1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include "rge.h" 27 28 #define REG32(rgep, reg) ((uint32_t *)(rgep->io_regs+(reg))) 29 #define REG16(rgep, reg) ((uint16_t *)(rgep->io_regs+(reg))) 30 #define REG8(rgep, reg) ((uint8_t *)(rgep->io_regs+(reg))) 31 #define PIO_ADDR(rgep, offset) ((void *)(rgep->io_regs+(offset))) 32 33 /* 34 * Patchable globals: 35 * 36 * rge_autorecover 37 * Enables/disables automatic recovery after fault detection 38 */ 39 static uint32_t rge_autorecover = 1; 40 41 /* 42 * globals: 43 */ 44 #define RGE_DBG RGE_DBG_REGS /* debug flag for this code */ 45 static uint32_t rge_watchdog_count = 1 << 16; 46 47 /* 48 * Operating register get/set access routines 49 */ 50 51 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno); 52 #pragma inline(rge_reg_get32) 53 54 static uint32_t 55 rge_reg_get32(rge_t *rgep, uintptr_t regno) 56 { 57 RGE_TRACE(("rge_reg_get32($%p, 0x%lx)", 58 (void *)rgep, regno)); 59 60 return (ddi_get32(rgep->io_handle, REG32(rgep, regno))); 61 } 62 63 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data); 64 #pragma inline(rge_reg_put32) 65 66 static void 67 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data) 68 { 69 RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)", 70 (void *)rgep, regno, data)); 71 72 ddi_put32(rgep->io_handle, REG32(rgep, regno), data); 73 } 74 75 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits); 76 #pragma inline(rge_reg_set32) 77 78 static void 79 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits) 80 { 81 uint32_t regval; 82 83 RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)", 84 (void *)rgep, regno, bits)); 85 86 regval = rge_reg_get32(rgep, regno); 87 regval |= bits; 88 rge_reg_put32(rgep, regno, regval); 89 } 90 91 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits); 92 #pragma inline(rge_reg_clr32) 93 94 static void 95 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits) 96 { 97 uint32_t regval; 98 99 RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)", 100 (void *)rgep, regno, bits)); 101 102 regval = rge_reg_get32(rgep, regno); 103 regval &= ~bits; 104 rge_reg_put32(rgep, regno, regval); 105 } 106 107 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno); 108 #pragma inline(rge_reg_get16) 109 110 static uint16_t 111 rge_reg_get16(rge_t *rgep, uintptr_t regno) 112 { 113 RGE_TRACE(("rge_reg_get16($%p, 0x%lx)", 114 (void *)rgep, regno)); 115 116 return (ddi_get16(rgep->io_handle, REG16(rgep, regno))); 117 } 118 119 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data); 120 #pragma inline(rge_reg_put16) 121 122 static void 123 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data) 124 { 125 RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)", 126 (void *)rgep, regno, data)); 127 128 ddi_put16(rgep->io_handle, REG16(rgep, regno), data); 129 } 130 131 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno); 132 #pragma inline(rge_reg_get8) 133 134 static uint8_t 135 rge_reg_get8(rge_t *rgep, uintptr_t regno) 136 { 137 RGE_TRACE(("rge_reg_get8($%p, 0x%lx)", 138 (void *)rgep, regno)); 139 140 return (ddi_get8(rgep->io_handle, REG8(rgep, regno))); 141 } 142 143 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data); 144 #pragma inline(rge_reg_put8) 145 146 static void 147 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data) 148 { 149 RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)", 150 (void *)rgep, regno, data)); 151 152 ddi_put8(rgep->io_handle, REG8(rgep, regno), data); 153 } 154 155 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits); 156 #pragma inline(rge_reg_set8) 157 158 static void 159 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits) 160 { 161 uint8_t regval; 162 163 RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)", 164 (void *)rgep, regno, bits)); 165 166 regval = rge_reg_get8(rgep, regno); 167 regval |= bits; 168 rge_reg_put8(rgep, regno, regval); 169 } 170 171 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits); 172 #pragma inline(rge_reg_clr8) 173 174 static void 175 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits) 176 { 177 uint8_t regval; 178 179 RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)", 180 (void *)rgep, regno, bits)); 181 182 regval = rge_reg_get8(rgep, regno); 183 regval &= ~bits; 184 rge_reg_put8(rgep, regno, regval); 185 } 186 187 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii); 188 #pragma no_inline(rge_mii_get16) 189 190 uint16_t 191 rge_mii_get16(rge_t *rgep, uintptr_t mii) 192 { 193 uint32_t regval; 194 uint32_t val32; 195 uint32_t i; 196 197 regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT; 198 rge_reg_put32(rgep, PHY_ACCESS_REG, regval); 199 200 /* 201 * Waiting for PHY reading OK 202 */ 203 for (i = 0; i < PHY_RESET_LOOP; i++) { 204 drv_usecwait(1000); 205 val32 = rge_reg_get32(rgep, PHY_ACCESS_REG); 206 if (val32 & PHY_ACCESS_WR_FLAG) 207 return ((uint16_t)(val32 & 0xffff)); 208 } 209 210 RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32)); 211 return ((uint16_t)~0u); 212 } 213 214 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data); 215 #pragma no_inline(rge_mii_put16) 216 217 void 218 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data) 219 { 220 uint32_t regval; 221 uint32_t val32; 222 uint32_t i; 223 224 regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT; 225 regval |= data & PHY_DATA_MASK; 226 regval |= PHY_ACCESS_WR_FLAG; 227 rge_reg_put32(rgep, PHY_ACCESS_REG, regval); 228 229 /* 230 * Waiting for PHY writing OK 231 */ 232 for (i = 0; i < PHY_RESET_LOOP; i++) { 233 drv_usecwait(1000); 234 val32 = rge_reg_get32(rgep, PHY_ACCESS_REG); 235 if (!(val32 & PHY_ACCESS_WR_FLAG)) 236 return; 237 } 238 RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail", 239 mii, data)); 240 } 241 242 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data); 243 #pragma no_inline(rge_ephy_put16) 244 245 void 246 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data) 247 { 248 uint32_t regval; 249 uint32_t val32; 250 uint32_t i; 251 252 regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT; 253 regval |= data & EPHY_DATA_MASK; 254 regval |= EPHY_ACCESS_WR_FLAG; 255 rge_reg_put32(rgep, EPHY_ACCESS_REG, regval); 256 257 /* 258 * Waiting for PHY writing OK 259 */ 260 for (i = 0; i < PHY_RESET_LOOP; i++) { 261 drv_usecwait(1000); 262 val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG); 263 if (!(val32 & EPHY_ACCESS_WR_FLAG)) 264 return; 265 } 266 RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail", 267 emii, data)); 268 } 269 270 /* 271 * Atomically shift a 32-bit word left, returning 272 * the value it had *before* the shift was applied 273 */ 274 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count); 275 #pragma inline(rge_mii_put16) 276 277 static uint32_t 278 rge_atomic_shl32(uint32_t *sp, uint_t count) 279 { 280 uint32_t oldval; 281 uint32_t newval; 282 283 /* ATOMICALLY */ 284 do { 285 oldval = *sp; 286 newval = oldval << count; 287 } while (cas32(sp, oldval, newval) != oldval); 288 289 return (oldval); 290 } 291 292 /* 293 * PHY operation routines 294 */ 295 #if RGE_DEBUGGING 296 297 void 298 rge_phydump(rge_t *rgep) 299 { 300 uint16_t regs[32]; 301 int i; 302 303 ASSERT(mutex_owned(rgep->genlock)); 304 305 for (i = 0; i < 32; ++i) { 306 regs[i] = rge_mii_get16(rgep, i); 307 } 308 309 for (i = 0; i < 32; i += 8) 310 RGE_DEBUG(("rge_phydump: " 311 "0x%04x %04x %04x %04x %04x %04x %04x %04x", 312 regs[i+0], regs[i+1], regs[i+2], regs[i+3], 313 regs[i+4], regs[i+5], regs[i+6], regs[i+7])); 314 } 315 316 #endif /* RGE_DEBUGGING */ 317 318 static void 319 rge_phy_check(rge_t *rgep) 320 { 321 uint16_t gig_ctl; 322 323 if (rgep->param_link_up == LINK_STATE_DOWN) { 324 /* 325 * RTL8169S/8110S PHY has the "PCS bug". Need reset PHY 326 * every 15 seconds whin link down & advertise is 1000. 