xref: /titanic_44/usr/src/uts/common/io/nge/nge_main.c (revision f8b6bfdc3446ec90dae56251f6a0ba6e5b66b55c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 
31 /*
32  * Describes the chip's DMA engine
33  */
34 
35 static ddi_dma_attr_t hot_dma_attr = {
36 	DMA_ATTR_V0,			/* dma_attr version	*/
37 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
38 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
39 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
40 	0x0000000000000010ull,		/* dma_attr_align	*/
41 	0x00000FFF,			/* dma_attr_burstsizes	*/
42 	0x00000001,			/* dma_attr_minxfer	*/
43 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
44 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
45 	1,				/* dma_attr_sgllen 	*/
46 	0x00000001,			/* dma_attr_granular 	*/
47 	0
48 };
49 
50 static ddi_dma_attr_t hot_tx_dma_attr = {
51 	DMA_ATTR_V0,			/* dma_attr version	*/
52 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
53 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
54 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
55 	0x0000000000000010ull,		/* dma_attr_align	*/
56 	0x00000FFF,			/* dma_attr_burstsizes	*/
57 	0x00000001,			/* dma_attr_minxfer	*/
58 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
59 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
60 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
61 	1,				/* dma_attr_granular 	*/
62 	0
63 };
64 
65 static ddi_dma_attr_t sum_dma_attr = {
66 	DMA_ATTR_V0,			/* dma_attr version	*/
67 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
68 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
69 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
70 	0x0000000000000010ull,		/* dma_attr_align	*/
71 	0x00000FFF,			/* dma_attr_burstsizes	*/
72 	0x00000001,			/* dma_attr_minxfer	*/
73 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
74 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
75 	1,				/* dma_attr_sgllen 	*/
76 	0x00000001,			/* dma_attr_granular 	*/
77 	0
78 };
79 
80 static ddi_dma_attr_t sum_tx_dma_attr = {
81 	DMA_ATTR_V0,			/* dma_attr version	*/
82 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
83 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
84 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
85 	0x0000000000000010ull,		/* dma_attr_align	*/
86 	0x00000FFF,			/* dma_attr_burstsizes	*/
87 	0x00000001,			/* dma_attr_minxfer	*/
88 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
89 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
90 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
91 	1,				/* dma_attr_granular 	*/
92 	0
93 };
94 
95 /*
96  * DMA access attributes for data.
97  */
98 ddi_device_acc_attr_t nge_data_accattr = {
99 	DDI_DEVICE_ATTR_V0,
100 	DDI_STRUCTURE_LE_ACC,
101 	DDI_STRICTORDER_ACC,
102 	DDI_DEFAULT_ACC
103 };
104 
105 /*
106  * DMA access attributes for descriptors.
107  */
108 static ddi_device_acc_attr_t nge_desc_accattr = {
109 	DDI_DEVICE_ATTR_V0,
110 	DDI_STRUCTURE_LE_ACC,
111 	DDI_STRICTORDER_ACC,
112 	DDI_DEFAULT_ACC
113 };
114 
115 /*
116  * PIO access attributes for registers
117  */
118 static ddi_device_acc_attr_t nge_reg_accattr = {
119 	DDI_DEVICE_ATTR_V0,
120 	DDI_STRUCTURE_LE_ACC,
121 	DDI_STRICTORDER_ACC,
122 	DDI_DEFAULT_ACC
123 };
124 
125 /*
126  * NIC DESC MODE 2
127  */
128 
129 static const nge_desc_attr_t nge_sum_desc = {
130 
131 	sizeof (sum_rx_bd),
132 	sizeof (sum_tx_bd),
133 	&sum_dma_attr,
134 	&sum_tx_dma_attr,
135 	nge_sum_rxd_fill,
136 	nge_sum_rxd_check,
137 	nge_sum_txd_fill,
138 	nge_sum_txd_check,
139 };
140 
141 /*
142  * NIC DESC MODE 3
143  */
144 
145 static const nge_desc_attr_t nge_hot_desc = {
146 
147 	sizeof (hot_rx_bd),
148 	sizeof (hot_tx_bd),
149 	&hot_dma_attr,
150 	&hot_tx_dma_attr,
151 	nge_hot_rxd_fill,
152 	nge_hot_rxd_check,
153 	nge_hot_txd_fill,
154 	nge_hot_txd_check,
155 };
156 
157 static char nge_ident[] = "nVidia 1Gb Ethernet %I%";
158 static char clsize_propname[] = "cache-line-size";
159 static char latency_propname[] = "latency-timer";
160 static char debug_propname[]	= "nge-debug-flags";
161 static char rx_data_hw[] = "rx-data-hw";
162 static char rx_prd_lw[] = "rx-prd-lw";
163 static char rx_prd_hw[] = "rx-prd-hw";
164 static char sw_intr_intv[] = "sw-intr-intvl";
165 static char nge_desc_mode[] = "desc-mode";
166 static char default_mtu[] = "default_mtu";
167 static char low_memory_mode[] = "minimal-memory-usage";
168 extern kmutex_t nge_log_mutex[1];
169 
170 static int		nge_m_start(void *);
171 static void		nge_m_stop(void *);
172 static int		nge_m_promisc(void *, boolean_t);
173 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
174 static int		nge_m_unicst(void *, const uint8_t *);
175 static void		nge_m_resources(void *);
176 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
177 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
178 
179 #define		NGE_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
180 
181 static mac_callbacks_t nge_m_callbacks = {
182 	NGE_M_CALLBACK_FLAGS,
183 	nge_m_stat,
184 	nge_m_start,
185 	nge_m_stop,
186 	nge_m_promisc,
187 	nge_m_multicst,
188 	nge_m_unicst,
189 	nge_m_tx,
190 	nge_m_resources,
191 	nge_m_ioctl,
192 	nge_m_getcapab
193 };
194 
195 static int nge_add_intrs(nge_t *, int);
196 static void nge_rem_intrs(nge_t *);
197 static int nge_register_intrs_and_init_locks(nge_t *);
198 
199 /*
200  * NGE MSI tunable:
201  */
202 boolean_t nge_enable_msi = B_FALSE;
203 
204 static enum ioc_reply
205 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
206 {
207 	/*
208 	 * If the mode isn't being changed, there's nothing to do ...
209 	 */
210 	if (mode == ngep->param_loop_mode)
211 		return (IOC_ACK);
212 
213 	/*
214 	 * Validate the requested mode and prepare a suitable message
215 	 * to explain the link down/up cycle that the change will
216 	 * probably induce ...
217 	 */
218 	switch (mode) {
219 	default:
220 		return (IOC_INVAL);
221 
222 	case NGE_LOOP_NONE:
223 	case NGE_LOOP_EXTERNAL_100:
224 	case NGE_LOOP_EXTERNAL_10:
225 	case NGE_LOOP_INTERNAL_PHY:
226 		break;
227 	}
228 
229 	/*
230 	 * All OK; tell the caller to reprogram
231 	 * the PHY and/or MAC for the new mode ...
232 	 */
233 	ngep->param_loop_mode = mode;
234 	return (IOC_RESTART_ACK);
235 }
236 
237 #undef	NGE_DBG
238 #define	NGE_DBG		NGE_DBG_INIT
239 
240 /*
241  * Utility routine to carve a slice off a chunk of allocated memory,
242  * updating the chunk descriptor accordingly.  The size of the slice
243  * is given by the product of the <qty> and <size> parameters.
