21947 				 * on or bus device reset has occurred; update
21948 				 * the reservation status.
21949 				 */
21950 				un->un_resvd_status |=
21951 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21952 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21953 				    "sd_mhd_watch_cb: Lost Reservation\n");
21954 			}
21955 		} else {
21956 			return (0);
21957 		}
21958 	} else {
21959 		mutex_enter(SD_MUTEX(un));
21960 	}
21961 
21962 	if ((un->un_resvd_status & SD_RESERVE) &&
21963 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21964 		if (un->un_resvd_status & SD_WANT_RESERVE) {
21965 			/*
21966 			 * A reset occurred in between the last probe and this
21967 			 * one so if a timeout is pending cancel it.
21968 			 */
21969 			if (un->un_resvd_timeid) {
21970 				timeout_id_t temp_id = un->un_resvd_timeid;
21971 				un->un_resvd_timeid = NULL;
21972 				mutex_exit(SD_MUTEX(un));
21973 				(void) untimeout(temp_id);
21974 				mutex_enter(SD_MUTEX(un));
21975 			}
21976 			un->un_resvd_status &= ~SD_WANT_RESERVE;
21977 		}
21978 		if (un->un_resvd_timeid == 0) {
21979 			/* Schedule a timeout to handle the lost reservation */
21980 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21981 			    (void *)dev,
21982 			    drv_usectohz(sd_reinstate_resv_delay));
21983 		}
21984 	}
21985 	mutex_exit(SD_MUTEX(un));
21986 	return (0);
21987 }
21988 
21989 
21990 /*
21991  *    Function: sd_mhd_watch_incomplete()
21992  *
21993  * Description: This function is used to find out why a scsi pkt sent by the
21994  *		scsi watch facility was not completed. Under some scenarios this
21995  *		routine will return. Otherwise it will send a bus reset to see
21996  *		if the drive is still online.
21997  *
21998  *   Arguments: un  - driver soft state (unit) structure
21999  *		pkt - incomplete scsi pkt
22000  */
22001 
22002 static void
22003 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22004 {
22005 	int	be_chatty;
22006 	int	perr;
22007 
22008 	ASSERT(pkt != NULL);
22009 	ASSERT(un != NULL);
22010 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22011 	perr		= (pkt->pkt_statistics & STAT_PERR);
22012 
22013 	mutex_enter(SD_MUTEX(un));
22014 	if (un->un_state == SD_STATE_DUMPING) {
22015 		mutex_exit(SD_MUTEX(un));
22016 		return;
22017 	}
22018 
22019 	switch (pkt->pkt_reason) {
22020 	case CMD_UNX_BUS_FREE:
22021 		/*
22022 		 * If we had a parity error that caused the target to drop BSY*,
22023 		 * don't be chatty about it.
22024 		 */
22025 		if (perr && be_chatty) {
22026 			be_chatty = 0;
22027 		}
22028 		break;
22029 	case CMD_TAG_REJECT:
22030 		/*
22031 		 * The SCSI-2 spec states that a tag reject will be sent by the
22032 		 * target if tagged queuing is not supported. A tag reject may
22033 		 * also be sent during certain initialization periods or to
22034 		 * control internal resources. For the latter case the target
22035 		 * may also return Queue Full.
22036 		 *
22037 		 * If this driver receives a tag reject from a target that is
22038 		 * going through an init period or controlling internal
22039 		 * resources tagged queuing will be disabled. This is a less
22040 		 * than optimal behavior but the driver is unable to determine
22041 		 * the target state and assumes tagged queueing is not supported
22042 		 */
22043 		pkt->pkt_flags = 0;
22044 		un->un_tagflags = 0;
22045 
22046 		if (un->un_f_opt_queueing == TRUE) {
22047 			un->un_throttle = min(un->un_throttle, 3);
22048 		} else {
22049 			un->un_throttle = 1;
22050 		}
22051 		mutex_exit(SD_MUTEX(un));
22052 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22053 		mutex_enter(SD_MUTEX(un));
22054 		break;
22055 	case CMD_INCOMPLETE:
22056 		/*
22057 		 * The transport stopped with an abnormal state, fallthrough and
22058 		 * reset the target and/or bus unless selection did not complete
22059 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22060 		 * go through a target/bus reset
22061 		 */
22062 		if (pkt->pkt_state == STATE_GOT_BUS) {
22063 			break;
22064 		}
22065 		/*FALLTHROUGH*/
22066 
22067 	case CMD_TIMEOUT:
22068 	default:
22069 		/*
22070 		 * The lun may still be running the command, so a lun reset
22071 		 * should be attempted. If the lun reset fails or cannot be
22072 		 * issued, than try a target reset. Lastly try a bus reset.
22073 		 */
22074 		if ((pkt->pkt_statistics &
22075 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22076 			int reset_retval = 0;
22077 			mutex_exit(SD_MUTEX(un));
22078 			if (un->un_f_allow_bus_device_reset == TRUE) {
22079 				if (un->un_f_lun_reset_enabled == TRUE) {
22080 					reset_retval =
22081 					    scsi_reset(SD_ADDRESS(un),
22082 					    RESET_LUN);
22083 				}
22084 				if (reset_retval == 0) {
22085 					reset_retval =
22086 					    scsi_reset(SD_ADDRESS(un),
22087 					    RESET_TARGET);
22088 				}
22089 			}
22090 			if (reset_retval == 0) {
22091 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22092 			}
22093 			mutex_enter(SD_MUTEX(un));
22094 		}
22095 		break;
22096 	}
22097 
22098 	/* A device/bus reset has occurred; update the reservation status. */
22099 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22100 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22101 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22102 			un->un_resvd_status |=
22103 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22104 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22105 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22106 		}
22107 	}
22108 
22109 	/*
22110 	 * The disk has been turned off; Update the device state.
22111 	 *
22112 	 * Note: Should we be offlining the disk here?
22113 	 */
22114 	if (pkt->pkt_state == STATE_GOT_BUS) {
22115 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22116 		    "Disk not responding to selection\n");
22117 		if (un->un_state != SD_STATE_OFFLINE) {
22118 			New_state(un, SD_STATE_OFFLINE);
22119 		}
22120 	} else if (be_chatty) {
22121 		/*
22122 		 * suppress messages if they are all the same pkt reason;
22123 		 * with TQ, many (up to 256) are returned with the same
22124 		 * pkt_reason
22125 		 */
22126 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22127 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22128 			    "sd_mhd_watch_incomplete: "
22129 			    "SCSI transport failed: reason '%s'\n",
22130 			    scsi_rname(pkt->pkt_reason));
22131 		}
22132 	}
22133 	un->un_last_pkt_reason = pkt->pkt_reason;
22134 	mutex_exit(SD_MUTEX(un));
22135 }
22136 
22137 
22138 /*
22139  *    Function: sd_sname()
22140  *
22141  * Description: This is a simple little routine to return a string containing
22142  *		a printable description of command status byte for use in
22143  *		logging.
22144  *
22145  *   Arguments: status - pointer to a status byte
22146  *
22147  * Return Code: char * - string containing status description.
22148  */
22149 
22150 static char *
22151 sd_sname(uchar_t status)
22152 {
22153 	switch (status & STATUS_MASK) {
22154 	case STATUS_GOOD:
22155 		return ("good status");
22156 	case STATUS_CHECK:
22157 		return ("check condition");
22158 	case STATUS_MET:
22159 		return ("condition met");
22160 	case STATUS_BUSY:
22161 		return ("busy");
22162 	case STATUS_INTERMEDIATE:
22163 		return ("intermediate");
22164 	case STATUS_INTERMEDIATE_MET:
22165 		return ("intermediate - condition met");
22166 	case STATUS_RESERVATION_CONFLICT:
22167 		return ("reservation_conflict");
22168 	case STATUS_TERMINATED:
22169 		return ("command terminated");
22170 	case STATUS_QFULL:
22171 		return ("queue full");
22172 	default:
22173 		return ("<unknown status>");
22174 	}
22175 }
22176 
22177 
22178 /*
22179  *    Function: sd_mhd_resvd_recover()
22180  *
22181  * Description: This function adds a reservation entry to the
22182  *		sd_resv_reclaim_request list and signals the reservation
22183  *		reclaim thread that there is work pending. If the reservation
22184  *		reclaim thread has not been previously created this function
22185  *		will kick it off.
22186  *
22187  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22188  *			among multiple watches that share this callback function
22189  *
22190  *     Context: This routine is called by timeout() and is run in interrupt
22191  *		context. It must not sleep or call other functions which may
22192  *		sleep.
22193  */
22194 
22195 static void
22196 sd_mhd_resvd_recover(void *arg)
22197 {
22198 	dev_t			dev = (dev_t)arg;
22199 	struct sd_lun		*un;
22200 	struct sd_thr_request	*sd_treq = NULL;
22201 	struct sd_thr_request	*sd_cur = NULL;
22202 	struct sd_thr_request	*sd_prev = NULL;
22203 	int			already_there = 0;
22204 
22205 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22206 		return;
22207 	}
22208 
22209 	mutex_enter(SD_MUTEX(un));
22210 	un->un_resvd_timeid = NULL;
22211 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22212 		/*
22213 		 * There was a reset so don't issue the reserve, allow the
22214 		 * sd_mhd_watch_cb callback function to notice this and
22215 		 * reschedule the timeout for reservation.
22216 		 */
22217 		mutex_exit(SD_MUTEX(un));
22218 		return;
22219 	}
22220 	mutex_exit(SD_MUTEX(un));
22221 
22222 	/*
22223 	 * Add this device to the sd_resv_reclaim_request list and the
22224 	 * sd_resv_reclaim_thread should take care of the rest.
22225 	 *
22226 	 * Note: We can't sleep in this context so if the memory allocation
22227 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22228 	 * reschedule the timeout for reservation.  (4378460)
22229 	 */
22230 	sd_treq = (struct sd_thr_request *)
22231 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22232 	if (sd_treq == NULL) {
22233 		return;
22234 	}
22235 
22236 	sd_treq->sd_thr_req_next = NULL;
22237 	sd_treq->dev = dev;
22238 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22239 	if (sd_tr.srq_thr_req_head == NULL) {
22240 		sd_tr.srq_thr_req_head = sd_treq;
22241 	} else {
22242 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22243 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22244 			if (sd_cur->dev == dev) {
22245 				/*
22246 				 * already in Queue so don't log
22247 				 * another request for the device
22248 				 */
22249 				already_there = 1;
22250 				break;
22251 			}
22252 			sd_prev = sd_cur;
22253 		}
22254 		if (!already_there) {
22255 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22256 			    "logging request for %lx\n", dev);
22257 			sd_prev->sd_thr_req_next = sd_treq;
22258 		} else {
22259 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22260 		}
22261 	}
22262 
22263 	/*
22264 	 * Create a kernel thread to do the reservation reclaim and free up this
22265 	 * thread. We cannot block this thread while we go away to do the
22266 	 * reservation reclaim
22267 	 */
22268 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22269 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22270 		    sd_resv_reclaim_thread, NULL,
22271 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22272 
22273 	/* Tell the reservation reclaim thread that it has work to do */
22274 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22275 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22276 }
22277 
22278 /*
22279  *    Function: sd_resv_reclaim_thread()
22280  *
22281  * Description: This function implements the reservation reclaim operations
22282  *
22283  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22284  *		      among multiple watches that share this callback function
22285  */
22286 
22287 static void
22288 sd_resv_reclaim_thread()
22289 {
22290 	struct sd_lun		*un;
22291 	struct sd_thr_request	*sd_mhreq;
22292 
22293 	/* Wait for work */
22294 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22295 	if (sd_tr.srq_thr_req_head == NULL) {
22296 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22297 		    &sd_tr.srq_resv_reclaim_mutex);
22298 	}
22299 
22300 	/* Loop while we have work */
22301 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22302 		un = ddi_get_soft_state(sd_state,
22303 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22304 		if (un == NULL) {
22305 			/*
22306 			 * softstate structure is NULL so just
22307 			 * dequeue the request and continue
22308 			 */
22309 			sd_tr.srq_thr_req_head =
22310 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22311 			kmem_free(sd_tr.srq_thr_cur_req,
22312 			    sizeof (struct sd_thr_request));
22313 			continue;
22314 		}
22315 
22316 		/* dequeue the request */
22317 		sd_mhreq = sd_tr.srq_thr_cur_req;
22318 		sd_tr.srq_thr_req_head =
22319 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22320 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22321 
22322 		/*
22323 		 * Reclaim reservation only if SD_RESERVE is still set. There
22324 		 * may have been a call to MHIOCRELEASE before we got here.
22325 		 */
22326 		mutex_enter(SD_MUTEX(un));
22327 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22328 			/*
22329 			 * Note: The SD_LOST_RESERVE flag is cleared before
22330 			 * reclaiming the reservation. If this is done after the
22331 			 * call to sd_reserve_release a reservation loss in the
22332 			 * window between pkt completion of reserve cmd and
22333 			 * mutex_enter below may not be recognized
22334 			 */
22335 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22336 			mutex_exit(SD_MUTEX(un));
22337 
22338 			if (sd_reserve_release(sd_mhreq->dev,
22339 			    SD_RESERVE) == 0) {
22340 				mutex_enter(SD_MUTEX(un));
22341 				un->un_resvd_status |= SD_RESERVE;
22342 				mutex_exit(SD_MUTEX(un));
22343 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22344 				    "sd_resv_reclaim_thread: "
22345 				    "Reservation Recovered\n");
22346 			} else {
22347 				mutex_enter(SD_MUTEX(un));
22348 				un->un_resvd_status |= SD_LOST_RESERVE;
22349 				mutex_exit(SD_MUTEX(un));
22350 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22351 				    "sd_resv_reclaim_thread: Failed "
22352 				    "Reservation Recovery\n");
22353 			}
22354 		} else {
22355 			mutex_exit(SD_MUTEX(un));
22356 		}
22357 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22358 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22359 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22360 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22361 		/*
22362 		 * wakeup the destroy thread if anyone is waiting on
22363 		 * us to complete.
22364 		 */
22365 		cv_signal(&sd_tr.srq_inprocess_cv);
22366 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22367 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22368 	}
22369 
22370 	/*
22371 	 * cleanup the sd_tr structure now that this thread will not exist
22372 	 */
22373 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22374 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22375 	sd_tr.srq_resv_reclaim_thread = NULL;
22376 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22377 	thread_exit();
22378 }
22379 
22380 
22381 /*
22382  *    Function: sd_rmv_resv_reclaim_req()
22383  *
22384  * Description: This function removes any pending reservation reclaim requests
22385  *		for the specified device.
22386  *
22387  *   Arguments: dev - the device 'dev_t'
22388  */
22389 
22390 static void
22391 sd_rmv_resv_reclaim_req(dev_t dev)
22392 {
22393 	struct sd_thr_request *sd_mhreq;
22394 	struct sd_thr_request *sd_prev;
22395 
22396 	/* Remove a reservation reclaim request from the list */
22397 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22398 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22399 		/*
22400 		 * We are attempting to reinstate reservation for
22401 		 * this device. We wait for sd_reserve_release()
22402 		 * to return before we return.
22403 		 */
22404 		cv_wait(&sd_tr.srq_inprocess_cv,
22405 		    &sd_tr.srq_resv_reclaim_mutex);
22406 	} else {
22407 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22408 		if (sd_mhreq && sd_mhreq->dev == dev) {
22409 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22410 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22411 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22412 			return;
22413 		}
22414 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22415 			if (sd_mhreq && sd_mhreq->dev == dev) {
22416 				break;
22417 			}
22418 			sd_prev = sd_mhreq;
22419 		}
22420 		if (sd_mhreq != NULL) {
22421 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22422 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22423 		}
22424 	}
22425 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22426 }
22427 
22428 
22429 /*
22430  *    Function: sd_mhd_reset_notify_cb()
22431  *
22432  * Description: This is a call back function for scsi_reset_notify. This
22433  *		function updates the softstate reserved status and logs the
22434  *		reset. The driver scsi watch facility callback function
22435  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22436  *		will reclaim the reservation.
22437  *
22438  *   Arguments: arg  - driver soft state (unit) structure
22439  */
22440 
22441 static void
22442 sd_mhd_reset_notify_cb(caddr_t arg)
22443 {
22444 	struct sd_lun *un = (struct sd_lun *)arg;
22445 
22446 	mutex_enter(SD_MUTEX(un));
22447 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22448 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22449 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22450 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22451 	}
22452 	mutex_exit(SD_MUTEX(un));
22453 }
22454 
22455 
22456 /*
22457  *    Function: sd_take_ownership()
22458  *
22459  * Description: This routine implements an algorithm to achieve a stable
22460  *		reservation on disks which don't implement priority reserve,
22461  *		and makes sure that other host lose re-reservation attempts.
22462  *		This algorithm contains of a loop that keeps issuing the RESERVE
22463  *		for some period of time (min_ownership_delay, default 6 seconds)
22464  *		During that loop, it looks to see if there has been a bus device
22465  *		reset or bus reset (both of which cause an existing reservation
22466  *		to be lost). If the reservation is lost issue RESERVE until a
22467  *		period of min_ownership_delay with no resets has gone by, or
22468  *		until max_ownership_delay has expired. This loop ensures that
22469  *		the host really did manage to reserve the device, in spite of
22470  *		resets. The looping for min_ownership_delay (default six
22471  *		seconds) is important to early generation clustering products,
22472  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22473  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22474  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22475  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22476  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22477  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22478  *		no longer "owns" the disk and will have panicked itself.  Thus,
22479  *		the host issuing the MHIOCTKOWN is assured (with timing
22480  *		dependencies) that by the time it actually starts to use the
22481  *		disk for real work, the old owner is no longer accessing it.
22482  *
22483  *		min_ownership_delay is the minimum amount of time for which the
22484  *		disk must be reserved continuously devoid of resets before the
22485  *		MHIOCTKOWN ioctl will return success.
22486  *
22487  *		max_ownership_delay indicates the amount of time by which the
22488  *		take ownership should succeed or timeout with an error.
22489  *
22490  *   Arguments: dev - the device 'dev_t'
22491  *		*p  - struct containing timing info.
22492  *
22493  * Return Code: 0 for success or error code
22494  */
22495 
22496 static int
22497 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22498 {
22499 	struct sd_lun	*un;
22500 	int		rval;
22501 	int		err;
22502 	int		reservation_count   = 0;
22503 	int		min_ownership_delay =  6000000; /* in usec */
22504 	int		max_ownership_delay = 30000000; /* in usec */
22505 	clock_t		start_time;	/* starting time of this algorithm */
22506 	clock_t		end_time;	/* time limit for giving up */
22507 	clock_t		ownership_time;	/* time limit for stable ownership */
22508 	clock_t		current_time;
22509 	clock_t		previous_current_time;
22510 
22511 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22512 		return (ENXIO);
22513 	}
22514 
22515 	/*
22516 	 * Attempt a device reservation. A priority reservation is requested.
22517 	 */
22518 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22519 	    != SD_SUCCESS) {
22520 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22521 		    "sd_take_ownership: return(1)=%d\n", rval);
22522 		return (rval);
22523 	}
22524 
22525 	/* Update the softstate reserved status to indicate the reservation */
22526 	mutex_enter(SD_MUTEX(un));
22527 	un->un_resvd_status |= SD_RESERVE;
22528 	un->un_resvd_status &=
22529 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22530 	mutex_exit(SD_MUTEX(un));
22531 
22532 	if (p != NULL) {
22533 		if (p->min_ownership_delay != 0) {
22534 			min_ownership_delay = p->min_ownership_delay * 1000;
22535 		}
22536 		if (p->max_ownership_delay != 0) {
22537 			max_ownership_delay = p->max_ownership_delay * 1000;
22538 		}
22539 	}
22540 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22541 	    "sd_take_ownership: min, max delays: %d, %d\n",
22542 	    min_ownership_delay, max_ownership_delay);
22543 
22544 	start_time = ddi_get_lbolt();
22545 	current_time	= start_time;
22546 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22547 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22548 
22549 	while (current_time - end_time < 0) {
22550 		delay(drv_usectohz(500000));
22551 
22552 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22553 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22554 				mutex_enter(SD_MUTEX(un));
22555 				rval = (un->un_resvd_status &
22556 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22557 				mutex_exit(SD_MUTEX(un));
22558 				break;
22559 			}
22560 		}
22561 		previous_current_time = current_time;
22562 		current_time = ddi_get_lbolt();
22563 		mutex_enter(SD_MUTEX(un));
22564 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22565 			ownership_time = ddi_get_lbolt() +
22566 			    drv_usectohz(min_ownership_delay);
22567 			reservation_count = 0;
22568 		} else {
22569 			reservation_count++;
22570 		}
22571 		un->un_resvd_status |= SD_RESERVE;
22572 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22573 		mutex_exit(SD_MUTEX(un));
22574 
22575 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22576 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22577 		    "reservation=%s\n", (current_time - previous_current_time),
22578 		    reservation_count ? "ok" : "reclaimed");
22579 
22580 		if (current_time - ownership_time >= 0 &&
22581 		    reservation_count >= 4) {
22582 			rval = 0; /* Achieved a stable ownership */
22583 			break;
22584 		}
22585 		if (current_time - end_time >= 0) {
22586 			rval = EACCES; /* No ownership in max possible time */
22587 			break;
22588 		}
22589 	}
22590 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22591 	    "sd_take_ownership: return(2)=%d\n", rval);
22592 	return (rval);
22593 }
22594 
22595 
22596 /*
22597  *    Function: sd_reserve_release()
22598  *
22599  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22600  *		PRIORITY RESERVE commands based on a user specified command type
22601  *
22602  *   Arguments: dev - the device 'dev_t'
22603  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22604  *		      SD_RESERVE, SD_RELEASE
22605  *
22606  * Return Code: 0 or Error Code
22607  */
22608 
22609 static int
22610 sd_reserve_release(dev_t dev, int cmd)
22611 {
22612 	struct uscsi_cmd	*com = NULL;
22613 	struct sd_lun		*un = NULL;
22614 	char			cdb[CDB_GROUP0];
22615 	int			rval;
22616 
22617 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22618 	    (cmd == SD_PRIORITY_RESERVE));
22619 
22620 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22621 		return (ENXIO);
22622 	}
22623 
22624 	/* instantiate and initialize the command and cdb */
22625 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22626 	bzero(cdb, CDB_GROUP0);
22627 	com->uscsi_flags   = USCSI_SILENT;
22628 	com->uscsi_timeout = un->un_reserve_release_time;
22629 	com->uscsi_cdblen  = CDB_GROUP0;
22630 	com->uscsi_cdb	   = cdb;
22631 	if (cmd == SD_RELEASE) {
22632 		cdb[0] = SCMD_RELEASE;
22633 	} else {
22634 		cdb[0] = SCMD_RESERVE;
22635 	}
22636 
22637 	/* Send the command. */
22638 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22639 	    SD_PATH_STANDARD);
22640 
22641 	/*
22642 	 * "break" a reservation that is held by another host, by issuing a
22643 	 * reset if priority reserve is desired, and we could not get the
22644 	 * device.
22645 	 */
22646 	if ((cmd == SD_PRIORITY_RESERVE) &&
22647 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22648 		/*
22649 		 * First try to reset the LUN. If we cannot, then try a target
22650 		 * reset, followed by a bus reset if the target reset fails.
22651 		 */
22652 		int reset_retval = 0;
22653 		if (un->un_f_lun_reset_enabled == TRUE) {
22654 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22655 		}
22656 		if (reset_retval == 0) {
22657 			/* The LUN reset either failed or was not issued */
22658 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22659 		}
22660 		if ((reset_retval == 0) &&
22661 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22662 			rval = EIO;
22663 			kmem_free(com, sizeof (*com));
22664 			return (rval);
22665 		}
22666 
22667 		bzero(com, sizeof (struct uscsi_cmd));
22668 		com->uscsi_flags   = USCSI_SILENT;
22669 		com->uscsi_cdb	   = cdb;
22670 		com->uscsi_cdblen  = CDB_GROUP0;
22671 		com->uscsi_timeout = 5;
22672 
22673 		/*
22674 		 * Reissue the last reserve command, this time without request
22675 		 * sense.  Assume that it is just a regular reserve command.