327 */ 328 if (rgep->chipid.phy_ver == PHY_VER_S) { 329 gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL); 330 if (gig_ctl & MII_1000BT_CTL_ADV_FDX) { 331 rgep->link_down_count++; 332 if (rgep->link_down_count > 15) { 333 (void) rge_phy_reset(rgep); 334 rgep->stats.phy_reset++; 335 rgep->link_down_count = 0; 336 } 337 } 338 } 339 } else { 340 rgep->link_down_count = 0; 341 } 342 } 343 344 /* 345 * Basic low-level function to reset the PHY. 346 * Doesn't incorporate any special-case workarounds. 347 * 348 * Returns TRUE on success, FALSE if the RESET bit doesn't clear 349 */ 350 boolean_t 351 rge_phy_reset(rge_t *rgep) 352 { 353 uint16_t control; 354 uint_t count; 355 356 /* 357 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear 358 */ 359 control = rge_mii_get16(rgep, MII_CONTROL); 360 rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET); 361 for (count = 0; count < 5; count++) { 362 drv_usecwait(100); 363 control = rge_mii_get16(rgep, MII_CONTROL); 364 if (BIC(control, MII_CONTROL_RESET)) 365 return (B_TRUE); 366 } 367 368 RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control)); 369 return (B_FALSE); 370 } 371 372 /* 373 * Synchronise the PHY's speed/duplex/autonegotiation capabilities 374 * and advertisements with the required settings as specified by the various 375 * param_* variables that can be poked via the NDD interface. 376 * 377 * We always reset the PHY and reprogram *all* the relevant registers, 378 * not just those changed. This should cause the link to go down, and then 379 * back up again once the link is stable and autonegotiation (if enabled) 380 * is complete. We should get a link state change interrupt somewhere along 381 * the way ... 382 * 383 * NOTE: <genlock> must already be held by the caller 384 */ 385 void 386 rge_phy_update(rge_t *rgep) 387 { 388 boolean_t adv_autoneg; 389 boolean_t adv_pause; 390 boolean_t adv_asym_pause; 391 boolean_t adv_1000fdx; 392 boolean_t adv_1000hdx; 393 boolean_t adv_100fdx; 394 boolean_t adv_100hdx; 395 boolean_t adv_10fdx; 396 boolean_t adv_10hdx; 397 398 uint16_t control; 399 uint16_t gigctrl; 400 uint16_t anar; 401 402 ASSERT(mutex_owned(rgep->genlock)); 403 404 RGE_DEBUG(("rge_phy_update: autoneg %d " 405 "pause %d asym_pause %d " 406 "1000fdx %d 1000hdx %d " 407 "100fdx %d 100hdx %d " 408 "10fdx %d 10hdx %d ", 409 rgep->param_adv_autoneg, 410 rgep->param_adv_pause, rgep->param_adv_asym_pause, 411 rgep->param_adv_1000fdx, rgep->param_adv_1000hdx, 412 rgep->param_adv_100fdx, rgep->param_adv_100hdx, 413 rgep->param_adv_10fdx, rgep->param_adv_10hdx)); 414 415 control = gigctrl = anar = 0; 416 417 /* 418 * PHY settings are normally based on the param_* variables, 419 * but if any loopback mode is in effect, that takes precedence. 420 * 421 * RGE supports MAC-internal loopback, PHY-internal loopback, 422 * and External loopback at a variety of speeds (with a special 423 * cable). In all cases, autoneg is turned OFF, full-duplex 424 * is turned ON, and the speed/mastership is forced. 425 */ 426 switch (rgep->param_loop_mode) { 427 case RGE_LOOP_NONE: 428 default: 429 adv_autoneg = rgep->param_adv_autoneg; 430 adv_pause = rgep->param_adv_pause; 431 adv_asym_pause = rgep->param_adv_asym_pause; 432 adv_1000fdx = rgep->param_adv_1000fdx; 433 adv_1000hdx = rgep->param_adv_1000hdx; 434 adv_100fdx = rgep->param_adv_100fdx; 435 adv_100hdx = rgep->param_adv_100hdx; 436 adv_10fdx = rgep->param_adv_10fdx; 437 adv_10hdx = rgep->param_adv_10hdx; 438 break; 439 440 case RGE_LOOP_INTERNAL_PHY: 441 case RGE_LOOP_INTERNAL_MAC: 442 adv_autoneg = adv_pause = adv_asym_pause = B_FALSE; 443 adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE; 444 adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE; 445 rgep->param_link_duplex = LINK_DUPLEX_FULL; 446 447 switch (rgep->param_loop_mode) { 448 case RGE_LOOP_INTERNAL_PHY: 449 if (rgep->chipid.mac_ver != MAC_VER_8101E) { 450 rgep->param_link_speed = 1000; 451 adv_1000fdx = B_TRUE; 452 } else { 453 rgep->param_link_speed = 100; 454 adv_100fdx = B_TRUE; 455 } 456 control = MII_CONTROL_LOOPBACK; 457 break; 458 459 case RGE_LOOP_INTERNAL_MAC: 460 if (rgep->chipid.mac_ver != MAC_VER_8101E) { 461 rgep->param_link_speed = 1000; 462 adv_1000fdx = B_TRUE; 463 } else { 464 rgep->param_link_speed = 100; 465 adv_100fdx = B_TRUE; 466 break; 467 } 468 } 469 470 RGE_DEBUG(("rge_phy_update: autoneg %d " 471 "pause %d asym_pause %d " 472 "1000fdx %d 1000hdx %d " 473 "100fdx %d 100hdx %d " 474 "10fdx %d 10hdx %d ", 475 adv_autoneg, 476 adv_pause, adv_asym_pause, 477 adv_1000fdx, adv_1000hdx, 478 adv_100fdx, adv_100hdx, 479 adv_10fdx, adv_10hdx)); 480 481 /* 482 * We should have at least one technology capability set; 483 * if not, we select a default of 1000Mb/s full-duplex 484 */ 485 if (!adv_1000fdx && !adv_100fdx && !adv_10fdx && 486 !adv_1000hdx && !adv_100hdx && !adv_10hdx) { 487 if (rgep->chipid.mac_ver != MAC_VER_8101E) 488 adv_1000fdx = B_TRUE; 489 } else { 490 adv_1000fdx = B_FALSE; 491 adv_100fdx = B_TRUE; 492 } 493 } 494 495 /* 496 * Now transform the adv_* variables into the proper settings 497 * of the PHY registers ... 498 * 499 * If autonegotiation is (now) enabled, we want to trigger 500 * a new autonegotiation cycle once the PHY has been 501 * programmed with the capabilities to be advertised. 502 * 503 * RTL8169/8110 doesn't support 1000Mb/s half-duplex. 504 */ 505 if (adv_autoneg) 506 control |= MII_CONTROL_ANE|MII_CONTROL_RSAN; 507 508 if (adv_1000fdx) 509 control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX; 510 else if (adv_1000hdx) 511 control |= MII_CONTROL_1GB; 512 else if (adv_100fdx) 513 control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX; 514 else if (adv_100hdx) 515 control |= MII_CONTROL_100MB; 516 else if (adv_10fdx) 517 control |= MII_CONTROL_FDUPLEX; 518 else if (adv_10hdx) 519 control |= 0; 520 else 521 { _NOTE(EMPTY); } /* Can't get here anyway ... */ 522 523 if (adv_1000fdx) { 524 gigctrl |= MII_1000BT_CTL_ADV_FDX; 525 /* 526 * Chipset limitation: need set other capabilities to true 527 */ 528 if (rgep->chipid.is_pcie) 529 adv_1000hdx = B_TRUE; 530 adv_100fdx = B_TRUE; 531 adv_100hdx = B_TRUE; 532 adv_10fdx = B_TRUE; 533 adv_10hdx = B_TRUE; 534 } 535 536 if (adv_1000hdx) 537 gigctrl |= MII_1000BT_CTL_ADV_HDX; 538 539 if (adv_100fdx) 540 anar |= MII_ABILITY_100BASE_TX_FD; 541 if (adv_100hdx) 542 anar |= MII_ABILITY_100BASE_TX; 543 if (adv_10fdx) 544 anar |= MII_ABILITY_10BASE_T_FD; 545 if (adv_10hdx) 546 anar |= MII_ABILITY_10BASE_T; 547 548 if (adv_pause) 549 anar |= MII_ABILITY_PAUSE; 550 if (adv_asym_pause) 551 anar |= MII_ABILITY_ASMPAUSE; 552 553 /* 554 * Munge in any other fixed bits we require ... 555 */ 556 anar |= MII_AN_SELECTOR_8023; 557 558 /* 559 * Restart the PHY and write the new values. Note the 560 * time, so that we can say whether subsequent link state 561 * changes can be attributed to our reprogramming the PHY 562 */ 563 rge_phy_init(rgep); 564 if (rgep->chipid.mac_ver == MAC_VER_8168B_B || 565 rgep->chipid.mac_ver == MAC_VER_8168B_C) { 566 /* power up PHY for RTL8168B chipset */ 567 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 568 rge_mii_put16(rgep, PHY_0E_REG, 0x0000); 569 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 570 } 571 rge_mii_put16(rgep, MII_AN_ADVERT, anar); 572 rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl); 573 rge_mii_put16(rgep, MII_CONTROL, control); 574 575 RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar)); 576 RGE_DEBUG(("rge_phy_update: control <- 0x%x", control)); 577 RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl)); 578 } 579 580 void rge_phy_init(rge_t *rgep); 581 #pragma no_inline(rge_phy_init) 582 583 void 584 rge_phy_init(rge_t *rgep) 585 { 586 rgep->phy_mii_addr = 1; 587 588 /* 589 * Below phy config steps are copied from the Programming Guide 590 * (there's no detail comments for these steps.) 