244  */
245 void
246 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
247     uint32_t qty, uint32_t size)
248 {
249 	size_t totsize;
250 
251 	totsize = qty*size;
252 	ASSERT(size > 0);
253 	ASSERT(totsize <= chunk->alength);
254 
255 	*slice = *chunk;
256 	slice->nslots = qty;
257 	slice->size = size;
258 	slice->alength = totsize;
259 
260 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
261 	chunk->alength -= totsize;
262 	chunk->offset += totsize;
263 	chunk->cookie.dmac_laddress += totsize;
264 	chunk->cookie.dmac_size -= totsize;
265 }
266 
267 /*
268  * Allocate an area of memory and a DMA handle for accessing it
269  */
270 int
271 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
272     uint_t dma_flags, dma_area_t *dma_p)
273 {
274 	int err;
275 	caddr_t va;
276 
277 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
278 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
279 	/*
280 	 * Allocate handle
281 	 */
282 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
283 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
284 	if (err != DDI_SUCCESS)
285 		goto fail;
286 
287 	/*
288 	 * Allocate memory
289 	 */
290 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
291 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
292 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
293 	if (err != DDI_SUCCESS)
294 		goto fail;
295 
296 	/*
297 	 * Bind the two together
298 	 */
299 	dma_p->mem_va = va;
300 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
301 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
302 	    &dma_p->cookie, &dma_p->ncookies);
303 
304 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
305 		goto fail;
306 
307 	dma_p->nslots = ~0U;
308 	dma_p->size = ~0U;
309 	dma_p->offset = 0;
310 
311 	return (DDI_SUCCESS);
312 
313 fail:
314 	nge_free_dma_mem(dma_p);
315 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
316 
317 	return (DDI_FAILURE);
318 }
319 
320 /*
321  * Free one allocated area of DMAable memory
322  */
323 void
324 nge_free_dma_mem(dma_area_t *dma_p)
325 {
326 	if (dma_p->dma_hdl != NULL) {
327 		if (dma_p->ncookies) {
328 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
329 			dma_p->ncookies = 0;
330 		}
331 	}
332 	if (dma_p->acc_hdl != NULL) {
333 		ddi_dma_mem_free(&dma_p->acc_hdl);
334 		dma_p->acc_hdl = NULL;
335 	}
336 	if (dma_p->dma_hdl != NULL) {
337 		ddi_dma_free_handle(&dma_p->dma_hdl);
338 		dma_p->dma_hdl = NULL;
339 	}
340 }
341 
342 #define	ALLOC_TX_BUF	0x1
343 #define	ALLOC_TX_DESC	0x2
344 #define	ALLOC_RX_DESC	0x4
345 
346 int
347 nge_alloc_bufs(nge_t *ngep)
348 {
349 	int err;
350 	int split;
351 	int progress;
352 	size_t txbuffsize;
353 	size_t rxdescsize;
354 	size_t txdescsize;
355 
356 	txbuffsize = ngep->tx_desc * ngep->buf_size;
357 	rxdescsize = ngep->rx_desc;
358 	txdescsize = ngep->tx_desc;
359 	rxdescsize *= ngep->desc_attr.rxd_size;
360 	txdescsize *= ngep->desc_attr.txd_size;
361 	progress = 0;
362 
363 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
364 	/*
365 	 * Allocate memory & handles for TX buffers
366 	 */
367 	ASSERT((txbuffsize % ngep->nge_split) == 0);
368 	for (split = 0; split < ngep->nge_split; ++split) {
369 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
370 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
371 		    &ngep->send->buf[split]);
372 		if (err != DDI_SUCCESS)
373 			goto fail;
374 	}
375 
376 	progress |= ALLOC_TX_BUF;
377 
378 	/*
379 	 * Allocate memory & handles for receive return rings and
380 	 * buffer (producer) descriptor rings
381 	 */
382 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
383 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
384 	if (err != DDI_SUCCESS)
385 		goto fail;
386 	progress |= ALLOC_RX_DESC;
387 
388 	/*
389 	 * Allocate memory & handles for TX descriptor rings,
390 	 */
391 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
392 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
393 	if (err != DDI_SUCCESS)
394 		goto fail;
395 	return (DDI_SUCCESS);
396 
397 fail:
398 	if (progress & ALLOC_RX_DESC)
399 		nge_free_dma_mem(&ngep->recv->desc);
400 	if (progress & ALLOC_TX_BUF) {
401 		for (split = 0; split < ngep->nge_split; ++split)
402 			nge_free_dma_mem(&ngep->send->buf[split]);
403 	}
404 
405 	return (DDI_FAILURE);
406 }
407 
408 /*
409  * This routine frees the transmit and receive buffers and descriptors.
410  * Make sure the chip is stopped before calling it!
411  */
412 void
413 nge_free_bufs(nge_t *ngep)
414 {
415 	int split;
416 
417 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
418 
419 	nge_free_dma_mem(&ngep->recv->desc);
420 	nge_free_dma_mem(&ngep->send->desc);
421 
422 	for (split = 0; split < ngep->nge_split; ++split)
423 		nge_free_dma_mem(&ngep->send->buf[split]);
424 }
425 
426 /*
427  * Clean up initialisation done above before the memory is freed
428  */
429 static void
430 nge_fini_send_ring(nge_t *ngep)
431 {
432 	uint32_t slot;
433 	size_t dmah_num;
434 	send_ring_t *srp;
435 	sw_tx_sbd_t *ssbdp;
436 
437 	srp = ngep->send;
438 	ssbdp = srp->sw_sbds;
439 
440 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
441 
442 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
443 
444 	for (slot = 0; slot < dmah_num; ++slot) {
445 		if (srp->dmahndl[slot].hndl) {
446 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
447 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
448 			srp->dmahndl[slot].hndl = NULL;
449 			srp->dmahndl[slot].next = NULL;
450 		}
451 	}
452 
453 	srp->dmah_free.head = NULL;
454 	srp->dmah_free.tail = NULL;
455 
456 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
457 
458 }
459 
460 /*
461  * Initialise the specified Send Ring, using the information in the
462  * <dma_area> descriptors that it contains to set up all the other
463  * fields. This routine should be called only once for each ring.
464  */
465 static int
466 nge_init_send_ring(nge_t *ngep)
467 {
468 	size_t dmah_num;
469 	uint32_t nslots;
470 	uint32_t err;
471 	uint32_t slot;
472 	uint32_t split;
473 	send_ring_t *srp;
474 	sw_tx_sbd_t *ssbdp;
475 	dma_area_t desc;
476 	dma_area_t pbuf;
477 
478 	srp = ngep->send;
479 	srp->desc.nslots = ngep->tx_desc;
480 	nslots = srp->desc.nslots;
481 
482 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
483 	/*
484 	 * Other one-off initialisation of per-ring data
485 	 */
486 	srp->ngep = ngep;
487 
488 	/*
489 	 * Allocate the array of s/w Send Buffer Descriptors
490 	 */
491 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
492 	srp->sw_sbds = ssbdp;
493 
494 	/*
495 	 * Now initialise each array element once and for all
496 	 */
497 	desc = srp->desc;
498 	for (split = 0; split < ngep->nge_split; ++split) {
499 		pbuf = srp->buf[split];
500 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
501 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
502 			    ngep->desc_attr.txd_size);
503 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
504 			    ngep->buf_size);
505 		}
506 		ASSERT(pbuf.alength == 0);
507 	}
508 	ASSERT(desc.alength == 0);
509 
510 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
511 
512 	/* preallocate dma handles for tx buffer */
513 	for (slot = 0; slot < dmah_num; ++slot) {
514 
515 		err = ddi_dma_alloc_handle(ngep->devinfo,
516 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
517 		    NULL, &srp->dmahndl[slot].hndl);
518 
519 		if (err != DDI_SUCCESS) {
520 			nge_fini_send_ring(ngep);
521 			nge_error(ngep,
522 			    "nge_init_send_ring: alloc dma handle fails");
523 			return (DDI_FAILURE);
524 		}
525 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
526 	}
527 
528 	srp->dmah_free.head = srp->dmahndl;
529 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
530 	srp->dmah_free.tail->next = NULL;
531 
532 	return (DDI_SUCCESS);
533 }
534 
535 /*
536  * Intialize the tx recycle pointer and tx sending pointer of tx ring
537  * and set the type of tx's data descriptor by default.
538  */
539 static void
540 nge_reinit_send_ring(nge_t *ngep)
541 {
542 	size_t dmah_num;
543 	uint32_t slot;
544 	send_ring_t *srp;
545 	sw_tx_sbd_t *ssbdp;
546 
547 	srp = ngep->send;
548 
549 	/*
550 	 * Reinitialise control variables ...
551 	 */
552 
553 	srp->tx_hwmark = NGE_DESC_MIN;
554 	srp->tx_lwmark = NGE_DESC_MIN;
555 
556 	srp->tx_next = 0;
557 	srp->tx_free = srp->desc.nslots;
558 	srp->tc_next = 0;
559 
560 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
561 
562 	for (slot = 0; slot - dmah_num != 0; ++slot)
563 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
564 
565 	srp->dmah_free.head = srp->dmahndl;
566 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
567 	srp->dmah_free.tail->next = NULL;
568 
569 	/*
570 	 * Zero and sync all the h/w Send Buffer Descriptors
571 	 */
572 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
573 		ssbdp = &srp->sw_sbds[slot];
574 		ssbdp->flags = HOST_OWN;
575 	}
576 
577 	DMA_ZERO(srp->desc);
578 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
579 }
580 
581 /*
582  * Initialize the slot number of rx's ring
583  */
584 static void
585 nge_init_recv_ring(nge_t *ngep)
586 {
587 	recv_ring_t *rrp;
588 
589 	rrp = ngep->recv;
590 	rrp->desc.nslots = ngep->rx_desc;
591 	rrp->ngep = ngep;
592 }
593 
594 /*
595  * Intialize the rx recycle pointer and rx sending pointer of rx ring
596  */
597 static void
598 nge_reinit_recv_ring(nge_t *ngep)
599 {
600 	recv_ring_t *rrp;
601 
602 	rrp = ngep->recv;
603 
604 	/*
605 	 * Reinitialise control variables ...
