xref: /titanic_44/usr/src/uts/common/io/rtw/smc93cx6.c (revision 9aa73b6813b3fd35e78fcc44fd17535e765e504c)
1a72f7ea6Sql147931 /*
2*9aa73b68SQin Michael Li  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3a72f7ea6Sql147931  * Use is subject to license terms.
4a72f7ea6Sql147931  */
5a72f7ea6Sql147931 
6a72f7ea6Sql147931 /*
7a72f7ea6Sql147931  * Interface for the 93C66/56/46/26/06 serial eeprom parts.
8a72f7ea6Sql147931  *
9a72f7ea6Sql147931  * Copyright (c) 1995, 1996 Daniel M. Eischen
10a72f7ea6Sql147931  * All rights reserved.
11a72f7ea6Sql147931  *
12a72f7ea6Sql147931  * Redistribution and use in source and binary forms, with or without
13a72f7ea6Sql147931  * modification, are permitted provided that the following conditions
14a72f7ea6Sql147931  * are met:
15a72f7ea6Sql147931  * 1. Redistributions of source code must retain the above copyright
16a72f7ea6Sql147931  *    notice immediately at the beginning of the file, without modification,
17a72f7ea6Sql147931  *    this list of conditions, and the following disclaimer.
18a72f7ea6Sql147931  * 2. Redistributions in binary form must reproduce the above copyright
19a72f7ea6Sql147931  *    notice, this list of conditions and the following disclaimer in the
20a72f7ea6Sql147931  *    documentation and/or other materials provided with the distribution.
21a72f7ea6Sql147931  * 3. Absolutely no warranty of function or purpose is made by the author
22a72f7ea6Sql147931  *    Daniel M. Eischen.
23a72f7ea6Sql147931  * 4. Modifications may be freely made to this file if the above conditions
24a72f7ea6Sql147931  *    are met.
25a72f7ea6Sql147931  *
26a72f7ea6Sql147931  * $FreeBSD: src/sys/dev/aic7xxx/93cx6.c,v 1.5 2000/01/07 23:08:17 gibbs Exp $
27a72f7ea6Sql147931  */
28a72f7ea6Sql147931 
29a72f7ea6Sql147931 /*
30a72f7ea6Sql147931  *   The instruction set of the 93C66/56/46/26/06 chips are as follows:
31a72f7ea6Sql147931  *
32a72f7ea6Sql147931  *               Start  OP	    *
33a72f7ea6Sql147931  *     Function   Bit  Code  Address**  Data     Description
34a72f7ea6Sql147931  *     -------------------------------------------------------------------
35a72f7ea6Sql147931  *     READ        1    10   A5 - A0             Reads data stored in memory,
36a72f7ea6Sql147931  *                                               starting at specified address
37a72f7ea6Sql147931  *     EWEN        1    00   11XXXX              Write enable must precede
38a72f7ea6Sql147931  *                                               all programming modes
39a72f7ea6Sql147931  *     ERASE       1    11   A5 - A0             Erase register A5A4A3A2A1A0
40a72f7ea6Sql147931  *     WRITE       1    01   A5 - A0   D15 - D0  Writes register
41a72f7ea6Sql147931  *     ERAL        1    00   10XXXX              Erase all registers
42a72f7ea6Sql147931  *     WRAL        1    00   01XXXX    D15 - D0  Writes to all registers
43a72f7ea6Sql147931  *     EWDS        1    00   00XXXX              Disables all programming
44a72f7ea6Sql147931  *                                               instructions
45a72f7ea6Sql147931  *     *Note: A value of X for address is a don't care condition.
46a72f7ea6Sql147931  *    **Note: There are 8 address bits for the 93C56/66 chips unlike
47a72f7ea6Sql147931  *	      the 93C46/26/06 chips which have 6 address bits.