591 */ 592 switch (rgep->chipid.mac_ver) { 593 case MAC_VER_8169S_D: 594 case MAC_VER_8169S_E : 595 rge_mii_put16(rgep, PHY_1F_REG, 0x0001); 596 rge_mii_put16(rgep, PHY_15_REG, 0x1000); 597 rge_mii_put16(rgep, PHY_18_REG, 0x65c7); 598 rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); 599 rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1); 600 rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008); 601 rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020); 602 rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000); 603 rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800); 604 rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); 605 rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000); 606 rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41); 607 rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60); 608 rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140); 609 rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077); 610 rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800); 611 rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000); 612 rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000); 613 rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01); 614 rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20); 615 rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95); 616 rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00); 617 rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800); 618 rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000); 619 rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000); 620 rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41); 621 rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20); 622 rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140); 623 rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb); 624 rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800); 625 rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000); 626 rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000); 627 rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01); 628 rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20); 629 rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95); 630 rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00); 631 rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800); 632 rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000); 633 rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); 634 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 635 rge_mii_put16(rgep, PHY_0B_REG, 0x0000); 636 break; 637 638 case MAC_VER_8169SB: 639 rge_mii_put16(rgep, PHY_1F_REG, 0x0001); 640 rge_mii_put16(rgep, PHY_1B_REG, 0xD41E); 641 rge_mii_put16(rgep, PHY_0E_REG, 0x7bff); 642 rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT); 643 rge_mii_put16(rgep, PHY_1F_REG, 0x0002); 644 rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0); 645 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 646 break; 647 648 case MAC_VER_8169SC: 649 rge_mii_put16(rgep, PHY_1F_REG, 0x0001); 650 rge_mii_put16(rgep, PHY_ANER_REG, 0x0078); 651 rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc); 652 rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672); 653 rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14); 654 rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0); 655 rge_mii_put16(rgep, PHY_0C_REG, 0xdb80); 656 rge_mii_put16(rgep, PHY_1B_REG, 0xc414); 657 rge_mii_put16(rgep, PHY_1C_REG, 0xef03); 658 rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8); 659 rge_mii_put16(rgep, PHY_1F_REG, 0x0003); 660 rge_mii_put16(rgep, PHY_13_REG, 0x0600); 661 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 662 break; 663 664 case MAC_VER_8168: 665 rge_mii_put16(rgep, PHY_1F_REG, 0x0001); 666 rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa); 667 rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173); 668 rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc); 669 rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0); 670 rge_mii_put16(rgep, PHY_0B_REG, 0x941a); 671 rge_mii_put16(rgep, PHY_18_REG, 0x65fe); 672 rge_mii_put16(rgep, PHY_1C_REG, 0x1e02); 673 rge_mii_put16(rgep, PHY_1F_REG, 0x0002); 674 rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e); 675 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 676 break; 677 678 case MAC_VER_8168B_B: 679 case MAC_VER_8168B_C: 680 rge_mii_put16(rgep, PHY_1F_REG, 0x0001); 681 rge_mii_put16(rgep, PHY_0B_REG, 0x94b0); 682 rge_mii_put16(rgep, PHY_1B_REG, 0xc416); 683 rge_mii_put16(rgep, PHY_1F_REG, 0x0003); 684 rge_mii_put16(rgep, PHY_12_REG, 0x6096); 685 rge_mii_put16(rgep, PHY_1F_REG, 0x0000); 686 break; 687 } 688 } 689 690 void rge_chip_ident(rge_t *rgep); 691 #pragma no_inline(rge_chip_ident) 692 693 void 694 rge_chip_ident(rge_t *rgep) 695 { 696 chip_id_t *chip = &rgep->chipid; 697 uint32_t val32; 698 uint16_t val16; 699 700 /* 701 * Read and record MAC version 702 */ 703 val32 = rge_reg_get32(rgep, TX_CONFIG_REG); 704 val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1; 705 chip->mac_ver = val32; 706 chip->is_pcie = pci_lcap_locate(rgep->cfg_handle, 707 PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS; 708 709 /* 710 * Read and record PHY version 711 */ 712 val16 = rge_mii_get16(rgep, PHY_ID_REG_2); 713 val16 &= PHY_VER_MASK; 714 chip->phy_ver = val16; 715 716 /* set pci latency timer */ 717 if (chip->mac_ver == MAC_VER_8169 || 718 chip->mac_ver == MAC_VER_8169S_D || 719 chip->mac_ver == MAC_VER_8169SC) 720 pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40); 721 722 if (chip->mac_ver == MAC_VER_8169SC) { 723 val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG); 724 val16 &= 0x0300; 725 if (val16 == 0x1) /* 66Mhz PCI */ 726 pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff); 727 else if (val16 == 0x0) /* 33Mhz PCI */ 728 pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00); 729 } 730 731 /* 732 * PCIE chipset require the Rx buffer start address must be 733 * 8-byte alignment and the Rx buffer size must be multiple of 8. 734 * We'll just use bcopy in receive procedure for the PCIE chipset. 735 */ 736 if (chip->is_pcie) { 737 rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY; 738 if (rgep->default_mtu > ETHERMTU) { 739 rge_notice(rgep, "Jumbo packets not supported " 740 "for this PCIE chipset"); 741 rgep->default_mtu = ETHERMTU; 742 } 743 } 744 if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) 745 rgep->head_room = 0; 746 else 747 rgep->head_room = RGE_HEADROOM; 748 749 /* 750 * Initialize other variables. 