606 	 */
607 	rrp->prod_index = 0;
608 	/*
609 	 * Zero and sync all the h/w Send Buffer Descriptors
610 	 */
611 	DMA_ZERO(rrp->desc);
612 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
613 }
614 
615 /*
616  * Clean up initialisation done above before the memory is freed
617  */
618 static void
619 nge_fini_buff_ring(nge_t *ngep)
620 {
621 	uint32_t i;
622 	buff_ring_t *brp;
623 	dma_area_t *bufp;
624 	sw_rx_sbd_t *bsbdp;
625 
626 	brp = ngep->buff;
627 	bsbdp = brp->sw_rbds;
628 
629 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
630 
631 	mutex_enter(brp->recycle_lock);
632 	brp->buf_sign++;
633 	mutex_exit(brp->recycle_lock);
634 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
635 		if (bsbdp->bufp) {
636 			if (bsbdp->bufp->mp)
637 				freemsg(bsbdp->bufp->mp);
638 			nge_free_dma_mem(bsbdp->bufp);
639 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
640 			bsbdp->bufp = NULL;
641 		}
642 	}
643 	while (brp->free_list != NULL) {
644 		bufp = brp->free_list;
645 		brp->free_list = bufp->next;
646 		bufp->next = NULL;
647 		if (bufp->mp)
648 			freemsg(bufp->mp);
649 		nge_free_dma_mem(bufp);
650 		kmem_free(bufp, sizeof (dma_area_t));
651 	}
652 	while (brp->recycle_list != NULL) {
653 		bufp = brp->recycle_list;
654 		brp->recycle_list = bufp->next;
655 		bufp->next = NULL;
656 		if (bufp->mp)
657 			freemsg(bufp->mp);
658 		nge_free_dma_mem(bufp);
659 		kmem_free(bufp, sizeof (dma_area_t));
660 	}
661 
662 
663 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
664 	brp->sw_rbds = NULL;
665 }
666 
667 /*
668  * Intialize the Rx's data ring and free ring
669  */
670 static int
671 nge_init_buff_ring(nge_t *ngep)
672 {
673 	uint32_t err;
674 	uint32_t slot;
675 	uint32_t nslots_buff;
676 	uint32_t nslots_recv;
677 	buff_ring_t *brp;
678 	recv_ring_t *rrp;
679 	dma_area_t desc;
680 	dma_area_t *bufp;
681 	sw_rx_sbd_t *bsbdp;
682 
683 	rrp = ngep->recv;
684 	brp = ngep->buff;
685 	brp->nslots = ngep->rx_buf;
686 	brp->rx_bcopy = B_FALSE;
687 	nslots_recv = rrp->desc.nslots;
688 	nslots_buff = brp->nslots;
689 	brp->ngep = ngep;
690 
691 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
692 
693 	/*
694 	 * Allocate the array of s/w Recv Buffer Descriptors
695 	 */
696 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
697 	brp->sw_rbds = bsbdp;
698 	brp->free_list = NULL;
699 	brp->recycle_list = NULL;
700 	for (slot = 0; slot < nslots_buff; ++slot) {
701 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
702 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
703 		    + NGE_HEADROOM),
704 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
705 		if (err != DDI_SUCCESS) {
706 			kmem_free(bufp, sizeof (dma_area_t));
707 			return (DDI_FAILURE);
708 		}
709 
710 		bufp->alength -= NGE_HEADROOM;
711 		bufp->offset += NGE_HEADROOM;
712 		bufp->private = (caddr_t)ngep;
713 		bufp->rx_recycle.free_func = nge_recv_recycle;
714 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
715 		bufp->signature = brp->buf_sign;
716 		bufp->rx_delivered = B_FALSE;
717 		bufp->mp = desballoc(DMA_VPTR(*bufp),
718 		    ngep->buf_size + NGE_HEADROOM,
719 		    0, &bufp->rx_recycle);
720 
721 		if (bufp->mp == NULL) {
722 			return (DDI_FAILURE);
723 		}
724 		bufp->next = brp->free_list;
725 		brp->free_list = bufp;
726 	}
727 
728 	/*
729 	 * Now initialise each array element once and for all
730 	 */
731 	desc = rrp->desc;
732 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
733 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
734 		    ngep->desc_attr.rxd_size);
735 		bufp = brp->free_list;
736 		brp->free_list = bufp->next;
737 		bsbdp->bufp = bufp;
738 		bsbdp->flags = CONTROLER_OWN;
739 		bufp->next = NULL;
740 	}
741 
742 	ASSERT(desc.alength == 0);
743 	return (DDI_SUCCESS);
744 }
745 
746 /*
747  * Fill the host address of data in rx' descriptor
748  * and initialize free pointers of rx free ring
749  */
750 static int
751 nge_reinit_buff_ring(nge_t *ngep)
752 {
753 	uint32_t slot;
754 	uint32_t nslots_recv;
755 	buff_ring_t *brp;
756 	recv_ring_t *rrp;
757 	sw_rx_sbd_t *bsbdp;
758 	void *hw_bd_p;
759 
760 	brp = ngep->buff;
761 	rrp = ngep->recv;
762 	bsbdp = brp->sw_rbds;
763 	nslots_recv = rrp->desc.nslots;
764 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
765 		hw_bd_p = DMA_VPTR(bsbdp->desc);
766 	/*
767 	 * There is a scenario: When the traffic of small tcp
768 	 * packet is heavy, suspending the tcp traffic will
769 	 * cause the preallocated buffers for rx not to be
770 	 * released in time by tcp taffic and cause rx's buffer
771 	 * pointers not to be refilled in time.
772 	 *
773 	 * At this point, if we reinitialize the driver, the bufp
774 	 * pointer for rx's traffic will be NULL.
775 	 * So the result of the reinitializion fails.
776 	 */
777 		if (bsbdp->bufp == NULL)
778 			return (DDI_FAILURE);
779 
780 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
781 		    bsbdp->bufp->alength);
782 	}
783 	return (DDI_SUCCESS);
784 }
785 
786 static void
787 nge_init_ring_param_lock(nge_t *ngep)
788 {
789 	buff_ring_t *brp;
790 	send_ring_t *srp;
791 
792 	srp = ngep->send;
793 	brp = ngep->buff;
794 
795 	/* Init the locks for send ring */
796 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
797 	    DDI_INTR_PRI(ngep->intr_pri));
798 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
799 	    DDI_INTR_PRI(ngep->intr_pri));
800 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
801 	    DDI_INTR_PRI(ngep->intr_pri));
802 
803 	/* Init parameters of buffer ring */
804 	brp->free_list = NULL;
805 	brp->recycle_list = NULL;
806 	brp->rx_hold = 0;
807 	brp->buf_sign = 0;
808 
809 	/* Init recycle list lock */
810 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
811 	    DDI_INTR_PRI(ngep->intr_pri));
812 }
813 
814 int
815 nge_init_rings(nge_t *ngep)
816 {
817 	uint32_t err;
818 
819 	err = nge_init_send_ring(ngep);
820 	if (err != DDI_SUCCESS) {
821 		return (err);
822 	}
823 	nge_init_recv_ring(ngep);
824 
825 	err = nge_init_buff_ring(ngep);
826 	if (err != DDI_SUCCESS) {
827 		nge_fini_send_ring(ngep);
828 		return (DDI_FAILURE);
829 	}
830 
831 	return (err);
832 }
833 
834 static int
835 nge_reinit_ring(nge_t *ngep)
836 {
837 	int err;
838 
839 	nge_reinit_recv_ring(ngep);
840 	nge_reinit_send_ring(ngep);
841 	err = nge_reinit_buff_ring(ngep);
842 	return (err);
843 }
844 
845 
846 void
847 nge_fini_rings(nge_t *ngep)
848 {
849 	/*
850 	 * For receive ring, nothing need to be finished.
851 	 * So only finish buffer ring and send ring here.
