xref: /titanic_44/usr/src/uts/common/io/ptms_conf.c (revision 99ebb4ca412cb0a19d77a3899a87c055b9c30fa8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains global data and code shared between master and slave parts
30  * of the pseudo-terminal driver.
31  *
32  * Pseudo terminals (or pt's for short) are allocated dynamically.
33  * pt's are put in the global ptms_slots array indexed by minor numbers.
34  *
35  * The slots array is initially small (of the size NPTY_MIN). When more pt's are
36  * needed than the slot array size, the larger slot array is allocated and all
37  * opened pt's move to the new one.
38  *
39  * Resource allocation:
40  *
41  *	pt_ttys structures are allocated via pt_ttys_alloc, which uses
42  *		kmem_cache_alloc().
43  *	Minor number space is allocated via vmem_alloc() interface.
44  *	ptms_slots arrays are allocated via kmem_alloc().
45  *
46  *   Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
47  *   of failure. Also, in anticipation of removing clone device interface to
48  *   pseudo-terminal subsystem, minor 0 should not be used. (Potential future
49  *   development).
50  *
51  *   After the table slot size reaches pt_maxdelta, we stop 2^N extension
52  *   algorithm and start extending the slot table size by pt_maxdelta.
53  *
54  *   Device entries /dev/pts directory are created dynamically by the
55  *   /dev filesystem. We no longer call ddi_create_minor_node() on
56  *   behalf of the slave driver. The /dev filesystem creates /dev/pts
57  *   nodes based on the pt_ttys array.
58  *
59  * Synchronization:
60  *
61  *   All global data synchronization between ptm/pts is done via global
62  *   ptms_lock mutex which is implicitly initialized by declaring it global.
63  *
64  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
65  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
66  *
67  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
68  *   which allow reader locks to be reacquired by the same thread (usual
69  *   reader/writer locks can't be used for that purpose since it is illegal for
70  *   a thread to acquire a lock it already holds, even as a reader). The sole
71  *   purpose of these macros is to guarantee that the peer queue will not
72  *   disappear (due to closing peer) while it is used. It is safe to use
73  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
74  *   they are not real locks but reference counts).
75  *
76  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
77  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
78  *   be set to appropriate queues *after* qprocson() is called during open (to
79  *   prevent peer from accessing the queue with incomplete plumbing) and set to
80  *   NULL before qprocsoff() is called during close. Put and service procedures
81  *   use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
82  *
83  *   The pt_nullmsg field is only used in open/close routines and is also
84  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
85  *   holds.
86  *
87  * Lock Ordering:
88  *
89  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
90  *   be entered first, followed by per-pty lock.
91  *
92  * Global functions:
93  *
94  * void ptms_init(void);
95  *
96  *	Called by pts/ptm _init entry points. It performes one-time
97  * 	initialization needed for both pts and ptm. This initialization is done
98  * 	here and not in ptms_initspace because all these data structures are not
99  *	needed if pseudo-terminals are not used in the system.
100  *
101  * struct pt_ttys *pt_ttys_alloc(void);
102  *
103  *	Allocate new minor number and pseudo-terminal entry. May sleep.
104  *	New minor number is recorded in pt_minor field of the entry returned.
105  *	This routine also initializes pt_minor and pt_state fields of the new
106  *	pseudo-terminal and puts a pointer to it into ptms_slots array.
107  *
108  * struct pt_ttys *ptms_minor2ptty(minor_t minor)
109  *
110  *	Find pt_ttys structure by minor number.
111  *	Returns NULL when minor is out of range.
112  *
113  * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
114  *
115  *	Check if minor refers to an allocated pty in the current zone.
116  *	Returns
117  *		 0 if not allocated or not for this zone.
118  *		 1 if an allocated pty in the current zone.
119  *	Also returns owner of pty.
120  *
121  * int ptms_minor_exists(minor_t minor)
122  *	Check if minor refers to an allocated pty (in any zone)
123  *	Returns
124  *		0 if not an allocated pty
125  *		1 if an allocated pty
126  *
127  * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
128  *
129  *	Sets the owner associated with a pty.
130  *
131  * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
132  *
133  *	Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
134  * 	set) free pt entry and corresponding slot.