751 */ 752 if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU) 753 rgep->default_mtu = ETHERMTU; 754 if (rgep->default_mtu > ETHERMTU) { 755 rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO; 756 rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO; 757 rgep->ethmax_size = RGE_JUMBO_SIZE; 758 } else { 759 rgep->rxbuf_size = RGE_BUFF_SIZE_STD; 760 rgep->txbuf_size = RGE_BUFF_SIZE_STD; 761 rgep->ethmax_size = ETHERMAX; 762 } 763 chip->rxconfig = RX_CONFIG_DEFAULT; 764 chip->txconfig = TX_CONFIG_DEFAULT; 765 766 /* interval to update statistics for polling mode */ 767 rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK); 768 769 /* ensure we are not in polling mode */ 770 rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta; 771 RGE_TRACE(("%s: MAC version = %x, PHY version = %x", 772 rgep->ifname, chip->mac_ver, chip->phy_ver)); 773 } 774 775 /* 776 * Perform first-stage chip (re-)initialisation, using only config-space 777 * accesses: 778 * 779 * + Read the vendor/device/revision/subsystem/cache-line-size registers, 780 * returning the data in the structure pointed to by <idp>. 781 * + Enable Memory Space accesses. 782 * + Enable Bus Mastering according. 783 */ 784 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp); 785 #pragma no_inline(rge_chip_cfg_init) 786 787 void 788 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp) 789 { 790 ddi_acc_handle_t handle; 791 uint16_t commd; 792 793 handle = rgep->cfg_handle; 794 795 /* 796 * Save PCI cache line size and subsystem vendor ID 797 */ 798 cidp->command = pci_config_get16(handle, PCI_CONF_COMM); 799 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID); 800 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID); 801 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID); 802 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID); 803 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID); 804 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ); 805 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER); 806 807 /* 808 * Turn on Master Enable (DMA) and IO Enable bits. 809 * Enable PCI Memory Space accesses 810 */ 811 commd = cidp->command; 812 commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO; 813 pci_config_put16(handle, PCI_CONF_COMM, commd); 814 815 RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x", 816 cidp->vendor, cidp->device, cidp->revision)); 817 RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x", 818 cidp->subven, cidp->subdev)); 819 RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x", 820 cidp->clsize, cidp->latency, cidp->command)); 821 } 822 823 int rge_chip_reset(rge_t *rgep); 824 #pragma no_inline(rge_chip_reset) 825 826 int 827 rge_chip_reset(rge_t *rgep) 828 { 829 int i; 830 uint8_t val8; 831 832 /* 833 * Chip should be in STOP state 834 */ 835 rge_reg_clr8(rgep, RT_COMMAND_REG, 836 RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); 837 838 /* 839 * Disable interrupt 840 */ 841 rgep->int_mask = INT_MASK_NONE; 842 rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); 843 844 /* 845 * Clear pended interrupt 846 */ 847 rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL); 848 849 /* 850 * Reset chip 851 */ 852 rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET); 853 854 /* 855 * Wait for reset success 856 */ 857 for (i = 0; i < CHIP_RESET_LOOP; i++) { 858 drv_usecwait(10); 859 val8 = rge_reg_get8(rgep, RT_COMMAND_REG); 860 if (!(val8 & RT_COMMAND_RESET)) { 861 rgep->rge_chip_state = RGE_CHIP_RESET; 862 return (0); 863 } 864 } 865 RGE_REPORT((rgep, "rge_chip_reset fail.")); 866 return (-1); 867 } 868 869 void rge_chip_init(rge_t *rgep); 870 #pragma no_inline(rge_chip_init) 871 872 void 873 rge_chip_init(rge_t *rgep) 874 { 875 uint32_t val32; 876 uint32_t val16; 877 uint32_t *hashp; 878 chip_id_t *chip = &rgep->chipid; 879 880 /* 881 * Increase the threshold voltage of RX sensitivity 882 */ 883 if (chip->mac_ver == MAC_VER_8168B_B || 884 chip->mac_ver == MAC_VER_8168B_C || 885 chip->mac_ver == MAC_VER_8101E || 886 chip->mac_ver == MAC_VER_8101E_C) { 887 rge_ephy_put16(rgep, 0x01, 0x1bd3); 888 } 889 890 if (chip->mac_ver == MAC_VER_8168 || 891 chip->mac_ver == MAC_VER_8168B_B) { 892 val16 = rge_reg_get8(rgep, PHY_STATUS_REG); 893 val16 = 0x12<<8 | val16; 894 rge_reg_put16(rgep, PHY_STATUS_REG, val16); 895 rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01); 896 rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088); 897 rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000); 898 rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0); 899 rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068); 900 val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG); 901 val32 |= 0x7000; 902 val32 &= 0xffff5fff; 903 rge_reg_put32(rgep, RT_CSI_DATA_REG, val32); 904 rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068); 905 } 906 907 /* 908 * Config MII register 909 */ 910 rgep->param_link_up = LINK_STATE_DOWN; 911 rge_phy_update(rgep); 912 913 /* 914 * Enable Rx checksum offload. 915 * Then for vlan support, we must enable receive vlan de-tagging. 916 * Otherwise, there'll be checksum error. 917 */ 918 val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG); 919 val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG; 920 if (chip->mac_ver == MAC_VER_8169S_D) { 921 val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE; 922 rge_reg_put8(rgep, RESV_82_REG, 0x01); 923 } 924 rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03)); 925 926 /* 927 * Start transmit/receive before set tx/rx configuration register 928 */ 929 if (!chip->is_pcie) 930 rge_reg_set8(rgep, RT_COMMAND_REG, 931 RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); 932 933 /* 934 * Set dump tally counter register 935 */ 936 val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32; 937 rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32); 938 val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0); 939 val32 &= DUMP_COUNTER_REG_RESV; 940 val32 |= rgep->dma_area_stats.cookie.dmac_laddress; 941 rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32); 942 943 /* 944 * Change to config register write enable mode 945 */ 946 rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 947 948 /* 949 * Set Tx/Rx maximum packet size 950 */ 951 if (rgep->default_mtu > ETHERMTU) { 952 rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO); 953 rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO); 954 } else if (rgep->chipid.mac_ver != MAC_VER_8101E) { 955 rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD); 956 rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD); 957 } else { 958 rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E); 959 rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E); 960 } 961 962 /* 963 * Set receive configuration register 964 */ 965 val32 = rge_reg_get32(rgep, RX_CONFIG_REG); 966 val32 &= RX_CONFIG_REG_RESV; 967 if (rgep->promisc) 968 val32 |= RX_ACCEPT_ALL_PKT; 969 rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig); 970 971 /* 972 * Set transmit configuration register 973 */ 974 val32 = rge_reg_get32(rgep, TX_CONFIG_REG); 975 val32 &= TX_CONFIG_REG_RESV; 976 rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig); 977 978 /* 979 * Set Tx/Rx descriptor register 980 */ 981 val32 = rgep->tx_desc.cookie.dmac_laddress; 982 rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32); 983 val32 = rgep->tx_desc.cookie.dmac_laddress >> 32; 984 rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32); 985 rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0); 986 rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0); 987 val32 = rgep->rx_desc.cookie.dmac_laddress; 988 rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32); 989 val32 = rgep->rx_desc.cookie.dmac_laddress >> 32; 990 rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32); 991 992 /* 993 * Suggested setting from Realtek 994 */ 995 if (rgep->chipid.mac_ver != MAC_VER_8101E) 996 rge_reg_put16(rgep, RESV_E2_REG, 0x282a); 997 else 998 rge_reg_put16(rgep, RESV_E2_REG, 0x0000); 999 1000 /* 1001 * Set multicast