852 	 */
853 	nge_fini_buff_ring(ngep);
854 	nge_fini_send_ring(ngep);
855 }
856 
857 /*
858  * Loopback ioctl code
859  */
860 
861 static lb_property_t loopmodes[] = {
862 	{ normal,	"normal",	NGE_LOOP_NONE		},
863 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
864 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
865 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
866 };
867 
868 enum ioc_reply
869 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
870 {
871 	int cmd;
872 	uint32_t *lbmp;
873 	lb_info_sz_t *lbsp;
874 	lb_property_t *lbpp;
875 
876 	/*
877 	 * Validate format of ioctl
878 	 */
879 	if (mp->b_cont == NULL)
880 		return (IOC_INVAL);
881 
882 	cmd = iocp->ioc_cmd;
883 
884 	switch (cmd) {
885 	default:
886 		return (IOC_INVAL);
887 
888 	case LB_GET_INFO_SIZE:
889 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
890 			return (IOC_INVAL);
891 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
892 		*lbsp = sizeof (loopmodes);
893 		return (IOC_REPLY);
894 
895 	case LB_GET_INFO:
896 		if (iocp->ioc_count != sizeof (loopmodes))
897 			return (IOC_INVAL);
898 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
899 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
900 		return (IOC_REPLY);
901 
902 	case LB_GET_MODE:
903 		if (iocp->ioc_count != sizeof (uint32_t))
904 			return (IOC_INVAL);
905 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
906 		*lbmp = ngep->param_loop_mode;
907 		return (IOC_REPLY);
908 
909 	case LB_SET_MODE:
910 		if (iocp->ioc_count != sizeof (uint32_t))
911 			return (IOC_INVAL);
912 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
913 		return (nge_set_loop_mode(ngep, *lbmp));
914 	}
915 }
916 
917 #undef	NGE_DBG
918 #define	NGE_DBG	NGE_DBG_NEMO
919 
920 
921 static void
922 nge_check_desc_prop(nge_t *ngep)
923 {
924 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
925 		ngep->desc_mode = DESC_HOT;
926 
927 	if (ngep->desc_mode == DESC_OFFLOAD)	{
928 
929 		ngep->desc_attr = nge_sum_desc;
930 
931 	}	else if (ngep->desc_mode == DESC_HOT)	{
932 
933 		ngep->desc_attr = nge_hot_desc;
934 	}
935 }
936 
937 /*
938  * nge_get_props -- get the parameters to tune the driver
939  */
940 static void
941 nge_get_props(nge_t *ngep)
942 {
943 	chip_info_t *infop;
944 	dev_info_t *devinfo;
945 	nge_dev_spec_param_t *dev_param_p;
946 
947 	devinfo = ngep->devinfo;
948 	infop = (chip_info_t *)&ngep->chipinfo;
949 	dev_param_p = &ngep->dev_spec_param;
950 
951 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
952 	    DDI_PROP_DONTPASS, clsize_propname, 32);
953 
954 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
955 	    DDI_PROP_DONTPASS, latency_propname, 64);
956 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
957 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
958 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
959 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
960 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
961 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
962 
963 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
964 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
965 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
966 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
967 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
968 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
969 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
970 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
971 
972 	if (dev_param_p->jumbo) {
973 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
974 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
975 	} else
976 		ngep->default_mtu = ETHERMTU;
977 
978 	if (ngep->default_mtu > ETHERMTU &&
979 	    ngep->default_mtu <= NGE_MTU_2500) {
980 		ngep->buf_size = NGE_JB2500_BUFSZ;
981 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
982 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
983 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
984 		ngep->nge_split = NGE_SPLIT_256;
985 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
986 	    ngep->default_mtu <= NGE_MTU_4500) {
987 		ngep->buf_size = NGE_JB4500_BUFSZ;
988 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
989 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
990 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
991 		ngep->nge_split = NGE_SPLIT_256;
992 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
993 	    ngep->default_mtu <= NGE_MAX_MTU) {
994 		ngep->buf_size = NGE_JB9000_BUFSZ;
995 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
996 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
997 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
998 		ngep->nge_split = NGE_SPLIT_256;
999 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1000 		ngep->default_mtu = NGE_MAX_MTU;
1001 		ngep->buf_size = NGE_JB9000_BUFSZ;
1002 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1003 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1004 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1005 		ngep->nge_split = NGE_SPLIT_256;
1006 	} else if (ngep->lowmem_mode != 0) {
1007 		ngep->default_mtu = ETHERMTU;
1008 		ngep->buf_size = NGE_STD_BUFSZ;
1009 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1010 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1011 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1012 		ngep->nge_split = NGE_SPLIT_32;
1013 	} else {
1014 		ngep->default_mtu = ETHERMTU;
1015 		ngep->buf_size = NGE_STD_BUFSZ;
1016 		ngep->tx_desc = dev_param_p->tx_desc_num;
1017 		ngep->rx_desc = dev_param_p->rx_desc_num;
1018 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1019 		ngep->nge_split = dev_param_p->nge_split;
1020 	}
1021 
1022 	nge_check_desc_prop(ngep);
1023 }
1024 
1025 
1026 static int
1027 nge_reset(nge_t *ngep)
1028 {
1029 	int err;
1030 	send_ring_t *srp = ngep->send;
1031 
1032 	ASSERT(mutex_owned(ngep->genlock));
1033 	mutex_enter(srp->tc_lock);
1034 	mutex_enter(srp->tx_lock);
1035 
1036 	nge_tx_recycle_all(ngep);
1037 	err = nge_reinit_ring(ngep);
1038 	if (err == DDI_FAILURE) {
1039 		mutex_exit(srp->tx_lock);
1040 		mutex_exit(srp->tc_lock);
1041 		return (err);
1042 	}
1043 	err = nge_chip_reset(ngep);
1044 	mutex_exit(srp->tx_lock);
1045 	mutex_exit(srp->tc_lock);
1046 	if (err == DDI_FAILURE)
1047 		return (err);
1048 	ngep->watchdog = 0;
1049 	ngep->resched_needed = B_FALSE;
1050 	ngep->promisc = B_FALSE;
1051 	ngep->param_loop_mode = NGE_LOOP_NONE;
1052 	ngep->factotum_flag = 0;
1053 	ngep->resched_needed = 0;
1054 	ngep->nge_mac_state = NGE_MAC_RESET;
1055 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1056 	ngep->max_sdu += VTAG_SIZE;
1057 	ngep->rx_def = 0x16;
1058 	return (DDI_SUCCESS);
1059 }
1060 
1061 static void
1062 nge_m_stop(void *arg)
1063 {
1064 	nge_t *ngep = arg;		/* private device info	*/
1065 
1066 	NGE_TRACE(("nge_m_stop($%p)", arg));
1067 
1068 	/*
1069 	 * If suspended, adapter is already stopped, just return.
1070 	 */
1071 	if (ngep->suspended) {
1072 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * Just stop processing, then record new MAC state
1078 	 */
1079 	mutex_enter(ngep->genlock);
1080 	rw_enter(ngep->rwlock, RW_WRITER);
1081 
1082 	(void) nge_chip_stop(ngep, B_FALSE);
1083 	/* Try to wait all the buffer post to upper layer be released */
1084 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1085 
1086 	/* Recycle all the TX BD */
1087 	nge_tx_recycle_all(ngep);
1088 	nge_fini_rings(ngep);
1089 	nge_free_bufs(ngep);
1090 
1091 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1092 
1093 	rw_exit(ngep->rwlock);
1094 	mutex_exit(ngep->genlock);
1095 }
1096 
1097 static int
1098 nge_m_start(void *arg)
1099 {
1100 	int err;
1101 	nge_t *ngep = arg;
1102 
1103 	NGE_TRACE(("nge_m_start($%p)", arg));
1104 	/*
1105 	 * If suspended, don't start, as the resume processing
1106 	 * will recall this function with the suspended flag off.
1107 	 */
1108 	if (ngep->suspended)
1109 		return (DDI_FAILURE);
1110 	/*
1111 	 * Start processing and record new MAC state
1112 	 */
1113 	mutex_enter(ngep->genlock);
1114 	rw_enter(ngep->rwlock, RW_WRITER);
1115 	err = nge_alloc_bufs(ngep);
1116 	if (err != DDI_SUCCESS) {
1117 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1118 		goto finish;
1119 	}
1120 	err = nge_init_rings(ngep);
1121 	if (err != DDI_SUCCESS) {
1122 		nge_free_bufs(ngep);
1123 		nge_problem(ngep, "nge_init_rings() failed,err=%x");
1124 		goto finish;
1125 	}
1126 	err = nge_restart(ngep);
1127 
1128 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1129 	finish:
1130 		rw_exit(ngep->rwlock);
1131 		mutex_exit(ngep->genlock);
1132 
1133 		return (err);
1134 }
1135 
1136 static int
1137 nge_m_unicst(void *arg, const uint8_t *macaddr)
1138 {
1139 	nge_t *ngep = arg;
1140 
1141 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1142 	/*
1143 	 * Remember the new current address in the driver state
1144 	 * Sync the chip's idea of the address too ...
1145 	 */
1146 	mutex_enter(ngep->genlock);
1147 
1148 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1149 	ngep->cur_uni_addr.set = 1;
1150 
1151 	/*
1152 	 * If we are suspended, we want to quit now, and not update
1153 	 * the chip.  Doing so might put it in a bad state, but the
1154 	 * resume will get the unicast address installed.
1155 	 */
1156 	if (ngep->suspended)
1157 		return (DDI_SUCCESS);
1158 
1159 	nge_chip_sync(ngep);
1160 
1161 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1162 	mutex_exit(ngep->genlock);
1163 
1164 	return (0);
1165 }
1166 
1167 static int
1168 nge_m_promisc(void *arg, boolean_t on)
1169 {
1170 	nge_t *ngep = arg;
1171 
1172 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1173 	/*
1174 	 * If suspended, we don't do anything, even record the promiscuious
1175 	 * mode, as we won't properly set it on resume.  Just fail.