22676 		 */
22677 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22678 		    SD_PATH_STANDARD);
22679 	}
22680 
22681 	/* Return an error if still getting a reservation conflict. */
22682 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22683 		rval = EACCES;
22684 	}
22685 
22686 	kmem_free(com, sizeof (*com));
22687 	return (rval);
22688 }
22689 
22690 
22691 #define	SD_NDUMP_RETRIES	12
22692 /*
22693  *	System Crash Dump routine
22694  */
22695 
22696 static int
22697 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22698 {
22699 	int		instance;
22700 	int		partition;
22701 	int		i;
22702 	int		err;
22703 	struct sd_lun	*un;
22704 	struct scsi_pkt *wr_pktp;
22705 	struct buf	*wr_bp;
22706 	struct buf	wr_buf;
22707 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22708 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22709 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22710 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22711 	size_t		io_start_offset;
22712 	int		doing_rmw = FALSE;
22713 	int		rval;
22714 #if defined(__i386) || defined(__amd64)
22715 	ssize_t dma_resid;
22716 	daddr_t oblkno;
22717 #endif
22718 	diskaddr_t	nblks = 0;
22719 	diskaddr_t	start_block;
22720 
22721 	instance = SDUNIT(dev);
22722 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22723 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22724 		return (ENXIO);
22725 	}
22726 
22727 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22728 
22729 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22730 
22731 	partition = SDPART(dev);
22732 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22733 
22734 	/* Validate blocks to dump at against partition size. */
22735 
22736 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22737 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22738 
22739 	if ((blkno + nblk) > nblks) {
22740 		SD_TRACE(SD_LOG_DUMP, un,
22741 		    "sddump: dump range larger than partition: "
22742 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22743 		    blkno, nblk, nblks);
22744 		return (EINVAL);
22745 	}
22746 
22747 	mutex_enter(&un->un_pm_mutex);
22748 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22749 		struct scsi_pkt *start_pktp;
22750 
22751 		mutex_exit(&un->un_pm_mutex);
22752 
22753 		/*
22754 		 * use pm framework to power on HBA 1st
22755 		 */
22756 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22757 
22758 		/*
22759 		 * Dump no long uses sdpower to power on a device, it's
22760 		 * in-line here so it can be done in polled mode.
22761 		 */
22762 
22763 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22764 
22765 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22766 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22767 
22768 		if (start_pktp == NULL) {
22769 			/* We were not given a SCSI packet, fail. */
22770 			return (EIO);
22771 		}
22772 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22773 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22774 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22775 		start_pktp->pkt_flags = FLAG_NOINTR;
22776 
22777 		mutex_enter(SD_MUTEX(un));
22778 		SD_FILL_SCSI1_LUN(un, start_pktp);
22779 		mutex_exit(SD_MUTEX(un));
22780 		/*
22781 		 * Scsi_poll returns 0 (success) if the command completes and
22782 		 * the status block is STATUS_GOOD.
22783 		 */
22784 		if (sd_scsi_poll(un, start_pktp) != 0) {
22785 			scsi_destroy_pkt(start_pktp);
22786 			return (EIO);
22787 		}
22788 		scsi_destroy_pkt(start_pktp);
22789 		(void) sd_ddi_pm_resume(un);
22790 	} else {
22791 		mutex_exit(&un->un_pm_mutex);
22792 	}
22793 
22794 	mutex_enter(SD_MUTEX(un));
22795 	un->un_throttle = 0;
22796 
22797 	/*
22798 	 * The first time through, reset the specific target device.
22799 	 * However, when cpr calls sddump we know that sd is in a
22800 	 * a good state so no bus reset is required.
22801 	 * Clear sense data via Request Sense cmd.
22802 	 * In sddump we don't care about allow_bus_device_reset anymore
22803 	 */
22804 
22805 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22806 	    (un->un_state != SD_STATE_DUMPING)) {
22807 
22808 		New_state(un, SD_STATE_DUMPING);
22809 
22810 		if (un->un_f_is_fibre == FALSE) {
22811 			mutex_exit(SD_MUTEX(un));
22812 			/*
22813 			 * Attempt a bus reset for parallel scsi.
22814 			 *
22815 			 * Note: A bus reset is required because on some host
22816 			 * systems (i.e. E420R) a bus device reset is
22817 			 * insufficient to reset the state of the target.
22818 			 *
22819 			 * Note: Don't issue the reset for fibre-channel,
22820 			 * because this tends to hang the bus (loop) for
22821 			 * too long while everyone is logging out and in
22822 			 * and the deadman timer for dumping will fire
22823 			 * before the dump is complete.
22824 			 */
22825 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22826 				mutex_enter(SD_MUTEX(un));
22827 				Restore_state(un);
22828 				mutex_exit(SD_MUTEX(un));
22829 				return (EIO);
22830 			}
22831 
22832 			/* Delay to give the device some recovery time. */
22833 			drv_usecwait(10000);
22834 
22835 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22836 				SD_INFO(SD_LOG_DUMP, un,
22837 				    "sddump: sd_send_polled_RQS failed\n");
22838 			}
22839 			mutex_enter(SD_MUTEX(un));
22840 		}
22841 	}
22842 
22843 	/*
22844 	 * Convert the partition-relative block number to a
22845 	 * disk physical block number.
22846 	 */
22847 	blkno += start_block;
22848 
22849 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22850 
22851 
22852 	/*
22853 	 * Check if the device has a non-512 block size.
22854 	 */
22855 	wr_bp = NULL;
22856 	if (NOT_DEVBSIZE(un)) {
22857 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22858 		tgt_byte_count = nblk * un->un_sys_blocksize;
22859 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22860 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22861 			doing_rmw = TRUE;
22862 			/*
22863 			 * Calculate the block number and number of block
22864 			 * in terms of the media block size.
22865 			 */
22866 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22867 			tgt_nblk =
22868 			    ((tgt_byte_offset + tgt_byte_count +
22869 			    (un->un_tgt_blocksize - 1)) /
22870 			    un->un_tgt_blocksize) - tgt_blkno;
22871 
22872 			/*
22873 			 * Invoke the routine which is going to do read part
22874 			 * of read-modify-write.
22875 			 * Note that this routine returns a pointer to
22876 			 * a valid bp in wr_bp.
22877 			 */
22878 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22879 			    &wr_bp);
22880 			if (err) {
22881 				mutex_exit(SD_MUTEX(un));
22882 				return (err);
22883 			}
22884 			/*
22885 			 * Offset is being calculated as -
22886 			 * (original block # * system block size) -
22887 			 * (new block # * target block size)
22888 			 */
22889 			io_start_offset =
22890 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22891 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22892 
22893 			ASSERT((io_start_offset >= 0) &&
22894 			    (io_start_offset < un->un_tgt_blocksize));
22895 			/*
22896 			 * Do the modify portion of read modify write.
22897 			 */
22898 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22899 			    (size_t)nblk * un->un_sys_blocksize);
22900 		} else {
22901 			doing_rmw = FALSE;
22902 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22903 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22904 		}
22905 
22906 		/* Convert blkno and nblk to target blocks */
22907 		blkno = tgt_blkno;
22908 		nblk = tgt_nblk;
22909 	} else {
22910 		wr_bp = &wr_buf;
22911 		bzero(wr_bp, sizeof (struct buf));
22912 		wr_bp->b_flags		= B_BUSY;
22913 		wr_bp->b_un.b_addr	= addr;
22914 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22915 		wr_bp->b_resid		= 0;
22916 	}
22917 
22918 	mutex_exit(SD_MUTEX(un));
22919 
22920 	/*
22921 	 * Obtain a SCSI packet for the write command.
22922 	 * It should be safe to call the allocator here without
22923 	 * worrying about being locked for DVMA mapping because
22924 	 * the address we're passed is already a DVMA mapping
22925 	 *
22926 	 * We are also not going to worry about semaphore ownership
22927 	 * in the dump buffer. Dumping is single threaded at present.
22928 	 */
22929 
22930 	wr_pktp = NULL;
22931 
22932 #if defined(__i386) || defined(__amd64)
22933 	dma_resid = wr_bp->b_bcount;
22934 	oblkno = blkno;
22935 	while (dma_resid != 0) {
22936 #endif
22937 
22938 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22939 		wr_bp->b_flags &= ~B_ERROR;
22940 
22941 #if defined(__i386) || defined(__amd64)
22942 		blkno = oblkno +
22943 		    ((wr_bp->b_bcount - dma_resid) /
22944 		    un->un_tgt_blocksize);
22945 		nblk = dma_resid / un->un_tgt_blocksize;
22946 
22947 		if (wr_pktp) {
22948 			/* Partial DMA transfers after initial transfer */
22949 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22950 			    blkno, nblk);
22951 		} else {
22952 			/* Initial transfer */
22953 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22954 			    un->un_pkt_flags, NULL_FUNC, NULL,
22955 			    blkno, nblk);
22956 		}
22957 #else
22958 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22959 		    0, NULL_FUNC, NULL, blkno, nblk);
22960 #endif
22961 
22962 		if (rval == 0) {
22963 			/* We were given a SCSI packet, continue. */
22964 			break;
22965 		}
22966 
22967 		if (i == 0) {
22968 			if (wr_bp->b_flags & B_ERROR) {
22969 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22970 				    "no resources for dumping; "
22971 				    "error code: 0x%x, retrying",
22972 				    geterror(wr_bp));
22973 			} else {
22974 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22975 				    "no resources for dumping; retrying");
22976 			}
22977 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22978 			if (wr_bp->b_flags & B_ERROR) {
22979 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22980 				    "no resources for dumping; error code: "
22981 				    "0x%x, retrying\n", geterror(wr_bp));
22982 			}
22983 		} else {
22984 			if (wr_bp->b_flags & B_ERROR) {
22985 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22986 				    "no resources for dumping; "
22987 				    "error code: 0x%x, retries failed, "
22988 				    "giving up.\n", geterror(wr_bp));
22989 			} else {
22990 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22991 				    "no resources for dumping; "
22992 				    "retries failed, giving up.\n");
22993 			}
22994 			mutex_enter(SD_MUTEX(un));
22995 			Restore_state(un);
22996 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22997 				mutex_exit(SD_MUTEX(un));
22998 				scsi_free_consistent_buf(wr_bp);
22999 			} else {
23000 				mutex_exit(SD_MUTEX(un));
23001 			}
23002 			return (EIO);
23003 		}
23004 		drv_usecwait(10000);
23005 	}
23006 
23007 #if defined(__i386) || defined(__amd64)
23008 	/*
23009 	 * save the resid from PARTIAL_DMA
23010 	 */
23011 	dma_resid = wr_pktp->pkt_resid;
23012 	if (dma_resid != 0)
23013 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23014 	wr_pktp->pkt_resid = 0;
23015 #endif
23016 
23017 	/* SunBug 1222170 */
23018 	wr_pktp->pkt_flags = FLAG_NOINTR;
23019 
23020 	err = EIO;
23021 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23022 
23023 		/*
23024 		 * Scsi_poll returns 0 (success) if the command completes and
23025 		 * the status block is STATUS_GOOD.  We should only check
23026 		 * errors if this condition is not true.  Even then we should
23027 		 * send our own request sense packet only if we have a check
23028 		 * condition and auto request sense has not been performed by
23029 		 * the hba.
23030 		 */
23031 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23032 
23033 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23034 		    (wr_pktp->pkt_resid == 0)) {
23035 			err = SD_SUCCESS;
23036 			break;
23037 		}
23038 
23039 		/*
23040 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23041 		 */
23042 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23043 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23044 			    "Device is gone\n");
23045 			break;
23046 		}
23047 
23048 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23049 			SD_INFO(SD_LOG_DUMP, un,
23050 			    "sddump: write failed with CHECK, try # %d\n", i);
23051 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23052 				(void) sd_send_polled_RQS(un);
23053 			}
23054 
23055 			continue;
23056 		}
23057 
23058 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23059 			int reset_retval = 0;
23060 
23061 			SD_INFO(SD_LOG_DUMP, un,
23062 			    "sddump: write failed with BUSY, try # %d\n", i);
23063 
23064 			if (un->un_f_lun_reset_enabled == TRUE) {
23065 				reset_retval = scsi_reset(SD_ADDRESS(un),
23066 				    RESET_LUN);
23067 			}
23068 			if (reset_retval == 0) {
23069 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23070 			}
23071 			(void) sd_send_polled_RQS(un);
23072 
23073 		} else {
23074 			SD_INFO(SD_LOG_DUMP, un,
23075 			    "sddump: write failed with 0x%x, try # %d\n",
23076 			    SD_GET_PKT_STATUS(wr_pktp), i);
23077 			mutex_enter(SD_MUTEX(un));
23078 			sd_reset_target(un, wr_pktp);
23079 			mutex_exit(SD_MUTEX(un));
23080 		}
23081 
23082 		/*
23083 		 * If we are not getting anywhere with lun/target resets,
23084 		 * let's reset the bus.
23085 		 */
23086 		if (i == SD_NDUMP_RETRIES/2) {
23087 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23088 			(void) sd_send_polled_RQS(un);
23089 		}
23090 
23091 	}
23092 #if defined(__i386) || defined(__amd64)
23093 	}	/* dma_resid */
23094 #endif
23095 
23096 	scsi_destroy_pkt(wr_pktp);
23097 	mutex_enter(SD_MUTEX(un));
23098 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23099 		mutex_exit(SD_MUTEX(un));
23100 		scsi_free_consistent_buf(wr_bp);
23101 	} else {
23102 		mutex_exit(SD_MUTEX(un));
23103 	}
23104 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23105 	return (err);
23106 }
23107 
23108 /*
23109  *    Function: sd_scsi_poll()
23110  *
23111  * Description: This is a wrapper for the scsi_poll call.
23112  *
23113  *   Arguments: sd_lun - The unit structure
23114  *              scsi_pkt - The scsi packet being sent to the device.
23115  *
23116  * Return Code: 0 - Command completed successfully with good status
23117  *             -1 - Command failed.  This could indicate a check condition
23118  *                  or other status value requiring recovery action.
23119  *
23120  */
23121 
23122 static int
23123 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23124 {
23125 	int status;
23126 
23127 	ASSERT(un != NULL);
23128 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23129 	ASSERT(pktp != NULL);
23130 
23131 	status = SD_SUCCESS;
23132 
23133 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23134 		pktp->pkt_flags |= un->un_tagflags;
23135 		pktp->pkt_flags &= ~FLAG_NODISCON;
23136 	}
23137 
23138 	status = sd_ddi_scsi_poll(pktp);
23139 	/*
23140 	 * Scsi_poll returns 0 (success) if the command completes and the
23141 	 * status block is STATUS_GOOD.  We should only check errors if this
23142 	 * condition is not true.  Even then we should send our own request
23143 	 * sense packet only if we have a check condition and auto
23144 	 * request sense has not been performed by the hba.
23145 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23146 	 */
23147 	if ((status != SD_SUCCESS) &&
23148 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23149 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23150 	    (pktp->pkt_reason != CMD_DEV_GONE))
23151 		(void) sd_send_polled_RQS(un);
23152 
23153 	return (status);
23154 }
23155 
23156 /*
23157  *    Function: sd_send_polled_RQS()
23158  *
23159  * Description: This sends the request sense command to a device.
23160  *
23161  *   Arguments: sd_lun - The unit structure
23162  *
23163  * Return Code: 0 - Command completed successfully with good status
23164  *             -1 - Command failed.
23165  *
23166  */
23167 
23168 static int
23169 sd_send_polled_RQS(struct sd_lun *un)
23170 {
23171 	int	ret_val;
23172 	struct	scsi_pkt	*rqs_pktp;
23173 	struct	buf		*rqs_bp;
23174 
23175 	ASSERT(un != NULL);
23176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23177 
23178 	ret_val = SD_SUCCESS;
23179 
23180 	rqs_pktp = un->un_rqs_pktp;
23181 	rqs_bp	 = un->un_rqs_bp;
23182 
23183 	mutex_enter(SD_MUTEX(un));
23184 
23185 	if (un->un_sense_isbusy) {
23186 		ret_val = SD_FAILURE;
23187 		mutex_exit(SD_MUTEX(un));
23188 		return (ret_val);
23189 	}
23190 
23191 	/*
23192 	 * If the request sense buffer (and packet) is not in use,
23193 	 * let's set the un_sense_isbusy and send our packet
23194 	 */
23195 	un->un_sense_isbusy 	= 1;
23196 	rqs_pktp->pkt_resid  	= 0;
23197 	rqs_pktp->pkt_reason 	= 0;
23198 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23199 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23200 
23201 	mutex_exit(SD_MUTEX(un));
23202 
23203 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23204 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23205 
23206 	/*
23207 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23208 	 * axle - it has a call into us!
23209 	 */
23210 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23211 		SD_INFO(SD_LOG_COMMON, un,
23212 		    "sd_send_polled_RQS: RQS failed\n");
23213 	}
23214 
23215 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23216 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23217 
23218 	mutex_enter(SD_MUTEX(un));
23219 	un->un_sense_isbusy = 0;
23220 	mutex_exit(SD_MUTEX(un));
23221 
23222 	return (ret_val);
23223 }
23224 
23225 /*
23226  * Defines needed for localized version of the scsi_poll routine.
23227  */
23228 #define	SD_CSEC		10000			/* usecs */
23229 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
23230 
23231 
23232 /*
23233  *    Function: sd_ddi_scsi_poll()
23234  *
23235  * Description: Localized version of the scsi_poll routine.  The purpose is to
23236  *		send a scsi_pkt to a device as a polled command.  This version
23237  *		is to ensure more robust handling of transport errors.
23238  *		Specifically this routine cures not ready, coming ready
23239  *		transition for power up and reset of sonoma's.  This can take
23240  *		up to 45 seconds for power-on and 20 seconds for reset of a
23241  * 		sonoma lun.
23242  *
23243  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23244  *
23245  * Return Code: 0 - Command completed successfully with good status
23246  *             -1 - Command failed.
23247  *
23248  */
23249 
23250 static int
23251 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23252 {
23253 	int busy_count;
23254 	int timeout;
23255 	int rval = SD_FAILURE;
23256 	int savef;
23257 	uint8_t *sensep;
23258 	long savet;
23259 	void (*savec)();
23260 	/*
23261 	 * The following is defined in machdep.c and is used in determining if
23262 	 * the scsi transport system will do polled I/O instead of interrupt
23263 	 * I/O when called from xx_dump().
23264 	 */
23265 	extern int do_polled_io;
23266 
23267 	/*
23268 	 * save old flags in pkt, to restore at end
23269 	 */
23270 	savef = pkt->pkt_flags;
23271 	savec = pkt->pkt_comp;
23272 	savet = pkt->pkt_time;
23273 
23274 	pkt->pkt_flags |= FLAG_NOINTR;
23275 
23276 	/*
23277 	 * XXX there is nothing in the SCSA spec that states that we should not
23278 	 * do a callback for polled cmds; however, removing this will break sd
23279 	 * and probably other target drivers
23280 	 */
23281 	pkt->pkt_comp = NULL;
23282 
23283 	/*
23284 	 * we don't like a polled command without timeout.
23285 	 * 60 seconds seems long enough.
23286 	 */
23287 	if (pkt->pkt_time == 0) {
23288 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23289 	}
23290 
23291 	/*
23292 	 * Send polled cmd.
23293 	 *
23294 	 * We do some error recovery for various errors.  Tran_busy,
23295 	 * queue full, and non-dispatched commands are retried every 10 msec.
23296 	 * as they are typically transient failures.  Busy status and Not
23297 	 * Ready are retried every second as this status takes a while to
23298 	 * change.  Unit attention is retried for pkt_time (60) times
23299 	 * with no delay.
23300 	 */
23301 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
23302 
23303 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23304 		int rc;
23305 		int poll_delay;
23306 
23307 		/*
23308 		 * Initialize pkt status variables.
23309 		 */
23310 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23311 
23312 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23313 			if (rc != TRAN_BUSY) {
23314 				/* Transport failed - give up. */
23315 				break;
23316 			} else {
23317 				/* Transport busy - try again. */
23318 				poll_delay = 1 * SD_CSEC; /* 10 msec */
23319 			}
23320 		} else {
23321 			/*
23322 			 * Transport accepted - check pkt status.
23323 			 */
23324 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23325 			if (pkt->pkt_reason == CMD_CMPLT &&
23326 			    rc == STATUS_CHECK &&
23327 			    pkt->pkt_state & STATE_ARQ_DONE) {
23328 				struct scsi_arq_status *arqstat =
23329 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23330 
23331 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23332 			} else {
23333 				sensep = NULL;
23334 			}
23335 
23336 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23337 			    (rc == STATUS_GOOD)) {
23338 				/* No error - we're done */
23339 				rval = SD_SUCCESS;
23340 				break;
23341 
23342 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23343 				/* Lost connection - give up */
23344 				break;
23345 
23346 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23347 			    (pkt->pkt_state == 0)) {
23348 				/* Pkt not dispatched - try again. */
23349 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23350 
23351 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23352 			    (rc == STATUS_QFULL)) {
23353 				/* Queue full - try again. */
23354 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23355 
23356 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23357 			    (rc == STATUS_BUSY)) {
23358 				/* Busy - try again. */
23359 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23360 				busy_count += (SD_SEC_TO_CSEC - 1);
23361 
23362 			} else if ((sensep != NULL) &&
23363 			    (scsi_sense_key(sensep) ==
23364 			    KEY_UNIT_ATTENTION)) {
23365 				/* Unit Attention - try again */
23366 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23367 				continue;
23368 
23369 			} else if ((sensep != NULL) &&
23370 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23371 			    (scsi_sense_asc(sensep) == 0x04) &&
23372 			    (scsi_sense_ascq(sensep) == 0x01)) {
23373 				/* Not ready -> ready - try again. */
23374 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23375 				busy_count += (SD_SEC_TO_CSEC - 1);
23376 
23377 			} else {
23378 				/* BAD status - give up. */
23379 				break;
23380 			}
23381 		}
23382 
23383 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23384 		    !do_polled_io) {
23385 			delay(drv_usectohz(poll_delay));
23386 		} else {
23387 			/* we busy wait during cpr_dump or interrupt threads */
23388 			drv_usecwait(poll_delay);
23389 		}
23390 	}
23391 
23392 	pkt->pkt_flags = savef;
23393 	pkt->pkt_comp = savec;
23394 	pkt->pkt_time = savet;
23395 	return (rval);
23396 }
23397 
23398 
23399 /*
23400  *    Function: sd_persistent_reservation_in_read_keys
23401  *
23402  * Description: This routine is the driver entry point for handling CD-ROM
23403  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23404  *		by sending the SCSI-3 PRIN commands to the device.
23405  *		Processes the read keys command response by copying the
23406  *		reservation key information into the user provided buffer.
23407  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23408  *
23409  *   Arguments: un   -  Pointer to soft state struct for the target.
23410  *		usrp -	user provided pointer to multihost Persistent In Read
23411  *			Keys structure (mhioc_inkeys_t)
23412  *		flag -	this argument is a pass through to ddi_copyxxx()
23413  *			directly from the mode argument of ioctl().
23414  *
23415  * Return Code: 0   - Success
23416  *		EACCES
23417  *		ENOTSUP
23418  *		errno return code from sd_send_scsi_cmd()
23419  *
23420  *     Context: Can sleep. Does not return until command is completed.