48a72f7ea6Sql147931  *
49a72f7ea6Sql147931  *   The 93C46 has a four wire interface: clock, chip select, data in, and
50a72f7ea6Sql147931  *   data out.  In order to perform one of the above functions, you need
51a72f7ea6Sql147931  *   to enable the chip select for a clock period (typically a minimum of
52a72f7ea6Sql147931  *   1 usec, with the clock high and low a minimum of 750 and 250 nsec
53a72f7ea6Sql147931  *   respectively).  While the chip select remains high, you can clock in
54a72f7ea6Sql147931  *   the instructions (above) starting with the start bit, followed by the
55a72f7ea6Sql147931  *   OP code, Address, and Data (if needed).  For the READ instruction, the
56a72f7ea6Sql147931  *   requested 16-bit register contents is read from the data out line but
57a72f7ea6Sql147931  *   is preceded by an initial zero (leading 0, followed by 16-bits, MSB
58a72f7ea6Sql147931  *   first).  The clock cycling from low to high initiates the next data
59a72f7ea6Sql147931  *   bit to be sent from the chip.
60a72f7ea6Sql147931  *
61a72f7ea6Sql147931  */
62a72f7ea6Sql147931 #include <sys/sunddi.h>
63a72f7ea6Sql147931 #include "smc93cx6var.h"
64a72f7ea6Sql147931 /*
65a72f7ea6Sql147931  * Right now, we only have to read the SEEPROM.  But we make it easier to
66a72f7ea6Sql147931  * add other 93Cx6 functions.
67a72f7ea6Sql147931  */
68a72f7ea6Sql147931 static struct seeprom_cmd {
69a72f7ea6Sql147931 	unsigned char len;
70a72f7ea6Sql147931 	unsigned char bits[3];
71a72f7ea6Sql147931 } seeprom_read = {3, {1, 1, 0}};
72a72f7ea6Sql147931 
73a72f7ea6Sql147931 #define	CLOCK_PULSE(sd, rdy) {					\
74a72f7ea6Sql147931 	/*								\
75a72f7ea6Sql147931 	 * Wait for the SEERDY to go high; about 800 ns.		\
76a72f7ea6Sql147931 	 */								\
77a72f7ea6Sql147931 	int cpi = 1000;							\
78a72f7ea6Sql147931 	if (rdy == 0) {							\
79a72f7ea6Sql147931 		DELAY(4); /* more than long enough */			\
80a72f7ea6Sql147931 	} else {							\
81a72f7ea6Sql147931 		while ((SEEPROM_STATUS_INB(sd) & rdy) == 0 &&		\
82a72f7ea6Sql147931 		    cpi-- > 0) {					\
83a72f7ea6Sql147931 			cpi = cpi;	/* for lint */			\
84a72f7ea6Sql147931 		}							\
85a72f7ea6Sql147931 		(void) SEEPROM_INB(sd);	/* Clear clock */		\
86a72f7ea6Sql147931 	}								\
87a72f7ea6Sql147931 }
88a72f7ea6Sql147931 
89a72f7ea6Sql147931 /*
90a72f7ea6Sql147931  * Read the serial EEPROM and returns 1 if successful and 0 if
91a72f7ea6Sql147931  * not successful.
92a72f7ea6Sql147931  */
93a72f7ea6Sql147931 int
read_seeprom(sd,buf,start_addr,count)94a72f7ea6Sql147931 read_seeprom(sd, buf, start_addr, count)
95a72f7ea6Sql147931 	struct seeprom_descriptor *sd;
96a72f7ea6Sql147931 	uint16_t *buf;
97a72f7ea6Sql147931 	size_t start_addr;
98a72f7ea6Sql147931 	size_t count;
99a72f7ea6Sql147931 {
100a72f7ea6Sql147931 	int i = 0;
101a72f7ea6Sql147931 	size_t k = 0;
102a72f7ea6Sql147931 	uint16_t v;
103a72f7ea6Sql147931 	uint32_t temp;
104a72f7ea6Sql147931 
105a72f7ea6Sql147931 	/*
106a72f7ea6Sql147931 	 * Read the requested registers of the seeprom.  The loop
107a72f7ea6Sql147931 	 * will range from 0 to count-1.