1176 	 */
1177 	if (ngep->suspended)
1178 		return (DDI_FAILURE);
1179 
1180 	/*
1181 	 * Store specified mode and pass to chip layer to update h/w
1182 	 */
1183 	mutex_enter(ngep->genlock);
1184 	if (ngep->promisc == on) {
1185 		mutex_exit(ngep->genlock);
1186 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1187 		return (0);
1188 	}
1189 	ngep->promisc = on;
1190 	nge_chip_sync(ngep);
1191 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1192 	mutex_exit(ngep->genlock);
1193 
1194 	return (0);
1195 }
1196 
1197 static void nge_mulparam(nge_t *ngep)
1198 {
1199 	uint8_t number;
1200 	ether_addr_t pand;
1201 	ether_addr_t por;
1202 	mul_item *plist;
1203 
1204 	for (number = 0; number < ETHERADDRL; number++) {
1205 		pand[number] = 0x00;
1206 		por[number] = 0x00;
1207 	}
1208 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1209 		for (number = 0; number < ETHERADDRL; number++) {
1210 			pand[number] &= plist->mul_addr[number];
1211 			por[number] |= plist->mul_addr[number];
1212 		}
1213 	}
1214 	for (number = 0; number < ETHERADDRL; number++) {
1215 		ngep->cur_mul_addr.addr[number]
1216 		    = pand[number] & por[number];
1217 		ngep->cur_mul_mask.addr[number]
1218 		    = pand [number] | (~por[number]);
1219 	}
1220 }
1221 static int
1222 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1223 {
1224 	boolean_t update;
1225 	boolean_t b_eq;
1226 	nge_t *ngep = arg;
1227 	mul_item *plist;
1228 	mul_item *plist_prev;
1229 	mul_item *pitem;
1230 
1231 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1232 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1233 
1234 	update = B_FALSE;
1235 	plist = plist_prev = NULL;
1236 	mutex_enter(ngep->genlock);
1237 	if (add) {
1238 		if (ngep->pcur_mulist != NULL) {
1239 			for (plist = ngep->pcur_mulist; plist != NULL;
1240 			    plist = plist->next) {
1241 				b_eq = ether_eq(plist->mul_addr, mca);
1242 				if (b_eq) {
1243 					plist->ref_cnt++;
1244 					break;
1245 				}
1246 				plist_prev = plist;
1247 			}
1248 		}
1249 
1250 		if (plist == NULL) {
1251 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1252 			ether_copy(mca, pitem->mul_addr);
1253 			pitem ->ref_cnt++;
1254 			pitem ->next = NULL;
1255 			if (plist_prev == NULL)
1256 				ngep->pcur_mulist = pitem;
1257 			else
1258 				plist_prev->next = pitem;
1259 			update = B_TRUE;
1260 		}
1261 	} else {
1262 		if (ngep->pcur_mulist != NULL) {
1263 			for (plist = ngep->pcur_mulist; plist != NULL;
1264 			    plist = plist->next) {
1265 				b_eq = ether_eq(plist->mul_addr, mca);
1266 				if (b_eq) {
1267 					update = B_TRUE;
1268 					break;
1269 				}
1270 				plist_prev = plist;
1271 			}
1272 
1273 			if (update) {
1274 				if ((plist_prev == NULL) &&
1275 				    (plist->next == NULL))
1276 					ngep->pcur_mulist = NULL;
1277 				else if ((plist_prev == NULL) &&
1278 				    (plist->next != NULL))
1279 					ngep->pcur_mulist = plist->next;
1280 				else
1281 					plist_prev->next = plist->next;
1282 				kmem_free(plist, sizeof (mul_item));
1283 			}
1284 		}
1285 	}
1286 
1287 	if (update || !ngep->suspended) {
1288 		nge_mulparam(ngep);
1289 		nge_chip_sync(ngep);
1290 	}
1291 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1292 	mutex_exit(ngep->genlock);
1293 
1294 	return (0);
1295 }
1296 
1297 static void
1298 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1299 {
1300 	int err;
1301 	int cmd;
1302 	nge_t *ngep = arg;
1303 	struct iocblk *iocp;
1304 	enum ioc_reply status;
1305 	boolean_t need_privilege;
1306 
1307 	/*
1308 	 * If suspended, we might actually be able to do some of
1309 	 * these ioctls, but it is harder to make sure they occur
1310 	 * without actually putting the hardware in an undesireable
1311 	 * state.  So just NAK it.
1312 	 */
1313 	if (ngep->suspended) {
1314 		miocnak(wq, mp, 0, EINVAL);
1315 		return;
1316 	}
1317 
1318 	/*
1319 	 * Validate the command before bothering with the mutex ...
1320 	 */
1321 	iocp = (struct iocblk *)mp->b_rptr;
1322 	iocp->ioc_error = 0;
1323 	need_privilege = B_TRUE;
1324 	cmd = iocp->ioc_cmd;
1325 
1326 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1327 	switch (cmd) {
1328 	default:
1329 		NGE_LDB(NGE_DBG_BADIOC,
1330 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1331 
1332 		miocnak(wq, mp, 0, EINVAL);
1333 		return;
1334 
1335 	case NGE_MII_READ:
1336 	case NGE_MII_WRITE:
1337 	case NGE_SEE_READ:
1338 	case NGE_SEE_WRITE:
1339 	case NGE_DIAG:
1340 	case NGE_PEEK:
1341 	case NGE_POKE:
1342 	case NGE_PHY_RESET:
1343 	case NGE_SOFT_RESET:
1344 	case NGE_HARD_RESET:
1345 		break;
1346 
1347 	case LB_GET_INFO_SIZE:
1348 	case LB_GET_INFO:
1349 	case LB_GET_MODE:
1350 		need_privilege = B_FALSE;
1351 		break;
1352 	case LB_SET_MODE:
1353 		break;
1354 
1355 	case ND_GET:
1356 		need_privilege = B_FALSE;
1357 		break;
1358 	case ND_SET:
1359 		break;
1360 	}
1361 
1362 	if (need_privilege) {
1363 		/*
1364 		 * Check for specific net_config privilege.
1365 		 */
1366 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1367 		if (err != 0) {
1368 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1369 			    cmd, err));
1370 			miocnak(wq, mp, 0, err);
1371 			return;
1372 		}
1373 	}
1374 
1375 	mutex_enter(ngep->genlock);
1376 
1377 	switch (cmd) {
1378 	default:
1379 		_NOTE(NOTREACHED)
1380 		status = IOC_INVAL;
1381 	break;
1382 
1383 	case NGE_MII_READ:
1384 	case NGE_MII_WRITE:
1385 	case NGE_SEE_READ:
1386 	case NGE_SEE_WRITE:
1387 	case NGE_DIAG:
1388 	case NGE_PEEK:
1389 	case NGE_POKE:
1390 	case NGE_PHY_RESET:
1391 	case NGE_SOFT_RESET:
1392 	case NGE_HARD_RESET:
1393 		status = nge_chip_ioctl(ngep, mp, iocp);
1394 	break;
1395 
1396 	case LB_GET_INFO_SIZE:
1397 	case LB_GET_INFO:
1398 	case LB_GET_MODE:
1399 	case LB_SET_MODE:
1400 		status = nge_loop_ioctl(ngep, mp, iocp);
1401 	break;
1402 
1403 	case ND_GET:
1404 	case ND_SET:
1405 		status = nge_nd_ioctl(ngep, wq, mp, iocp);
1406 	break;
1407 
1408 	}
1409 
1410 	/*
1411 	 * Do we need to reprogram the PHY and/or the MAC?
1412 	 * Do it now, while we still have the mutex.
1413 	 *
1414 	 * Note: update the PHY first, 'cos it controls the
1415 	 * speed/duplex parameters that the MAC code uses.
1416 	 */
1417 
1418 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1419 
1420 	switch (status) {
1421 	case IOC_RESTART_REPLY:
1422 	case IOC_RESTART_ACK:
1423 		(*ngep->physops->phys_update)(ngep);
1424 		nge_chip_sync(ngep);
1425 		break;
1426 
1427 	default:
1428 	break;
1429 	}
1430 
1431 	mutex_exit(ngep->genlock);
1432 
1433 	/*
1434 	 * Finally, decide how to reply
1435 	 */
1436 	switch (status) {
1437 
1438 	default:
1439 	case IOC_INVAL:
1440 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1441 		    EINVAL : iocp->ioc_error);
1442 		break;
1443 
1444 	case IOC_DONE:
1445 		break;
1446 
1447 	case IOC_RESTART_ACK:
1448 	case IOC_ACK:
1449 		miocack(wq, mp, 0, 0);
1450 		break;
1451 
1452 	case IOC_RESTART_REPLY:
1453 	case IOC_REPLY:
1454 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1455 		    M_IOCACK : M_IOCNAK;
1456 		qreply(wq, mp);
1457 		break;
1458 	}
1459 }
1460 
1461 static void
1462 nge_chip_blank(void *arg, time_t ticks, uint_t count)
1463 {
1464 	_NOTE(ARGUNUSED(arg, ticks, count));
1465 }
1466 
1467 static void
1468 nge_m_resources(void *arg)
1469 {
1470 	nge_t *ngep = arg;
1471 	recv_ring_t *rrp;
1472 	mac_rx_fifo_t mrf;
1473 
1474 	mutex_enter(ngep->genlock);
1475 
1476 	/*
1477 	 * Register Rx rings as resources and save mac
1478 	 * resource id for future reference
1479 	 */
1480 	mrf.mrf_type = MAC_RX_FIFO;
1481 	mrf.mrf_blank = nge_chip_blank;
1482 	mrf.mrf_arg = (void *)ngep;
1483 	mrf.mrf_normal_blank_time = NGE_TICKS_CNT;
1484 	mrf.mrf_normal_pkt_count = NGE_RX_PKT_CNT;
1485 
1486 	rrp = ngep->recv;
1487 	rrp->handle = mac_resource_add(ngep->mh, (mac_resource_t *)&mrf);
1488 	mutex_exit(ngep->genlock);
1489 }
1490 
1491 /* ARGSUSED */
1492 static boolean_t
1493 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1494 {
1495 	nge_t	*ngep = arg;
1496 	nge_dev_spec_param_t *dev_param_p;
1497 
1498 	dev_param_p = &ngep->dev_spec_param;
1499 
1500 	switch (cap) {
1501 	case MAC_CAPAB_HCKSUM: {
1502 		uint32_t *hcksum_txflags = cap_data;
1503 
1504 		if (dev_param_p->tx_hw_checksum) {
1505 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
1506 		} else
1507 			return (B_FALSE);
1508 		break;
1509 	}
1510 	case MAC_CAPAB_POLL:
1511 		/*
1512 		 * There's nothing for us to fill in, simply returning
1513 		 * B_TRUE, stating that we support polling is sufficient.