23421  */
23422 
23423 static int
23424 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23425     mhioc_inkeys_t *usrp, int flag)
23426 {
23427 #ifdef _MULTI_DATAMODEL
23428 	struct mhioc_key_list32	li32;
23429 #endif
23430 	sd_prin_readkeys_t	*in;
23431 	mhioc_inkeys_t		*ptr;
23432 	mhioc_key_list_t	li;
23433 	uchar_t			*data_bufp;
23434 	int 			data_len;
23435 	int			rval;
23436 	size_t			copysz;
23437 
23438 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23439 		return (EINVAL);
23440 	}
23441 	bzero(&li, sizeof (mhioc_key_list_t));
23442 
23443 	/*
23444 	 * Get the listsize from user
23445 	 */
23446 #ifdef _MULTI_DATAMODEL
23447 
23448 	switch (ddi_model_convert_from(flag & FMODELS)) {
23449 	case DDI_MODEL_ILP32:
23450 		copysz = sizeof (struct mhioc_key_list32);
23451 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23452 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23453 			    "sd_persistent_reservation_in_read_keys: "
23454 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23455 			rval = EFAULT;
23456 			goto done;
23457 		}
23458 		li.listsize = li32.listsize;
23459 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23460 		break;
23461 
23462 	case DDI_MODEL_NONE:
23463 		copysz = sizeof (mhioc_key_list_t);
23464 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23465 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23466 			    "sd_persistent_reservation_in_read_keys: "
23467 			    "failed ddi_copyin: mhioc_key_list_t\n");
23468 			rval = EFAULT;
23469 			goto done;
23470 		}
23471 		break;
23472 	}
23473 
23474 #else /* ! _MULTI_DATAMODEL */
23475 	copysz = sizeof (mhioc_key_list_t);
23476 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23477 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23478 		    "sd_persistent_reservation_in_read_keys: "
23479 		    "failed ddi_copyin: mhioc_key_list_t\n");
23480 		rval = EFAULT;
23481 		goto done;
23482 	}
23483 #endif
23484 
23485 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23486 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23487 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23488 
23489 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23490 	    data_len, data_bufp)) != 0) {
23491 		goto done;
23492 	}
23493 	in = (sd_prin_readkeys_t *)data_bufp;
23494 	ptr->generation = BE_32(in->generation);
23495 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23496 
23497 	/*
23498 	 * Return the min(listsize, listlen) keys
23499 	 */
23500 #ifdef _MULTI_DATAMODEL
23501 
23502 	switch (ddi_model_convert_from(flag & FMODELS)) {
23503 	case DDI_MODEL_ILP32:
23504 		li32.listlen = li.listlen;
23505 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23506 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23507 			    "sd_persistent_reservation_in_read_keys: "
23508 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23509 			rval = EFAULT;
23510 			goto done;
23511 		}
23512 		break;
23513 
23514 	case DDI_MODEL_NONE:
23515 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23516 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23517 			    "sd_persistent_reservation_in_read_keys: "
23518 			    "failed ddi_copyout: mhioc_key_list_t\n");
23519 			rval = EFAULT;
23520 			goto done;
23521 		}
23522 		break;
23523 	}
23524 
23525 #else /* ! _MULTI_DATAMODEL */
23526 
23527 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23528 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23529 		    "sd_persistent_reservation_in_read_keys: "
23530 		    "failed ddi_copyout: mhioc_key_list_t\n");
23531 		rval = EFAULT;
23532 		goto done;
23533 	}
23534 
23535 #endif /* _MULTI_DATAMODEL */
23536 
23537 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23538 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23539 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23540 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23541 		    "sd_persistent_reservation_in_read_keys: "
23542 		    "failed ddi_copyout: keylist\n");
23543 		rval = EFAULT;
23544 	}
23545 done:
23546 	kmem_free(data_bufp, data_len);
23547 	return (rval);
23548 }
23549 
23550 
23551 /*
23552  *    Function: sd_persistent_reservation_in_read_resv
23553  *
23554  * Description: This routine is the driver entry point for handling CD-ROM
23555  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23556  *		by sending the SCSI-3 PRIN commands to the device.
23557  *		Process the read persistent reservations command response by
23558  *		copying the reservation information into the user provided
23559  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23560  *
23561  *   Arguments: un   -  Pointer to soft state struct for the target.
23562  *		usrp -	user provided pointer to multihost Persistent In Read
23563  *			Keys structure (mhioc_inkeys_t)
23564  *		flag -	this argument is a pass through to ddi_copyxxx()
23565  *			directly from the mode argument of ioctl().
23566  *
23567  * Return Code: 0   - Success
23568  *		EACCES
23569  *		ENOTSUP
23570  *		errno return code from sd_send_scsi_cmd()
23571  *
23572  *     Context: Can sleep. Does not return until command is completed.
23573  */
23574 
23575 static int
23576 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23577     mhioc_inresvs_t *usrp, int flag)
23578 {
23579 #ifdef _MULTI_DATAMODEL
23580 	struct mhioc_resv_desc_list32 resvlist32;
23581 #endif
23582 	sd_prin_readresv_t	*in;
23583 	mhioc_inresvs_t		*ptr;
23584 	sd_readresv_desc_t	*readresv_ptr;
23585 	mhioc_resv_desc_list_t	resvlist;
23586 	mhioc_resv_desc_t 	resvdesc;
23587 	uchar_t			*data_bufp;
23588 	int 			data_len;
23589 	int			rval;
23590 	int			i;
23591 	size_t			copysz;
23592 	mhioc_resv_desc_t	*bufp;
23593 
23594 	if ((ptr = usrp) == NULL) {
23595 		return (EINVAL);
23596 	}
23597 
23598 	/*
23599 	 * Get the listsize from user
23600 	 */
23601 #ifdef _MULTI_DATAMODEL
23602 	switch (ddi_model_convert_from(flag & FMODELS)) {
23603 	case DDI_MODEL_ILP32:
23604 		copysz = sizeof (struct mhioc_resv_desc_list32);
23605 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23606 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23607 			    "sd_persistent_reservation_in_read_resv: "
23608 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23609 			rval = EFAULT;
23610 			goto done;
23611 		}
23612 		resvlist.listsize = resvlist32.listsize;
23613 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23614 		break;
23615 
23616 	case DDI_MODEL_NONE:
23617 		copysz = sizeof (mhioc_resv_desc_list_t);
23618 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23619 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23620 			    "sd_persistent_reservation_in_read_resv: "
23621 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23622 			rval = EFAULT;
23623 			goto done;
23624 		}
23625 		break;
23626 	}
23627 #else /* ! _MULTI_DATAMODEL */
23628 	copysz = sizeof (mhioc_resv_desc_list_t);
23629 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23630 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23631 		    "sd_persistent_reservation_in_read_resv: "
23632 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23633 		rval = EFAULT;
23634 		goto done;
23635 	}
23636 #endif /* ! _MULTI_DATAMODEL */
23637 
23638 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23639 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23640 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23641 
23642 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23643 	    data_len, data_bufp)) != 0) {
23644 		goto done;
23645 	}
23646 	in = (sd_prin_readresv_t *)data_bufp;
23647 	ptr->generation = BE_32(in->generation);
23648 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23649 
23650 	/*
23651 	 * Return the min(listsize, listlen( keys
23652 	 */
23653 #ifdef _MULTI_DATAMODEL
23654 
23655 	switch (ddi_model_convert_from(flag & FMODELS)) {
23656 	case DDI_MODEL_ILP32:
23657 		resvlist32.listlen = resvlist.listlen;
23658 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23659 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23660 			    "sd_persistent_reservation_in_read_resv: "
23661 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23662 			rval = EFAULT;
23663 			goto done;
23664 		}
23665 		break;
23666 
23667 	case DDI_MODEL_NONE:
23668 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23669 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23670 			    "sd_persistent_reservation_in_read_resv: "
23671 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23672 			rval = EFAULT;
23673 			goto done;
23674 		}
23675 		break;
23676 	}
23677 
23678 #else /* ! _MULTI_DATAMODEL */
23679 
23680 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23681 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23682 		    "sd_persistent_reservation_in_read_resv: "
23683 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23684 		rval = EFAULT;
23685 		goto done;
23686 	}
23687 
23688 #endif /* ! _MULTI_DATAMODEL */
23689 
23690 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23691 	bufp = resvlist.list;
23692 	copysz = sizeof (mhioc_resv_desc_t);
23693 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23694 	    i++, readresv_ptr++, bufp++) {
23695 
23696 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23697 		    MHIOC_RESV_KEY_SIZE);
23698 		resvdesc.type  = readresv_ptr->type;
23699 		resvdesc.scope = readresv_ptr->scope;
23700 		resvdesc.scope_specific_addr =
23701 		    BE_32(readresv_ptr->scope_specific_addr);
23702 
23703 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23704 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23705 			    "sd_persistent_reservation_in_read_resv: "
23706 			    "failed ddi_copyout: resvlist\n");
23707 			rval = EFAULT;
23708 			goto done;
23709 		}
23710 	}
23711 done:
23712 	kmem_free(data_bufp, data_len);
23713 	return (rval);
23714 }
23715 
23716 
23717 /*
23718  *    Function: sr_change_blkmode()
23719  *
23720  * Description: This routine is the driver entry point for handling CD-ROM
23721  *		block mode ioctl requests. Support for returning and changing
23722  *		the current block size in use by the device is implemented. The
23723  *		LBA size is changed via a MODE SELECT Block Descriptor.
23724  *
23725  *		This routine issues a mode sense with an allocation length of
23726  *		12 bytes for the mode page header and a single block descriptor.
23727  *
23728  *   Arguments: dev - the device 'dev_t'
23729  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23730  *		      CDROMSBLKMODE (set)
23731  *		data - current block size or requested block size
23732  *		flag - this argument is a pass through to ddi_copyxxx() directly
23733  *		       from the mode argument of ioctl().
23734  *
23735  * Return Code: the code returned by sd_send_scsi_cmd()
23736  *		EINVAL if invalid arguments are provided
23737  *		EFAULT if ddi_copyxxx() fails
23738  *		ENXIO if fail ddi_get_soft_state
23739  *		EIO if invalid mode sense block descriptor length
23740  *
23741  */
23742 
23743 static int
23744 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23745 {
23746 	struct sd_lun			*un = NULL;
23747 	struct mode_header		*sense_mhp, *select_mhp;
23748 	struct block_descriptor		*sense_desc, *select_desc;
23749 	int				current_bsize;
23750 	int				rval = EINVAL;
23751 	uchar_t				*sense = NULL;
23752 	uchar_t				*select = NULL;
23753 
23754 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23755 
23756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23757 		return (ENXIO);
23758 	}
23759 
23760 	/*
23761 	 * The block length is changed via the Mode Select block descriptor, the
23762 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23763 	 * required as part of this routine. Therefore the mode sense allocation
23764 	 * length is specified to be the length of a mode page header and a
23765 	 * block descriptor.
23766 	 */
23767 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23768 
23769 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23770 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23771 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23772 		    "sr_change_blkmode: Mode Sense Failed\n");
23773 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23774 		return (rval);
23775 	}
23776 
23777 	/* Check the block descriptor len to handle only 1 block descriptor */
23778 	sense_mhp = (struct mode_header *)sense;
23779 	if ((sense_mhp->bdesc_length == 0) ||
23780 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23781 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23782 		    "sr_change_blkmode: Mode Sense returned invalid block"
23783 		    " descriptor length\n");
23784 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23785 		return (EIO);
23786 	}
23787 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23788 	current_bsize = ((sense_desc->blksize_hi << 16) |
23789 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23790 
23791 	/* Process command */
23792 	switch (cmd) {
23793 	case CDROMGBLKMODE:
23794 		/* Return the block size obtained during the mode sense */
23795 		if (ddi_copyout(&current_bsize, (void *)data,
23796 		    sizeof (int), flag) != 0)
23797 			rval = EFAULT;
23798 		break;
23799 	case CDROMSBLKMODE:
23800 		/* Validate the requested block size */
23801 		switch (data) {
23802 		case CDROM_BLK_512:
23803 		case CDROM_BLK_1024:
23804 		case CDROM_BLK_2048:
23805 		case CDROM_BLK_2056:
23806 		case CDROM_BLK_2336:
23807 		case CDROM_BLK_2340:
23808 		case CDROM_BLK_2352:
23809 		case CDROM_BLK_2368:
23810 		case CDROM_BLK_2448:
23811 		case CDROM_BLK_2646:
23812 		case CDROM_BLK_2647:
23813 			break;
23814 		default:
23815 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23816 			    "sr_change_blkmode: "
23817 			    "Block Size '%ld' Not Supported\n", data);
23818 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23819 			return (EINVAL);
23820 		}
23821 
23822 		/*
23823 		 * The current block size matches the requested block size so
23824 		 * there is no need to send the mode select to change the size
23825 		 */
23826 		if (current_bsize == data) {
23827 			break;
23828 		}
23829 
23830 		/* Build the select data for the requested block size */
23831 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23832 		select_mhp = (struct mode_header *)select;
23833 		select_desc =
23834 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23835 		/*
23836 		 * The LBA size is changed via the block descriptor, so the
23837 		 * descriptor is built according to the user data
23838 		 */
23839 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23840 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23841 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23842 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23843 
23844 		/* Send the mode select for the requested block size */
23845 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23846 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23847 		    SD_PATH_STANDARD)) != 0) {
23848 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23849 			    "sr_change_blkmode: Mode Select Failed\n");
23850 			/*
23851 			 * The mode select failed for the requested block size,
23852 			 * so reset the data for the original block size and
23853 			 * send it to the target. The error is indicated by the
23854 			 * return value for the failed mode select.
23855 			 */
23856 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23857 			select_desc->blksize_mid = sense_desc->blksize_mid;
23858 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23859 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23860 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23861 			    SD_PATH_STANDARD);
23862 		} else {
23863 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23864 			mutex_enter(SD_MUTEX(un));
23865 			sd_update_block_info(un, (uint32_t)data, 0);
23866 			mutex_exit(SD_MUTEX(un));
23867 		}
23868 		break;
23869 	default:
23870 		/* should not reach here, but check anyway */
23871 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23872 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23873 		rval = EINVAL;
23874 		break;
23875 	}
23876 
23877 	if (select) {
23878 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23879 	}
23880 	if (sense) {
23881 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23882 	}
23883 	return (rval);
23884 }
23885 
23886 
23887 /*
23888  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23889  * implement driver support for getting and setting the CD speed. The command
23890  * set used will be based on the device type. If the device has not been
23891  * identified as MMC the Toshiba vendor specific mode page will be used. If
23892  * the device is MMC but does not support the Real Time Streaming feature
23893  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23894  * be used to read the speed.
23895  */
23896 
23897 /*
23898  *    Function: sr_change_speed()
23899  *
23900  * Description: This routine is the driver entry point for handling CD-ROM
23901  *		drive speed ioctl requests for devices supporting the Toshiba
23902  *		vendor specific drive speed mode page. Support for returning
23903  *		and changing the current drive speed in use by the device is
23904  *		implemented.
23905  *
23906  *   Arguments: dev - the device 'dev_t'
23907  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23908  *		      CDROMSDRVSPEED (set)
23909  *		data - current drive speed or requested drive speed
23910  *		flag - this argument is a pass through to ddi_copyxxx() directly
23911  *		       from the mode argument of ioctl().
23912  *
23913  * Return Code: the code returned by sd_send_scsi_cmd()
23914  *		EINVAL if invalid arguments are provided
23915  *		EFAULT if ddi_copyxxx() fails
23916  *		ENXIO if fail ddi_get_soft_state
23917  *		EIO if invalid mode sense block descriptor length
23918  */
23919 
23920 static int
23921 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23922 {
23923 	struct sd_lun			*un = NULL;
23924 	struct mode_header		*sense_mhp, *select_mhp;
23925 	struct mode_speed		*sense_page, *select_page;
23926 	int				current_speed;
23927 	int				rval = EINVAL;
23928 	int				bd_len;
23929 	uchar_t				*sense = NULL;
23930 	uchar_t				*select = NULL;
23931 
23932 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23933 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23934 		return (ENXIO);
23935 	}
23936 
23937 	/*
23938 	 * Note: The drive speed is being modified here according to a Toshiba
23939 	 * vendor specific mode page (0x31).
23940 	 */
23941 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23942 
23943 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23944 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23945 	    SD_PATH_STANDARD)) != 0) {
23946 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23947 		    "sr_change_speed: Mode Sense Failed\n");
23948 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23949 		return (rval);
23950 	}
23951 	sense_mhp  = (struct mode_header *)sense;
23952 
23953 	/* Check the block descriptor len to handle only 1 block descriptor */
23954 	bd_len = sense_mhp->bdesc_length;
23955 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23956 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23957 		    "sr_change_speed: Mode Sense returned invalid block "
23958 		    "descriptor length\n");
23959 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23960 		return (EIO);
23961 	}
23962 
23963 	sense_page = (struct mode_speed *)
23964 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23965 	current_speed = sense_page->speed;
23966 
23967 	/* Process command */
23968 	switch (cmd) {
23969 	case CDROMGDRVSPEED:
23970 		/* Return the drive speed obtained during the mode sense */
23971 		if (current_speed == 0x2) {
23972 			current_speed = CDROM_TWELVE_SPEED;
23973 		}
23974 		if (ddi_copyout(&current_speed, (void *)data,
23975 		    sizeof (int), flag) != 0) {
23976 			rval = EFAULT;
23977 		}
23978 		break;
23979 	case CDROMSDRVSPEED:
23980 		/* Validate the requested drive speed */
23981 		switch ((uchar_t)data) {
23982 		case CDROM_TWELVE_SPEED:
23983 			data = 0x2;
23984 			/*FALLTHROUGH*/
23985 		case CDROM_NORMAL_SPEED:
23986 		case CDROM_DOUBLE_SPEED:
23987 		case CDROM_QUAD_SPEED:
23988 		case CDROM_MAXIMUM_SPEED:
23989 			break;
23990 		default:
23991 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23992 			    "sr_change_speed: "
23993 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23994 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23995 			return (EINVAL);
23996 		}
23997 
23998 		/*
23999 		 * The current drive speed matches the requested drive speed so
24000 		 * there is no need to send the mode select to change the speed
24001 		 */
24002 		if (current_speed == data) {
24003 			break;
24004 		}
24005 
24006 		/* Build the select data for the requested drive speed */
24007 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24008 		select_mhp = (struct mode_header *)select;
24009 		select_mhp->bdesc_length = 0;
24010 		select_page =
24011 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24012 		select_page =
24013 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24014 		select_page->mode_page.code = CDROM_MODE_SPEED;
24015 		select_page->mode_page.length = 2;
24016 		select_page->speed = (uchar_t)data;
24017 
24018 		/* Send the mode select for the requested block size */
24019 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24020 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24021 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24022 			/*
24023 			 * The mode select failed for the requested drive speed,
24024 			 * so reset the data for the original drive speed and
24025 			 * send it to the target. The error is indicated by the
24026 			 * return value for the failed mode select.
24027 			 */
24028 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24029 			    "sr_drive_speed: Mode Select Failed\n");
24030 			select_page->speed = sense_page->speed;
24031 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24032 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24033 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24034 		}
24035 		break;
24036 	default:
24037 		/* should not reach here, but check anyway */
24038 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24039 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24040 		rval = EINVAL;
24041 		break;
24042 	}
24043 
24044 	if (select) {
24045 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24046 	}
24047 	if (sense) {
24048 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24049 	}
24050 
24051 	return (rval);
24052 }
24053 
24054 
24055 /*
24056  *    Function: sr_atapi_change_speed()
24057  *
24058  * Description: This routine is the driver entry point for handling CD-ROM
24059  *		drive speed ioctl requests for MMC devices that do not support
24060  *		the Real Time Streaming feature (0x107).
24061  *
24062  *		Note: This routine will use the SET SPEED command which may not
24063  *		be supported by all devices.
24064  *
24065  *   Arguments: dev- the device 'dev_t'
24066  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24067  *		     CDROMSDRVSPEED (set)
24068  *		data- current drive speed or requested drive speed
24069  *		flag- this argument is a pass through to ddi_copyxxx() directly
24070  *		      from the mode argument of ioctl().
24071  *
24072  * Return Code: the code returned by sd_send_scsi_cmd()
24073  *		EINVAL if invalid arguments are provided
24074  *		EFAULT if ddi_copyxxx() fails
24075  *		ENXIO if fail ddi_get_soft_state
24076  *		EIO if invalid mode sense block descriptor length
24077  */
24078 
24079 static int
24080 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24081 {
24082 	struct sd_lun			*un;
24083 	struct uscsi_cmd		*com = NULL;
24084 	struct mode_header_grp2		*sense_mhp;
24085 	uchar_t				*sense_page;
24086 	uchar_t				*sense = NULL;
24087 	char				cdb[CDB_GROUP5];
24088 	int				bd_len;
24089 	int				current_speed = 0;
24090 	int				max_speed = 0;
24091 	int				rval;
24092 
24093 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24094 
24095 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24096 		return (ENXIO);
24097 	}
24098 
24099 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24100 
24101 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24102 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24103 	    SD_PATH_STANDARD)) != 0) {
24104 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24105 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24106 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24107 		return (rval);
24108 	}
24109 
24110 	/* Check the block descriptor len to handle only 1 block descriptor */
24111 	sense_mhp = (struct mode_header_grp2 *)sense;
24112 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24113 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24114 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24115 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24116 		    "block descriptor length\n");
24117 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24118 		return (EIO);
24119 	}
24120 
24121 	/* Calculate the current and maximum drive speeds */
24122 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24123 	current_speed = (sense_page[14] << 8) | sense_page[15];
24124 	max_speed = (sense_page[8] << 8) | sense_page[9];
24125 
24126 	/* Process the command */
24127 	switch (cmd) {
24128 	case CDROMGDRVSPEED:
24129 		current_speed /= SD_SPEED_1X;
24130 		if (ddi_copyout(&current_speed, (void *)data,
24131 		    sizeof (int), flag) != 0)
24132 			rval = EFAULT;
24133 		break;
24134 	case CDROMSDRVSPEED:
24135 		/* Convert the speed code to KB/sec */
24136 		switch ((uchar_t)data) {
24137 		case CDROM_NORMAL_SPEED:
24138 			current_speed = SD_SPEED_1X;
24139 			break;
24140 		case CDROM_DOUBLE_SPEED:
24141 			current_speed = 2 * SD_SPEED_1X;
24142 			break;
24143 		case CDROM_QUAD_SPEED:
24144 			current_speed = 4 * SD_SPEED_1X;
24145 			break;
24146 		case CDROM_TWELVE_SPEED:
24147 			current_speed = 12 * SD_SPEED_1X;
24148 			break;
24149 		case CDROM_MAXIMUM_SPEED:
24150 			current_speed = 0xffff;
24151 			break;
24152 		default:
24153 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24154 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24155 			    (uchar_t)data);
24156 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24157 			return (EINVAL);
24158 		}
24159 
24160 		/* Check the request against the drive's max speed. */
24161 		if (current_speed != 0xffff) {
24162 			if (current_speed > max_speed) {
24163 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24164 				return (EINVAL);
24165 			}
24166 		}
24167 
24168 		/*
24169 		 * Build and send the SET SPEED command
24170 		 *
24171 		 * Note: The SET SPEED (0xBB) command used in this routine is
24172 		 * obsolete per the SCSI MMC spec but still supported in the
24173 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24174 		 * therefore the command is still implemented in this routine.
24175 		 */
24176 		bzero(cdb, sizeof (cdb));
24177 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24178 		cdb[2] = (uchar_t)(current_speed >> 8);
24179 		cdb[3] = (uchar_t)current_speed;
24180 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24181 		com->uscsi_cdb	   = (caddr_t)cdb;
24182 		com->uscsi_cdblen  = CDB_GROUP5;
24183 		com->uscsi_bufaddr = NULL;
24184 		com->uscsi_buflen  = 0;
24185 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24186 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24187 		break;
24188 	default:
24189 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24190 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24191 		rval = EINVAL;
24192 	}
24193 
24194 	if (sense) {
24195 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24196 	}
24197 	if (com) {
24198 		kmem_free(com, sizeof (*com));
24199 	}
24200 	return (rval);
24201 }
24202 
24203 
24204 /*
24205  *    Function: sr_pause_resume()
24206  *
24207  * Description: This routine is the driver entry point for handling CD-ROM
24208  *		pause/resume ioctl requests. This only affects the audio play
24209  *		operation.
24210  *
24211  *   Arguments: dev - the device 'dev_t'
24212  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24213  *		      for setting the resume bit of the cdb.