108a72f7ea6Sql147931 	 */
109a72f7ea6Sql147931 	for (k = start_addr; k < count + start_addr; k++) {
110a72f7ea6Sql147931 		/* Send chip select for one clock cycle. */
111a72f7ea6Sql147931 		temp = sd->sd_MS ^ sd->sd_CS;
112a72f7ea6Sql147931 		SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
113a72f7ea6Sql147931 		CLOCK_PULSE(sd, sd->sd_RDY);
114a72f7ea6Sql147931 
115a72f7ea6Sql147931 		/*
116a72f7ea6Sql147931 		 * Now we're ready to send the read command followed by the
117a72f7ea6Sql147931 		 * address of the 16-bit register we want to read.
118a72f7ea6Sql147931 		 */
119a72f7ea6Sql147931 		for (i = 0; i < seeprom_read.len; i++) {
120a72f7ea6Sql147931 			if (seeprom_read.bits[i] != 0)
121a72f7ea6Sql147931 				temp ^= sd->sd_DO;
122a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp);
123a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
124a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
125a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
126a72f7ea6Sql147931 			if (seeprom_read.bits[i] != 0)
127a72f7ea6Sql147931 				temp ^= sd->sd_DO;
128a72f7ea6Sql147931 		}
129a72f7ea6Sql147931 		/* Send the 6 or 8 bit address (MSB first, LSB last). */
130a72f7ea6Sql147931 		for (i = (sd->sd_chip - 1); i >= 0; i--) {
131a72f7ea6Sql147931 			if ((k & (1 << i)) != 0)
132a72f7ea6Sql147931 				temp ^= sd->sd_DO;
133a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp);
134a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
135a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
136a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
137a72f7ea6Sql147931 			if ((k & (1 << i)) != 0)
138a72f7ea6Sql147931 				temp ^= sd->sd_DO;
139a72f7ea6Sql147931 		}
140a72f7ea6Sql147931 
141a72f7ea6Sql147931 		/*
142a72f7ea6Sql147931 		 * Now read the 16 bit register.  An initial 0 precedes the
143a72f7ea6Sql147931 		 * register contents which begins with bit 15 (MSB) and ends
144a72f7ea6Sql147931 		 * with bit 0 (LSB).  The initial 0 will be shifted off the
145a72f7ea6Sql147931 		 * top of our word as we let the loop run from 0 to 16.
146a72f7ea6Sql147931 		 */
147a72f7ea6Sql147931 		v = 0;
148a72f7ea6Sql147931 		for (i = 16; i >= 0; i--) {
149a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp);
150a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
151a72f7ea6Sql147931 			v <<= 1;
152a72f7ea6Sql147931 			if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
153a72f7ea6Sql147931 				v |= 1;
154a72f7ea6Sql147931 			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
155a72f7ea6Sql147931 			CLOCK_PULSE(sd, sd->sd_RDY);
156a72f7ea6Sql147931 		}
157a72f7ea6Sql147931 
158a72f7ea6Sql147931 		buf[k - start_addr] = v;
159a72f7ea6Sql147931 
160a72f7ea6Sql147931 		/* Reset the chip select for the next command cycle. */
161a72f7ea6Sql147931 		temp = sd->sd_MS;
162a72f7ea6Sql147931 		SEEPROM_OUTB(sd, temp);
163a72f7ea6Sql147931 		CLOCK_PULSE(sd, sd->sd_RDY);
164a72f7ea6Sql147931 		SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
165a72f7ea6Sql147931 		CLOCK_PULSE(sd, sd->sd_RDY);
166a72f7ea6Sql147931 		SEEPROM_OUTB(sd, temp);
167a72f7ea6Sql147931 		CLOCK_PULSE(sd, sd->sd_RDY);
168a72f7ea6Sql147931 	}
169a72f7ea6Sql147931 #ifdef AHC_DUMP_EEPROM
170a72f7ea6Sql147931 	cmn_err(CE_NOTE, "\nSerial EEPROM:\n\t");
171a72f7ea6Sql147931 	for (k = 0; k < count; k = k + 1) {
172a72f7ea6Sql147931 		cmn_err(CE_NOTE, " 0x%x", buf[k]);
173a72f7ea6Sql147931 	}
174a72f7ea6Sql147931 #endif
175a72f7ea6Sql147931 	return (1);
176a72f7ea6Sql147931 }
177