1a72f7ea6Sql147931 /*
2*9aa73b68SQin Michael Li * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3a72f7ea6Sql147931 * Use is subject to license terms.
4a72f7ea6Sql147931 */
5a72f7ea6Sql147931
6a72f7ea6Sql147931 /*
7a72f7ea6Sql147931 * Interface for the 93C66/56/46/26/06 serial eeprom parts.
8a72f7ea6Sql147931 *
9a72f7ea6Sql147931 * Copyright (c) 1995, 1996 Daniel M. Eischen
10a72f7ea6Sql147931 * All rights reserved.
11a72f7ea6Sql147931 *
12a72f7ea6Sql147931 * Redistribution and use in source and binary forms, with or without
13a72f7ea6Sql147931 * modification, are permitted provided that the following conditions
14a72f7ea6Sql147931 * are met:
15a72f7ea6Sql147931 * 1. Redistributions of source code must retain the above copyright
16a72f7ea6Sql147931 * notice immediately at the beginning of the file, without modification,
17a72f7ea6Sql147931 * this list of conditions, and the following disclaimer.
18a72f7ea6Sql147931 * 2. Redistributions in binary form must reproduce the above copyright
19a72f7ea6Sql147931 * notice, this list of conditions and the following disclaimer in the
20a72f7ea6Sql147931 * documentation and/or other materials provided with the distribution.
21a72f7ea6Sql147931 * 3. Absolutely no warranty of function or purpose is made by the author
22a72f7ea6Sql147931 * Daniel M. Eischen.
23a72f7ea6Sql147931 * 4. Modifications may be freely made to this file if the above conditions
24a72f7ea6Sql147931 * are met.
25a72f7ea6Sql147931 *
26a72f7ea6Sql147931 * $FreeBSD: src/sys/dev/aic7xxx/93cx6.c,v 1.5 2000/01/07 23:08:17 gibbs Exp $
27a72f7ea6Sql147931 */
28a72f7ea6Sql147931
29a72f7ea6Sql147931 /*
30a72f7ea6Sql147931 * The instruction set of the 93C66/56/46/26/06 chips are as follows:
31a72f7ea6Sql147931 *
32a72f7ea6Sql147931 * Start OP *
33a72f7ea6Sql147931 * Function Bit Code Address** Data Description
34a72f7ea6Sql147931 * -------------------------------------------------------------------
35a72f7ea6Sql147931 * READ 1 10 A5 - A0 Reads data stored in memory,
36a72f7ea6Sql147931 * starting at specified address
37a72f7ea6Sql147931 * EWEN 1 00 11XXXX Write enable must precede
38a72f7ea6Sql147931 * all programming modes
39a72f7ea6Sql147931 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
40a72f7ea6Sql147931 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
41a72f7ea6Sql147931 * ERAL 1 00 10XXXX Erase all registers
42a72f7ea6Sql147931 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
43a72f7ea6Sql147931 * EWDS 1 00 00XXXX Disables all programming
44a72f7ea6Sql147931 * instructions
45a72f7ea6Sql147931 * *Note: A value of X for address is a don't care condition.
46a72f7ea6Sql147931 * **Note: There are 8 address bits for the 93C56/66 chips unlike
47a72f7ea6Sql147931 * the 93C46/26/06 chips which have 6 address bits.
48a72f7ea6Sql147931 *
49a72f7ea6Sql147931 * The 93C46 has a four wire interface: clock, chip select, data in, and
50a72f7ea6Sql147931 * data out. In order to perform one of the above functions, you need
51a72f7ea6Sql147931 * to enable the chip select for a clock period (typically a minimum of
52a72f7ea6Sql147931 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
53a72f7ea6Sql147931 * respectively). While the chip select remains high, you can clock in
54a72f7ea6Sql147931 * the instructions (above) starting with the start bit, followed by the
55a72f7ea6Sql147931 * OP code, Address, and Data (if needed). For the READ instruction, the
56a72f7ea6Sql147931 * requested 16-bit register contents is read from the data out line but
57a72f7ea6Sql147931 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
58a72f7ea6Sql147931 * first). The clock cycling from low to high initiates the next data
59a72f7ea6Sql147931 * bit to be sent from the chip.
60a72f7ea6Sql147931 *
61a72f7ea6Sql147931 */
62a72f7ea6Sql147931 #include <sys/sunddi.h>
63a72f7ea6Sql147931 #include "smc93cx6var.h"
64a72f7ea6Sql147931 /*
65a72f7ea6Sql147931 * Right now, we only have to read the SEEPROM. But we make it easier to
66a72f7ea6Sql147931 * add other 93Cx6 functions.