24214  *
24215  * Return Code: the code returned by sd_send_scsi_cmd()
24216  *		EINVAL if invalid mode specified
24217  *
24218  */
24219 
24220 static int
24221 sr_pause_resume(dev_t dev, int cmd)
24222 {
24223 	struct sd_lun		*un;
24224 	struct uscsi_cmd	*com;
24225 	char			cdb[CDB_GROUP1];
24226 	int			rval;
24227 
24228 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24229 		return (ENXIO);
24230 	}
24231 
24232 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24233 	bzero(cdb, CDB_GROUP1);
24234 	cdb[0] = SCMD_PAUSE_RESUME;
24235 	switch (cmd) {
24236 	case CDROMRESUME:
24237 		cdb[8] = 1;
24238 		break;
24239 	case CDROMPAUSE:
24240 		cdb[8] = 0;
24241 		break;
24242 	default:
24243 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24244 		    " Command '%x' Not Supported\n", cmd);
24245 		rval = EINVAL;
24246 		goto done;
24247 	}
24248 
24249 	com->uscsi_cdb    = cdb;
24250 	com->uscsi_cdblen = CDB_GROUP1;
24251 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24252 
24253 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24254 	    SD_PATH_STANDARD);
24255 
24256 done:
24257 	kmem_free(com, sizeof (*com));
24258 	return (rval);
24259 }
24260 
24261 
24262 /*
24263  *    Function: sr_play_msf()
24264  *
24265  * Description: This routine is the driver entry point for handling CD-ROM
24266  *		ioctl requests to output the audio signals at the specified
24267  *		starting address and continue the audio play until the specified
24268  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24269  *		Frame (MSF) format.
24270  *
24271  *   Arguments: dev	- the device 'dev_t'
24272  *		data	- pointer to user provided audio msf structure,
24273  *		          specifying start/end addresses.
24274  *		flag	- this argument is a pass through to ddi_copyxxx()
24275  *		          directly from the mode argument of ioctl().
24276  *
24277  * Return Code: the code returned by sd_send_scsi_cmd()
24278  *		EFAULT if ddi_copyxxx() fails
24279  *		ENXIO if fail ddi_get_soft_state
24280  *		EINVAL if data pointer is NULL
24281  */
24282 
24283 static int
24284 sr_play_msf(dev_t dev, caddr_t data, int flag)
24285 {
24286 	struct sd_lun		*un;
24287 	struct uscsi_cmd	*com;
24288 	struct cdrom_msf	msf_struct;
24289 	struct cdrom_msf	*msf = &msf_struct;
24290 	char			cdb[CDB_GROUP1];
24291 	int			rval;
24292 
24293 	if (data == NULL) {
24294 		return (EINVAL);
24295 	}
24296 
24297 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24298 		return (ENXIO);
24299 	}
24300 
24301 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24302 		return (EFAULT);
24303 	}
24304 
24305 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24306 	bzero(cdb, CDB_GROUP1);
24307 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24308 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24309 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24310 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24311 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24312 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24313 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24314 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24315 	} else {
24316 		cdb[3] = msf->cdmsf_min0;
24317 		cdb[4] = msf->cdmsf_sec0;
24318 		cdb[5] = msf->cdmsf_frame0;
24319 		cdb[6] = msf->cdmsf_min1;
24320 		cdb[7] = msf->cdmsf_sec1;
24321 		cdb[8] = msf->cdmsf_frame1;
24322 	}
24323 	com->uscsi_cdb    = cdb;
24324 	com->uscsi_cdblen = CDB_GROUP1;
24325 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24326 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24327 	    SD_PATH_STANDARD);
24328 	kmem_free(com, sizeof (*com));
24329 	return (rval);
24330 }
24331 
24332 
24333 /*
24334  *    Function: sr_play_trkind()
24335  *
24336  * Description: This routine is the driver entry point for handling CD-ROM
24337  *		ioctl requests to output the audio signals at the specified
24338  *		starting address and continue the audio play until the specified
24339  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24340  *		format.
24341  *
24342  *   Arguments: dev	- the device 'dev_t'
24343  *		data	- pointer to user provided audio track/index structure,
24344  *		          specifying start/end addresses.
24345  *		flag	- this argument is a pass through to ddi_copyxxx()
24346  *		          directly from the mode argument of ioctl().
24347  *
24348  * Return Code: the code returned by sd_send_scsi_cmd()
24349  *		EFAULT if ddi_copyxxx() fails
24350  *		ENXIO if fail ddi_get_soft_state
24351  *		EINVAL if data pointer is NULL
24352  */
24353 
24354 static int
24355 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24356 {
24357 	struct cdrom_ti		ti_struct;
24358 	struct cdrom_ti		*ti = &ti_struct;
24359 	struct uscsi_cmd	*com = NULL;
24360 	char			cdb[CDB_GROUP1];
24361 	int			rval;
24362 
24363 	if (data == NULL) {
24364 		return (EINVAL);
24365 	}
24366 
24367 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24368 		return (EFAULT);
24369 	}
24370 
24371 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24372 	bzero(cdb, CDB_GROUP1);
24373 	cdb[0] = SCMD_PLAYAUDIO_TI;
24374 	cdb[4] = ti->cdti_trk0;
24375 	cdb[5] = ti->cdti_ind0;
24376 	cdb[7] = ti->cdti_trk1;
24377 	cdb[8] = ti->cdti_ind1;
24378 	com->uscsi_cdb    = cdb;
24379 	com->uscsi_cdblen = CDB_GROUP1;
24380 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24381 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24382 	    SD_PATH_STANDARD);
24383 	kmem_free(com, sizeof (*com));
24384 	return (rval);
24385 }
24386 
24387 
24388 /*
24389  *    Function: sr_read_all_subcodes()
24390  *
24391  * Description: This routine is the driver entry point for handling CD-ROM
24392  *		ioctl requests to return raw subcode data while the target is
24393  *		playing audio (CDROMSUBCODE).
24394  *
24395  *   Arguments: dev	- the device 'dev_t'
24396  *		data	- pointer to user provided cdrom subcode structure,
24397  *		          specifying the transfer length and address.
24398  *		flag	- this argument is a pass through to ddi_copyxxx()
24399  *		          directly from the mode argument of ioctl().
24400  *
24401  * Return Code: the code returned by sd_send_scsi_cmd()
24402  *		EFAULT if ddi_copyxxx() fails
24403  *		ENXIO if fail ddi_get_soft_state
24404  *		EINVAL if data pointer is NULL
24405  */
24406 
24407 static int
24408 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24409 {
24410 	struct sd_lun		*un = NULL;
24411 	struct uscsi_cmd	*com = NULL;
24412 	struct cdrom_subcode	*subcode = NULL;
24413 	int			rval;
24414 	size_t			buflen;
24415 	char			cdb[CDB_GROUP5];
24416 
24417 #ifdef _MULTI_DATAMODEL
24418 	/* To support ILP32 applications in an LP64 world */
24419 	struct cdrom_subcode32		cdrom_subcode32;
24420 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24421 #endif
24422 	if (data == NULL) {
24423 		return (EINVAL);
24424 	}
24425 
24426 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24427 		return (ENXIO);
24428 	}
24429 
24430 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24431 
24432 #ifdef _MULTI_DATAMODEL
24433 	switch (ddi_model_convert_from(flag & FMODELS)) {
24434 	case DDI_MODEL_ILP32:
24435 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24436 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24437 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24438 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24439 			return (EFAULT);
24440 		}
24441 		/* Convert the ILP32 uscsi data from the application to LP64 */
24442 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24443 		break;
24444 	case DDI_MODEL_NONE:
24445 		if (ddi_copyin(data, subcode,
24446 		    sizeof (struct cdrom_subcode), flag)) {
24447 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24448 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24449 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24450 			return (EFAULT);
24451 		}
24452 		break;
24453 	}
24454 #else /* ! _MULTI_DATAMODEL */
24455 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24456 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24457 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24458 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24459 		return (EFAULT);
24460 	}
24461 #endif /* _MULTI_DATAMODEL */
24462 
24463 	/*
24464 	 * Since MMC-2 expects max 3 bytes for length, check if the
24465 	 * length input is greater than 3 bytes
24466 	 */
24467 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24468 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24469 		    "sr_read_all_subcodes: "
24470 		    "cdrom transfer length too large: %d (limit %d)\n",
24471 		    subcode->cdsc_length, 0xFFFFFF);
24472 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24473 		return (EINVAL);
24474 	}
24475 
24476 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24477 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24478 	bzero(cdb, CDB_GROUP5);
24479 
24480 	if (un->un_f_mmc_cap == TRUE) {
24481 		cdb[0] = (char)SCMD_READ_CD;
24482 		cdb[2] = (char)0xff;
24483 		cdb[3] = (char)0xff;
24484 		cdb[4] = (char)0xff;
24485 		cdb[5] = (char)0xff;
24486 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24487 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24488 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24489 		cdb[10] = 1;
24490 	} else {
24491 		/*
24492 		 * Note: A vendor specific command (0xDF) is being used her to
24493 		 * request a read of all subcodes.
24494 		 */
24495 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24496 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24497 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24498 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24499 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24500 	}
24501 	com->uscsi_cdb	   = cdb;
24502 	com->uscsi_cdblen  = CDB_GROUP5;
24503 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24504 	com->uscsi_buflen  = buflen;
24505 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24506 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24507 	    SD_PATH_STANDARD);
24508 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24509 	kmem_free(com, sizeof (*com));
24510 	return (rval);
24511 }
24512 
24513 
24514 /*
24515  *    Function: sr_read_subchannel()
24516  *
24517  * Description: This routine is the driver entry point for handling CD-ROM
24518  *		ioctl requests to return the Q sub-channel data of the CD
24519  *		current position block. (CDROMSUBCHNL) The data includes the
24520  *		track number, index number, absolute CD-ROM address (LBA or MSF
24521  *		format per the user) , track relative CD-ROM address (LBA or MSF
24522  *		format per the user), control data and audio status.
24523  *
24524  *   Arguments: dev	- the device 'dev_t'
24525  *		data	- pointer to user provided cdrom sub-channel structure
24526  *		flag	- this argument is a pass through to ddi_copyxxx()
24527  *		          directly from the mode argument of ioctl().
24528  *
24529  * Return Code: the code returned by sd_send_scsi_cmd()
24530  *		EFAULT if ddi_copyxxx() fails
24531  *		ENXIO if fail ddi_get_soft_state
24532  *		EINVAL if data pointer is NULL
24533  */
24534 
24535 static int
24536 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24537 {
24538 	struct sd_lun		*un;
24539 	struct uscsi_cmd	*com;
24540 	struct cdrom_subchnl	subchanel;
24541 	struct cdrom_subchnl	*subchnl = &subchanel;
24542 	char			cdb[CDB_GROUP1];
24543 	caddr_t			buffer;
24544 	int			rval;
24545 
24546 	if (data == NULL) {
24547 		return (EINVAL);
24548 	}
24549 
24550 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24551 	    (un->un_state == SD_STATE_OFFLINE)) {
24552 		return (ENXIO);
24553 	}
24554 
24555 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24556 		return (EFAULT);
24557 	}
24558 
24559 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24560 	bzero(cdb, CDB_GROUP1);
24561 	cdb[0] = SCMD_READ_SUBCHANNEL;
24562 	/* Set the MSF bit based on the user requested address format */
24563 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24564 	/*
24565 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24566 	 * returned
24567 	 */
24568 	cdb[2] = 0x40;
24569 	/*
24570 	 * Set byte 3 to specify the return data format. A value of 0x01
24571 	 * indicates that the CD-ROM current position should be returned.
24572 	 */
24573 	cdb[3] = 0x01;
24574 	cdb[8] = 0x10;
24575 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24576 	com->uscsi_cdb	   = cdb;
24577 	com->uscsi_cdblen  = CDB_GROUP1;
24578 	com->uscsi_bufaddr = buffer;
24579 	com->uscsi_buflen  = 16;
24580 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24581 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24582 	    SD_PATH_STANDARD);
24583 	if (rval != 0) {
24584 		kmem_free(buffer, 16);
24585 		kmem_free(com, sizeof (*com));
24586 		return (rval);
24587 	}
24588 
24589 	/* Process the returned Q sub-channel data */
24590 	subchnl->cdsc_audiostatus = buffer[1];
24591 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24592 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24593 	subchnl->cdsc_trk	= buffer[6];
24594 	subchnl->cdsc_ind	= buffer[7];
24595 	if (subchnl->cdsc_format & CDROM_LBA) {
24596 		subchnl->cdsc_absaddr.lba =
24597 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24598 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24599 		subchnl->cdsc_reladdr.lba =
24600 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24601 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24602 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24603 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24604 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24605 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24606 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24607 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24608 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24609 	} else {
24610 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24611 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24612 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24613 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24614 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24615 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24616 	}
24617 	kmem_free(buffer, 16);
24618 	kmem_free(com, sizeof (*com));
24619 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24620 	    != 0) {
24621 		return (EFAULT);
24622 	}
24623 	return (rval);
24624 }
24625 
24626 
24627 /*
24628  *    Function: sr_read_tocentry()
24629  *
24630  * Description: This routine is the driver entry point for handling CD-ROM
24631  *		ioctl requests to read from the Table of Contents (TOC)
24632  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24633  *		fields, the starting address (LBA or MSF format per the user)
24634  *		and the data mode if the user specified track is a data track.
24635  *
24636  *		Note: The READ HEADER (0x44) command used in this routine is
24637  *		obsolete per the SCSI MMC spec but still supported in the
24638  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24639  *		therefore the command is still implemented in this routine.
24640  *
24641  *   Arguments: dev	- the device 'dev_t'
24642  *		data	- pointer to user provided toc entry structure,
24643  *			  specifying the track # and the address format
24644  *			  (LBA or MSF).
24645  *		flag	- this argument is a pass through to ddi_copyxxx()
24646  *		          directly from the mode argument of ioctl().
24647  *
24648  * Return Code: the code returned by sd_send_scsi_cmd()
24649  *		EFAULT if ddi_copyxxx() fails
24650  *		ENXIO if fail ddi_get_soft_state
24651  *		EINVAL if data pointer is NULL
24652  */
24653 
24654 static int
24655 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24656 {
24657 	struct sd_lun		*un = NULL;
24658 	struct uscsi_cmd	*com;
24659 	struct cdrom_tocentry	toc_entry;
24660 	struct cdrom_tocentry	*entry = &toc_entry;
24661 	caddr_t			buffer;
24662 	int			rval;
24663 	char			cdb[CDB_GROUP1];
24664 
24665 	if (data == NULL) {
24666 		return (EINVAL);
24667 	}
24668 
24669 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24670 	    (un->un_state == SD_STATE_OFFLINE)) {
24671 		return (ENXIO);
24672 	}
24673 
24674 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24675 		return (EFAULT);
24676 	}
24677 
24678 	/* Validate the requested track and address format */
24679 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24680 		return (EINVAL);
24681 	}
24682 
24683 	if (entry->cdte_track == 0) {
24684 		return (EINVAL);
24685 	}
24686 
24687 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24688 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24689 	bzero(cdb, CDB_GROUP1);
24690 
24691 	cdb[0] = SCMD_READ_TOC;
24692 	/* Set the MSF bit based on the user requested address format  */
24693 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24694 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24695 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24696 	} else {
24697 		cdb[6] = entry->cdte_track;
24698 	}
24699 
24700 	/*
24701 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24702 	 * (4 byte TOC response header + 8 byte track descriptor)
24703 	 */
24704 	cdb[8] = 12;
24705 	com->uscsi_cdb	   = cdb;
24706 	com->uscsi_cdblen  = CDB_GROUP1;
24707 	com->uscsi_bufaddr = buffer;
24708 	com->uscsi_buflen  = 0x0C;
24709 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24710 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24711 	    SD_PATH_STANDARD);
24712 	if (rval != 0) {
24713 		kmem_free(buffer, 12);
24714 		kmem_free(com, sizeof (*com));
24715 		return (rval);
24716 	}
24717 
24718 	/* Process the toc entry */
24719 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24720 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24721 	if (entry->cdte_format & CDROM_LBA) {
24722 		entry->cdte_addr.lba =
24723 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24724 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24725 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24726 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24727 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24728 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24729 		/*
24730 		 * Send a READ TOC command using the LBA address format to get
24731 		 * the LBA for the track requested so it can be used in the
24732 		 * READ HEADER request
24733 		 *
24734 		 * Note: The MSF bit of the READ HEADER command specifies the
24735 		 * output format. The block address specified in that command
24736 		 * must be in LBA format.
24737 		 */
24738 		cdb[1] = 0;
24739 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24740 		    SD_PATH_STANDARD);
24741 		if (rval != 0) {
24742 			kmem_free(buffer, 12);
24743 			kmem_free(com, sizeof (*com));
24744 			return (rval);
24745 		}
24746 	} else {
24747 		entry->cdte_addr.msf.minute	= buffer[9];
24748 		entry->cdte_addr.msf.second	= buffer[10];
24749 		entry->cdte_addr.msf.frame	= buffer[11];
24750 		/*
24751 		 * Send a READ TOC command using the LBA address format to get
24752 		 * the LBA for the track requested so it can be used in the
24753 		 * READ HEADER request
24754 		 *
24755 		 * Note: The MSF bit of the READ HEADER command specifies the
24756 		 * output format. The block address specified in that command
24757 		 * must be in LBA format.
24758 		 */
24759 		cdb[1] = 0;
24760 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24761 		    SD_PATH_STANDARD);
24762 		if (rval != 0) {
24763 			kmem_free(buffer, 12);
24764 			kmem_free(com, sizeof (*com));
24765 			return (rval);
24766 		}
24767 	}
24768 
24769 	/*
24770 	 * Build and send the READ HEADER command to determine the data mode of
24771 	 * the user specified track.
24772 	 */
24773 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24774 	    (entry->cdte_track != CDROM_LEADOUT)) {
24775 		bzero(cdb, CDB_GROUP1);
24776 		cdb[0] = SCMD_READ_HEADER;
24777 		cdb[2] = buffer[8];
24778 		cdb[3] = buffer[9];
24779 		cdb[4] = buffer[10];
24780 		cdb[5] = buffer[11];
24781 		cdb[8] = 0x08;
24782 		com->uscsi_buflen = 0x08;
24783 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24784 		    SD_PATH_STANDARD);
24785 		if (rval == 0) {
24786 			entry->cdte_datamode = buffer[0];
24787 		} else {
24788 			/*
24789 			 * READ HEADER command failed, since this is
24790 			 * obsoleted in one spec, its better to return
24791 			 * -1 for an invlid track so that we can still
24792 			 * receive the rest of the TOC data.
24793 			 */
24794 			entry->cdte_datamode = (uchar_t)-1;
24795 		}
24796 	} else {
24797 		entry->cdte_datamode = (uchar_t)-1;
24798 	}
24799 
24800 	kmem_free(buffer, 12);
24801 	kmem_free(com, sizeof (*com));
24802 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24803 		return (EFAULT);
24804 
24805 	return (rval);
24806 }
24807 
24808 
24809 /*
24810  *    Function: sr_read_tochdr()
24811  *
24812  * Description: This routine is the driver entry point for handling CD-ROM
24813  * 		ioctl requests to read the Table of Contents (TOC) header
24814  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24815  *		and ending track numbers
24816  *
24817  *   Arguments: dev	- the device 'dev_t'
24818  *		data	- pointer to user provided toc header structure,
24819  *			  specifying the starting and ending track numbers.
24820  *		flag	- this argument is a pass through to ddi_copyxxx()
24821  *			  directly from the mode argument of ioctl().
24822  *
24823  * Return Code: the code returned by sd_send_scsi_cmd()
24824  *		EFAULT if ddi_copyxxx() fails
24825  *		ENXIO if fail ddi_get_soft_state
24826  *		EINVAL if data pointer is NULL
24827  */
24828 
24829 static int
24830 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24831 {
24832 	struct sd_lun		*un;
24833 	struct uscsi_cmd	*com;
24834 	struct cdrom_tochdr	toc_header;
24835 	struct cdrom_tochdr	*hdr = &toc_header;
24836 	char			cdb[CDB_GROUP1];
24837 	int			rval;
24838 	caddr_t			buffer;
24839 
24840 	if (data == NULL) {
24841 		return (EINVAL);
24842 	}
24843 
24844 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24845 	    (un->un_state == SD_STATE_OFFLINE)) {
24846 		return (ENXIO);
24847 	}
24848 
24849 	buffer = kmem_zalloc(4, KM_SLEEP);
24850 	bzero(cdb, CDB_GROUP1);
24851 	cdb[0] = SCMD_READ_TOC;
24852 	/*
24853 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24854 	 * that the TOC header should be returned
24855 	 */
24856 	cdb[6] = 0x00;
24857 	/*
24858 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24859 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24860 	 */
24861 	cdb[8] = 0x04;
24862 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24863 	com->uscsi_cdb	   = cdb;
24864 	com->uscsi_cdblen  = CDB_GROUP1;
24865 	com->uscsi_bufaddr = buffer;
24866 	com->uscsi_buflen  = 0x04;
24867 	com->uscsi_timeout = 300;
24868 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24869 
24870 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24871 	    SD_PATH_STANDARD);
24872 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24873 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24874 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24875 	} else {
24876 		hdr->cdth_trk0 = buffer[2];
24877 		hdr->cdth_trk1 = buffer[3];
24878 	}
24879 	kmem_free(buffer, 4);
24880 	kmem_free(com, sizeof (*com));
24881 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24882 		return (EFAULT);
24883 	}
24884 	return (rval);
24885 }
24886 
24887 
24888 /*
24889  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24890  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24891  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24892  * digital audio and extended architecture digital audio. These modes are
24893  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24894  * MMC specs.
24895  *
24896  * In addition to support for the various data formats these routines also
24897  * include support for devices that implement only the direct access READ
24898  * commands (0x08, 0x28), devices that implement the READ_CD commands
24899  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24900  * READ CDXA commands (0xD8, 0xDB)
24901  */
24902 
24903 /*
24904  *    Function: sr_read_mode1()
24905  *
24906  * Description: This routine is the driver entry point for handling CD-ROM
24907  *		ioctl read mode1 requests (CDROMREADMODE1).
24908  *
24909  *   Arguments: dev	- the device 'dev_t'
24910  *		data	- pointer to user provided cd read structure specifying
24911  *			  the lba buffer address and length.
24912  *		flag	- this argument is a pass through to ddi_copyxxx()
24913  *			  directly from the mode argument of ioctl().
24914  *
24915  * Return Code: the code returned by sd_send_scsi_cmd()
24916  *		EFAULT if ddi_copyxxx() fails
24917  *		ENXIO if fail ddi_get_soft_state
24918  *		EINVAL if data pointer is NULL
24919  */
24920 
24921 static int
24922 sr_read_mode1(dev_t dev, caddr_t data, int flag)
24923 {
24924 	struct sd_lun		*un;
24925 	struct cdrom_read	mode1_struct;
24926 	struct cdrom_read	*mode1 = &mode1_struct;
24927 	int			rval;
24928 #ifdef _MULTI_DATAMODEL
24929 	/* To support ILP32 applications in an LP64 world */
24930 	struct cdrom_read32	cdrom_read32;
24931 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24932 #endif /* _MULTI_DATAMODEL */
24933 
24934 	if (data == NULL) {
24935 		return (EINVAL);
24936 	}
24937 
24938 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24939 	    (un->un_state == SD_STATE_OFFLINE)) {
24940 		return (ENXIO);
24941 	}
24942 
24943 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24944 	    "sd_read_mode1: entry: un:0x%p\n", un);
24945 
24946 #ifdef _MULTI_DATAMODEL
24947 	switch (ddi_model_convert_from(flag & FMODELS)) {
24948 	case DDI_MODEL_ILP32:
24949 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24950 			return (EFAULT);
24951 		}
24952 		/* Convert the ILP32 uscsi data from the application to LP64 */
24953 		cdrom_read32tocdrom_read(cdrd32, mode1);
24954 		break;
24955 	case DDI_MODEL_NONE:
24956 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24957 			return (EFAULT);
24958 		}
24959 	}
24960 #else /* ! _MULTI_DATAMODEL */
24961 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24962 		return (EFAULT);
24963 	}
24964 #endif /* _MULTI_DATAMODEL */
24965 
24966 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24967 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24968 
24969 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24970 	    "sd_read_mode1: exit: un:0x%p\n", un);
24971 
24972 	return (rval);
24973 }
24974 
24975 
24976 /*
24977  *    Function: sr_read_cd_mode2()
24978  *
24979  * Description: This routine is the driver entry point for handling CD-ROM
24980  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24981  *		support the READ CD (0xBE) command or the 1st generation
24982  *		READ CD (0xD4) command.