register 1002 */ 1003 hashp = (uint32_t *)rgep->mcast_hash; 1004 if (rgep->promisc) { 1005 rge_reg_put32(rgep, MULTICAST_0_REG, ~0U); 1006 rge_reg_put32(rgep, MULTICAST_4_REG, ~0U); 1007 } else { 1008 rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0])); 1009 rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1])); 1010 } 1011 1012 /* 1013 * Msic register setting: 1014 * -- Missed packet counter: clear it 1015 * -- TimerInt Register 1016 * -- Timer count register 1017 */ 1018 rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0); 1019 rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE); 1020 rge_reg_put32(rgep, TIMER_COUNT_REG, 0); 1021 1022 /* 1023 * disable the Unicast Wakeup Frame capability 1024 */ 1025 rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME); 1026 1027 /* 1028 * Return to normal network/host communication mode 1029 */ 1030 rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 1031 drv_usecwait(20); 1032 } 1033 1034 /* 1035 * rge_chip_start() -- start the chip transmitting and/or receiving, 1036 * including enabling interrupts 1037 */ 1038 void rge_chip_start(rge_t *rgep); 1039 #pragma no_inline(rge_chip_start) 1040 1041 void 1042 rge_chip_start(rge_t *rgep) 1043 { 1044 /* 1045 * Clear statistics 1046 */ 1047 bzero(&rgep->stats, sizeof (rge_stats_t)); 1048 DMA_ZERO(rgep->dma_area_stats); 1049 1050 /* 1051 * Start transmit/receive 1052 */ 1053 rge_reg_set8(rgep, RT_COMMAND_REG, 1054 RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); 1055 1056 /* 1057 * Enable interrupt 1058 */ 1059 rgep->int_mask = RGE_INT_MASK; 1060 if (rgep->chipid.is_pcie) { 1061 rgep->int_mask |= NO_TXDESC_INT; 1062 } 1063 rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); 1064 1065 /* 1066 * All done! 1067 */ 1068 rgep->rge_chip_state = RGE_CHIP_RUNNING; 1069 } 1070 1071 /* 1072 * rge_chip_stop() -- stop board receiving 1073 * 1074 * Since this function is also invoked by rge_quiesce(), it 1075 * must not block; also, no tracing or logging takes place 1076 * when invoked by rge_quiesce(). 1077 */ 1078 void rge_chip_stop(rge_t *rgep, boolean_t fault); 1079 #pragma no_inline(rge_chip_stop) 1080 1081 void 1082 rge_chip_stop(rge_t *rgep, boolean_t fault) 1083 { 1084 /* 1085 * Disable interrupt 1086 */ 1087 rgep->int_mask = INT_MASK_NONE; 1088 rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); 1089 1090 /* 1091 * Clear pended interrupt 1092 */ 1093 if (!rgep->suspended) { 1094 rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL); 1095 } 1096 1097 /* 1098 * Stop the board and disable transmit/receive 1099 */ 1100 rge_reg_clr8(rgep, RT_COMMAND_REG, 1101 RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); 1102 1103 if (fault) 1104 rgep->rge_chip_state = RGE_CHIP_FAULT; 1105 else 1106 rgep->rge_chip_state = RGE_CHIP_STOPPED; 1107 } 1108 1109 /* 1110 * rge_get_mac_addr() -- get the MAC address on NIC 1111 */ 1112 static void rge_get_mac_addr(rge_t *rgep); 1113 #pragma inline(rge_get_mac_addr) 1114 1115 static void 1116 rge_get_mac_addr(rge_t *rgep) 1117 { 1118 uint8_t *macaddr = rgep->netaddr; 1119 uint32_t val32; 1120 1121 /* 1122 * Read first 4-byte of mac address 1123 */ 1124 val32 = rge_reg_get32(rgep, ID_0_REG); 1125 macaddr[0] = val32 & 0xff; 1126 val32 = val32 >> 8; 1127 macaddr[1] = val32 & 0xff; 1128 val32 = val32 >> 8; 1129 macaddr[2] = val32 & 0xff; 1130 val32 = val32 >> 8; 1131 macaddr[3] = val32 & 0xff; 1132 1133 /* 1134 * Read last 2-byte of mac address 1135 */ 1136 val32 = rge_reg_get32(rgep, ID_4_REG); 1137 macaddr[4] = val32 & 0xff; 1138 val32 = val32 >> 8; 1139 macaddr[5] = val32 & 0xff; 1140 } 1141 1142 static void rge_set_mac_addr(rge_t *rgep); 1143 #pragma inline(rge_set_mac_addr) 1144 1145 static void 1146 rge_set_mac_addr(rge_t *rgep) 1147 { 1148 uint8_t *p = rgep->netaddr; 1149 uint32_t val32; 1150 1151 /* 1152 * Change to config register write enable mode 1153 */ 1154 rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 1155 1156 /* 1157 * Get first 4 bytes of mac address 1158 */ 1159 val32 = p[3]; 1160 val32 = val32 << 8; 1161 val32 |= p[2]; 1162 val32 = val32 << 8; 1163 val32 |= p[1]; 1164 val32 = val32 << 8; 1165 val32 |= p[0]; 1166 1167 /* 1168 * Set first 4 bytes of mac address 1169 */ 1170 rge_reg_put32(rgep, ID_0_REG, val32); 1171 1172 /* 1173 * Get last 2 bytes of mac address 1174 */ 1175 val32 = p[5]; 1176 val32 = val32 << 8; 1177 val32 |= p[4]; 1178 1179 /* 1180 * Set last 2 bytes of mac address 1181 */ 1182 val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff; 1183 rge_reg_put32(rgep, ID_4_REG, val32); 1184 1185 /* 1186 * Return to normal network/host communication mode 1187 */ 1188 rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 1189 } 1190 1191 static void rge_set_multi_addr(rge_t *rgep); 1192 #pragma inline(rge_set_multi_addr) 1193 1194 static void 1195 rge_set_multi_addr(rge_t *rgep) 1196 { 1197 uint32_t *hashp; 1198 1199 hashp = (uint32_t *)rgep->mcast_hash; 1200 1201 /* 1202 * Change to config register write enable mode 1203 */ 1204 if (rgep->chipid.mac_ver == MAC_VER_8169SC) { 1205 rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 1206 } 1207 if (rgep->promisc) { 1208 rge_reg_put32(rgep, MULTICAST_0_REG, ~0U); 1209 rge_reg_put32(rgep, MULTICAST_4_REG, ~0U); 1210 } else { 1211 rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0])); 1212 rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1])); 1213 } 1214 1215 /* 1216 * Return to normal network/host communication mode 1217 */ 1218 if (rgep->chipid.mac_ver == MAC_VER_8169SC) { 1219 rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); 1220 } 1221 } 1222 1223 static void rge_set_promisc(rge_t *rgep); 1224 #pragma inline(rge_set_promisc) 1225 1226 static void 1227 rge_set_promisc(rge_t *rgep) 1228 { 1229 if (rgep->promisc) 1230 rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT); 1231 else 1232 rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT); 1233 } 1234 1235 /* 1236 * rge_chip_sync() -- program the chip with the unicast MAC address, 1237 * the multicast hash table, the required level of promiscuity, and 1238 * the current loopback mode ... 1239 */ 1240 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo); 1241 #pragma no_inline(rge_chip_sync) 1242 1243 void 1244 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo) 1245 { 1246 switch (todo) { 1247 case RGE_GET_MAC: 1248 rge_get_mac_addr(rgep); 1249 break; 1250 case RGE_SET_MAC: 1251 /* Reprogram the unicast MAC address(es) ... */ 1252 rge_set_mac_addr(rgep); 1253 break; 1254 case RGE_SET_MUL: 1255 /* Reprogram the hashed multicast address table ... */ 1256 rge_set_multi_addr(rgep); 1257 break; 1258 case RGE_SET_PROMISC: 1259 /* Set or clear the PROMISCUOUS mode bit */ 1260 rge_set_multi_addr(rgep); 1261 rge_set_promisc(rgep); 1262 break; 1263 default: 1264 break; 1265 } 1266 } 1267 1268 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag); 1269 #pragma no_inline(rge_chip_blank) 1270 1271 /* ARGSUSED */ 1272 void 1273 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag) 1274 { 1275 _NOTE(ARGUNUSED(arg, ticks, count)); 1276 } 1277 1278 void rge_tx_trigger(rge_t *rgep); 1279 #pragma no_inline(rge_tx_trigger) 1280 1281 void 1282 rge_tx_trigger(rge_t *rgep) 1283 { 1284 rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL); 1285 } 1286 1287 void rge_hw_stats_dump(rge_t *rgep); 1288 #pragma no_inline(rge_tx_trigger) 1289 1290 void 1291 rge_hw_stats_dump(rge_t *rgep) 1292 { 1293 int i = 0; 1294 1295 while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) { 1296 drv_usecwait(100); 1297 if (++i > STATS_DUMP_LOOP) { 1298 RGE_DEBUG(("rge h/w statistics