1514 		 */
1515 		break;
1516 	default:
1517 		return (B_FALSE);
1518 	}
1519 	return (B_TRUE);
1520 }
1521 
1522 #undef	NGE_DBG
1523 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
1524 int
1525 nge_restart(nge_t *ngep)
1526 {
1527 	int err = 0;
1528 	err += nge_reset(ngep);
1529 	err += nge_chip_start(ngep);
1530 
1531 	if (err) {
1532 		ngep->nge_mac_state = NGE_MAC_STOPPED;
1533 		return (DDI_FAILURE);
1534 	} else {
1535 		ngep->nge_mac_state = NGE_MAC_STARTED;
1536 		return (DDI_SUCCESS);
1537 	}
1538 }
1539 
1540 void
1541 nge_wake_factotum(nge_t *ngep)
1542 {
1543 	mutex_enter(ngep->softlock);
1544 	if (ngep->factotum_flag == 0) {
1545 		ngep->factotum_flag = 1;
1546 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
1547 	}
1548 	mutex_exit(ngep->softlock);
1549 }
1550 
1551 /*
1552  * High-level cyclic handler
1553  *
1554  * This routine schedules a (low-level) softint callback to the
1555  * factotum.
1556  */
1557 
1558 static void
1559 nge_chip_cyclic(void *arg)
1560 {
1561 	nge_t *ngep;
1562 
1563 	ngep = (nge_t *)arg;
1564 
1565 	switch (ngep->nge_chip_state) {
1566 	default:
1567 		return;
1568 
1569 	case NGE_CHIP_RUNNING:
1570 		break;
1571 
1572 	case NGE_CHIP_FAULT:
1573 	case NGE_CHIP_ERROR:
1574 		break;
1575 	}
1576 
1577 	nge_wake_factotum(ngep);
1578 }
1579 
1580 static void
1581 nge_unattach(nge_t *ngep)
1582 {
1583 	send_ring_t *srp;
1584 	buff_ring_t *brp;
1585 
1586 	srp = ngep->send;
1587 	brp = ngep->buff;
1588 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
1589 
1590 	/*
1591 	 * Flag that no more activity may be initiated
1592 	 */
1593 	ngep->progress &= ~PROGRESS_READY;
1594 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
1595 
1596 	/*
1597 	 * Quiesce the PHY and MAC (leave it reset but still powered).
1598 	 * Clean up and free all NGE data structures
1599 	 */
1600 	if (ngep->periodic_id != NULL) {
1601 		ddi_periodic_delete(ngep->periodic_id);
1602 		ngep->periodic_id = NULL;
1603 	}
1604 
1605 	if (ngep->progress & PROGRESS_KSTATS)
1606 		nge_fini_kstats(ngep);
1607 
1608 	if (ngep->progress & PROGRESS_NDD)
1609 		nge_nd_cleanup(ngep);
1610 
1611 	if (ngep->progress & PROGRESS_HWINT) {
1612 		mutex_enter(ngep->genlock);
1613 		nge_restore_mac_addr(ngep);
1614 		(void) nge_chip_stop(ngep, B_FALSE);
1615 		mutex_exit(ngep->genlock);
1616 	}
1617 
1618 	if (ngep->progress & PROGRESS_SWINT)
1619 		nge_rem_intrs(ngep);
1620 
1621 	if (ngep->progress & PROGRESS_FACTOTUM)
1622 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
1623 
1624 	if (ngep->progress & PROGRESS_RESCHED)
1625 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
1626 
1627 	if (ngep->progress & PROGRESS_INTR) {
1628 		mutex_destroy(srp->tx_lock);
1629 		mutex_destroy(srp->tc_lock);
1630 		mutex_destroy(&srp->dmah_lock);
1631 		mutex_destroy(brp->recycle_lock);
1632 
1633 		mutex_destroy(ngep->genlock);
1634 		mutex_destroy(ngep->softlock);
1635 		rw_destroy(ngep->rwlock);
1636 	}
1637 
1638 	if (ngep->progress & PROGRESS_REGS)
1639 		ddi_regs_map_free(&ngep->io_handle);
1640 
1641 	if (ngep->progress & PROGRESS_CFG)
1642 		pci_config_teardown(&ngep->cfg_handle);
1643 
1644 	ddi_remove_minor_node(ngep->devinfo, NULL);
1645 
1646 	kmem_free(ngep, sizeof (*ngep));
1647 }
1648 
1649 static int
1650 nge_resume(dev_info_t *devinfo)
1651 {
1652 	nge_t		*ngep;
1653 	chip_info_t	*infop;
1654 
1655 	ASSERT(devinfo != NULL);
1656 
1657 	ngep = ddi_get_driver_private(devinfo);
1658 	/*
1659 	 * If there are state inconsistancies, this is bad.  Returning
1660 	 * DDI_FAILURE here will eventually cause the machine to panic,
1661 	 * so it is best done here so that there is a possibility of
1662 	 * debugging the problem.
1663 	 */
1664 	if (ngep == NULL)
1665 		cmn_err(CE_PANIC,
1666 		    "nge: ngep returned from ddi_get_driver_private was NULL");
1667 	infop = (chip_info_t *)&ngep->chipinfo;
1668 
1669 	if (ngep->devinfo != devinfo)
1670 		cmn_err(CE_PANIC,
1671 		    "nge: passed devinfo not the same as saved definfo");
1672 
1673 	ngep->suspended = B_FALSE;
1674 
1675 	/*
1676 	 * Fetch the config space.  Even though we have most of it cached,
1677 	 * some values *might* change across a suspend/resume.
1678 	 */
1679 	nge_chip_cfg_init(ngep, infop, B_FALSE);
1680 
1681 	/*
1682 	 * Start the controller.  In this case (and probably most GLDv3
1683 	 * devices), it is sufficient to call nge_m_start().
1684 	 */
1685 	if (nge_m_start((void *)ngep) != DDI_SUCCESS) {
1686 		/*
1687 		 * We note the failure, but return success, as the
1688 		 * system is still usable without this controller.
1689 		 */
1690 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
1691 	}
1692 	return (DDI_SUCCESS);
1693 }
1694 
1695 /*
1696  * attach(9E) -- Attach a device to the system
1697  *
1698  * Called once for each board successfully probed.
1699  */
1700 static int
1701 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
1702 {
1703 	int		err;
1704 	int		i;
1705 	int		instance;
1706 	caddr_t		regs;
1707 	nge_t		*ngep;
1708 	chip_info_t	*infop;
1709 	mac_register_t	*macp;
1710 
1711 	switch (cmd) {
1712 	default:
1713 		return (DDI_FAILURE);
1714 
1715 	case DDI_RESUME:
1716 		return (nge_resume(devinfo));
1717 
1718 	case DDI_ATTACH:
1719 		break;
1720 	}
1721 
1722 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
1723 	instance = ddi_get_instance(devinfo);
1724 	ddi_set_driver_private(devinfo, ngep);
1725 	ngep->devinfo = devinfo;
1726 
1727 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
1728 	    NGE_DRIVER_NAME, instance);
1729 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
1730 	if (err != DDI_SUCCESS) {
1731 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
1732 		goto attach_fail;
1733 	}
1734 	infop = (chip_info_t *)&ngep->chipinfo;
1735 	nge_chip_cfg_init(ngep, infop, B_FALSE);
1736 	nge_init_dev_spec_param(ngep);
1737 	nge_get_props(ngep);
1738 	ngep->progress |= PROGRESS_CFG;
1739 
1740 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
1741 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
1742 	if (err != DDI_SUCCESS) {
1743 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
1744 		goto attach_fail;
1745 	}
1746 	ngep->io_regs = regs;
1747 	ngep->progress |= PROGRESS_REGS;
1748 
1749 	err = nge_register_intrs_and_init_locks(ngep);
1750 	if (err != DDI_SUCCESS) {
1751 		nge_problem(ngep, "nge_attach:"
1752 		    " register intrs and init locks failed");
1753 		goto attach_fail;
1754 	}
1755 	nge_init_ring_param_lock(ngep);
1756 	ngep->progress |= PROGRESS_INTR;
1757 
1758 	mutex_enter(ngep->genlock);
1759 
1760 	/*
1761 	 * Initialise link state variables
1762 	 * Stop, reset & reinitialise the chip.