24983  *
24984  *   Arguments: dev	- the device 'dev_t'
24985  *		data	- pointer to user provided cd read structure specifying
24986  *			  the lba buffer address and length.
24987  *		flag	- this argument is a pass through to ddi_copyxxx()
24988  *			  directly from the mode argument of ioctl().
24989  *
24990  * Return Code: the code returned by sd_send_scsi_cmd()
24991  *		EFAULT if ddi_copyxxx() fails
24992  *		ENXIO if fail ddi_get_soft_state
24993  *		EINVAL if data pointer is NULL
24994  */
24995 
24996 static int
24997 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24998 {
24999 	struct sd_lun		*un;
25000 	struct uscsi_cmd	*com;
25001 	struct cdrom_read	mode2_struct;
25002 	struct cdrom_read	*mode2 = &mode2_struct;
25003 	uchar_t			cdb[CDB_GROUP5];
25004 	int			nblocks;
25005 	int			rval;
25006 #ifdef _MULTI_DATAMODEL
25007 	/*  To support ILP32 applications in an LP64 world */
25008 	struct cdrom_read32	cdrom_read32;
25009 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25010 #endif /* _MULTI_DATAMODEL */
25011 
25012 	if (data == NULL) {
25013 		return (EINVAL);
25014 	}
25015 
25016 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25017 	    (un->un_state == SD_STATE_OFFLINE)) {
25018 		return (ENXIO);
25019 	}
25020 
25021 #ifdef _MULTI_DATAMODEL
25022 	switch (ddi_model_convert_from(flag & FMODELS)) {
25023 	case DDI_MODEL_ILP32:
25024 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25025 			return (EFAULT);
25026 		}
25027 		/* Convert the ILP32 uscsi data from the application to LP64 */
25028 		cdrom_read32tocdrom_read(cdrd32, mode2);
25029 		break;
25030 	case DDI_MODEL_NONE:
25031 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25032 			return (EFAULT);
25033 		}
25034 		break;
25035 	}
25036 
25037 #else /* ! _MULTI_DATAMODEL */
25038 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25039 		return (EFAULT);
25040 	}
25041 #endif /* _MULTI_DATAMODEL */
25042 
25043 	bzero(cdb, sizeof (cdb));
25044 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25045 		/* Read command supported by 1st generation atapi drives */
25046 		cdb[0] = SCMD_READ_CDD4;
25047 	} else {
25048 		/* Universal CD Access Command */
25049 		cdb[0] = SCMD_READ_CD;
25050 	}
25051 
25052 	/*
25053 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25054 	 */
25055 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25056 
25057 	/* set the start address */
25058 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25059 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25060 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25061 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25062 
25063 	/* set the transfer length */
25064 	nblocks = mode2->cdread_buflen / 2336;
25065 	cdb[6] = (uchar_t)(nblocks >> 16);
25066 	cdb[7] = (uchar_t)(nblocks >> 8);
25067 	cdb[8] = (uchar_t)nblocks;
25068 
25069 	/* set the filter bits */
25070 	cdb[9] = CDROM_READ_CD_USERDATA;
25071 
25072 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25073 	com->uscsi_cdb = (caddr_t)cdb;
25074 	com->uscsi_cdblen = sizeof (cdb);
25075 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25076 	com->uscsi_buflen = mode2->cdread_buflen;
25077 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25078 
25079 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25080 	    SD_PATH_STANDARD);
25081 	kmem_free(com, sizeof (*com));
25082 	return (rval);
25083 }
25084 
25085 
25086 /*
25087  *    Function: sr_read_mode2()
25088  *
25089  * Description: This routine is the driver entry point for handling CD-ROM
25090  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25091  *		do not support the READ CD (0xBE) command.
25092  *
25093  *   Arguments: dev	- the device 'dev_t'
25094  *		data	- pointer to user provided cd read structure specifying
25095  *			  the lba buffer address and length.
25096  *		flag	- this argument is a pass through to ddi_copyxxx()
25097  *			  directly from the mode argument of ioctl().
25098  *
25099  * Return Code: the code returned by sd_send_scsi_cmd()
25100  *		EFAULT if ddi_copyxxx() fails
25101  *		ENXIO if fail ddi_get_soft_state
25102  *		EINVAL if data pointer is NULL
25103  *		EIO if fail to reset block size
25104  *		EAGAIN if commands are in progress in the driver
25105  */
25106 
25107 static int
25108 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25109 {
25110 	struct sd_lun		*un;
25111 	struct cdrom_read	mode2_struct;
25112 	struct cdrom_read	*mode2 = &mode2_struct;
25113 	int			rval;
25114 	uint32_t		restore_blksize;
25115 	struct uscsi_cmd	*com;
25116 	uchar_t			cdb[CDB_GROUP0];
25117 	int			nblocks;
25118 
25119 #ifdef _MULTI_DATAMODEL
25120 	/* To support ILP32 applications in an LP64 world */
25121 	struct cdrom_read32	cdrom_read32;
25122 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25123 #endif /* _MULTI_DATAMODEL */
25124 
25125 	if (data == NULL) {
25126 		return (EINVAL);
25127 	}
25128 
25129 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25130 	    (un->un_state == SD_STATE_OFFLINE)) {
25131 		return (ENXIO);
25132 	}
25133 
25134 	/*
25135 	 * Because this routine will update the device and driver block size
25136 	 * being used we want to make sure there are no commands in progress.
25137 	 * If commands are in progress the user will have to try again.
25138 	 *
25139 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25140 	 * in sdioctl to protect commands from sdioctl through to the top of
25141 	 * sd_uscsi_strategy. See sdioctl for details.
25142 	 */
25143 	mutex_enter(SD_MUTEX(un));
25144 	if (un->un_ncmds_in_driver != 1) {
25145 		mutex_exit(SD_MUTEX(un));
25146 		return (EAGAIN);
25147 	}
25148 	mutex_exit(SD_MUTEX(un));
25149 
25150 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25151 	    "sd_read_mode2: entry: un:0x%p\n", un);
25152 
25153 #ifdef _MULTI_DATAMODEL
25154 	switch (ddi_model_convert_from(flag & FMODELS)) {
25155 	case DDI_MODEL_ILP32:
25156 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25157 			return (EFAULT);
25158 		}
25159 		/* Convert the ILP32 uscsi data from the application to LP64 */
25160 		cdrom_read32tocdrom_read(cdrd32, mode2);
25161 		break;
25162 	case DDI_MODEL_NONE:
25163 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25164 			return (EFAULT);
25165 		}
25166 		break;
25167 	}
25168 #else /* ! _MULTI_DATAMODEL */
25169 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25170 		return (EFAULT);
25171 	}
25172 #endif /* _MULTI_DATAMODEL */
25173 
25174 	/* Store the current target block size for restoration later */
25175 	restore_blksize = un->un_tgt_blocksize;
25176 
25177 	/* Change the device and soft state target block size to 2336 */
25178 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25179 		rval = EIO;
25180 		goto done;
25181 	}
25182 
25183 
25184 	bzero(cdb, sizeof (cdb));
25185 
25186 	/* set READ operation */
25187 	cdb[0] = SCMD_READ;
25188 
25189 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25190 	mode2->cdread_lba >>= 2;
25191 
25192 	/* set the start address */
25193 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25194 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25195 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25196 
25197 	/* set the transfer length */
25198 	nblocks = mode2->cdread_buflen / 2336;
25199 	cdb[4] = (uchar_t)nblocks & 0xFF;
25200 
25201 	/* build command */
25202 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25203 	com->uscsi_cdb = (caddr_t)cdb;
25204 	com->uscsi_cdblen = sizeof (cdb);
25205 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25206 	com->uscsi_buflen = mode2->cdread_buflen;
25207 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25208 
25209 	/*
25210 	 * Issue SCSI command with user space address for read buffer.
25211 	 *
25212 	 * This sends the command through main channel in the driver.
25213 	 *
25214 	 * Since this is accessed via an IOCTL call, we go through the
25215 	 * standard path, so that if the device was powered down, then
25216 	 * it would be 'awakened' to handle the command.
25217 	 */
25218 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25219 	    SD_PATH_STANDARD);
25220 
25221 	kmem_free(com, sizeof (*com));
25222 
25223 	/* Restore the device and soft state target block size */
25224 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25225 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25226 		    "can't do switch back to mode 1\n");
25227 		/*
25228 		 * If sd_send_scsi_READ succeeded we still need to report
25229 		 * an error because we failed to reset the block size
25230 		 */
25231 		if (rval == 0) {
25232 			rval = EIO;
25233 		}
25234 	}
25235 
25236 done:
25237 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25238 	    "sd_read_mode2: exit: un:0x%p\n", un);
25239 
25240 	return (rval);
25241 }
25242 
25243 
25244 /*
25245  *    Function: sr_sector_mode()
25246  *
25247  * Description: This utility function is used by sr_read_mode2 to set the target
25248  *		block size based on the user specified size. This is a legacy
25249  *		implementation based upon a vendor specific mode page
25250  *
25251  *   Arguments: dev	- the device 'dev_t'
25252  *		data	- flag indicating if block size is being set to 2336 or
25253  *			  512.
25254  *
25255  * Return Code: the code returned by sd_send_scsi_cmd()
25256  *		EFAULT if ddi_copyxxx() fails
25257  *		ENXIO if fail ddi_get_soft_state
25258  *		EINVAL if data pointer is NULL
25259  */
25260 
25261 static int
25262 sr_sector_mode(dev_t dev, uint32_t blksize)
25263 {
25264 	struct sd_lun	*un;
25265 	uchar_t		*sense;
25266 	uchar_t		*select;
25267 	int		rval;
25268 
25269 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25270 	    (un->un_state == SD_STATE_OFFLINE)) {
25271 		return (ENXIO);
25272 	}
25273 
25274 	sense = kmem_zalloc(20, KM_SLEEP);
25275 
25276 	/* Note: This is a vendor specific mode page (0x81) */
25277 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25278 	    SD_PATH_STANDARD)) != 0) {
25279 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25280 		    "sr_sector_mode: Mode Sense failed\n");
25281 		kmem_free(sense, 20);
25282 		return (rval);
25283 	}
25284 	select = kmem_zalloc(20, KM_SLEEP);
25285 	select[3] = 0x08;
25286 	select[10] = ((blksize >> 8) & 0xff);
25287 	select[11] = (blksize & 0xff);
25288 	select[12] = 0x01;
25289 	select[13] = 0x06;
25290 	select[14] = sense[14];
25291 	select[15] = sense[15];
25292 	if (blksize == SD_MODE2_BLKSIZE) {
25293 		select[14] |= 0x01;
25294 	}
25295 
25296 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25297 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25298 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25299 		    "sr_sector_mode: Mode Select failed\n");
25300 	} else {
25301 		/*
25302 		 * Only update the softstate block size if we successfully
25303 		 * changed the device block mode.
25304 		 */
25305 		mutex_enter(SD_MUTEX(un));
25306 		sd_update_block_info(un, blksize, 0);
25307 		mutex_exit(SD_MUTEX(un));
25308 	}
25309 	kmem_free(sense, 20);
25310 	kmem_free(select, 20);
25311 	return (rval);
25312 }
25313 
25314 
25315 /*
25316  *    Function: sr_read_cdda()
25317  *
25318  * Description: This routine is the driver entry point for handling CD-ROM
25319  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25320  *		the target supports CDDA these requests are handled via a vendor
25321  *		specific command (0xD8) If the target does not support CDDA
25322  *		these requests are handled via the READ CD command (0xBE).
25323  *
25324  *   Arguments: dev	- the device 'dev_t'
25325  *		data	- pointer to user provided CD-DA structure specifying
25326  *			  the track starting address, transfer length, and
25327  *			  subcode options.
25328  *		flag	- this argument is a pass through to ddi_copyxxx()
25329  *			  directly from the mode argument of ioctl().
25330  *
25331  * Return Code: the code returned by sd_send_scsi_cmd()
25332  *		EFAULT if ddi_copyxxx() fails
25333  *		ENXIO if fail ddi_get_soft_state
25334  *		EINVAL if invalid arguments are provided
25335  *		ENOTTY
25336  */
25337 
25338 static int
25339 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25340 {
25341 	struct sd_lun			*un;
25342 	struct uscsi_cmd		*com;
25343 	struct cdrom_cdda		*cdda;
25344 	int				rval;
25345 	size_t				buflen;
25346 	char				cdb[CDB_GROUP5];
25347 
25348 #ifdef _MULTI_DATAMODEL
25349 	/* To support ILP32 applications in an LP64 world */
25350 	struct cdrom_cdda32	cdrom_cdda32;
25351 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25352 #endif /* _MULTI_DATAMODEL */
25353 
25354 	if (data == NULL) {
25355 		return (EINVAL);
25356 	}
25357 
25358 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25359 		return (ENXIO);
25360 	}
25361 
25362 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25363 
25364 #ifdef _MULTI_DATAMODEL
25365 	switch (ddi_model_convert_from(flag & FMODELS)) {
25366 	case DDI_MODEL_ILP32:
25367 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25368 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25369 			    "sr_read_cdda: ddi_copyin Failed\n");
25370 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25371 			return (EFAULT);
25372 		}
25373 		/* Convert the ILP32 uscsi data from the application to LP64 */
25374 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25375 		break;
25376 	case DDI_MODEL_NONE:
25377 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25378 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25379 			    "sr_read_cdda: ddi_copyin Failed\n");
25380 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25381 			return (EFAULT);
25382 		}
25383 		break;
25384 	}
25385 #else /* ! _MULTI_DATAMODEL */
25386 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25387 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25388 		    "sr_read_cdda: ddi_copyin Failed\n");
25389 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25390 		return (EFAULT);
25391 	}
25392 #endif /* _MULTI_DATAMODEL */
25393 
25394 	/*
25395 	 * Since MMC-2 expects max 3 bytes for length, check if the
25396 	 * length input is greater than 3 bytes
25397 	 */
25398 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25399 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25400 		    "cdrom transfer length too large: %d (limit %d)\n",
25401 		    cdda->cdda_length, 0xFFFFFF);
25402 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25403 		return (EINVAL);
25404 	}
25405 
25406 	switch (cdda->cdda_subcode) {
25407 	case CDROM_DA_NO_SUBCODE:
25408 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25409 		break;
25410 	case CDROM_DA_SUBQ:
25411 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25412 		break;
25413 	case CDROM_DA_ALL_SUBCODE:
25414 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25415 		break;
25416 	case CDROM_DA_SUBCODE_ONLY:
25417 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25418 		break;
25419 	default:
25420 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25421 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25422 		    cdda->cdda_subcode);
25423 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25424 		return (EINVAL);
25425 	}
25426 
25427 	/* Build and send the command */
25428 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25429 	bzero(cdb, CDB_GROUP5);
25430 
25431 	if (un->un_f_cfg_cdda == TRUE) {
25432 		cdb[0] = (char)SCMD_READ_CD;
25433 		cdb[1] = 0x04;
25434 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25435 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25436 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25437 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25438 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25439 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25440 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25441 		cdb[9] = 0x10;
25442 		switch (cdda->cdda_subcode) {
25443 		case CDROM_DA_NO_SUBCODE :
25444 			cdb[10] = 0x0;
25445 			break;
25446 		case CDROM_DA_SUBQ :
25447 			cdb[10] = 0x2;
25448 			break;
25449 		case CDROM_DA_ALL_SUBCODE :
25450 			cdb[10] = 0x1;
25451 			break;
25452 		case CDROM_DA_SUBCODE_ONLY :
25453 			/* FALLTHROUGH */
25454 		default :
25455 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25456 			kmem_free(com, sizeof (*com));
25457 			return (ENOTTY);
25458 		}
25459 	} else {
25460 		cdb[0] = (char)SCMD_READ_CDDA;
25461 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25462 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25463 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25464 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25465 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25466 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25467 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25468 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25469 		cdb[10] = cdda->cdda_subcode;
25470 	}
25471 
25472 	com->uscsi_cdb = cdb;
25473 	com->uscsi_cdblen = CDB_GROUP5;
25474 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25475 	com->uscsi_buflen = buflen;
25476 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25477 
25478 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25479 	    SD_PATH_STANDARD);
25480 
25481 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25482 	kmem_free(com, sizeof (*com));
25483 	return (rval);
25484 }
25485 
25486 
25487 /*
25488  *    Function: sr_read_cdxa()
25489  *
25490  * Description: This routine is the driver entry point for handling CD-ROM
25491  *		ioctl requests to return CD-XA (Extended Architecture) data.
25492  *		(CDROMCDXA).
25493  *
25494  *   Arguments: dev	- the device 'dev_t'
25495  *		data	- pointer to user provided CD-XA structure specifying
25496  *			  the data starting address, transfer length, and format
25497  *		flag	- this argument is a pass through to ddi_copyxxx()
25498  *			  directly from the mode argument of ioctl().
25499  *
25500  * Return Code: the code returned by sd_send_scsi_cmd()
25501  *		EFAULT if ddi_copyxxx() fails
25502  *		ENXIO if fail ddi_get_soft_state
25503  *		EINVAL if data pointer is NULL
25504  */
25505 
25506 static int
25507 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25508 {
25509 	struct sd_lun		*un;
25510 	struct uscsi_cmd	*com;
25511 	struct cdrom_cdxa	*cdxa;
25512 	int			rval;
25513 	size_t			buflen;
25514 	char			cdb[CDB_GROUP5];
25515 	uchar_t			read_flags;
25516 
25517 #ifdef _MULTI_DATAMODEL
25518 	/* To support ILP32 applications in an LP64 world */
25519 	struct cdrom_cdxa32		cdrom_cdxa32;
25520 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25521 #endif /* _MULTI_DATAMODEL */
25522 
25523 	if (data == NULL) {
25524 		return (EINVAL);
25525 	}
25526 
25527 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25528 		return (ENXIO);
25529 	}
25530 
25531 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25532 
25533 #ifdef _MULTI_DATAMODEL
25534 	switch (ddi_model_convert_from(flag & FMODELS)) {
25535 	case DDI_MODEL_ILP32:
25536 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25537 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25538 			return (EFAULT);
25539 		}
25540 		/*
25541 		 * Convert the ILP32 uscsi data from the
25542 		 * application to LP64 for internal use.
25543 		 */
25544 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25545 		break;
25546 	case DDI_MODEL_NONE:
25547 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25548 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25549 			return (EFAULT);
25550 		}
25551 		break;
25552 	}
25553 #else /* ! _MULTI_DATAMODEL */
25554 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25555 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25556 		return (EFAULT);
25557 	}
25558 #endif /* _MULTI_DATAMODEL */
25559 
25560 	/*
25561 	 * Since MMC-2 expects max 3 bytes for length, check if the
25562 	 * length input is greater than 3 bytes
25563 	 */
25564 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25565 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25566 		    "cdrom transfer length too large: %d (limit %d)\n",
25567 		    cdxa->cdxa_length, 0xFFFFFF);
25568 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25569 		return (EINVAL);
25570 	}
25571 
25572 	switch (cdxa->cdxa_format) {
25573 	case CDROM_XA_DATA:
25574 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25575 		read_flags = 0x10;
25576 		break;
25577 	case CDROM_XA_SECTOR_DATA:
25578 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25579 		read_flags = 0xf8;
25580 		break;
25581 	case CDROM_XA_DATA_W_ERROR:
25582 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25583 		read_flags = 0xfc;
25584 		break;
25585 	default:
25586 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25587 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25588 		    cdxa->cdxa_format);
25589 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25590 		return (EINVAL);
25591 	}
25592 
25593 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25594 	bzero(cdb, CDB_GROUP5);
25595 	if (un->un_f_mmc_cap == TRUE) {
25596 		cdb[0] = (char)SCMD_READ_CD;
25597 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25598 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25599 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25600 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25601 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25602 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25603 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25604 		cdb[9] = (char)read_flags;
25605 	} else {
25606 		/*
25607 		 * Note: A vendor specific command (0xDB) is being used her to
25608 		 * request a read of all subcodes.
25609 		 */
25610 		cdb[0] = (char)SCMD_READ_CDXA;
25611 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25612 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25613 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25614 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25615 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25616 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25617 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25618 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25619 		cdb[10] = cdxa->cdxa_format;
25620 	}
25621 	com->uscsi_cdb	   = cdb;
25622 	com->uscsi_cdblen  = CDB_GROUP5;
25623 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25624 	com->uscsi_buflen  = buflen;
25625 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25626 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25627 	    SD_PATH_STANDARD);
25628 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25629 	kmem_free(com, sizeof (*com));
25630 	return (rval);
25631 }
25632 
25633 
25634 /*
25635  *    Function: sr_eject()
25636  *
25637  * Description: This routine is the driver entry point for handling CD-ROM
25638  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25639  *
25640  *   Arguments: dev	- the device 'dev_t'
25641  *
25642  * Return Code: the code returned by sd_send_scsi_cmd()
25643  */
25644 
25645 static int
25646 sr_eject(dev_t dev)
25647 {
25648 	struct sd_lun	*un;
25649 	int		rval;
25650 
25651 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25652 	    (un->un_state == SD_STATE_OFFLINE)) {
25653 		return (ENXIO);
25654 	}
25655 
25656 	/*
25657 	 * To prevent race conditions with the eject
25658 	 * command, keep track of an eject command as
25659 	 * it progresses. If we are already handling
25660 	 * an eject command in the driver for the given
25661 	 * unit and another request to eject is received
25662 	 * immediately return EAGAIN so we don't lose
25663 	 * the command if the current eject command fails.
25664 	 */
25665 	mutex_enter(SD_MUTEX(un));
25666 	if (un->un_f_ejecting == TRUE) {
25667 		mutex_exit(SD_MUTEX(un));
25668 		return (EAGAIN);
25669 	}
25670 	un->un_f_ejecting = TRUE;
25671 	mutex_exit(SD_MUTEX(un));
25672 
25673 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25674 	    SD_PATH_STANDARD)) != 0) {
25675 		mutex_enter(SD_MUTEX(un));
25676 		un->un_f_ejecting = FALSE;
25677 		mutex_exit(SD_MUTEX(un));
25678 		return (rval);
25679 	}
25680 
25681 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25682 	    SD_PATH_STANDARD);
25683 
25684 	if (rval == 0) {
25685 		mutex_enter(SD_MUTEX(un));
25686 		sr_ejected(un);
25687 		un->un_mediastate = DKIO_EJECTED;
25688 		un->un_f_ejecting = FALSE;
25689 		cv_broadcast(&un->un_state_cv);
25690 		mutex_exit(SD_MUTEX(un));
25691 	} else {
25692 		mutex_enter(SD_MUTEX(un));
25693 		un->un_f_ejecting = FALSE;
25694 		mutex_exit(SD_MUTEX(un));
25695 	}
25696 	return (rval);
25697 }
25698 
25699 
25700 /*
25701  *    Function: sr_ejected()
25702  *
25703  * Description: This routine updates the soft state structure to invalidate the
25704  *		geometry information after the media has been ejected or a
25705  *		media eject has been detected.