dump fail!")); 1299 rgep->rge_chip_state = RGE_CHIP_ERROR; 1300 return; 1301 } 1302 } 1303 DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL); 1304 1305 /* 1306 * Start H/W statistics dump for RTL8169 chip 1307 */ 1308 rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START); 1309 } 1310 1311 /* 1312 * ========== Hardware interrupt handler ========== 1313 */ 1314 1315 #undef RGE_DBG 1316 #define RGE_DBG RGE_DBG_INT /* debug flag for this code */ 1317 1318 static void rge_wake_factotum(rge_t *rgep); 1319 #pragma inline(rge_wake_factotum) 1320 1321 static void 1322 rge_wake_factotum(rge_t *rgep) 1323 { 1324 if (rgep->factotum_flag == 0) { 1325 rgep->factotum_flag = 1; 1326 (void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL); 1327 } 1328 } 1329 1330 /* 1331 * rge_intr() -- handle chip interrupts 1332 */ 1333 uint_t rge_intr(caddr_t arg1, caddr_t arg2); 1334 #pragma no_inline(rge_intr) 1335 1336 uint_t 1337 rge_intr(caddr_t arg1, caddr_t arg2) 1338 { 1339 rge_t *rgep = (rge_t *)arg1; 1340 uint16_t int_status; 1341 clock_t now; 1342 uint32_t tx_pkts; 1343 uint32_t rx_pkts; 1344 uint32_t poll_rate; 1345 uint32_t opt_pkts; 1346 uint32_t opt_intrs; 1347 boolean_t update_int_mask = B_FALSE; 1348 uint32_t itimer; 1349 1350 _NOTE(ARGUNUSED(arg2)) 1351 1352 mutex_enter(rgep->genlock); 1353 1354 if (rgep->suspended) { 1355 mutex_exit(rgep->genlock); 1356 return (DDI_INTR_UNCLAIMED); 1357 } 1358 1359 /* 1360 * Was this interrupt caused by our device... 1361 */ 1362 int_status = rge_reg_get16(rgep, INT_STATUS_REG); 1363 if (!(int_status & rgep->int_mask)) { 1364 mutex_exit(rgep->genlock); 1365 return (DDI_INTR_UNCLAIMED); 1366 /* indicate it wasn't our interrupt */ 1367 } 1368 rgep->stats.intr++; 1369 1370 /* 1371 * Clear interrupt 1372 * For PCIE chipset, we need disable interrupt first. 1373 */ 1374 if (rgep->chipid.is_pcie) { 1375 rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE); 1376 update_int_mask = B_TRUE; 1377 } 1378 rge_reg_put16(rgep, INT_STATUS_REG, int_status); 1379 1380 /* 1381 * Calculate optimal polling interval 1382 */ 1383 now = ddi_get_lbolt(); 1384 if (now - rgep->curr_tick >= rgep->tick_delta && 1385 (rgep->param_link_speed == RGE_SPEED_1000M || 1386 rgep->param_link_speed == RGE_SPEED_100M)) { 1387 /* number of rx and tx packets in the last tick */ 1388 tx_pkts = rgep->stats.opackets - rgep->last_opackets; 1389 rx_pkts = rgep->stats.rpackets - rgep->last_rpackets; 1390 1391 rgep->last_opackets = rgep->stats.opackets; 1392 rgep->last_rpackets = rgep->stats.rpackets; 1393 1394 /* restore interrupt mask */ 1395 rgep->int_mask |= TX_OK_INT | RX_OK_INT; 1396 if (rgep->chipid.is_pcie) { 1397 rgep->int_mask |= NO_TXDESC_INT; 1398 } 1399 1400 /* optimal number of packets in a tick */ 1401 if (rgep->param_link_speed == RGE_SPEED_1000M) { 1402 opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK; 1403 } else { 1404 opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK; 1405 } 1406 1407 /* 1408 * calculate polling interval based on rx and tx packets 1409 * in the last tick 1410 */ 1411 poll_rate = 0; 1412 if (now - rgep->curr_tick < 2*rgep->tick_delta) { 1413 opt_intrs = opt_pkts/TX_COALESC; 1414 if (tx_pkts > opt_intrs) { 1415 poll_rate = max(tx_pkts/TX_COALESC, opt_intrs); 1416 rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT); 1417 } 1418 1419 opt_intrs = opt_pkts/RX_COALESC; 1420 if (rx_pkts > opt_intrs) { 1421 opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs); 1422 poll_rate = max(opt_intrs, poll_rate); 1423 rgep->int_mask &= ~RX_OK_INT; 1424 } 1425 /* ensure poll_rate reasonable */ 1426 poll_rate = min(poll_rate, opt_pkts*4); 1427 } 1428 1429 if (poll_rate) { 1430 /* move to polling mode */ 1431 if (rgep->chipid.is_pcie) { 1432 itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate; 1433 } else { 1434 itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate; 1435 } 1436 } else { 1437 /* move to normal mode */ 1438 itimer = 0; 1439 } 1440 RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x", 1441 __func__, itimer, rgep->int_mask)); 1442 rge_reg_put32(rgep, TIMER_INT_REG, itimer); 1443 1444 /* update timestamp for statistics */ 1445 rgep->curr_tick = now; 1446 1447 /* reset timer */ 1448 int_status |= TIME_OUT_INT; 1449 1450 update_int_mask = B_TRUE; 1451 } 1452 1453 if (int_status & TIME_OUT_INT) { 1454 rge_reg_put32(rgep, TIMER_COUNT_REG, 0); 1455 } 1456 1457 /* flush post writes */ 1458 (void) rge_reg_get16(rgep, INT_STATUS_REG); 1459 1460 /* 1461 * Cable link change interrupt 1462 */ 1463 if (int_status & LINK_CHANGE_INT) { 1464 rge_chip_cyclic(rgep); 1465 } 1466 1467 mutex_exit(rgep->genlock); 1468 1469 /* 1470 * Receive interrupt 1471 */ 1472 if (int_status & RGE_RX_INT) 1473 rge_receive(rgep); 1474 1475 /* 1476 * Transmit interrupt 1477 */ 1478 if (int_status & TX_ERR_INT) { 1479 RGE_REPORT((rgep, "tx error happened, resetting the chip ")); 1480 mutex_enter(rgep->genlock); 1481 rgep->rge_chip_state = RGE_CHIP_ERROR; 1482 mutex_exit(rgep->genlock); 1483 } else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) || 1484 ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) { 1485 (void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL); 1486 } 1487 1488 /* 1489 * Re-enable interrupt for PCIE chipset or install new int_mask 1490 */ 1491 if (update_int_mask) 1492 rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); 1493 1494 return (DDI_INTR_CLAIMED); /* indicate it was our interrupt */ 1495 } 1496 1497 /* 1498 * ========== Factotum, implemented as a softint handler ========== 1499 */ 1500 1501 #undef RGE_DBG 1502 #define RGE_DBG RGE_DBG_FACT /* debug flag for this code */ 1503 1504 static boolean_t rge_factotum_link_check(rge_t *rgep); 1505 #pragma no_inline(rge_factotum_link_check) 1506 1507 static boolean_t 1508 rge_factotum_link_check(rge_t *rgep) 1509 { 1510 uint8_t media_status; 1511 int32_t link; 1512 1513 media_status = rge_reg_get8(rgep, PHY_STATUS_REG); 1514 link = (media_status & PHY_STATUS_LINK_UP) ? 1515 LINK_STATE_UP : LINK_STATE_DOWN; 1516 if (rgep->param_link_up != link) { 1517 /* 1518 * Link change. 1519 */ 1520 rgep->param_link_up = link; 1521 1522 if (link == LINK_STATE_UP) { 1523 if (media_status & PHY_STATUS_1000MF) { 1524 rgep->param_link_speed = RGE_SPEED_1000M; 1525 rgep->param_link_duplex = LINK_DUPLEX_FULL; 1526 } else { 1527 rgep->param_link_speed = 1528 (media_status & PHY_STATUS_100M) ? 1529 RGE_SPEED_100M : RGE_SPEED_10M; 1530 rgep->param_link_duplex = 1531 (media_status & PHY_STATUS_DUPLEX_FULL) ? 1532 LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; 1533 } 1534 } 1535 return (B_TRUE); 1536 } 1537 return (B_FALSE); 1538 } 1539 1540 /* 1541 * Factotum routine to check for Tx stall, using the 'watchdog' counter 1542 */ 1543 static boolean_t rge_factotum_stall_check(rge_t *rgep); 1544 #pragma no_inline(rge_factotum_stall_check) 1545 1546 static boolean_t 1547 rge_factotum_stall_check(rge_t *rgep) 1548 { 1549 uint32_t dogval; 1550 1551 ASSERT(mutex_owned(rgep->genlock)); 1552 1553 /* 1554 * Specific check for Tx stall ... 1555 * 1556 * The 'watchdog' counter is incremented whenever a packet 1557 * is queued, reset to 1 when some (but not all) buffers 1558 * are reclaimed, reset to 0 (disabled) when all buffers 1559 * are reclaimed, and shifted left here. If it exceeds the 1560 * threshold value, the chip is assumed to have stalled and 1561 * is put into the ERROR state. The factotum will then reset 1562 * it on the next pass. 1563 * 1564 * All of which should ensure that we don't get into a state 1565 * where packets are left pending indefinitely! 