1763 	 * Initialise the (internal) PHY.
1764 	 */
1765 	nge_phys_init(ngep);
1766 	err = nge_chip_reset(ngep);
1767 	if (err != DDI_SUCCESS) {
1768 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
1769 		mutex_exit(ngep->genlock);
1770 		goto attach_fail;
1771 	}
1772 	nge_chip_sync(ngep);
1773 
1774 	/*
1775 	 * Now that mutex locks are initialized, enable interrupts.
1776 	 */
1777 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
1778 		/* Call ddi_intr_block_enable() for MSI interrupts */
1779 		(void) ddi_intr_block_enable(ngep->htable,
1780 		    ngep->intr_actual_cnt);
1781 	} else {
1782 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
1783 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
1784 			(void) ddi_intr_enable(ngep->htable[i]);
1785 		}
1786 	}
1787 
1788 	ngep->link_state = LINK_STATE_UNKNOWN;
1789 	ngep->progress |= PROGRESS_HWINT;
1790 
1791 	/*
1792 	 * Register NDD-tweakable parameters
1793 	 */
1794 	if (nge_nd_init(ngep)) {
1795 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
1796 		mutex_exit(ngep->genlock);
1797 		goto attach_fail;
1798 	}
1799 	ngep->progress |= PROGRESS_NDD;
1800 
1801 	/*
1802 	 * Create & initialise named kstats
1803 	 */
1804 	nge_init_kstats(ngep, instance);
1805 	ngep->progress |= PROGRESS_KSTATS;
1806 
1807 	mutex_exit(ngep->genlock);
1808 
1809 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
1810 		goto attach_fail;
1811 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
1812 	macp->m_driver = ngep;
1813 	macp->m_dip = devinfo;
1814 	macp->m_src_addr = infop->vendor_addr.addr;
1815 	macp->m_callbacks = &nge_m_callbacks;
1816 	macp->m_min_sdu = 0;
1817 	macp->m_max_sdu = ngep->default_mtu;
1818 	/*
1819 	 * Finally, we're ready to register ourselves with the mac
1820 	 * interface; if this succeeds, we're all ready to start()
1821 	 */
1822 	err = mac_register(macp, &ngep->mh);
1823 	mac_free(macp);
1824 	if (err != 0)
1825 		goto attach_fail;
1826 
1827 	/*
1828 	 * Register a periodical handler.
1829 	 * nge_chip_cyclic() is invoked in kernel context.
1830 	 */
1831 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
1832 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
1833 
1834 	ngep->progress |= PROGRESS_READY;
1835 	return (DDI_SUCCESS);
1836 
1837 attach_fail:
1838 	nge_unattach(ngep);
1839 	return (DDI_FAILURE);
1840 }
1841 
1842 /*
1843  * detach(9E) -- Detach a device from the system
1844  */
1845 static int
1846 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1847 {
1848 	int i;
1849 	nge_t *ngep;
1850 	mul_item *p, *nextp;
1851 	buff_ring_t *brp;
1852 
1853 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
1854 
1855 	ngep = ddi_get_driver_private(devinfo);
1856 	brp = ngep->buff;
1857 
1858 	switch (cmd) {
1859 	default:
1860 		return (DDI_FAILURE);
1861 
1862 	case DDI_SUSPEND:
1863 		/*
1864 		 * Stop the NIC
1865 		 * I suspect that we can actually suspend if the stop
1866 		 * routine returns a failure, as the resume will
1867 		 * effectively fully reset the hardware (i.e. we don't
1868 		 * really save any hardware state).  However, nge_m_stop
1869 		 * doesn't return an error code.
1870 		 * Note: This driver doesn't currently support WOL, but
1871 		 *	should it in the future, it is important to
1872 		 *	make sure the PHY remains powered so that the
1873 		 *	wakeup packet can actually be recieved.
1874 		 */
1875 		nge_m_stop(ngep);
1876 		ngep->suspended = B_TRUE;
1877 		return (DDI_SUCCESS);
1878 
1879 	case DDI_DETACH:
1880 		break;
1881 	}
1882 
1883 	/* Try to wait all the buffer post to upper layer be released */
1884 	for (i = 0; i < 1000; i++) {
1885 		if (brp->rx_hold == 0)
1886 			break;
1887 		drv_usecwait(1000);
1888 	}
1889 
1890 	/* If there is any posted buffer, reject to detach */
1891 	if (brp->rx_hold != 0)
1892 		return (DDI_FAILURE);
1893 
1894 	/* Recycle the multicast table */
1895 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
1896 		nextp = p->next;
1897 		kmem_free(p, sizeof (mul_item));
1898 	}
1899 	ngep->pcur_mulist = NULL;
1900 
1901 	/*
1902 	 * Unregister from the GLD subsystem.  This can fail, in
1903 	 * particular if there are DLPI style-2 streams still open -
1904 	 * in which case we just return failure without shutting
1905 	 * down chip operations.
1906 	 */
1907 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
1908 		return (DDI_FAILURE);
1909 
1910 	/*
1911 	 * All activity stopped, so we can clean up & exit
1912 	 */
1913 	nge_unattach(ngep);
1914 	return (DDI_SUCCESS);
1915 }
1916 
1917 
1918 /*
1919  * ========== Module Loading Data & Entry Points ==========
1920  */
1921 
1922 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
1923     nodev, NULL, D_MP, NULL);
1924 
1925 
1926 static struct modldrv nge_modldrv = {
1927 	&mod_driverops,		/* Type of module.  This one is a driver */
1928 	nge_ident,		/* short description */
1929 	&nge_dev_ops		/* driver specific ops */
1930 };
1931 
1932 static struct modlinkage modlinkage = {
1933 	MODREV_1, (void *)&nge_modldrv, NULL
1934 };
1935 
1936 
1937 int
1938 _info(struct modinfo *modinfop)
1939 {
1940 	return (mod_info(&modlinkage, modinfop));
1941 }
1942 
1943 int
1944 _init(void)
1945 {
1946 	int status;
1947 
1948 	mac_init_ops(&nge_dev_ops, "nge");
1949 	status = mod_install(&modlinkage);
1950 	if (status != DDI_SUCCESS)
1951 		mac_fini_ops(&nge_dev_ops);
1952 	else
1953 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
1954 
1955 	return (status);
1956 }
1957 
1958 int
1959 _fini(void)
1960 {
1961 	int status;
1962 
1963 	status = mod_remove(&modlinkage);
1964 	if (status == DDI_SUCCESS) {
1965 		mac_fini_ops(&nge_dev_ops);
1966 		mutex_destroy(nge_log_mutex);
1967 	}
1968 
1969 	return (status);
1970 }
1971 
1972 /*
1973  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
1974  */
1975 
1976 /*
1977  * Register interrupts and initialize each mutex and condition variables
1978  */
1979 
1980 static int
1981 nge_register_intrs_and_init_locks(nge_t *ngep)
1982 {
1983 	int		err;
1984 	int		intr_types;
1985 	uint_t		soft_prip;
1986 	nge_msi_mask	msi_mask;
1987 	nge_msi_map0_vec map0_vec;
1988 	nge_msi_map1_vec map1_vec;
1989 
1990 	/*
1991 	 * Add the softint handlers:
1992 	 *
1993 	 * Both of these handlers are used to avoid restrictions on the
1994 	 * context and/or mutexes required for some operations.  In
1995 	 * particular, the hardware interrupt handler and its subfunctions
1996 	 * can detect a number of conditions that we don't want to handle
1997 	 * in that context or with that set of mutexes held.  So, these
1998 	 * softints are triggered instead:
1999 	 *
2000 	 * the <resched> softint is triggered if if we have previously
2001 	 * had to refuse to send a packet because of resource shortage
2002 	 * (we've run out of transmit buffers), but the send completion
2003 	 * interrupt handler has now detected that more buffers have
2004 	 * become available.  Its only purpose is to call gld_sched()
2005 	 * to retry the pending transmits (we're not allowed to hold
2006 	 * driver-defined mutexes across gld_sched()).
2007 	 *
2008 	 * the <factotum> is triggered if the h/w interrupt handler
2009 	 * sees the <link state changed> or <error> bits in the status
2010 	 * block.  It's also triggered periodically to poll the link
2011 	 * state, just in case we aren't getting link status change
2012 	 * interrupts ...