67a72f7ea6Sql147931 */
68a72f7ea6Sql147931 static struct seeprom_cmd {
69a72f7ea6Sql147931 unsigned char len;
70a72f7ea6Sql147931 unsigned char bits[3];
71a72f7ea6Sql147931 } seeprom_read = {3, {1, 1, 0}};
72a72f7ea6Sql147931
73a72f7ea6Sql147931 #define CLOCK_PULSE(sd, rdy) { \
74a72f7ea6Sql147931 /* \
75a72f7ea6Sql147931 * Wait for the SEERDY to go high; about 800 ns. \
76a72f7ea6Sql147931 */ \
77a72f7ea6Sql147931 int cpi = 1000; \
78a72f7ea6Sql147931 if (rdy == 0) { \
79a72f7ea6Sql147931 DELAY(4); /* more than long enough */ \
80a72f7ea6Sql147931 } else { \
81a72f7ea6Sql147931 while ((SEEPROM_STATUS_INB(sd) & rdy) == 0 && \
82a72f7ea6Sql147931 cpi-- > 0) { \
83a72f7ea6Sql147931 cpi = cpi; /* for lint */ \
84a72f7ea6Sql147931 } \
85a72f7ea6Sql147931 (void) SEEPROM_INB(sd); /* Clear clock */ \
86a72f7ea6Sql147931 } \
87a72f7ea6Sql147931 }
88a72f7ea6Sql147931
89a72f7ea6Sql147931 /*
90a72f7ea6Sql147931 * Read the serial EEPROM and returns 1 if successful and 0 if
91a72f7ea6Sql147931 * not successful.
92a72f7ea6Sql147931 */
93a72f7ea6Sql147931 int
read_seeprom(sd,buf,start_addr,count)94a72f7ea6Sql147931 read_seeprom(sd, buf, start_addr, count)
95a72f7ea6Sql147931 struct seeprom_descriptor *sd;
96a72f7ea6Sql147931 uint16_t *buf;
97a72f7ea6Sql147931 size_t start_addr;
98a72f7ea6Sql147931 size_t count;
99a72f7ea6Sql147931 {
100a72f7ea6Sql147931 int i = 0;
101a72f7ea6Sql147931 size_t k = 0;
102a72f7ea6Sql147931 uint16_t v;
103a72f7ea6Sql147931 uint32_t temp;
104a72f7ea6Sql147931
105a72f7ea6Sql147931 /*
106a72f7ea6Sql147931 * Read the requested registers of the seeprom. The loop
107a72f7ea6Sql147931 * will range from 0 to count-1.
108a72f7ea6Sql147931 */
109a72f7ea6Sql147931 for (k = start_addr; k < count + start_addr; k++) {
110a72f7ea6Sql147931 /* Send chip select for one clock cycle. */
111a72f7ea6Sql147931 temp = sd->sd_MS ^ sd->sd_CS;
112a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
113a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
114a72f7ea6Sql147931
115a72f7ea6Sql147931 /*
116a72f7ea6Sql147931 * Now we're ready to send the read command followed by the
117a72f7ea6Sql147931 * address of the 16-bit register we want to read.
118a72f7ea6Sql147931 */
119a72f7ea6Sql147931 for (i = 0; i < seeprom_read.len; i++) {
120a72f7ea6Sql147931 if (seeprom_read.bits[i] != 0)
121a72f7ea6Sql147931 temp ^= sd->sd_DO;
122a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp);
123a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
124a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
125a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
126a72f7ea6Sql147931 if (seeprom_read.bits[i] != 0)
127a72f7ea6Sql147931 temp ^= sd->sd_DO;
128a72f7ea6Sql147931 }
129a72f7ea6Sql147931 /* Send the 6 or 8 bit address (MSB first, LSB last). */
130a72f7ea6Sql147931 for (i = (sd->sd_chip - 1); i >= 0; i--) {
131a72f7ea6Sql147931 if ((k & (1 << i)) != 0)
132a72f7ea6Sql147931 temp ^= sd->sd_DO;
133a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp);
134a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
135a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
136a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
137a72f7ea6Sql147931 if ((k & (1 << i)) != 0)
138a72f7ea6Sql147931 temp ^= sd->sd_DO;
139a72f7ea6Sql147931 }
140a72f7ea6Sql147931
141a72f7ea6Sql147931 /*
142a72f7ea6Sql147931 * Now read the 16 bit register. An initial 0 precedes the
143a72f7ea6Sql147931 * register contents which begins with bit 15 (MSB) and ends
144a72f7ea6Sql147931 * with bit 0 (LSB). The initial 0 will be shifted off the
145a72f7ea6Sql147931 * top of our word as we let the loop run from 0 to 16.
146a72f7ea6Sql147931 */
147a72f7ea6Sql147931 v = 0;
148a72f7ea6Sql147931 for (i = 16; i >= 0; i--) {
149a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp);
150a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
151a72f7ea6Sql147931 v <<= 1;
152a72f7ea6Sql147931 if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
153a72f7ea6Sql147931 v |= 1;
154a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
155a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
156a72f7ea6Sql147931 }
157a72f7ea6Sql147931
158a72f7ea6Sql147931 buf[k - start_addr] = v;
159a72f7ea6Sql147931
160a72f7ea6Sql147931 /* Reset the chip select for the next command cycle. */
161a72f7ea6Sql147931 temp = sd->sd_MS;
162a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp);
163a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
164a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
165a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
166a72f7ea6Sql147931 SEEPROM_OUTB(sd, temp);
167a72f7ea6Sql147931 CLOCK_PULSE(sd, sd->sd_RDY);
168a72f7ea6Sql147931 }
169a72f7ea6Sql147931 #ifdef AHC_DUMP_EEPROM
170a72f7ea6Sql147931 cmn_err(CE_NOTE, "\nSerial EEPROM:\n\t");
171a72f7ea6Sql147931 for (k = 0; k < count; k = k + 1) {
172a72f7ea6Sql147931 cmn_err(CE_NOTE, " 0x%x", buf[k]);
173a72f7ea6Sql147931 }
174a72f7ea6Sql147931 #endif
175a72f7ea6Sql147931 return (1);
176a72f7ea6Sql147931 }
177