25706  *
25707  *   Arguments: un - driver soft state (unit) structure
25708  */
25709 
25710 static void
25711 sr_ejected(struct sd_lun *un)
25712 {
25713 	struct sd_errstats *stp;
25714 
25715 	ASSERT(un != NULL);
25716 	ASSERT(mutex_owned(SD_MUTEX(un)));
25717 
25718 	un->un_f_blockcount_is_valid	= FALSE;
25719 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25720 	mutex_exit(SD_MUTEX(un));
25721 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25722 	mutex_enter(SD_MUTEX(un));
25723 
25724 	if (un->un_errstats != NULL) {
25725 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25726 		stp->sd_capacity.value.ui64 = 0;
25727 	}
25728 
25729 	/* remove "capacity-of-device" properties */
25730 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25731 	    "device-nblocks");
25732 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25733 	    "device-blksize");
25734 }
25735 
25736 
25737 /*
25738  *    Function: sr_check_wp()
25739  *
25740  * Description: This routine checks the write protection of a removable
25741  *      media disk and hotpluggable devices via the write protect bit of
25742  *      the Mode Page Header device specific field. Some devices choke
25743  *      on unsupported mode page. In order to workaround this issue,
25744  *      this routine has been implemented to use 0x3f mode page(request
25745  *      for all pages) for all device types.
25746  *
25747  *   Arguments: dev		- the device 'dev_t'
25748  *
25749  * Return Code: int indicating if the device is write protected (1) or not (0)
25750  *
25751  *     Context: Kernel thread.
25752  *
25753  */
25754 
25755 static int
25756 sr_check_wp(dev_t dev)
25757 {
25758 	struct sd_lun	*un;
25759 	uchar_t		device_specific;
25760 	uchar_t		*sense;
25761 	int		hdrlen;
25762 	int		rval = FALSE;
25763 
25764 	/*
25765 	 * Note: The return codes for this routine should be reworked to
25766 	 * properly handle the case of a NULL softstate.
25767 	 */
25768 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25769 		return (FALSE);
25770 	}
25771 
25772 	if (un->un_f_cfg_is_atapi == TRUE) {
25773 		/*
25774 		 * The mode page contents are not required; set the allocation
25775 		 * length for the mode page header only
25776 		 */
25777 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25778 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25779 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25780 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25781 			goto err_exit;
25782 		device_specific =
25783 		    ((struct mode_header_grp2 *)sense)->device_specific;
25784 	} else {
25785 		hdrlen = MODE_HEADER_LENGTH;
25786 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25787 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25788 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25789 			goto err_exit;
25790 		device_specific =
25791 		    ((struct mode_header *)sense)->device_specific;
25792 	}
25793 
25794 	/*
25795 	 * Write protect mode sense failed; not all disks
25796 	 * understand this query. Return FALSE assuming that
25797 	 * these devices are not writable.
25798 	 */
25799 	if (device_specific & WRITE_PROTECT) {
25800 		rval = TRUE;
25801 	}
25802 
25803 err_exit:
25804 	kmem_free(sense, hdrlen);
25805 	return (rval);
25806 }
25807 
25808 /*
25809  *    Function: sr_volume_ctrl()
25810  *
25811  * Description: This routine is the driver entry point for handling CD-ROM
25812  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25813  *
25814  *   Arguments: dev	- the device 'dev_t'
25815  *		data	- pointer to user audio volume control structure
25816  *		flag	- this argument is a pass through to ddi_copyxxx()
25817  *			  directly from the mode argument of ioctl().
25818  *
25819  * Return Code: the code returned by sd_send_scsi_cmd()
25820  *		EFAULT if ddi_copyxxx() fails
25821  *		ENXIO if fail ddi_get_soft_state
25822  *		EINVAL if data pointer is NULL
25823  *
25824  */
25825 
25826 static int
25827 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25828 {
25829 	struct sd_lun		*un;
25830 	struct cdrom_volctrl    volume;
25831 	struct cdrom_volctrl    *vol = &volume;
25832 	uchar_t			*sense_page;
25833 	uchar_t			*select_page;
25834 	uchar_t			*sense;
25835 	uchar_t			*select;
25836 	int			sense_buflen;
25837 	int			select_buflen;
25838 	int			rval;
25839 
25840 	if (data == NULL) {
25841 		return (EINVAL);
25842 	}
25843 
25844 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25845 	    (un->un_state == SD_STATE_OFFLINE)) {
25846 		return (ENXIO);
25847 	}
25848 
25849 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25850 		return (EFAULT);
25851 	}
25852 
25853 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25854 		struct mode_header_grp2		*sense_mhp;
25855 		struct mode_header_grp2		*select_mhp;
25856 		int				bd_len;
25857 
25858 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25859 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25860 		    MODEPAGE_AUDIO_CTRL_LEN;
25861 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25862 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25863 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25864 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25865 		    SD_PATH_STANDARD)) != 0) {
25866 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25867 			    "sr_volume_ctrl: Mode Sense Failed\n");
25868 			kmem_free(sense, sense_buflen);
25869 			kmem_free(select, select_buflen);
25870 			return (rval);
25871 		}
25872 		sense_mhp = (struct mode_header_grp2 *)sense;
25873 		select_mhp = (struct mode_header_grp2 *)select;
25874 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25875 		    sense_mhp->bdesc_length_lo;
25876 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25877 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25878 			    "sr_volume_ctrl: Mode Sense returned invalid "
25879 			    "block descriptor length\n");
25880 			kmem_free(sense, sense_buflen);
25881 			kmem_free(select, select_buflen);
25882 			return (EIO);
25883 		}
25884 		sense_page = (uchar_t *)
25885 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25886 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25887 		select_mhp->length_msb = 0;
25888 		select_mhp->length_lsb = 0;
25889 		select_mhp->bdesc_length_hi = 0;
25890 		select_mhp->bdesc_length_lo = 0;
25891 	} else {
25892 		struct mode_header		*sense_mhp, *select_mhp;
25893 
25894 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25895 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25896 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25897 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25898 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25899 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25900 		    SD_PATH_STANDARD)) != 0) {
25901 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25902 			    "sr_volume_ctrl: Mode Sense Failed\n");
25903 			kmem_free(sense, sense_buflen);
25904 			kmem_free(select, select_buflen);
25905 			return (rval);
25906 		}
25907 		sense_mhp  = (struct mode_header *)sense;
25908 		select_mhp = (struct mode_header *)select;
25909 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25910 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25911 			    "sr_volume_ctrl: Mode Sense returned invalid "
25912 			    "block descriptor length\n");
25913 			kmem_free(sense, sense_buflen);
25914 			kmem_free(select, select_buflen);
25915 			return (EIO);
25916 		}
25917 		sense_page = (uchar_t *)
25918 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25919 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25920 		select_mhp->length = 0;
25921 		select_mhp->bdesc_length = 0;
25922 	}
25923 	/*
25924 	 * Note: An audio control data structure could be created and overlayed
25925 	 * on the following in place of the array indexing method implemented.
25926 	 */
25927 
25928 	/* Build the select data for the user volume data */
25929 	select_page[0] = MODEPAGE_AUDIO_CTRL;
25930 	select_page[1] = 0xE;
25931 	/* Set the immediate bit */
25932 	select_page[2] = 0x04;
25933 	/* Zero out reserved fields */
25934 	select_page[3] = 0x00;
25935 	select_page[4] = 0x00;
25936 	/* Return sense data for fields not to be modified */
25937 	select_page[5] = sense_page[5];
25938 	select_page[6] = sense_page[6];
25939 	select_page[7] = sense_page[7];
25940 	/* Set the user specified volume levels for channel 0 and 1 */
25941 	select_page[8] = 0x01;
25942 	select_page[9] = vol->channel0;
25943 	select_page[10] = 0x02;
25944 	select_page[11] = vol->channel1;
25945 	/* Channel 2 and 3 are currently unsupported so return the sense data */
25946 	select_page[12] = sense_page[12];
25947 	select_page[13] = sense_page[13];
25948 	select_page[14] = sense_page[14];
25949 	select_page[15] = sense_page[15];
25950 
25951 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25952 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25953 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25954 	} else {
25955 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25956 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25957 	}
25958 
25959 	kmem_free(sense, sense_buflen);
25960 	kmem_free(select, select_buflen);
25961 	return (rval);
25962 }
25963 
25964 
25965 /*
25966  *    Function: sr_read_sony_session_offset()
25967  *
25968  * Description: This routine is the driver entry point for handling CD-ROM
25969  *		ioctl requests for session offset information. (CDROMREADOFFSET)
25970  *		The address of the first track in the last session of a
25971  *		multi-session CD-ROM is returned
25972  *
25973  *		Note: This routine uses a vendor specific key value in the
25974  *		command control field without implementing any vendor check here
25975  *		or in the ioctl routine.
25976  *
25977  *   Arguments: dev	- the device 'dev_t'
25978  *		data	- pointer to an int to hold the requested address
25979  *		flag	- this argument is a pass through to ddi_copyxxx()
25980  *			  directly from the mode argument of ioctl().
25981  *
25982  * Return Code: the code returned by sd_send_scsi_cmd()
25983  *		EFAULT if ddi_copyxxx() fails
25984  *		ENXIO if fail ddi_get_soft_state
25985  *		EINVAL if data pointer is NULL
25986  */
25987 
25988 static int
25989 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25990 {
25991 	struct sd_lun		*un;
25992 	struct uscsi_cmd	*com;
25993 	caddr_t			buffer;
25994 	char			cdb[CDB_GROUP1];
25995 	int			session_offset = 0;
25996 	int			rval;
25997 
25998 	if (data == NULL) {
25999 		return (EINVAL);
26000 	}
26001 
26002 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26003 	    (un->un_state == SD_STATE_OFFLINE)) {
26004 		return (ENXIO);
26005 	}
26006 
26007 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26008 	bzero(cdb, CDB_GROUP1);
26009 	cdb[0] = SCMD_READ_TOC;
26010 	/*
26011 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26012 	 * (4 byte TOC response header + 8 byte response data)
26013 	 */
26014 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26015 	/* Byte 9 is the control byte. A vendor specific value is used */
26016 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26017 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26018 	com->uscsi_cdb = cdb;
26019 	com->uscsi_cdblen = CDB_GROUP1;
26020 	com->uscsi_bufaddr = buffer;
26021 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26022 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26023 
26024 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26025 	    SD_PATH_STANDARD);
26026 	if (rval != 0) {
26027 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26028 		kmem_free(com, sizeof (*com));
26029 		return (rval);
26030 	}
26031 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26032 		session_offset =
26033 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26034 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26035 		/*
26036 		 * Offset returned offset in current lbasize block's. Convert to
26037 		 * 2k block's to return to the user
26038 		 */
26039 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26040 			session_offset >>= 2;
26041 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26042 			session_offset >>= 1;
26043 		}
26044 	}
26045 
26046 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26047 		rval = EFAULT;
26048 	}
26049 
26050 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26051 	kmem_free(com, sizeof (*com));
26052 	return (rval);
26053 }
26054 
26055 
26056 /*
26057  *    Function: sd_wm_cache_constructor()
26058  *
26059  * Description: Cache Constructor for the wmap cache for the read/modify/write
26060  * 		devices.
26061  *
26062  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26063  *		un	- sd_lun structure for the device.
26064  *		flag	- the km flags passed to constructor
26065  *
26066  * Return Code: 0 on success.
26067  *		-1 on failure.
26068  */
26069 
26070 /*ARGSUSED*/
26071 static int
26072 sd_wm_cache_constructor(void *wm, void *un, int flags)
26073 {
26074 	bzero(wm, sizeof (struct sd_w_map));
26075 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26076 	return (0);
26077 }
26078 
26079 
26080 /*
26081  *    Function: sd_wm_cache_destructor()
26082  *
26083  * Description: Cache destructor for the wmap cache for the read/modify/write
26084  * 		devices.
26085  *
26086  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26087  *		un	- sd_lun structure for the device.
26088  */
26089 /*ARGSUSED*/
26090 static void
26091 sd_wm_cache_destructor(void *wm, void *un)
26092 {
26093 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26094 }
26095 
26096 
26097 /*
26098  *    Function: sd_range_lock()
26099  *
26100  * Description: Lock the range of blocks specified as parameter to ensure
26101  *		that read, modify write is atomic and no other i/o writes
26102  *		to the same location. The range is specified in terms
26103  *		of start and end blocks. Block numbers are the actual
26104  *		media block numbers and not system.
26105  *
26106  *   Arguments: un	- sd_lun structure for the device.
26107  *		startb - The starting block number
26108  *		endb - The end block number
26109  *		typ - type of i/o - simple/read_modify_write
26110  *
26111  * Return Code: wm  - pointer to the wmap structure.
26112  *
26113  *     Context: This routine can sleep.
26114  */
26115 
26116 static struct sd_w_map *
26117 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26118 {
26119 	struct sd_w_map *wmp = NULL;
26120 	struct sd_w_map *sl_wmp = NULL;
26121 	struct sd_w_map *tmp_wmp;
26122 	wm_state state = SD_WM_CHK_LIST;
26123 
26124 
26125 	ASSERT(un != NULL);
26126 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26127 
26128 	mutex_enter(SD_MUTEX(un));
26129 
26130 	while (state != SD_WM_DONE) {
26131 
26132 		switch (state) {
26133 		case SD_WM_CHK_LIST:
26134 			/*
26135 			 * This is the starting state. Check the wmap list
26136 			 * to see if the range is currently available.
26137 			 */
26138 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26139 				/*
26140 				 * If this is a simple write and no rmw
26141 				 * i/o is pending then try to lock the
26142 				 * range as the range should be available.
26143 				 */
26144 				state = SD_WM_LOCK_RANGE;
26145 			} else {
26146 				tmp_wmp = sd_get_range(un, startb, endb);
26147 				if (tmp_wmp != NULL) {
26148 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26149 						/*
26150 						 * Should not keep onlist wmps
26151 						 * while waiting this macro
26152 						 * will also do wmp = NULL;
26153 						 */
26154 						FREE_ONLIST_WMAP(un, wmp);
26155 					}
26156 					/*
26157 					 * sl_wmp is the wmap on which wait
26158 					 * is done, since the tmp_wmp points
26159 					 * to the inuse wmap, set sl_wmp to
26160 					 * tmp_wmp and change the state to sleep
26161 					 */
26162 					sl_wmp = tmp_wmp;
26163 					state = SD_WM_WAIT_MAP;
26164 				} else {
26165 					state = SD_WM_LOCK_RANGE;
26166 				}
26167 
26168 			}
26169 			break;
26170 
26171 		case SD_WM_LOCK_RANGE:
26172 			ASSERT(un->un_wm_cache);
26173 			/*
26174 			 * The range need to be locked, try to get a wmap.
26175 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26176 			 * if possible as we will have to release the sd mutex
26177 			 * if we have to sleep.
26178 			 */
26179 			if (wmp == NULL)
26180 				wmp = kmem_cache_alloc(un->un_wm_cache,
26181 				    KM_NOSLEEP);
26182 			if (wmp == NULL) {
26183 				mutex_exit(SD_MUTEX(un));
26184 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26185 				    (sd_lun::un_wm_cache))
26186 				wmp = kmem_cache_alloc(un->un_wm_cache,
26187 				    KM_SLEEP);
26188 				mutex_enter(SD_MUTEX(un));
26189 				/*
26190 				 * we released the mutex so recheck and go to
26191 				 * check list state.
26192 				 */
26193 				state = SD_WM_CHK_LIST;
26194 			} else {
26195 				/*
26196 				 * We exit out of state machine since we
26197 				 * have the wmap. Do the housekeeping first.
26198 				 * place the wmap on the wmap list if it is not
26199 				 * on it already and then set the state to done.
26200 				 */
26201 				wmp->wm_start = startb;
26202 				wmp->wm_end = endb;
26203 				wmp->wm_flags = typ | SD_WM_BUSY;
26204 				if (typ & SD_WTYPE_RMW) {
26205 					un->un_rmw_count++;
26206 				}
26207 				/*
26208 				 * If not already on the list then link
26209 				 */
26210 				if (!ONLIST(un, wmp)) {
26211 					wmp->wm_next = un->un_wm;
26212 					wmp->wm_prev = NULL;
26213 					if (wmp->wm_next)
26214 						wmp->wm_next->wm_prev = wmp;
26215 					un->un_wm = wmp;
26216 				}
26217 				state = SD_WM_DONE;
26218 			}
26219 			break;
26220 
26221 		case SD_WM_WAIT_MAP:
26222 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26223 			/*
26224 			 * Wait is done on sl_wmp, which is set in the
26225 			 * check_list state.
26226 			 */
26227 			sl_wmp->wm_wanted_count++;
26228 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26229 			sl_wmp->wm_wanted_count--;
26230 			/*
26231 			 * We can reuse the memory from the completed sl_wmp
26232 			 * lock range for our new lock, but only if noone is
26233 			 * waiting for it.
26234 			 */
26235 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26236 			if (sl_wmp->wm_wanted_count == 0) {
26237 				if (wmp != NULL)
26238 					CHK_N_FREEWMP(un, wmp);
26239 				wmp = sl_wmp;
26240 			}
26241 			sl_wmp = NULL;
26242 			/*
26243 			 * After waking up, need to recheck for availability of
26244 			 * range.
26245 			 */
26246 			state = SD_WM_CHK_LIST;
26247 			break;
26248 
26249 		default:
26250 			panic("sd_range_lock: "
26251 			    "Unknown state %d in sd_range_lock", state);
26252 			/*NOTREACHED*/
26253 		} /* switch(state) */
26254 
26255 	} /* while(state != SD_WM_DONE) */
26256 
26257 	mutex_exit(SD_MUTEX(un));
26258 
26259 	ASSERT(wmp != NULL);
26260 
26261 	return (wmp);
26262 }
26263 
26264 
26265 /*
26266  *    Function: sd_get_range()
26267  *
26268  * Description: Find if there any overlapping I/O to this one
26269  *		Returns the write-map of 1st such I/O, NULL otherwise.
26270  *
26271  *   Arguments: un	- sd_lun structure for the device.
26272  *		startb - The starting block number
26273  *		endb - The end block number
26274  *
26275  * Return Code: wm  - pointer to the wmap structure.
26276  */
26277 
26278 static struct sd_w_map *
26279 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26280 {
26281 	struct sd_w_map *wmp;
26282 
26283 	ASSERT(un != NULL);
26284 
26285 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26286 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26287 			continue;
26288 		}
26289 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26290 			break;
26291 		}
26292 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26293 			break;
26294 		}
26295 	}
26296 
26297 	return (wmp);
26298 }
26299 
26300 
26301 /*
26302  *    Function: sd_free_inlist_wmap()
26303  *
26304  * Description: Unlink and free a write map struct.
26305  *
26306  *   Arguments: un      - sd_lun structure for the device.
26307  *		wmp	- sd_w_map which needs to be unlinked.
26308  */
26309 
26310 static void
26311 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26312 {
26313 	ASSERT(un != NULL);
26314 
26315 	if (un->un_wm == wmp) {
26316 		un->un_wm = wmp->wm_next;
26317 	} else {
26318 		wmp->wm_prev->wm_next = wmp->wm_next;
26319 	}
26320 
26321 	if (wmp->wm_next) {
26322 		wmp->wm_next->wm_prev = wmp->wm_prev;
26323 	}
26324 
26325 	wmp->wm_next = wmp->wm_prev = NULL;
26326 
26327 	kmem_cache_free(un->un_wm_cache, wmp);
26328 }
26329 
26330 
26331 /*
26332  *    Function: sd_range_unlock()
26333  *
26334  * Description: Unlock the range locked by wm.
26335  *		Free write map if nobody else is waiting on it.
26336  *
26337  *   Arguments: un      - sd_lun structure for the device.
26338  *              wmp     - sd_w_map which needs to be unlinked.
26339  */
26340 
26341 static void
26342 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26343 {
26344 	ASSERT(un != NULL);
26345 	ASSERT(wm != NULL);
26346 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26347 
26348 	mutex_enter(SD_MUTEX(un));
26349 
26350 	if (wm->wm_flags & SD_WTYPE_RMW) {
26351 		un->un_rmw_count--;
26352 	}
26353 
26354 	if (wm->wm_wanted_count) {
26355 		wm->wm_flags = 0;
26356 		/*
26357 		 * Broadcast that the wmap is available now.
26358 		 */
26359 		cv_broadcast(&wm->wm_avail);
26360 	} else {
26361 		/*
26362 		 * If no one is waiting on the map, it should be free'ed.
26363 		 */
26364 		sd_free_inlist_wmap(un, wm);
26365 	}
26366 
26367 	mutex_exit(SD_MUTEX(un));
26368 }
26369 
26370 
26371 /*
26372  *    Function: sd_read_modify_write_task
26373  *
26374  * Description: Called from a taskq thread to initiate the write phase of
26375  *		a read-modify-write request.  This is used for targets where
26376  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26377  *
26378  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26379  *
26380  *     Context: Called under taskq thread context.
26381  */
26382 
26383 static void
26384 sd_read_modify_write_task(void *arg)
26385 {
26386 	struct sd_mapblocksize_info	*bsp;
26387 	struct buf	*bp;
26388 	struct sd_xbuf	*xp;
26389 	struct sd_lun	*un;
26390 
26391 	bp = arg;	/* The bp is given in arg */
26392 	ASSERT(bp != NULL);
26393 
26394 	/* Get the pointer to the layer-private data struct */
26395 	xp = SD_GET_XBUF(bp);
26396 	ASSERT(xp != NULL);
26397 	bsp = xp->xb_private;
26398 	ASSERT(bsp != NULL);
26399 
26400 	un = SD_GET_UN(bp);
26401 	ASSERT(un != NULL);
26402 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26403 
26404 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26405 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26406 
26407 	/*
26408 	 * This is the write phase of a read-modify-write request, called
26409 	 * under the context of a taskq thread in response to the completion
26410 	 * of the read portion of the rmw request completing under interrupt
26411 	 * context. The write request must be sent from here down the iostart
26412 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26413 	 * we use the layer index saved in the layer-private data area.
26414 	 */
26415 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26416 
26417 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26418 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26419 }
26420 
26421 
26422 /*
26423  *    Function: sddump_do_read_of_rmw()
26424  *
26425  * Description: This routine will be called from sddump, If sddump is called
26426  *		with an I/O which not aligned on device blocksize boundary
26427  *		then the write has to be converted to read-modify-write.
26428  *		Do the read part here in order to keep sddump simple.
26429  *		Note - That the sd_mutex is held across the call to this
26430  *		routine.
26431  *
26432  *   Arguments: un	- sd_lun
26433  *		blkno	- block number in terms of media block size.
26434  *		nblk	- number of blocks.
26435  *		bpp	- pointer to pointer to the buf structure. On return
26436  *			from this function, *bpp points to the valid buffer
26437  *			to which the write has to be done.
26438  *
26439  * Return Code: 0 for success or errno-type return code
26440  */
26441 
26442 static int
26443 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26444 	struct buf **bpp)
26445 {
26446 	int err;
26447 	int i;
26448 	int rval;
26449 	struct buf *bp;
26450 	struct scsi_pkt *pkt = NULL;
26451 	uint32_t target_blocksize;
26452 
26453 	ASSERT(un != NULL);
26454 	ASSERT(mutex_owned(SD_MUTEX(un)));
26455 
26456 	target_blocksize = un->un_tgt_blocksize;
26457 
26458 	mutex_exit(SD_MUTEX(un));
26459 
26460 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26461 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26462 	if (bp == NULL) {
26463 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26464 		    "no resources for dumping; giving up");
26465 		err = ENOMEM;
26466 		goto done;
26467 	}
26468 
26469 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26470 	    blkno, nblk);
26471 	if (rval != 0) {
26472 		scsi_free_consistent_buf(bp);
26473 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26474 		    "no resources for dumping; giving up");
26475 		err = ENOMEM;
26476 		goto done;
26477 	}
26478 
26479 	pkt->pkt_flags |= FLAG_NOINTR;
26480 
26481 	err = EIO;
26482 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26483 
26484 		/*
26485 		 * Scsi_poll returns 0 (success) if the command completes and
26486 		 * the status block is STATUS_GOOD.  We should only check
26487 		 * errors if this condition is not true.  Even then we should
26488 		 * send our own request sense packet only if we have a check
26489 		 * condition and auto request sense has not been performed by
26490 		 * the hba.
26491 		 */
26492 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26493 
26494 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26495 			err = 0;
26496 			break;
26497 		}
26498 
26499 		/*
26500 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26501 		 * no need to read RQS data.