135  *
136  * Tuneables and configuration:
137  *
138  *	pt_cnt: minimum number of pseudo-terminals in the system. The system
139  *		should provide at least this number of ptys (provided sufficient
140  * 		memory is available). It is different from the older semantics
141  *		of pt_cnt meaning maximum number of ptys.
142  *		Set to 0 by default.
143  *
144  *	pt_max_pty: Maximum number of pseudo-terminals in the system. The system
145  *		should not allocate more ptys than pt_max_pty (although, it may
146  * 		impose stricter maximum). Zero value means no user-defined
147  * 		maximum. This is intended to be used as "denial-of-service"
148  *		protection.
149  *		Set to 0 by default.
150  *
151  *         Both pt_cnt and pt_max_pty may be modified during system lifetime
152  *         with their semantics preserved.
153  *
154  *	pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
155  *
156  *	pt_ptyofmem: Approximate percentage of system memory that may be
157  *		occupied by pty data structures. Initially set to NPTY_PERCENT.
158  *		This variable is used once during initialization to estimate
159  * 		maximum number of ptys in the system. The actual maximum is
160  *		determined as minimum of pt_max_pty and calculated value.
161  *
162  *	pt_maxdelta: Maximum extension chunk of the slot table.
163  */
164 
165 
166 
167 #include <sys/types.h>
168 #include <sys/param.h>
169 #include <sys/termios.h>
170 #include <sys/stream.h>
171 #include <sys/stropts.h>
172 #include <sys/kmem.h>
173 #include <sys/ptms.h>
174 #include <sys/stat.h>
175 #include <sys/sunddi.h>
176 #include <sys/ddi.h>
177 #include <sys/bitmap.h>
178 #include <sys/sysmacros.h>
179 #include <sys/ddi_impldefs.h>
180 #include <sys/zone.h>
181 #ifdef DEBUG
182 #include <sys/strlog.h>
183 #endif
184 
185 
186 /* Initial number of ptms slots */
187 #define	NPTY_INITIAL 16
188 
189 #define	NPTY_PERCENT 5
190 
191 /* Maximum increment of the slot table size */
192 #define	PTY_MAXDELTA 128
193 
194 /*
195  * Tuneable variables.
196  */
197 uint_t	pt_cnt = 0;			/* Minimum number of ptys */
198 size_t 	pt_max_pty = 0;			/* Maximum number of ptys */
199 uint_t	pt_init_cnt = NPTY_INITIAL;	/* Initial number of ptms slots */
200 uint_t	pt_pctofmem = NPTY_PERCENT;	/* Percent of memory to use for ptys */
201 uint_t	pt_maxdelta = PTY_MAXDELTA;	/* Max increment for slot table size */
202 
203 /* Other global variables */
204 
205 kmutex_t ptms_lock;			/* Global data access lock */
206 
207 /*
208  * Slot array and its management variables
209  */
210 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
211 static size_t ptms_nslots = 0;		/* Size of slot array */
212 static size_t ptms_ptymax = 0;		/* Maximum number of ptys */
213 static size_t ptms_inuse = 0;		/* # of ptys currently allocated */
214 
215 dev_info_t 	*pts_dip = NULL;	/* set if slave is attached */
216 
217 static struct kmem_cache *ptms_cache = NULL;	/* pty cache */
218 
219 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
220 
221 static uint_t ptms_roundup(uint_t);
222 static int ptms_constructor(void *, void *, int);
223 static void ptms_destructor(void *, void *);
224 static minor_t ptms_grow(void);
225 
226 /*
227  * Total size occupied by one pty. Each pty master/slave pair consumes one
228  * pointer for ptms_slots array, one pt_ttys structure and one empty message
229  * preallocated for pts close.
230  */
231 
232 #define	PTY_SIZE (sizeof (struct pt_ttys) + \
233     sizeof (struct pt_ttys *) + \
234     sizeof (dblk_t))
235 
236 #ifdef DEBUG
237 int ptms_debug = 0;
238 #define	PTMOD_ID 5
239 #endif
240 
241 /*
242  * Clear all bits of x except the highest bit
243  */
244 #define	truncate(x) 	((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
245 
246 /*
247  * Roundup the number to the nearest power of 2
248  */
249 static uint_t
250 ptms_roundup(uint_t x)
251 {
252 	uint_t p = truncate(x);	/* x with non-high bits stripped */
253 
254 	/*
255 	 * If x is a power of 2, return x, otherwise roundup.