2013 	 */
2014 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
2015 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
2016 	if (err != DDI_SUCCESS) {
2017 		nge_problem(ngep,
2018 		    "nge_attach: add nge_reschedule softintr failed");
2019 
2020 		return (DDI_FAILURE);
2021 	}
2022 	ngep->progress |= PROGRESS_RESCHED;
2023 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
2024 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
2025 	if (err != DDI_SUCCESS) {
2026 		nge_problem(ngep,
2027 		    "nge_attach: add nge_chip_factotum softintr failed!");
2028 
2029 		return (DDI_FAILURE);
2030 	}
2031 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2032 	    != DDI_SUCCESS) {
2033 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2034 
2035 		return (DDI_FAILURE);
2036 	}
2037 	ngep->soft_pri = soft_prip;
2038 
2039 	ngep->progress |= PROGRESS_FACTOTUM;
2040 	/* Get supported interrupt types */
2041 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2042 	    != DDI_SUCCESS) {
2043 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2044 
2045 		return (DDI_FAILURE);
2046 	}
2047 
2048 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2049 	    intr_types));
2050 
2051 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2052 
2053 		/* MSI Configurations for mcp55 chipset */
2054 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2055 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2056 
2057 
2058 			/* Enable the 8 vectors */
2059 			msi_mask.msi_mask_val =
2060 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2061 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2062 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2063 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2064 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2065 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2066 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2067 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2068 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2069 			nge_reg_put32(ngep, NGE_MSI_MASK,
2070 			    msi_mask.msi_mask_val);
2071 
2072 			/*
2073 			 * Remapping the MSI MAP0 and MAP1. MCP55
2074 			 * is default mapping all the interrupt to 0 vector.
2075 			 * Software needs to remapping this.
2076 			 * This mapping is same as CK804.
2077 			 */
2078 			map0_vec.msi_map0_val =
2079 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2080 			map1_vec.msi_map1_val =
2081 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2082 			map0_vec.vecs_bits.reint_vec = 0;
2083 			map0_vec.vecs_bits.rcint_vec = 0;
2084 			map0_vec.vecs_bits.miss_vec = 3;
2085 			map0_vec.vecs_bits.teint_vec = 5;
2086 			map0_vec.vecs_bits.tcint_vec = 5;
2087 			map0_vec.vecs_bits.stint_vec = 2;
2088 			map0_vec.vecs_bits.mint_vec = 6;
2089 			map0_vec.vecs_bits.rfint_vec = 0;
2090 			map1_vec.vecs_bits.tfint_vec = 5;
2091 			map1_vec.vecs_bits.feint_vec = 6;
2092 			map1_vec.vecs_bits.resv8_11 = 3;
2093 			map1_vec.vecs_bits.resv12_15 = 1;
2094 			map1_vec.vecs_bits.resv16_19 = 0;
2095 			map1_vec.vecs_bits.resv20_23 = 7;
2096 			map1_vec.vecs_bits.resv24_31 = 0xff;
2097 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2098 			    map0_vec.msi_map0_val);
2099 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2100 			    map1_vec.msi_map1_val);
2101 		}
2102 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2103 			NGE_DEBUG(("MSI registration failed, "
2104 			    "trying FIXED interrupt type\n"));
2105 		} else {
2106 			nge_log(ngep, "Using MSI interrupt type\n");
2107 
2108 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2109 			ngep->progress |= PROGRESS_SWINT;
2110 		}
2111 	}
2112 
2113 	if (!(ngep->progress & PROGRESS_SWINT) &&
2114 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2115 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2116 			nge_error(ngep, "FIXED interrupt "
2117 			    "registration failed\n");
2118 
2119 			return (DDI_FAILURE);
2120 		}
2121 
2122 		nge_log(ngep, "Using FIXED interrupt type\n");
2123 
2124 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2125 		ngep->progress |= PROGRESS_SWINT;
2126 	}
2127 
2128 
2129 	if (!(ngep->progress & PROGRESS_SWINT)) {
2130 		nge_error(ngep, "No interrupts registered\n");
2131 
2132 		return (DDI_FAILURE);
2133 	}
2134 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2135 	    DDI_INTR_PRI(ngep->intr_pri));
2136 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2137 	    DDI_INTR_PRI(ngep->soft_pri));
2138 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2139 	    DDI_INTR_PRI(ngep->intr_pri));
2140 
2141 	return (DDI_SUCCESS);
2142 }
2143 
2144 /*
2145  * nge_add_intrs:
2146  *
2147  * Register FIXED or MSI interrupts.
2148  */
2149 static int
2150 nge_add_intrs(nge_t *ngep, int	intr_type)
2151 {
2152 	dev_info_t	*dip = ngep->devinfo;
2153 	int		avail, actual, intr_size, count = 0;
2154 	int		i, flag, ret;
2155 
2156 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2157 
2158 	/* Get number of interrupts */
2159 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2160 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2161 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2162 		    "count: %d", ret, count);
2163 
2164 		return (DDI_FAILURE);
2165 	}
2166 
2167 	/* Get number of available interrupts */
2168 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2169 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2170 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2171 		    "ret: %d, avail: %d\n", ret, avail);
2172 
2173 		return (DDI_FAILURE);
2174 	}
2175 
2176 	if (avail < count) {
2177 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2178 		    count, avail));
2179 	}
2180 	flag = DDI_INTR_ALLOC_NORMAL;
2181 
2182 	/* Allocate an array of interrupt handles */
2183 	intr_size = count * sizeof (ddi_intr_handle_t);
2184 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2185 
2186 	/* Call ddi_intr_alloc() */
2187 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2188 	    count, &actual, flag);
2189 
2190 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2191 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
2192 
2193 		kmem_free(ngep->htable, intr_size);
2194 		return (DDI_FAILURE);
2195 	}
2196 
2197 	if (actual < count) {
2198 		NGE_DEBUG(("Requested: %d, Received: %d\n",
2199 		    count, actual));
2200 	}
2201 
2202 	ngep->intr_actual_cnt = actual;
2203 	ngep->intr_req_cnt = count;
2204 
2205 	/*
2206 	 * Get priority for first msi, assume remaining are all the same
2207 	 */
2208 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
2209 	    DDI_SUCCESS) {
2210 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
2211 
2212 		/* Free already allocated intr */
2213 		for (i = 0; i < actual; i++) {
2214 			(void) ddi_intr_free(ngep->htable[i]);
2215 		}
2216 
2217 		kmem_free(ngep->htable, intr_size);
2218 
2219 		return (DDI_FAILURE);
2220 	}
2221 	/* Test for high level mutex */
2222 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
2223 		nge_error(ngep, "nge_add_intrs:"
2224 		    "Hi level interrupt not supported");
2225 
2226 		for (i = 0; i < actual; i++)
2227 			(void) ddi_intr_free(ngep->htable[i]);
2228 
2229 		kmem_free(ngep->htable, intr_size);
2230 
2231 		return (DDI_FAILURE);
2232 	}
2233 
2234 
2235 	/* Call ddi_intr_add_handler() */
2236 	for (i = 0; i < actual; i++) {
2237 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
2238 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2239 			nge_error(ngep, "ddi_intr_add_handler() "
2240 			    "failed %d\n", ret);
2241 
2242 			/* Free already allocated intr */
2243 			for (i = 0; i < actual; i++) {
2244 				(void) ddi_intr_free(ngep->htable[i]);
2245 			}
2246 
2247 			kmem_free(ngep->htable, intr_size);
2248 
2249 			return (DDI_FAILURE);
2250 		}
2251 	}
2252 
2253 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
2254 	    != DDI_SUCCESS) {
2255 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
2256 
2257 		for (i = 0; i < actual; i++) {
2258 			(void) ddi_intr_remove_handler(ngep->htable[i]);
2259 			(void) ddi_intr_free(ngep->htable[i]);
2260 		}
2261 
2262 		kmem_free(ngep->htable, intr_size);
2263 
2264 		return (DDI_FAILURE);
2265 	}
2266 
2267 	return (DDI_SUCCESS);
2268 }
2269 
2270 /*
2271  * nge_rem_intrs:
2272  *
2273  * Unregister FIXED or MSI interrupts
2274  */
2275 static void
2276 nge_rem_intrs(nge_t *ngep)
2277 {
2278 	int	i;
2279 
2280 	NGE_DEBUG(("nge_rem_intrs\n"));
2281 
2282 	/* Disable all interrupts */
2283 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2284 		/* Call ddi_intr_block_disable() */
2285 		(void) ddi_intr_block_disable(ngep->htable,
2286 		    ngep->intr_actual_cnt);
2287 	} else {
2288 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2289 			(void) ddi_intr_disable(ngep->htable[i]);
2290 		}
2291 	}
2292 
2293 	/* Call ddi_intr_remove_handler() */
2294 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
2295 		(void) ddi_intr_remove_handler(ngep->htable[i]);
2296 		(void) ddi_intr_free(ngep->htable[i]);
2297 	}
2298 
2299 	kmem_free(ngep->htable,
2300 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
2301 }
2302