26502 		 */
26503 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26504 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26505 			    "Device is gone\n");
26506 			break;
26507 		}
26508 
26509 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26510 			SD_INFO(SD_LOG_DUMP, un,
26511 			    "sddump: read failed with CHECK, try # %d\n", i);
26512 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26513 				(void) sd_send_polled_RQS(un);
26514 			}
26515 
26516 			continue;
26517 		}
26518 
26519 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26520 			int reset_retval = 0;
26521 
26522 			SD_INFO(SD_LOG_DUMP, un,
26523 			    "sddump: read failed with BUSY, try # %d\n", i);
26524 
26525 			if (un->un_f_lun_reset_enabled == TRUE) {
26526 				reset_retval = scsi_reset(SD_ADDRESS(un),
26527 				    RESET_LUN);
26528 			}
26529 			if (reset_retval == 0) {
26530 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26531 			}
26532 			(void) sd_send_polled_RQS(un);
26533 
26534 		} else {
26535 			SD_INFO(SD_LOG_DUMP, un,
26536 			    "sddump: read failed with 0x%x, try # %d\n",
26537 			    SD_GET_PKT_STATUS(pkt), i);
26538 			mutex_enter(SD_MUTEX(un));
26539 			sd_reset_target(un, pkt);
26540 			mutex_exit(SD_MUTEX(un));
26541 		}
26542 
26543 		/*
26544 		 * If we are not getting anywhere with lun/target resets,
26545 		 * let's reset the bus.
26546 		 */
26547 		if (i > SD_NDUMP_RETRIES/2) {
26548 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26549 			(void) sd_send_polled_RQS(un);
26550 		}
26551 
26552 	}
26553 	scsi_destroy_pkt(pkt);
26554 
26555 	if (err != 0) {
26556 		scsi_free_consistent_buf(bp);
26557 		*bpp = NULL;
26558 	} else {
26559 		*bpp = bp;
26560 	}
26561 
26562 done:
26563 	mutex_enter(SD_MUTEX(un));
26564 	return (err);
26565 }
26566 
26567 
26568 /*
26569  *    Function: sd_failfast_flushq
26570  *
26571  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26572  *		in b_flags and move them onto the failfast queue, then kick
26573  *		off a thread to return all bp's on the failfast queue to
26574  *		their owners with an error set.
26575  *
26576  *   Arguments: un - pointer to the soft state struct for the instance.
26577  *
26578  *     Context: may execute in interrupt context.
26579  */
26580 
26581 static void
26582 sd_failfast_flushq(struct sd_lun *un)
26583 {
26584 	struct buf *bp;
26585 	struct buf *next_waitq_bp;
26586 	struct buf *prev_waitq_bp = NULL;
26587 
26588 	ASSERT(un != NULL);
26589 	ASSERT(mutex_owned(SD_MUTEX(un)));
26590 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26591 	ASSERT(un->un_failfast_bp == NULL);
26592 
26593 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26594 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26595 
26596 	/*
26597 	 * Check if we should flush all bufs when entering failfast state, or
26598 	 * just those with B_FAILFAST set.
26599 	 */
26600 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26601 		/*
26602 		 * Move *all* bp's on the wait queue to the failfast flush
26603 		 * queue, including those that do NOT have B_FAILFAST set.
26604 		 */
26605 		if (un->un_failfast_headp == NULL) {
26606 			ASSERT(un->un_failfast_tailp == NULL);
26607 			un->un_failfast_headp = un->un_waitq_headp;
26608 		} else {
26609 			ASSERT(un->un_failfast_tailp != NULL);
26610 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26611 		}
26612 
26613 		un->un_failfast_tailp = un->un_waitq_tailp;
26614 
26615 		/* update kstat for each bp moved out of the waitq */
26616 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26617 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26618 		}
26619 
26620 		/* empty the waitq */
26621 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26622 
26623 	} else {
26624 		/*
26625 		 * Go thru the wait queue, pick off all entries with
26626 		 * B_FAILFAST set, and move these onto the failfast queue.
26627 		 */
26628 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26629 			/*
26630 			 * Save the pointer to the next bp on the wait queue,
26631 			 * so we get to it on the next iteration of this loop.
26632 			 */
26633 			next_waitq_bp = bp->av_forw;
26634 
26635 			/*
26636 			 * If this bp from the wait queue does NOT have
26637 			 * B_FAILFAST set, just move on to the next element
26638 			 * in the wait queue. Note, this is the only place
26639 			 * where it is correct to set prev_waitq_bp.
26640 			 */
26641 			if ((bp->b_flags & B_FAILFAST) == 0) {
26642 				prev_waitq_bp = bp;
26643 				continue;
26644 			}
26645 
26646 			/*
26647 			 * Remove the bp from the wait queue.
26648 			 */
26649 			if (bp == un->un_waitq_headp) {
26650 				/* The bp is the first element of the waitq. */
26651 				un->un_waitq_headp = next_waitq_bp;
26652 				if (un->un_waitq_headp == NULL) {
26653 					/* The wait queue is now empty */
26654 					un->un_waitq_tailp = NULL;
26655 				}
26656 			} else {
26657 				/*
26658 				 * The bp is either somewhere in the middle
26659 				 * or at the end of the wait queue.
26660 				 */
26661 				ASSERT(un->un_waitq_headp != NULL);
26662 				ASSERT(prev_waitq_bp != NULL);
26663 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26664 				    == 0);
26665 				if (bp == un->un_waitq_tailp) {
26666 					/* bp is the last entry on the waitq. */
26667 					ASSERT(next_waitq_bp == NULL);
26668 					un->un_waitq_tailp = prev_waitq_bp;
26669 				}
26670 				prev_waitq_bp->av_forw = next_waitq_bp;
26671 			}
26672 			bp->av_forw = NULL;
26673 
26674 			/*
26675 			 * update kstat since the bp is moved out of
26676 			 * the waitq
26677 			 */
26678 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26679 
26680 			/*
26681 			 * Now put the bp onto the failfast queue.
26682 			 */
26683 			if (un->un_failfast_headp == NULL) {
26684 				/* failfast queue is currently empty */
26685 				ASSERT(un->un_failfast_tailp == NULL);
26686 				un->un_failfast_headp =
26687 				    un->un_failfast_tailp = bp;
26688 			} else {
26689 				/* Add the bp to the end of the failfast q */
26690 				ASSERT(un->un_failfast_tailp != NULL);
26691 				ASSERT(un->un_failfast_tailp->b_flags &
26692 				    B_FAILFAST);
26693 				un->un_failfast_tailp->av_forw = bp;
26694 				un->un_failfast_tailp = bp;
26695 			}
26696 		}
26697 	}
26698 
26699 	/*
26700 	 * Now return all bp's on the failfast queue to their owners.
26701 	 */
26702 	while ((bp = un->un_failfast_headp) != NULL) {
26703 
26704 		un->un_failfast_headp = bp->av_forw;
26705 		if (un->un_failfast_headp == NULL) {
26706 			un->un_failfast_tailp = NULL;
26707 		}
26708 
26709 		/*
26710 		 * We want to return the bp with a failure error code, but
26711 		 * we do not want a call to sd_start_cmds() to occur here,
26712 		 * so use sd_return_failed_command_no_restart() instead of
26713 		 * sd_return_failed_command().
26714 		 */
26715 		sd_return_failed_command_no_restart(un, bp, EIO);
26716 	}
26717 
26718 	/* Flush the xbuf queues if required. */
26719 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26720 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26721 	}
26722 
26723 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26724 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26725 }
26726 
26727 
26728 /*
26729  *    Function: sd_failfast_flushq_callback
26730  *
26731  * Description: Return TRUE if the given bp meets the criteria for failfast
26732  *		flushing. Used with ddi_xbuf_flushq(9F).
26733  *
26734  *   Arguments: bp - ptr to buf struct to be examined.
26735  *
26736  *     Context: Any
26737  */
26738 
26739 static int
26740 sd_failfast_flushq_callback(struct buf *bp)
26741 {
26742 	/*
26743 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26744 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26745 	 */
26746 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26747 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26748 }
26749 
26750 
26751 
26752 #if defined(__i386) || defined(__amd64)
26753 /*
26754  * Function: sd_setup_next_xfer
26755  *
26756  * Description: Prepare next I/O operation using DMA_PARTIAL
26757  *
26758  */
26759 
26760 static int
26761 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26762     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26763 {
26764 	ssize_t	num_blks_not_xfered;
26765 	daddr_t	strt_blk_num;
26766 	ssize_t	bytes_not_xfered;
26767 	int	rval;
26768 
26769 	ASSERT(pkt->pkt_resid == 0);
26770 
26771 	/*
26772 	 * Calculate next block number and amount to be transferred.
26773 	 *
26774 	 * How much data NOT transfered to the HBA yet.
26775 	 */
26776 	bytes_not_xfered = xp->xb_dma_resid;
26777 
26778 	/*
26779 	 * figure how many blocks NOT transfered to the HBA yet.
26780 	 */
26781 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26782 
26783 	/*
26784 	 * set starting block number to the end of what WAS transfered.
26785 	 */
26786 	strt_blk_num = xp->xb_blkno +
26787 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26788 
26789 	/*
26790 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26791 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26792 	 * the disk mutex here.
26793 	 */
26794 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26795 	    strt_blk_num, num_blks_not_xfered);
26796 
26797 	if (rval == 0) {
26798 
26799 		/*
26800 		 * Success.
26801 		 *
26802 		 * Adjust things if there are still more blocks to be
26803 		 * transfered.
26804 		 */
26805 		xp->xb_dma_resid = pkt->pkt_resid;
26806 		pkt->pkt_resid = 0;
26807 
26808 		return (1);
26809 	}
26810 
26811 	/*
26812 	 * There's really only one possible return value from
26813 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26814 	 * returns NULL.
26815 	 */
26816 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26817 
26818 	bp->b_resid = bp->b_bcount;
26819 	bp->b_flags |= B_ERROR;
26820 
26821 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26822 	    "Error setting up next portion of DMA transfer\n");
26823 
26824 	return (0);
26825 }
26826 #endif
26827 
26828 /*
26829  *    Function: sd_panic_for_res_conflict
26830  *
26831  * Description: Call panic with a string formatted with "Reservation Conflict"
26832  *		and a human readable identifier indicating the SD instance
26833  *		that experienced the reservation conflict.
26834  *
26835  *   Arguments: un - pointer to the soft state struct for the instance.
26836  *
26837  *     Context: may execute in interrupt context.
26838  */
26839 
26840 #define	SD_RESV_CONFLICT_FMT_LEN 40
26841 void
26842 sd_panic_for_res_conflict(struct sd_lun *un)
26843 {
26844 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26845 	char path_str[MAXPATHLEN];
26846 
26847 	(void) snprintf(panic_str, sizeof (panic_str),
26848 	    "Reservation Conflict\nDisk: %s",
26849 	    ddi_pathname(SD_DEVINFO(un), path_str));
26850 
26851 	panic(panic_str);
26852 }
26853 
26854 /*
26855  * Note: The following sd_faultinjection_ioctl( ) routines implement
26856  * driver support for handling fault injection for error analysis
26857  * causing faults in multiple layers of the driver.
26858  *
26859  */
26860 
26861 #ifdef SD_FAULT_INJECTION
26862 static uint_t   sd_fault_injection_on = 0;
26863 
26864 /*
26865  *    Function: sd_faultinjection_ioctl()
26866  *
26867  * Description: This routine is the driver entry point for handling
26868  *              faultinjection ioctls to inject errors into the
26869  *              layer model
26870  *
26871  *   Arguments: cmd	- the ioctl cmd received
26872  *		arg	- the arguments from user and returns
26873  */
26874 
26875 static void
26876 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26877 
26878 	uint_t i;
26879 	uint_t rval;
26880 
26881 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26882 
26883 	mutex_enter(SD_MUTEX(un));
26884 
26885 	switch (cmd) {
26886 	case SDIOCRUN:
26887 		/* Allow pushed faults to be injected */
26888 		SD_INFO(SD_LOG_SDTEST, un,
26889 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26890 
26891 		sd_fault_injection_on = 1;
26892 
26893 		SD_INFO(SD_LOG_IOERR, un,
26894 		    "sd_faultinjection_ioctl: run finished\n");
26895 		break;
26896 
26897 	case SDIOCSTART:
26898 		/* Start Injection Session */
26899 		SD_INFO(SD_LOG_SDTEST, un,
26900 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26901 
26902 		sd_fault_injection_on = 0;
26903 		un->sd_injection_mask = 0xFFFFFFFF;
26904 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26905 			un->sd_fi_fifo_pkt[i] = NULL;
26906 			un->sd_fi_fifo_xb[i] = NULL;
26907 			un->sd_fi_fifo_un[i] = NULL;
26908 			un->sd_fi_fifo_arq[i] = NULL;
26909 		}
26910 		un->sd_fi_fifo_start = 0;
26911 		un->sd_fi_fifo_end = 0;
26912 
26913 		mutex_enter(&(un->un_fi_mutex));
26914 		un->sd_fi_log[0] = '\0';
26915 		un->sd_fi_buf_len = 0;
26916 		mutex_exit(&(un->un_fi_mutex));
26917 
26918 		SD_INFO(SD_LOG_IOERR, un,
26919 		    "sd_faultinjection_ioctl: start finished\n");
26920 		break;
26921 
26922 	case SDIOCSTOP:
26923 		/* Stop Injection Session */
26924 		SD_INFO(SD_LOG_SDTEST, un,
26925 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26926 		sd_fault_injection_on = 0;
26927 		un->sd_injection_mask = 0x0;
26928 
26929 		/* Empty stray or unuseds structs from fifo */
26930 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26931 			if (un->sd_fi_fifo_pkt[i] != NULL) {
26932 				kmem_free(un->sd_fi_fifo_pkt[i],
26933 				    sizeof (struct sd_fi_pkt));
26934 			}
26935 			if (un->sd_fi_fifo_xb[i] != NULL) {
26936 				kmem_free(un->sd_fi_fifo_xb[i],
26937 				    sizeof (struct sd_fi_xb));
26938 			}
26939 			if (un->sd_fi_fifo_un[i] != NULL) {
26940 				kmem_free(un->sd_fi_fifo_un[i],
26941 				    sizeof (struct sd_fi_un));
26942 			}
26943 			if (un->sd_fi_fifo_arq[i] != NULL) {
26944 				kmem_free(un->sd_fi_fifo_arq[i],
26945 				    sizeof (struct sd_fi_arq));
26946 			}
26947 			un->sd_fi_fifo_pkt[i] = NULL;
26948 			un->sd_fi_fifo_un[i] = NULL;
26949 			un->sd_fi_fifo_xb[i] = NULL;
26950 			un->sd_fi_fifo_arq[i] = NULL;
26951 		}
26952 		un->sd_fi_fifo_start = 0;
26953 		un->sd_fi_fifo_end = 0;
26954 
26955 		SD_INFO(SD_LOG_IOERR, un,
26956 		    "sd_faultinjection_ioctl: stop finished\n");
26957 		break;
26958 
26959 	case SDIOCINSERTPKT:
26960 		/* Store a packet struct to be pushed onto fifo */
26961 		SD_INFO(SD_LOG_SDTEST, un,
26962 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26963 
26964 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26965 
26966 		sd_fault_injection_on = 0;
26967 
26968 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26969 		if (un->sd_fi_fifo_pkt[i] != NULL) {
26970 			kmem_free(un->sd_fi_fifo_pkt[i],
26971 			    sizeof (struct sd_fi_pkt));
26972 		}
26973 		if (arg != NULL) {
26974 			un->sd_fi_fifo_pkt[i] =
26975 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26976 			if (un->sd_fi_fifo_pkt[i] == NULL) {
26977 				/* Alloc failed don't store anything */
26978 				break;
26979 			}
26980 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26981 			    sizeof (struct sd_fi_pkt), 0);
26982 			if (rval == -1) {
26983 				kmem_free(un->sd_fi_fifo_pkt[i],
26984 				    sizeof (struct sd_fi_pkt));
26985 				un->sd_fi_fifo_pkt[i] = NULL;
26986 			}
26987 		} else {
26988 			SD_INFO(SD_LOG_IOERR, un,
26989 			    "sd_faultinjection_ioctl: pkt null\n");
26990 		}
26991 		break;
26992 
26993 	case SDIOCINSERTXB:
26994 		/* Store a xb struct to be pushed onto fifo */
26995 		SD_INFO(SD_LOG_SDTEST, un,
26996 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26997 
26998 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26999 
27000 		sd_fault_injection_on = 0;
27001 
27002 		if (un->sd_fi_fifo_xb[i] != NULL) {
27003 			kmem_free(un->sd_fi_fifo_xb[i],
27004 			    sizeof (struct sd_fi_xb));
27005 			un->sd_fi_fifo_xb[i] = NULL;
27006 		}
27007 		if (arg != NULL) {
27008 			un->sd_fi_fifo_xb[i] =
27009 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27010 			if (un->sd_fi_fifo_xb[i] == NULL) {
27011 				/* Alloc failed don't store anything */
27012 				break;
27013 			}
27014 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27015 			    sizeof (struct sd_fi_xb), 0);
27016 
27017 			if (rval == -1) {
27018 				kmem_free(un->sd_fi_fifo_xb[i],
27019 				    sizeof (struct sd_fi_xb));
27020 				un->sd_fi_fifo_xb[i] = NULL;
27021 			}
27022 		} else {
27023 			SD_INFO(SD_LOG_IOERR, un,
27024 			    "sd_faultinjection_ioctl: xb null\n");
27025 		}
27026 		break;
27027 
27028 	case SDIOCINSERTUN:
27029 		/* Store a un struct to be pushed onto fifo */
27030 		SD_INFO(SD_LOG_SDTEST, un,
27031 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27032 
27033 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27034 
27035 		sd_fault_injection_on = 0;
27036 
27037 		if (un->sd_fi_fifo_un[i] != NULL) {
27038 			kmem_free(un->sd_fi_fifo_un[i],
27039 			    sizeof (struct sd_fi_un));
27040 			un->sd_fi_fifo_un[i] = NULL;
27041 		}
27042 		if (arg != NULL) {
27043 			un->sd_fi_fifo_un[i] =
27044 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27045 			if (un->sd_fi_fifo_un[i] == NULL) {
27046 				/* Alloc failed don't store anything */
27047 				break;
27048 			}
27049 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27050 			    sizeof (struct sd_fi_un), 0);
27051 			if (rval == -1) {
27052 				kmem_free(un->sd_fi_fifo_un[i],
27053 				    sizeof (struct sd_fi_un));
27054 				un->sd_fi_fifo_un[i] = NULL;
27055 			}
27056 
27057 		} else {
27058 			SD_INFO(SD_LOG_IOERR, un,
27059 			    "sd_faultinjection_ioctl: un null\n");
27060 		}
27061 
27062 		break;
27063 
27064 	case SDIOCINSERTARQ:
27065 		/* Store a arq struct to be pushed onto fifo */
27066 		SD_INFO(SD_LOG_SDTEST, un,
27067 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27068 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27069 
27070 		sd_fault_injection_on = 0;
27071 
27072 		if (un->sd_fi_fifo_arq[i] != NULL) {
27073 			kmem_free(un->sd_fi_fifo_arq[i],
27074 			    sizeof (struct sd_fi_arq));
27075 			un->sd_fi_fifo_arq[i] = NULL;
27076 		}
27077 		if (arg != NULL) {
27078 			un->sd_fi_fifo_arq[i] =
27079 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27080 			if (un->sd_fi_fifo_arq[i] == NULL) {
27081 				/* Alloc failed don't store anything */
27082 				break;
27083 			}
27084 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27085 			    sizeof (struct sd_fi_arq), 0);
27086 			if (rval == -1) {
27087 				kmem_free(un->sd_fi_fifo_arq[i],
27088 				    sizeof (struct sd_fi_arq));
27089 				un->sd_fi_fifo_arq[i] = NULL;
27090 			}
27091 
27092 		} else {
27093 			SD_INFO(SD_LOG_IOERR, un,
27094 			    "sd_faultinjection_ioctl: arq null\n");
27095 		}
27096 
27097 		break;
27098 
27099 	case SDIOCPUSH:
27100 		/* Push stored xb, pkt, un, and arq onto fifo */
27101 		sd_fault_injection_on = 0;
27102 
27103 		if (arg != NULL) {
27104 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27105 			if (rval != -1 &&
27106 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27107 				un->sd_fi_fifo_end += i;
27108 			}
27109 		} else {
27110 			SD_INFO(SD_LOG_IOERR, un,
27111 			    "sd_faultinjection_ioctl: push arg null\n");
27112 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27113 				un->sd_fi_fifo_end++;
27114 			}
27115 		}
27116 		SD_INFO(SD_LOG_IOERR, un,
27117 		    "sd_faultinjection_ioctl: push to end=%d\n",
27118 		    un->sd_fi_fifo_end);
27119 		break;
27120 
27121 	case SDIOCRETRIEVE:
27122 		/* Return buffer of log from Injection session */
27123 		SD_INFO(SD_LOG_SDTEST, un,
27124 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27125 
27126 		sd_fault_injection_on = 0;
27127 
27128 		mutex_enter(&(un->un_fi_mutex));
27129 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27130 		    un->sd_fi_buf_len+1, 0);
27131 		mutex_exit(&(un->un_fi_mutex));
27132 
27133 		if (rval == -1) {
27134 			/*
27135 			 * arg is possibly invalid setting
27136 			 * it to NULL for return
27137 			 */
27138 			arg = NULL;
27139 		}
27140 		break;
27141 	}
27142 
27143 	mutex_exit(SD_MUTEX(un));
27144 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27145 			    " exit\n");
27146 }
27147 
27148 
27149 /*
27150  *    Function: sd_injection_log()
27151  *
27152  * Description: This routine adds buff to the already existing injection log
27153  *              for retrieval via faultinjection_ioctl for use in fault
27154  *              detection and recovery
27155  *
27156  *   Arguments: buf - the string to add to the log
27157  */
27158 
27159 static void
27160 sd_injection_log(char *buf, struct sd_lun *un)
27161 {
27162 	uint_t len;
27163 
27164 	ASSERT(un != NULL);
27165 	ASSERT(buf != NULL);
27166 
27167 	mutex_enter(&(un->un_fi_mutex));
27168 
27169 	len = min(strlen(buf), 255);
27170 	/* Add logged value to Injection log to be returned later */
27171 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27172 		uint_t	offset = strlen((char *)un->sd_fi_log);
27173 		char *destp = (char *)un->sd_fi_log + offset;
27174 		int i;
27175 		for (i = 0; i < len; i++) {
27176 			*destp++ = *buf++;
27177 		}
27178 		un->sd_fi_buf_len += len;
27179 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27180 	}
27181 
27182 	mutex_exit(&(un->un_fi_mutex));
27183 }
27184 
27185 
27186 /*
27187  *    Function: sd_faultinjection()
27188  *
27189  * Description: This routine takes the pkt and changes its
27190  *		content based on error injection scenerio.