256 	 */
257 	return (p == x ? p : (p * 2));
258 }
259 
260 /*
261  * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
262  * only called once during system lifetime. Called from ptm or pts _init
263  * routine.
264  */
265 void
266 ptms_init(void)
267 {
268 	mutex_enter(&ptms_lock);
269 
270 	if (ptms_slots == NULL) {
271 		ptms_slots = kmem_zalloc(pt_init_cnt *
272 		    sizeof (struct pt_ttys *), KM_SLEEP);
273 
274 		ptms_cache = kmem_cache_create("pty_map",
275 		    sizeof (struct pt_ttys), 0, ptms_constructor,
276 		    ptms_destructor, NULL, NULL, NULL, 0);
277 
278 		ptms_nslots = pt_init_cnt;
279 
280 		/* Allocate integer space for minor numbers */
281 		ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
282 		    ptms_nslots, 1, NULL, NULL, NULL, 0,
283 		    VM_SLEEP | VMC_IDENTIFIER);
284 
285 		/*
286 		 * Calculate available number of ptys - how many ptys can we
287 		 * allocate in pt_pctofmem % of available memory. The value is
288 		 * rounded up to the nearest power of 2.
289 		 */
290 		ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
291 		    (100 * PTY_SIZE));
292 	}
293 	mutex_exit(&ptms_lock);
294 }
295 
296 /*
297  * This routine attaches the pts dip.
298  */
299 int
300 ptms_attach_slave(void)
301 {
302 	if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL)
303 		return (-1);
304 
305 	ASSERT(pts_dip);
306 	return (0);
307 }
308 
309 /*
310  * Called from /dev fs. Checks if dip is attached,
311  * and if it is, returns its major number.
312  */
313 major_t
314 ptms_slave_attached(void)
315 {
316 	major_t maj = (major_t)-1;
317 
318 	mutex_enter(&ptms_lock);
319 	if (pts_dip)
320 		maj = ddi_driver_major(pts_dip);
321 	mutex_exit(&ptms_lock);
322 
323 	return (maj);
324 }
325 
326 /*
327  * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
328  * NULL if no memory or maximum number of entries reached.
329  */
330 struct pt_ttys *
331 pt_ttys_alloc(void)
332 {
333 	minor_t dminor;
334 	struct pt_ttys *pt = NULL;
335 
336 	mutex_enter(&ptms_lock);
337 
338 	/*
339 	 * Always try to allocate new pty when pt_cnt minimum limit is not
340 	 * achieved. If it is achieved, the maximum is determined by either
341 	 * user-specified value (if it is non-zero) or our memory estimations -
342 	 * whatever is less.
343 	 */
344 	if (ptms_inuse >= pt_cnt) {
345 		/*
346 		 * When system achieved required minimum of ptys, check for the
347 		 *   denial of service limits.
348 		 *
349 		 * Since pt_max_pty may be zero, the formula below is used to
350 		 * avoid conditional expression. It will equal to pt_max_pty if
351 		 * it is not zero and ptms_ptymax otherwise.
352 		 */
353 		size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
354 
355 		/* Do not try to allocate more than allowed */
356 		if (ptms_inuse >= min(ptms_ptymax, user_max)) {
357 			mutex_exit(&ptms_lock);
358 			return (NULL);
359 		}
360 	}
361 	ptms_inuse++;
362 
363 	/*
364 	 * Allocate new minor number. If this fails, all slots are busy and
365 	 * we need to grow the hash.
366 	 */
367 	dminor = (minor_t)(uintptr_t)
368 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
369 
370 	if (dminor == 0) {
371 		/* Grow the cache and retry allocation */
372 		dminor = ptms_grow();
373 	}
374 
375 	if (dminor == 0) {
376 		/* Not enough memory now */
377 		ptms_inuse--;
378 		mutex_exit(&ptms_lock);
379 		return (NULL);
380 	}
381 
382 	pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
383 	if (pt == NULL) {
384 		/* Not enough memory - this entry can't be used now. */
385 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
386 		ptms_inuse--;
387 	} else {
388 		pt->pt_minor = dminor;
389 		pt->pt_pid = curproc->p_pid;	/* For debugging */
390 		pt->pt_state = (PTMOPEN | PTLOCK);
391 		pt->pt_zoneid = getzoneid();
392 		pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */
393 		pt->pt_rgid = 0;
394 		ASSERT(ptms_slots[dminor - 1] == NULL);
395 		ptms_slots[dminor - 1] = pt;
396 	}
397 
398 	mutex_exit(&ptms_lock);
399 	return (pt);
400 }
401 
402 /*
403  * Get pt_ttys structure by minor number.