1566 */ 1567 if (rgep->resched_needed) 1568 (void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL); 1569 dogval = rge_atomic_shl32(&rgep->watchdog, 1); 1570 if (dogval < rge_watchdog_count) 1571 return (B_FALSE); 1572 1573 RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval)); 1574 return (B_TRUE); 1575 1576 } 1577 1578 /* 1579 * The factotum is woken up when there's something to do that we'd rather 1580 * not do from inside a hardware interrupt handler or high-level cyclic. 1581 * Its two main tasks are: 1582 * reset & restart the chip after an error 1583 * check the link status whenever necessary 1584 */ 1585 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2); 1586 #pragma no_inline(rge_chip_factotum) 1587 1588 uint_t 1589 rge_chip_factotum(caddr_t arg1, caddr_t arg2) 1590 { 1591 rge_t *rgep; 1592 uint_t result; 1593 boolean_t error; 1594 boolean_t linkchg; 1595 1596 rgep = (rge_t *)arg1; 1597 _NOTE(ARGUNUSED(arg2)) 1598 1599 if (rgep->factotum_flag == 0) 1600 return (DDI_INTR_UNCLAIMED); 1601 1602 rgep->factotum_flag = 0; 1603 result = DDI_INTR_CLAIMED; 1604 error = B_FALSE; 1605 linkchg = B_FALSE; 1606 1607 mutex_enter(rgep->genlock); 1608 switch (rgep->rge_chip_state) { 1609 default: 1610 break; 1611 1612 case RGE_CHIP_RUNNING: 1613 linkchg = rge_factotum_link_check(rgep); 1614 error = rge_factotum_stall_check(rgep); 1615 break; 1616 1617 case RGE_CHIP_ERROR: 1618 error = B_TRUE; 1619 break; 1620 1621 case RGE_CHIP_FAULT: 1622 /* 1623 * Fault detected, time to reset ... 1624 */ 1625 if (rge_autorecover) { 1626 RGE_REPORT((rgep, "automatic recovery activated")); 1627 rge_restart(rgep); 1628 } 1629 break; 1630 } 1631 1632 /* 1633 * If an error is detected, stop the chip now, marking it as 1634 * faulty, so that it will be reset next time through ... 1635 */ 1636 if (error) 1637 rge_chip_stop(rgep, B_TRUE); 1638 mutex_exit(rgep->genlock); 1639 1640 /* 1641 * If the link state changed, tell the world about it. 1642 * Note: can't do this while still holding the mutex. 1643 */ 1644 if (linkchg) 1645 mac_link_update(rgep->mh, rgep->param_link_up); 1646 1647 return (result); 1648 } 1649 1650 /* 1651 * High-level cyclic handler 1652 * 1653 * This routine schedules a (low-level) softint callback to the 1654 * factotum, and prods the chip to update the status block (which 1655 * will cause a hardware interrupt when complete). 1656 */ 1657 void rge_chip_cyclic(void *arg); 1658 #pragma no_inline(rge_chip_cyclic) 1659 1660 void 1661 rge_chip_cyclic(void *arg) 1662 { 1663 rge_t *rgep; 1664 1665 rgep = arg; 1666 1667 switch (rgep->rge_chip_state) { 1668 default: 1669 return; 1670 1671 case RGE_CHIP_RUNNING: 1672 rge_phy_check(rgep); 1673 break; 1674 1675 case RGE_CHIP_FAULT: 1676 case RGE_CHIP_ERROR: 1677 break; 1678 } 1679 1680 rge_wake_factotum(rgep); 1681 } 1682 1683 1684 /* 1685 * ========== Ioctl subfunctions ========== 1686 */ 1687 1688 #undef RGE_DBG 1689 #define RGE_DBG RGE_DBG_PPIO /* debug flag for this code */ 1690 1691 #if RGE_DEBUGGING || RGE_DO_PPIO 1692 1693 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd); 1694 #pragma no_inline(rge_chip_peek_cfg) 1695 1696 static void 1697 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd) 1698 { 1699 uint64_t regval; 1700 uint64_t regno; 1701 1702 RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)", 1703 (void *)rgep, (void *)ppd)); 1704 1705 regno = ppd->pp_acc_offset; 1706 1707 switch (ppd->pp_acc_size) { 1708 case 1: 1709 regval = pci_config_get8(rgep->cfg_handle, regno); 1710 break; 1711 1712 case 2: 1713 regval = pci_config_get16(rgep->cfg_handle, regno); 1714 break; 1715 1716 case 4: 1717 regval = pci_config_get32(rgep->cfg_handle, regno); 1718 break; 1719 1720 case 8: 1721 regval = pci_config_get64(rgep->cfg_handle, regno); 1722 break; 1723 } 1724 1725 ppd->pp_acc_data = regval; 1726 } 1727 1728 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd); 1729 #pragma no_inline(rge_chip_poke_cfg) 1730 1731 static void 1732 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd) 1733 { 1734 uint64_t regval; 1735 uint64_t regno; 1736 1737 RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)", 1738 (void *)rgep, (void *)ppd)); 1739 1740 regno = ppd->pp_acc_offset; 1741 regval = ppd->pp_acc_data; 1742 1743 switch (ppd->pp_acc_size) { 1744 case 1: 1745 pci_config_put8(rgep->cfg_handle, regno, regval); 1746 break; 1747 1748 case 2: 1749 pci_config_put16(rgep->cfg_handle, regno, regval); 1750 break; 1751 1752 case 4: 1753 pci_config_put32(rgep->cfg_handle, regno, regval); 1754 break; 1755 1756 case 8: 1757 pci_config_put64(rgep->cfg_handle, regno, regval); 1758 break; 1759 } 1760 } 1761 1762 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd); 1763 #pragma no_inline(rge_chip_peek_reg) 1764 1765 static void 1766 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd) 1767 { 1768 uint64_t regval; 1769 void *regaddr; 1770 1771 RGE_TRACE(("rge_chip_peek_reg($%p, $%p)", 1772 (void *)rgep, (void *)ppd)); 1773 1774 regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset); 1775 1776 switch (ppd->pp_acc_size) { 1777 case 1: 1778 regval = ddi_get8(rgep->io_handle, regaddr); 1779 break; 1780 1781 case 2: 1782 regval = ddi_get16(rgep->io_handle, regaddr); 1783 break; 1784 1785 case 4: 1786 regval = ddi_get32(rgep->io_handle, regaddr); 1787 break; 1788 1789 case 8: 1790 regval = ddi_get64(rgep->io_handle, regaddr); 1791 break; 1792 } 1793 1794 ppd->pp_acc_data = regval; 1795 } 1796 1797 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd); 1798 #pragma no_inline(rge_chip_peek_reg) 1799 1800 static void 1801 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd) 1802 { 1803 uint64_t regval; 1804 void *regaddr; 1805 1806 RGE_TRACE(("rge_chip_poke_reg($%p, $%p)", 1807 (void *)rgep, (void *)ppd)); 1808 1809 regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset); 1810 regval = ppd->pp_acc_data; 1811 1812 switch (ppd->pp_acc_size) { 1813 case 1: 1814 ddi_put8(rgep->io_handle, regaddr, regval); 1815 break; 1816 1817 case 2: 1818 ddi_put16(rgep->io_handle, regaddr, regval); 1819 break; 1820 1821 case 4: 1822 ddi_put32(rgep->io_handle, regaddr, regval); 1823 break; 1824 1825 case 8: 1826 ddi_put64(rgep->io_handle, regaddr, regval); 1827 break; 1828 } 1829 } 1830 1831 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd); 1832 #pragma no_inline(rge_chip_peek_mii) 1833 1834 static void 1835 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd) 1836 { 1837 RGE_TRACE(("rge_chip_peek_mii($%p, $%p)", 1838 (void *)rgep, (void *)ppd)); 1839 1840 ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2); 1841 } 1842 1843 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd); 1844 #pragma no_inline(rge_chip_poke_mii) 1845 1846 static void 1847 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd) 1848 { 1849 RGE_TRACE(("rge_chip_poke_mii($%p, $%p)", 1850 (void *)rgep, (void *)ppd)); 1851 1852 rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data); 1853 } 1854 1855 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd); 1856 #pragma no_inline(rge_chip_peek_mem) 1857 1858 static void 1859 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd) 1860 { 1861 uint64_t regval; 1862 void *vaddr; 1863 1864 RGE_TRACE(("rge_chip_peek_rge($%p, $%p)", 1865 (void *)rgep, (void *)ppd)); 1866 1867 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 1868 1869 switch (ppd->pp_acc_size) { 1870 case 1: 1871 regval = *(uint8_t *)vaddr; 1872 break; 1873 1874 case 2: 1875 regval = *(uint16_t *)vaddr; 1876 break; 1877 1878 case 4: 1879 regval = *(uint32_t *)vaddr; 1880 break; 1881 1882 case 8: 1883 regval = *(uint64_t *)vaddr; 1884 