27191  *
27192  *   Arguments: pktp	- packet to be changed
27193  */
27194 
27195 static void
27196 sd_faultinjection(struct scsi_pkt *pktp)
27197 {
27198 	uint_t i;
27199 	struct sd_fi_pkt *fi_pkt;
27200 	struct sd_fi_xb *fi_xb;
27201 	struct sd_fi_un *fi_un;
27202 	struct sd_fi_arq *fi_arq;
27203 	struct buf *bp;
27204 	struct sd_xbuf *xb;
27205 	struct sd_lun *un;
27206 
27207 	ASSERT(pktp != NULL);
27208 
27209 	/* pull bp xb and un from pktp */
27210 	bp = (struct buf *)pktp->pkt_private;
27211 	xb = SD_GET_XBUF(bp);
27212 	un = SD_GET_UN(bp);
27213 
27214 	ASSERT(un != NULL);
27215 
27216 	mutex_enter(SD_MUTEX(un));
27217 
27218 	SD_TRACE(SD_LOG_SDTEST, un,
27219 	    "sd_faultinjection: entry Injection from sdintr\n");
27220 
27221 	/* if injection is off return */
27222 	if (sd_fault_injection_on == 0 ||
27223 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27224 		mutex_exit(SD_MUTEX(un));
27225 		return;
27226 	}
27227 
27228 
27229 	/* take next set off fifo */
27230 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27231 
27232 	fi_pkt = un->sd_fi_fifo_pkt[i];
27233 	fi_xb = un->sd_fi_fifo_xb[i];
27234 	fi_un = un->sd_fi_fifo_un[i];
27235 	fi_arq = un->sd_fi_fifo_arq[i];
27236 
27237 
27238 	/* set variables accordingly */
27239 	/* set pkt if it was on fifo */
27240 	if (fi_pkt != NULL) {
27241 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27242 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27243 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27244 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27245 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27246 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27247 
27248 	}
27249 
27250 	/* set xb if it was on fifo */
27251 	if (fi_xb != NULL) {
27252 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27253 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27254 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27255 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27256 		    "xb_victim_retry_count");
27257 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27258 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27259 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27260 
27261 		/* copy in block data from sense */
27262 		if (fi_xb->xb_sense_data[0] != -1) {
27263 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27264 			    SENSE_LENGTH);
27265 		}
27266 
27267 		/* copy in extended sense codes */
27268 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27269 		    "es_code");
27270 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27271 		    "es_key");
27272 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27273 		    "es_add_code");
27274 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27275 		    es_qual_code, "es_qual_code");
27276 	}
27277 
27278 	/* set un if it was on fifo */
27279 	if (fi_un != NULL) {
27280 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27281 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27282 		SD_CONDSET(un, un, un_reset_retry_count,
27283 		    "un_reset_retry_count");
27284 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27285 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27286 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27287 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27288 		    "un_f_allow_bus_device_reset");
27289 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27290 
27291 	}
27292 
27293 	/* copy in auto request sense if it was on fifo */
27294 	if (fi_arq != NULL) {
27295 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27296 	}
27297 
27298 	/* free structs */
27299 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27300 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27301 	}
27302 	if (un->sd_fi_fifo_xb[i] != NULL) {
27303 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27304 	}
27305 	if (un->sd_fi_fifo_un[i] != NULL) {
27306 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27307 	}
27308 	if (un->sd_fi_fifo_arq[i] != NULL) {
27309 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27310 	}
27311 
27312 	/*
27313 	 * kmem_free does not gurantee to set to NULL
27314 	 * since we uses these to determine if we set
27315 	 * values or not lets confirm they are always
27316 	 * NULL after free
27317 	 */
27318 	un->sd_fi_fifo_pkt[i] = NULL;
27319 	un->sd_fi_fifo_un[i] = NULL;
27320 	un->sd_fi_fifo_xb[i] = NULL;
27321 	un->sd_fi_fifo_arq[i] = NULL;
27322 
27323 	un->sd_fi_fifo_start++;
27324 
27325 	mutex_exit(SD_MUTEX(un));
27326 
27327 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27328 }
27329 
27330 #endif /* SD_FAULT_INJECTION */
27331 
27332 /*
27333  * This routine is invoked in sd_unit_attach(). Before calling it, the
27334  * properties in conf file should be processed already, and "hotpluggable"
27335  * property was processed also.
27336  *
27337  * The sd driver distinguishes 3 different type of devices: removable media,
27338  * non-removable media, and hotpluggable. Below the differences are defined:
27339  *
27340  * 1. Device ID
27341  *
27342  *     The device ID of a device is used to identify this device. Refer to
27343  *     ddi_devid_register(9F).
27344  *
27345  *     For a non-removable media disk device which can provide 0x80 or 0x83
27346  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27347  *     device ID is created to identify this device. For other non-removable
27348  *     media devices, a default device ID is created only if this device has
27349  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27350  *
27351  *     -------------------------------------------------------
27352  *     removable media   hotpluggable  | Can Have Device ID
27353  *     -------------------------------------------------------
27354  *         false             false     |     Yes
27355  *         false             true      |     Yes
27356  *         true                x       |     No
27357  *     ------------------------------------------------------
27358  *
27359  *
27360  * 2. SCSI group 4 commands
27361  *
27362  *     In SCSI specs, only some commands in group 4 command set can use
27363  *     8-byte addresses that can be used to access >2TB storage spaces.
27364  *     Other commands have no such capability. Without supporting group4,
27365  *     it is impossible to make full use of storage spaces of a disk with
27366  *     capacity larger than 2TB.
27367  *
27368  *     -----------------------------------------------
27369  *     removable media   hotpluggable   LP64  |  Group
27370  *     -----------------------------------------------
27371  *           false          false       false |   1
27372  *           false          false       true  |   4
27373  *           false          true        false |   1
27374  *           false          true        true  |   4
27375  *           true             x           x   |   5
27376  *     -----------------------------------------------
27377  *
27378  *
27379  * 3. Check for VTOC Label
27380  *
27381  *     If a direct-access disk has no EFI label, sd will check if it has a
27382  *     valid VTOC label. Now, sd also does that check for removable media
27383  *     and hotpluggable devices.
27384  *
27385  *     --------------------------------------------------------------
27386  *     Direct-Access   removable media    hotpluggable |  Check Label
27387  *     -------------------------------------------------------------
27388  *         false          false           false        |   No
27389  *         false          false           true         |   No
27390  *         false          true            false        |   Yes
27391  *         false          true            true         |   Yes
27392  *         true            x                x          |   Yes
27393  *     --------------------------------------------------------------
27394  *
27395  *
27396  * 4. Building default VTOC label
27397  *
27398  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27399  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27400  *     create default VTOC for them. Currently sd creates default VTOC label
27401  *     for all devices on x86 platform (VTOC_16), but only for removable
27402  *     media devices on SPARC (VTOC_8).
27403  *
27404  *     -----------------------------------------------------------
27405  *       removable media hotpluggable platform   |   Default Label
27406  *     -----------------------------------------------------------
27407  *             false          false    sparc     |     No
27408  *             false          true      x86      |     Yes
27409  *             false          true     sparc     |     Yes
27410  *             true             x        x       |     Yes
27411  *     ----------------------------------------------------------
27412  *
27413  *
27414  * 5. Supported blocksizes of target devices
27415  *
27416  *     Sd supports non-512-byte blocksize for removable media devices only.
27417  *     For other devices, only 512-byte blocksize is supported. This may be
27418  *     changed in near future because some RAID devices require non-512-byte
27419  *     blocksize
27420  *
27421  *     -----------------------------------------------------------
27422  *     removable media    hotpluggable    | non-512-byte blocksize
27423  *     -----------------------------------------------------------
27424  *           false          false         |   No
27425  *           false          true          |   No
27426  *           true             x           |   Yes
27427  *     -----------------------------------------------------------
27428  *
27429  *
27430  * 6. Automatic mount & unmount
27431  *
27432  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27433  *     if a device is removable media device. It return 1 for removable media
27434  *     devices, and 0 for others.
27435  *
27436  *     The automatic mounting subsystem should distinguish between the types
27437  *     of devices and apply automounting policies to each.
27438  *
27439  *
27440  * 7. fdisk partition management
27441  *
27442  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27443  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27444  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27445  *     fdisk partitions on both x86 and SPARC platform.
27446  *
27447  *     -----------------------------------------------------------
27448  *       platform   removable media  USB/1394  |  fdisk supported
27449  *     -----------------------------------------------------------
27450  *        x86         X               X        |       true
27451  *     ------------------------------------------------------------
27452  *        sparc       X               X        |       false
27453  *     ------------------------------------------------------------
27454  *
27455  *
27456  * 8. MBOOT/MBR
27457  *
27458  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27459  *     read/write mboot for removable media devices on sparc platform.
27460  *
27461  *     -----------------------------------------------------------
27462  *       platform   removable media  USB/1394  |  mboot supported
27463  *     -----------------------------------------------------------
27464  *        x86         X               X        |       true
27465  *     ------------------------------------------------------------
27466  *        sparc      false           false     |       false
27467  *        sparc      false           true      |       true
27468  *        sparc      true            false     |       true
27469  *        sparc      true            true      |       true
27470  *     ------------------------------------------------------------
27471  *
27472  *
27473  * 9.  error handling during opening device
27474  *
27475  *     If failed to open a disk device, an errno is returned. For some kinds
27476  *     of errors, different errno is returned depending on if this device is
27477  *     a removable media device. This brings USB/1394 hard disks in line with
27478  *     expected hard disk behavior. It is not expected that this breaks any
27479  *     application.
27480  *
27481  *     ------------------------------------------------------
27482  *       removable media    hotpluggable   |  errno
27483  *     ------------------------------------------------------
27484  *             false          false        |   EIO
27485  *             false          true         |   EIO
27486  *             true             x          |   ENXIO
27487  *     ------------------------------------------------------
27488  *
27489  *
27490  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27491  *
27492  *     These IOCTLs are applicable only to removable media devices.
27493  *
27494  *     -----------------------------------------------------------
27495  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27496  *     -----------------------------------------------------------
27497  *             false          false        |     No
27498  *             false          true         |     No
27499  *             true            x           |     Yes
27500  *     -----------------------------------------------------------
27501  *
27502  *
27503  * 12. Kstats for partitions
27504  *
27505  *     sd creates partition kstat for non-removable media devices. USB and
27506  *     Firewire hard disks now have partition kstats
27507  *
27508  *      ------------------------------------------------------
27509  *       removable media    hotpluggable   |   kstat
27510  *      ------------------------------------------------------
27511  *             false          false        |    Yes
27512  *             false          true         |    Yes
27513  *             true             x          |    No
27514  *       ------------------------------------------------------
27515  *
27516  *
27517  * 13. Removable media & hotpluggable properties
27518  *
27519  *     Sd driver creates a "removable-media" property for removable media
27520  *     devices. Parent nexus drivers create a "hotpluggable" property if
27521  *     it supports hotplugging.
27522  *
27523  *     ---------------------------------------------------------------------
27524  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27525  *     ---------------------------------------------------------------------
27526  *       false            false       |    No                   No
27527  *       false            true        |    No                   Yes
27528  *       true             false       |    Yes                  No
27529  *       true             true        |    Yes                  Yes
27530  *     ---------------------------------------------------------------------
27531  *
27532  *
27533  * 14. Power Management
27534  *
27535  *     sd only power manages removable media devices or devices that support
27536  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27537  *
27538  *     A parent nexus that supports hotplugging can also set "pm-capable"
27539  *     if the disk can be power managed.
27540  *
27541  *     ------------------------------------------------------------
27542  *       removable media hotpluggable pm-capable  |   power manage
27543  *     ------------------------------------------------------------
27544  *             false          false     false     |     No
27545  *             false          false     true      |     Yes
27546  *             false          true      false     |     No
27547  *             false          true      true      |     Yes
27548  *             true             x        x        |     Yes
27549  *     ------------------------------------------------------------
27550  *
27551  *      USB and firewire hard disks can now be power managed independently
27552  *      of the framebuffer
27553  *
27554  *
27555  * 15. Support for USB disks with capacity larger than 1TB
27556  *
27557  *     Currently, sd doesn't permit a fixed disk device with capacity
27558  *     larger than 1TB to be used in a 32-bit operating system environment.
27559  *     However, sd doesn't do that for removable media devices. Instead, it
27560  *     assumes that removable media devices cannot have a capacity larger
27561  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27562  *     supported, which can cause some unexpected results.
27563  *
27564  *     ---------------------------------------------------------------------
27565  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27566  *     ---------------------------------------------------------------------
27567  *             false          false  |   true         |     no
27568  *             false          true   |   true         |     no
27569  *             true           false  |   true         |     Yes
27570  *             true           true   |   true         |     Yes
27571  *     ---------------------------------------------------------------------
27572  *
27573  *
27574  * 16. Check write-protection at open time
27575  *
27576  *     When a removable media device is being opened for writing without NDELAY
27577  *     flag, sd will check if this device is writable. If attempting to open
27578  *     without NDELAY flag a write-protected device, this operation will abort.
27579  *
27580  *     ------------------------------------------------------------
27581  *       removable media    USB/1394   |   WP Check
27582  *     ------------------------------------------------------------
27583  *             false          false    |     No
27584  *             false          true     |     No
27585  *             true           false    |     Yes
27586  *             true           true     |     Yes
27587  *     ------------------------------------------------------------
27588  *
27589  *
27590  * 17. syslog when corrupted VTOC is encountered
27591  *
27592  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27593  *      for fixed SCSI disks.
27594  *     ------------------------------------------------------------
27595  *       removable media    USB/1394   |   print syslog
27596  *     ------------------------------------------------------------
27597  *             false          false    |     Yes
27598  *             false          true     |     No
27599  *             true           false    |     No
27600  *             true           true     |     No
27601  *     ------------------------------------------------------------
27602  */
27603 static void
27604 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27605 {
27606 	int	pm_capable_prop;
27607 
27608 	ASSERT(un->un_sd);
27609 	ASSERT(un->un_sd->sd_inq);
27610 
27611 	/*
27612 	 * Enable SYNC CACHE support for all devices.
27613 	 */
27614 	un->un_f_sync_cache_supported = TRUE;
27615 
27616 	if (un->un_sd->sd_inq->inq_rmb) {
27617 		/*
27618 		 * The media of this device is removable. And for this kind
27619 		 * of devices, it is possible to change medium after opening
27620 		 * devices. Thus we should support this operation.
27621 		 */
27622 		un->un_f_has_removable_media = TRUE;
27623 
27624 		/*
27625 		 * support non-512-byte blocksize of removable media devices
27626 		 */
27627 		un->un_f_non_devbsize_supported = TRUE;
27628 
27629 		/*
27630 		 * Assume that all removable media devices support DOOR_LOCK
27631 		 */
27632 		un->un_f_doorlock_supported = TRUE;
27633 
27634 		/*
27635 		 * For a removable media device, it is possible to be opened
27636 		 * with NDELAY flag when there is no media in drive, in this
27637 		 * case we don't care if device is writable. But if without
27638 		 * NDELAY flag, we need to check if media is write-protected.
27639 		 */
27640 		un->un_f_chk_wp_open = TRUE;
27641 
27642 		/*
27643 		 * need to start a SCSI watch thread to monitor media state,
27644 		 * when media is being inserted or ejected, notify syseventd.
27645 		 */
27646 		un->un_f_monitor_media_state = TRUE;
27647 
27648 		/*
27649 		 * Some devices don't support START_STOP_UNIT command.
27650 		 * Therefore, we'd better check if a device supports it
27651 		 * before sending it.
27652 		 */
27653 		un->un_f_check_start_stop = TRUE;
27654 
27655 		/*
27656 		 * support eject media ioctl:
27657 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27658 		 */
27659 		un->un_f_eject_media_supported = TRUE;
27660 
27661 		/*
27662 		 * Because many removable-media devices don't support
27663 		 * LOG_SENSE, we couldn't use this command to check if
27664 		 * a removable media device support power-management.
27665 		 * We assume that they support power-management via
27666 		 * START_STOP_UNIT command and can be spun up and down
27667 		 * without limitations.
27668 		 */
27669 		un->un_f_pm_supported = TRUE;
27670 
27671 		/*
27672 		 * Need to create a zero length (Boolean) property
27673 		 * removable-media for the removable media devices.
27674 		 * Note that the return value of the property is not being
27675 		 * checked, since if unable to create the property
27676 		 * then do not want the attach to fail altogether. Consistent
27677 		 * with other property creation in attach.
27678 		 */
27679 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27680 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27681 
27682 	} else {
27683 		/*
27684 		 * create device ID for device
27685 		 */
27686 		un->un_f_devid_supported = TRUE;
27687 
27688 		/*
27689 		 * Spin up non-removable-media devices once it is attached
27690 		 */
27691 		un->un_f_attach_spinup = TRUE;
27692 
27693 		/*
27694 		 * According to SCSI specification, Sense data has two kinds of
27695 		 * format: fixed format, and descriptor format. At present, we
27696 		 * don't support descriptor format sense data for removable
27697 		 * media.
27698 		 */
27699 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27700 			un->un_f_descr_format_supported = TRUE;
27701 		}
27702 
27703 		/*
27704 		 * kstats are created only for non-removable media devices.
27705 		 *
27706 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27707 		 * default is 1, so they are enabled by default.
27708 		 */
27709 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27710 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27711 		    "enable-partition-kstats", 1));
27712 
27713 		/*
27714 		 * Check if HBA has set the "pm-capable" property.
27715 		 * If "pm-capable" exists and is non-zero then we can
27716 		 * power manage the device without checking the start/stop
27717 		 * cycle count log sense page.
27718 		 *
27719 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27720 		 * then we should not power manage the device.
27721 		 *
27722 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27723 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27724 		 * sd will check the start/stop cycle count log sense page
27725 		 * and power manage the device if the cycle count limit has
27726 		 * not been exceeded.
27727 		 */
27728 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27729 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27730 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27731 			un->un_f_log_sense_supported = TRUE;
27732 		} else {
27733 			/*
27734 			 * pm-capable property exists.
27735 			 *
27736 			 * Convert "TRUE" values for pm_capable_prop to
27737 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27738 			 * later. "TRUE" values are any values except
27739 			 * SD_PM_CAPABLE_FALSE (0) and
27740 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27741 			 */
27742 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27743 				un->un_f_log_sense_supported = FALSE;
27744 			} else {
27745 				un->un_f_pm_supported = TRUE;
27746 			}
27747 
27748 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27749 			    "sd_unit_attach: un:0x%p pm-capable "
27750 			    "property set to %d.\n", un, un->un_f_pm_supported);
27751 		}
27752 	}
27753 
27754 	if (un->un_f_is_hotpluggable) {
27755 
27756 		/*
27757 		 * Have to watch hotpluggable devices as well, since
27758 		 * that's the only way for userland applications to
27759 		 * detect hot removal while device is busy/mounted.
27760 		 */
27761 		un->un_f_monitor_media_state = TRUE;
27762 
27763 		un->un_f_check_start_stop = TRUE;
27764 
27765 	}
27766 }
27767 
27768 /*
27769  * sd_tg_rdwr:
27770  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27771  * in sys block size, req_length in bytes.
27772  *
27773  */
27774 static int
27775 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27776     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27777 {
27778 	struct sd_lun *un;
27779 	int path_flag = (int)(uintptr_t)tg_cookie;
27780 	char *dkl = NULL;
27781 	diskaddr_t real_addr = start_block;
27782 	diskaddr_t first_byte, end_block;
27783 
27784 	size_t	buffer_size = reqlength;
27785 	int rval;
27786 	diskaddr_t	cap;
27787 	uint32_t	lbasize;
27788 
27789 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27790 	if (un == NULL)
27791 		return (ENXIO);
27792 
27793 	if (cmd != TG_READ && cmd != TG_WRITE)
27794 		return (EINVAL);
27795 
27796 	mutex_enter(SD_MUTEX(un));
27797 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27798 		mutex_exit(SD_MUTEX(un));
27799 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27800 		    &lbasize, path_flag);
27801 		if (rval != 0)
27802 			return (rval);
27803 		mutex_enter(SD_MUTEX(un));
27804 		sd_update_block_info(un, lbasize, cap);
27805 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27806 			mutex_exit(SD_MUTEX(un));
27807 			return (EIO);
27808 		}
27809 	}
27810 
27811 	if (NOT_DEVBSIZE(un)) {
27812 		/*
27813 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27814 		 * blkno and save the index to beginning of dk_label
27815 		 */
27816 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27817 		real_addr = first_byte / un->un_tgt_blocksize;
27818 
27819 		end_block = (first_byte + reqlength +
27820 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27821 
27822 		/* round up buffer size to multiple of target block size */
27823 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27824 
27825 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27826 		    "label_addr: 0x%x allocation size: 0x%x\n",
27827 		    real_addr, buffer_size);
27828 
27829 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27830 		    (reqlength % un->un_tgt_blocksize) != 0)
27831 			/* the request is not aligned */
27832 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27833 	}
27834 
27835 	/*
27836 	 * The MMC standard allows READ CAPACITY to be
27837 	 * inaccurate by a bounded amount (in the interest of
27838 	 * response latency).  As a result, failed READs are
27839 	 * commonplace (due to the reading of metadata and not
27840 	 * data). Depending on the per-Vendor/drive Sense data,
27841 	 * the failed READ can cause many (unnecessary) retries.
27842 	 */
27843 
27844 	if (ISCD(un) && (cmd == TG_READ) &&
27845 	    (un->un_f_blockcount_is_valid == TRUE) &&
27846 	    ((start_block == (un->un_blockcount - 1))||
27847 	    (start_block == (un->un_blockcount - 2)))) {
27848 			path_flag = SD_PATH_DIRECT_PRIORITY;
27849 	}
27850 
27851 	mutex_exit(SD_MUTEX(un));
27852 	if (cmd == TG_READ) {
27853 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27854 		    buffer_size, real_addr, path_flag);
27855 		if (dkl != NULL)
27856 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27857 			    real_addr), bufaddr, reqlength);
27858 	} else {
27859 		if (dkl) {
27860 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27861 			    real_addr, path_flag);
27862 			if (rval) {
27863 				kmem_free(dkl, buffer_size);
27864 				return (rval);
27865 			}
27866 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27867 			    real_addr), reqlength);
27868 		}
27869 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27870 		    buffer_size, real_addr, path_flag);
27871 	}
27872 
27873 	if (dkl != NULL)
27874 		kmem_free(dkl, buffer_size);
27875 
27876 	return (rval);
27877 }
27878 
27879 
27880 static int
27881 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27882 {
27883 
27884 	struct sd_lun *un;
27885 	diskaddr_t	cap;
27886 	uint32_t	lbasize;
27887 	int		path_flag = (int)(uintptr_t)tg_cookie;
27888 	int		ret = 0;
27889 
27890 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27891 	if (un == NULL)
27892 		return (ENXIO);
27893 
27894 	switch (cmd) {
27895 	case TG_GETPHYGEOM:
27896 	case TG_GETVIRTGEOM:
27897 	case TG_GETCAPACITY:
27898 	case  TG_GETBLOCKSIZE:
27899 		mutex_enter(SD_MUTEX(un));
27900 
27901 		if ((un->un_f_blockcount_is_valid == TRUE) &&
27902 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27903 			cap = un->un_blockcount;
27904 			lbasize = un->un_tgt_blocksize;
27905 			mutex_exit(SD_MUTEX(un));
27906 		} else {
27907 			mutex_exit(SD_MUTEX(un));
27908 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27909 			    &lbasize, path_flag);
27910 			if (ret != 0)
27911 				return (ret);
27912 			mutex_enter(SD_MUTEX(un));
27913 			sd_update_block_info(un, lbasize, cap);
27914 			if ((un->un_f_blockcount_is_valid == FALSE) ||
27915 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27916 				mutex_exit(SD_MUTEX(un));
27917 				return (EIO);
27918 			}
27919 			mutex_exit(SD_MUTEX(un));
27920 		}
27921 
27922 		if (cmd == TG_GETCAPACITY) {
27923 			*(diskaddr_t *)arg = cap;
27924 			return (0);
27925 		}
27926 
27927 		if (cmd == TG_GETBLOCKSIZE) {
27928 			*(uint32_t *)arg = lbasize;
27929 			return (0);
27930 		}
27931 
27932 		if (cmd == TG_GETPHYGEOM)
27933 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27934 			    cap, lbasize, path_flag);
27935 		else
27936 			/* TG_GETVIRTGEOM */
27937 			ret = sd_get_virtual_geometry(un,
27938 			    (cmlb_geom_t *)arg, cap, lbasize);
27939 
27940 		return (ret);
27941 
27942 	case TG_GETATTR:
27943 		mutex_enter(SD_MUTEX(un));
27944 		((tg_attribute_t *)arg)->media_is_writable =
27945 		    un->un_f_mmc_writable_media;
27946 		mutex_exit(SD_MUTEX(un));
27947 		return (0);
27948 	default:
27949 		return (ENOTTY);
27950 
27951 	}
27952 
27953 }
27954