404  * Returns NULL when minor is out of range.
405  */
406 struct pt_ttys *
407 ptms_minor2ptty(minor_t dminor)
408 {
409 	struct pt_ttys *pt = NULL;
410 
411 	ASSERT(mutex_owned(&ptms_lock));
412 	if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
413 		pt = ptms_slots[dminor - 1];
414 
415 	return (pt);
416 }
417 
418 /*
419  * Invoked in response to chown on /dev/pts nodes to change the
420  * permission on a pty
421  */
422 void
423 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid)
424 {
425 	struct pt_ttys *pt;
426 
427 	ASSERT(ruid >= 0);
428 	ASSERT(rgid >= 0);
429 
430 	if (ruid < 0 || rgid < 0)
431 		return;
432 
433 	/*
434 	 * /dev/pts/0 is not used, but some applications may check it. There
435 	 * is no pty backing it - so we have nothing to do.
436 	 */
437 	if (dminor == 0)
438 		return;
439 
440 	mutex_enter(&ptms_lock);
441 	pt = ptms_minor2ptty(dminor);
442 	if (pt != NULL && pt->pt_zoneid == getzoneid()) {
443 		pt->pt_ruid = ruid;
444 		pt->pt_rgid = rgid;
445 	}
446 	mutex_exit(&ptms_lock);
447 }
448 
449 /*
450  * Given a ptm/pts minor number
451  * returns:
452  *	1 if the pty is allocated to the current zone.
453  *	0 otherwise
454  *
455  * If the pty is allocated to the current zone, it also returns the owner.
456  */
457 int
458 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid)
459 {
460 	struct pt_ttys *pt;
461 	int ret;
462 
463 	ASSERT(ruid);
464 	ASSERT(rgid);
465 
466 	*ruid = -1;
467 	*rgid = -1;
468 
469 	/*
470 	 * /dev/pts/0 is not used, but some applications may check it, so create
471 	 * it also. Report the owner as root. It belongs to all zones.
472 	 */
473 	if (dminor == 0) {
474 		*ruid = 0;
475 		*rgid = 0;
476 		return (1);
477 	}
478 
479 	ret = 0;
480 	mutex_enter(&ptms_lock);
481 	pt = ptms_minor2ptty(dminor);
482 	if (pt != NULL) {
483 		ASSERT(pt->pt_ruid >= 0);
484 		ASSERT(pt->pt_rgid >= 0);
485 		if (pt->pt_zoneid == getzoneid()) {
486 			ret = 1;
487 			*ruid = pt->pt_ruid;
488 			*rgid = pt->pt_rgid;
489 		}
490 	}
491 	mutex_exit(&ptms_lock);
492 
493 	return (ret);
494 }
495 
496 /*
497  * Given a ptm/pts minor number
498  * returns:
499  *	0 if the pty is not allocated
500  *	1 if the pty is allocated
501  */
502 int
503 ptms_minor_exists(minor_t dminor)
504 {
505 	int ret;
506 
507 	mutex_enter(&ptms_lock);
508 	ret = ptms_minor2ptty(dminor) ? 1 : 0;
509 	mutex_exit(&ptms_lock);
510 
511 	return (ret);
512 }
513 
514 /*
515  * Close the pt and clear flags_to_clear.
516  * If pt device is not opened by someone else, free it and clear its slot.