break; 1885 } 1886 1887 RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p", 1888 (void *)rgep, (void *)ppd, regval, vaddr)); 1889 1890 ppd->pp_acc_data = regval; 1891 } 1892 1893 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd); 1894 #pragma no_inline(rge_chip_poke_mem) 1895 1896 static void 1897 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd) 1898 { 1899 uint64_t regval; 1900 void *vaddr; 1901 1902 RGE_TRACE(("rge_chip_poke_mem($%p, $%p)", 1903 (void *)rgep, (void *)ppd)); 1904 1905 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 1906 regval = ppd->pp_acc_data; 1907 1908 RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p", 1909 (void *)rgep, (void *)ppd, regval, vaddr)); 1910 1911 switch (ppd->pp_acc_size) { 1912 case 1: 1913 *(uint8_t *)vaddr = (uint8_t)regval; 1914 break; 1915 1916 case 2: 1917 *(uint16_t *)vaddr = (uint16_t)regval; 1918 break; 1919 1920 case 4: 1921 *(uint32_t *)vaddr = (uint32_t)regval; 1922 break; 1923 1924 case 8: 1925 *(uint64_t *)vaddr = (uint64_t)regval; 1926 break; 1927 } 1928 } 1929 1930 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, 1931 struct iocblk *iocp); 1932 #pragma no_inline(rge_pp_ioctl) 1933 1934 static enum ioc_reply 1935 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) 1936 { 1937 void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd); 1938 rge_peekpoke_t *ppd; 1939 dma_area_t *areap; 1940 uint64_t sizemask; 1941 uint64_t mem_va; 1942 uint64_t maxoff; 1943 boolean_t peek; 1944 1945 switch (cmd) { 1946 default: 1947 /* NOTREACHED */ 1948 rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd); 1949 return (IOC_INVAL); 1950 1951 case RGE_PEEK: 1952 peek = B_TRUE; 1953 break; 1954 1955 case RGE_POKE: 1956 peek = B_FALSE; 1957 break; 1958 } 1959 1960 /* 1961 * Validate format of ioctl 1962 */ 1963 if (iocp->ioc_count != sizeof (rge_peekpoke_t)) 1964 return (IOC_INVAL); 1965 if (mp->b_cont == NULL) 1966 return (IOC_INVAL); 1967 ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr; 1968 1969 /* 1970 * Validate request parameters 1971 */ 1972 switch (ppd->pp_acc_space) { 1973 default: 1974 return (IOC_INVAL); 1975 1976 case RGE_PP_SPACE_CFG: 1977 /* 1978 * Config space 1979 */ 1980 sizemask = 8|4|2|1; 1981 mem_va = 0; 1982 maxoff = PCI_CONF_HDR_SIZE; 1983 ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg; 1984 break; 1985 1986 case RGE_PP_SPACE_REG: 1987 /* 1988 * Memory-mapped I/O space 1989 */ 1990 sizemask = 8|4|2|1; 1991 mem_va = 0; 1992 maxoff = RGE_REGISTER_MAX; 1993 ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg; 1994 break; 1995 1996 case RGE_PP_SPACE_MII: 1997 /* 1998 * PHY's MII registers 1999 * NB: all PHY registers are two bytes, but the 2000 * addresses increment in ones (word addressing). 2001 * So we scale the address here, then undo the 2002 * transformation inside the peek/poke functions. 2003 */ 2004 ppd->pp_acc_offset *= 2; 2005 sizemask = 2; 2006 mem_va = 0; 2007 maxoff = (MII_MAXREG+1)*2; 2008 ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii; 2009 break; 2010 2011 case RGE_PP_SPACE_RGE: 2012 /* 2013 * RGE data structure! 2014 */ 2015 sizemask = 8|4|2|1; 2016 mem_va = (uintptr_t)rgep; 2017 maxoff = sizeof (*rgep); 2018 ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem; 2019 break; 2020 2021 case RGE_PP_SPACE_STATISTICS: 2022 case RGE_PP_SPACE_TXDESC: 2023 case RGE_PP_SPACE_TXBUFF: 2024 case RGE_PP_SPACE_RXDESC: 2025 case RGE_PP_SPACE_RXBUFF: 2026 /* 2027 * Various DMA_AREAs 2028 */ 2029 switch (ppd->pp_acc_space) { 2030 case RGE_PP_SPACE_TXDESC: 2031 areap = &rgep->dma_area_txdesc; 2032 break; 2033 case RGE_PP_SPACE_RXDESC: 2034 areap = &rgep->dma_area_rxdesc; 2035 break; 2036 case RGE_PP_SPACE_STATISTICS: 2037 areap = &rgep->dma_area_stats; 2038 break; 2039 } 2040 2041 sizemask = 8|4|2|1; 2042 mem_va = (uintptr_t)areap->mem_va; 2043 maxoff = areap->alength; 2044 ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem; 2045 break; 2046 } 2047 2048 switch (ppd->pp_acc_size) { 2049 default: 2050 return (IOC_INVAL); 2051 2052 case 8: 2053 case 4: 2054 case 2: 2055 case 1: 2056 if ((ppd->pp_acc_size & sizemask) == 0) 2057 return (IOC_INVAL); 2058 break; 2059 } 2060 2061 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) 2062 return (IOC_INVAL); 2063 2064 if (ppd->pp_acc_offset >= maxoff) 2065 return (IOC_INVAL); 2066 2067 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff) 2068 return (IOC_INVAL); 2069 2070 /* 2071 * All OK - go do it! 2072 */ 2073 ppd->pp_acc_offset += mem_va; 2074 (*ppfn)(rgep, ppd); 2075 return (peek ? IOC_REPLY : IOC_ACK); 2076 } 2077 2078 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, 2079 struct iocblk *iocp); 2080 #pragma no_inline(rge_diag_ioctl) 2081 2082 static enum ioc_reply 2083 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) 2084 { 2085 ASSERT(mutex_owned(rgep->genlock)); 2086 2087 switch (cmd) { 2088 default: 2089 /* NOTREACHED */ 2090 rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd); 2091 return (IOC_INVAL); 2092 2093 case RGE_DIAG: 2094 /* 2095 * Currently a no-op 2096 */ 2097 return (IOC_ACK); 2098 2099 case RGE_PEEK: 2100 case RGE_POKE: 2101 return (rge_pp_ioctl(rgep, cmd, mp, iocp)); 2102 2103 case RGE_PHY_RESET: 2104 return (IOC_RESTART_ACK); 2105 2106 case RGE_SOFT_RESET: 2107 case RGE_HARD_RESET: 2108 /* 2109 * Reset and reinitialise the 570x hardware 2110 */ 2111 rge_restart(rgep); 2112 return (IOC_ACK); 2113 } 2114 2115 /* NOTREACHED */ 2116 } 2117 2118 #endif /* RGE_DEBUGGING || RGE_DO_PPIO */ 2119 2120 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, 2121 struct iocblk *iocp); 2122 #pragma no_inline(rge_mii_ioctl) 2123 2124 static enum ioc_reply 2125 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) 2126 { 2127 struct rge_mii_rw *miirwp; 2128 2129 /* 2130 * Validate format of ioctl 2131 */ 2132 if (iocp->ioc_count != sizeof (struct rge_mii_rw)) 2133 return (IOC_INVAL); 2134 if (mp->b_cont == NULL) 2135 return (IOC_INVAL); 2136 miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr; 2137 2138 /* 2139 * Validate request parameters ... 2140 */ 2141 if (miirwp->mii_reg > MII_MAXREG) 2142 return (IOC_INVAL); 2143 2144 switch (cmd) { 2145 default: 2146 /* NOTREACHED */ 2147 rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd); 2148 return (IOC_INVAL); 2149 2150 case RGE_MII_READ: 2151 miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg); 2152 return (IOC_REPLY); 2153 2154 case RGE_MII_WRITE: 2155 rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data); 2156 return (IOC_ACK); 2157 } 2158 2159 /* NOTREACHED */ 2160 } 2161 2162 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, 2163 struct iocblk *iocp); 2164 #pragma no_inline(rge_chip_ioctl) 2165 2166 enum ioc_reply 2167 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 2168 { 2169 int cmd; 2170 2171 RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)", 2172 (void *)rgep, (void *)wq, (void *)mp, (void *)iocp)); 2173 2174 ASSERT(mutex_owned(rgep->genlock)); 2175 2176 cmd = iocp->ioc_cmd; 2177 switch (cmd) { 2178 default: 2179 /* NOTREACHED */ 2180 rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd); 2181 return (IOC_INVAL); 2182 2183 case RGE_DIAG: 2184 case RGE_PEEK: 2185 case RGE_POKE: 2186 case RGE_PHY_RESET: 2187 case RGE_SOFT_RESET: 2188 case RGE_HARD_RESET: 2189 #if RGE_DEBUGGING || RGE_DO_PPIO 2190 return (rge_diag_ioctl(rgep, cmd, mp, iocp)); 2191 #else 2192 return (IOC_INVAL); 2193 #endif /* RGE_DEBUGGING || RGE_DO_PPIO */ 2194 2195 case RGE_MII_READ: 2196 case RGE_MII_WRITE: 2197 return (rge_mii_ioctl(rgep, cmd, mp, iocp)); 2198 2199 } 2200 2201 /* NOTREACHED */ 2202 } 2203