517  */
518 void
519 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
520 {
521 	uint_t flags;
522 
523 	ASSERT(MUTEX_NOT_HELD(&ptms_lock));
524 	ASSERT(pt != NULL);
525 
526 	mutex_enter(&ptms_lock);
527 
528 	mutex_enter(&pt->pt_lock);
529 	pt->pt_state &= ~flags_to_clear;
530 	flags = pt->pt_state;
531 	mutex_exit(&pt->pt_lock);
532 
533 	if (! (flags & (PTMOPEN | PTSOPEN))) {
534 		/* No one owns the entry - free it */
535 
536 		ASSERT(pt->ptm_rdq == NULL);
537 		ASSERT(pt->pts_rdq == NULL);
538 		ASSERT(pt->pt_nullmsg == NULL);
539 		ASSERT(pt->pt_refcnt == 0);
540 		ASSERT(pt->pt_minor <= ptms_nslots);
541 		ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
542 		ASSERT(ptms_inuse > 0);
543 
544 		ptms_inuse--;
545 
546 		pt->pt_pid = 0;
547 
548 		ptms_slots[pt->pt_minor - 1] = NULL;
549 		/* Return minor number to the pool of minors */
550 		vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
551 		/* Return pt to the cache */
552 		kmem_cache_free(ptms_cache, pt);
553 	}
554 	mutex_exit(&ptms_lock);
555 }
556 
557 /*
558  * Allocate another slot table twice as large as the original one (limited to
559  * global maximum). Migrate all pt to the new slot table and free the original
560  * one. Create more /devices entries for new devices.
561  */
562 static minor_t
563 ptms_grow()
564 {
565 	minor_t old_size = ptms_nslots;
566 	minor_t delta = MIN(pt_maxdelta, old_size);
567 	minor_t new_size = old_size + delta;
568 	struct pt_ttys **ptms_old = ptms_slots;
569 	struct pt_ttys **ptms_new;
570 	void  *vaddr;			/* vmem_add return value */
571 
572 	ASSERT(MUTEX_HELD(&ptms_lock));
573 
574 	DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
575 
576 	/* Allocate new ptms array */
577 	ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
578 	    KM_NOSLEEP);
579 	if (ptms_new == NULL)
580 		return ((minor_t)0);
581 
582 	/* Increase clone index space */
583 	vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
584 	    new_size - old_size, VM_NOSLEEP);
585 
586 	if (vaddr == NULL) {
587 		kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
588 		return ((minor_t)0);
589 	}
590 
591 	/* Migrate pt entries to a new location */
592 	ptms_nslots = new_size;
593 	bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
594 	ptms_slots = ptms_new;
595 	kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
596 
597 	/* Allocate minor number and return it */
598 	return ((minor_t)(uintptr_t)
599 	    vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
600 }
601 
602 /*ARGSUSED*/
603 static int
604 ptms_constructor(void *maddr, void *arg, int kmflags)
605 {
606 	struct pt_ttys *pt = maddr;
607 
608 	pt->pts_rdq = NULL;
609 	pt->ptm_rdq = NULL;
610 	pt->pt_nullmsg = NULL;
611 	pt->pt_pid = NULL;
612 	pt->pt_minor = NULL;
613 	pt->pt_refcnt = 0;
614 	pt->pt_state = 0;
615 	pt->pt_zoneid = GLOBAL_ZONEID;
616 
617 	cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
618 	mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
619 	return (0);
620 }
621 
622 /*ARGSUSED*/
623 static void
624 ptms_destructor(void *maddr, void *arg)
625 {
626 	struct pt_ttys *pt = maddr;
627 
628 	ASSERT(pt->pt_refcnt == 0);
629 	ASSERT(pt->pt_state == 0);
630 	ASSERT(pt->ptm_rdq == NULL);
631 	ASSERT(pt->pts_rdq == NULL);
632 
633 	mutex_destroy(&pt->pt_lock);
634 	cv_destroy(&pt->pt_cv);
635 }
636 
637 #ifdef DEBUG
638 void
639 ptms_log(char *str, uint_t arg)
640 {
641 	if (ptms_debug) {
642 		if (ptms_debug & 2)
643 			cmn_err(CE_CONT, str, arg);
644 		if (ptms_debug & 4)
645 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
646 			    str, arg);
647 		else
648 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
649 	}
650 }
651 
652 void
653 ptms_logp(char *str, uintptr_t arg)
654 {
655 	if (ptms_debug) {
656 		if (ptms_debug & 2)
657 			cmn_err(CE_CONT, str, arg);
658 		if (ptms_debug & 4)
659 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
660 			    str, arg);
661 		else
662 			(void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
663 	}
664 }
665 #endif
666